
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

VARIABLE-STRENGTH CONDITIONAL

PREFERENCES FOR RANKING

OBJECTS IN ONTOLOGIES

THOMAS LUKASIEWICZ JÖRG SCHELLHASE

INFSYS RESEARCH REPORT 1843-07-06

APRIL 2007

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-07-06, APRIL 2007

VARIABLE-STRENGTH CONDITIONAL PREFERENCES FOR

RANKING OBJECTS IN ONTOLOGIES

APRIL 22, 2007

Thomas Lukasiewicz 1 Jörg Schellhase 2

Abstract. We introduce conditional preference bases as a means for ranking objects in ontologies.

Conditional preference bases consist of a description logic knowledge base and a finite set of con-

ditional preferences, which are statements of the form “generally, in the context φ, property α is

preferred over property ¬α with strength s”. They are inspired by variable-strength defaults in con-

ditional knowledge bases. We define the notion of consistency for conditional preference bases, and

we show how consistent conditional preference bases can be used for ranking objects in ontologies,

where every object represents essentially a set of individuals that are sharing the same ranking-

relevant properties. More concretely, we define two object rankings, denoted κsum and κlex, which

evaluate the strengths of conditional preferences in an additive and a lexicographic way, respec-

tively. Furthermore, we provide algorithms for the main computational tasks for ranking objects

under conditional preference bases, we analyze the complexity of these tasks, and we delineate a

tractable special case. To give evidence of the usefulness of this approach in practice, we describe

two applications in the areas of product and literature search, where it allows especially for a flexible

user-defined ranking of the query results reflecting personal preferences.

1Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma, Via Ariosto 25, I-00185 Rome, Italy;

e-mail: lukasiewicz@dis.uniroma1.it. Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße

9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.
2Fachgebiet Wirtschaftsinformatik, Universität Kassel, Nora-Platiel-Straße 4, D-34127 Kassel, Germany; e-mail:

schellhase@wirtschaft.uni-kassel.de.

Acknowledgements: This work has been partially supported by the German Research Foundation (DFG)

under the Heisenberg Programme.

Copyright c© 2007 by the authors

INFSYS RR 1843-07-06 I

Contents

1 Introduction 1

2 The Description Logics SHIF(D) and SHOIN (D) 3

2.1 Syntax . 3

2.2 Semantics . 4

3 Conditional Knowledge Bases 5

3.1 Syntax . 5

3.2 Semantics . 5

3.3 ε-Consistency . 5

4 Conditional Preference Bases 6

4.1 Syntax . 6

4.2 Semantics . 7

4.3 Consistency . 8

5 Ranking Objects under Conditional Preference Bases 9

6 Algorithms 12

7 Complexity 15

7.1 Complexity Classes and Previous Results . 15

7.2 Complexity Results . 16

8 Tractable Special Case 17

9 Literature Search 18

9.1 Background . 18

9.2 Literature Search via Conditional Preference Bases . 19

10 Related Work 21

10.1 Default Reasoning from Conditional Knowledge Bases . 21

10.2 Uncertainty Reasoning in Description Logics and Ontologies 21

11 Conclusion 22

A Appendix: Proofs for Section 6 23

B Appendix: Proofs for Section 7 24

C Appendix: Proofs for Section 8 25

INFSYS RR 1843-07-06 1

1 Introduction

In their seminal works [44, 43], Poole and Smyth deal with the problem of matching instances against

models of instances, which are both described at different levels of abstraction and at different levels of

detail, using qualitative probability theory. Informally, such problems are as follows. Given an instance I
and a model of instancesM , compute the qualitative probability that the instance I is matching the modelM
(that is, of I givenM). For example, in a geological exploration domain, we may want to determine whether

there might be gold in an area. In this case, an instance I may be given by the description of an area, while

a model M may be given by a description of areas where gold can be found, and the qualitative probability

that I is matching M describes the likelihood that gold may be found in I .

In this paper, we continue this line of research. A serious drawback of the above works [44, 43] on

matching instances against models of instances is that they only allow for expressing simple preferences of

the form “property α is preferred over property ¬α with strength s” in models of instances. In particular,

they do not allow for conditional preferences such as “generally, in the context φ, property α is preferred over

property ¬α with strength s”. In this paper, we aim at filling this gap. We present a formalism for ranking

objects in description logics that allows for expressing such conditional preferences in models of instances.

In a companion paper [36], we present a generalization of it for matchmaking in description logics.

Like Poole and Smyth’s work [44, 43], the ranking formalism in this paper is also based on qualitative

probabilities. Differently from Poole and Smyth’s work [44, 43], however, it requires a technically more

involved way of computing qualitative probabilities, since our language for encoding models of instances is

more expressive. We especially have to suitably handle variable-strength conditional preferences, which are

the above statements of the form “generally, in the context φ, property α is preferred over property ¬α with

strength s” (also called variable-strength conditional desires [51]). They bear close similarity to variable-

strength defaults of the form “generally, if φ then α with strength s” in conditional knowledge bases [24].

In this paper, we define a formal semantics for variable-strength conditional preferences, which is based

on conditional knowledge bases (see Sections 3 and 10). We focus on the problem of ranking objects

against a description of objects. Since we are especially interested in the Semantic Web as the main appli-

cation context, we assume that objects and descriptions of objects are expressed in the description logics

SHIF(D) and SHOIN (D), which stand behind the web ontology languages OWL Lite and OWL DL,

respectively [26]. We assume that every object is a finite set of ranking-relevant properties of individuals

and so essentially a set of individuals sharing the same ranking-relevant properties.

The Semantic Web [5, 17] aims at an extension of the current World Wide Web by standards and tech-

nologies that help machines to understand the information on the Web so that they can support richer

discovery, data integration, navigation, and automation of tasks. The main ideas behind it are to add a

machine-readable meaning to Web pages, to use ontologies for a precise definition of shared terms in Web

resources, to make use of knowledge representation and reasoning technology for automated reasoning from

Web resources, and to apply cooperative agent technology for processing the information of the Web. The

Semantic Web consists of several hierarchical layers, where the Ontology layer, in form of the OWL Web

Ontology Language [54, 27] (recommended by the W3C), is currently the highest layer of sufficient matu-

rity. OWL consists of three increasingly expressive sublanguages, namely OWL Lite, OWL DL, and OWL

Full. OWL Lite and OWL DL are essentially expressive description logics with an RDF syntax [27]. Ontol-

ogy entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the description

logic SHIF(D) (resp., SHOIN (D)) [26].

The main contributions of this paper can be summarized as follows:

• We introduce conditional preference bases, which consist of a description logic knowledge base in

2 INFSYS RR 1843-07-06

SHIF(D) or SHOIN (D), and a finite set of (variable-strength) conditional preferences. They are

inspired by variable-strength defaults in conditional knowledge bases [24]. We define the notion of

consistency for conditional preference bases, and show how consistent conditional preference bases

can be used for ranking objects in ontologies, where every object is roughly a set of individuals sharing

the same ranking-relevant properties. More concretely, we define two object rankings, denoted κsum

and κlex, which evaluate the strengths of conditional preferences in an additive and a lexicographic

way, respectively.

• We provide algorithms for the main computational tasks related to conditional preference bases,

namely, (i) for deciding whether a conditional preference base is consistent, (ii) for computing the

z-partition of a consistent conditional preference base, and (iii) for computing the rankings κsum and

κlex on a set of objects relative to a consistent conditional preference base. Each of these algorithms

is based on a reduction to a polynomial number of tests whether a description logic knowledge base

in SHIF(D) (resp., SHOIN (D)) is satisfiable.

• We analyze the complexity of the main computational tasks related to conditional preference bases.

For conditional preference bases over SHIF(D), all tasks are complete for EXP (resp., FEXP),

and thus have the same complexity as deciding knowledge base satisfiability in SHIF(D). For

conditional preference bases over SHOIN (D), deciding consistency is complete for NEXP, and

thus has the same complexity as deciding knowledge base satisfiability in SHOIN (D), while all

the other tasks are in FP NEXP, and thus can be done in the same time as the main reasoning tasks in

description logic programs over SHOIN (D) [16].

• Taking inspiration from the recent description logic DL-Lite, which allows for polynomial-time de-

scription logic reasoning [9], we describe a special case of conditional preference bases (with concepts

in DL-Lite) where the main computational tasks can all be done in polynomial time.

• We describe two applications of this approach in product and literature search. In the former, it allows

for a flexible user-defined ranking of the query results, which reflects personal preferences. In the

latter, it allows for both expressing sophisticated search strategies and a flexible user-defined ranking

of the query results, which reflects personal preferences and quality measures. More generally, query

languages of current search engines are very restricted in their expressive power. There are scientific

search engines on the web, however, that have valuable metadata about publications, authors, organi-

zations, and scientific events. We show that conditional preference bases allow for a more powerful

query language, which can exploit this metadata better than the current approaches do.

The rest of this paper is organized as follows. In Section 2, we review the description logics SHIF(D)
and SHOIN (D). In Section 3, we review conditional knowledge bases. Section 4 introduces conditional

preference bases and the notions of consistency and z-entailment for conditional preference bases. In Sec-

tion 5, we present the two object rankings κsum and κlex relative to a consistent conditional preference base.

In Sections 6–8, we provide algorithms for the main computational tasks related to conditional preference

bases, we analyze the complexity of these tasks, and we delineate tractable special cases. Section 9 de-

scribes a sample application in literature search, and Section 10 discusses related work. In Section 11, we

summarize the main results and give an outlook on future research. Note that detailed proofs of all results

in this paper are given in Appendices A–C.

INFSYS RR 1843-07-06 3

2 The Description Logics SHIF(D) and SHOIN (D)

In this section, we review the description logics SHIF(D) and SHOIN (D), which stand behind the

web ontology languages OWL Lite and OWL DL, respectively. See especially [26] for further details and

background. Intuitively, description logics model a domain of interest in terms of concepts and roles, which

represent classes of individuals and binary relations between classes of individuals, respectively. A de-

scription logic knowledge base encodes in particular subset relationships between classes of individuals,

the membership of individuals to classes, and the membership of pairs of individuals to binary relations

between classes.

2.1 Syntax

We first describe the syntax of SHOIN (D). We assume a set of elementary datatypes and a set of data

values. A datatype is an elementary datatype or a set of data values (called datatype oneOf). A datatype

theory D= (∆D, ·D) consists of a datatype domain ∆D and a mapping ·D that assigns to each elementary

datatype a subset of ∆D and to each data value an element of ∆D. We extend ·D to all datatypes by

{v1, . . .}
D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint finite nonempty sets of atomic concepts,

abstract roles, datatype roles, and individuals, respectively. We denote by R
−
A the set of inverses R− of

all R∈RA.

A role is any element of RA ∪R
−
A ∪RD. Concepts are inductively defined as follows. Every φ∈A is

a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept (called oneOf). If φ, φ1, and φ2 are concepts

and if R∈RA ∪R
−
A, then also ¬φ, (φ1⊓φ2), and (φ1⊔φ2) are concepts (called negation, conjunction, and

disjunction, respectively), as well as ∃R.φ, ∀R.φ, ≥nR, and ≤nR (called exists, value, atleast, and atmost

restriction, respectively) for an integer n≥ 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D, ≥nU , and

≤nU are concepts (called datatype exists, value, atleast, and atmost restriction, respectively) for an integer

n≥ 0. We use ⊤ (resp., ⊥) to abbreviate φ⊔¬φ (resp., φ⊓¬φ), and eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ⊑ψ (called concept inclusion axiom), where φ and

ψ are concepts; (2) R⊑S (called role inclusion axiom), where either R,S ∈RA ∪R
−
A or R,S ∈RD;

(3) Trans(R) (called transitivity axiom), where R∈RA; (4) φ(a) (called concept membership axiom),

where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a, v)) (called role membership axiom), where R ∈ RA

(resp., U ∈RD) and a, b∈ I (resp., a∈ I and v is a data value); and (6) a= b (resp., a 6= b) (equality (resp.,

inequality) axiom), where a, b∈ I. A (description logic) knowledge base KB is a finite set of axioms. For

decidability, number restrictions in KB are restricted to simple abstract roles (see [28] for details).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf constructor

and with the atleast and atmost constructors limited to 0 and 1.

