
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

DATA COMPLEXITY OF QUERY ANSWERING

IN EXPRESSIVEDESCRIPTIONLOGICS VIA

TABLEAUX

Magdalena Ortiz Diego Calvanese Thomas Eiter

INFSYS RESEARCHREPORT1843-07-07

NOVEMBER 2007

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-07-07, NOVEMBER 2007

DATA COMPLEXITY OF QUERY ANSWERING IN EXPRESSIVE

DESCRIPTIONLOGICS VIA TABLEAUX

Magdalena Ortiz,1 Diego Calvanese,2 and Thomas Eiter3

Abstract. The logical foundations of the standard web ontology languages are provided by ex-
pressive Description Logics (DLs), such asSHIQ andSHOIQ. In the Semantic Web and other
domains, ontologies are increasingly seen also as a mechanism to access and query data reposito-
ries. This novel context poses an original combination of challenges that has not been addressed
before: (i) sufficient expressive power of the DL to capture common datamodelling constructs;
(ii) well established and flexible query mechanisms such as those inspired by database technology;
(iii) optimisation of inference techniques with respect to datasize, which typically dominates the
size of ontologies. This calls for investigating data complexity of query answering in expressive
DLs. While the complexity of DLs has been studied extensively, few tight characterisations of data
complexity were available, and the problem was still open for most DLs of theSH family and for
standard query languages like conjunctive queries and their extensions. We tackle this issue and
prove a tightCONP upper bound for positive existential queries with no transitive roles inSHOQ,
SHIQ, andSHOI. We thus establish that, for a whole range of sublogics ofSHOIQ that contain
AL, answering such queries hasCONP-complete data complexity. We obtain our result by a novel
tableaux-based algorithm for checking query entailment, which uses a modified blocking condition
in the style of CARIN. The algorithm is sound forSHOIQ, and shown to be complete for all con-
sidered proper sublogics in theSH family.

Keywords: expressive description logics, query answering, data complexity, conjunctive queries,
unions of conjunctive queries, tableaux algorithms.

1Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail: ortiz@kr.tuwien.ac.at.

2Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, I-39010 Bolzano,
Italy. E-mail: calvanese@inf.unibz.it.

3Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail: eiter@kr.tuwien.ac.at.

Acknowledgements: This work was partially supported by the Austrian Science Funds (FWF) project
P17212; the European Commission project REWERSE (IST-2003-506779); the FET project TONES (Think-
ing ONtologiES), funded within the EU 6th Framework Programme under contract FP6-7603; by the PRIN
2006 project NGS (New Generation Search), funded by MIUR; and by the Mexican National Council for
Science and Technology (CONACYT) grant 187697.

This Report is a corrected and extended version of the preliminary report 1843-06-03. Some results in this
paper appear in preliminary form in the Proceedings of the 21th National Conference on Artificial Intelli-
gence(AAAI ’06) [48] and in the Informal Proceedings of the International Workshop on Description Logics
(DL 2006)[49].

Copyright c© 2007 by the authors

INFSYS RR 1843-07-07 I

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Description Logics 4

2.1.1 The DLSHOIQ . 4
2.1.2 The DLsSHOQ, SHIQ, andSHOI . 5

2.2 Positive Queries 7

3 A Tableaux Algorithm for Query Entailment 8
3.1 Completion Graphs 9
3.2 Models of a Completion Graph 15
3.3 Answering Positive Queries 16

3.3.1 Tableaux and Canonical Models 17

4 Termination and Complexity 22
4.1 Bounding the size of completion forests and graphs 23
4.2 Complexity of the Query Entailment Algorithm 25
4.3 Data Complexity 26
4.4 Combined Complexity 27

5 Extensions 28
5.1 Hybrid Knowledge Bases 28

5.1.1 Extending non-recursive CARIN to theSH family 28
5.1.2 CombiningSH DLs and recursive DATALOG . 33

5.2 Undecidability of Queries with Inequality 34

6 Conclusion 36

A Appendix 37

INFSYS RR 1843-07-07 1

1 Introduction

Description Logics (DLs) [2] are specifically designed for representing structured knowledge in terms of
concepts (i.e., classes of objects) and roles (i.e., binaryrelationships between classes). They have been ini-
tially developed to provide a formalisation of frame-basedsystems and semantic networks, and expressive
variants of DLs were shown to be in tight correspondence withrepresentation formalisms used in databases
and software engineering [17, 6]. More recently, DLs gainedincreasing attention as the logical founda-
tion for the standard Web ontology languages [29]. In fact, the most significant representatives of these
languages, OWL-Lite and OWL-DL, are syntactic variants of DLs [31, 50]. In the Semantic Web and in
other application domains such as Enterprise Application Integration and Data Integration [41], ontologies
provide a high-level, conceptual view of the information relevant in a specific domain or managed by an
organisation. They are increasingly seen also as a mechanism to access and query data repositories, while
taking into account the constraints that are inherent in thecommon conceptualisation.

This novel context poses an original combination of challenges unmet before, both in DLs/ontologies
and in related areas such as data modelling and query answering in databases:

1) On the one hand, a DL should have sufficient expressive power to capture common constructs typ-
ically used in data modelling [8]. This calls forexpressive DLs[9, 5], in which a concept may denote the
complement or union of others (to capture class disjointness and covering), may involve direct and inverse
roles (to account for relationships that are traversed in both directions), may contain number restrictions (to
state existence and functional dependencies and cardinality constraints on the participation to relationships
in general), or may refer to specific objects that are of relevance at the intensional level. Such concepts are
then used in the intensional component of a knowledge base (the TBox), which contains inclusion asser-
tions between concepts and roles, while the extensional component (the ABox) contains assertions about
the membership of individuals to concepts and roles.

2) On the other hand, the data underlying an ontology should be accessed using well established and
flexible mechanisms such as those provided by database querylanguages. This goes well beyond the tradi-
tional inference tasks involving objects that have been considered and implemented in DL-based systems,
like instance checking[20, 53]. Indeed, since explicit variables are missing, DL concepts have limited means
for relating specific data items to each other.Conjunctive queries(CQs), i.e., plain select-project-join SQL
queries, and unions of CQs (UCQs), i.e., a union of plain select-project-join SQL queries, provide a good
trade-off between expressive power and nice computationalproperties, and are therefore adopted as core
query languages in several contexts, such as data integration [41].

3) Finally, one has to take into account that data repositories can be very large and are usually much
larger than the representation of the intensional level expressing constraints on the data. Therefore, the
contribution of the extensional level (i.e., the data) to the complexity of inference should be singled out, and
one must pay attention to optimising inference techniques with respect to data size, as opposed to the overall
size of the knowledge base. In databases, this is accounted for by data complexityof query answering [57],
where the relevant parameter is the size of the data, as opposed tocombined complexity, which additionally
considers the size of the query and of the schema.

Notable examples of expressive DLs are the ones in the so calledSH family, which support all Boolean
constructs over concepts and allow for asserting the transitivity of certain roles and containment between
roles. The most expressive DL in this family is calledSHOIQ. In addition to the mentioned concept con-
structs and role assertions, it supportsnominals(O), which are concepts denoting a single individual [55],

2 INFSYS RR 1843-07-07

inverse roles (I), and qualified number restrictions (Q). By disallowing one of these three constructs, we ob-
tain the sublogics known asSHIQ, SHOQ, andSHOI, respectively, which are three DLs with high and
mutually incomparable expressive power. Note thatSHOIQ essentially corresponds to OWL-DL, while
SHIQ essentially corresponds to OWL-Lite [31, 50].1 These languages have been promoted as standard
Web ontology languages by the World Wide Web Consortium within the Semantic Web effort.2

For theSH family and other expressive DLs, TBox+ABox reasoning has been studied extensively in the
last decade, using a variety of techniques ranging from reductions to reasoning in Propositional Dynamic
Logic (PDL) [13, 9], over tableaux [5, 36] to automata on infinite trees [9, 56] and resolution [38, 40]. For
many of them, the combined complexity of instance checking (with both TBox and ABox) is EXPTIME-
complete, includingSHIQ, SHOQ, andSHOI. Unfortunately, the interaction of nominals, inverse roles,
and counting increases the computational complexity of inference inSHOIQ causing instance checking to
be NEXPTIME-complete [55].

As for data complexity, it was shown in [20, 53] that instancechecking isCONP-hard already in the
rather weak DLALE , and in [11] that CQ answering isCONP-hard in the yet weaker DLAL. Tight
upper bounds were not known, since little attention had beenpaid to this problem. The data complexity
was studied in the last years, but mostly for suitably tailored DLs [10, 11, 12]. In [11, 12], theDL-Lite
family of DLs was considered, and two DLs were identified for which the problem is in LOGSPACE and can
be effectively reduced to evaluating a UCQ over a database using standard relational database technology.
Furthermore, [11] analysed which additions to the DL make the problem hard for NLOGSPACE, PTIME,
or CONP. The analysis essentially showed that the two identified DLs are the maximal ones with respect
to allowed constructs enjoying so calledFOL-rewritability of query answering, which implies LOGSPACE

data complexity of this problem. Another interesting consequence of the results in [11] is that any further
addition to the DL, such as universal quantification (a construct considered basic in DLs) makes the problem
alreadyCONP-complete, and therefore, as shown by our work, as hard as for the very expressive DLs that
we consider here.

The data complexity of expressive DLs has not been studied indepth, and it only became a topic of
interest in recent years. An EXPTIME upper bound for data complexity of CQ answering inDLR follows
from the results on CQ containment and view-based query answering in [13, 14].3 They are based on a
reduction to reasoning in PDL, which however prevents to single out the contribution to the complexity
coming from the ABox. Similar considerations hold for the techniques in [37], which refined and extended
the ideas introduced in [13], making the resulting algorithms better suited for implementation on top of
tableaux-based algorithms. In [38, 40] a technique based ona reduction to Disjunctive Datalog was used for
SHIQ. It provides a (tight)CONP upper bound for data complexity of instance checking, since it allows
to single out the ABox contribution. The result can be immediately extended to tree shaped conjunctive
queries (with no transitive roles), since they admit a representation as a DL concept, e.g., by making use
of the notion of tuple-graph of [13], or via rolling up [37]. However, this is not the case for general CQs,
resulting in a non-tight 2EXPTIME upper bound. The first tight upper bounds for CQ answering inSHIQ
were given in [48], but only for queries with no transitive roles, and generalised in [24] to all CQs.

Most of the results we have mentioned are quite recent, sincethe work on data complexity before this

1The OWL languages also support certain datatypes, which areimportant for applications, and whose theoretical counterpart in
DLs are concrete domains [3, 44]. On the other hand, the OWL-DL and OWL-Lite variants support only restricted forms of number
restrictions, namely unqualified number restrictions (N) and functionality (F), respectively. Notice that the upcoming standard
language OWL 1.1, instead, supports qualified number restrictions.

2http://www.w3.org/2001/sw/
3These results apply only to queries without transitive closure.

INFSYS RR 1843-07-07 3

decade was rather scarce. The most notable exception is the seminal work on the CARIN language for hybrid
knowledge bases [43]. The authors showed a tightCONP upper bound for CQ answering in a DL called
ALCNR, which has no role hierarchies, does not support inverse roles, and has only a limited form of
number restrictions. It is based on the tableaux algorithm for satisfiability ofALCNR knowledge bases,
modifying the blocking condition is such a way that it can be used for deciding query entailment. The
modified tableaux algorithm provided not only the first tightupper bounds for data complexity of query
answering in DLs, but also the first algorithm for answering UCQs and for deciding the containment of
UCQs over DL knowledge bases.

