| NF S Y S
RESEARCH

R EPORT

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

DATA COMPLEXITY OF QUERY ANSWERING
IN EXPRESSIVEDESCRIPTIONLOGICS VIA
TABLEAUX

Magdalena Ortiz Diego Calvanese Thomas Eiter

INFSYS RESEARCHREPORT1843-07-07
NOVEMBER 2007

Institut fur Informationssysteme
AB Wissensbasierte Systeme

Technische Universitat Wien

FavoritenstrassfRe 9-11

A-1040 Wien, Austria I
Tel: +43-1-58801-18405 I

Fax; +43-1-58801-18493
sek@kr.tuwien.ac.at W | E N

www.kr.tuwien.ac.at

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-07-07, MVEMBER 2007

DATA COMPLEXITY OF QUERY ANSWERING IN EXPRESSIVE
DESCRIPTIONLOGICS VIA TABLEAUX

Magdalena OrtiZ, Diego Calvanesé, and Thomas Eitér

Abstract. The logical foundations of the standard web ontology lagggaare provided by ex-
pressive Description Logics (DLs), such&s(ZQ andSHOZQ. In the Semantic Web and other
domains, ontologies are increasingly seen also as a mechaoiaccess and query data reposito-
ries. This novel context poses an original combination @lleimges that has not been addressed
before: () sufficient expressive power of the DL to capture common dabaelling constructs;
(i) well established and flexible query mechanisms such ag tihgpired by database technology;
(iii) optimisation of inference techniques with respect to &éta, which typically dominates the
size of ontologies. This calls for investigating data coexjily of query answering in expressive
DLs. While the complexity of DLs has been studied extengivielw tight characterisations of data
complexity were available, and the problem was still opemiost DLs of theSH family and for
standard query languages like conjunctive queries and #xénsions. We tackle this issue and
prove a tightcoNP upper bound for positive existential queries with nositive roles inSHOQ,
SHIQ,andSHOZ. We thus establish that, for a whole range of sublogicSHtOZ O that contain
AL, answering such queries hadNP-complete data complexity. We obtain our result by a novel
tableaux-based algorithm for checking query entailmehtchvuses a modified blocking condition
in the style of QRIN. The algorithm is sound fa$HOZ Q, and shown to be complete for all con-
sidered proper sublogics in ti&g+ family.

Keywords: expressive description logics, query answering, data ¢exitp, conjunctive queries,
unions of conjunctive queries, tableaux algorithms.

Linstitute of Information Systems, Knowledge-Based Syst&@roup, Vienna University of Technology,
Favoritenstrafle 9-11, A-1040 Vienna, Austria. E-mailiza@kr.tuwien.ac.at.

2Faculty of Computer Science, Free University of Bozen-Bolz, Piazza Domenicani 3, 1-39010 Bolzano,
Italy. E-mail: calvanese@inf.unibz.it.

3Institute of Information Systems, Knowledge-Based Syst&roup, Vienna University of Technology,
Favoritenstrafle 9-11, A-1040 Vienna, Austria. E-mailer@kr.tuwien.ac.at.

Acknowledgements This work was partially supported by the Austrian Scienemds (FWF) project
P17212; the European Commission project REWERSE (IST-B0B3 79); the FET project TONES (Think-
ing ONtologiES), funded within the EU 6th Framework Prognaenunder contract FP6-7603; by the PRIN
2006 project NGS (New Generation Search), funded by MIUR, lanthe Mexican National Council for
Science and Technology (CONACYT) grant 187697.

This Report is a corrected and extended version of the piredim report 1843-06-03. Some results in this
paper appear in preliminary form in the Proceedings of tha Rlational Conference on Atrtificial Intelli-
gence(AAAI '06) [48] and in the Informal Proceedings of the Internationakkgbop on Description Logics
(DL 2006)[49].

Copyright(© 2007 by the authors

INFSYS RR 1843-07-07 I

Contents
1 Introduction 1
2 Preliminaries 4
2.1 Description LOQICS e e e e 4
211 TheDLSHOZQ o e e e 4
212 TheDLSSHOQ,SHIQ,andSHOZL 5
2.2 Positive QUENES e 7
3 A Tableaux Algorithm for Query Entailment 8
3.1 Completion Graphs e e 9
3.2 Models of aCompletion Graph e e 15
3.3 Answering Positive QUENES L e 16
3.3.1 Tableaux and Canonical Models 17
4 Termination and Complexity 22
4.1 Bounding the size of completion forestsand graphs 23
4.2 Complexity of the Query Entailment Algorithm 25
4.3 DataComplexity e e 26
4.4 Combined Complexity e e 27
5 Extensions 28
5.1 Hybrid Knowledge Bases e 28
5.1.1 Extending non-recursiveABIN to theSH family 28
5.1.2 CombiningSH DLs and recursive BTALOG o v v v v v oo . 33
5.2 Undecidability of Queries with Inequality 34
6 Conclusion 36
A Appendix 37

INFSYS RR 1843-07-07 1

1 Introduction

Description Logics (DLs) [2] are specifically designed fepresenting structured knowledge in terms of
concepts (i.e., classes of objects) and roles (i.e., birdagionships between classes). They have been ini-
tially developed to provide a formalisation of frame-basgdtems and semantic networks, and expressive
variants of DLs were shown to be in tight correspondence reithesentation formalisms used in databases
and software engineering [17, 6]. More recently, DLs gaimenleasing attention as the logical founda-
tion for the standard Web ontology languages [29]. In fdug most significant representatives of these
languages, OWL-Lite and OWL-DL, are syntactic variants afs[)31, 50]. In the Semantic Web and in
other application domains such as Enterprise Applicatiiagration and Data Integration [41], ontologies
provide a high-level, conceptual view of the informatiofevant in a specific domain or managed by an
organisation. They are increasingly seen also as a mechdoiaccess and query data repositories, while
taking into account the constraints that are inherent irctimemon conceptualisation.

This novel context poses an original combination of chgénunmet before, both in DLs/ontologies
and in related areas such as data modelling and query angwematabases:

1) On the one hand, a DL should have sufficient expressive pveapture common constructs typ-
ically used in data modelling [8]. This calls fexpressive DL§9, 5], in which a concept may denote the
complement or union of others (to capture class disjoirstrag®l covering), may involve direct and inverse
roles (to account for relationships that are traversed th Hoections), may contain number restrictions (to
state existence and functional dependencies and catglinahstraints on the participation to relationships
in general), or may refer to specific objects that are of exlee at the intensional level. Such concepts are
then used in the intensional component of a knowledge baseTBox), which contains inclusion asser-
tions between concepts and roles, while the extensionapooant (the ABox) contains assertions about
the membership of individuals to concepts and roles.

2) On the other hand, the data underlying an ontology shoelddzessed using well established and
flexible mechanisms such as those provided by database lamgryages. This goes well beyond the tradi-
tional inference tasks involving objects that have beersicimned and implemented in DL-based systems,
like instance checkinfR0, 53]. Indeed, since explicit variables are missing, Dhaepts have limited means
for relating specific data items to each oth@onjunctive querie$CQs), i.e., plain select-project-join SQL
queries, and unions of CQs (UCQs), i.e., a union of plaincsgimject-join SQL queries, provide a good
trade-off between expressive power and nice computatiprogderties, and are therefore adopted as core
guery languages in several contexts, such as data intgifdfi].

3) Finally, one has to take into account that data reposgotan be very large and are usually much
larger than the representation of the intensional levelasging constraints on the data. Therefore, the
contribution of the extensional level (i.e., the data) #® ¢tomplexity of inference should be singled out, and
one must pay attention to optimising inference techniguésnespect to data size, as opposed to the overall
size of the knowledge base. In databases, this is accoumtéy flata complexityof query answering [57],
where the relevant parameter is the size of the data, as egppesombined complexityvhich additionally
considers the size of the query and of the schema.

Notable examples of expressive DLs are the ones in the sdcgil family, which support all Boolean
constructs over concepts and allow for asserting the traiygiof certain roles and containment between
roles. The most expressive DL in this family is call8#OZ Q. In addition to the mentioned concept con-
structs and role assertions, it suppartsninals(©), which are concepts denoting a single individual [55],

2 INFSYS RR 1843-07-07

inverse roles®), and qualified number restriction®]). By disallowing one of these three constructs, we ob-
tain the sublogics known aSHZ Q, SHOQ, andSHOZ, respectively, which are three DLs with high and
mutually incomparable expressive power. Note thatOZ Q essentially corresponds to OWL-DL, while
SHIQ essentially corresponds to OWL-Lite [31, 50[These languages have been promoted as standard
Web ontology languages by the World Wide Web Consortiumiwithe Semantic Web effof.

For theSH family and other expressive DLs, TBox+ABox reasoning hasnsudied extensively in the
last decade, using a variety of techniques ranging fromatazhs to reasoning in Propositional Dynamic
Logic (PDL) [13, 9], over tableaux [5, 36] to automata on iitértrees [9, 56] and resolution [38, 40]. For
many of them, the combined complexity of instance checkwmigh(both TBox and ABox) is EPTIME-
complete, includinggHZ Q, SHOQ, andSHOZ. Unfortunately, the interaction of nominals, inverse sple
and counting increases the computational complexity @rarice inSHOZ Q causing instance checking to
be NExPTIME-complete [55].

As for data complexity, it was shown in [20, 53] that instamtecking iscONP-hard already in the
rather weak DLALE, and in [11] that CQ answering iSONP-hard in the yet weaker DIAL. Tight
upper bounds were not known, since little attention had hmed to this problem. The data complexity
was studied in the last years, but mostly for suitably teibDLs [10, 11, 12]. In [11, 12], th®L-Lite
family of DLs was considered, and two DLs were identified fdrieh the problem is in bGSPACE and can
be effectively reduced to evaluating a UCQ over a databasg standard relational database technology.
Furthermore, [11] analysed which additions to the DL maleegloblem hard for NDGSPACE, PTIME,
or CONP. The analysis essentially showed that the two identified &e the maximal ones with respect
to allowed constructs enjoying so calle@®L-rewritability of query answering, which impliesdGSPACE
data complexity of this problem. Another interesting capsmnce of the results in [11] is that any further
addition to the DL, such as universal quantification (a coestconsidered basic in DLs) makes the problem
alreadycoNP-complete, and therefore, as shown by our work, as hardrdkd very expressive DLs that
we consider here.

The data complexity of expressive DLs has not been studietepth, and it only became a topic of
interest in recent years. AnXBTIME upper bound for data complexity of CQ answeringdd R follows
from the results on CQ containment and view-based query emsgvin [13, 14]° They are based on a
reduction to reasoning in PDL, which however prevents tglsirout the contribution to the complexity
coming from the ABox. Similar considerations hold for thehteiques in [37], which refined and extended
the ideas introduced in [13], making the resulting algonishbetter suited for implementation on top of
tableaux-based algorithms. In [38, 40] a technique basedreduction to Disjunctive Datalog was used for
SHIQ. It provides a (tight)coONP upper bound for data complexity of instance checking;esihallows
to single out the ABox contribution. The result can be imraggly extended to tree shaped conjunctive
gueries (with no transitive roles), since they admit a regnéation as a DL concept, e.g., by making use
of the notion of tuple-graph of [13], or via rolling up [37]. dWever, this is not the case for general CQs,
resulting in a non-tight 2EPTIME upper bound. The first tight upper bounds for CQ answerin§i¥ ©
were given in [48], but only for queries with no transitivde®, and generalised in [24] to all CQs.

Most of the results we have mentioned are quite recent, sircevork on data complexity before this

1The OWL languages also support certain datatypes, whicimgmertant for applications, and whose theoretical coypatetrin
DLs are concrete domains [3, 44]. On the other hand, the OW a2 OWL-Lite variants support only restricted forms of rhen
restrictions, namely unqualified number restrictioné) @nd functionality), respectively. Notice that the upcoming standard
language OWL 1.1, instead, supports qualified number otisins.

2htt p: / / www. w3. or g/ 2001/ sw/

These results apply only to queries without transitive wtes

INFSYS RR 1843-07-07 3

decade was rather scarce. The most notable exception isttfiead work on the @rIN language for hybrid
knowledge bases [43]. The authors showed a t@bh P upper bound for CQ answering in a DL called
ALCNR, which has no role hierarchies, does not support inveresrand has only a limited form of
number restrictions. It is based on the tableaux algoritonsétisfiability of ACLCN R knowledge bases,
modifying the blocking condition is such a way that it can [@®di for deciding query entailment. The
modified tableaux algorithm provided not only the first tigipper bounds for data complexity of query
answering in DLs, but also the first algorithm for answerinG@bs and for deciding the containment of
UCQs over DL knowledge bases.

Tableaux algorithms play a very important role in DLs noweglaand are one of the most popular
reasoning techniques. Despite their high worst-case ctatipnal complexity, they are amenable to opti-
misations and the basis of many reasoning engines, whichderefficient implementations. For all DLs
in the SH family, tableaux algorithms for checking satisfiabilityvieabeen found. In particular, in [32] a
tableaux algorithm for deciding satisfiability SfHOZ Q knowledge bases was given, which generalises
the previous algorithms fa§ HZ Q, SHOQ, andSHOZ. However, all these algorithms were devised for
standard reasoning tasks like satisfiability and instahegeking, and several interesting questions remained
unaddressed. First, whether it is possible to apply thesidea techniques for ARIN to the DLs in the
S’H family in order to obtain (tableaux-based) algorithms fos\aering expressive queries over knowledge
bases in these logics. Second, given that this is possilflaj wnd of queries may be handled. Third,
whether any of the algorithms obtained would allow to dersieilarly as in the case of ARIN, exact
characterisations of the data complexity of query answerin

In this paper, we shed light on these questions, by simuizsig addressing the three challenges identi-
fied above. We show that the blocking conditions of [43] casuitably generalised to very expressive DLs
from theSH family. Technically speaking, the generalisation is nividt. Indeed, we consider logics that
have inverse roles, which as recently shown make answel@gZExPTIME-hard [45]. Some of the DLs
have no finite model property, and only weak forms of the uibdgs forest model property. Furthermore,
we consideiPositive Existential Querie@Qs), a generalisation of UCQs that is not more expresisivas
exponentially more succinct.

Our main contributions are briefly summarised as follows:

e Building on the techniques of [36, 43], we present a noveletaix-based algorithm for query an-
swering in expressive DLs of th&H family. We prove that the algorithm is sound for answering
PQs (and hence, also for UCQs and CQs) with no transitives mlerSHOZ Q knowledge bases,
and thus in all DLs of th&H family. However, it does not work in general when the quemtams
transitive roles. This is because the blocking conditionuse relies on the fact that the query can
only distinguish patterns of bounded size in the model, wliee bound depends on the query shape.

e We prove that the algorithm is complete for knowledge barethe three DLsSSHZQ, SHOQ,
andSHOZ. As a consequence, entailment of PQs with no transitivesroler knowledge bases in
these logics is decidable. This result extends also to therithe containment and equivalence of
PQs. In fact, the algorithm terminates if there is no sirmédtaus interaction of number restrictions,
inverse roles, and nominals, and hence also works for laigseses of knowledge bases. However,
for arbitrarySHOZ Q knowledge bases termination is not established, as it st&inthe interaction
could indefinitely postpone the satisfaction of the blogk@mnditions.

e The novel algorithm provides us with a characterisatiorhefdata complexity of query answering in
expressive DLs. Specifically, we show that the data comgyl@fianswering PQs with no transitive

4 INFSYS RR 1843-07-07

roles overSHZQ, SHOQ, andSHOZ knowledge bases is inONP, and thus i€oNP-complete
for all their sublogics that contaid L.

This shows that the techniques introduced feyRON are indeed a suitable tool to provide tableaux-
based algorithms and exact characterisations of the datalewrity of answering large families of queries
over a wide range of expressive DLs.

The rest of the paper is organised as follows. After techmiceliminaries in Section 2, we present in
Section 3 our algorithm for answering PQs o OZ Q knowledge bases. In Section 4, we discuss the
resulting complexity bounds f&8HZ Q, SHOQ, andSHOZ. In Section 5, we present some applications
of our results in the context of hybrid knowledge bases, dmdvssome undecidability results. In Section 6
we draw final conclusions. In order to increase readabigtghnical details of some proofs have been moved
to an appendix.

2 Preliminaries

In this section, we introduce the technical preliminariesthe rest of the paper. We first introduce syntax
and semantics of the Description Logics BIHOZQ and its sublogics HZ Q, SHOQ, andSHOZ, and
then we define the query answering problem addressed in tls w

2.1 Description Logics

Description Logics (DLs) [2] are logics that are particljawell-suited for the representation of structured
knowledge. The basic elements of DLs ancepts denoting sets of objects of the domain of interest,
androles denoting binary relations between the instances of cdaacéjney are described by concept and
role expressions built from concept names and role nameapplying concept and roleonstructors re-
spectively. The domain of interest is then modelled throagtnowledge base, which comprises logical
assertions both at the intensional level (specifying tlmerties of concepts and roles), and at the exten-
sional level (specifying the properties of individuals dhd relationships among individuals).

We assume thaR, C, I are countable and pairwise disjoint setsrale namesconcept namesand
individuals respectively, and th&., C R is a set oftransitive role names

2.1.1 TheDLSHOIQ
Definition 2.1 [Roles] A role expressionR (or simply role) is either a role namé € R or its inverse

denotedP~. A role inclusion axiomis an expression of the forilR C R’ whereR and R’ are roles. Arole
hierarchyR is a set of role inclusion axioms.

As usual, we introduce the functidnv as follows:

Inv(R) P~, if R= Pisarole-name
Vv g
P, if R = P~ for some role namé

The relationC}, denotes the reflexive, transitive closurefofover a role hierarchyR U {Inv(R) C
Inv(R') | RC R' € R}. If R, R/, then we callR asub-roleof R’ and R’ asuper-roleof R w.r.t. R.