Example 2.1 (Products) An online store (such as amazon.com) may use a description logic knowledge base

to classify and characterize its products. For example, assume the following relationships between products:

(1) textbooks are books, (2) personal computers and laptops are mutually exclusive electronic products, (3)

books and electronic products are mutually exclusive products, (4) objects on sale are products, (5) every

product has at least one related product, (6) only products are related to each other, (7) tb ai and tb lp are

textbooks, (8) which are related to each other, (9) pc ibm and pc hp are personal computers, (10) which

are related to each other, and (11) ibm and hp are providers for pc ibm resp. pc hp. These relationships are

expressed by the following description logic knowledge base KB :

(1) Textbook ⊑ Book;

4 INFSYS RR 1843-07-06

(2) PC ⊔ Laptop ⊑ Electronics; PC ⊑ ¬Laptop;

(3) Book ⊔ Electronics ⊑ Product; Book⊑¬Electronics;

(4) Sale ⊑ Product;

(5) Product ⊑ ≥ 1 related;

(6) ≥ 1 related ⊔ ≥ 1 related− ⊑ Product;

(7) Textbook(tb ai); Textbook(tb lp);

(8) related(tb ai, tb lp);

(9) PC(pc ibm); PC(pc hp);

(10) related(pc ibm, pc hp);

(11) provides(ibm, pc ibm); provides(hp, pc hp).

2.2 Semantics

An interpretation I = (∆I , · I) with respect to a datatype theory D= (∆D, ·D) consists of a nonempty

(abstract) domain ∆I disjoint from ∆D, and a mapping · I that assigns to each atomic concept φ∈A a

subset of ∆I , to each individual o∈ I an element of ∆I , to each abstract role R∈RA a subset of ∆I ×∆I ,

and to each datatype role U ∈RD a subset of ∆I ×∆D. We extend · I to all concepts and roles as usual

(where #S denotes the cardinality of a set S):

• {o1, . . . , on}
I = {oI1 , . . . , o

I
n}; (¬φ)I = ∆I \φI ;

• (φ1 ⊓ φ2)
I = φI1 ∩ φ

I
2 ; (φ1 ⊔ φ2)

I = φI1 ∪ φ
I
2 ;

• (∃R.φ)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈φI};

• (∀R.φ)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈φI};

• (≥nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≥ n};

• (≤nR)I = {x∈∆I | #({y | (x, y)∈RI}) ≤ n};

• (∃U.D)I = {x∈∆I | ∃y : (x, y)∈UI ∧ y ∈DD};

• (∀U.D)I = {x∈∆I | ∀y : (x, y)∈UI → y ∈DD};

• (≥nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≥ n};

• (≤nU)I = {x∈∆I | #({y | (x, y)∈UI}) ≤ n}.

The satisfaction of an axiom F in an interpretation I = (∆, · I), denoted I |=F , is defined as follows:

(1) I |=φ⊑ψ iff φI ⊆ψI ; (2) I |=R⊑S iff RI ⊆SI ; (3) I |= Trans(R) iff RI is transitive; (4) I |=φ(a)
iff aI ∈φI ; (5) I |=R(a, b) iff (aI , bI) ∈ RI ; (6) I |=U(a, v) iff (aI , vD)∈UI ; (7) I |= a= b iff aI = bI ;

and (8) I |= a 6= b iff aI 6= bI . The interpretation I satisfies the axiom F , or I is a model of F , iff I |=F .

We say that I satisfies a knowledge base KB , or I is a model of KB , denoted I |=KB , iff I |=F for

all F ∈KB . We say that KB is satisfiable (resp., unsatisfiable) iff KB has a (resp., no) model. An axiom F
is a logical consequence of KB , denoted KB |=F , iff each model of KB satisfies F .

Example 2.2 (Products cont’d) The description logic knowledge base KB given in Example 3.1 is satis-

fiable, and some logical consequences of KB are Textbook ⊑ ¬Electronics, PC ⊑ Electronics, ¬Electro-

nics(tb lp), and Electronics(pc ibm).

INFSYS RR 1843-07-06 5

3 Conditional Knowledge Bases

In this section, we review conditional knowledge bases and the notion of ε-consistency for conditional

knowledge bases [1, 22]. Informally, a conditional knowledge base consists of a set of strict statements

in classical logic of the form “ψ⇐φ”, which informally read as “if φ then ψ” and a set of defeasible

rules (or defaults) of the form “ψ←φ”, which informally read as “generally, if φ then ψ”. The latter rules

may have exceptions, which can be handled in different ways (see Section 10.1). Note that for ease of

presentation, we here do not consider variable-strength defaults (which are of the form “ψ←s φ” to express

that “generally, if φ then ψ with strength s”), but all the concepts and results revisited below are easily

extended to conditional knowledge bases with variable-strength defaults [24].

3.1 Syntax

We first formally define the syntax of conditional knowledge bases. We assume a set of basic events

Φ= {p1, . . . , pl} with l≥ 1. We use ⊥ and ⊤ to denote false and true, respectively. We define events

by induction as follows. Every element of Φ∪{⊥,⊤} is an event. If φ and ψ are events, then also ¬φ and

(φ∧ψ). We use (φ∨ψ) and (ψ⇐φ) to abbreviate the events ¬(¬φ∧¬ψ) and ¬(¬ψ ∧φ), respectively, and

we adopt the usual conventions to eliminate parentheses. A logical constraint is an event of the form ψ⇐φ.

A conditional rule (or default) is an expression of the form ψ←φ, where φ and ψ are events. A conditional

knowledge base KB = (L,D) consists of a finite set of logical constraints L and a finite set of defaults D.

The following example illustrates conditional knowledge bases.

Example 3.1 (Penguins) The strict logical knowledge “all penguins are birds” and the default logical knowl-

edge “generally, birds fly”, “generally, penguins do not fly”, and “generally, birds have wings” is encoded

by the conditional knowledge base KB=({bird⇐ penguin}, {fly←bird, ¬fly←penguin, wings←bird}).

3.2 Semantics

We next define the semantics of conditional knowledge bases in terms of admissible world rankings. A world

I associates with every basic event in Φ a binary truth value. We extend I by induction to all events as usual.

We denote by IΦ the set of all worlds for Φ. A world I satisfies an event φ, or I is a model of φ, denoted

I |=φ, iff I(φ)= true. A world I satisfies a default ψ←φ, or I is a model of ψ←φ, denoted I |= ψ←φ,

iff I |= ψ⇐φ. We say that I verifies ψ←φ iff I |= φ ∧ ψ. We say that I falsifies ψ←φ iff I |= φ ∧ ¬ψ
(that is, I 6|= ψ←φ). We say that I satisfies a set of events and defaults K, or I is a model of K, denoted

I |=K, iff I satisfies every member ofK. We sayK is satisfiable iff a model ofK exists. A set of defaultsD
tolerates a default d under a set of logical constraints L, or d is tolerated under L byD, iffD∪L has a model

that verifies d. A set of defaults D is under L in conflict with a default ψ←φ iff all models of D ∪L∪ {φ}
satisfy ¬ψ. A world ranking κ is a mapping κ : IΦ → {0, 1, . . .} ∪ {∞} such that κ(I)= 0 for at least one

world I . It is extended to all events φ as follows. If φ is satisfiable, then κ(φ)= min {κ(I) | I ∈IΦ, I |=φ};
otherwise, κ(φ)=∞. A world ranking κ is admissible with a conditional knowledge base KB = (L,D) iff

κ(¬φ)=∞ for all φ∈L, and κ(φ)<∞ and κ(φ∧ψ)<κ(φ∧¬ψ) for all defaults ψ←φ∈D.

3.3 ε-Consistency

The notion of ε-consistency for conditional knowledge bases [1, 22] is defined as follows. A conditional

knowledge base KB is ε-consistent (resp., ε-inconsistent) iff a (resp., no) world ranking exists that is admis-

6 INFSYS RR 1843-07-06

sible with KB .

The existence of a world ranking that is admissible with KB = (L,D) is equivalent to (a) the existence

of a default ranking on D that is admissible with KB , if D 6= ∅, and to (b) the satisfiability of D, otherwise.

Here, a default ranking σ on a set of defaults D maps each default d∈D to a nonnegative integer. We say

that σ is admissible with a conditional knowledge base KB = (L,D) iff each D′⊆D that is under L in

conflict with some d∈D contains a default d′ such that σ(d′)<σ(d).
Another characterization of the notion of ε-consistency for conditional knowledge bases is given as

follows. A conditional knowledge base KB = (L,D) with D 6= ∅ is ε-consistent iff there exists an ordered

partition (D0, . . . , Dk) of D such that either (a) every Di, 0≤ i≤ k, is the set of all d∈
⋃k

j=iDj tolerated

under L by
⋃k

j=iDj , or (b) for every i, 0≤ i≤ k, each d∈Di is tolerated under L by
⋃k

j=iDj . The unique

partition (D0, . . . , Dk) of D in (a) is called the z-partition of KB .

Example 3.2 (Penguins cont’d) The conditional knowledge base KB = (L,D) of Example 3.1 is ε-consis-

tent. Its z-partition (P0, P1), which satisfies both (a) and (b) above, is given by (P0, P1) = ({wings←bird,
fly←bird}, {¬fly←penguin}).

The z-partition (D0, . . . , Dk) of an ε-consistent conditional knowledge base KB = (L,D) gives rise

to a natural notion of entailment from KB , called entailment in System Z (due to Pearl [41, 24]), which is

based on the following default ranking z and world ranking κz . For every j ∈{0, . . . , k}, each d∈Dj is

assigned the value j under z. The world ranking κz on all worlds I ∈ IΦ is then defined by:

κz(I) =















∞ if I 6|= L

0 if I |= L ∪D

1 + max
d∈D : I 6|=d

z(d) otherwise.

Note that z is a default ranking on KB that is admissible with KB , and κz is a world ranking that is

admissible with KB . The notion of entailment in System Z is then defined as follows. A default ψ←φ is

entailed in SystemZ by an ε-consistent conditional knowledge base KB iff either κz(φ) =∞ or κz(φ∧ψ) <
κz(φ ∧ ¬ψ).

Example 3.3 (Penguins cont’d) The conditional knowledge base KB = (L,D) of Example 3.1 entails in

System Z the defaults fly←bird and ¬fly←penguin.

4 Conditional Preference Bases

In this section, we first define the syntax of conditional preferences, which are intuitively statements of the

form “generally, if φ holds, then α is preferred over ¬α with strength s” (which are inspired by variable-

strength defaults in conditional knowledge bases [24]). We then define their semantics in terms of object

rankings (which is based on conditional knowledge bases; see Sections 3 and 10), and we introduce the

notion of consistency for conditional preference bases.

4.1 Syntax

We assume a finite set C of concepts in SHIF(D) or SHOIN (D) such that ⊤∈C. The elements of C are

called classification concepts. Note that they are fully general concepts and not necessarily atomic concepts.

INFSYS RR 1843-07-06 7

Intuitively, they are the relevant description logic concepts for defining preference relationships. A condi-

tional preference is of the form (α|φ)[s], where α and φ are concepts from C (called its head and its body,

respectively), and s is an integer from {1, . . . , 100} (called its strength). Informally, (α|φ)[s] expresses that

(i) generally, among the objects satisfying φ, the ones satisfying α are preferred over those satisfying ¬α,

and (ii) this preference relationship holds with strength s. We often write (α)[s] to abbreviate (α|⊤)[s].

Definition 4.1 A conditional preference base is a triple PB = (T,A, P), where T is a knowledge base

in SHIF(D) or SHOIN (D), A is a finite set of concepts from C, and P is a finite set of conditional

preferences.