Tableaux algorithms play a very important role in DLs nowadays, and are one of the most popular
reasoning techniques. Despite their high worst-case computational complexity, they are amenable to opti-
misations and the basis of many reasoning engines, which provide efficient implementations. For all DLs
in theSH family, tableaux algorithms for checking satisfiability have been found. In particular, in [32] a
tableaux algorithm for deciding satisfiability ofSHOIQ knowledge bases was given, which generalises
the previous algorithms forSHIQ, SHOQ, andSHOI. However, all these algorithms were devised for
standard reasoning tasks like satisfiability and instance checking, and several interesting questions remained
unaddressed. First, whether it is possible to apply the ideas and techniques for CARIN to the DLs in the
SH family in order to obtain (tableaux-based) algorithms for answering expressive queries over knowledge
bases in these logics. Second, given that this is possible, what kind of queries may be handled. Third,
whether any of the algorithms obtained would allow to derive, similarly as in the case of CARIN, exact
characterisations of the data complexity of query answering.

In this paper, we shed light on these questions, by simultaneously addressing the three challenges identi-
fied above. We show that the blocking conditions of [43] can besuitably generalised to very expressive DLs
from theSH family. Technically speaking, the generalisation is not trivial. Indeed, we consider logics that
have inverse roles, which as recently shown make answering CQs 2EXPTIME-hard [45]. Some of the DLs
have no finite model property, and only weak forms of the ubiquitous forest model property. Furthermore,
we considerPositive Existential Queries(PQs), a generalisation of UCQs that is not more expressive,but is
exponentially more succinct.

Our main contributions are briefly summarised as follows:

• Building on the techniques of [36, 43], we present a novel tableaux-based algorithm for query an-
swering in expressive DLs of theSH family. We prove that the algorithm is sound for answering
PQs (and hence, also for UCQs and CQs) with no transitive roles overSHOIQ knowledge bases,
and thus in all DLs of theSH family. However, it does not work in general when the query contains
transitive roles. This is because the blocking condition weuse relies on the fact that the query can
only distinguish patterns of bounded size in the model, where the bound depends on the query shape.

• We prove that the algorithm is complete for knowledge bases in the three DLsSHIQ, SHOQ,
andSHOI. As a consequence, entailment of PQs with no transitive roles over knowledge bases in
these logics is decidable. This result extends also to deciding the containment and equivalence of
PQs. In fact, the algorithm terminates if there is no simultaneous interaction of number restrictions,
inverse roles, and nominals, and hence also works for largerclasses of knowledge bases. However,
for arbitrarySHOIQ knowledge bases termination is not established, as it seemsthat the interaction
could indefinitely postpone the satisfaction of the blocking conditions.

• The novel algorithm provides us with a characterisation of the data complexity of query answering in
expressive DLs. Specifically, we show that the data complexity of answering PQs with no transitive

4 INFSYS RR 1843-07-07

roles overSHIQ, SHOQ, andSHOI knowledge bases is inCONP, and thus isCONP-complete
for all their sublogics that containAL.

This shows that the techniques introduced for CARIN are indeed a suitable tool to provide tableaux-
based algorithms and exact characterisations of the data complexity of answering large families of queries
over a wide range of expressive DLs.

The rest of the paper is organised as follows. After technical preliminaries in Section 2, we present in
Section 3 our algorithm for answering PQs overSHOIQ knowledge bases. In Section 4, we discuss the
resulting complexity bounds forSHIQ, SHOQ, andSHOI. In Section 5, we present some applications
of our results in the context of hybrid knowledge bases, and show some undecidability results. In Section 6
we draw final conclusions. In order to increase readability,technical details of some proofs have been moved
to an appendix.

2 Preliminaries

In this section, we introduce the technical preliminaries for the rest of the paper. We first introduce syntax
and semantics of the Description Logics DLSHOIQ and its sublogicsSHIQ, SHOQ, andSHOI, and
then we define the query answering problem addressed in this work.

2.1 Description Logics

Description Logics (DLs) [2] are logics that are particularly well-suited for the representation of structured
knowledge. The basic elements of DLs areconcepts, denoting sets of objects of the domain of interest,
androles, denoting binary relations between the instances of concepts. They are described by concept and
role expressions built from concept names and role names, byapplying concept and roleconstructors, re-
spectively. The domain of interest is then modelled througha knowledge base, which comprises logical
assertions both at the intensional level (specifying the properties of concepts and roles), and at the exten-
sional level (specifying the properties of individuals andthe relationships among individuals).

We assume thatR, C, I are countable and pairwise disjoint sets ofrole names, concept names, and
individuals, respectively, and thatR+ ⊆ R is a set oftransitive role names.

2.1.1 The DLSHOIQ

Definition 2.1 [Roles] A role expressionR (or simply role) is either a role nameP ∈ R or its inverse,
denotedP−. A role inclusion axiomis an expression of the formR ⊑ R′ whereR andR′ are roles. Arole
hierarchyR is a set of role inclusion axioms.

As usual, we introduce the functionInv as follows:

Inv(R) =

{

P−, if R = P is a role-name

P, if R = P− for some role nameP

The relation⊑∗
R denotes the reflexive, transitive closure of⊑ over a role hierarchyR ∪ {Inv(R) ⊑

Inv(R′) | R ⊑ R′ ∈ R}. If R ⊑∗
R R′, then we callR asub-roleof R′ andR′ asuper-roleof R w.r.t.R.

INFSYS RR 1843-07-07 5

A roleR is transitivew.r.t. a role hierarchyR, denoted byTrans(R,R), if eitherR or Inv(R) belongs to
R+, or the role hierarchyR implies thatR is both a sub-role and a super-role of a transitive role; formally,
Trans(R,R) holds iffR ⊑∗

R R′ andR′ ⊑∗
R R for someR′ ∈ R+ ∪ {R− | R ∈ R+}.

Finally, a roleS is simplew.r.t. a role hierarchyR if S is neither transitive nor has transitive sub-roles,
i.e., for no roleR with Trans(R,R) we have thatR ⊑∗

R S.
In the following, we omitR when it is clear from the context, and use⊑∗ andTrans(R) instead of⊑∗

R

andTrans(R,R), respectively.

Definition 2.2 [Concepts]SHOIQ concepts (or simply concepts) are defined inductively according to the
following syntax:

C,C ′ −→ A atomic concept (S1)
| {o} nominal (S2)
| C ⊓ C ′ conjunction (S3)
| C ⊔ C ′ disjunction (S4)
| ¬C negation (S5)
| ∀R.C universal quantification (S6)
| ∃R.C existential quantification (S7)
| ≥ nS.C | ≤ nS.C (qualified) number restrictions (S8)

whereA is a concept name,C andC ′ are concepts,R is a role,S is a simple role, andn ≥ 0 is an integer.
An atomic conceptis either a nominal{o} with o ∈ I or a concept nameA ∈ C.

In DLs, the knowledge base about the domain of interest consists of an intensional component, called
TBox, representing general knowledge about the domain, andan extensional component, called ABox,
representing knowledge about specific objects. Additionally, in the DLs of theSH family, a role hierarchy
might be present.

Definition 2.3 [Knowledge base] Aconcept inclusion axiomis an expressionC ⊑ D whereC andD are
concepts. Anassertionα is an expressionA(a), P (a, b) or a 6≈ b, whereA is a concept name,P is a role
name, anda, b are individuals inI. A TBox, or terminology, is a finite set of concept inclusion axioms,and
anABoxis a finite set of assertions. A (SHOIQ) knowledge base(KB) is a tripleK = 〈T ,R,A〉, where
T is a TBox,R is a role hierarchy, andA is an ABox.

Without loss of expressivity, we assume that all concepts inK are innegation normal form(NNF), i.e.,
negation appears only in front of atomic concepts. For a conceptC, NNF (C) denotes the NNF ofC. For
K = 〈T ,R,A〉, we denote byRK the set of roles occurring inT andR, and of their inverses. Furthermore,
CK denotes the set of concept names occurring inK, andIK , IA, andIT denote the sets of all individuals
occurring inK, in A, and inT , respectively. Note thatIA ∪ IT = IK for everyK, and ifK is aSHIQ
knowledge base, thenIT = ∅ andIA = IK .

2.1.2 The DLsSHOQ, SHIQ, andSHOI

The three sublogicsSHOQ, SHIQ, andSHOI of SHOIQ are obtained as follows.

Definition 2.4 [Sublogic Roles and Concepts] Roles and concepts inSHOQ, SHIQ, andSHOI are
defined as inSHOIQ, except that

6 INFSYS RR 1843-07-07

• in SHOQ, the inverse role constructor is not available;

• in SHIQ, nominals{o} are not available, i.e., (S2) is not in the syntax ofSHIQ concepts;

• in SHOI, (qualified) number restrictions are not available, i.e., (S8) is not in the syntax ofSHOI
concepts;

Thus, inSHIQ, only concepts namesA ∈ C are atomic concepts.

Definition 2.5 [Sublogic Knowledge Bases] ForL being one of the logicsSHOQ, SHIQ, or SHOI, an
L knowledge baseis aSHOIQ knowledge baseK = 〈T ,R,A〉 such that all roles and concepts occurring
in it are inL.

Example 2.6 As a running example, we use the following twoSHOIQ knowledge bases:

K1 = 〈{A ⊑ ∃P1.A, A ⊑ ∃P2.¬A}, {}, {A(a)}〉

K2 = 〈{A ⊑ ∃P1.A, A ⊑ ∃P2.{o}}, {}, {A(a)}〉.

Note thatK1 is aSHOQ, a SHIQ, and aSHOI knowledge base, whileK2 is aSHOQ and aSHOI
knowledge base, but not aSHIQ one.

We now define the semantics of knowledge bases, which is givenin terms of first-order interpretations.

Definition 2.7 [Model of a knowledge base] AninterpretationI = (∆I , ·I) consists of a non-empty set
∆I , thedomain, and aninterpretation function·I that

• maps each roleR ∈ R to a setRI ⊆ ∆I × ∆I , such thatRI = (RI)+ for eachR ∈ R+ and
(R−)I = {〈o′, o〉 | 〈o, o′〉 ∈ RI},

• assigns to each individualo ∈ I an elementoI ∈ ∆I ,4 and

• assigns to each conceptC ′ a setC ′I ⊆ ∆I such that

(C1 ⊓C2)
I = CI

1 ∩ CI
2

(C1 ⊔C2)
I = CI

1 ∪ CI
2

(¬C)I = ∆I \ CI

(∀R.C)I = {o | for all o′, 〈o, o′〉 ∈ RI implieso′ ∈ CI}
(∃R.C)I = {o | for someo′, 〈o, o′〉 ∈ RI ando′ ∈ CI}

(≥ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI ando′ ∈ CI}| ≥ n}
(≤ nS.C)I = {o | |{o′ | 〈o, o′〉 ∈ SI ando′ ∈ CI}| ≤ n}

{o}I = {oI}.

4Notice that we do not enforce the unique name assumption, i.e., two individualso1 6= o2 may denote the same domain object
oI1 = oI2 .

INFSYS RR 1843-07-07 7

Note that the interpretation of each nominal{o} is a singleton.
An interpretationI satisfiesa role inclusion axiomR ⊑ R′, if RI ⊆ R′I ; a concept inclusion axiom

C ⊑ C ′, if CI ⊆ C ′I ; and an assertionα, denotedI |= α, if:

aI ∈ AI , if α = A(a)

〈aI , bI〉 ∈ P I , if α = P (a, b)

aI 6= bI , if α = a 6≈ b.

An interpretationI satisfies a role hierarchyR anda terminologyT , if it satisfies every axiom ofR andT
respectively. Furthermore,I satisfies an ABoxA, if it satisfies every assertion inA. Finally,I is amodelof
K = 〈T ,R,A〉, denotedI |= K, if it satisfiesT , R, andA.

Note that complex concepts and roles are not allowed in ABoxes. However, this is no limitation, since
an assertionC(a) with a complex conceptC can always be replaced by an assertionAC(a) in the ABox,
together with an inclusion assertionAC ⊑ C, whereAC is a new concept name. This transformation is
model preserving.