INFSYS RR 1843-07-07 5

Arole Ristransitivew.r.t. a role hierarchyR, denoted bylrans(R, R), if either R or Inv(R) belongs to
R, or the role hierarch{R implies thatR is both a sub-role and a super-role of a transitive role; &iyn
Trans(R,R) holds iff R T}, R’ andR’ C%, RforsomeR' ¢ Ry U{R™ | R € R }.

Finally, a roleS is simplew.r.t. a role hierarchyR if S is neither transitive nor has transitive sub-roles,
i.e., for no roleR with Trans(R, R) we have that? T}, S.

In the following, we omitR when it is clear from the context, and usé andTrans(R) instead oft%
andTrans(R, R), respectively.

Definition 2.2 [Concepts|SHOZ Q concepts (or simply concepts) are defined inductively aftingrto the
following syntax:

c,c — A atomic concept (S1)
| {o} nominal (S2)
Keanked conjunction (S3)
|lcuc’ disjunction (S4)
| ~C negation (SH)
| VR.C universal quantification (S6)
| IR.C existential quantification (S7)

| >nS.C | <nS.C (qualified) number restrictions (S8)

where A is a concept namé, andC’ are conceptsk is a role,S is a simple role, and > 0 is an integer.
An atomic concepis either a nomina{o} with o € I or a concept namd € C.

In DLs, the knowledge base about the domain of interest stmef an intensional component, called
TBox, representing general knowledge about the domain,aandxtensional component, called ABox,
representing knowledge about specific objects. Additlgnad the DLs of theSH family, a role hierarchy
might be present.

Definition 2.3 [Knowledge base] Aconcept inclusion axiors an expressiod' = D whereC and D are
concepts. Arassertiona is an expressio(a), P(a,b) or a % b, whereA is a concept name? is a role
name, and;, b are individuals irl. A TBox or terminology, is a finite set of concept inclusion axiomusgl
anABoxis a finite set of assertions. AHOZ Q) knowledge baséB) is a triple K = (7, R, .A), where
7T is a TBox,R is a role hierarchy, andl is an ABox.

Without loss of expressivity, we assume that all concepfs iare innegation normal forn{NNF), i.e.,
negation appears only in front of atomic concepts. For agpi€c, NNF(C') denotes the NNF of’. For
K = (T,R,A), we denote bR the set of roles occurring i andRR, and of their inverses. Furthermore,
C g denotes the set of concept names occurring jrandI i, I 4, andI+ denote the sets of all individuals
occurring inK, in A, and in7, respectively. Note thdty U I = I for everyK, and if K is aSHZQ
knowledge base, theli- = () andI 4 = Ix.

2.1.2 TheDLSSHOQ,SHIQ,and SHOZ
The three sublogic§HOQ, SHZ Q, andSHOZ of SHOZQ are obtained as follows.

Definition 2.4 [Sublogic Roles and Concepts] Roles and conceptSHOQ, SHZQ, and SHOZ are
defined as iISHOZQ, except that

6 INFSYS RR 1843-07-07

e in SHOQ, the inverse role constructor is not available;
e in SHZQ, nominals{o} are not available, i.e., (S2) is not in the syntaxS{Z Q concepts;

e in SHOZ, (qualified) number restrictions are not available, i.88)(is not in the syntax a§ HOT
concepts;

Thus, INSHZQ, only concepts name4 € C are atomic concepts.

Definition 2.5 [Sublogic Knowledge Bases] Fdr being one of the logic§ HOQ, SHZQ, or SHOZ, an
L knowledge basis aSHOZ Q knowledge bas& = (7, R,.A) such that all roles and concepts occurring
initare inL.

Example 2.6 As a running example, we use the following 8 OZ Q knowledge bases:
Kl = <{A E E|P1.A, A E E|P2.—|A}, {}, {A(a)}>
Ky =({AC3P.A, AC 3P {o}}, {}, {Ala)}).
Note thatK; is aSHOQ, aSHZQ, and aSHOZ knowledge base, whil&; is aSHOQ and aSHOT

knowledge base, but not&HZ Q one. n

We now define the semantics of knowledge bases, which is giMemms of first-order interpretations.

Definition 2.7 [Model of a knowledge base] AmterpretationZ = (AZ,-%) consists of a non-empty set
AT, thedomain and aninterpretation function? that

e maps each rol&? € R to a setR? C AT x AZ, such thatR? = (R?)* for eachR € R, and
(R)F = {(d0) | {0,0) € R"},

e assigns to each individuale I an element” € AZ,% and

e assigns to each concept a setC’”? C A” such that

(€10 = CINCE
(01 %Cg)i = CiUC_?i
-C)F = AT\C
(YR.C)T = {o] forall o, (0,0') € RT implieso’ € C*}
(3R.C)Y = {o]| forsomed, (0,0') € RT ando’ € C7}

(>ns.C)t {o]| |[{d' | {0,0') € ST ando’ € CT}| > n}
(<nS.CYY = {o]||{d | {0,0) € STandd € C*}| < n}
(o} = {o}.

“Notice that we do not enforce the unique name assumptiontice individualso; # o2 may denote the same domain object

o1 = 03.

INFSYS RR 1843-07-07 7

Note that the interpretation of each nomifal is a singleton.
An interpretationZ satisfiesa role inclusion axiomk? C R/, if RT C R%: a concept inclusion axiom
C C ', if 0T C C'F; and an assertioa, denoted? = o, if:

at € AT, if a=A(a)
(aZ by € PZ, if a=P(a,b)
al #bF, ifa=asb.

An interpretatioriZ satisfies a role hierarchf® anda terminology7, if it satisfies every axiom oR and7
respectively. Furthermorg, satisfies an ABox\, if it satisfies every assertion id. Finally, Z is amodelof
K =(T,R,A), denoted! |~ K, if it satisfies7, R, andA.

Note that complex concepts and roles are not allowed in ABokimwever, this is no limitation, since
an assertiorC'(a) with a complex concept’ can always be replaced by an assertigf(a) in the ABoX,
together with an inclusion assertiotx C C', where A¢ is a new concept name. This transformation is
model preserving.

Finally, we observe that for all DLs considered here whiciméchominals, an ABoxA in K =
(T,R,A) can beinternalisedin the TBox, yielding a knowledge bad€ 4 = (74, R,) with an empty
ABox. Indeed,7 4 is obtained froni/” by adding, for each ABox assertienin A, the inclusion axiom

{a} T A, ifa=A(a)
{a} T 3PAb}, if = P(a,b),and
{a} C —{b}, fa=a#bd.

It is easy to see that and K 4 have exactly the same models, so all reasoning serviceseserped [54].

2.2 Positive Queries

We now introduce positive (existential) queries, which eyafise both conjunctive queries and unions of
conjunctive queries. We assume thair is a countably infinite set of variable names.

Definition 2.8 [Positive Queries] Lef’ be a vector of variables froifWar. A positive (existential) query
(PQ) over a KBK is a formuladz.o(Z), wherep(Z) is built usingA andV from atomsC'(z) andS(z, 2’),
whereC' is a concept name i€x, S is a simple role name iR, andz, 2’ are variables from¢ or
individuals inIg.

Note that transitive roles and their super-roles are digatl in queries. We denote Mi(Q) the set of
variables and individuals in a quegy.

A PQQ = 3Z.¢(¥) is aconjunctive quer(CQ), if ¢(Z) is a conjunction of atoms, andumion of
conjunctive queriegUCQ), if ¢(&) is in disjunctive normal form; every PQ can be easily rewritto a
UCQ, but the resulting query may be exponentially larger.

Queries are interpreted as usual. For an interpretafiolet 7 : VI(Q) — A be a total function
such thatr(a) = o for each individuala. We writeZ, 7 = C(x) if 7(z) € C%, andZ, 7 | S(z,y) if
(m(x),m(y)) € ST. Lety be the Boolean expression obtained frgnby replacing each atom in ¢ with
Tif Z,7 | «, and with L otherwise. We callr amatch forZ and @, denotedZ, = = Q, if evaluates to
T. ThenZ is a model of) (Z = Q), if there is a matchr for Z and@Q.

8 INFSYS RR 1843-07-07

Definition 2.9 [Query Entailment] Let)) be a query over a KBY. We say thatk entails (), denoted
K E Q,if T = Q for each modell of K. Thequery entailment problens to decide, giverk’ and @,
whetherK = Q.

Example 2.10 Consider the following PQs:

Ql = EIac,y,z.Pl(:U,y)/\PQ(ac,z)/\A(y);
QQ = Ell‘,y,Z.PQ(l',y)/\PQ(y,Z);
Q3 = EIx?Q(Pl(l'vy)\/PQ(xvy))/\PQ(y70)

Note that@); and @, are CQs. First, we observe th#; = ;. Indeed, due to the inclusion axiom
A C 3P;.A, in every model of K there is some instaneg of A that is connected ta’ via role P;. By the
axiomA C 3P,.— A, there is also some element that is connected ta” via role P,. Settingr(z) = a,
m(y) = 01, and7(z) = o2, we have a match faf and @Q,. Similarly, Ky = Q: if Z is a model ofK5, let
01 be an instance ofl that is connected ta’ via role P;; such ano; exists by the axiom C 3P;.A. Then
n(x) = o, 7(y) = o1, andn(z) = o’ is a match forZ and Q.

Next, we havek; [~ Q. Indeed,Z = (AZ,-T) where AT = {01,00} anda? = o1, AT = {01},
PL = {{o1,01)}, and P = {(01,02)}, is a model ofK; but not ofQ>. To see thatks = @, Simply
extendZ to the nominal{o} by setting{o}? = {0,}; then we have a model df, but not ofQ,. Finally,
K> = Q3. (Note thatQs is not a query ovelk, sinceo ¢ I,.) Indeed, in every moddl of K5, a* must
be connected to some instangeof A via P; by the axiomA C 3P;.A. The axiomA C 3P.{o} ensures
that o, is connected t@” via role P,. Therefore;r(z) = af, 7(y) = 01, and7(0) = o’ is a match forZ
andQs. "

The query entailment problem for a OLis in a complexity clas€, if given a KB K in £ and a queryy,
decidingK = Q is inC; this is also calle@dombined complexityvhile thedata complexitys the complexity
of deciding K = @ where@ and all of K exceptA are fixed.

Note that in Definition 2.8, queries have no distinguished. (ifree) variables, so they are Boolean
queries. For a quer®) = 37.¢(y,) with distinguished variableg, the query answering probleraver K
consists in finding all the possible tuptesf individuals (of the same length g¥such thati |= 3.p(t, ©)
holds. Query answering can be reduced to answering alllgessich Boolean queries with individuals
appearing ink; that is, to polynomially many (in the size of the ABox) quemtailment problems.

3 A Tableaux Algorithm for Query Entailment

In this section, we describe an algorithm to solve the quatgiknent problem for PQs in the DLs of the
SH family we have introduced. As shown in this and the next secit is sound and complete f&SYHOQ,
SHZQ,andSHOZ. ForSHOZQ itis sound, while completeness is not guaranteed.

An important note is that the query entailment problem irttadise DLs is not reducible to knowledge
base satisfiability, since in general the negation of a gisenpt expressible as a part of a knowledge base.
For this reason, the known algorithms for reasoning ovemlkedge bases are insufficient. In general, a
knowledge base has infinitely many (possibly infinite) medahd in principle we have to verify whether
the query is satisfied in all of them. Our technique builds loe tableaux algorithm for satisfiability of
SHOZQ knowledge bases in [32]. Informally, the difference is ttieg latter algorithm only focuses on
problems that are reducible to satisfiability checking; deent only needs to ensure that the algorithm

INFSYS RR 1843-07-07 9

obtains a model if the knowledge base is satisfiable. In ose tais is not enough. We need to make sure
that the algorithm obtains a set of models that suffices tolcljeery entailment. This adaption to query
answering is inspired by [43], yet we deal with DLs that laek finite model property. Like the algorithm
in [32] we usecompletion graphsfinite relational structures that represent sets of moadfeégsknowledge
base. Roughly, an initial completion gragly for K is built. Then, by applyingxpansion rulesepeatedly,
new completion graphs are generated. The application atiths is non-deterministic, and sometimes new
individuals are introduced. Modulo the names of these nelivigluals, every model ok is represented in
some completion graph that results from the expansion,dheskingK |= @ is thus equivalent to checking
whether the query is entailed in all the models represengaabry sufficiently expanded completion graph
G. From each sucl a singlecanonical modeis constructed. Semantically, the finite set of these caabni
models is sufficient for answering all queri@sof bounded size. Furthermore, we prove that entailment in
the canonical model obtained frofhcan be checked effectively via a syntactic mapping of thales in
Q) to the nodes in;.

As customary with tableau-style algorithms, we give blagktonditions on the rules that ensure that the
expansion of the graphs terminates. They are more invohathose in [32], which serve for satisfiability
checking but not for query entailment, and they involve ap@stern which depends on).

3.1 Completion Graphs

Let VIN be a countably infinite set ofariable nodesdisjoint from the vocabulary used in defining queries
and knowledge bases. @mpletion graply consists of a finite labelled directed graplodes(G), arcs(G),
L) such thatnodes(G) € VN U T and a binary relatiog¢ on nodes(G).> Each nodev of G is labelled
with a finite set{(v) of concepts and each arc— w of G with a finite setC(v — w) of roles. The nodev
is asuccessonf v andv a predecessopof w. The union of the successor and predecessor relations is the
neighbourrelation, and their respective transitive closures areddescendanandancestor Thedistance
between two nodes,v’ in G is defined in the natural way. We referitgG) = {v € nodes(G) | {0} €
L(v),0 € 1} as theindividual nodesn G and tovn(G) = nodes(G) \ in(G) as thevariable nodesn G.°

Now we introduce completion graphs for&HOZQ knowledge basél = (7,R,.A). Instead of
using TBox internalisationand assuming an empty TBox as in [34, 32], we use a séiBuix concepts
tcon(K) = {-C U D | C T D e T}. By requiring that each individual belongs to all these @pts,
satisfaction of the TBox is enforced. Thabconcept closuref a conceptC is the smallest set of concept
expressions containing' that is closed under subconcepts and their negation (esqutés NNF). Given a
conceptC and a role hierarchR, clos(C, R) is the smallest set containing the subconcept closu€earfd
all concepts of the fornv R'.D for eachR’ occurring inR or in C' and for each concept expressibnsuch
thatVR.D or NNF(VR.D) is in the subconcept closure 6f. Theclosure ofK, denotedclos(K), is the
union of allclos(C, R) for each concep€ occurring intcon(K). In the following, letK 4 = (74, R, 0)
where7 4 is as in Section 2.1.

Definition 3.1 [Completion graph [32]] Acompletion graphy for a knowledge basé&” is a completion
graph in which each nodeis labelled withL(v) C clos(K4) U{{o} | o € I} U{<mR.C | <nR.C €
clos(K 4) andm < n}, and in which each arc— w has a label (v — w) C Ry ,. If for two nodesv, w
there is no arw — w in G, we considel (v — w) = (). For each are — w and roleR, if R’ € L(v— w)

>The#¢ relation is used to state explicit inequalities betweeresode., that two nodes of a graph must be interpreted aseliff
individuals (there is no unigue name assumption). It igffaassumed thag is symmetric.
0ur individual nodes correspond neminal nodesn [32], and our variable nodes tdockable nodes

10 INFSYS RR 1843-07-07

Fi
a P vi Pp. v P vs P vy
Llu{{a}v _'{a} U A} L1 L1 L1 L1
Py Py P, P,
Lo Lo Lo Lo
v vy Vg vs

Fo
a P1 vy Pr vy P1 vs Pr vy P1 vg P1 v
L1U{{a}, ~{a} U A} 1 1 L1 L1 1 Oﬁl
Py Py Py Py Py Py

O Lo O Lo O Lo O Lo O Lo O Lo
V2 V4 v6 U8 V10 V12

Figure 1: Completion graphs for the example knowledge Béase

for some roleR’ with R’ C* R, thenw is an R-successonf v. We callw an R-neighbourof v, if w is an
R-successobf v, or if v is anlnv(R)-successonf w.

In order to provide a method for verifying entailment of a jpmetive query@ in a knowledge base
K, we first associate witli an initial completion graph and then we generate new coioplgraphs by
applyingexpansion rules

The initial completion graphGx associated withK' has a node: labelled with £(a) = {{a}} U
tcon(K 4), for each individuak € Ik, and the relationé is empty.

Example 3.2 In our running exampleg, contains only the node which has the labeL(a) := {{a},
—~AU3IP.A, AU IP.—A, ~{a} U A}. Gk, contains two nodes, and o, with the labelsC(a) := {{a},
—AU3PLA, AU TP {o}, ~{a} U A} and L(o) := {{o}, ~AUIP,.A, - AU TP, {o}, ~{a} LU A}. In
both graphs thet relation is empty. "

From this initialGx, we obtain new completion graphs by applying expansiorsrudnich may intro-
duce new nodes. Variable nodes are always introduced asssars of exactly one existing node. Hence,
the variable nodes in a completion graph form a set of treashtaive individual nodes as roots. It may
also happen that one of these variable nodes has an individda as its successor, thus we have a tree of
variable nodes that has a branch ending with an arc leadiag todividual node. If a completion graph
for K has no such arcs, thefiis a set of trees of variable nodes, whose roots are possitdgconnected
individual nodes. This special kind of completion graphes @alledcompletion forests

For any knowledge bask, the initial completion grapldix is a completion forest. 1) is aSHZ O
knowledge base the expansion rules only introduce variadtes and any completion graph obtained by
applying the expansion rules is a completion forest. Thisisthe case if{ is a knowledge base in some
DL with nominals, since arcs from variable to individual esdnay be introduced.