Intuitively, conditional preference bases PB = (T,A, P) encode rankings on a set of individuals o. Here,

intuitively, T represents background knowledge, and A represents assertional knowledge about each o (that

is, A represents the set of all α(o) such that α∈A), while P represents conditional preferences about each o
(that is, P represents the set of all (α(o)|φ(o))[s] such that (α|φ)[s]∈P). Observe also that the statements

in T and A are strict (that is, they must always hold), while the ones in P are defeasible (that is, they may

have exceptions and thus do not always hold), since P may not always be satisfiable as a whole.

Example 4.2 (Products cont’d) The assertional knowledge “either a PC or a laptop” and the preference

relationships “generally, PC’s are preferred over laptops with strength 20”, “generally, laptops on sale are

preferred over PC’s on sale with strength 70”, and “generally, inexpensive products are preferred over ex-

pensive ones with strength 90” can be encoded by the conditional preference base PB = (T,A, P), where T
is the description logic knowledge base KB of Example 2.1, A = {PC ⊔ Laptop}, and P = {(PC)[20],
(Laptop|Sale)[70], (Inexpensive)[90]}. Note that, consequently, the set C of classification concepts contains

in particular the description logic concepts PC ⊔ Laptop, PC, Laptop, Sale, and Inexpensive.

4.2 Semantics

We now define some basic semantic concepts, including objects (which are subsets of C) and object rankings

(which are certain functions that map every object to a rank from {0, 1, . . .} ∪ {∞}), and we then associate

with every conditional preference base a set of admissible object rankings as a formal semantics.

Formally, an object o is a set of concepts from C such that {φ(i) |φ∈ o}∪ {¬φ(i) | φ∈C \ o} is sat-

isfiable, where i is a new individual. Informally, every object o represents all individuals i that are fully

specified on C in the sense that i belongs (resp., does not belong) to every concept φ∈ o (resp., φ∈C \ o).

That is, objects are essentially classifying individuals relative to the ranking-relevant properties specified

in C. We denote byOC the set of all objects relative to C. An object o satisfies a description logic knowledge

base T , denoted o |=T , iff T ∪{φ(i) |φ∈ o}∪ {¬φ(i) | φ∈C \ o} is satisfiable, where i is a new individual.

An object o satisfies a concept φ∈C, denoted o |=φ, iff φ∈ o. An object o satisfies a set of concepts A⊆C,

denoted o |=A, iff o satisfies all φ∈A. A concept φ∈C is satisfiable iff there exists an object o∈OC that

satisfies φ. The satisfaction of concepts by objects and the satisfiability of concepts are naturally extended

to Boolean combinations of concepts from C. An object o satisfies a conditional preference (α|φ)[s], de-

noted o |=(α|φ)[s], iff o |=¬φ⊔α. We say that o satisfies a set of conditional preferences P , denoted o |=P ,

iff o satisfies all p∈P . We say that o verifies (α|φ)[s] iff o |=φ⊓α. We say that o falsifies (α|φ)[s], denoted

o 6|=(α|φ)[s], iff o |=φ ⊓ ¬α. A set of conditional preferences P tolerates a conditional preference p under

a description logic knowledge base T and a set of classification concepts A⊆C, or p is tolerated under T
and A by P , iff there exists an object o that satisfies T ∪A∪P (that is, the object o satisfies T , A, and P)

and verifies p. We say that P is under T and A in conflict with p iff P does not tolerate p under T and A.

8 INFSYS RR 1843-07-06

An object ranking κ is a mapping κ : OC → {0, 1, . . .}∪ {∞} such that κ(o)= 0 for at least one object

o∈OC . It is extended to all Boolean combinations φ of concepts from C as follows. If φ is satisfiable,

then κ(φ) = min {κ(o) | o∈OC , o |=φ}; otherwise, κ(φ)=∞. We say that κ is admissible with a de-

scription logic knowledge base T (resp., a set of concepts A) iff κ(o)=∞ for all o∈OC such that o 6|=T
(resp., o 6|=A). We say that κ is admissible with a conditional preference (α|φ)[s] iff either κ(φ) = ∞ or

κ(φ⊓α) < κ(φ⊓¬α). We say that κ is admissible with PB = (T,A, P) iff κ is admissible with T , A, and

all p∈P .

4.3 Consistency

We now define the consistency of conditional preference bases, which properly generalizes the ε-consistency

of conditional knowledge bases (see Section 3.3).

Definition 4.3 A conditional preference base PB is consistent (resp., inconsistent) iff an (resp., no) object

ranking κ exists that is admissible with PB .

Observe that a conditional preference base PB = (T,A, P) withP = ∅ is consistent iff T ∪{α(i) |α∈A}
is satisfiable. We now summarize some results that carry over from ε-consistency in conditional knowledge

bases.

The following result shows that the existence of an object ranking that is admissible with PB = (T,A, P),
where P 6= ∅, is equivalent to the existence of a preference ranking on P that is admissible with PB . Here,

a preference ranking σ on P maps each p∈P to a nonnegative integer. We say that a preference ranking σ
on P is admissible with PB =(T,A, P) iff every P ′⊆P that is under T and A in conflict with some p∈P
contains some p′ such that σ(p′)<σ(p).

Theorem 4.4 A conditional preference base PB = (T,A, P) with P 6= ∅ is consistent iff there exists a pref-

erence ranking σ on P that is admissible with PB .

The next result shows that the consistency of PB = (T,A, P) is equivalent to the existence of an ordered

partition of P with certain properties. Here, recall that p is tolerated under T and A by
⋃k

j=i Pj iff there

exists an object o that satisfies T ∪A ∪
⋃k

j=i Pj and verifies p (see Section 4.2).

Theorem 4.5 A conditional preference base PB = (T,A, P) with P 6= ∅ is consistent iff there exists an

ordered partition (P0, . . . , Pk) of P such that either (a) every Pi, 0≤ i≤ k, is the set of all p∈
⋃k

j=i Pj

tolerated under T and A by
⋃k

j=i Pj , or (b) for every i, 0≤ i≤ k, each p∈Pi is tolerated under T and A

by
⋃k

j=i Pj .

We call the unique partition (P0, . . . , Pk) of P in (a) the z-partition of PB . Note that the notion of a

z-partition for conditional preference bases properly generalizes the notion of a z-partition for conditional

knowledge bases (see Section 3.3).

Example 4.6 (Products cont’d) It is not difficult to verify that the conditional preference base PB of Exam-

ple 4.2 is consistent, and that its z-partition is given by (P0, P1) = ({(PC)[20], (Inexpensive)[90]}, {(Lap-

top|Sale)[70]}).

INFSYS RR 1843-07-06 9

The z-partition (P0, . . . , Pk) of PB = (T,A, P) gives rise to a natural notion of entailment from PB ,

called z-entailment, which properly generalizes the notion of entailment in System Z for conditional knowl-

edge bases (see Section 3.3). The notion of z-entailment is based on the following preference ranking z and

object ranking κz . For every j ∈{0, . . . , k}, each p∈Pj is assigned the value j under z. The object rank-

ing κz on all objects o∈OC is then defined as follows:

κz(o) =















∞ if o 6|= T ∪A

0 if o |= T ∪A∪P

1 + max
p∈P : o6|=p

z(p) otherwise.

Note that z is a preference ranking on PB that is admissible with PB , and κz is an object ranking that is

admissible with PB . We define the notion of z-entailment as follows. A conditional preference p= (α|φ)[s]
is a z-consequence of PB , denoted PB |∼ p, iff either κz(φ) =∞ or κz(φ ∧ α)<κz(φ ∧ ¬α).

Since the notion of z-entailment generalizes the notion of entailment in SystemZ, it has similar semantic

properties. In particular, it realizes some inheritance of conditional preferences along subclass relationships,

where conditional preferences of more specific classes override the ones of less specific classes.

Example 4.7 (Products cont’d) Let the conditional preference base PB be defined as in Example 4.2. Then,

it is not difficult to verify that we obtain (PC)[20], (Laptop|Sale)[70], (Inexpensive)[90], and (Inexpensive |
Made By IBM)[90] as some z-consequences of PB .

5 Ranking Objects under Conditional Preference Bases

In this section, we define the two object rankings κsum and κlex, which reflect the conditional preferences

of a consistent conditional preference base PB = (T,A, P). Informally, every object o that does not satisfy

T ∪A is associated with the rank∞, while every object o that satisfies T ∪A is associated with a nonneg-

ative integer as a rank, which depends on how well o satisfies the conditional preferences in P , where the

rank is low (resp., high) for more (resp., less) desired o relative to P .

The main idea behind the first object ranking can be described as follows: κsum interprets the strengths

of the conditional preferences in P as costs (e.g., monetary costs). Intuitively, if an object o falsifies a

conditional preference from P of strength s, then this produces the cost s, and the overall rank of the object

o is then given by the sum of all these costs. That is, the rank of every object is given by the sum of the

strengths of all falsified conditional preferences in P . For example, when looking for an apartment, we may

rank a given collection of apartments according to whether they satisfy our conditional preferences, where

every falsified conditional preference produces a degree of dissatisfaction, and the rank of an apartment is

given by the sum of all such degrees of dissatisfaction.

The second object ranking is based on a different interpretation of the strengths: κlex interprets the

strengths of the conditional preferences in P as priorities and not as costs. That is, falsifying a conditional

preference from P of strength s is always worse than falsifying any set of conditional preferences from P of

strength at most s− 1. Thus, falsifying a collection of conditional preferences from P of low strengths can

never be worse than falsifying even a single conditional preference from P of high strength. For example,

when ranking a set of apartments O relative to a set of conditional preferences P , to obtain the apartments

in O of lowest rank, we first select those in O that satisfy a maximal set of conditional preferences of

highest strength s, among which we then select the ones that satisfy a maximal set conditional preferences

of strength s− 1, and so on.

10 INFSYS RR 1843-07-06

If P contains only conditional preferences of the form (ψ|⊤)[s], then computing the above two object

rankings is quite easy, since κsum can be computed by summing up the strengths of all falsified conditional

preferences in P , while κlex can be computed by a lexicographic order relative to the strengths. However,

if P contains fully general conditional preferences of the form (ψ|φ)[s], then computing the above two

object rankings is technically much more involved. The main technical difficulty is roughly that we want

any conditional preference in P of the form (ψ|φ)[s] to apply on all objects that satisfy φ and also on all

objects that satisfy some more specific φ′ as long as this is compatible with P (that is, as long as P contains

no conditional preference (ψ′|φ′)[s′] that is incompatible with (ψ|φ)[s]). That is, from another perspective,

the set of conditional preferences P implicitly encodes some exceptions for the bodies of its conditional

preferences, which we have to make explicit in order to correctly compute the above two object rankings.

To this end, we rewrite P from a set of defeasible statements to a set of strict statements P ⋆, which is done

by adding exceptions to the bodies of the conditional preferences in P .

Example 5.1 (Products cont’d) Consider again PB =(T,A, P) of Example 4.2. Ignoring the strengths,

P encodes that (i) “PCs are preferred over laptops (with strength 20), as long as they are not on sale, be-

cause in that case, laptops are preferred over PCs (with strength 70)” and (ii) “inexpensive products are

preferred over expensive ones (with strength 90)”. Hence, for technical reasons, laptops on sale always fal-

sify the conditional preference p= (PC)[20]. However, this is not desired. Thus, when computing the rank

of laptops on sale, we have to avoid such falsifications. We do this by rewriting p and thus PB . The rewrit-

ten conditional preference base PB
⋆ = (T,A, P ⋆) is given by P ⋆ = {(PC|¬Sale)[20], (Laptop|Sale)[70],

(Inexpensive)[90]}. It is obtained from PB by adding the exception ¬Sale to the body of the conditional

preference (PC)[20].