Finally, we observe that for all DLs considered here which admit nominals, an ABoxA in K =
〈T ,R,A〉 can beinternalisedin the TBox, yielding a knowledge baseKA = 〈TA,R, ∅〉 with an empty
ABox. Indeed,TA is obtained fromT by adding, for each ABox assertionα in A, the inclusion axiom

{a} ⊑ A, if α = A(a)

{a} ⊑ ∃P .{b}, if α = P (a, b), and

{a} ⊑ ¬{b}, if α = a 6≈ b.

It is easy to see thatK andKA have exactly the same models, so all reasoning services are preserved [54].

2.2 Positive Queries

We now introduce positive (existential) queries, which generalise both conjunctive queries and unions of
conjunctive queries. We assume thatVar is a countably infinite set of variable names.

Definition 2.8 [Positive Queries] Let~x be a vector of variables fromVar. A positive (existential) query
(PQ) over a KBK is a formula∃~x.ϕ(~x), whereϕ(~x) is built using∧ and∨ from atomsC(z) andS(z, z′),
whereC is a concept name inCK , S is a simple role name inRK , andz, z′ are variables from~x or
individuals inIK .

Note that transitive roles and their super-roles are disallowed in queries. We denote byVI(Q) the set of
variables and individuals in a queryQ.

A PQQ = ∃~x.ϕ(~x) is a conjunctive query(CQ), if ϕ(~x) is a conjunction of atoms, and aunion of
conjunctive queries(UCQ), if ϕ(~x) is in disjunctive normal form; every PQ can be easily rewritten to a
UCQ, but the resulting query may be exponentially larger.

Queries are interpreted as usual. For an interpretationI, let π : VI(Q) → ∆I be a total function
such thatπ(a) = aI for each individuala. We writeI, π |= C(x) if π(x) ∈ CI , andI, π |= S(x, y) if
〈π(x), π(y)〉 ∈ SI . Let γ be the Boolean expression obtained fromϕ by replacing each atomα in ϕ with
⊤ if I, π |= α, and with⊥ otherwise. We callπ a match forI andQ, denotedI, π |= Q, if γ evaluates to
⊤. ThenI is a model ofQ (I |= Q), if there is a matchπ for I andQ.

8 INFSYS RR 1843-07-07

Definition 2.9 [Query Entailment] LetQ be a query over a KBK. We say thatK entailsQ, denoted
K |= Q, if I |= Q for each modelI of K. Thequery entailment problemis to decide, givenK andQ,
whetherK |= Q.

Example 2.10 Consider the following PQs:

Q1 = ∃x, y, z.P1(x, y) ∧ P2(x, z) ∧A(y);

Q2 = ∃x, y, z.P2(x, y) ∧ P2(y, z);

Q3 = ∃x, y.(P1(x, y) ∨ P2(x, y)) ∧ P2(y, o).

Note thatQ1 andQ2 are CQs. First, we observe thatK1 |= Q1. Indeed, due to the inclusion axiom
A ⊑ ∃P1.A, in every modelI ofK1 there is some instanceo1 ofA that is connected toaI via roleP1. By the
axiomA ⊑ ∃P2.¬A, there is also some elemento2 that is connected toaI via roleP2. Settingπ(x) = aI ,
π(y) = o1, andπ(z) = o2, we have a match forI andQ1. Similarly,K2 |= Q1: if I is a model ofK2, let
o1 be an instance ofA that is connected toaI via roleP1; such ano1 exists by the axiomA ⊑ ∃P1.A. Then
π(x) = aI , π(y) = o1, andπ(z) = oI is a match forI andQ1.

Next, we haveK1 6|= Q2. Indeed,I = (∆I , ·I) where∆I = {o1, o2} and aI = o1, AI = {o1},
P I

1 = {〈o1, o1〉}, andP I
2 = {〈o1, o2〉}, is a model ofK1 but not ofQ2. To see thatK2 6|= Q2, simply

extendI to the nominal{o} by setting{o}I = {o2}; then we have a model ofK2 but not ofQ2. Finally,
K2 |= Q3. (Note thatQ3 is not a query overK1, sinceo 6∈ IK1.) Indeed, in every modelI ofK2, aI must
be connected to some instanceo1 of A via P1 by the axiomA ⊑ ∃P1.A. The axiomA ⊑ ∃P2.{o} ensures
that o1 is connected tooI via roleP2. Therefore,π(x) = aI , π(y) = o1, andπ(o) = oI is a match forI
andQ3.

The query entailment problem for a DLL is in a complexity classC, if given a KBK in L and a queryQ,
decidingK |=Q is in C; this is also calledcombined complexity, while thedata complexityis the complexity
of decidingK |= Q whereQ and all ofK exceptA are fixed.

Note that in Definition 2.8, queries have no distinguished (i.e., free) variables, so they are Boolean
queries. For a queryQ = ∃~x.ϕ(~y, ~x) with distinguished variables~y, thequery answering problemoverK
consists in finding all the possible tuples~t of individuals (of the same length as~y) such thatK |= ∃~x.ϕ(~t, ~x)
holds. Query answering can be reduced to answering all possible such Boolean queries with individuals
appearing inK; that is, to polynomially many (in the size of the ABox) queryentailment problems.

3 A Tableaux Algorithm for Query Entailment

In this section, we describe an algorithm to solve the query entailment problem for PQs in the DLs of the
SH family we have introduced. As shown in this and the next section, it is sound and complete forSHOQ,
SHIQ, andSHOI. ForSHOIQ it is sound, while completeness is not guaranteed.

An important note is that the query entailment problem in allthese DLs is not reducible to knowledge
base satisfiability, since in general the negation of a queryis not expressible as a part of a knowledge base.
For this reason, the known algorithms for reasoning over knowledge bases are insufficient. In general, a
knowledge base has infinitely many (possibly infinite) models, and in principle we have to verify whether
the query is satisfied in all of them. Our technique builds on the tableaux algorithm for satisfiability of
SHOIQ knowledge bases in [32]. Informally, the difference is thatthe latter algorithm only focuses on
problems that are reducible to satisfiability checking; hence, it only needs to ensure that the algorithm

INFSYS RR 1843-07-07 9

obtains a model if the knowledge base is satisfiable. In our case this is not enough. We need to make sure
that the algorithm obtains a set of models that suffices to check query entailment. This adaption to query
answering is inspired by [43], yet we deal with DLs that lack the finite model property. Like the algorithm
in [32] we usecompletion graphs, finite relational structures that represent sets of modelsof a knowledge
base. Roughly, an initial completion graphGK for K is built. Then, by applyingexpansion rulesrepeatedly,
new completion graphs are generated. The application of therules is non-deterministic, and sometimes new
individuals are introduced. Modulo the names of these new individuals, every model ofK is represented in
some completion graph that results from the expansion, thuscheckingK |= Q is thus equivalent to checking
whether the query is entailed in all the models represented by every sufficiently expanded completion graph
G. From each suchG a singlecanonical modelis constructed. Semantically, the finite set of these canonical
models is sufficient for answering all queriesQ of bounded size. Furthermore, we prove that entailment in
the canonical model obtained fromG can be checked effectively via a syntactic mapping of the variables in
Q to the nodes inG.

As customary with tableau-style algorithms, we give blocking conditions on the rules that ensure that the
expansion of the graphs terminates. They are more involved than those in [32], which serve for satisfiability
checking but not for query entailment, and they involve a parametern which depends onQ.

3.1 Completion Graphs

Let VN be a countably infinite set ofvariable nodes, disjoint from the vocabulary used in defining queries
and knowledge bases. Acompletion graphG consists of a finite labelled directed graph(nodes(G), arcs(G),
L) such thatnodes(G) ⊆ VN ∪ I and a binary relation6≈ on nodes(G).5 Each nodev of G is labelled
with a finite setL(v) of concepts and each arcv→w of G with a finite setL(v→w) of roles. The nodew
is asuccessorof v andv a predecessorof w. The union of the successor and predecessor relations is the
neighbourrelation, and their respective transitive closures are calleddescendantandancestor. Thedistance
between two nodesv,v′ in G is defined in the natural way. We refer toin(G) = {v ∈ nodes(G) | {o} ∈
L(v), o ∈ I} as theindividual nodesin G and tovn(G) = nodes(G) \ in(G) as thevariable nodesin G.6

Now we introduce completion graphs for aSHOIQ knowledge baseK = 〈T ,R,A〉. Instead of
using TBox internalisationand assuming an empty TBox as in [34, 32], we use a set ofTBox concepts
tcon(K) = {¬C ⊔ D | C ⊑ D ∈ T }. By requiring that each individual belongs to all these concepts,
satisfaction of the TBox is enforced. Thesubconcept closureof a conceptC is the smallest set of concept
expressions containingC that is closed under subconcepts and their negation (expressed in NNF). Given a
conceptC and a role hierarchyR, clos(C,R) is the smallest set containing the subconcept closure ofC and
all concepts of the form∀R′.D for eachR′ occurring inR or inC and for each concept expressionD such
that∀R.D or NNF (∀R.D) is in the subconcept closure ofC. Theclosure ofK, denotedclos(K), is the
union of all clos(C,R) for each conceptC occurring intcon(K). In the following, letKA = 〈TA,R, ∅〉
whereTA is as in Section 2.1.

Definition 3.1 [Completion graph [32]] Acompletion graphG for a knowledge baseK is a completion
graph in which each nodev is labelled withL(v) ⊆ clos(KA) ∪ {{o} | o ∈ I} ∪ {≤ mR.C | ≤ nR.C ∈
clos(KA) andm ≤ n}, and in which each arcv→w has a labelL(v→w) ⊆ RKA

. If for two nodesv, w
there is no arcv→w in G, we considerL(v→w) = ∅. For each arcv→w and roleR, if R′ ∈ L(v→w)

5The 6≈ relation is used to state explicit inequalities between nodes, i.e., that two nodes of a graph must be interpreted as different
individuals (there is no unique name assumption). It is tacitly assumed that6≈ is symmetric.

6Our individual nodes correspond tonominal nodesin [32], and our variable nodes toblockable nodes.

10 INFSYS RR 1843-07-07

P2P2P2P2

v1

L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1a
F1

L1∪{{a},¬{a} ⊔ A}

P2P2P2P2

v1

L1

v3

L1

v5

L1

v7

L1

L2 L2 L2 L2
v2 v4 v6 v8

P1P1P1 P1

L1 L1

P1 P1

P2 P2

L2 L2
v10 v12

v9 v11a

F2

L1∪{{a},¬{a} ⊔ A}

Figure 1: Completion graphs for the example knowledge baseK1

for some roleR′ with R′ ⊑∗ R, thenw is anR-successorof v. We callw anR-neighbourof v, if w is an
R-successorof v, or if v is anInv(R)-successorof w.

In order to provide a method for verifying entailment of a conjunctive queryQ in a knowledge base
K, we first associate withK an initial completion graph and then we generate new completion graphs by
applyingexpansion rules.

The initial completion graphGK associated withK has a nodea labelled withL(a) = {{a}} ∪
tcon(KA), for each individuala ∈ IK , and the relation6≈ is empty.

Example 3.2 In our running example,GK1 contains only the nodea which has the labelL(a) := {{a},
¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.¬A, ¬{a} ⊔A}. GK2 contains two nodes,a ando, with the labelsL(a) := {{a},
¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, ¬{a} ⊔A} andL(o) := {{o}, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, ¬{a} ⊔A}. In
both graphs the6≈ relation is empty.

From this initialGK , we obtain new completion graphs by applying expansion rules, which may intro-
duce new nodes. Variable nodes are always introduced as successors of exactly one existing node. Hence,
the variable nodes in a completion graph form a set of trees that have individual nodes as roots. It may
also happen that one of these variable nodes has an individual node as its successor, thus we have a tree of
variable nodes that has a branch ending with an arc leading toan individual node. If a completion graphF
for K has no such arcs, thenF is a set of trees of variable nodes, whose roots are possibly interconnected
individual nodes. This special kind of completion graphs are calledcompletion forests.