Example 3.3 In Figure 1, we show the completion grap®s and 7, for K;, which have an empty¢
relation (for simplicity, omitted in the figure)C; = {4, “AU3P;. A, -AUIP,.—A, 3P.A, 3P~ A}, and
Lo ={-A -AU3P.A, ~AUTIP,.~A}. Note that bothF; and F» are completion forests. Figure 2 shows
the completion graply,, wherel| = {A, =AU 3P,.A, AU 3P .{o}, 3P1.A, 3P {o}} and L], = {{o},
—AU3PLA, AU 3P o}, ~{a} U A, - A, ~{a}}. Thes relation is empty irg;. n

INFSYS RR 1843-07-07 11

g
! a P v PL vo P v P w4
£y U {{a}, ~{a} u A} ? ? ? ?

Figure 2: A completion graph for the example knowledge dse

Next, before giving the expansion rules, we define a notioblo¢king which depends on a depth
parameter, > 0. This notion generalises blocking in [32], where thparameter is not present.

Definition 3.4 [Blockablen-graph,n-graph equivalence] Given an integet> 0 and a completion grapfj,
the blockablen-graph of nodey € vn(G) is the subgraplg™* of G that containg and) every descendant
w € vn(G) of v within distancen, and (i) every successar’ € in(G) of each suchv. If w has inG™" no
successors fromn(G), we callw aleaf of G™". Nodesv, v' of G aren-graph equivalent via a bijectiorp
from nodes(G™") to nodes(G™"") if:

-Y(v) =,

- for everyw € nodes(G™"), L(w) = L(1(w)),

-arcs(G™Y') = {yp(w) — Y(w') | w—w' € arcs(G™Y)},

- for everyw — w' € arcs(G™7) , L(w —w') = L(Y(w) — p(w')).

As discussed above, in the algorithm variable nodes ocdyrionree-shaped structures. Thegraph
of each variable node is a tree of variable nodes of depth at mesboted atv, plus arcs to the individual
nodes that are direct successors of a node in this tree. &tedef the graph are the leaves of the tree in the
usual sense. For the completion graph obtained fr&t& Q KB, all n-graphs are actually trees of depth
at mostn.

Definition 3.5 [n-witness, graph-blocking] Let,v" € vn(G) be n-graph equivalent via), where bothv
andv’ have predecessorsvn(G), v" is an ancestor of in G, andv is not in g™V . If v’ reaches on a path
containing only nodes ian(G), thenv’ is an-witness ofv in G via). Moreover, g™ graph-blocksg™"
via b, and eachu € nodes(G™"") graph-blocks via) the nodeyy=! (w) in G,

Note that if some&=’ graph-blocks somé&! via a bijections, then the particular) does not matter and
any other bijection satisfying the three conditions of Digbn 3.4 could be equivalently used. Therefore,
we will always assume a fixed arbitrary bijection from a grégpdckedG to a graph-blocking=’, and denote
it 1». Moreover, we often omit) and simply say’ graph-blocks, v; graph-blocksus, etc.

Example 3.6 In F, v; and vz are 1-graph equivalenty, is a 1-witness ofvs (but not vice versa)F; %
graph-blocksF;5; and v; (resp.,vs, v4) graph-blocksvs (resp.,vr, vs). "

Definition 3.7 [n-blocking] For an integer >0 and a completion grap#, a nodev € nodes(G) is n-
blocked if v € vn(G) anduv is either directly or indirectly:-blocked;v is indirectly n-blocked if one of its
ancestors is-blocked;v is directly n-blockediff none of its ancestors is-blocked and is a leaf of some
blockablen-graph inG that is graph-blocked; in this case we say that (directly) n-blocked by (v) (i.e.,
by the node irg that graph-block®). 7 An R-neighbourw of a nodev in G is n-safeif v € vn(G) or if w
is notn-blocked.

"Note that the graph-blocking-graph is unique, and thus by our assumption also the hijegtiis unique.

12 INFSYS RR 1843-07-07

Note thatv is m-blocked for eachn <n if it is n-blocked. Whenn > 1, thenn-blocking implies
pairwise blocking which is the blocking used in [36, 32]. When=0, thenn-blocking corresponds to
blocking by equal node labels (equality blocking [5]), whis a sufficient blocking condition in some DLs
weaker tharlSHZ Q.

Example 3.8 Consider the completion foresfS, and F, (Figure 1). The nodes; andvg in F; are (di-
rectly) 1-blocked. Similarly, inF; v1; andwvy4 are (directly)2-blocked. Consider the completion gragh
in Figure 2. Init, G, ** graph-blocksG,'**; v, is (directly) 1-blocked. .

Now we can give our expansion rules, which are essentiaflystme as in [32]. The main differences
are that “blocked” is uniformly replaced by:*blocked” and that in the generating rules, the labels of the
newly generated nodes must contaton(K') (because we don’'t assume an empty TBox). The rules use
two operations on completion graphs calledrge andprune (prune does not appear in the rules, but it is
used bymerge). To illustrate the use of these operations, considextale. Suppose a nodeis labelled
by the concepk 2 5.C' and has three successars vo, v3 labelled withC', andvs % v3 does not hold.
Then we can make satisfy < 2 S.C', by merging the nodes, andwvs into one. For this purpose, we use
merge(ve, v3), Which then applieprune(vs). Intuitively, merge(vq, v3) merges the node, into vs: the
label of v, is added to the label af;, all incoming arcs o, are copied tas, and the outgoing arcs of to
an individual node are also copieddg. After the mergingprune(vs) removesv, from G and, recursively,
all its variable successors.

Formally, for a completion grapf andv, w € nodes(G), the operatiorprune(w) yields a graph that is
obtained fromg as follows:

1. For each successer of w, removew — w’ from arcs(G), and ifw’ € vn(G), thenprune(w’).
2. Removew from nodes(G).

The operationmerge(w, v) yields a forest obtained froig as follows:
1. For eachuv’ € nodes(G) such thatw’ — w € arcs(G)

(a) if neitherv — w' norw’ — v is in arcs(G), then addw’ — v to arcs(G) and setl(w' —v) =
L(w —w);

(b) if W' —wvisinarcs(G), then setl(w' —v) :

(c) if v—w'isinarcs(G), then setl(v — w') :

(d) removew’ — w from arcs(G).

2. For eachu’ € nodes(G) \ vn(G) such thatw — w’ € arcs(G)

(W' —v)UL(w —w);

=L
= L(u—>w’) U {Inv(R) ‘ R e ﬁ(w/—>’w)};

(a) if neitherv — w’ nor w’ — v is in arcs(G), then addv — w’ to arcs(G) and setl(v — w') =
L(w—w');

(b) if v—w'isinarcs(G), then setl(v — w') :=
(c) if w —wisinarcs(G), then setl(w —v) :
(d) removew — w’ from arcs(G).

3. SetL(v) := L(v) U L(w).

4. Addwv % w' for eachw’ with w % w’.

5. prune(w).

(v—w)UL(w—w);

L(v
Lw —=v)U{lnv(R) | Re L(w—w")};

INFSYS RR 1843-07-07 13

Go

a P vi P v P; vy Pi vg P1 vs P1 g
O O O O O

£y 0 {{a}, ~{a} U A}

£
Figure 3: 2-complete completion graph for the example kedgé basd(,

To obtain new completion graphs from the init@k, we apply the rules in Table 1. Note that their
application is non-deterministic. Different choices foin thelU-rule and theehooserule generate different
graphs. The choice af) andw’ in the <-rule is also non-deterministic. The&rule, the>-rule and the
o?-rule are calledgenerating rulessince they add new nodes to the graph Fheule and theo-rule are
shrinking rules since they merge two nodes of the graph into one.

Note that theo-rule merges two nodes whenever their labels share a naniiika in [32], we assume
that whenever this rule is applicable, it is applied immaadia This consideration allows us to assume that,
in every completion graph, each nominal occurs in the labat most one node.

An important note is that the?-rule is never applicable fa§HOQ, SHZQ, andSHOZ KBs?, which
allows us to prove termination (see below). E#OZQ KBs, however, theo?-rule is needed and the
naive application of the expansion rules can lead to namiteation. Horrocks and Sattler [32] give a
prioritised strategy for rule application which guarastégrmination of their satisfiability testing algorithm.
Unfortunately, this strategy does not work for our queryveering algorithm; we cannot ensure that it
terminates o8 HOZ Q KBs (although it will do so in many cases).

Definition 3.9 [Clash-free completion graph] A completion gragltontains alashif one of the following
holds:

1. For some» € nodes(G) and some concept namg {A, ~A} C L(v).

2. For somey € nodes(G) with <n S.C' € L(v), v hasn + 1 S-neighbourswy, . . ., w, such that, for
all w;, w; with 0 <i < j <n,C € L(w;) andw; % w; € G.

3. For some € I and some), v’ € nodes(G), {o} € L(v) N L(v') andv % V' € G.

If G does not contain a clash, thérns clash-free

Definition 3.10 [n-complete completion graph] A completion grag@hs n-complete, if no rule in Table 1
can be applied to it.

For a knowledge bask, we denote byG i the set of all completion graphs that can be obtained from
the initial G by applying the expansion rules, and &, (G) the set of completion graphs (& that
aren-complete and clash free.

Example 3.11 Both 7, and F;, can be obtained fron¥x, by applying the expansion rules, and they are
both clash-freeF; is 1-complete andr; is 2-complete, s¢F; € ccf1(Gg,) andF, € ccfy(Gg,). Consider

8This also holds folSHOZ QO KBs without interaction between number restrictions, iseeroles, and nominals, in particular
for SHOZ Q KBs that result from internalising an ABox, as described éct®n 2.1.

14

M-rule:

then

INFSYS RR 1843-07-07

CincCy e E(’U),
v is not indirectlyn-blocked and{Cy, Co} & L(v),
L(v) == L(v) U{Cq,Ca}.

Ll-rule:

if

then

ChucCsy e E(v),
v is not indirectlyn-blocked and{C, Co} N L(v) = 0,
L(v) := L(v) U {E} for someE € {Cy, Cs}.

J-rule:

if

then

dR.C € L(v), v is notn-blocked and

v has non-safeR-neighbourw with C' € L(w),
create new node with £(v — w) := {R} and
L(w) :={C} Utcon(K).

V-rule:

then

VR.C' € L(v), v is notindirectlyn-blocked and
v has anR-neighbouno with C' ¢ L(w),
L(w) := L(w) U{C}.

V. -rule:

if

then

VR.C' € L(v), v is notindirectlyn-blocked,

there is some®’ with Trans(R’) andR’ C* R and
there is ank’-neighbourw of v with VR'.C' ¢ L(w),
L(w) = L(w) U{VR'.C}.

choose-
rule:

if

then

<mS.C € L(v), vis not indirectlyn-blocked and there is
anS-neighboun of v with {C, NNF(-=C)} N L(w) = 0,
L(w) := L(w) U{FE} forsomeE € {C, NNF(-C)}.

>-rule:

if

then

>mS.C € L(v), vis notn-blocked and

there are notn n-safeS-neighboursuy, . .., w,, ofv

such thaC € £(w;) andw; % w; forl <i < j <m,
create new nodes, . .., w,, with L(v —w;) := {S},
L(w;) := {C} Utcon(K) andw; # w; forl <i < j<m.

<-rule:

<mS.C € L(v), vis notindirectlyn-blocked,

[{w | w is anS-neighbour ofv andC' € L(w)}| > m and
there areS-neighboursy, w’ of v with notw % w’,
andC € L(w) N L(w'),

Q) if w € in(G), thenmerge(w’, w); else

(i) if w" € in(G) orw’ is an ancestor ab, merge(w, w');
else (i) merge(w’, w).

o-rule:

there arev, v’ with notv % v’
and{o} € L(v) N L(v") for someo € in(G),
merge(v,v’).

o?-rule:

then

<mS.C € L(v),vein(G),v €vn(G),C e L),

v’ is anS-neighbour ofv, v is a successor af , and there is
nom’ with 1 < m’ < m suchthat:i) < m’S.C € L(v);

(i) v hasm’ S-neighboursuy, . . ., wy, € in(G)

with C' € L(w;) andw; % w; forall1 < j <i<m/,
guessn’ < m, setL(v) := L(v) U{<m' S.C},
createm’ new nodesu, . .., wy, With L(v —w;) :=
L(w;) :={C,{0;}} Utcon(K) for someo; € I\ in(G
andw; % w; foralll <j <i<m/.

{S},
);

Table 1: Expansion Rules

INFSYS RR 1843-07-07 15

also the completion graphg; in Figure 2 andg, in Figure 3 (where} and £}, are as in Example 3.3). Both
can be obtained frongx, by means of the expansion rules. They are both clash-frepleton graphs,
and they arel-complete an@-complete respectively, $A € ccf1(Gg,) andG, € ccfo(Gg,). n

3.2 Models of a Completion Graph

Semantically, by viewing all the nodes of a completion graghindividuals, we can interpret a comple-
tion graph in a very similar way as we interpret a knowledgsebalntuitively, every individual ink is
represented by a node of the completion graph, but the coimplgraph may have additional nodes. An
interpretation of the individuals, concepts, and rolegjiis an interpretation of<, possibly extended to
interpret these additional nodes, and we can see it as sespation of a set of models &f.

Definition 3.12 [Model of a completion graph] Aextended interpretatiodl = (A7, -Z) is an interpretation
as in Definition 2.7 that in addition assigns to each node VN an element? € AZ. The respective
ordinary interpretation given by is denoted byZ\VN. LetG € Gg. ThenZ is amodelof G w.r.t. K,
writtenZ =g G, if:

1. 7\VN = K, and

2. forallv,w € nodes(G), {C € L(v)} C{C |v? € CF},{Re L(v—w)}C{R | (vt w?) e R},
andv % w € G impliesv? # w?.

We emphasize that, in order to be a model of a completion gi@ph, an extended interpretation must
include a model of< (item 1).

We say that two extended interpretatichend 7 areequal modulo a seV C VN U, if AT = A7
and for everyv,w € N, vF =v7, {C | vF € C?} = {C | v/ € C7}, and{R | (v*,w?) € RT} =
{R | (w7, w7) € R7}. Furthermore, we call an extended interpretatipra K -extensionof an ordinary
interpretatiorZ, if 7 equals some7’ moduloIx such thatZ = J7/\VN.

The initial completion graplix is just an alternative representation of the knowledge ,basd it
has exactly the same models. The following lemma is immediaim the definition of the semantics of
knowledge bases and Gix.

Lemma 3.13 For every extended interpretatioh 7 =x G iff 7\VN |= K.

When we expand the graph, we make choices and obtain newsgthahrepresent a subset of the
models of the knowledge bagé. The union of all the models of the graphscif,,(Gx), when restricted
to the language oK', coincides with all the models df, independently of the value of Therefore, if we
want to check all models &', we must check all the models of all the graphsdfi, (G k) for somen.

Proposition 3.14 Letn > 0. For every interpretatiorf such thatZ = K, there is som¢g € ccf,(Gx) and
someK -extension7 of Z such that7 =x G.

Proof. Consider an interpretatiah such thaZ = K. Intuitively, everyK-extension7 of Z is a model
of the initial G, andZ can be used to guide the non-deterministic choices wheryiagpthe expansion
rules, in such a way that clashes are avoided until a comglejgh is reached. This is the same intuition

16 INFSYS RR 1843-07-07

underlying the proof of completeness given in [82formally, letG* denote the set of completion graphs
obtained fromGx by k applications of the expansion rules, afdG*) the set of these graphs that are
clash-free. We prove the following claim by induction kn> 0:

Claim 1. For everyk > 0, there is soméy -extension7 of Z and some5 € cf(G*) such that7 =x G.

If & =0, thencf(G*) = {Gx} and the claim holds by Lemma 3.13. For the inductive step, seetive
following fact:

Claim 2. LetG € Gk, let J =k G, and letr be any rule in Table 1 that is applicabledo Then, there
exist a completion grap@’ obtainable fromg by applyingr and an extended interpretatigh equal to.7
modulonodes(G) such that7’ =x G'.

The (straightforward) proof of Claim 2 is given in the App@adConsider nowg € cf(GF). If J =k G,
then by Claim 2 there exist song€ equal to7 modulonodes(G) and som&’ € G**+! suchthat7’ = G'.
As J is aK-extension off andIx C nodes(G), also 7’ is aK-extension off w.r.t. K. SinceG’ has some
model w.r.t.K, G’ € cf(G¥*!) and Claim 1 holds. 0

3.3 Answering Positive Queries

Recall that for a knowledge bagé and a query), K = @ holds iff Z = @ for every modelZ of K. We
define an analogous notion of query entailment in a complgfiraphG: G =k Q iff 7\VN E Q for every
modelZ of G w.r.t. K. We are interested in checking whetti€ri= @, which means that entailment ¢f
has to be verified in every model &f. To this end, we may choose an arbitranand check entailment of
Q in each graplyy € ccf,,(Gg). This is sound since all the models &f are represented by the graphs in
ccfn(Gr).

Proposition 3.15 Letn > 0. ThenK = Q iff G =k Q for everyG € ccf,,(Gk).

Proof. For the only if direction, assumg = @. Considerg € Gx and someZ such thatZ =x G.
Since 7\VN = K by definition, K = Q implies thatZ\VN = Q. Hence,G =x Q. The if direction
is shown by contraposition. K ¥ @, then there exists some modglof K such thatZ ¥ Q. By
Proposition 3.14, there is sonié-extension7 of Z and some&j € ccf,,(Gx) such that7 =x G. Note that
7 ¥ QimpliesJ ¥ @, sinceJ andZ can only differ in the interpretation of the nodesWN, which is
irrelevant for@). Thus,G ¥k Q. O

In order to decide query entailment, we can choose an awpitra> 0 and check all the models of all
the completion graphs iocf,,(G). This is still not enough to yield a decision procedure: @ligh the
setccf, (Gg) is finite, we do not have an algorithm for deciding entailmehtjuery @ in all (possibly
infinitely many) models of a completion graph. In the restto$ tsection, we show that if a suitableis
chosen, entailment in all the modelsigfcan be decided effectively by finding a mapping of the quety in
eachg € ccf,(Gk).