To make explicit the above exceptions in the bodies of conditional preferences in P , we use a sophis-

ticated and well-explored machinery from conditional knowledge bases, which is formally described as

follows. A conditional preference base PB = (T,A, P) is flat iff its z-partition is given by (P) and thus

consists only of one component. Given a conditional preference base PB =(T,A, P), a non-defeasible

equivalent PB
⋆ = (T,A, P ⋆) to PB satisfies the properties that (i) PB

⋆ is flat, (ii) PB |∼ p for all p∈P ⋆,

and (iii) P ⋆ = {(α|φ ⊓ ψp)[s] | p= (α|φ)[s]∈P}, where ψp is a conjunction of negated bodies that occur

in P . Informally, (iii) says that the rewriting from P to P ⋆ adds exceptions to the bodies of conditional

preferences in P , (ii) says that the rewriting does not change the semantic meaning of the set of conditional

preferences P , and (i) says that P ⋆ encodes no further hidden exceptions. In Section 6, we present Algorithm

flatten, which transforms a consistent conditional preference base PB into a non-defeasible equivalent PB
⋆.

We are now ready to define the object rankings κsum and κlex. Informally, the object ranking κsum

associates with every object the sum of the strengths of all conditional preferences in P ⋆ that are falsified

by o. Roughly, objects with smaller values under κsum are those that satisfy more conditional preferences

with larger strengths.

Definition 5.2 Let PB = (T,A, P) be a consistent conditional preference base, and let PB
⋆ = (T,A, P ⋆)

be its non-defeasible equivalent (computed by flatten). Then, the object ranking κsum is defined as follows

for all objects o∈OC :

κsum(o) =







∞ if o 6|= T ∪A
∑

p=(α|φ)[s]∈P ⋆ : o6|=p

s otherwise. (1)

INFSYS RR 1843-07-06 11

The object ranking κlex, in contrast, is based on a lexicographic order. Roughly, objects with smaller

ranks are those that satisfy more conditional preferences with larger strengths, where satisfying one condi-

tional preference of strength s is strictly preferred to satisfying any set of conditional preferences of strength

at most s− 1.

Definition 5.3 Let PB = (T,A, P) be a consistent conditional preference base, and let PB
⋆ = (T,A, P ⋆)

be its non-defeasible equivalent (computed by flatten). Then, the object ranking κlex is defined as follows

for all objects o∈OC (where nj with j ∈{1, . . . , 100} is the number of all p∈P ⋆ of strength j):

κlex(o) =











∞ if o 6|= T ∪A
100
∑

i=1
|{p= (α|φ)[i] ∈ P ⋆ | o 6|= p}| ·Πi−1

j=1(nj + 1) otherwise.
(2)

Example 5.4 (Products cont’d) Consider again PB = (T,A, P) of Example 2.1. Recall from Example 5.1

that the rewritten conditional preference base PB
⋆ =(T, A, P ⋆) is given byP ⋆ = {(PC|¬Sale)[20], (Laptop |

Sale)[70], (Inexpensive)[90]}. The object rankings κsum and κlex for PB are shown in Fig. 1. For example,

the rank of o3 is ∞, since it does not satisfy A, and the ranks of o5, o8, and o11 under κsum and κlex are

calculated as follows:

κsum(o5) = 1 · 20 + 0 · 70 + 1 · 90 = 110,

κlex(o5) = 1 · 1 + 0 · (1 + 1) + 1 · (1 + 1) · (1 + 1) = 5,

κsum(o8) = 0 · 20 + 0 · 70 + 0 · 90 = 0,

κlex(o8) = 0 · 1 + 0 · (1 + 1) + 0 · (1 + 1) · (1 + 1) = 0,

κsum(o11) = 0 · 20 + 1 · 70 + 1 · 90 = 160,

κlex(o11) = 0 · 1 + 1 · (1 + 1) + 1 · (1 + 1) · (1 + 1) = 6,

since o5, o8, o11 |=T ∪A, and o5 |=¬PC⊓¬Sale, o5 |= Laptop⊔¬Sale, o5 |=¬Inexpensive, o8 |= PC⊔Sale,

o8 |= Laptop ⊔ ¬Sale, o8 |= Inexpensive, o11 |= PC ⊔ Sale, o11 |=¬Laptop ⊓ Sale, and o11 |=¬Inexpensive

(and so o5 6|= (PC|¬Sale)[20], o5 |= (Laptop|Sale)[70], o5 6|= (Inexpensive)[90], o8 |= (PC|¬Sale)[20],
o8 |= (Laptop|Sale)[70], o8 |= (Inexpensive)[90], o11 |= (PC|¬Sale)[20], o11 6|= (Laptop|Sale)[70], and

o11 6|= (Inexpensive)[90], respectively).

We provide another example, which shows that the two object rankings κsum and κlex generally indeed

produce two different orderings on the objects.

Example 5.5 (Products cont’d) Let PB = (T,A, P) be obtained from PB of Example 4.2 by adding

(Made By IBM)[70] to P . The rewritten conditional preference base PB
⋆ = (T, A, P ⋆) is obtained from

the one in Example 5.1 by adding (Made By IBM)[70] to P ⋆. For the objects o= {PC ⊔ Laptop, PC, Sale,
Inexpensive} and o′ = {PC ⊔ Laptop, Laptop, Sale, Made By IBM}, we then obtain the ranks κsum(o) =
140 > 90 = κsum(o′) and κlex(o) = 4 < 6 = κlex(o′).

Summarizing, every object ranking κ∈{κsum, κlex} of a conditional preference base PB represents the

preference relationships encoded in PB . For every (fully specified) object o, the rank of o under PB is given

by κ(o). Every object ranking κ∈{κsum, κlex} can also be used to compare two (fully specified) objects

o, o′ ∈OC as follows. The distance between the objects o and o′ under PB is defined as |κ(o) − κ(o′)|.
Furthermore, the (credulous) rank of a partially specified object φ (which is a Boolean combination of

12 INFSYS RR 1843-07-06

Table 1: The object rankings κsum and κlex.

PC Laptop Sale Inexpensive κsum κlex

o1 false false false false ∞ ∞
o2 false false false true ∞ ∞
o3 false false true false ∞ ∞
o4 false false true true ∞ ∞
o5 false true false false 110 5

o6 false true false true 20 1

o7 false true true false 90 4

o8 false true true true 0 0

PC Laptop Sale Inexpensive κsum κlex

o9 true false false false 90 4

o10 true false false true 0 0

o11 true false true false 160 6

o12 true false true true 70 2

o13 true true false false ∞ ∞
o14 true true false true ∞ ∞
o15 true true true false ∞ ∞
o16 true true true true ∞ ∞

concepts from C) under PB is defined as mino∈OC :o|=φ κ(o). Finally, the (credulous) distance between two

partially specified objects φ and φ′ is defined as mino,o′∈OC :o|=φ,o′|=φ′ |κ(o)− κ(o′)|.

6 Algorithms

In this section, we formally specify the main computational tasks related to conditional preference bases,

and we provide algorithms for solving them. This shows in particular that the tasks are all decidable. The

main computational tasks for conditional preference bases are formally given as follows:

CONSISTENCY: Given a conditional preference base PB , decide whether PB is consistent.

Z-PARTITION: Given a conditional preference base PB , compute the z-partition of PB (if it exists).

FLATTEN: Given a conditional preference base PB , compute a non-defeasible equivalent PB
⋆ to PB (if

one exists).

s-RANKING: Given a conditional preference base PB and a set of objectsO⊆OC , compute the ranking κs

on O for PB (if it exists), where s∈{sum, lex}.

The problem of deciding the consistency (and computing the z-partition) of a conditional preference

base PB is solved by Algorithm z-partition in Fig. 1, which generalizes an algorithm for deciding the

ε-consistency (and computing the z-partition) of a conditional knowledge base in default reasoning [22].

The algorithm takes as input a conditional preference base PB =(T,A, P), and it returns as output the z-

partition of PB , if PB is consistent, and nil, otherwise. In lines (1) and (2), it deals with the cases where

T ∪A is unsatisfiable and P = ∅, respectively. In lines (3)–(11), it computes and returns the z-partition of

PB as specified in Theorem 4.5 (a).

Example 6.1 (Products cont’d) Consider again PB = (T,A, P) of Example 4.2. Since T ∪A is satisfiable

and P 6= ∅, we set H :=P and i :=−1 in lines (3) and (4), respectively, and enter the loop in lines (5)–

(9). After the first run of the loop, i= 0, P0 = {(PC)[20], (Inexpensive)[90]}, andH = {(Laptop|Sale)[70]}.
After the second run, i= 1, P1 = {(Laptop|Sale)[70]}, and H = ∅. We thus leave the loop, and return

(P0, P1) as the z-partition of PB , which also shows that PB is consistent.

INFSYS RR 1843-07-06 13

Algorithm z-partition

Input: conditional preference base PB = (T,A, P).
Output: z-partition (P0, . . . , Pn) of PB , if PB is consistent; nil, otherwise.

1. if T ∪A is unsatisfiable then return nil;

2. if P = ∅ then return ();
3. H := P ;

4. i := −1;

5. repeat

6. i := i+ 1;

7. Pi := {p∈H | p is tolerated under T and A by H};
8. H := H \Pi

9. until H = ∅ or Pi = ∅;
10. if H = ∅ then return (P0, . . . , Pi)
11. else return nil.

Figure 1: Algorithm z-partition.

The problem of rewriting PB to a non-defeasible equivalent PB
⋆ (for the object rankings κsum and κlex

in Section 5) is solved by Algorithm flatten in Fig. 2, which is related to a rewriting algorithm in fuzzy

default reasoning [15]. The algorithm takes as input a conditional preference base PB = (T,A, P), and it

returns as output a non-defeasible equivalent PB
⋆ to PB , if PB is consistent, and nil, otherwise. In lines (1)–

(3), the algorithm handles the cases where PB is inconsistent and P = ∅, and it computes the z-partition of

PB (if it exists). In lines (4)–(14), it adds for every i∈{1, . . . , n} to some bodies of conditional preferences

in P0 ∪ · · · ∪Pi−1 negations of bodies from Pi and returns the thus computed conditional preference base

(see Theorem 6.4 for the correctness of Algorithm flatten).

Example 6.2 (Products cont’d) Consider again PB = (T,A, P) of Example 4.2. We first run Algo-

rithm z-partition to compute the z-partition (P0, P1) of PB (and thus also to verify that PB is consistent).

Since this is successful (see Example 6.1) and P 6= ∅, we then set D :=P0 in line (4). We then run once

(for i=1) through the loop in lines (5)–(13), where we set H := ∅ and run twice (for p1 =(PC)[20] and

p2 =(Inexpensive)[90]) through the loop in lines (7)–(11). Here, Fp1
= {Sale} and H = {(PC|¬Sale)[20]}

after the first run, and Fp2
= ∅ and H = {(PC|¬Sale)[20], (Inexpensive)[90]} after the second run. Hence,

D = {(PC|¬Sale)[20], (Inexpensive)[90], (Laptop|Sale)[70]} after line (12), and we return (T,A,D) as the

result.

Finally, computing the ranking functions κsum and κlex is done by Algorithms sum-ranking and lex-

ranking in Figs. 3 and 4, respectively. In lines (1)–(4), the two algorithms handle the cases where PB is

inconsistent and P = ∅, and they compute a non-defeasible equivalent PB
⋆ to PB (if it exists). In lines

(5)–(7) and (5)–(14), the two algorithms compute (and return) the ranking functions κsum and κlex for the

case where PB is consistent and P 6= ∅ using equations (1) and (2), respectively.

Example 6.3 (Products cont’d) Consider again PB = (T,A, P) of Example 4.2. Suppose we want to rank

the objects o3 = {Sale} and o11 = {PC ⊔ Laptop, PC, Sale}. In both sum-ranking and lex-ranking, we first

14 INFSYS RR 1843-07-06

Algorithm flatten

Input: conditional preference base PB = (T,A, P).
Output: non-defeasible equivalent PB

⋆ to PB , if PB is consistent; nil, otherwise.