For any knowledge baseK, the initial completion graphGK is a completion forest. IfK is aSHIQ
knowledge base the expansion rules only introduce variablenodes and any completion graph obtained by
applying the expansion rules is a completion forest. This isnot the case ifK is a knowledge base in some
DL with nominals, since arcs from variable to individual nodes may be introduced.

Example 3.3 In Figure 1, we show the completion graphsF1 and F2 for K1, which have an empty6≈
relation (for simplicity, omitted in the figure).L1 = {A, ¬A⊔∃P1.A, ¬A⊔∃P2.¬A, ∃P1.A, ∃P2.¬A}, and
L2 = {¬A, ¬A⊔∃P1.A, ¬A⊔∃P2.¬A}. Note that bothF1 andF2 are completion forests. Figure 2 shows
the completion graphG1, whereL′

1 = {A, ¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, ∃P1.A, ∃P2.{o}} andL′
2 = {{o},

¬A ⊔ ∃P1.A, ¬A ⊔ ∃P2.{o}, ¬{a} ⊔A, ¬A, ¬{a}}. The6≈ relation is empty inG1.

INFSYS RR 1843-07-07 11

v1

L′
1

P1P1P1 P1a v2 v3 v4

o

P2 P2 P2 P2P2

G1

L′
1 L′

1 L′
1

L′
2

L′
1 ∪ {{a},¬{a} ⊔ A}

Figure 2: A completion graph for the example knowledge baseK2

Next, before giving the expansion rules, we define a notion ofblocking which depends on a depth
parametern ≥ 0. This notion generalises blocking in [32], where then parameter is not present.

Definition 3.4 [Blockablen-graph,n-graph equivalence] Given an integern ≥ 0 and a completion graphG,
theblockablen-graph of nodev ∈ vn(G) is the subgraphGn,v of G that containsv and (i) every descendant
w ∈ vn(G) of v within distancen, and (ii) every successorw′ ∈ in(G) of each suchw. If w has inGn,v no
successors fromvn(G), we callw a leaf ofGn,v. Nodesv, v′ of G aren-graph equivalent via a bijectionψ
fromnodes(Gn,v) to nodes(Gn,v′) if:
- ψ(v) = v′,
- for everyw ∈ nodes(Gn,v), L(w) = L(ψ(w)),
- arcs(Gn,v′) = {ψ(w)→ψ(w′) | w→w′ ∈ arcs(Gn,v)},
- for everyw→w′ ∈ arcs(Gn,v) , L(w→w′) = L(ψ(w)→ψ(w′)).

As discussed above, in the algorithm variable nodes occur only in tree-shaped structures. Then-graph
of each variable nodev is a tree of variable nodes of depth at mostn rooted atv, plus arcs to the individual
nodes that are direct successors of a node in this tree. The leaves of the graph are the leaves of the tree in the
usual sense. For the completion graph obtained from aSHIQ KB, all n-graphs are actually trees of depth
at mostn.

Definition 3.5 [n-witness, graph-blocking] Letv, v′ ∈ vn(G) ben-graph equivalent viaψ, where bothv
andv′ have predecessors invn(G), v′ is an ancestor ofv in G, andv is not inGn,v′ . If v′ reachesv on a path
containing only nodes invn(G), thenv′ is an-witness ofv in G via ψ. Moreover, Gn,v′ graph-blocksGn,v

via ψ, and eachw ∈ nodes(Gn,v′) graph-blocks viaψ the nodeψ−1(w) in Gn,v.

Note that if someG′ graph-blocks someG via a bijectionψ, then the particularψ does not matter and
any other bijection satisfying the three conditions of Definition 3.4 could be equivalently used. Therefore,
we will always assume a fixed arbitrary bijection from a graph-blockedG to a graph-blockingG′, and denote
it ψ. Moreover, we often omitψ and simply sayG′ graph-blocksG, v1 graph-blocksv2, etc.

Example 3.6 In F1, v1 andv5 are 1-graph equivalent,v1 is a 1-witness ofv5 (but not vice versa);F1
1,v1

graph-blocksF1
1,v5 ; and v1 (resp.,v3, v4) graph-blocksv5 (resp.,v7, v8).

Definition 3.7 [n-blocking] For an integern≥ 0 and a completion graphG, a nodev ∈ nodes(G) is n-
blocked, if v ∈ vn(G) andv is either directly or indirectlyn-blocked;v is indirectly n-blocked, if one of its
ancestors isn-blocked;v is directlyn-blockediff none of its ancestors isn-blocked andv is a leaf of some
blockablen-graph inG that is graph-blocked; in this case we say thatv is (directly)n-blocked byψ(v) (i.e.,
by the node inG that graph-blocksv). 7 An R-neighbourw of a nodev in G is n-safeif v ∈ vn(G) or if w
is notn-blocked.

7Note that the graph-blockingn-graph is unique, and thus by our assumption also the bijectionψ is unique.

12 INFSYS RR 1843-07-07

Note thatv is m-blocked for eachm≤n if it is n-blocked. Whenn ≥ 1, thenn-blocking implies
pairwise blocking, which is the blocking used in [36, 32]. Whenn=0, thenn-blocking corresponds to
blocking by equal node labels (equality blocking [5]), which is a sufficient blocking condition in some DLs
weaker thanSHIQ.

Example 3.8 Consider the completion forestsF1 andF2 (Figure 1). The nodesv7 andv8 in F1 are (di-
rectly) 1-blocked. Similarly, inF2 v11 andv12 are (directly)2-blocked. Consider the completion graphG1

in Figure 2. In it,G1
1,v1 graph-blocksG1

1,v3 ; v4 is (directly)1-blocked.

Now we can give our expansion rules, which are essentially the same as in [32]. The main differences
are that “blocked” is uniformly replaced by “n-blocked” and that in the generating rules, the labels of the
newly generated nodes must containtcon(K) (because we don’t assume an empty TBox). The rules use
two operations on completion graphs calledmerge andprune (prune does not appear in the rules, but it is
used bymerge). To illustrate the use of these operations, consider the≤-rule. Suppose a nodev is labelled
by the concept≤ 2S.C and has three successorsv1, v2, v3 labelled withC, andv2 6≈ v3 does not hold.
Then we can makev satisfy≤ 2S.C, by merging the nodesv2 andv3 into one. For this purpose, we use
merge(v2, v3), which then appliesprune(v2). Intuitively, merge(v2, v3) merges the nodev2 into v3: the
label ofv2 is added to the label ofv3, all incoming arcs ofv2 are copied tov3, and the outgoing arcs ofv2 to
an individual node are also copied tov3. After the merging,prune(v2) removesv2 from G and, recursively,
all its variable successors.

Formally, for a completion graphG andv,w ∈ nodes(G), the operationprune(w) yields a graph that is
obtained fromG as follows:

1. For each successorw′ of w, removew→w′ from arcs(G), and ifw′ ∈ vn(G), thenprune(w′).

2. Removew from nodes(G).

The operationmerge(w, v) yields a forest obtained fromG as follows:

1. For eachw′ ∈ nodes(G) such thatw′ →w ∈ arcs(G)

(a) if neitherv→w′ nor w′ → v is in arcs(G), then addw′ → v to arcs(G) and setL(w′ → v) :=
L(w′ →w);

(b) if w′ → v is in arcs(G), then setL(w′ → v) := L(w′ → v) ∪ L(w′ →w);
(c) if v→w′ is in arcs(G), then setL(v→w′) := L(v→w′) ∪ {Inv(R) | R ∈ L(w′ →w)};
(d) removew′ →w from arcs(G).

2. For eachw′ ∈ nodes(G) \ vn(G) such thatw→w′ ∈ arcs(G)

(a) if neitherv→w′ nor w′ → v is in arcs(G), then addv→w′ to arcs(G) and setL(v→w′) :=
L(w→w′);

(b) if v→w′ is in arcs(G), then setL(v→w′) := L(v→w′) ∪ L(w→w′);
(c) if w′ → v is in arcs(G), then setL(w′ → v) := L(w′ → v) ∪ {Inv(R) | R ∈ L(w→w′)};
(d) removew→w′ from arcs(G).

3. SetL(v) := L(v) ∪ L(w).

4. Addv 6≈ w′ for eachw′ with w 6≈ w′.

5. prune(w).

INFSYS RR 1843-07-07 13

v1

L′
1 L′

1

P1P1P1 P1a v2 v3 v4

o

P2 P2 P2 P2

v5 v6P1 P1

L′
1 L′

1

P2 P2P2

L′
2

L′
1 L′

1

G2

L′
1 ∪ {{a},¬{a} ⊔ A}

Figure 3: 2-complete completion graph for the example knowledge baseK2

To obtain new completion graphs from the initialGK , we apply the rules in Table 1. Note that their
application is non-deterministic. Different choices forE in the⊔-rule and thechoose-rule generate different
graphs. The choice ofw andw′ in the≤-rule is also non-deterministic. The∃-rule, the≥-rule and the
o?-rule are calledgenerating rules, since they add new nodes to the graph The≤-rule and theo-rule are
shrinking rules, since they merge two nodes of the graph into one.

Note that theo-rule merges two nodes whenever their labels share a nominal. Like in [32], we assume
that whenever this rule is applicable, it is applied immediately. This consideration allows us to assume that,
in every completion graph, each nominal occurs in the label of at most one node.

An important note is that theo?-rule is never applicable forSHOQ, SHIQ, andSHOI KBs8, which
allows us to prove termination (see below). ForSHOIQ KBs, however, theo?-rule is needed and the
naive application of the expansion rules can lead to non-termination. Horrocks and Sattler [32] give a
prioritised strategy for rule application which guarantees termination of their satisfiability testing algorithm.
Unfortunately, this strategy does not work for our query answering algorithm; we cannot ensure that it
terminates onSHOIQ KBs (although it will do so in many cases).

Definition 3.9 [Clash-free completion graph] A completion graphG contains aclashif one of the following
holds:

1. For somev ∈ nodes(G) and some concept nameA, {A,¬A} ⊆ L(v).

2. For somev ∈ nodes(G) with ≤ nS.C ∈ L(v), v hasn + 1 S-neighboursw0, . . . , wn such that, for
all wi, wj with 0 ≤ i < j ≤ n, C ∈ L(wi) andwi 6≈ wj ∈ G.

3. For someo ∈ I and somev, v′ ∈ nodes(G), {o} ∈ L(v) ∩ L(v′) andv 6≈ v′ ∈ G.

If G does not contain a clash, thenG is clash-free.

Definition 3.10 [n-complete completion graph] A completion graphG is n-complete, if no rule in Table 1
can be applied to it.

For a knowledge baseK, we denote byGK the set of all completion graphs that can be obtained from
the initial GK by applying the expansion rules, and byccfn(GK) the set of completion graphs inGK that
aren-complete and clash free.

Example 3.11 BothF1 andF2 can be obtained fromGK1 by applying the expansion rules, and they are
both clash-free.F1 is1-complete andF2 is 2-complete, soF1 ∈ ccf1(GK1) andF2 ∈ ccf2(GK1). Consider

8This also holds forSHOIQ KBs without interaction between number restrictions, inverse roles, and nominals, in particular
for SHOIQ KBs that result from internalising an ABox, as described in Section 2.1.

14 INFSYS RR 1843-07-07

⊓-rule: if C1 ⊓ C2 ∈ L(v),
v is not indirectlyn-blocked and{C1, C2} * L(v),

then L(v) := L(v) ∪ {C1, C2}.
⊔-rule: if C1 ⊔ C2 ∈ L(v),

v is not indirectlyn-blocked and{C1, C2} ∩ L(v) = ∅,
then L(v) := L(v) ∪ {E} for someE ∈ {C1, C2}.

∃-rule: if ∃R.C ∈ L(v), v is notn-blocked and
v has non-safeR-neighbourw with C ∈ L(w),

then create new nodew with L(v→w) := {R} and
L(w) := {C} ∪ tcon(K).