Definition 3.16 [Query mapping] Let) = 3Z.¢(Z) be a PQ and le§ be a completion graph. Let :
VI(Q) — nodes(G) be a total function such thgt:} € L(u(a)) for each individuak in VI(Q). We write
C(z) LgifC e L(u(x)), andS(z,2) Lgif w(2) is anS-neighbour ofu(z). Let~ be the Boolean

9The details of the proof are quite different, however, sifngeauthors of [32] use tableaux, while we use completiophgas
model representations.

INFSYS RR 1843-07-07 17

expression obtained from(Z) by replacing each atom in ¢ with T, if <, G, and with L otherwise. We

say thaty is amapping forQ into G, denoted? Lg , if v evaluates tar. () can be mapped intg, denoted
Q — g, if there is a mapping: for Q) into G.

Example 3.17 We have thaf); <> 7} andQ; &.7—“2, witnessed by (z) = pf(x) = a, p1(y) = pi(y) =
vy and u1(z) = pj(z) = ve. Note that there is no mapping 6. into F, or F; satisfying the above
conditions. The mappings;(z) = ph(z) = a, pa(y) = wh(y) = v and us(o) = ph(o) = o show that

Q3&g1 andQ?fﬂ’gz- n

Indeed, for completion graph® for K, syntactic mappabilityg — @ implies semantic consequence

g Ex Q.
Lemma 3.18 If Q@ — G, theng Ex Q.

Proof. Since@ — G, there is a mapping : VI(Q) — nodes(G) satisfying Definition 3.16. LeT be
a model ofG w.r.t. K. Thenv? € CTif C € L(v); and ifw is an R-neighbour ofv, then(w?, v*) € RZ.
We can define a match fa@ and @ by settingr(z) = u(x)* for everyz € VI(Q). It satisfiesr(a) = a

for each individuale andZ, 7 = « for each atomx such thatn <> G. Hence,T Ex @, which implies
0 FK Q. O

Since every model of the KB is represented by some completion graph, we already knointha
is entailed byK if there is a mapping fof) in eachG. We prove that the converse also holds. Now the
blocking conditions come into play and the mapping will obty/feasible ifr is sufficiently large. We show
that providedj has been expanded far enough, a suitable mappintp G can be constructed from a single
modelZg of K, which we call thecanonical model induced ky. In fact, entailment in this model implies
entailment in the completion graph fall queries) of bounded size. Indeed, we will see that the mapping
u can be constructed from any match oy and(@.

3.3.1 Tableaux and Canonical Models

To build the canonical model induced By € ccf,,(Gx) (with » > 1), we unravel§ into a tableauly.
This tableaus induces a model far.1° Each path to a node ig is a node oflg, and blocked nodes act
like ‘loops’. Thus, ifG has blocked nodes, its tableau is an infinite structure. Defia model fromi is
straightforward. The definition of tableau is based on theeiarf32] (only (P13) is new).

Definition 3.19 [Tableau] A tripleT’ = (S, £, £) is a tableau for a KBY = (A, R, 7T), if S is a non-empty
set;L : S — 2¢os(K4) maps each element fto a set of concepts; ar: Ry, — 25%8 maps each role to
a set of pairs of elements B Furthermore, for alk,t € S; C,C1,Cs € clos(K 4); andR, R, S € Rk,
T satisfies:

(P1) ifC € L(s), then—-C ¢ L(s);

(P2) ifCLNCy € L(s), thenCy € L(s) andCy € L(s);

(P3) ifCL L Cy € L(s), thenCy € L(s) or Cy € L(s);

(P4) ifYR.C € L(s) and(s,t) € E(R), thenC € L(t);

(P5) ifJR.C € L(s), then(s,t) € E(R) andC € L(t) for somet € S;

10Note that we only use tableaux to define the canonical modet@make some technical details easier.

18 INFSYS RR 1843-07-07

(P6) IfYR.C € L(s) and(s,t) € E(R’) for someR’ C* R with Trans(R’) = true, thenVR.C € L(t);
(P7) if<nS.C e L(s), then|{t € S| (s,t) € £(S) andC € L(t)}| < n;
(P8) if>nS.C € L(s),then|{t € S| (s,t) € £(S) andC € L(t)}| > n;
(P9) if(s,t) € E(R) and< n S.C € L(s), then{C, NNF(~C)} N L(t) # 0;
(P10) if(s,t) € E(R)andR C* R’ then(s,t) € E(R’);
(P11) (s,t) € E(R) iff (t,s) € E(Inv(R));
(P12) if{o} € L(s) N L(s") for someo € I, thens = §;
(P13) ifC € tcon(K) thenC € L(s).

We can easily obtain a canonical model of a KBfrom every tableau for it.

Definition 3.20 [Canonical model] Letl’ = (S, £,£) be a tableau fofl’. The canonical model off’,
Ir = (A7, .Ir), is defined as follows:

o ATr =8,
AT = {s| A € L(s)} for all concept named in clos(K 4),
a’m = s € S,{a} € L(s), for all individual names: in I ¢, and

RIr = £(R)® for all role namesk in Ry ,, where€(R)? is theclosure of the extensioof R under
R, defined as follows:

[(ER)T if Trans(R),
E(R)* —{ £(R) Usub(E(R)®) otherwise

wheresub(E(R)?) = Ui, rrer E(R)® and(E(R))T is the transitive closure &(R).
Please note that for each simple réleS™™ = £(5)® = Ug.gE(S).
Lemma 3.21 Let7 be a tableau fork'. ThenZy = K.

Proof. The claim follows from the proof of Lemma 4 in [32]. The onlyffdrence is that in [32] it is
assumed thal = (). But due to (P13), it can be easily verified tfat satisfiesT . O

Each completion grapf € ccf,(Gg) with n > 1 induces a tableaily that is the unravelling of,
and which has as domain the set of pathgirEach of these paths actually comprises a sequence of pairs
of nodes_;, in order to witness the loops introduced by blocked vaeisbiThe paths and the tableau are
constructed as in [32].

Definition 3.22 [Induced tableau] Le§ € ccf,,(Gx), n > 1. In a sequence of pairs of nodes of the form
p= [g—g, ..., &=], we definetail(p) = v,,, andtail'(p) =vy,. By [p | -**] we denote[z—g,...,%, omtl],

m m—+1 C m m—+1
For a sequence of pairs of nodeand a variable € vn(G), if v is notn-blocked and is an R-successor
of tail(p), then[p | 7] is anR-stepof p; if v is directly n-blocked byw andwv is an R-successor ofail(p),

then[p |] is anR-stepof p. p. The set ofpaths inG, denotedbaths(G), is inductively defined as follows:

e if a € in(G), then[?] € paths(G).
e if p € paths(G), ¢ is anR-step ofp, R € R, theng € paths(G).

The tableay = (S, £, £) induced byg is defined as follows:

INFSYS RR 1843-07-07 19

S =paths(G),
L(p) = L(tail(p)),
E(R) ={(p,q) € S?| ¢is anR-step ofp, orp is anlnv(R)-step ofg,

or tail(q) € in(G) is an R-successor ofail(p),
ortail(p) € in(G) is anlnv(R)-successor ofail(q)}.

Note that the definition oR-step requiresv to be a variable node. Every pathpaths(G) starts with a node
< for some individuak, and a node of this form only occurs at the first position inta p@he last two cases
in the definition ofE(R) are necessary in order to consider the arcs leading to thdiVinodes, which are
not unravelled.

We useZg (instead ofZr,) to denote the canonical model of the tabl@guinduced byg.

Example 3.23 By unravellingF;, we obtain a modelr, whose domain is the infinite set of paths fram
to eachw;. When a node is not blocked, like, the pair% is added to the path. Every time a path reaches
v7, Which is1-blocked, we adqg to the path and ‘loop’ back to the successorgf We thus obtain the
following infinite set of paths:

= ﬂ] —[E JCARNCEY 'U_G]
Po [a’ Pe @’ vy vy vgd?

= [a ﬂ] —[E Y1 Vs Us ﬂ]
pl_[aavlv b7 = a’ vy vs vs) vl

= [a 2] —[E Y1 Vs Us ﬂ]
p2_[a’v27 P8 = @’ vy vg? vs? vgl?

—[ﬂ v B] —[E b1 V3 U5 U3 ﬂ]
p3 = a’ vy vyl P9 = @’ vy v3? vs? vr? vg

3 37 U 5

—[a ﬂ] —[E Y1 Vs Us Us ﬂ]
P4 [aavla7j47 P1o @’ v vs v vr? vgl?

—[ﬂ CARNCE} 'U_'?] —[E Y1 Y3 Us Us Us 'U_g]
ps = @’ vy’ vy vs b11 @’ v vg) vs? vrd v vl

The extension of each conceptis determined by the set of all such thatC occurs in the label of the

last node inp;. The extension of each rolg is given by the pairgp;, p;) such thatp; is an R-step of
. . T

pi. Thereforep, py, ps, ...are inA%71; (po, p1), (p1,p3), (p3.ps), (ps,p7), ...are inP; "t and (po, pa),

. Tr
(p1,p4), (P3:P6), (D5, Ps), ... areinP,"".
Analogously, by unravelling,, we obtain the modélg, whose domain is the infinite set of paths frorto

eachw;, since there are no paths frooto any other node, i.e., the domain is:

= [2 —E'U_I'U_ZU_SU_4]
pO_[o]7 p5_[a7v]avzav311}4a
—[a _gv_lv_zv_sv_4v_5]
pl_[a]7 Pe [a7’01”02’7jg’7j47’05
—[Qv_l] —[Qv_lviﬂﬂviv_-?]
P2 FRRTRE pr @’ v va) U3 va? vs? vgd?
—[E'U_lv_2] —[EU_IU_ZU_SU_AIU_SU_SU_AL]
p3 = FERIRETIL P8 = @’ v va? vz’ i U5 UG va
—[Q'U_lv_2v_3] _[gv_lv_gv_gv_4v_5v_3v_4v_5]
Pa = @’ vy vy vzl Po = @’ v va? v3’ vy vs’ Ve’ vad Us
: : 5 5

The extension of the concepts 4rgZ% = {po}, {a}2% ={p,} and AZ% = {p; | i > 1}, and the extensions
of the roles areP, > ={(p;, pis1) | i > 1} and P, % = {{ps, po) | i > 1}. .

Lemma 3.24 Let§ € ccf,,(Gg) withn > 1. ThenZg = K.

Proof. First, it is proved as in [32] that evey € ccf,,(Gx) for n > 1 induces a tableaily for K.
For the proof of (P7), note that sinee> 1, pairwise blocking is subsumed. (P13) also holds since, for
each node, L(v) is initialized withtcon(K’), and this label is never removed from the node. Sifigés a
tableau fork, it has a canonical modé&l;, which by Lemma 3.21 is a model &f. O

20 INFSYS RR 1843-07-07

Now we prove that, for a sufficiently large, if @ is satisfied in the canonical mod&} induced by an
n-complete and clash-free graph then we can mag) into G. If Zg = @, then there is a match for Zg
and(@. We show how to obtain a mappipgwitnessing@ — G from .

In this proof, the blocking parameteris crucial. As we mentioned, it depends @a More specifically,
it depends on the matehand what we call thenaximalr-distance Roughly, we consider the image of the
query@ underm, restricted to the atoms that evaluate to truel i the length of the longest path between
two (variable) nodes in this graph and the completion graghtileast)/-complete, then it is large enough

to construct a mapping@ £ g from 7, which contains an isomorpic copy of the query image.

Definition 3.25 [Match graph, maximat-distance] LeG € ccf,,(Gg), wheren > 0, such thatZg = Q,
and letr be a match forp andZg. Let Sat, denote the set of atomsin () such thatZg, 7 |= . Then, the
match graphG.; is the following (undirected) graph:
(i) its nodes are alt(x) such thatr € VI(Q) occurs in somer € Sat,; furthermore, ifr(z) = [%] for some
a € in(G), thenm(z) belongs to the sén(G), otherwise to the sein(G).
(i) There is an edge betweertiz) and~(y) iff R(z,y) in Sat, for some roleR.

For everyz,y € VI(Q), d.(z,y) is the length of the shortest path betwegn) and~(y) in G with
nodes fromvn(G) only, and—1 if no such path exists. Finally, treaximalr-distance denoted?**, is
the maximald, (x, y) for all =, y in VI(Q).

Note that the subgraph 6f; induced bwn(G) is acyclic (in fact, it is forest shaped), and thus shortest
paths in it are unique.

Example 3.26 Consider a matchr; for @); and Zz, given as follows:7i(z) = p7, m1(y) = p9, and
m1(z) = p1o. Sat,, contains all atoms ir); and the match grapli;, has the nodegr, pg andp;, where
in(Gr,) = 0 andvn(Gr,) = {p7,p9, P10}, and the arcspr, pg) and (p7, p19). Moreover,d,, (z,y) = 1,
dry(z,2) = 1 anddy, (y,2) = 2, sod;** = 2. Consider also the match; for Q3 and Zg,, where
ma(x) = pr7, m2(y) = ps and ma(0) = po. Satr, = {Pi(z,y), P2(y,0)} and the match grapldé7., has
nodespy, pr andps, wherein(Gr,) = {po} andvn(Gr,) = {p7,ps}, and arcs(pz, ps) and (ps, po). Here,
dry(z,y) = A2 = 1. .

In the following, letnr(Q)) denote the number of role atoms@h Then,d™** is bounded byr(Q).1t
Since only simple roles occur i, arcs inG . correspond to arcs ig; thus in expanding the initial com-
pletion graphGy, it is sufficient to usei-blocking as a termination condition, for some arbitraglyosen
n > nr(Q). Formally, we show:

Proposition 3.27 LetG € ccf,,(Gx) withn > nr(Q), and letZg be the canonical model &. If Zg = Q
then@ — G.

Proof. AsZg = Q, there is a match for Zg and@. To define a mapping : VI(Q) — nodes(G), we
consider the match graph,. Recall that, by construction, each nodedn is from paths(G). Let G/, be
the subgraph of7,. induced byn(G;), and letGy, ..., G,, be the connected components(éf.

Informally, the argument is as follows; is n-complete, and by unravelling it we obtain the tabl&au
that inducesZg. Suppose there is a nodéin G directly n-blocked by some node let S be the subgraph

HFor simplicity, we are using the number of role atoms in thergwas a bound. A tighter bound would be the number of role
atoms in the largest disjunct when the query is transformtxdisjunctive normal form.

INFSYS RR 1843-07-07 21

of G that includes every node below except the descendants«df ThenTg has infinitely many adjacent,
non-overlapping copies§;, Sy, ... of the sectorS. The matchr maps eachx € VI(Q) to some element
m(x) of Ty, which we now map to a node(x) in G. There are two cases.
(1) If 7(z) € in(Gr), we just sefu(x) = a wherer(z) = [Z].
(2) If 7(x) € vn(Gr), consider the (unique); containingw(z). The bounded size aF; ensures that it
contains nodes from at most two copies of the sestam 7;. Consider two subcases. (2.&) contains
nodes from at most one copy 68f i.e.,G; is before the leaves of the first copy or fully within some.S}.
Then we can map in G to a node inS or above. (2.2)7; includes nodes of two adjacent sectdfsand
Ski1, 1.e.,m maps some variables to nodesSp, which correspond to paths éhending before or at’, and
others to nodes %, 1, which correspond to paths ending at descendants(after passing through’).
We then ensure that maps the former to or to nodes above, and the latter to nodes .

Technically, letblockedLeaves(G;) be the set of all nodes of G; such thatail(p) # tail’(p), and let
afterblocked(G;) be the set of all nodes @f; of the form[z—g, ey Y It for some[:j—g, R =

blockedLeaves(G;) andj > 0. Intuitively, blockedLeaves(G;) contains the+path8(w) that end at some
directly n-blocked node, i.e., at the end of a sec$ipr andafterblocked (G,) the pathsr(z) that go beyond
these nodes, i.e., into the next seciRr, ;.

If afterblocked(G;) = (), then the nodes dF; are in at most one copy df, and we are in case 2.1. For
each variabler with 7(z) in G;, we defineu(x) = tail’(w(x)), which is a node in or abov§. Otherwise,
we are in case 2.2 and consider two subcases: (2.274(xif € afterblocked(G;), then we also define
w(z) = tail'(w(x)), which is a node inS; (2.2.2) if r(xz) ¢ afterblocked(G;), then we defingu(z) =
Y(tail'(w(x))), wherey denotes a bijection via whictail’(w(z)) is graph-blocked. Such exists: ag7;
has at mostir(Q)) < n edgestail’(w(x)) is a node in some blocked-graph and it is graph-blocked by the
nodey (tail'(w(x))) (a node above). Summing up, we define

andr(x) ¢ afterblocked(G;),
tail' (7 (x)) otherwise.

{ P(tail'(w(x))) if 7(z) is in someG; with afterblocked(G;) # ()
p(x) =

Now we prove the following:
a) For each individuad in VI(Q), w(a) = a”¢ implies {a} € L(u(a)).
b) For eachC(z) in Sat,, C € L(u(z)).

c) For eachR(z,y) in Sat,, u(y) is anR-neighbour ofu(x).

Items a) — c) ensure thdy, 7 = « impliesa N g for each atomu in Q. Sincer is a match forQ and
Zg, this is sufficient to prové) — gG.

The proof of items a) and b) is straightforward by the cortitom of Zg and . Observe that for
each individuala in VI(Q), 7(a) = a’¢, which implies{a} € L(r(a)). SinceL(n(a)) = L(u(a)),
we get{a} € L(u(a)). For everyz in VI(Q), Zg = C(w(x)) implies thatC € L(x(x)). Again, as
L(n(x)) = L(p(x)), we haveC' € L((u(x))).

For c), by construction dfg, we have thafg = R(w(x), 7(y)) implies (x(x), 7(y)) € E(R')®. Since
Ris asimplerole and(R)® = Up g E(R'), (n(x),n(y)) € E(R') for someR’ C* R follows. We then
prove:

Claim 3. If (7(z),7(y)) € E(R’), thenu(y) is an R'-neighbour ofu(z).