1. if z-partition(PB) 6= nil then (P0, . . . , Pn) := z-partition(PB)
2. else return nil;

3. if P = ∅ then return PB ;

4. D := P0;

5. for i := 1 to n do begin

6. H := ∅;
7. for each p= (α|φ)[s]∈D do begin

8. Fp := {ψ | ∃(γ|ψ)[r]∈Pi : p is not tolerated under T and A∪{ψ} by D∪Pi ∪ · · · ∪Pn};
10. H := H ∪{(α|φ ⊓ ¬ψ1 ⊓ · · · ⊓ ¬ψl)[s]}, where {ψ1, . . . , ψl}=Fp

11. end;

12. D := H ∪Pi

13. end;

14. return (T,A,D).

Figure 2: Algorithm flatten.

rewrite PB = (T,A, P) using Algorithm flatten. Since this is successful, and o3 does not satisfy (resp., o11
satisfies) T ∪A, we then set the rank of o3 (resp., o11) to∞ (resp., 0) in line (3). Since P 6= ∅ in line (4), we

continue running once (for o= o11) through the loop starting in line (5). In Algorithm sum-ranking, we then

run three times (for p1 = (PC|¬Sale)[20], p2 = (Laptop|Sale)[70], and p3 = (Inexpensive)[90]) through the

loop in line (6). Since o11 satisfies p1 and falsifies p2 and p3, its rank is 70+90 = 160. Instead, in Algorithm

lex-ranking, we set n := 1 and we run 100 times (for i∈{1, . . . , 100}) through the loop in lines (7)–(12).

Here, for i=20, i=70, and i=90, we run once through the loop in (9), producing h= 0, h= 1, and h= 1.

Since at the same time n=1, n=1 · 2 = 2, and n=2 · 2 = 4, respectively, o11’s rank is 0 · 1+1 · 2+1 · 4 = 6.

Finally, we return the ranking on o3 and o11 in line (7).

The following result shows the correctness of all the above algorithms.

Theorem 6.4 Algorithms z-partition, flatten, sum-ranking, and lex-ranking are all correct, that is, they

solve the problems Z-PARTITION (and CONSISTENCY), FLATTEN, sum -RANKING, and lex -RANKING,

respectively.

The next result shows that all the above algorithms can be reduced to a polynomial number of checks

whether a description logic knowledge base is satisfiable.

Theorem 6.5 Given a conditional preference base PB = (T,A, P), Algorithms z-partition and flatten can

be done in O(|P |2) description logic satisfiability tests. Given additionally a set of objects O⊆OC , Algo-

rithms sum-ranking and lex-ranking can be done in O(|P |2 + |O|) description logic satisfiability tests.

Observe here that theO(|P |2 + |O|) description logic satisfiability tests for computing κsum and κlex are

essentially used to transform the given PB =(T,A, P) into a non-defeasible equivalent PB
⋆ = (T,A, P ⋆),

INFSYS RR 1843-07-06 15

Algorithm sum-ranking

Input: conditional preference base PB = (T,A, P) and set of objects O⊆OC .

Output: ranking κsum on O for PB , if PB is consistent; nil, otherwise.

1. if flatten(T,A, P) 6= nil then (T,A, P) := flatten(T,A, P)
2. else return nil;

3. for each o∈O do if o |= A∪T then κ(o) := 0 else κ(o) :=∞;

4. if P = ∅ then return κ;

5. for each o∈O such that κ(o) 6=∞ do

6. for each p= (α|φ)[s]∈P do if o 6|= p then κ(o) := κ(o) + s+ 1;

7. return κ .

Figure 3: Algorithm sum-ranking.

and to decide which of the objects in the given O satisfy T . That is, the description logic satisfiability

tests are part of a preprocessing step. The actual computation of κsum and κlex can then be done in time

O(|O| · |C| · (|A|+ |P |)), without further description logic satisfiability tests.

By Theorem 6.5, under the assumption that |P | is bounded by a constant (which is a reasonable assump-

tion in the application in literature search in Section 9), deciding whether PB is consistent, computing the

z-partition of PB , and computing a non-defeasible equivalent to PB can all be done in a constant number

of description logic satisfiability tests. Under the same assumption, computing the rankings κsum and κlex

can be done in O(|O|) description logic satisfiability tests.

7 Complexity

In this section, we address the complexity of conditional preference bases. We first recall some necessary

complexity classes, and previous complexity results on description logic satisfiability. We then provide our

complexity results.

7.1 Complexity Classes and Previous Results

We assume that the reader has some elementary background in complexity theory, and is familiar with the

concepts of Turing machines and oracle calls, polynomial-time transformations among problems, and the

hardness and completeness of a problem for a complexity class [30, 31, 40]. We now briefly recall the

complexity classes that we encounter in our complexity results below.

The class EXP (resp., NEXP) contains all decision problems that can be solved in exponential time on

a deterministic (resp., nondeterministic) Turing machine. The class P NEXP contains all problems that are

decidable in polynomial time on a deterministic Turing machine with the help of a NEXP oracle. The class

P NEXP
‖ contains the problems in P NEXP that are solvable in such a way that all oracle calls are done in

parallel. The above complexity classes along with their inclusion relationships (all of which are currently

believed to be strict) are summarized as follows:

EXP ⊆ NEXP ⊆ P NEXP
‖ ⊆ P NEXP .

16 INFSYS RR 1843-07-06

Algorithm lex-ranking

Input: conditional preference base PB = (T,A, P) and set of objects O⊆OC .

Output: ranking κlex on O for PB , if PB is consistent; nil, otherwise.

1. if flatten(T,A, P) 6= nil then (T,A, P) := flatten(T,A, P)
2. else return nil;

3. for each o∈O do if o |= A∪T then κ(o) := 0 else κ(o) :=∞;

4. if P = ∅ then return κ;

5. for each o∈O such that κ(o) 6=∞ do begin

6. n := 1;

7. for each i := 1 to 100 do begin

8. h := 0;

9. for each p= (α|φ)[i]∈P do if o 6|= p then h := h+ 1
10. κ(o) := κ(o) + h ·n;

11. n := n · (|{(α|φ)[s]∈P | s= i}|+ 1)
12. end

13. end;

14. return κ .

Figure 4: Algorithm lex-ranking.

For classifying problems that compute an output value, function classes similar to the classes above have

been introduced [45, 30]. In particular, FEXP, FP NEXP
‖ , and FP NEXP are the functional analogs of EXP,

P NEXP
‖ , and P NEXP, respectively.

Finally, we recall that the problem of deciding whether a knowledge base L in SHIF(D) (resp.,

SHOIN (D)) is satisfiable is complete for EXP [52, 26] (resp., NEXP, assuming unary number encod-

ing; see [26] and the NEXP-hardness proof for ALCQI in [52], which implies the NEXP-hardness of

SHOIN (D)).

7.2 Complexity Results

Our complexity results for the main computational tasks related to conditional preference bases are com-

pactly summarized in Table 2. More concretely, for conditional preference bases PB over SHIF(D) (resp.,

SHOIN (D)), the decision problem CONSISTENCY is complete for EXP (resp., NEXP), while the compu-

tation problems Z-PARTITION, FLATTEN, and s-RANKING, where s∈{sum, lex}, are complete for FEXP

(resp., in FP NEXP
‖ , FP NEXP, and FP NEXP).

The following theorem formally states the complexity results for the decision problem CONSISTENCY.

Hardness for EXP (resp., NEXP) follows from the hardness for EXP (resp., NEXP) of deciding description

logic satisfiability in SHIF(D) (resp., SHOIN (D)), while membership in EXP (resp., NEXP) follows

from Theorem 6.5 (resp., 4.5 (b)) and the membership in EXP (resp., NEXP) of deciding description logic

satisfiability in SHIF(D) (resp., SHOIN (D)).

Theorem 7.1 The decision problem CONSISTENCY is complete for EXP (resp., NEXP) when PB is defined

over SHIF(D) (resp., SHOIN (D)).

INFSYS RR 1843-07-06 17

Table 2: Complexity results.

SHIF(D) SHOIN (D)

CONSISTENCY EXP-complete NEXP-complete

Z-PARTITION FEXP-complete in FP NEXP
‖

FLATTEN FEXP-complete in FP NEXP

s-RANKING FEXP-complete in FP NEXP

The next theorem formally states the complexity results for Z-PARTITION, FLATTEN, and s-RANKING.

These results follow from Theorem 6.5 and the complexity of deciding description logic satisfiability in

SHIF(D) (resp., SHOIN (D)).

Theorem 7.2 The computation problems Z-PARTITION, FLATTEN, and s-RANKING, where s∈{sum, lex},
are complete for FEXP (resp., in FP NEXP

‖ , FP NEXP, and FP NEXP) when PB is defined over SHIF(D) (resp.,

SHOIN (D)).

8 Tractable Special Case

In this section, we present a special case in which the problems CONSISTENCY, Z-PARTITION, FLATTEN,

and s-RANKING, where s∈{sum, lex}, can all be solved in polynomial time. The main idea behind it is

to restrict the class of concepts that may occur in PB in such a way that the description logic satisfiability

tests in Algorithms z-partition, flatten, sum-ranking, and lex-ranking can be done in polynomial time. Here,

we take inspiration from the description logic DL-Lite [9] where deciding whether a knowledge base is

satisfiable can be done in polynomial time.

We first recall knowledge bases in DL-Lite [9], which are a restricted class of description logic knowl-

edge bases. Let A, RA, and I be pairwise disjoint finite nonempty sets of atomic concepts, abstract roles,

and individuals, respectively. A basic concept in DL-Lite is either an atomic concept from A or an exists

restriction on roles of the form ∃R.⊤ (abbreviated as ∃R), where R∈RA ∪R
−
A. Concepts in DL-Lite are

defined by induction as follows. Every basic concept in DL-Lite is a concept in DL-Lite. If b is a basic con-

cept in DL-Lite, and φ1 and φ2 are concepts in DL-Lite, then ¬b and φ1 ⊓ φ2 are also concepts in DL-Lite.

An axiom in DL-Lite is either (1) a concept inclusion axiom of the form b⊑ψ, where b is a basic concept in

DL-Lite and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where R∈RA ∪R
−
A, or (3) a

concept membership axiom b(a), where b is a basic concept in DL-Lite and a∈ I, or (4) a role membership

axiomR(a, c), whereR∈RA and a, c∈ I. A knowledge base in DL-Lite is a finite set of axioms in DL-Lite.

We recall the following result from [9], which says that deciding whether a knowledge base in DL-Lite is

satisfiable can be done in polynomial time.

Theorem 8.1 (see [9]) Given a knowledge base in DL-Lite KB , deciding whether KB is satisfiable can be

done in polynomial time.

We are now ready to define a similarly restricted class of conditional preference bases. A literal in DL-

Lite is either a basic concept in DL-Lite b or the negation of a basic concept in DL-Lite ¬b. A conjunctive

18 INFSYS RR 1843-07-06

concept in DL-Lite is either ⊥, or ⊤, or a conjunction of literals in DL-Lite. A conditional preference base

PB = (T,A, P) is defined over DL-Lite iff T is a description logic knowledge base in DL-Lite, A is a set

of literals in DL-Lite, and P is a set of conditional preferences of the form (ψ|φ)[s], where ψ and φ are

conjunctive concepts in DL-Lite. Given a conditional preference base over DL-Lite PB = (T,A, P), we say

that P is bounded iff the input size of P is bounded by a constant (which is a reasonable assumption in the

application in literature search in Section 9).

The following theorem shows that for conditional preference bases over DL-Lite, the problems CON-

SISTENCY, Z-PARTITION, and FLATTEN can all be solved in polynomial time when P is bounded. This

result follows from Theorems 6.5 and 8.1, and the observation that here every description logic satisfia-

bility test in Algorithms z-partition and flatten can be reduced to a constant number of description logic

satisfiability tests on knowledge bases in DL-Lite.

Theorem 8.2 Given a conditional preference base over DL-Lite PB = (T,A, P), where P is bounded, (a)

deciding whether PB is consistent, (b) computing the z-partition of PB (if it exists), and (c) computing a

non-defeasible equivalent PB
⋆ to PB (if one exists) can all be done in polynomial time.