∀-rule: if ∀R.C ∈ L(v), v is not indirectlyn-blocked and
v has anR-neighbourw with C /∈ L(w),

then L(w) := L(w) ∪ {C}.
∀+-rule: if ∀R.C ∈ L(v), v is not indirectlyn-blocked,

there is someR′ with Trans(R′) andR′ ⊑∗ R and
there is anR′-neighbourw of v with ∀R′.C /∈ L(w),

then L(w) := L(w) ∪ {∀R′.C}.
choose- if ≤ mS.C ∈ L(v), v is not indirectlyn-blocked and there is
rule: anS-neighbourw of v with {C,NNF (¬C)} ∩ L(w) = ∅,

then L(w) := L(w) ∪ {E} for someE ∈ {C,NNF (¬C)}.
≥-rule: if ≥ mS.C ∈ L(v), v is notn-blocked and

there are notm n-safeS-neighboursw1, . . . , wm of v
such thatC ∈ L(wi) andwi 6≈ wj for 1 ≤ i < j ≤ m,

then create new nodesw1, . . . , wm with L(v→wi) := {S},
L(wi) := {C} ∪ tcon(K) andwi 6≈ wj for 1 ≤ i < j ≤ m.

≤-rule: if ≤ mS.C ∈ L(v), v is not indirectlyn-blocked,
|{w | w is anS-neighbour ofv andC ∈ L(w)}| > m and
there areS-neighboursw, w′ of v with notw 6≈ w′,
andC ∈ L(w) ∩ L(w′),

then (i) if w ∈ in(G), thenmerge(w′, w); else
(ii) if w′ ∈ in(G) orw′ is an ancestor ofw, merge(w,w′);
else (iii) merge(w′, w).

o-rule: if there arev, v′ with notv 6≈ v′

and{o} ∈ L(v) ∩ L(v′) for someo ∈ in(G),
then merge(v, v′).

o?-rule: if ≤ mS.C ∈ L(v), v ∈ in(G), v′ ∈ vn(G), C ∈ L(v′),
v′ is anS-neighbour ofv, v is a successor ofv′, and there is
nom′ with 1 ≤ m′ ≤ m such that: (i) ≤ m′ S.C ∈ L(v);
(ii) v hasm′ S-neighboursw1, . . . , wm′ ∈ in(G)
with C ∈ L(wi) andwi 6≈ wj for all 1 ≤ j < i ≤ m′,

then guessm′ ≤ m, setL(v) := L(v) ∪ {≤ m′ S.C},
createm′ new nodesw1, . . . , wm′ with L(v→wi) := {S},
L(wi) := {C, {oi}} ∪ tcon(K) for someoi ∈ I \ in(G),
andwi 6≈ wj for all 1 ≤ j < i ≤ m′.

Table 1: Expansion Rules

INFSYS RR 1843-07-07 15

also the completion graphsG1 in Figure 2 andG2 in Figure 3 (whereL′
1 andL′

2 are as in Example 3.3). Both
can be obtained fromGK2 by means of the expansion rules. They are both clash-free completion graphs,
and they are1-complete and2-complete respectively, soG1 ∈ ccf1(GK2) andG2 ∈ ccf2(GK2).

3.2 Models of a Completion Graph

Semantically, by viewing all the nodes of a completion graphas individuals, we can interpret a comple-
tion graph in a very similar way as we interpret a knowledge base. Intuitively, every individual inK is
represented by a node of the completion graph, but the completion graph may have additional nodes. An
interpretation of the individuals, concepts, and roles inG is an interpretation ofK, possibly extended to
interpret these additional nodes, and we can see it as a representation of a set of models ofK.

Definition 3.12 [Model of a completion graph] Anextended interpretationI = (∆I , ·I) is an interpretation
as in Definition 2.7 that in addition assigns to each nodev ∈ VN an elementvI ∈ ∆I . The respective
ordinary interpretation given byI is denoted byI\VN. Let G ∈ GK . ThenI is a modelof G w.r.t.K,
writtenI |=K G, if:

1. I\VN |= K, and

2. for all v,w ∈ nodes(G), {C ∈ L(v)} ⊆ {C | vI ∈ CI}, {R∈ L(v→w)}⊆{R | 〈vI , wI〉 ∈RI},
andv 6≈ w ∈ G impliesvI 6= wI .

We emphasize that, in order to be a model of a completion graphfor K, an extended interpretation must
include a model ofK (item 1).

We say that two extended interpretationsI andJ areequal modulo a setN ⊆ VN ∪ I, if ∆I = ∆J

and for everyv,w ∈ N , vI = vJ , {C | vI ∈ CI} = {C | vJ ∈ CJ }, and{R | 〈vI , wI〉 ∈ RI} =
{R | 〈vJ , wJ 〉 ∈ RJ }. Furthermore, we call an extended interpretationJ aK-extensionof an ordinary
interpretationI, if J equals someJ ′ moduloIK such thatI = J ′\VN.

The initial completion graphGK is just an alternative representation of the knowledge base, and it
has exactly the same models. The following lemma is immediate from the definition of the semantics of
knowledge bases and ofGK .

Lemma 3.13 For every extended interpretationI, I |=K GK iff I\VN |= K.

When we expand the graph, we make choices and obtain new graphs that represent a subset of the
models of the knowledge baseK. The union of all the models of the graphs inccfn(GK), when restricted
to the language ofK, coincides with all the models ofK, independently of the value ofn. Therefore, if we
want to check all models ofK, we must check all the models of all the graphs inccfn(GK) for somen.

Proposition 3.14 Letn ≥ 0. For every interpretationI such thatI |= K, there is someG ∈ ccfn(GK) and
someK-extensionJ of I such thatJ |=K G.

Proof. Consider an interpretationI such thatI |= K. Intuitively, everyK-extensionJ of I is a model
of the initial GK , andI can be used to guide the non-deterministic choices when applying the expansion
rules, in such a way that clashes are avoided until a completegraph is reached. This is the same intuition

16 INFSYS RR 1843-07-07

underlying the proof of completeness given in [32].9 Formally, letGk denote the set of completion graphs
obtained fromGK by k applications of the expansion rules, andcf(Gk) the set of these graphs that are
clash-free. We prove the following claim by induction onk ≥ 0:

Claim 1. For everyk ≥ 0, there is someK-extensionJ of I and someG ∈ cf(Gk) such thatJ |=K G.

If k = 0, thencf(Gk) = {GK} and the claim holds by Lemma 3.13. For the inductive step, we use the
following fact:

Claim 2. Let G ∈ GK , let J |=K G, and letr be any rule in Table 1 that is applicable toG. Then, there
exist a completion graphG′ obtainable fromG by applyingr and an extended interpretationJ ′ equal toJ
modulonodes(G) such thatJ ′ |=K G′.

The (straightforward) proof of Claim 2 is given in the Appendix. Consider nowG ∈ cf(Gk). If J |=K G,
then by Claim 2 there exist someJ ′ equal toJ modulonodes(G) and someG′ ∈ G

k+1 such thatJ ′ |=K G′.
AsJ is aK-extension ofI andIK ⊆ nodes(G), alsoJ ′ is aK-extension ofI w.r.t.K. SinceG′ has some
model w.r.t.K, G′ ∈ cf(Gk+1) and Claim 1 holds.

3.3 Answering Positive Queries

Recall that for a knowledge baseK and a queryQ, K |= Q holds iff I |= Q for every modelI of K. We
define an analogous notion of query entailment in a completion graphG: G |=K Q iff I\VN |= Q for every
modelI of G w.r.t.K. We are interested in checking whetherK |= Q, which means that entailment ofQ
has to be verified in every model ofK. To this end, we may choose an arbitraryn and check entailment of
Q in each graphG ∈ ccfn(GK). This is sound since all the models ofK are represented by the graphs in
ccfn(GK).

Proposition 3.15 Letn ≥ 0. ThenK |= Q iff G |=K Q for everyG ∈ ccfn(GK).

Proof. For the only if direction, assumeK |= Q. ConsiderG ∈ GK and someI such thatI |=K G.
Since I\VN |= K by definition,K |= Q implies thatI\VN |= Q. Hence,G |=K Q. The if direction
is shown by contraposition. IfK 2 Q, then there exists some modelI of K such thatI 2 Q. By
Proposition 3.14, there is someK-extensionJ of I and someG ∈ ccfn(GK) such thatJ |=K G. Note that
I 2 Q impliesJ 2 Q, sinceJ andI can only differ in the interpretation of the nodes inVN, which is
irrelevant forQ. Thus,G 2K Q.

In order to decide query entailment, we can choose an arbitrary n ≥ 0 and check all the models of all
the completion graphs inccfn(GK). This is still not enough to yield a decision procedure: although the
set ccfn(GK) is finite, we do not have an algorithm for deciding entailmentof queryQ in all (possibly
infinitely many) models of a completion graph. In the rest of this section, we show that if a suitablen is
chosen, entailment in all the models ofK can be decided effectively by finding a mapping of the query into
eachG ∈ ccfn(GK).

Definition 3.16 [Query mapping] LetQ = ∃~x.ϕ(~x) be a PQ and letG be a completion graph. Letµ :
VI(Q) → nodes(G) be a total function such that{a} ∈ L(µ(a)) for each individuala in VI(Q). We write

C(x)
µ
−֒→G if C ∈ L(µ(x)), andS(x, x′)

µ
−֒→G if µ(x′) is anS-neighbour ofµ(x). Let γ be the Boolean

9The details of the proof are quite different, however, sincethe authors of [32] use tableaux, while we use completion graphs as
model representations.

INFSYS RR 1843-07-07 17

expression obtained fromϕ(~x) by replacing each atomα in ϕ with ⊤, if α
µ
−֒→G, and with⊥ otherwise. We

say thatµ is amapping forQ into G, denotedQ
µ
−֒→G, if γ evaluates to⊤. Q can be mapped intoG, denoted

Q →֒ G, if there is a mappingµ for Q into G.

Example 3.17 We have thatQ1
µ1
−֒→F1 andQ1

µ′
1

−֒→F2, witnessed byµ1(x) = µ′1(x) = a,µ1(y) = µ′1(y) =
v1 and µ1(z) = µ′1(z) = v2. Note that there is no mapping ofQ2 into F2 or F1 satisfying the above
conditions. The mappingsµ2(x) = µ′2(x) = a, µ2(y) = µ′2(y) = v1 andµ2(o) = µ′2(o) = o show that

Q3
µ2
−֒→G1 andQ3

µ′
2

−֒→G2.

Indeed, for completion graphsG for K, syntactic mappabilityG →֒Q implies semantic consequence
G |=K Q.

Lemma 3.18 If Q →֒ G, thenG |=K Q.

Proof. SinceQ →֒ G, there is a mappingµ : VI(Q) → nodes(G) satisfying Definition 3.16. LetI be
a model ofG w.r.t.K. ThenvI ∈ CI if C ∈ L(v); and ifw is anR-neighbour ofv, then〈wI , vI〉 ∈ RI .
We can define a match forI andQ by settingπ(x) = µ(x)I for everyx ∈ VI(Q). It satisfiesπ(a) = aI

for each individuala andI, π |= α for each atomα such thatα
µ
−֒→G. Hence,I |=K Q, which implies

G |=K Q.

Since every model of the KBK is represented by some completion graph, we already know that Q
is entailed byK if there is a mapping forQ in eachG. We prove that the converse also holds. Now the
blocking conditions come into play and the mapping will onlybe feasible ifn is sufficiently large. We show
that providedG has been expanded far enough, a suitable mappingµ into G can be constructed from a single
modelIG of K, which we call thecanonical model induced byG. In fact, entailment in this model implies
entailment in the completion graph forall queriesQ of bounded size. Indeed, we will see that the mapping
µ can be constructed from any match forIG andQ.