22 INFSYS RR 1843-07-07

As discussed above, is defined such that each variable preserves all its neighhmder the match.
A formal proof of the claim is given in the Appendix. O

In the proof of Proposition 3.27, it was crucial that a matattiie query on a canonical model only needs
fragments of bounded size from the tableau. If this does olat, las in the case of queries where non-simple
roles occur, it is not clear whether this kind of technique ba used for deciding query entailment.

Example 3.28 For the matchr; in Example 3.26, the single graghi; for the match graplG,, as in the
proof of Proposition 3.27 i&/;, ; recall thatin(G,) = (), andG, is connected. We havéockedLeaves(G,) =
{p7} andafterblocked(G,) = {p9,p10}. We obtain the mapping; fromm; by: u;(z) = ¢(tail'(p7)) =
vs; u(y) = tail'(pg) = vs; ui(z) = tail'(p1g)) = ve. It satisfies the conditions of Definition 3.16, so
Q1<% A

Now reconsiderrs and G, in Example 3.26. Removing the node§G.,) = {po} from G.,, the
resulting graphG?, is connected and hence the single grapffor G-, as in the proof of Proposition 3.27.
We haveafterblocked(G1) = {ps}. We obtain fromry the mappingu by: pae(z) = (tail'(p7)) = vs,

w2(y) = tail'(pg) = vq and ug(0) = tail(py) = o. It also satisfies Definition 3.16, €93 L2.6,. .

Summing up, to decide whethé&f = @, it is sufficient to choose an arbitrary > nr(Q) and then to
check the existence of a mappiag— G for eachg € ccf,,(G).

Theorem 3.29 Let) be a positive query, lek be aSHOZQ KB, and letn. > nr(Q). ThenK [Q iff
Q — G for everyg € ccf,(Gg).

Proof. LetG € ccf,(Gk). By Lemma 3.24Z; = K, and sincelX = @, it follows Zg = Q. Since
n > nr(Q), by Proposition 3.27¢) — G. Conversely, fron) — G and Lemma 3.18, we have that= Q
for everyG € ccf,, (G). By Proposition 3.15, this meaids = Q. O

Example 3.30 K = 1, SoF; E @1 must hold. This is witnessed by the mappingn Example 3.28.
Note that there are longer queries, lik¢ = {Pi(a,x0), Pi(zo,21), Pi(x1,22), Pi(x2,23), Pi(x3,74)}
such thatK' = @' holds, but the entailmerif; = @' cannot be verified by mappin@' into 7; sinceF; is
1-complete and riQ)’) > 1. .

4 Termination and Complexity

The method from above yields a sound algorithm for answe?iQg onSHOZ Q KBs. As we show in this
section, it always terminates f6tHZ Q, SHO Q andSHOZ KBs. Based on this, we prove our main results
on the data complexity of query answering in these logics.

We point out that query answering is intractable with resp@combined complexity already for rather
simple queries and on very small completion graphs. In tai,holds even for a conjunctive query and a
fixed completion graph which consists of few nodes. This ashin the proof of the next proposition.

Proposition 4.1 Let G be a (fixed) completion graph i, and let@ be a given CQ. Deciding whether
@) — G is NP-hard.

INFSYS RR 1843-07-07 23

Proof. Finding a mappingy — G is at least as hard as evaluating a CQ over a database (given by
the ABox), which is NP-hard (w.r.t. query complexity) [18]o verify this, consider the completion graph
G0 associated to the ABokE(c,c) | ¢, € {red, green, blue},c # ¢'}. Every directed grapl can be
represented as a CQ, where each node i@ is associated with a distinct variable and for each(arg)
in G there is the literaF'(z, y) in Q. Then@ can be mapped int@.,; iff G is 3-colourable. O

Note that when() is fixed, the test) <— G can be done in time polynomial in the size @by simple
methods, as only a polynomial number of candidate mappiagdsito be checked. This is relevant to prove
a tight upper bound in data complexity.

4.1 Bounding the size of completion forests and graphs

In what follows, we assume that is a SHZQ, SHOQ or SHOZI knowledge base, such that :=
|clos(K)| > 1 andr := |Rg| > 1. Letm denote the maximum number occurring in any concept
of the form<n R.Cor>nR.C in K, and 1.

We first derive a bound on the possible size of a blockabdgaph, and then a bound on the size of the
completion graphs incf,, (G).

Claim4.2 Let G € Gy and letn > 0. ThenG has at mosff}, = 2r(crm)"*!

blockablen-graphs, for some polynomialc, r,m) in c, r, andm.

many non-isomorphic

Proof. First, we give a bound on the number of non-isomorphic nodkaaa labels that may occur in
a blockablen-graph inG. The label of every node in a completion forestGr is a set of concepts, each
of which is either fromclos(K 4) or of the form{o} with o € I\ I ,. Since the latter concepts can only
be introduced by the?-rule, which is never applied for&HZ Q, SHOQ, or SHOZ KB, every nodev of
G fulfils L(v) C clos(K 4). By definition, every node in a blockablen-graph is a successor of a variable
node, and either (%) is a variable node; or (2) is an individual node that has a variable predecegsdn
case (1) was created by a generating rule and its label was initéiggh £(v) C clos(K). Moreover,
any concept added to its label will be frotios(K'), unless it is merged into an existing individual whose
label already contains sonté € clos(K 4) \ clos(K); the latter would imply that is not a variable node.
So we can conclude that everyof vn(G) fulfils £L(v) C clos(K). In case (2), if an individual node is
a successor of a variable node then{a} € L(v) for some{a} € clos(K). This is because arcs from
variable to individual nodes can only be created by mergimriodes that share a nominal. The expansion
rules can only cause this for nominalscins(K'), as they only add concepts frattos(K') to the node labels
(except thev?-rule, which is never applied).

Consider two blockable:-graphsG; andGs. Remove from them all arcs connecting two individual
nodes, and restrict the labels of the individual nodedds(K'). Suppose that the resulting graph$ and
G, are isomorphic. The label of each individual nodeGf contains some nomingla} from clos(K),
which must also be in the label of the isomorphic nodéin As this{a} can be in the label of only one
node inG (by the assumption on the application of theule), both nodes are the same node fr@nir his
ensures that’| and G/, are isomorphic iffG; andG, are isomorphic. In generaly; andG» can only be
isomorphic if they contain exactly the same set of indivich@des. Hence, when calculating the number of
non-isomorphic blockable-graphs, we can omit all arcs between individual nodes, astlict their labels
to the concepts irlos(K) (note that they will still be individual nodes after this tréstion). Thus, we
consider only node labels that are subsetd@f(K'), and there ar@® possible such labels. Similarly, each
arc is labelled with a subset ,, but roles inRx , \ Rx occur only in arcs connecting two individual
nodes, so we restrict our attention2odifferent arc labels.

24 INFSYS RR 1843-07-07

Now we derive a bound on the out-degree of the variable nadés Every successor of such a node is
generated by the application of a generating rule. Only twof@asible fork": the 3-rule and the>-rule.
Only concepts of the fordR.S or > n R.C' trigger the application of these rules, and there are at most
such concepts. Each time one such rule is applied, it gersesatmosin R-successors for each role.
Note that if a node is identified with another one by a shrinking rule, then tHe application which led
to the generation o will never be repeated [33], so a generating rule can beeghpdi each node at most
c times. This gives a bound @fm R-successors for each rol, and a total ob = r-c-m > 1 for each
variable node of.

Let ¢,, denote the number of non-isomorphic blockahlgraphs that may occur iG. There are2°
different roots, each of which can have uphtsuccessors. Each successor can be reached by any2sf the
possible arcs and can be the root of any oftthe; many different blockablér — 1)-graphs. Hence, there
are at most2--t,,_,)" (ordered) combinations for each root. Thus we have

ty, = 2C’(2r'tn—l)b = 2c+r.b'(tn—l)b

To simplify the notation, let = ¢ + r-b. Then

n—1

= 271 1)0 = 27RO)0 g DY (1)

Sincety = 2¢, we obtain forb > 2 that

tn < (2749)"" = (2577020 < g(Febir b gplerm)m

1)
wherep(c,r,m) = 2-c-b+r-b> = 2-c-r-m+c?-r*>m?. As (1) also holds fob = 1, we obtain the claimed
boundT'(n) = 2v(erm)™ O

In the rest of this section, we ugéc, r, m) to denote the polynomial given above.

Claim 4.3 LetT be atree of variable nodes rooted at some individual nodedrccf,, (G), n > 0. Then
Cc,r,m ntl
the number of nodes ifi is bounded byc-m-r)+m2""™

Proof. The claim is a consequence of the following properties:

i) The out-degree of" is bounded byc-m-r. As shown above, each rolR has at most-m variable
R-successors, and there arsles.

ii) The depth ofT" is bounded byl = (7,, + 1)-n. This is because there are at m@stnon-isomorphic
blockablen-graphs. If there was a path of length greater tfiBn+ 1)-n to a nodev in T, thenv would
occur after a sequence @f, + 1 non overlapping blockable-graphs, and one of them would have been
blocked s would not have been generated.

iii) The number of variables ifi” is bounded byc-m-r)4*!. O

There can be one such tree rooted at each individual nodesjraeglithere is at most one individual node
for each individual inlx, we easily get a bound on the size of a completion graph.

Lemma 4.4 Let K be aSHZQ, SHOQ, or SHOZ KB and letG € ccf,,(Gx), n > 0. Then the number
of nodes ing is bounded by

|IK|'(C‘m'r)1+n'27)(cﬁr,m)n+1 ‘

INFSYS RR 1843-07-07 25

Unfortunately, Lemma 4.4 does not applyS§&{OZ Q KBs. Indeed, our bound on the depth of comple-
tion graphs, relies on a fixed number of individual nodes. FH0OZ Q KBs, the application of the?-rule
may introduce new individual nodes that lead to nesklockable graphs non-isomorphic to previously
present graphs. This potentially leads to non-terminatiote that in [32], the maximal depth of a variable
node in the completion graphs does not depend on the numiatiaflual nodes that can be generated. In
turn, it is used to bound the number of nominals introducedgglying theo?-rule. The technique in [32]
seems not to be applicable in our case, and it is not clear émiriation could be achieved in general.

4.2 Complexity of the Query Entailment Algorithm

We now determine the complexity of decididg = @ for a PQQ. As for data complexity, the TBox,
the RBox, and the query are considered fixed, while the ABos given as an input. The complexity
bounds are given w.r.t. the size of thds In the following, we denote by K, Q|| the total size of the string
representingk’ and@. Note thatm is linear in[| K, Q|| for unary number coding in number restrictions,
and single exponential for binary number coding. In any céis@ and all of X' exceptA is fixed,m is a
constant. Furthermore,andr are linear in| K, Q||, but also constant ip4|. Finally, [Ix| is linear in both.
From this, and by Lemma 4.4, we know that the maximum numbaodés in a completion graghe Gx

is triple exponential in| K, Q|| if n is polynomial in|| K, Q||. If n is a constant, then the size @fis linear

in |.A]. We easily obtain:

Corollary 4.5 LetG € ccf,(Gg), n > 0. Then the number of nodes Ghis (i) at most triple exponential
in || K, Q||, if nis polynomial in||K, Q||, and (ii) polynomial in|.A|, if n is a constant and) and all of K
exceptA is fixed.

Moreover, we also obtain a bound on the number of rule agmitsito derive any clash-freecomplete
completion graph.

Proposition 4.6 The expansion dfx into someg € ccf,,(Gx), n > 0, terminates in time triple exponen-
tial in || K, Q|| if n is polynomial in|| K, Q||. If n is a constant and) and all of K exceptA is fixed, then it
terminates in time polynomial ip4|.

Proof. The claim follows from the bound on the size @fgiven in Corollary 4.5, together with the
following observations:

e Since the worst-case analysis of the sizeGoAssumes that all possible successors are generated
for every node, the shrinking of the completion graph by nmgrgnodes can only lead to a smaller
completion graph, and there is no additional effort in thgeereration of successors w.r.t. the worst-
case estimate.

e Shrinking rules do not cause repeated rule applicationsydrging some node into another node that
would later have to be regenerated. Indeed, a con€eptL(v) can fire a generating rutefor nodev
at most once. Even if a shrinking rule is applied and a successf v is merged into a node’, then
w’ inherits the labels and inequalitiesof as well as all its neighbours that are not variable succgsso
(which are removed bprune). This ensures that the conditions that triggered the egipdin ofr for
v are not met again, and thus the rule application that ledetgémeration ofv will not be repeated?

12According to [32], the rule application will not be repeafedw or any of the nodes into which it is merged later (cahets).
However, after merging into w’, some successors that had already been generatedrfmy have to be generated fof. The
claim holds forw, however, which is sufficient for our purposes.

26 INFSYS RR 1843-07-07

O

Checking whether) — G can be easily done in time single exponential in the siz€ofFor G <
ccf(Gx) and a queny with n variables, the naive search space magles(G)|” many candidate assign-
ments, and each one can be polynomially checked. This ie texponential in|K, Q|| if |[nodes(G)| is.
On the other handy — G can be tested in time polynomial in the sizefoivhen(is fixed. Therefore, we
obtain the following result.

Theorem 4.7 Given aSHZ Q, SHOQ or SHOZ knowledge basé& and a PQ(Q in which all roles are
simple, deciding whethek = Q is:

1. in co-N3EXPTIME w.r.t. combined complexity, for both unary and binary eniegdf number re-
strictions inK.

2. in co-N2EXPTIME w.r.t. combined complexity for a fixed if number restrictions are encoded in
unary.

3. incoNP w.r.t. data complexity.

Proof. If K % Q, then there is a completion graghe ccf,) (G) such thatl) - G. By Proposi-
tion 4.6, thisG can be obtained non-deterministically in time triple exguatial in || K, Q|. Furthermore,
@ — G can be checked by naive methods in time triple exponentidlAnQ || as well. Therefore, non-
entailment of) is in NSEXPTIME, entailment inco-N3EXPTIME and item 1 holds.

Similarly, sincem does not occur in the uppermost exponent of the bound in Lerhrhaeachg in
ccfrr@) (G) can be obtained in double exponential time when the comdited item 2 hold.

As for item 3, under data complexityr(QQ) is constant ag) and all components ok = (7, R, A)
exceptA are fixed. By Proposition 4.6, evety € ccfn () (G) can be nondeterministically generated in
polynomial time. Since deciding wheth@<— G is polynomial in the size off, K = @ isinCoNP. O

We note that) — G can also be tested in time polynomial in the siz&jolvhen () is fixed, or when
the expansion rules generate a completion graph whosexgpaentially dominates the query size. Other
particular cases can be solved in polynomial time as well. éxample, wherg is tree-shaped (i.e., the
ABox is tree-shaped and there are no arcs from variable twithl nodes), then the complexity of the
mapping corresponds to evaluating a conjunctive query awere-shaped database, which is polynomial in
certain cases [26].

4.3 Data Complexity

The upper bound for data complexity given in Theorem 4.7 isstvoase optimal. In [20];0NP-hardness
was proved for instance checking ovérLE knowledge bases, and in [11] this result has been extended to
even less expressive DLs, likéL. This allows us to state the following main result.

Theorem 4.8 For KBs in any DL extendingd£ and contained inSHZQ, SHOQ, or SHOZ, answering
positive existential queries in which all roles are sim@eoNP-complete w.r.t. data complexity.

This result provides an exact characterisation of the damaptexity of PQs for a wide range of de-
scription logics. An interesting observation is that onae allow for universal quantification, which is
a basic constructor of DLs, then many other constructorsbeaadded without affecting worst-case data

INFSYS RR 1843-07-07 27

complexity. Also, this result provides the first tight upjpeund for data complexity s HOQ andSHOT

and extends two previousoNP-completeness results w.r.t. data complexityfqr answering UCQs over
ALCNR knowledge bases [43]. We extend this result to a query laggyadlowing for arbitrary use of
conjunction and disjunction, as well as to DLs includingerblerarchies and some combinations of inverse
roles and nominals.iij For answering atomic queries #HZQ [40]. This can be immediately extended
to tree-shaped CQs, as they admit a representation as a Remofe.g., by tuple-graphs of [13], or via
rolling up [37]). However, an extension to all PQs withouwtrisitive roles remained open. We point out that
[24] presented an algorithm for answering CQs with travesitoles inSHZ Q KBs that also yields @aoNP
upper bound? The algorithm has been adapted3®({©Q in [25], but no complexity results were given.
An adaptation t&SHOZ is open.

4.4 Combined Complexity

Theorem 4.7 does not provide optimal upper bounds with mdpethe combined complexity of query
answering. The main reason is that the tableaux algorithnj36] and [32], which we extended, are also
not worst-case optimal. They are both nondeterministicdduble exponential, while satisfiability of a
knowledge base is ¥ TIME-complete forSHZQ [56] and NExPTIME-complete forSHOZQ [55]. It

is well known that tableaux algorithms for expressive DL®fdo not yield optimal complexity bounds.
However, they are easy to implement and amenable for ogtiraiss [5]. Moreover, efficient reasoners
implementing these algorithms are available [30, 27].

We want to point out that, in our algorithm, the witness of ackked variable must be its ancestor. This
restriction, however, could be eliminated, and blockinghvany previous occurrence of an isomorphic
tree could be used, without affecting the soundness and letenpss of the algorithm. We use the stricter
conditions for blocking in order to make them closer to thevemtional ones in DL tableaux, where it
is usually required that the blocking and the blocked végiare on the same path. Despite the fact that
this condition actually increases the overall complexityhe algorithm, it is imposed for practical reasons,
since it is considered better for implementation. If thisidition is relaxed, blocking may occur sooner
and the resulting completion graph/forest may be expoalgntgmaller than the one we have described.
This exponential drop applies also to the satisfiabilitygabx algorithms like in [36] and in [32]. With
this relaxed condition, we would obtain the same compleyiyper bounds as those given in [43]. In
fact, the absence of this additional condition of ‘blockimg the same path’ is the actual reason why the
bounds in [43] are exponentially lower than the ones we abthi Our algorithms may be further optimised
following the ideas in [19].