The next theorem shows that for conditional preference bases over DL-Lite, also the problems sum - and

lex -RANKING can both be solved in polynomial time when P is bounded. Thus, for conditional preference

bases over DL-Lite, the problems sum - and lex -RANKING have both a polynomial data complexity (where

the input size of the whole conditional preference base PB is bounded by a constant).

Theorem 8.3 Given a conditional preference base over DL-Lite PB =(T,A, P), where P is bounded, and

a set of objects O⊆OC , where C is the set of all concepts that occur in A and P , computing the object

rankings κsum and κlex on O for PB can be done in polynomial time (if they exist).

9 Literature Search

In the previous sections, we have already described the application of conditional preference bases for a flex-

ible user-defined ranking of the query results when searching product databases. In this section, we describe

a further application of this approach in literature search, which shows in particular that the combination

of description logics and variable-strength conditional preferences nicely allows for both expressing sophis-

ticated search strategies and a flexible user-defined ranking of the query results, which reflects personal

preferences and quality measures.

9.1 Background

A very important and time consuming task of researchers is finding publications. There exist a lot of pos-

sibilities to find relevant research publications over the internet. For instance, there are portals for research

publications, portals for ejournals, special purpose search engines for researchers (for example, CiteSeer

and Google Scholar), specialized databases, publication databases of institutions, and bibliographic online

catalogues. It seems that there is a trend to more diversity and quality regarding online search engines. On

the other hand, the “tremendous increase in the quantity and diversity of easily available research publica-

tions has exacerbated the problems of information overload for researchers attempting to keep abreast of

new relevant research, especially in rapidly advancing fields” [6].

There are a lot of good search strategies for the task of finding relevant scientific publications. Bates [2]

has identified the following six important information search strategies: (1) Footnote chasing: Following

INFSYS RR 1843-07-06 19

up footnotes (that is, references) found in publications. This can be done in successive leaps. (2) Citation

searching: Looking for publications that cite certain publications. (3) Journal run: Identification of a

central journal in a research area and then looking up publications in relevant volumes. (4) Area scanning:

Browsing resources that are physically collocated with resources that are regarded as relevant. A good

example is a bookshelf in a library. In a digital library, one could exploit the classification of resources.

(5) Subject searches: The usage of subject descriptors such as keywords to find relevant publications. (6)

Author searching: To find other publications of an author, which may have a similar topic as a publication

one already knows of.

It would be helpful if the above search strategies could be explicitly supported by the query languages

of search engines. Each existing search engine (such as CiteSeer, Google Scholar, and Google), however,

supports only some of these search strategies, but not all of them. Furthermore, there is currently no way

to exploit the search strategies by the formulation of search queries. What is currently also not supported is

the possibility to exploit relationships like citations or co-authorships by the formulation of queries. Finally,

to date, search query languages of most web search engines have little expressive power for formulating

semantic queries.

Another limitation of current search engines is that they provide the user only with restricted possibilities

to influence the ranking of the returned query results. For example, Google is based on the PageRank ranking

[8], which is calculated from the link structure between the objects, and thus somehow reflects the relative

importance of the objects. However, especially in literature search, the user should be provided with more

possibilities to explicitly influence the ranking of the query results, to express personal preferences and

quality measures for the query results.

9.2 Literature Search via Conditional Preference Bases

We express each search query Q by a conditional preference base PBQ = (T,A, P), where the background

knowledge T is informally described as follows (using self-explaining names). We assume the concepts

Publication, JournalPublication, ConfPublication, Person, Publicationmedium, Journal, Proceedings, Key-

word, Event, Conference, and Workshop, which are related by the concept inclusion axioms JournalPub-

lication ⊑ Publication, ConfPublication ⊑ Publication, Conference ⊑ Event, Workshop ⊑ Event, Journal

⊑ Publicationmedium, and Proceedings ⊑ Publicationmedium. We assume the roles Author (relating Pub-

lication and Person), Coauthor (on Person), Cite (on Publication), Publishedin (relating Publication and

Publicationmedium), Keywords (relating Publication and Keyword), hasPublicationmedium (relating Event

and Publicationmedium), and in title (relating Publication and string). Here, in title relates every publica-

tion with all substrings of its title. Finally, the concept Publication has the attributes year, title, publishedat,

and type.

We assume that the standard semantics of PBQ = (T,A, P) is given by its object ranking κsum, and

we abbreviate PBQ = (T,A, P) by the conjunction CQ of all elements in A∪P . For example, consider

the following query Q: We are looking for publications with the keyword “Semantic Web”; furthermore,

the publications should also contain the keywords “OWL” and “DAML+OIL” with the strengths 70 and 20,

respectively. This query Q is expressed by the following PBQ = (T,A, P):

T as informally described above, A = {∃Keywords.{“Semantic Web”}}, and

P = {(∃Keywords.{“OWL”})[70], (∃Keywords.{“DAML+OIL”})[20]} ,

20 INFSYS RR 1843-07-06

which is abbreviated by the following conjunction CQ:

∃Keywords.{“Semantic Web”} ⊓

(∃Keywords.{“OWL”})[70] ⊓ (∃Keywords.{“DAML+OIL”})[20] .

This query also illustrates the use of (user-defined) strengths in simple conditional preferences: Publications

that contain all the keywords have the rank 0, whereas publications that have “Semantic Web” and “OWL”

but not “DAML+OIL” as keywords have the rank 20, since they falsify the second conditional preference,

while those that have “Semantic Web” and “DAML+OIL” but not “OWL” as keywords have the rank 70,

since they falsify the first conditional preference. Finally, publications that have “Semantic Web” but not

“DAML+OIL” and “OWL” as keywords have the rank 70 + 20 = 90, since they falsify both conditional

preferences.

We now provide some examples, which show in particular that search queries based on conditional

preferences bases allow for both expressing nearly all the above-mentioned search strategies and a flexible

user-defined ranking of the query results, which reflects personal preferences and quality measures for the

query results. Note that further such examples are given in the ESWC-2006 abstract of this paper [37].

Footnote chasing: A highly relevant publication can be a very good starting point for the identification of

further highly relevant publications. For example, we may be looking for all publications cited in “Weaving

the Web” by “Tim Berners-Lee”:

∃Cite−.(∃title.{“Weaving the Web”}⊓∃Author.{“Tim Berners-Lee”}) .

Citation searching: Suppose we want to know which of the papers at ISWC-2003 were cited and how the

topics of this conference evolved over time, that is, we may be looking for publications that cite publications

of ISWC-2003:

∃Cite.(ConfPublication⊓∃publishedat.{“ISWC”}⊓∃year.{2003}) .

Journal run: Suppose we are looking for conferences that are relevant to the topics “elearning” and “Se-

mantic Web”, that is, we are looking for conferences that have publications with the keywords “elearning”

and “Semantic Web”:

Conference⊓∃hasPublicationmedium.∃Publishedin−.

(∃Keywords.{“elearning”}⊓∃Keywords.{“Semantic Web”}) .

Subject searches: Suppose next we are looking for publications that have the keyword “matching”, where

(i) among the non-journal publications we prefer the ones that cite at least five journal publications that

are cited at least eight times to those without this property with strength 40, (ii) among the journal pub-

lications we prefer the ones that cite at least four publications that are cited at least seven times to those

without this poperty with strength 50, and (iii) we prefer journal publications to non-journal publications

with strength 10:

∃Keywords.{“matching”} ⊓

(≥5Cite.(≥8Cite− ⊓ JournalPublication) | ¬JournalPublication)[40] ⊓

(≥4Cite.(≥7Cite−) | JournalPublication)[50] ⊓ (JournalPublication)[10] .

INFSYS RR 1843-07-06 21

Note that the object ranking of this query encodes a (user-defined) quality measure for the publications.

More concretely, the query ranks the returned publications as follows. First, journal publications that cite at

least four publications that are cited at least seven times have the rank 0. Second, non-journal publications

that cite at least five journal publications that are cited at least eight times have the rank 10. Third, all the

other journal and non-journal publications have the rank 50.

Author searching: One possibility to judge the scientific famousness of a researcher is to find out how often

and from whom the researcher is cited. For example, we may be looking for authors that cite publications

of Ian Horrocks:

∃Author−.∃Cite.∃Author.{“Ian Horrocks”} .

10 Related Work

In this section, we give a brief overview on the area of default reasoning from conditional knowledge bases,

and we discuss related work on combining formalisms for reasoning about uncertainty with description

logics and ontologies.

10.1 Default Reasoning from Conditional Knowledge Bases

The literature contains several different proposals for default reasoning from conditional knowledge bases

and extensive work on its desired properties. The core of these properties are the rationality postulates of

System P by Kraus et al. [33], which constitute a sound and complete axiom system for several classi-

cal model-theoretic entailment relations under uncertainty measures on worlds. They characterize classical

model-theoretic entailment under preferential structures, infinitesimal probabilities, possibility measures

[14], and world rankings [46, 23]. They also characterize an entailment relation based on conditional ob-

jects [13]. A survey of all these relationships is given in [3, 19]. Mainly to solve problems with irrelevant

information, the notion of rational closure as a more adventurous notion of entailment was introduced by

Lehmann [34]. It is in particular equivalent to entailment in System Z by Pearl [41] (which is generalized

to variable-strength defaults in System Z+ by Goldszmidt and Pearl [21, 24]) and to the least specific possi-

bility entailment by Benferhat et al. [4]. Another sophisticated quasi-probabilistic formalism for reasoning

about variable-strength defaults is Weydert’s System JLZ [53]. Recently, also generalizations of many of

the above approaches to probabilistic and fuzzy default reasoning have been proposed (see especially [35]

resp. [15]).

10.2 Uncertainty Reasoning in Description Logics and Ontologies

Related formalisms to uncertainty reasoning in description logics and ontologies can roughly be divided

into fuzzy description logics, probabilistic description logics, and probabilistic web ontology languages. In

particular, Straccia [47] presents a fuzzy extension of the description logic ALC, which is based on Zadeh’s

fuzzy logic, and which is directed towards applications in multimedia information retrieval. Recent works

by Straccia also introduce a fuzzy description logic with concrete domains [48] and a fuzzy description

logic for the Semantic Web [49]. Closely related to the latter is the work by Stoilos et al. [50], which

combines the description logic SHIN with fuzzy set theory for the Semantic Web. As for probabilistic

description logics, in [20], Giugno and Lukasiewicz present a probabilistic generalization of the expressive

description logic SHOQ(D) that stands behind DAML+OIL, which is based on lexicographic probabilistic

22 INFSYS RR 1843-07-06

reasoning. In earlier work, Heinsohn [25] and Jaeger [29] present probabilistic extensions to the description

logic ALC, which are essentially based on probabilistic reasoning in probabilistic logics. Koller et al. [32]

present a probabilistic generalization of the CLASSIC description logic, which uses Bayesian networks as

underlying probabilistic reasoning formalism. Finally, as for probabilistic web ontology languages, there are

especially the works by Costa [10], Pool and Aikin [42], and Ding and Peng [12], which present probabilistic

generalizations of the web ontology language OWL. In particular, Costa’s work [10] is semantically based

on multi-entity Bayesian networks, while [12] has a semantics in standard Bayesian networks. In closely

related work, Fukushige [18] proposes a basic framework for representing probabilistic relationships in

RDF. Finally, Nottelmann and Fuhr [39] present pDAML+OIL, which is a probabilistic generalization of

the web ontology language DAML+OIL, along with a mapping to stratified probabilistic datalog.

11 Conclusion

We have introduced conditional preference bases as a means for ranking objects in ontologies. Conditional

preference bases consist of a description logic knowledge base and a finite set of conditional preferences,

which are statements of the form “generally, in the context φ, property α is preferred over property ¬α
with strength s”. They are given a qualitative probabilistic formal semantics that is based on conditional

knowledge bases. We have defined the consistency of conditional preference bases and shown how con-

sistent conditional preference bases can be used for defining two object rankings, denoted κsum and κlex,

which evaluate the strengths of conditional preferences in an additive and a lexicographic way, respectively.