3.3.1 Tableaux and Canonical Models

To build the canonical model induced byG ∈ ccfn(GK) (with n ≥ 1), we unravelG into a tableauTG .
This tableaus induces a model forK.10 Each path to a node inG is a node ofTG , and blocked nodes act
like ‘loops’. Thus, ifG has blocked nodes, its tableau is an infinite structure. Defining a model fromT is
straightforward. The definition of tableau is based on the one in [32] (only (P13) is new).

Definition 3.19 [Tableau] A tripleT = 〈S,L, E〉 is a tableau for a KBK = 〈A,R,T 〉, if S is a non-empty
set;L : S → 2clos(KA) maps each element inS to a set of concepts; andE : RKA

→ 2S×S maps each role to
a set of pairs of elements inS. Furthermore, for alls, t ∈ S; C,C1, C2 ∈ clos(KA); andR,R′, S ∈ RKA

,
T satisfies:

(P1) ifC ∈ L(s), then¬C /∈ L(s);
(P2) ifC1 ⊓ C2 ∈ L(s), thenC1 ∈ L(s) andC2 ∈ L(s);
(P3) ifC1 ⊔ C2 ∈ L(s), thenC1 ∈ L(s) orC2 ∈ L(s);
(P4) if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R), thenC ∈ L(t);
(P5) if ∃R.C ∈ L(s), then〈s, t〉 ∈ E(R) andC ∈ L(t) for somet ∈ S;

10Note that we only use tableaux to define the canonical model and to make some technical details easier.

18 INFSYS RR 1843-07-07

(P6) if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R′) for someR′ ⊑∗ R with Trans(R′) = true, then∀R.C ∈ L(t);
(P7) if≤ nS.C ∈ L(s), then|{t ∈ S | 〈s, t〉 ∈ E(S) andC ∈ L(t)}| ≤ n;
(P8) if≥ nS.C ∈ L(s), then|{t ∈ S | 〈s, t〉 ∈ E(S) andC ∈ L(t)}| ≥ n;
(P9) if 〈s, t〉 ∈ E(R) and≤ nS.C ∈ L(s), then{C,NNF (¬C)} ∩ L(t) 6= ∅;

(P10) if 〈s, t〉 ∈ E(R) andR ⊑∗ R′ then〈s, t〉 ∈ E(R′);
(P11) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R));
(P12) if{o} ∈ L(s) ∩ L(s′) for someo ∈ I, thens = s′;
(P13) ifC ∈ tcon(K) thenC ∈ L(s).

We can easily obtain a canonical model of a KBK from every tableau for it.

Definition 3.20 [Canonical model] LetT = 〈S,L, E〉 be a tableau forT . The canonical model ofT ,
IT = (∆IT , ·IT), is defined as follows:

• ∆IT = S,

• AIT = {s | A ∈ L(s)} for all concept namesA in clos(KA),

• aIT = s ∈ S, {a} ∈ L(s), for all individual namesa in IK , and

• RIT = E(R)⊕ for all role namesR in RKA
, whereE(R)⊕ is theclosure of the extensionof R under

R, defined as follows:

E(R)⊕ =

{

(E(R))+ if Trans(R),
E(R) ∪ sub(E(R)⊕) otherwise

wheresub(E(R)⊕) =
⋃

R′⊑∗R, R′ 6=R E(R′)⊕ and(E(R))+ is the transitive closure ofE(R).

Please note that for each simple roleS, SIT = E(S)⊕ =
⋃

S′⊑∗S E(S′).

Lemma 3.21 LetT be a tableau forK. ThenIT |= K.

Proof. The claim follows from the proof of Lemma 4 in [32]. The only difference is that in [32] it is
assumed thatT = ∅. But due to (P13), it can be easily verified thatIT satisfiesT .

Each completion graphG ∈ ccfn(GK) with n ≥ 1 induces a tableauTG that is the unravelling ofG,
and which has as domain the set of paths inG. Each of these paths actually comprises a sequence of pairs
of nodes v

v′
, in order to witness the loops introduced by blocked variables. The paths and the tableau are

constructed as in [32].

Definition 3.22 [Induced tableau] LetG ∈ ccfn(GK), n ≥ 1. In a sequence of pairs of nodes of the form
p = [v0

v′0
, . . . , vm

v′m
], we definetail(p)= vm andtail′(p)= v′m. By [p | vm+1

v′m+1
] we denote[v0

v′0
, . . . , vm

v′m
, vm+1

v′m+1
].

For a sequence of pairs of nodesp and a variablev ∈ vn(G), if v is notn-blocked andv is anR-successor
of tail(p), then[p | v

v
] is anR-stepof p; if v is directlyn-blocked byw andv is anR-successor oftail(p),

then[p | w
v
] is anR-stepof p. p. The set ofpaths inG, denotedpaths(G), is inductively defined as follows:

• if a ∈ in(G), then[a
a
] ∈ paths(G).

• if p ∈ paths(G), q is anR-step ofp,R ∈ RK , thenq ∈ paths(G).

The tableauTG = (S,L, E) induced byG is defined as follows:

INFSYS RR 1843-07-07 19

S = paths(G),

L(p) = L(tail(p)),

E(R) = {〈p, q〉 ∈ S
2 | q is anR-step ofp, or p is anInv(R)-step ofq,

or tail(q) ∈ in(G) is anR-successor oftail(p),
or tail(p) ∈ in(G) is anInv(R)-successor oftail(q)}.

Note that the definition ofR-step requiresw to be a variable node. Every path inpaths(G) starts with a node
a
a

for some individuala, and a node of this form only occurs at the first position in a path. The last two cases
in the definition ofE(R) are necessary in order to consider the arcs leading to individual nodes, which are
not unravelled.

We useIG (instead ofITG
) to denote the canonical model of the tableauTG induced byG.

Example 3.23 By unravellingF1, we obtain a modelIF1 whose domain is the infinite set of paths froma
to eachvi. When a node is not blocked, likev1, the pair v1

v1
is added to the path. Every time a path reaches

v7, which is1-blocked, we addv3
v7

to the path and ‘loop’ back to the successors ofv3. We thus obtain the
following infinite set of paths:

p0 = [a
a
], p6 = [a

a
, v1

v1

, v3

v3

, v6

v6

],

p1 = [a
a
, v1

v1
], p7 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
],

p2 = [a
a
, v2

v2

], p8 = [a
a
, v1

v1

, v3

v3

, v5

v5

, v4

v8

],

p3 = [a
a
, v1

v1

, v3

v3

], p9 = [a
a
, v1

v1

, v3

v3

, v5

v5

, v3

v7

, v5

v5

], . . .

p4 = [a
a
, v1

v1
, v4

v4
], p10 = [a

a
, v1

v1
, v3

v3
, v5

v5
, v3

v7
, v6

v6
],

p5 = [a
a
, v1

v1

, v3

v3

, v5

v5

], p11 = [a
a
, v1

v1

, v3

v3

, v5

v5

, v3

v7

, v5

v5

, v3

v7

],

The extension of each conceptC is determined by the set of allpi such thatC occurs in the label of the
last node inpi. The extension of each roleR is given by the pairs〈pi, pj〉 such thatpj is anR-step of

pi. Thereforep0, p1, p3, . . . are inAIF1 ; 〈p0, p1〉, 〈p1, p3〉, 〈p3, p5〉, 〈p5, p7〉, . . . are inP
IF1
1 and 〈p0, p2〉,

〈p1, p4〉, 〈p3, p6〉, 〈p5, p8〉, . . . are inP
IF1
2 .

Analogously, by unravellingG2, we obtain the modelIG2 whose domain is the infinite set of paths froma to
eachvi, since there are no paths fromo to any other node, i.e., the domain is:

p0 = [o
o
], p5 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
],

p1 = [a
a
], p6 = [a

a
, v1

v1

, v2

v2

, v3

v3

, v4

v4

, v5

v5

]

p2 = [a
a
, v1

v1

], p7 = [a
a
, v1

v1

, v2

v2

, v3

v3

, v4

v4

, v5

v5

, v3

v6

], . . .

p3 = [a
a
, v1

v1
, v2

v2
], p8 = [a

a
, v1

v1
, v2

v2
, v3

v3
, v4

v4
, v5

v5
, v3

v6
, v4

v4
]

p4 = [a
a
, v1

v1

, v2

v2

, v3

v3

], p9 = [a
a
, v1

v1

, v2

v2

, v3

v3

, v4

v4

, v5

v5

, v3

v6

, v4

v4

, v5

v5

]

The extension of the concepts are{o}IG2 = {p0}, {a}IG2 ={p1} andAIG2 = {pi | i ≥ 1}, and the extensions

of the roles areP
IG2
1 ={〈pi, pi+1〉 | i ≥ 1} andP

IG2
2 = {〈pi, p0〉 | i ≥ 1}.

Lemma 3.24 LetG ∈ ccfn(GK) with n ≥ 1. ThenIG |= K.

Proof. First, it is proved as in [32] that everyG ∈ ccfn(GK) for n ≥ 1 induces a tableauTG for K.
For the proof of (P7), note that sincen ≥ 1, pairwise blocking is subsumed. (P13) also holds since, for
each nodev, L(v) is initialized withtcon(K), and this label is never removed from the node. SinceTG is a
tableau forK, it has a canonical modelIG, which by Lemma 3.21 is a model ofK.

20 INFSYS RR 1843-07-07

Now we prove that, for a sufficiently largen, if Q is satisfied in the canonical modelIG induced by an
n-complete and clash-free graphG, then we can mapQ into G. If IG |= Q, then there is a matchπ for IG
andQ. We show how to obtain a mappingµ witnessingQ →֒ G from π.

In this proof, the blocking parametern is crucial. As we mentioned, it depends onQ. More specifically,
it depends on the matchπ and what we call themaximalπ-distance. Roughly, we consider the image of the
queryQ underπ, restricted to the atoms that evaluate to true. Ifd is the length of the longest path between
two (variable) nodes in this graph and the completion graph is (at least)d-complete, then it is large enough

to construct a mappingQ
µ
−֒→G from π, which contains an isomorpic copy of the query image.

Definition 3.25 [Match graph, maximalπ-distance] LetG ∈ ccfn(GK), wheren ≥ 0, such thatIG |= Q,
and letπ be a match forQ andIG. Let Satπ denote the set of atomsα in Q such thatIG , π |= α. Then, the
match graphGπ is the following (undirected) graph:
(i) its nodes are allπ(x) such thatx ∈ VI(Q) occurs in someα ∈ Satπ; furthermore, ifπ(x) = [a

a
] for some

a ∈ in(G), thenπ(x) belongs to the setin(Gπ), otherwise to the setvn(Gπ).
(ii) There is an edge betweenπ(x) andπ(y) iff R(x, y) in Satπ for some roleR.

For everyx, y ∈ VI(Q), dπ(x, y) is the length of the shortest path betweenπ(x) andπ(y) in Gπ with
nodes fromvn(Gπ) only, and−1 if no such path exists. Finally, themaximalπ-distance, denoteddmax

π , is
the maximaldπ(x, y) for all x, y in VI(Q).

Note that the subgraph ofGπ induced byvn(Gπ) is acyclic (in fact, it is forest shaped), and thus shortest
paths in it are unique.

Example 3.26 Consider a matchπ1 for Q1 and IF1 given as follows:π1(x) = p7, π1(y) = p9, and
π1(z) = p10. Satπ1 contains all atoms inQ1 and the match graphGπ1 has the nodesp7, p9 andp10, where
in(Gπ1) = ∅ andvn(Gπ1) = {p7, p9, p10}, and the arcs〈p7, p9〉 and 〈p7, p10〉. Moreover,dπ1(x, y) = 1,
dπ1(x, z) = 1 and dπ1(y, z) = 2, so dmax

π1
= 2. Consider also the matchπ2 for Q3 and IG2, where

π2(x) = p7, π2(y) = p8 and π2(o) = p0. Satπ2 = {P1(x, y), P2(y, o)} and the match graphGπ2 has
nodesp0, p7 andp8, wherein(Gπ2) = {p0} andvn(Gπ2) = {p7, p8}, and arcs〈p7, p8〉 and〈p8, p0〉. Here,
dπ2(x, y) = dmax

π2
= 1.