It was recently shown in [45] that answering CQs isx2EIME-hard for all DLs containing4£CZ,
and thus also foSHZQ andSHOZ. As a consequence, the ETIME upper bound given in [16] for
answering PQs i HZ Q is tight, and similarly the ones given in [40, 24] for answeriCQs inSHZ Q,
and the ones given in [13] for containment of CQ@IXR. In the light of these results, and considering the
CcO-N2EXPTIME upper bound discussed above and the intrinsic non-detemmiaof tableaux algorithms,
it seems reasonable to conjecture that a@EME upper bound can be achieved HOQ andSHOZ.

To our knowledge, the question remains open and this workiges the first upper bounds. We point out
that decidability of CQs (with transitive roles) $1HOQ has been shown [25], but we are not aware of
any emerging complexity results. As f6fHOZ, no other decision procedures seem to be available, even
for more restricted classes of queries. In any case, sincar®@ering inSHOZ is already 2KPTIME-
hard, the gap to ouco-N2EXPTIME upper bound is rather small. F&HOQ (in fact, for any logic

13For the specific case of CQ answering &HZ Q, the results generalise those in [48].

28 INFSYS RR 1843-07-07

containing ALC) ExpPSPACE-hardness of PQ answering was shown in [16], thus the gajiliaattlarge.
A quite significant gap remains open for CQs, since only tke EME-hardness that follows from instance
checking is known.

5 Extensions

In this section we will discuss further extensions of ouroalllpm, as well as some of its limits. First, in
Section 5.1, we present a family of hybrid knowledge repregesn languages combining DLs of tisé{
family with DATALOG rules, which are a natural extension of therRIN languages [43]. We also discuss
some other hybrid languages that can be extended on thedbaélsesresults in this work.

In Section 5.2 we present a negative result: if inequalityret are allowed in the queries, query entail-
ment becomes undecidable. This was already proved in [@Bih la slightly different setting (undecidability
of query containment under constraints). The differendeoisever minor, and the proof we provide is a
very simple adaptation of the one given there.

5.1 Hybrid Knowledge Bases

The CarIN family of languages, introduced in [43], combinesTLOG with some DLs of thed £C family,

being ALCNR the most expressive one. The reasoning algorithms givératwtork build on thexistential
entailment algorithnfor ALCNR. Since our algorithm is essentially an extension of it toldggcs of the
S’H family, we can extend the ARIN languages to these DLs and provide reasoning algorithrteédon in
a natural way.

5.1.1 Extending non-recursive @RIN to the SH family

The authors of [43] proved that even rather weak DLs yield adeaidable formalism when combined
with recursive IXTALOG. To gain decidability, three alternatives are proposejithg DL constructors
causing decidability are identified and disallowed in the; KiB only non-recursive rules are allowed; or
(iii) the variable occurrences in the DL atoms appearing in rategestricted, according to the so-called
role safetyconditions. Unfortunately, all three options severelyriesthe expressiveness of the language.
In this section, we consider restrictiom)(i.e., we discuss the combination of t§&{ family of DLs with
non-recursive rules. We briefly discuss the topic of regersiles in Section 5.1.2.

Definition 5.1 [DATALOG rules and ATALOG programs] LetP denote an alphabet of predicate names,
which we callrule predicates Eachp € P has an associated arityy > 0. A DATALOG rule is an
expression of the form

qX):=p1(Y1), .., pa(Yn)
that satisfies the following:

1. ¢ is a predicate name IR.
2. Eachp; is either a concept name @, a role name iR, or a predicate name iR.

3. Eachy; is a tuple of variables iVar or individuals inI of the same arity ag;. By definition, the
arity of p; is Lif p; € C, and 2 ifp; € R.

4. X CY 1 U...UY,.

INFSYS RR 1843-07-07 29

As usualq(X) is called theheadof the rule, angy; (Y1), ..., pn(Y,) is called thebody: If n = 0 for some
rule r, then the rule is called factand can be written simply ag X). A DATALOG program is just a set of
DATALOG rules.

Let P be a DxTALOG program. Thedependency graph @?, written D(P), is the graph that has as
nodes all the predicate namgshat occur in some rule oP and an edge — p’ in E for each pair of
predicate, p’ such thap’ occurs in the head andin the body of a rule ifP. The progranf is recursive
if D(P) contains some cycle, and non-recursive otherwise.

Definition 5.2 [CARIN knowledge bases] Fdl being a logic of the&SH family, a CARIN-L knowledge base
is atuple(K, P), whereK is anL knowledge base, arfl is a DATALOG program. A Q\RIN-L knowledge
base is (non-)recursive if the comprised@L0OG programP is (non-)recursive.

For any such @RIN-L knowledge bas& = (K, P), we will call K theDL componenbf £, andP its
rule componentNote that, in the rule component, only rule predicates @auioin the head of rules. This
is a common feature of hybrid languages, where it is oftearass that the DL knowledge base provides a
commonly shared conceptualisation of a domain. The rulepoont, on the other hand, does not define
new classes or properties of this conceptual model, buerathme application-specific relations, and can
not change the structure of knowledge defined by the DL compion

Similarly to DLs, we can define the semantics ofMmaLOG programs in terms of first order interpreta-
tions.

Definition 5.3 [Semantics of BRTALOG Programs] AninterpretationZ = (AZ,.7) for a DATALOG pro-
gram P is given by a non-emptgomain A and aninterpretation function” that maps each predicate
p € PUCUR of arity n to a subset of AZ)", and each individual ifi to an element ofA”. A substitution
is a mappings : Var UT — AZ with o(a) = a” for everya € 1. For an atonp(Y’) and a substitution, if
o(Y) € p?, then we say that makes(Y) true inZ and writeZ, o |= p(Y). We say thaf satisfies a rule
r, denotedZ = r, if every substitution that makes true all the atoms in theybedso makes true the atom in
the head. IfZ |= r for eachr € P, thenZ is a model ofP, in symbolsZ |= P.

Now we define the semantics ofa@IN knowledge bases, which arises naturally from the semaotics
its components.

Definition 5.4 [Semantics of @RIN knowledge bases] An interpretatidnfor a CARIN-SHOZ Q knowl-
edge baséC = (K, P) is an interpretatio = (AZ,-Z) which is at the same time an interpretation for
and forP. Z is amodelof I, in symbolsZ = K, if Z = K andZ |= P.

Following the original @QRIN approach, we will define as main reasoning task the entatloen
ground atom, which may be either a DL assertion oraaAboG ground fact. In the following, we will use
the termatomto refer to any expression of the forpiX), wherep may be a DL concept or role name or
a rule predicate and is a tuple of variables iiVar or individuals inIx of the same arity ag. A ground
atomis an atom that contains no variablesp i a rule predicate, we will cah(X) a(ground) rule atom
Otherwise, we will call ifground) DL atom As usual, for a ground atomand a knowledge bagé, K = «
denotes thal = « for everyZ such thatZ = K. Analogously, for a BTALOG programP, P = « denotes
thatZ |= « for everyZ with Z |= P.

Definition 5.5 [CARIN-SHOT Q entailment problem] Given aARIN -SHOZ Q knowledge bas& and a
ground atom of the formp(A4), wherep is any predicate i€, U Ry U P andA is a tuple of individuals of
the arity ofp, the CARIN-SHOZ Q entailment problenis to decide whethel = p(A).

30 INFSYS RR 1843-07-07

Since the atom whose entailment is verified may be a DL aeseil traditional DL reasoning tasks
that are reducible to instance checking (e.g. subsumptancept satisfiability, KB consistency, etc. [2]) can
be reduced to the ARIN-SHOZQ entailment problem. Due to the close correspondence batWé)s
and non-recursive EYALOG rules, query entailment can be reduced WRGN-SHOZ QO entailment of a
rule predicate fact. Indeed, every PQ can be transformedaimtequivalent UCQ. It can be easily verified
that, fora UCQU = Q1 V -+ V Qn, K E U iff (K,Py) E ¢, wherePy = {q¢:—Q1,...,¢:— Qm}
andgq is a rule predicate of aritg. In the rest of this section, we will see that the converse htdds, i.e.,
the CARIN-SHOZ Q entailment problem can be reduced to query answering oeddkthcomponent of the
knowledge base. As a consequence, we obtain a sound andetemgrsoning algorithms whenever we
have a terminating procedure for deciding query entailment

Definition 5.6 [Rule unfolding and program depth] Let andr, be two DATALOG rules of the form

r=q(X1)i=p1(V1),. .., pn(Yn)

and
ro = q2(Xo) = p1(Y)), ..., 0 (Y))

whereg, = p; for somel < i < n. Letd be the most general unifier &f, andY;. Theunfolding ofr; with
rq is the following ruler’:

r=q0X)) - pl(QE),--->pi—1(9_Yz—1),
ph(OYY), ... 0 (0Y),
Pit1(0Yit1), ..., pn(0Y5)

Thewidth of a ruler, denotedwvidth(r), is the number of atoms in the body:ofBy conventionwidth(r) =

1if risafact. LetP be a non-recursive ATALOG program, and let’ be the longest rule that can be obtained
from some ruler in P by repeatedly unfolding it with other rules &f, until no more unfoldings can be
applied. Thedepth ofP, writtendepth(P) is the width ofr’. If P = (), thendepth(P) = 1.

Note that, if P is a non-recursive program, no cycles are reached duringrifeding of a rule. This
ensures thatlepth(P) is finite and that it can be effectively computed. We also point that that the
algorithm given below does not require the rules to be uei|dt is sufficient to estimate an upper bound
for depth(P).

The key for extending our results for query answering to the @-SHOZ Q setting is given by a close
relation between UCQs and non-recursiveTBLOG. In general, if we have a non-recursivexiALOG
programP and we want to verify entailment of an atgmA), it is sufficient to consider the rules iR
whose head predicate jis These rules can be unfolded into a set of rules where) occurs in the
head, and the bodies are arbitrary CQs. This set of rule isustécally equivalent to the UCQ that consists
of the disjunction of the rule bodies. Once we formalise tklationship, we will obtain a (semi-)decision
procedure for reasoning inARIN SHOZQ in a rather straightforward way, and it will terminate foryan
DL for which the given query entailment algorithm termirsate

Definition 5.7 [Unfolding of a program for a ground atom] L&t be a non-recursive ATALOG program
andp(A) a ground rule atom. Thenfolding ofP for p(A) is obtained as follows:

INFSYS RR 1843-07-07 31

1. LetP, denote the set of rules iR where the head is of the forp{X) for any X of arity n. For each
ruler € P,, letd be the most general unifier of and X. Replace each rule

=p(X):=q1(V1), - qn(Yn)
in P, by the rule o B B
' =p0X):—q(0Y1),...,q.(0Y,)

to obtain the progranP, . If there is no unifier) of A and X for some rule with heagh(X),
then the rule is removed from,). Note thatP, is constituted of a set of rules of the form
p(A) = qi(X1),- .. 4n(Xon).

2. Eachrule inP, 7, is unfolded with the rules o until no further unfoldings can be done.

Clearly, any model of® will also be a model OPP(Z). Intuitively, Pp@ captures the part d® that is

relevant for the entailment gf(A). So, if we want to verifyP = p(A), it is sufficient to verify whether
P (4) = p(A). Moreover, this can be decided by transformm[gz) into an equivalent UCQ.

Definition 5.8 [Query for a ground atom w.r.t. a non-recursiveTBLOG program] LetP be a non-recursive
DATALOG program andy be a ground atom. Thguery fora w.r.t. P, denoted’p ,, is the UCQ defined as
follows:

e If aisa DL atom, ther/p , = a.

e If aisarule atom an®, = (), thenUp , = L. Otherwise, lefP, be:

a = g (VD). (VL)

a = g (Y, ()

We definelUp o, = Q1 V...V @, Where, for eacl) < i < m:

Qi = G NG, (i) ifn; >0,
! T otherwise.

Note that if« is a rule atom of the fornp(A), thenp does not occur ifip ., i.e., ¢} # p for every
0<i<n,0<j<m, Moreover, ifp(A) occurs as a fact ifP, it also occurs as a fact R,z and

Up pa p(A) is trivially true (since it has a disjunct which is alwaysejulf p(A) does not occur in the head of
any rule, thertU,, p(A) is always false.

Proposition 5.9 Let £ = (K, P) be a non-recursiveCARIN-SHOZQ knowledge base and let be a
ground atom. Thei = « iff K = Up 4.

Proof. For the if direction, assum& = Up ,. Consider an interpretatioh such thatZ = K. We
want to prove thaZ = «. AsK = Up, andZ = K, we know thatZ = Up,. If Up, = a or
Upo = L, thenZ = «a as desired. Otherwis€p , is of the form@; v ...V @,,, and there is som;
and some match such thatZ, = = @;. By construction, this implies that there is a rulan P,, of the form

32 INFSYS RR 1843-07-07

a—qgl (YY) A...Ag., (V) such thatl, = |= q;(Y}) for eachg}(Y}). SinceZ |= P, T = r. This implies
Z,m = «, and sincex is a ground atoni = « holds.

For the other direction, supposel= «. If a is a DL-atom, then the claim is trivial, sind€ =5 « and
Up o = a. Otherwise, letv = p(ay, ..., ay) for some rule predicatg of arity n anday, ..., a, € I. Let
7 be an interpretation fok such thatZ = K and the extension of eaghe P of arity n is the smallest
subset of AT)" that satsfiesr(X) € p? only if p(X) is the head of a rule in 7 and there is a substitution
o that makes true i all the atoms in the body of. I.e. Z can be any interpretation fdt that is a model
of the DL component, extended to interpret the rule predgat such a way that it is the minimal model
that satisfies the all the rules B So, we have thaf = K andZ = P. Clearly,a?, ..., al € p? iff there
is aruler in P, and a substitutior that makes irZ every atom in the body af true. As a consequence,
if 7 = «, then this substitution is a match for some disjun€y; in U, p, S0Z,0 = @Q; andZ = U, p as
desired. O

As discussed in Section 3, the proof of Proposition 3.27 \@ltienevem is at least as large as the
number of atoms in the largest disjunct when the query istemmed into disjunctive normal form. Clearly,
for any atomw, the number of atoms in each disjunctii ,, is bounded bylepth(P). Also, if only simple
roles occur inP, then the same holds fdfp .. Therefore, from Proposition 5.9 and Theorem 3.29, we
easily obtain:

Corollary 5.10 Let« be a ground atom anff = (K, P) be a non-recursiviCARIN-SHOZ Q knowledge
base where only simple roles occur ™. Letn > depth(P). ThenK = « iff Up,— G for every
G € ccf,(Gg).

Thus we have a sound and complete reasoning procedure Onthel-£ entailment problem whenever
we have an algorithm for obtaining the graphsdfi,(Gx) and for deciding mappability of a UCQ in them.
This is the case whef is any of SHZ O, SHOQ or SHOZ, and when only simple roles occur in the
DATALOG component. Under these restrictions, we also obtain thesmlg complexity results:

Theorem 5.11 Let £ be any ofSHZQ, SHOQ andSHOZ, let K = (K, P) be a non-recursiveCARIN-
L knowledge base where only simple roles occuPiland leta be a ground atom. Decidinf = « is
CcONP-complete in data complexity and @o-N4EXPTIME in combined complexity.

Proof. As usual, let|| K, P|| denote the size of (the string encoding) the knowledge Basad the
programP. It is easy to see that the depth of a non-recursive progPaisiat most single exponential in
||, P||. If K % a, then there is a completion grapghe ccfyepen(p) (G) such thatUp , — G does not
hold. Observing the proof of Proposition 4.6, we see thatig exponential irj| K, P||, then thisG can be
obtained non-deterministically in 4-exponential timg i, P||. SinceUp , — G can be trivially decided
in 4-exponential time, it's easy to see tfat= « can be checked in NAEBTIME.

Under data complexityP and all components ok = (7,R,.A) except for the ABoxA are fixed,
thereforedepth(/P) is constant. The proof of the claim is exactly as the prooterhi3 in Theorem 4.7.0

Note that the optimisation we mentioned in Section 4.4 apgai@s in this context, thus we can easily
obtain a N3KPTIME upper bound for combined complexity.

Finally, we point out that the decision procedure we havéirad requires that the quetyp ,, is built
by unfolding P, for each given inputy, and that mappability of this query is verified in all commet
graphs. Another alternative, that could be more converiiesgtveral atoms are to be evaluated, is to obtain
all the completion graphs iecf,,(Gx) and then to syntactically evaluate all the rules of the mpgover

INFSYS RR 1843-07-07 33

each graph, in a bottom-up way. Roughly, for a completiomply@ and a progran®, we can obtain the
smallest sef (G, P) of atoms that contains all the DL ground facts entaile@;bgnd that contains the head
of a ruler whenever there is a match of the body atoms to the atoms ineth€(&, P) (under suitable
substitutions). It is not hard to see that, for every atora € S(G, P) iff K = U, p. This procedure has
the same worst-case complexity as the one outlined above.

5.1.2 CombiningS’H DLs and recursive DATALOG

When recursive BTALOG rules are considered, some further restrictions must besegbin order to pre-
serve decidability. One possible alternative is to ressthie expressive power of the DL component, but this
is not feasible if we want to preserve the basic expressatifes of the DLs of th&H family. Indeed, all
these DLs can internalise arbitrary TBoxes, and it follovesf [43] that they are undecidable when com-
bined with recursive rules. The other possibility is to impeafetyconditions on the rules, which restrict
the way in which variables can occur in the DL predicates iwithe rule component. One of the least
restrictive forms of such safety is the one knownvwasak safetywhich was proposed for the formalism
DL+log in [52]. The following result is given in that work:

Theorem 5.12 (Theorem 11 in [52])For every DLL, satisfiability ofDL+log knowledge bases where the
DL component is expressed 4his decidable iff Boolean CQ/UCQ containment is decidablé.in

The author of [52] points out thd?L+log reasoning is decidable when the DL component is expressed
in DLR, or any of its sublanguagesDLR is an expressive DL that allows to build regular expressions
over binary roles for which containment of CQ/UCQs is knowrbe decidable [15]. He also conjectures
that the problem is decidable f&IHZ Q, but leaves the question open. In this work, we have provatd th
containment of CQ/UCQs is decidable 87 Q, SHOQ andSHOT if the queries contain only simple
roles. With this result, we can close the issue for all thege&ks. Moreover, the complexity results we have
given in Theorem 4.7 extend in the natural way to the settfiB £+log.