Furthermore, we have provided algorithms for the main computational tasks for ranking objects under con-

ditional preference bases, analyzed the complexity of these tasks, and described tractable special cases.

We have described two applications of the presented approach in product and literature search. In the

former, it allows for a flexible user-defined ranking of the query results, which reflects personal prefer-

ences. In the latter, it allows for both expressing sophisticated search strategies and a flexible user-defined

ranking of the query results, which reflects personal preferences and quality measures. More generally,

query languages of current search engines are very restricted in their expressive power. There are scientific

search engines on the web, however, that have valuable metadata about publications, authors, organizations,

and scientific events. We have shown that conditional preference bases allow for a more powerful query

language, which can exploit this metadata better than the current approaches do.

There are many other applications (especially in the Web), where ranking a selection of objects relative

to personal preferences — as realized by our approach based on conditional preference bases — plays

an important role, such as, e.g., product configuration, meeting scheduling, and searching for a partner, a

holiday place, a hotel, travel means, a restaurant, an event, a house, a job, or an employee.

An interesting topic of future research is to explore whether the presented approach can also be used for

personalization tasks and in recommender systems. Another interesting issue is an extension in such a way

that the user-defined preference ranking on objects is combined with an importance ranking on objects (such

as PageRank [8]). It would also be interesting to combine the presented formalism with probabilistic on-

tologies [32, 20, 10] to compute the ranking of incompletely specified objects. A first effort in the latter two

directions is [38]. Finally, it would be interesting to generalize the formalism to the multi-agent framework.

INFSYS RR 1843-07-06 23

A Appendix: Proofs for Section 6

Proof of Theorem 6.4. The correctness of Algorithm z-partition for solving the computation problem Z-

PARTITION (and the decision problem CONSISTENCY) follows immediately from Theorem 4.5 (a). It is

also not difficult to verify that Algorithms sum-ranking and lex-ranking correctly implement the declarative

definitions of the object rankings κsum and κlex in equations (1) and (2), respectively.

It thus only remains to prove the correctness of Algorithm flatten for computing a non-defeasible equiva-

lent of a consistent conditional preference base. In the sequel, let PB = (T,A, P) be a consistent conditional

preference base, and let PB
′ =(T,A, P ′) be the output of Algorithm flatten on PB as input. We now show

that (i) PB
′ is flat, (ii) PB |∼ p for all p∈P ′, and (iii) P ′ = {(α|φ ⊓ ψp)[s] | p = (α|φ)[s]∈P}, where ψp is

a conjunction of negated bodies that occur in P .

We first prove that (i) holds. Let Di and Qi, for every i∈{0, . . . , n}, denote D and D ∪ Pi+1 ∪ · · · ∪ Pn

after the i-th iteration step of the for-loop in lines (5)–(13) of Algorithm flatten, respectively. We now prove

that (⋆) for every i∈{0, . . . , n}, every p∈Di is tolerated under T ∪A by Qi =Di ∪ Pi+1 ∪ · · · ∪ Pn. This

then shows in particular that after the n-th iteration step, every p∈D is tolerated under T ∪A by D, which

says that (T,A,D)=PB
′ is flat, that is, (i) holds. We prove (⋆) by induction on the number of iteration

steps i∈{0, . . . , n} as follows:

Basis: Let i=0. Since (P0, . . . , Pn) is the z-partition of PB , every p∈D0 =P0 is tolerated under T ∪A
by Q0 =D0 ∪P1 ∪ · · · ∪ Pn =P .

Induction: Let i> 0. Suppose that after the i−1-th iteration step, every p∈Di−1 is tolerated under T ∪A
by Qi−1 =Di−1 ∪ Pi ∪ · · · ∪ Pn. We now show that after i-th iteration step, every p∈Di is tolerated under

T ∪A by Qi =Di ∪ Pi+1 ∪ · · · ∪ Pn. Consider first any p∈Di \Pi, which either coincides with some

p′ ∈Di−1 or is obtained from some p′ ∈Di−1 by replacing its body φ by some φ ⊓ ¬ψ1 ⊓ · · · ⊓ ¬ψl. By

the induction hypothesis, p′ is tolerated under T ∪A by Qi−1. That is, there exists an object o that satisfies

T ∪ A ∪ Qi−1 and verifies p′. By the construction of the ψj’s, it follows that o satisfies every ¬ψj and

all q ∈Di \ (Di−1 ∪Pi). That is, o satisfies T ∪ A ∪ Qi and verifies p. That is, p is tolerated under T ∪ A
by Qi. Consider next any p∈Di ∩Pi =Pi with body φ. Observe first that p is tolerated under T ∪ A by

Pi ∪ · · · ∪ Pn, since (P0, . . . , Pn) is the z-partition of PB . Thus, if every q ∈Di \Pi has ¬φ in its body,

then p is also tolerated under T ∪ A by Qi. Otherwise, there exists an object o that satisfies T ∪ A∪Qi−1

and verifies p. Hence, o satisfies also T ∪A∪Qi and verifies p. That is, p is tolerated under T ∪A by Qi.

As for (iii), by induction on the number of iteration steps i∈{0, . . . , n} of the for-loop in lines (5)–(13) of

Algorithm flatten, it is easy to verify that P ′ = {(α|φ⊓ψp)[s] | p= (α|φ)[s]∈P}, where ψp is a conjunction

of negated bodies in P .

Finally, we prove that (ii) holds, that is, PB |∼ p for every p∈P ′. Observe first that every p∈P is a z-

consequence of PB . This is due to the fact that (P0, . . . , Pn) is the z-partition of PB , and thus every

p= (α|φ)[s]∈Pi is tolerated under T ∪A by Pi ∪ · · · ∪ Pn, for every i∈{0, . . . , n}. Hence, there exists

an object o that satisfies φ, T ∪A, and Pi ∪ · · · ∪ Pn, which implies that PB |∼ p. It thus only remains to

prove that PB |∼ p′ for every p′ ∈P ′ \P . By (iii), p′ is obtained from some p∈P by replacing its body φ by

some φ ⊓ ψp, where ψp is a conjunction of negated bodies in P . Notice then that ψp is even a conjunction

of negated bodies in Pi+1 ∪ · · · ∪ Pn, where i∈{0, . . . , n} such that p∈Pi. Since (P0, . . . , Pn) is the z-

partition of PB , it follows that p is tolerated under T ∪A by Pi ∪ · · · ∪ Pn, and every q ∈Pi+1 ∪ · · · ∪ Pn

is not tolerated under T ∪A by Pi ∪ · · · ∪ Pn. Hence, there exists an object o that satisfies φ ⊓ ψp, T ∪A,

and Pi ∪ · · · ∪ Pn, which implies that PB |∼ p′. 2

24 INFSYS RR 1843-07-06

Proof of Theorem 6.5. As for Algorithm z-partition, in line (1), we decide one time whether T ∪{α(i) |
α∈A} is satisfiable, and in the iteration in lines (5)–(9), we decide at most O(|P |2) times whether T ∪
{α(i) | α∈A}∪ {β(i)} ∪ {(ψ ⊔ ¬φ)(i) | (ψ|φ)[s]∈H} is satisfiable, where (γ|β)[t] = p. In summary,

Algorithm z-partition can be done in O(|P |2) description logic satisfiability tests.

As for Algorithm flatten, line (1) can be done in O(|P |2) description logic satisfiability tests, as argued

above, and the iteration in lines (5)–(13) can be done in
∑n

i=1 |Pi| · (
∑i−1

j=0 |Pj |)≤ |P |
2 description logic

satisfiability tests. In summary, Algorithm z-flatten can also be done in O(|P |2) description logic satisfia-

bility tests.

As for Algorithms sum-ranking and lex-ranking, line (1) can be done inO(|P |2) description logic satisfiabil-

ity tests, as argued above, and in line (3), we decide |O| times whether T ∪{α(i) |α∈A}∪{β(i) |β ∈ o}∪
{¬β(i) |β ∈C \ o} is satisfiable. In summary, Algorithms sum-ranking and lex-ranking can be both done

in O(|P |2 + |O|) description logic satisfiability tests. 2

B Appendix: Proofs for Section 7

Proof of Theorem 7.1. We first prove that CONSISTENCY is in EXP (resp., NEXP). For PB over

SHIF(D), membership in EXP follows immediately from Theorem 6.5 and the membership in EXP of

deciding description logic satisfiability in SHIF(D). For PB over SHOIN (D), by Theorem 4.5 (b),

PB = (T,A, P) is consistent iff either (i) P = ∅ and T ∪A is satisfiable, or (ii) P 6= ∅ and there exists an

ordered partition (P0, . . . , Pk) of P such that for every i, 0≤ i≤ k, each p∈Pi is tolerated under T and A
by

⋃k
j=i Pj . Since deciding description logic satisfiability in SHOIN (D) is in NEXP, (i) deciding whether

T ∪{α(o) |α∈A} is satisfiable is in NEXP, and (ii) guessing an ordered partition (P0, . . . , Pk) of P and

verifying that T ∪{α(o) |α∈A}∪ {β(o)} ∪ {(ψ ⊔ ¬φ)(o) | (ψ|φ)[s]∈
⋃k

j=i Pj} is satisfiable, for every

i∈{0, . . . , k} and every p= (γ|β)[t]∈Pi, is in NEXP. In summary, deciding whether a given PB over

SHOIN (D) is consistent is in NEXP.

We next prove that CONSISTENCY is hard for EXP (resp., NEXP). Since a description logic knowledge

base T in SHIF(D) (resp., SHOIN (D)) is satisfiable iff the conditional preference base PB = (T, ∅, ∅) is

consistent, hardness for EXP (resp., NEXP) follows immediately from the hardness for EXP (resp., NEXP)

of deciding description logic satisfiability in SHIF(D) (resp., SHOIN (D)). 2

Proof of Theorem 7.2. For PB over SHIF(D), membership in FEXP of Z-PARTITION, FLATTEN,

and s-RANKING follows from Theorem 6.5 and the membership in EXP of description logic satisfiabil-

ity in SHIF(D). Hardness for FEXP follows from the hardness for EXP of CONSISTENCY for PB over

SHIF(D).
We next consider the case where PB is defined over SHOIN (D). As for the problem Z-PARTITION,

observe that the z-partition (P0, . . . , Pk) of a consistent PB = (T,A, P) is the unique ordered partition

(P0, . . . , Pk) of P such that (i) for every i∈{0, . . . , k}, every p∈Pi is tolerated under T andA by
⋃k

j=i Pj ,

and (ii)
∑

p∈P r(p) (called the weight of (P0, . . . , Pk)) is minimal, where every p∈Pj is assigned the

value j under r, for every j ∈{0, . . . , k}. As argued in the proof of Theorem 7.1, guessing an ordered

partition (P0, . . . , Pk) of P and verifying that (i) holds is in NEXP. Thus, for each triple (i, p, j), where

i∈{0, 1, . . . , |P |(|P |−1)/2}, p∈P , and j ∈{0, 1, . . . , |P |−1}, deciding whether P has an ordered parti-

tion (P0, . . . , Pk) that satisfies (i), has weight i, and such that p∈Pj is in NEXP. It is now easy to see that

for the z-partition (P0, . . . , Pk) of a consistent PB , it holds that p∈Pj iff the query for (i, p, j) is a query

with smallest value for i that is answered “Yes”, for every j ∈{0, . . . , k}. Furthermore, PB is inconsistent

INFSYS RR 1843-07-06 25

iff all queries are answered “No”. In summary, Z-PARTITION is in FP NEXP
‖ . Finally, membership in FP NEXP

of FLATTEN and s-RANKING follows from Theorem 6.5 and the membership in NEXP of description logic

satisfiability in SHOIN (D). 2

C Appendix: Proofs for Section 8

Proof of Theorem 8.2. (a), (b) Algorithm z-partition decides whether PB is consistent and computes the

z-partition of PB (if it exists). By Theorem 6.5, it can be done in O(|P |2) description logic satisfiability

tests. More concretely, in the iteration in lines (5)–(9), we decide at most O(|P |2) times whether T ∪
{α(i) |α∈A} ∪ {β(i)} ∪ {(ψ ⊔ ¬φ)(i) | (ψ|φ)[s]∈H} (where H ⊆P) is satisfiable, where (γ|β)[t] = p.