In the following, letnr(Q) denote the number of role atoms inQ. Then,dmax
π is bounded bynr(Q).11

Since only simple roles occur inQ, arcs inGπ correspond to arcs inG; thus in expanding the initial com-
pletion graphGK , it is sufficient to usen-blocking as a termination condition, for some arbitrarilychosen
n ≥ nr(Q). Formally, we show:

Proposition 3.27 LetG ∈ ccfn(GK) with n ≥ nr(Q), and letIG be the canonical model ofG. If IG |= Q
thenQ →֒ G.

Proof. As IG |= Q, there is a matchπ for IG andQ. To define a mappingµ : VI(Q) → nodes(G), we
consider the match graphGπ. Recall that, by construction, each node inGπ is from paths(G). LetG′

π be
the subgraph ofGπ induced byvn(Gπ), and letG1, . . . , Gn be the connected components ofG′

π.
Informally, the argument is as follows:G is n-complete, and by unravelling it we obtain the tableauTG

that inducesIG. Suppose there is a nodev′ in G directly n-blocked by some nodev; let S be the subgraph

11For simplicity, we are using the number of role atoms in the query as a bound. A tighter bound would be the number of role
atoms in the largest disjunct when the query is transformed into disjunctive normal form.

INFSYS RR 1843-07-07 21

of G that includes every node belowv, except the descendants ofv′. ThenTG has infinitely many adjacent,
non-overlapping copiesS1, S2, . . . of the sectorS. The matchπ maps eachx ∈ VI(Q) to some element
π(x) of TG , which we now map to a nodeµ(x) in G. There are two cases.

(1) If π(x) ∈ in(Gπ), we just setµ(x) = a whereπ(x) = [a
a
].

(2) If π(x) ∈ vn(Gπ), consider the (unique)Gi containingπ(x). The bounded size ofGi ensures that it
contains nodes from at most two copies of the sectorS in TG . Consider two subcases. (2.1)Gi contains
nodes from at most one copy ofS, i.e.,Gi is before the leaves of the first copyS1 or fully within someSk.
Then we can mapx in G to a node inS or above. (2.2)Gi includes nodes of two adjacent sectorsSk and
Sk+1, i.e.,π maps some variables to nodes inSk, which correspond to paths inG ending before or atv′, and
others to nodes inSk+1, which correspond to paths ending at descendants ofv (after passing throughv′).
We then ensure thatµ maps the former tov or to nodes abovev, and the latter to nodes inS.

Technically, letblockedLeaves(Gi) be the set of all nodesp of Gi such thattail(p) 6= tail′(p), and let
afterblocked(Gi) be the set of all nodes ofGi of the form[v0

v′0
, . . . , vm

v′m
, . . . ,

vm+j

v′
m+j

] for some[v0
v′0
, . . . , vm

v′m
] ∈

blockedLeaves(Gi) andj > 0. Intuitively, blockedLeaves(Gi) contains the pathsπ(x) that end at some
directlyn-blocked node, i.e., at the end of a sectorSk, andafterblocked(Gi) the pathsπ(x) that go beyond
these nodes, i.e., into the next sectorSk+1.

If afterblocked(Gi) = ∅, then the nodes ofGi are in at most one copy ofS, and we are in case 2.1. For
each variablex with π(x) in Gi, we defineµ(x) = tail′(π(x)), which is a node in or aboveS. Otherwise,
we are in case 2.2 and consider two subcases: (2.2.1) ifπ(x) ∈ afterblocked(Gi), then we also define
µ(x) = tail′(π(x)), which is a node inS; (2.2.2) if π(x) 6∈ afterblocked(Gi), then we defineµ(x) =
ψ(tail′(π(x))), whereψ denotes a bijection via whichtail′(π(x)) is graph-blocked. Such aψ exists: asGi

has at mostnr(Q) ≤ n edges,tail′(π(x)) is a node in some blockedn-graph and it is graph-blocked by the
nodeψ(tail′(π(x))) (a node aboveS). Summing up, we define

µ(x) =







ψ(tail′(π(x))) if π(x) is in someGi with afterblocked(Gi) 6= ∅
andπ(x) 6∈ afterblocked(Gi),

tail′(π(x)) otherwise.

Now we prove the following:

a) For each individuala in VI(Q), π(a) = aIG implies{a} ∈ L(µ(a)).

b) For eachC(x) in Satπ, C ∈ L(µ(x)).

c) For eachR(x, y) in Satπ, µ(y) is anR-neighbour ofµ(x).

Items a) – c) ensure thatIG, π |= α impliesα
µ
−֒→G for each atomα in Q. Sinceπ is a match forQ and

IG, this is sufficient to proveQ →֒ G.
The proof of items a) and b) is straightforward by the construction of IG andµ. Observe that for

each individuala in VI(Q), π(a) = aIG , which implies{a} ∈ L(π(a)). SinceL(π(a)) = L(µ(a)),
we get{a} ∈ L(µ(a)). For everyx in VI(Q), IG |= C(π(x)) implies thatC ∈ L(π(x)). Again, as
L(π(x)) = L(µ(x)), we haveC ∈ L((µ(x))).

For c), by construction ofIG, we have thatIG |=R(π(x), π(y)) implies〈π(x), π(y)〉 ∈ E(R′)⊕. Since
R is a simple role andE(R)⊕ =

⋃

R′⊑∗R E(R′), 〈π(x), π(y)〉 ∈ E(R′) for someR′ ⊑∗ R follows. We then
prove:

Claim 3. If 〈π(x), π(y)〉 ∈ E(R′), thenµ(y) is anR′-neighbour ofµ(x).

22 INFSYS RR 1843-07-07

As discussed above,µ is defined such that each variable preserves all its neighbours under the matchπ.
A formal proof of the claim is given in the Appendix.

In the proof of Proposition 3.27, it was crucial that a match for the query on a canonical model only needs
fragments of bounded size from the tableau. If this does not hold, as in the case of queries where non-simple
roles occur, it is not clear whether this kind of technique can be used for deciding query entailment.

Example 3.28 For the matchπ1 in Example 3.26, the single graphGi for the match graphGπ1 as in the
proof of Proposition 3.27 isGπ1 ; recall that in(Gπ1) = ∅, andGπ1 is connected. We haveblockedLeaves(Gπ1) =
{p7} andafterblocked(Gπ1) = {p9, p10}. We obtain the mappingµ1 from π1 by: µ1(x) = ψ(tail′(p7)) =
v3; µ1(y) = tail′(p9) = v5; µ1(z) = tail′(p10)) = v6. It satisfies the conditions of Definition 3.16, so

Q1
µ1
−֒→F1.
Now reconsiderπ2 andGπ2 in Example 3.26. Removing the nodesin(Gπ2) = {p0} from Gπ2 , the

resulting graphG′
π2

is connected and hence the single graphGi for Gπ2 as in the proof of Proposition 3.27.
We haveafterblocked(G1) = {p8}. We obtain fromπ2 the mappingµ by: µ2(x) = ψ(tail′(p7)) = v3,

µ2(y) = tail′(p8) = v4 andµ2(o) = tail(p0) = o. It also satisfies Definition 3.16, soQ3
µ2
−֒→G2.

Summing up, to decide whetherK |= Q, it is sufficient to choose an arbitraryn ≥ nr(Q) and then to
check the existence of a mappingQ →֒ G for eachG ∈ ccfn(GK).

Theorem 3.29 LetQ be a positive query, letK be aSHOIQ KB, and letn ≥ nr(Q). ThenK |= Q iff
Q →֒ G for everyG ∈ ccfn(GK).

Proof. Let G ∈ ccfn(GK). By Lemma 3.24,IG |= K, and sinceK |= Q, it follows IG |= Q. Since
n ≥ nr(Q), by Proposition 3.27,Q →֒ G. Conversely, fromQ →֒ G and Lemma 3.18, we have thatG |= Q
for everyG ∈ ccfn(GK). By Proposition 3.15, this meansK |= Q.

Example 3.30K |= Q1, soF1 |= Q1 must hold. This is witnessed by the mappingµ1 in Example 3.28.
Note that there are longer queries, likeQ′ = {P1(a, x0), P1(x0, x1), P1(x1, x2), P1(x2, x3), P1(x3, x4)}
such thatK |= Q′ holds, but the entailmentF1 |= Q′ cannot be verified by mappingQ′ into F1 sinceF1 is
1-complete and nr(Q′) > 1.

4 Termination and Complexity

The method from above yields a sound algorithm for answeringPQs onSHOIQ KBs. As we show in this
section, it always terminates forSHIQ, SHOQ andSHOI KBs. Based on this, we prove our main results
on the data complexity of query answering in these logics.

We point out that query answering is intractable with respect to combined complexity already for rather
simple queries and on very small completion graphs. In fact,this holds even for a conjunctive query and a
fixed completion graph which consists of few nodes. This is shown in the proof of the next proposition.

Proposition 4.1 Let G be a (fixed) completion graph inGK and letQ be a given CQ. Deciding whether
Q →֒ G is NP-hard.

INFSYS RR 1843-07-07 23

Proof. Finding a mappingQ →֒ G is at least as hard as evaluating a CQ over a database (given by
the ABox), which is NP-hard (w.r.t. query complexity) [18].To verify this, consider the completion graph
Gcol associated to the ABox{E(c, c) | c, c′ ∈ {red , green , blue}, c 6= c′}. Every directed graphG can be
represented as a CQQ, where each node inG is associated with a distinct variable and for each arc〈x, y〉
in G there is the literalE(x, y) in Q. ThenQ can be mapped intoGcol iff G is 3-colourable.

Note that whenQ is fixed, the testQ →֒ G can be done in time polynomial in the size ofG by simple
methods, as only a polynomial number of candidate mappings needs to be checked. This is relevant to prove
a tight upper bound in data complexity.

4.1 Bounding the size of completion forests and graphs

In what follows, we assume thatK is a SHIQ, SHOQ or SHOI knowledge base, such thatc :=
|clos(K)| ≥ 1 and r := |RK | ≥ 1. Let m denote the maximum numbern occurring in any concept
of the form≤ nR.C or≥ nR.C in K, and 1.

We first derive a bound on the possible size of a blockablen-graph, and then a bound on the size of the
completion graphs inccfn(GK).

Claim 4.2 Let G ∈ GK and letn ≥ 0. ThenG has at mostTn = 2p(c,r,m)n+1
many non-isomorphic

blockablen-graphs, for some polynomialp(c, r,m) in c, r, andm.

Proof. First, we give a bound on the number of non-isomorphic node and arc labels that may occur in
a blockablen-graph inG. The label of every node in a completion forest inGK is a set of concepts, each
of which is either fromclos(KA) or of the form{o} with o ∈ I \ IKA

. Since the latter concepts can only
be introduced by theo?-rule, which is never applied for aSHIQ, SHOQ, orSHOI KB, every nodev of
G fulfils L(v) ⊆ clos(KA). By definition, every nodev in a blockablen-graph is a successor of a variable
node, and either (1)v is a variable node; or (2)v is an individual node that has a variable predecessorw. In
case (1)v was created by a generating rule and its label was initialised with L(v) ⊆ clos(K). Moreover,
any concept added to its label will be fromclos(K), unless it is merged into an existing individual whose
label already contains someC ∈ clos(KA) \ clos(K); the latter would imply thatv is not a variable node.
So we can conclude that everyv of vn(G) fulfils L(v) ⊆ clos(K). In case (2), if an individual nodev is
a successor of a variable nodew, then{a} ∈ L(v) for some{a} ∈ clos(K). This is because arcs from
variable to individual nodes can only be created by merging two nodes that share a nominal. The expansion
rules can only cause this for nominals inclos(K), as they only add concepts fromclos(K) to the node labels
(except theo?-rule, which is never applied).