Theorem 5.13 Satisfiability ofDL+log knowledge bases is decidable if the DL component is exgl@sse
SHZIQ,SHOQ or SHOZ and the rule component contains only simple roles.

Finally, we mention another interesting setting where @sutts could be useful for combining DLs
and rules. Namely, in [224ll-programsare proposed, combininHOZN (D) and DATALOG programs
with negation. In this proposal the bodies of the rules majuitle a more general form alfi-atoms that
are interpreted as direct queries to the DL component. Igetlsoms some operators are considered that
update the extensions of the concepts and roles in the DL KB.allows a certain flow of information from
the rules to the program, i.e., knowledge gained in the @mgran be supplied to the DL-component. In
contrast to the other approaches considered so far, itsuilés on top of ontologies, but also to a certain
extent, ontologies on top of rules. Different semantics lsarconsidered for the rule component, notably
well-founded semantics and some generalisations of th@earset semantics. In general, it preserves the
closed domain assumption ofADALOG, in the sense that rules are grounded w.r.t. the named cisista
the ABox. This restriction can be compared to the safenesdittons mentioned above. It also allows for
a sound and complete reasoner by combining an existing ars®veeasoner with an existing DL reasoner,
but reasoning can not be divided into two separate stagel-prmgrams the queries to the DL component
that can be stated in the rules are limited to instance chgckioth for concepts and roles. It would be
interesting to explore the possibility of extending thenmthw?Qs. Due to the results we have presented, we

34 INFSYS RR 1843-07-07

know that this formalism will preserve decidability of reaing. It should also provide more expressive
power, possibly capturing other approaches (liké+log), but this has not been yet explored, and the issue
remains for future work.

5.2 Undecidability of Queries with Inequality

A natural question that arises is whether the query languagare considering, CQs and UCQs, can be
extended with some other constructs known from relatedygaaguages. As an example of such additions,
we consider explicit inequality atoms between individuaisl variables in the queries. In [13], the authors
prove that if inequalities are allowed in queries, then gu@mtainment becomes undecidable. Inequality
adds indeed a lot of expressive power, since when it is nédgia¢mforces an unbounded number of equali-
ties. The results in [13] apply directly to our setting, arfdilows that our technique can not yield a decision
procedure for queries with inequalities.

The proof of undecidability we give here is a straightfordvadaptation of the one in [13], and it exploits
a reduction from the unbounded tiling problem [7]. The liproblem consists in deciding whether, using
a finite set of square tile types with coloured edges and fixeshtation, a portion of the integer grid can
be tiled in such a way that adjacent tiles have the same colotine common edge. In [28] it was shown
that the tiling problem is well suited to show undecidabibif variants of modal and dynamic logics. These
kind of reductions have been often exploited for expresBiks. In particular, our proof is related to the
one given in [35] fotSHZN T, a variant ofSHZN where non-simple roles are allowed to occur in number
restrictions, and to the one in [4] for three extensionsldiC N with complex role expressions.

In general, such reductions show how a given tiling sysieian be translated into a knowledge base
Kop in such a way thaf{p is satisfiable iff there is a compatible tiling f@. In order for this translation
to be possible, the DL in question must be able to expressottuving [4]: (i) describe a grid oN x N,
where each pointrn, m) has exactly one vertical and one horizontal succe&ser 1, m) and (n,m + 1)
respectively, and the vertical-horizontal and the horiabwertical successors of each point coincide in
(n 4+ 1,m + 1); (ii) express that a tiling is locally correct, i.e., that theseaicompatible matching of the
colour on each side of a square and its neighbours; iandh@t the compatibility of the tiling is propagated
on the entire grid.

Already ALC is expressible enough far), and in the presence of arbitrary axioms (or in any logitef t
S’H family) (iii) is quite easy to achieve. As fap,(ALC can force the existence of at least one vertical and
one horizontal successor for each point, ahC " can ensure that there is exactly one of each. However,
this is not enough to prove undecidability, since no DL ciomd in SHOZ Q can force the coincidence
of vertical-horizontal and the horizontal-vertical sussers of every point as needed. Any extension of
ALCN capable of forcing this coincidence is undecidable. In [35jestriction of the form< 3R with a
transitive roleR is used for this purpose. In [4], it is achieved with role casifion and union/intersection.
Our setting is similar to the one of [13], where the query iscduto verify this coincidence. We present a
reduction of the tiling problem to non-entailment of a UCQ@oan ALC knowledge base with arbitrary
TBox axioms. Another easy alternative, that we will brieflgaliss, is to use number restrictions reducing
the tiling problem to non-entailment of a CQ with just onequality over anALCN knowledge base. The
latter is very similar to the reduction in [13].

Theorem 5.14 Let K be anALC knowledge base and Iét be a UCQ that may contain atoms of the form
x # y. The query entailment problefi = U is undecidable.

Proof. Consider an instance of the tiling probleth= (D, H, V') with tile typesD = {D,..., Dy}

INFSYS RR 1843-07-07 35

and sets of horizontally and vertically matching paifsC D x D andV C D x D. We say that there is
atiling for D of theN x N grid if each point(n, m) € N x N has a tile typel(n, m) € D assigned and
the types of all adjacent horizontal and vertical p&it:, m), d(n+ 1, m)) and(d(n,m),d(n,m+ 1)) are
contained inH andV respectively. For such a tiling system, we build a knowleldgeeK,» as follows:

(1) Tile T dR.Tilen 3T Tile

(2) Tile T DiU...UDy

(3) D; C -Dj foreachi,j € {1,...,n},i # j.
(4) D; C VR.(|_|<DZ_7D]_>6H D;) foreachi € {1,...,k}.

(5) D, C VT.(|_|<DZ_,D]_>6V Dj) for eachi € {1,...,k}.

(6) Tile(a)

The concepfl'ile denotes the points in the grid and the rolesnd T denote theight andup successors
respectively. Axiom(1) ensures the existence of horizontal and vertical succedsoreach point in the
grid. The concept®y, ..., Dy represent the types iR. By axioms(2) and(3) we ensure that every point
is covered with exactly one tile type. Axiong$) and(5) impose the compatibility conditions on the tiling:
for each type, the adjacent horizontal and vertical succesaist be in the matching pairs i and V
respectively. The ABox assertidfi) ensures that the grid is not empty. Consider the query

U=Q1VQ2V Qs
with
Ql = {R(l‘,y),R(l‘,Z),y 7£ Z}
Q? = {T(x,y),T(x,z),y 7'é Z}
Qs = {R(2,y),T(y,2), T(x,y'), R(y', 2), 2 # 2’}

Claim. There is a tiling forD iff Kp = U.

From a tiling forD we obtain a model of Kp where the query is not mappable. Simply set
Tiler = N x N anda? as the point(0, 0) of the grid, satisfying6). For each point{n,m),
set(n + 1,m) and (n,m + 1) as its R and U successors respectively to satigfl). The
interpretation of each concept; in Dy, ..., Dy will contain exactly the points of the grid that
are marked by the tile typ®;, i.e., for eachm,n € N, (n,m) € DZZ for exactly one; in
{1,...,k}. This ensures that axion{g) and(3) is satisfied. Since the horizontal and vertical
adjacent types match the conditions imposeddbpndV, (4) and(5) also hold. Finally, we
will see thatZ (£ U, since in any grid every point has exactly one right and onsugeessor,
and its right-up successor coincides with its up-right oSeippose, towards a contradiction,
thatZ = U. Then eitheri) Z = @4, or (i) Z = Q2, or (ii) Z = Q3 must hold. Suppose
(). Then there is a substitution from the variables iQ; to A’ = N x N. If z is mapped
to some point(z) = (n,m), theny has to be mapped to & successor of:, which must be
o(y) = (n + 1,m). Since there is no otheR successor of, o(z) = (n + 1,m) must also
hold, soy # z can not be satisfied arid [~ Q1. Analogously, in order forii) to be satisfied, if
o(x) = (n,m) then botho(y) ando(z) have to take the valug:, m + 1) (since(n,m + 1) is
the onlyT successor ofn, m)), contradictingy # z, thusZ £ Q. Finally, suppose thatii)
holds. This must be witnessed by some substitutiohet (n, m) beo(x). Theno(y) will be
the right successor of(z), (n + 1,m), ando(z) the up successor af(y), (n + 1,m + 1);
o(y") will be the up successor ef(z), (n,m + 1), ando(z") will be the right successor of
a(y'), (n+1,m+ 1). Thus,z # 2’ can not hold, and’ }~ Qs.

36 INFSYS RR 1843-07-07

Conversely, consider a modélof Kp whereU is false. By axiom(6), there is some? =

o € AT such that € Tile. Axiom (1) in Kp forces each object ith” to have some right
and some up successor. If any such objedbas two right successoog ando., then there is a
mappinge given byo(z) = o,, o(y) = 0y, 0(z) = o, that makes = @ hold. Analogously,

if some objecb, has two up successosg ando., thenZ = Q- would hold. ButU is false in
7, so neitherZ |= Q1 norZ = Q- can hold. This proves that each objectAd has exactly
one up successor and one right successor. Finally, suppeseis an object such that its up-
right and its right-up successors do not coincide. d.ebe this object. Leb, be its unique
right successor and. the up successor of,. Leto, be the up successor of ando,: the
right successor of,,. Since we are assuming that is not the same object as/, we can set
o(x) = 0z, 0(y) = 0y, 0(2) = 05, 0(y') = oy, 0(2') = 0y to show thatZ = @3, but this
contradicts the fact thaf [~ U. Thus, we have shown that for every point the up-right and
the right-up successors coincide, and this provesZhatindeed a grid. Axiom$2) and(3)
ensure that each point of the grid has exactly one tile type by axiomg4) and(5) this tiling
respects the conditions given By andV'. Thus, this model of{» shows that there is a tiling
for D.

O

Entailment of a CQ over alLCN knowledge base is also undecidable. To prove it, simplyapl
the first axiom in the knowledge bagép given in the above reduction by the following one, to obthia t
knowledge basé&/,:

(1) Tile T 3FRTilen3T.Tilen <1RN < 1U

This axiom already enforces each element of the grid to heaetly one up and one right successor, so
we don’'t need the querigg, and@-. To verify the coincidence of the right-up and the up-rigitcessors
we use only the C@)s. Following the above proof, it's straightforward to verifyat there is a tiling foD
iff K7, = Q3 for any given tiling systenD.

6 Conclusion

We have studied answering positive existential queriessjR®er knowledge bases in the expressive De-
scription Logics (DLs) of theSH family, where we have focused on data complexity, i.e., meag the
complexity of query answering with respect to the size of ABox while the query and the other parts
of the knowledge base are fixed. This setting is gaining ingp@e since DL knowledge bases are more
and more used also for representing data repositoriesciaipén the context of the Semantic Web and in
Enterprise Application Integration.

Generalising a technique presented in [43] for a DL whiclarddss expressive tha&$tHZ Q, SHOQ
and SHOZ, and combining it with the techniques from [32], we have daved a novel tableaux-based
algorithm for answering PQs with no transitive roles. Thgoathm manages the technical challenges
caused by the simultaneous presence of inverse roles, muegidctions, and general knowledge bases,
leading to DLs without the finite model property. We have pri#ed blocking conditions that make it
suitable for deciding query entailment. They are more w&dlthan previous blocking conditions in [32]
and use the query size as a parameter. Query answeringstdadh accomplished by a technique that maps
the query into completion graphs of bounded depth, whiclcanstructed using tableaux-style rules. The

INFSYS RR 1843-07-07 37

technique provides a sound and complete algorithmSHIZ Q, SHOQ, andSHOZ, while for SHOZQ
only soundness is established.

For the three mentioned sublogics&f OZ Q, our algorithm is worst-case optimal in data complexity,
and allows us to characterise the data complexity of anagdtQs for a wide range of DLs, including very
expressive ones. Namely, for each DL of $& family exceptSHOZ Q, answering PQs with no transitive
roles iscoNP-complete with respect to data complexity. This narrdvesgap between the knowsoONP
lower bound and the B TIME upper bound for even weaker DLs, towards a negative answbetopen
issue whether the data complexity of expressive DLs willilsirty increase as their combined complexity.

We point out that our method can also be exploited for degidontainment of PQ&; andQs, i.e., for
each knowledge bad€, doesK =)2 hold whenevers = Q4. As a simple consequence, we also obtain
decidability of the equivalence of positive queri@s and()» having only simple roles IS HZ O, SHOQ,
andSHOZ. This result can be exploited for query optimisation, ana ithe best of our knowledge the first
result in this direction for PQs in expressive DLs.

Several issues remain for further work. In this paper, ralegueries must be simple (this was also
assumed e.g. in [39]). A natural question is whether ourlieentend to queries with arbitrary roles. Such
queries are considered in [24] and in [25], where algorithorsanswering arbitrary CQs i HZQ and
SHOQ, respectively, were presented. The techniques used thenaver, are quite different from ours
and are not based on tableaux. It remains unclear whettsekitid of modified-tableaux techniques can be
exploited, since the presence of transitive roles impo#ésuities in establishing a bound on the depth of
completion graphs which need to be considered for answergigen query.

A terminating algorithm for query answering 8HOZ Q remains to be found, either tableaux-based
using suitable blocking conditions, or based on a diffeegmroach. It also remains to explore whether the
proposed technique can be applied to yet more expressiveddi.sallowing reflexive-transitive closure in
the TBox (in the style of PDL), or to more expressive querglaages. However, including inequality atoms
in CQs is infeasible; as follows from results in [13], sucleqes are undecidable for every DL of t§&{
family.

Apart from the data complexity, also the combined compjegitquery answering in expressive DLs
remains for further investigation, since no tight bounds lamown forSHOQ andSHOZ. Finally, an
interesting issue is whether other techniques may be appliderive results similar to ours. For instance,
whether resolution-based techniques as in [38, 40] or iguaks based on tree automata can be fruitfully
applied. While the latter have already been successfulijiegbfor answering PQs, allowing also for atoms
that are regular expressions over roles, in very expre§digg16], it remains unclear how the contribution
of the ABox may be singled out so as to establish data corntplexi

Acknowledgements We thank lan Horrocks and Birte Glimm for many fruitful angdissions, and are
grateful to them for pointing out errors in preliminary worlVe are also very grateful to the anonymous
reviewers for their constructive comments, which greatipioved the presentation of this work.

A Appendix

Claim 2. LetG € Gk, let J =k G, and letr be any rule in Table 1 that is applicabledo Then, there
exist a completion grap8’ obtainable fromg by applyingr and an extended interpretatigh equal to.7
modulonodes(G) such that7’ =k G'.

The proof of this claim is similar to the proof of completesas the tableau algorithm fa$HOZ Q,

38 INFSYS RR 1843-07-07

given in detail in [33]. Although the technical details anitg different, the underlying intuition is essen-
tially the same. The main difference is that the authors 8} [&e a tablead” to represent an arbitrary
model of the knowledge base, and they “steer” the applinatiothe expansion rules through tHis In
contrast, we follow an approach closer to [43] and look atgletion graphs as a representation of a set of
models of the knowledge base, thus we do the steering diredth the model. In [33], it was proved that
there is a mapping from the nodes ofj to the elements df’, satisfying certain conditions, which can be
extended after each rule application. The conditions imm@asr are closely related to those for a model of
a completion graph. Here we prove that the interpretatiocan be extended and modelhood is preserved
after each rule application, similarly as this was provedrfo

Proof. We prove the Claim 2 for each rule First we consider the deterministic, non-generatingstule
There is only one completion gragh which can be obtained frog by applyingr, and the models af are
exactly the models of’. For the case of the-rule, there is some nodein G s.t. C; M Cy € L(v). Since
J Ex G, we havev? ¢ (C; 1 Cy)7. By the definition of interpretation, both’ € ¢y andv? € ¢y
hold. The inequality relation and all labelsghare exactly as ig, the only change is thdtC;, Cy} C L(v)
ing’,soJ =g

The cases of th&-rule and thev_ -rule, are similar to thel-rule. The labels of all nodes g are
preserved irg’, except for the node to which the rule was applied, and we havejireitherC' C L(w) or
VR'.C C L(w) respectively. In the former case, sindeE= K, v/ € (VR.C)7, andw is an R-neighbour
of v, it follows thatw? € C7. In the latter case;Y € (VR.C)7 andw and R'-neighbour ofv for some
R' C* Rimply thatw? € (VR'.C)7. ThusJ =k G in both cases.

Let us analyse the non-deterministic rules. For the caseeaffrule, there is some nodein G having
C1 U Cy € L(v). After applying theLl-rule, we will have two forestg, G5 with {C1} C L(v) in G} and
{Cy} C L(v) in G}, respectively. For every such that7 =y G we havev” € (C; LUCs)7 . By definition,
eitherv? € ¢ orv? € ¢y holds. Ifv? € CY, thenJ =k G}, and otherwise7 = Gj, so the claim
holds.

The proof for the choose rule is easy. After applying it, wi ave two forests/;, G, with {C'} C L(v)
in G{ and{NNF(-C)} C L(v) in G respectively, but since” € (C U ~C)7 holds for everyv, C and
extended interpretatior, either7 = G or J =k G/ holds.