Each of these satisfiability tests is equivalent to (1 + k)|H| satisfiability tests on knowledge bases of the form

KB =T ∪{b(i) | b∈B+}∪ {¬b(i) | b∈B−}, where k is the maximal number of literals that occur in the

bodies of conditional preferences in H , and B+ and B− are sets of basic concepts in DL-Lite. Notice then

that (i) KB is satisfiable iff KB
′ = T ∪{b(i) | b∈B+}∪{b¬(i) | b∈B−}∪{b¬⊑¬b | b∈B−} is satisfiable,

where the b¬’s are new basic concepts in DL-Lite that do not occur in KB , and (ii) KB
′ is a knowledge base

in DL-Lite. By Theorem 8.1, deciding whether KB
′ is satisfiable can be done in polynomial time. Since k

and |H| are bounded by a constant, each satisfiability test in Algorithm z-partition is possible in polynomial

time, and thus the whole algorithm is possible in polynomial time.

(c) Algorithm flatten computes a non-defeasible equivalent PB
⋆ to PB (if one exists). By (a), lines (1) and

(2) can be done in polynomial time. As argued in the proof of Theorem 6.5, the iteration in lines (5)–(13) can

be done inO(|P |2) description logic satisfiability tests. Since P is bounded, and every rewritten conditional

preference contains in its body at most |P | − 1 negated bodies of other conditional preferences from P ,

each of these satisfiability tests is equivalent to a constant number of satisfiability tests on knowledge bases

of the form KB =T ∪{b(i) | b∈B+} ∪ {¬b(i) | b∈B−}, where B+ and B− are sets of basic concepts

in DL-Lite. As argued in (a), each of the latter satisfiability tests is equivalent to a satisfiability test on a

knowledge base in DL-Lite, which can in turn be done in polynomial time, by Theorem 8.1. Thus, every of

the O(|P |2) satisfiability tests can be done in polynomial time. In summary, Algorithm flatten can be done

in polynomial time. 2

Proof of Theorem 8.3. Algorithms sum-ranking and lex-ranking compute the object rankings κsum and

κlex (if they exist), respectively. By Theorem 8.2 (c), lines (1) and (2) can be done in polynomial time.

As argued in the proof of Theorem 6.5, in line (3), we decide |O| times whether T ∪ {α(i) |α∈A} ∪
{β(i) |β ∈ o}∪{¬β(i) | β ∈C \ o} is satisfiable. Since P is bounded, and C contains only concepts from A
and P , each of these satisfiability tests is equivalent to a constant number of satisfiability tests on knowledge

bases KB =T ∪{b(i) | b∈B+}∪ {¬b(i) | b∈B−}, where B+ and B− are sets of basic concepts in DL-

Lite. As argued in the proof of Theorem 8.2 (a), each of the latter tests is equivalent to a satisfiability test on

a knowledge base in DL-Lite, which can in turn be done in polynomial time, by Theorem 8.1. Hence, each

satisfiability test in Algorithms sum- and lex-ranking is possible in polynomial time, and since all their other

computations can also be done in polynomial time, the whole algorithms can be done in polynomial time. 2

References

[1] E. W. Adams. The Logic of Conditionals, volume 86 of Synthese Library. D. Reidel, Dordrecht, Nether-

lands, 1975.

26 INFSYS RR 1843-07-06

[2] M. Bates. The design of browsing and berrypicking techniques for the on-line search interface. Online

Review, 13(5):407–431, 1989.

[3] S. Benferhat, D. Dubois, and H. Prade. Nonmonotonic reasoning, conditional objects and possibility

theory. Artif. Intell., 92(1–2):259–276, 1997.

[4] S. Benferhat, D. Dubois, and H. Prade. Representing default rules in possibilistic logic. In Proceedings

KR-1992, pp. 673–684. Morgan Kaufmann, 1992.

[5] T. Berners-Lee. Weaving the Web. Harper, San Francisco, 1999.

[6] K. D. Bollacker, S. Lawrence, and C. L. Giles. Discovering relevant scientific literature on the web.

IEEE Intelligent Systems, 15(2):42–47, 2000.

[7] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for representing

and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res., 21:135–191,

2004.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Computer Net-

works, 30(1–7):107–117, 1998.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable description

logics for ontologies. In Proceedings AAAI-2005, pp. 602–607. AAAI Press / MIT Press, 2005.

[10] P. C. G. da Costa. Bayesian semantics for the Semantic Web. Doctoral Dissertation, George Mason

University, Fairfax, VA, USA, 2005.

[11] T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. Abductive matchmaking using description

logics. In Proceedings IJCAI-2003, pp. 337–342. Morgan Kaufmann, 2003.

[12] Z. Ding and Y. Peng. A Probabilistic extension to ontology language OWL. In Proceedings HICSS-

2004, 2004.

[13] D. Dubois and H. Prade. Conditional objects as nonmonotonic consequence relationships. IEEE Trans.

Syst. Man Cybern., 24(12):1724–1740, 1994.

[14] D. Dubois and H. Prade. Possibilistic logic, preferential models, non-monotonicity and related issues.

In Proceedings IJCAI-1991, pp. 419–424. Morgan Kaufmann, 1991.

[15] F. Dupin de Saint-Cyr and H. Prade. Possibilistic handling of uncertain default rules with applications

to persistence modeling and fuzzy default reasoning. In Proceedings KR-2006, pp. 440–451. AAAI

Press, 2006.

[16] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with

description logics for the Semantic Web. In Proceedings KR-2004, pp. 141–151. AAAI Press, 2004.

[17] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web: Bringing

the World Wide Web to Its Full Potential. MIT Press, 2002.

[18] Y. Fukushige. Representing probabilistic knowledge in the Semantic Web. In Proceedings of the W3C

Workshop on Semantic Web for Life Sciences, Cambridge, MA, USA, 2004.

[19] D. M. Gabbay and P. Smets, editors. Handbook on Defeasible Reasoning and Uncertainty Management

Systems. Kluwer Academic, Dordrecht, Netherlands, 1998.

INFSYS RR 1843-07-06 27

[20] R. Giugno and T. Lukasiewicz. P-SHOQ(D): A probabilistic extension of SHOQ(D) for proba-

bilistic ontologies in the Semantic Web. In Proceedings JELIA-2002, pp. 86–97, LNCS 2424, Springer,

2002.

[21] M. Goldszmidt and J. Pearl. System Z+: A formalism for reasoning with variable strength defaults. In

Proceedings AAAI-1991, pp. 399–404. AAAI Press / MIT Press, 1991.

[22] M. Goldszmidt and J. Pearl. On the consistency of defeasible databases. Artif. Intell., 52(2):121–149,

1991.

[23] M. Goldszmidt and J. Pearl. Rank-based systems: A simple approach to belief revision, belief update

and reasoning about evidence and actions. In Proceedings KR-1992, pp. 661–672. Morgan Kaufmann,

1992.

[24] M. Goldszmidt and J. Pearl. Qualitative probabilities for default reasoning, belief revision, and causal

modeling. Artif. Intell., 84(1–2):57–112, 1996.

[25] J. Heinsohn. Probabilistic description logics. In Proceedings UAI-1994, pp. 311–318. Morgan Kauf-

mann, 1994.

[26] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfiability.

J. Web Semantics, 1(4):345–357, 2004.

[27] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making

of a web ontology language. J. Web Semantics, 1(1):7–26, 2003.

[28] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Pro-

ceedings LPAR-1999, pp. 161–180. LNCS 1705, Springer, 1999.

[29] M. Jaeger. Probabilistic reasoning in terminological logics. In Proceedings KR-1994, pp. 305–316.

Morgan Kaufmann, 1994.

[30] B. Jenner and J. Toran. Computing functions with parallel queries to NP. Theor. Comput. Sci., 141:175–

193, 1995.

[31] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume A, chapter 2, pp. 67–161. MIT Press, 1990.

[32] D. Koller, A. Levy, and A. Pfeffer. P-CLASSIC: A tractable probabilistic description logic. In Proceed-

ings AAAI-1997, pp. 390–397. AAAI Press / MIT Press, 1997.

[33] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative

logics. Artif. Intell., 14(1):167–207, 1990.

[34] D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artif. Intell., 55(1):1–

60, 1992.

[35] T. Lukasiewicz. Weak nonmonotonic probabilistic logics. Artif. Intell., 168(1–2):119–161, 2005.

[36] T. Lukasiewicz and J. Schellhase. Variable-strength conditional preferences for match- making in de-

scription logics. In Proceedings KR-2006, pp. 164–174. AAAI Press, 2006.

[37] T. Lukasiewicz and J. Schellhase. Variable-strength conditional preferences for ranking objects in on-

tologies. In Proceedings ESWC-2006, pp. 288–302, LNCS 4011, Springer, 2006.

28 INFSYS RR 1843-07-06

[38] T. Lukasiewicz and J. Schellhase. Preferences, links, and probabilities for ranking objects in ontologies.

In Proceedings URSW-2006, CEUR Workshop Proceedings 218, CEUR-WS.org, 2006.

[39] H. Nottelmann and N. Fuhr. pDAML+OIL: A probabilistic extension to DAML+OIL based on proba-

bilistic Datalog. In Proceedings IPMU-2004, 2004.

[40] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[41] J. Pearl. System Z: A natural ordering of defaults with tractable applications to default reasoning. In

Proceedings TARK-1990, pp. 121–135. Morgan Kaufmann, 1990.

[42] M. Pool and J. Aikin. KEEPER and Protégé: An elicitation environment for Bayesian inference tools.

In Proceedings of the Workshop on Protégé and Reasoning held at the 7th International Protégé Con-

ference, 2004.

[43] D. Poole and C. Smyth. Type uncertainty in ontologically-grounded qualitative probabilistic matching.

In Proceedings ECSQARU-2005, pp. 763–774, LNCS 3571, Springer, 2005.

[44] C. Smyth and D. Poole. Qualitative probabilistic matching with hierarchical descriptions. In Proceed-

ings KR-2004, pp. 479–487. AAAI Press, 2004.

[45] A. Selman. A taxonomy of complexity classes of functions. J. Computer and System Sciences, 48:357–

381, 1994.

[46] W. Spohn. Ordinal conditional functions: A dynamic theory of epistemic states. In W. Harper and

B. Skyrms, editors, Causation in Decision, Belief Change, and Statistics, volume 2, pp. 105–134.

Reidel, Dordrecht, Netherlands, 1988.

[47] U. Straccia. Reasoning within fuzzy description logics. J. Artif. Intell. Res., 14:137–166, 2001.

[48] U. Straccia. Description logics with fuzzy concrete domains. In Proceedings UAI-2005, pp. 559–567.

AUAI Press, 2005.

[49] U. Straccia. Towards a fuzzy description logic for the Semantic Web (preliminary report). In Proceed-

ings ESWC-2005, pp. 167–181, LNCS 3532, Springer, 2005.

[50] G. Stoilos, G. B. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks. The fuzzy description logic f -

SHIN . In Proceedings URSW-2005, pp. 67–76, 2005.

[51] S.-W. Tan and J. Pearl. Specification and evaluation of preferences under uncertainty. In Proceedings

KR-1994, pp. 530–539. Morgan Kaufmann, 1994.

[52] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD

Thesis, RWTH Aachen, Germany, 2001.

[53] E. Weydert. System JLZ — Rational default reasoning by minimal ranking constructions. J. Applied

Logic 1(3–4):273–308, 2003.

[54] W3C. OWL web ontology language overview. W3C Recommendation (10 Feb. 2004). http://

www.w3.org/TR/2004/REC-owl-features-20040210/.