When the<-rule is applied to a node in G, some concepK n.S.C' in L(v) exists andv has S-
neighbourswy, . .., w,, w, 1 labelled withC. As 7 =x G, it follows v € (< n S.C)7, which implies
that there are at most, ..., o0, elements inG such that(v”,0;) € SY ando; € CY. Thusv hasS-
neighboursw; andw;, ¢ # j, which are instances @ such thatwf = w57. This impliesw; # w; ¢ G,
and the nodes can be merged as a result of the rule applicétmmce7 =k G’, whereG’ is results from
G by mergingw; into w;.

Finally, we consider the two generating rules. For fhrile, since the propagation rule was applied,
there is some in G such thaBR.C' € L(v). Hence, some € A7 exists such thatv”,0) € R7 and
o € C7. The completion grapf’ was obtained by adding a new nodgeo G. .7 will be modified to.7’ by
settingw’’ = o, and thus7’ =x G'.

The case of the>-rule is analogous to the-rule: if 7 Ex G', we havewf = o; for1 < i < n, where
{wy,...,w,} are the nodes added oandoy, . .., 0, € A7 are such thatv”, 0;) € R7 ando; € CV for
the nodev in G to which the rule was applied.

The o-rule is applicable iffa} € L(v) N L(v") for some nominaa} and two nodes andv’. Since
J Ex G, we havev? = v = q, and thusy can be merged into’ to obtaing’. Clearly,J =x G'.

Finally, theo?-rule is only applicable to if <n S.C' € L(v) andv has anS-neighboury’ with C' €
L(v"). If m = 1is guessed, then a new nodewill be generated iy’ with £(w) := {C,{w}} Utcon(K).

INFSYS RR 1843-07-07 39

Since{C} Utcon(K) C L(v') andv’ is anS-neighbour ofv, we can modify7 to J’ by settingw’ = ';
then,J’ = G’ holds. O

Claim 3. If (7(z),m(y)) € E(R'), thenu(y) is anR’-neighbour ofu(x).

Proof. By the definition of€(R’) and of R’-step, if (w(z), 7 (y)) € E(R’) then either: i) tail' (7 (y)) is
an R'-successor ofail(7(x)), or (i) tail’(w(x)) is anlnv(R’)-successor ofail(7(y)).

We prove thati] implies thatu(y) is an R’-successor ofi(x). Analogously, i) implies thatu(x) is
anlinv(R’)-successor ofi(y). Together, these two facts complete the proof of the claira.céhsider three
cases:

1) n(xz) = [%] € in(Gr): thenpu(z) = tail'(7(z)) = tail(n(x)) = a. If tail'(7(y)) is an R’-successor of
tail(w(z)) = a, thentail'(w(y)) is anR’-successor of an individual node. This implies that eithéf(7(y))
is also an individual node; or it is a variable node that is ndilocked andr(y) is in someG; with
afterblocked(G;) = (). In both caseg(y) = tail' (7 (y)) = tail(7(y)) holds and thug(y) is anR’-successor

of u(x).

2) 7(y) = [%] € in(Gr): thenpu(y) = tail'(7(y)) = tail(w(y)) = a. By construction ofr(z), either
tail(w(z)) = tail'(w(x)) or tail(w(z)) = (tail'(w(z))). The claim thus holds ifi(z) = tail(7(z)).
Suppose this is not the case. Then there are two posskHilitie

2a) p(x) = tail'(w(x)), tail' (w(x)) # tail(r(y)) andtail(r(x)) = ¥(tail' (w(x))).
In this casetail’ (7 (z)) is a leaf of a blockeai-graph, and it is blocked byail(7(x)) = ¢ (tail' (7 (z))).
Sinceu(y) = a is an R’-successor ofail(w(x)) = v (tail'(w(x))), we have that)~!(a) is an R’-
successor ofail’(w(z)). Sincey~!(a) = a (recall that nominals occur in at most one node label,
thus an individual node can only be isomorphic to itself),hage thaiz = p(y) is an R'-successor of
tail'(w(z)) = pu(x) as desired.

2b) p(x) = (tail'(w(z))), ¥(tail' (7(x))) # tail(w(y)) andtail(w(x)) = tail'(r(x)).
Thenn(z) is a node of somé&; with afterblocked(G;) # 0, andn(z) ¢ afterblocked(G;). Also in
this casetail’ (7 (z)) is blocked by (tail'(7(z))). Thus,u(y) = a an R’-successor ofail(r(z)) =
tail’(w(z)) implies thaty(a) is anR’-successor of (tail' (7(z))). Asy(a) = a, we have that = p(y)
is an R'-successor of (tail'(w(x))) = p(x) and the claim holds.

3) If w(z), m(y) & in(Gr), thenw(z) and7(y) are nodes of somé);.
First, suppose thaifterblocked(G;) = 0. Thenu(xz) = tail'(w(z)). Sincen(y) is an R’-step of
7(x), we havetail'(w(z)) = tail(w(z)) (otherwiser(y) € afterblocked(G;) would follow, contradicting
afterblocked(G;) = (). Clearly, iftail’(w(y)) is an R’-successor ofail(7(z)), thenu(y) = tail'(n(y)) is
an R’-successor ofi(x) = tail'(7(z)) = tail(w(x)).
Now we assumefterblocked(G;) # (). We can further distinguish the following cases:

3a) {m(z),7(y)} C afterblocked(G;).

In this case, by definitiony(z) = tail’(w(z)) and u(y) = tail’(w(y)). Note that, by the definition
of n-blocking, if there is some with tail(p) # tail'(p) and somey’ which is a descendant of,

then tail(p’) # tail’(p’) can only hold if the distance betweenand p’ is greater tham. As a
consequence, and since the path lengtitzpfis bounded byn, tail(p) = tail’(p) holds for each
p € afterblocked(G;). Clearly, iftail’(w(y)) is an R’-successor ofail(7w(x)), we have thaj(y) =

tail’(w(y)) is anR’-successor ofi(z) = tail'(w(z)) = tail(7(z)) as desired.

40

3b)

INFSYS RR 1843-07-07

m(x) ¢ afterblocked(G;) andn(y) € afterblocked(G;).

)
In this caseu(z) = (tail'(w(x))) and u(y) = tail'(w(y)). It is also easy to see that(x) €
blockedLeaves(G;), thustail(7(z)) # tail'(w(z)) andtail(r(x)) = ¢(tail'(7(z))). Hence iftail’(r(y))
is anR’-successor ofail(r(x)), thenu(y) = tail'(w(y)) is anR’-successor of(z) = i (tail'(7(x))).

3c) Neitherr(z), 7(y) & afterblocked(G;).

By definition, u(z) = ¢ (tail'(n(z))) and u(y) = v (tail'(n(y))) hold. We can also verify that
tail(w(z)) = tail'(n(z)), as otherwiser(y) € afterblocked(G;) would hold. By the definition
of n-graph equivalence, ifail'(w(y)) is an R'-successor ofail(w(z)) = tail'(w(z)), thenu(y) =
W(tail'(7(y))) is anR’-successor ofi(x) = 1 (tail'(7(z))) as desired.

Note that the case(y) ¢ afterblocked(G;) andn(z) € afterblocked(Gj;) is not possible. This proves the
claim. O

References

[1] G. Antoniou, C. V. Damasio, B. Grosof, I. Horrocks, M. Kif J. Maluszynski, and P. F. Patel-

(2]

[3]

[4]

[5]

[6]

[7]

Schneider. Combining rules and ontologies. A survey. TeethiReport Deliverable 13-D3, REW-
ERSE Project, Feb. 2005. Availabletdtt p: / / r ewer se. net/ del i ver abl es/ nl2/i 3- d3.
pdf .

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and Patel-Schneider, editor$he Description
Logic Handbook: Theory, Implementation and Applicatio@embridge University Press, 2003.

F. Baader and P. Hanschke. A schema for integrating edacomains into concept languages. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligen€¢dCAI'91), pages 452—-457, 1991.

F. Baader and U. Sattler. Expressive number restristinrdescription logicsJ. of Logic and Compu-
tation, 9(3):319-350, 1999.

F. Baader and U. Sattler. An overview of tableau algonishfor description logics.Studia Logica
69(1):5-40, 2001.

D. Berardi, D. Calvanese, and G. De Giacomo. Reasoninghdh class diagramsaArtificial Intelli-
gence 168(1-2):70-118, 2005.

R. Berger. The undecidability of the dominoe probleliem. Amer. Math. So66:1-72, 1966.

[8] A. Borgida and R. J. Brachman. Conceptual modeling witsatiption logics. In Baader et al. [2],

[9]

chapter 10, pages 349-372.

D. Calvanese and G. De Giacomo. Expressive descriptigits$. In Baader et al. [2], chapter 5, pages
178-218.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, Bn&osati. DL-Lite: Tractable description

logics for ontologies. IfProc. of the 20th Nat. Conf. on Artificial Intelligence (AAZI05) pages 602—
607, 2005.

INFSYS RR 1843-07-07 41

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, 8&xdRosati. Data complexity of query
answering in description logics. Froc. of the 10th Int. Conf. on the Principles of Knowledggrhge
sentation and Reasoning (KR 200pages 260-270, 2006.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, &dRosati. Tractable reasoning and
efficient query answering in description logics: The DLeLfamily. J. of Automated Reasoning
39(3):385-429, 2007.

[13] D. Calvanese, G. De Giacomo, and M. Lenzerini. On thadadxlity of query containment under
constraints. IrProc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on PrirsipfeDatabase
Systems (PODS’98pages 149-158, 1998.

[14] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answggueries using views over description
logics knowledge bases. Rroc. of the 17th Nat. Conf. on Atrtificial Intelligence (AAZQ00) pages
386-391, 2000.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, &dRosati. Description logic framework
for information integration. pages 2-13, 1998.

[16] D. Calvanese, T. Eiter, and M. Ortiz. Answering regyath queries in expressive description logics:
An automata-theoretic approach.Rroc. of the 22nd Nat. Conf. on Artificial Intelligence (AA28907)
pages 391-396, 2007.

[17] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying dasased representation formalisma. of
Artificial Intelligence Researgii1:199-240, 1999.

[18] A. K. Chandra and P. M. Merlin. Optimal implementatiohamnjunctive queries in relational data
bases. IrProc. of the 9th ACM Symp. on Theory of Computing (STOCages 77-90, 1977.

[19] G. De Giacomo and F. Massacci. Combining deduction andahchecking into tableaux and algo-
rithms for converse-PDLInformation and Computatiqri60(1-2):117-137, 2000.

[20] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Dgtion in concept languages: From sub-
sumption to instance checking. of Logic and Computatiqrt(4):423—-452, 1994.

[21] F. M. Donini, M. Lenzerini, D. Nardi, and A. SchaerfA£-log: Integrating Datalog and description
logics. J. of Intelligent Information System0(3):227-252, 1998.

[22] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. TorspitCombining answer set programming with
description logics for the semantic web. Pnoc. of the 9th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 20@004.

[23] E. Franconi and S. Tessaris. Rules and queries withlagigs: a unified logical framework. In
Workshop on Principles and Practice of Semantic Web Reag@RPSWR-042004.

[24] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjuivetquery answering for the description logic
SHZQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligen€¢kJCAI 2007) pages 399-404,
2007.

42

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

INFSYS RR 1843-07-07

B. Glimm, I. Horrocks, and U. Sattler. Conjunctive guentailment fotSHO Q. In Proc. of the 2007
Description Logic Workshop (DL 2007yolume 250 of CEUR Electronic Workshop Proceedings,
http://ceur-ws. org/ Vol - 250/ , pages 65-75, 2007.

G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive gesriover trees. IProc. of the 23rd ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Syte@DS 2004)pages 189-200,
2004.

V. Haarslev and R. Moller. RACER system description.Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001yolume 2083 ofLecture Notes in Artificial Intelligencepages 701-705.
Springer, 2001.

D. Harel. Recurring dominoes: Making the highly undkdile highly understandable. 24:51-72,
1985.

J. Heflin and J. Hendler. A portrait of the Semantic Wehgtion. IEEE Intelligent System46(2):54—
59, 2001.

I. Horrocks. The FaCT system. In H. de Swart, edif®rpc. of the 7th Int. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods (EX8LX'98), volume 1397 of_ecture
Notes in Artificial Intelligencepages 307-312. Springer, 1998.

I. Horrocks, P. F. Patel-Schneider, and F. van HarmefeamSHZ © and RDF to OWL: The making
of a web ontology languagé. of Web Semantic4(1):7-26, 2003.

I. Horrocks and U. Sattler. A tableaux decision progedior SHOZ Q. In Proc. of the 19th Int. Joint
Conf. on Atrtificial Intelligence (IJCAI 2005pages 448-453, 2005.

I. Horrocks and U. Sattler. A tableaux decision progedor SHOZ Q. Technical report, Department
of Computer Science, University of Manchester, 2005. Aldé athtt p: //ww. cS. man. ac.
uk/ ~satt!l er/ publications/shoiqg-tr.pdf.

I. Horrocks, U. Sattler, and S. Tobies. Practical re@sg for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editoRroc. of the 6th Int. Conf. on Logic for Pro-
gramming and Automated Reasoning (LPAR/9&)mber 1705 in Lecture Notes in Artificial Intelli-
gence, pages 161-180. Springer, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasp for very expressive description logics.
8(3):239-264, 2000.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning withividuals for the description logiSHZ O.
In D. McAllester, editor,Proc. of the 17th Int. Conf. on Automated Deduction (CADE®O0@Ilume
1831 ofLecture Notes in Computer Scienpages 482-496. Springer, 2000.

I. Horrocks and S. Tessaris. A conjunctive query lamguior description logic ABoxes. IRroc. of
the 17th Nat. Conf. on Artificial Intelligence (AAAI 200Pages 399—-404, 2000.

U. Hustadt, B. Motik, and U. Sattler. A decompositiorierdor decision procedures by resolution-
based calculi. IrProc. of the 11th Int. Conf. on Logic for Programming, Aridicintelligence and
Reasoning (LPAR 2004pages 21-35, 2004.

INFSYS RR 1843-07-07 43

[39] U. Hustadt, B. Motik, and U. Sattler. Reduci&j{Z Q-description logic to disjunctive datalog pro-
grams. InProc. of the 9th Int. Conf. on the Principles of Knowledge iespntation and Reasoning
(KR 2004) pages 152-162, 2004.

[40] U. Hustadt, B. Motik, and U. Sattler. Data complexity refasoning in very expressive description
logics. InProc. of the 19th Int. Joint Conf. on Artificial Intelligen¢RICAI 2005) pages 466-471,
2005.

[41] M. Lenzerini. Data integration: A theoretical persfiee. In Proc. of the 21st ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS, Ziij8s 233—-246, 2002.

[42] A.Y. Levy and M.-C. Rousset. The limits on combining wesive Horn rules with description logics.
pages 577-584, 1996.

[43] A. Y. Levy and M.-C. Rousset. Combining Horn rules andattion logics in CARIN. Artificial
Intelligence 104(1-2):165-209, 1998.

[44] C. Lutz. Description logics with concrete domains: Away. In P. Balbiani, N.-Y. Suzuki, F. Wolter,
and M. Zakharyaschev, editor8dvances in Modal Logi¢s/olume 4. King’s College Publications,
2003.

[45] C. Lutz. Inverse roles make conjunctive queries hardProc. of the 2007 Description Logic Work-
shop (DL 2007)volume 250 ofCEUR Electronic Workshop Proceedings,t p: / / ceur - ws. or g/
Vol - 250/ , pages 100-111, 2007.

[46] R. MacGregor. Inside the LOOM description classifigi3)288-92, 1991.

[47] B. Motik. Reasoning in Description Logics using Resolution and Dedei®atabases PhD thesis,
Univesitaet Karlsruhe, Karlsruhe, Germany, Jan. 2006.

[48] M. Ortiz, D. Calvanese, and T. Eiter. Characterizintgdaomplexity for conjunctive query answering
in expressive description logics. Rroc. of the 21st Nat. Conf. on Artificial Intelligence (AAZ006)
pages 275-280, 2006.

[49] M. Ortiz, D. Calvanese, and T. Eiter. Data complexityaoswering unions of conjunctive queries in
SHIQ. InB. Parsi, U. Sattler, and D. Toman, editd®spc. of the 2006 Description Logic Workshop
(DL 2006) pages 62—73, 189, 2006. CEUR Workshop Proceedings.

[50] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Waelnlogy Language semantics and ab-
stract syntax. W3C Recommendation, Feb. 2004. Availablétatp: / / www. wW3. or g/ TR/
ow - semanti cs/.

[51] P. F. Patel-Schneider, D. L. McGuinness, R. J. BrachrhaA. Resnick, and A. Borgida. The CLAS-
SIC knowledge representation system: Guiding principfesimnplementation rational. 2(3):108-113,
1991.

[52] R. Rosati. DL+log: Tight integration of descriptiongics and disjunctive datalog. FProc. of the 10th
Int. Conf. on the Principles of Knowledge Representatiod Beasoning (KR 2006pages 68-98,
2006.

44 INFSYS RR 1843-07-07

[53] A. Schaerf. On the complexity of the instance checkingpfem in concept languages with existential
quantification.J. of Intelligent Information System®:265-278, 1993.

[54] A. Schaerf. Reasoning with individuals in concept laages. Data and Knowledge Engineering
13(2):141-176, 1994.

[55] S. Tobies. The complexity of reasoning with cardinatiéstrictions and nominals in expressive de-
scription logics.J. of Artificial Intelligence Resear¢ti2:199-217, 2000.

[56] S. Tobies.Complexity Results and Practical Algorithms for Logics imofvledge RepresentatioRhD
thesis, LUFG Theoretical Computer Science, RWTH-Aacheamn@ny, 2001.

[57] M. Y. Vardi. The complexity of relational query languesy InProc. of the 14th ACM SIGACT Symp.
on Theory of Computing (STOC'83ages 137-146, 1982.

[58] J. Yen, R. Neches, and R. MacGregor. CLASP: Integraing subsumption systems and production
systems. 3(1):25-31, 1991.