Consider two blockablen-graphsG1 andG2. Remove from them all arcs connecting two individual
nodes, and restrict the labels of the individual nodes toclos(K). Suppose that the resulting graphsG′

1 and
G′

2 are isomorphic. The label of each individual node inG′
1 contains some nominal{a} from clos(K),

which must also be in the label of the isomorphic node inG′
2. As this{a} can be in the label of only one

node inG (by the assumption on the application of theo-rule), both nodes are the same node fromG. This
ensures thatG′

1 andG′
2 are isomorphic iffG1 andG2 are isomorphic. In general,G1 andG2 can only be

isomorphic if they contain exactly the same set of individual nodes. Hence, when calculating the number of
non-isomorphic blockablen-graphs, we can omit all arcs between individual nodes, and restrict their labels
to the concepts inclos(K) (note that they will still be individual nodes after this restriction). Thus, we
consider only node labels that are subsets ofclos(K), and there are2c possible such labels. Similarly, each
arc is labelled with a subset ofRKA

, but roles inRKA
\ RK occur only in arcs connecting two individual

nodes, so we restrict our attention to2r different arc labels.

24 INFSYS RR 1843-07-07

Now we derive a bound on the out-degree of the variable nodes in G. Every successor of such a node is
generated by the application of a generating rule. Only two are feasible forK: the∃-rule and the≥-rule.
Only concepts of the form∃R.S or ≥ nR.C trigger the application of these rules, and there are at mostc

such concepts. Each time one such rule is applied, it generates at mostm R-successors for each roleR.
Note that if a nodev is identified with another one by a shrinking rule, then the rule application which led
to the generation ofv will never be repeated [33], so a generating rule can be applied to each node at most
c times. This gives a bound ofc·m R-successors for each roleR, and a total ofb = r·c·m ≥ 1 for each
variable node ofG.

Let tn denote the number of non-isomorphic blockablen-graphs that may occur inG. There are2c

different roots, each of which can have up tob successors. Each successor can be reached by any of the2r

possible arcs and can be the root of any of thetn−1 many different blockable(n − 1)-graphs. Hence, there
are at most(2r·tn−1)

b (ordered) combinations for each root. Thus we have

tn = 2c·(2r·tn−1)
b = 2c+r·b·(tn−1)

b

To simplify the notation, letx = c + r·b. Then

tn = 2x·(tn−1)
b = 2x+x·b+...+x·bn−1

·(t0)
bn

= 2x·
Pn−1

i=0 bi

·(t0)
bn

.

Sincet0 = 2c, we obtain forb ≥ 2 that

tn ≤ (2x·t0)
bn

= (2c+r·b·2c)b
n

≤ 2(2·c·b+r·b2)n+1
= 2p(c,r,m)n+1

(1)

wherep(c, r,m) = 2·c·b+r·b2 = 2·c2·r·m+c
2·r3·m2. As (1) also holds forb = 1, we obtain the claimed

boundT (n) = 2p(c,r,m)n+1
.

In the rest of this section, we usep(c, r,m) to denote the polynomial given above.

Claim 4.3 Let T be a tree of variable nodes rooted at some individual node inG ∈ ccfn(GK), n ≥ 0. Then

the number of nodes inT is bounded by(c·m·r)1+n·2p(c,r,m)n+1

.

Proof. The claim is a consequence of the following properties:

i) The out-degree ofT is bounded byc·m·r. As shown above, each roleR has at mostc·m variable
R-successors, and there arer roles.

ii) The depth ofT is bounded byd = (Tn + 1)·n. This is because there are at mostTn non-isomorphic
blockablen-graphs. If there was a path of length greater than(Tn + 1)·n to a nodev in T , thenv would
occur after a sequence ofTn + 1 non overlapping blockablen-graphs, and one of them would have been
blocked sov would not have been generated.

iii) The number of variables inT is bounded by(c·m·r)d+1.

There can be one such tree rooted at each individual node, andsince there is at most one individual node
for each individual inIK , we easily get a bound on the size of a completion graph.

Lemma 4.4 LetK be aSHIQ, SHOQ, or SHOI KB and letG ∈ ccfn(GK), n ≥ 0. Then the number
of nodes inG is bounded by

|IK |·(c·m·r)1+n·2p(c,r,m)n+1

.

INFSYS RR 1843-07-07 25

Unfortunately, Lemma 4.4 does not apply toSHOIQ KBs. Indeed, our bound on the depth of comple-
tion graphs, relies on a fixed number of individual nodes. ForSHOIQ KBs, the application of theo?-rule
may introduce new individual nodes that lead to newn-blockable graphs non-isomorphic to previously
present graphs. This potentially leads to non-termination. Note that in [32], the maximal depth of a variable
node in the completion graphs does not depend on the number ofindividual nodes that can be generated. In
turn, it is used to bound the number of nominals introduced byapplying theo?-rule. The technique in [32]
seems not to be applicable in our case, and it is not clear how termination could be achieved in general.

4.2 Complexity of the Query Entailment Algorithm

We now determine the complexity of decidingK |= Q for a PQQ. As for data complexity, the TBox,
the RBox, and the query are considered fixed, while the ABoxA is given as an input. The complexity
bounds are given w.r.t. the size of thisA. In the following, we denote by||K,Q|| the total size of the string
representingK andQ. Note thatm is linear in ||K,Q|| for unary number coding in number restrictions,
and single exponential for binary number coding. In any case, if Q and all ofK exceptA is fixed,m is a
constant. Furthermore,c andr are linear in||K,Q||, but also constant in|A|. Finally, |IK | is linear in both.
From this, and by Lemma 4.4, we know that the maximum number ofnodes in a completion graphG ∈ GK

is triple exponential in||K,Q|| if n is polynomial in||K,Q||. If n is a constant, then the size ofG is linear
in |A|. We easily obtain:

Corollary 4.5 LetG ∈ ccfn(GK), n ≥ 0. Then the number of nodes inG is (i) at most triple exponential
in ||K,Q||, if n is polynomial in||K,Q||, and (ii) polynomial in|A|, if n is a constant andQ and all ofK
exceptA is fixed.

Moreover, we also obtain a bound on the number of rule applications to derive any clash-freen-complete
completion graph.

Proposition 4.6 The expansion ofGK into someG ∈ ccfn(GK), n ≥ 0, terminates in time triple exponen-
tial in ||K,Q|| if n is polynomial in||K,Q||. If n is a constant andQ and all ofK exceptA is fixed, then it
terminates in time polynomial in|A|.

Proof. The claim follows from the bound on the size ofG given in Corollary 4.5, together with the
following observations:

• Since the worst-case analysis of the size ofG assumes that all possible successors are generated
for every node, the shrinking of the completion graph by merging nodes can only lead to a smaller
completion graph, and there is no additional effort in the regeneration of successors w.r.t. the worst-
case estimate.

• Shrinking rules do not cause repeated rule applications, bymerging some node into another node that
would later have to be regenerated. Indeed, a conceptC ∈ L(v) can fire a generating ruler for nodev
at most once. Even if a shrinking rule is applied and a successorw of v is merged into a nodew′, then
w′ inherits the labels and inequalities ofw, as well as all its neighbours that are not variable successors
(which are removed byprune). This ensures that the conditions that triggered the application ofr for
v are not met again, and thus the rule application that led to the generation ofw will not be repeated.12

12According to [32], the rule application will not be repeatedforw or any of the nodes into which it is merged later (calledheirs).
However, after mergingw intow′, some successors that had already been generated forw may have to be generated forw′. The
claim holds forw, however, which is sufficient for our purposes.

26 INFSYS RR 1843-07-07

Checking whetherQ →֒ G can be easily done in time single exponential in the size ofQ. For G ∈
ccf(GK) and a queryQ with n variables, the naive search space has|nodes(G)|n many candidate assign-
ments, and each one can be polynomially checked. This is triple exponential in||K,Q|| if |nodes(G)| is.
On the other hand,Q →֒ G can be tested in time polynomial in the size ofG whenQ is fixed. Therefore, we
obtain the following result.

Theorem 4.7 Given aSHIQ, SHOQ or SHOI knowledge baseK and a PQQ in which all roles are
simple, deciding whetherK |= Q is:

1. in CO-N3EXPTIME w.r.t. combined complexity, for both unary and binary encoding of number re-
strictions inK.

2. in CO-N2EXPTIME w.r.t. combined complexity for a fixedQ if number restrictions are encoded in
unary.

3. in CONP w.r.t. data complexity.

Proof. If K 6|= Q, then there is a completion graphG ∈ ccfnr(Q)(GK) such thatQ 6 →֒ G. By Proposi-
tion 4.6, thisG can be obtained non-deterministically in time triple exponential in ‖K,Q‖. Furthermore,
Q →֒ G can be checked by naive methods in time triple exponential in‖K,Q‖ as well. Therefore, non-
entailment ofQ is in N3EXPTIME, entailment inCO-N3EXPTIME and item 1 holds.

Similarly, sincem does not occur in the uppermost exponent of the bound in Lemma4.4, eachG in
ccfnr(Q)(GK) can be obtained in double exponential time when the conditions of item 2 hold.

As for item 3, under data complexitynr(Q) is constant asQ and all components ofK = 〈T ,R,A〉
exceptA are fixed. By Proposition 4.6, everyG ∈ ccfnr(Q)(GK) can be nondeterministically generated in
polynomial time. Since deciding whetherQ →֒ G is polynomial in the size ofG,K |= Q is in CONP.

We note thatQ →֒ G can also be tested in time polynomial in the size ofG whenQ is fixed, or when
the expansion rules generate a completion graph whose size exponentially dominates the query size. Other
particular cases can be solved in polynomial time as well. For example, whenG is tree-shaped (i.e., the
ABox is tree-shaped and there are no arcs from variable to individual nodes), then the complexity of the
mapping corresponds to evaluating a conjunctive query overa tree-shaped database, which is polynomial in
certain cases [26].

4.3 Data Complexity

The upper bound for data complexity given in Theorem 4.7 is worst-case optimal. In [20],CONP-hardness
was proved for instance checking overALE knowledge bases, and in [11] this result has been extended to
even less expressive DLs, likeAL. This allows us to state the following main result.

Theorem 4.8 For KBs in any DL extendingAL and contained inSHIQ, SHOQ, or SHOI, answering
positive existential queries in which all roles are simple is CONP-complete w.r.t. data complexity.

This result provides an exact characterisation of the data complexity of PQs for a wide range of de-
scription logics. An interesting observation is that once we allow for universal quantification, which is
a basic constructor of DLs, then many other constructors canbe added without affecting worst-case data

INFSYS RR 1843-07-07 27

complexity. Also, this result provides the first tight upperbound for data complexity ofSHOQ andSHOI
and extends two previousCONP-completeness results w.r.t. data complexity: (i) for answering UCQs over
ALCNR knowledge bases [43]. We extend this result to a query language allowing for arbitrary use of
conjunction and disjunction, as well as to DLs including role hierarchies and some combinations of inverse
roles and nominals. (ii) For answering atomic queries inSHIQ [40]. This can be immediately extended
to tree-shaped CQs, as they admit a representation as a DL concept (e.g., by tuple-graphs of [13], or via
rolling up [37]). However, an extension to all PQs without transitive roles remained open. We point out that
[24] presented an algorithm for answering CQs with transitive roles inSHIQ KBs that also yields aCONP
upper bound.13 The algorithm has been adapted toSHOQ in [25], but no complexity results were given.
An adaptation toSHOI is open.

4.4 Combined Complexity

Theorem 4.7 does not provide optimal upper bounds with respect to the combined complexity of query
answering. The main reason is that the tableaux algorithms in [36] and [32], which we extended, are also
not worst-case optimal. They are both nondeterministically double exponential, while satisfiability of a
knowledge base is EXPTIME-complete forSHIQ [56] and NEXPTIME-complete forSHOIQ [55]. It
is well known that tableaux algorithms for expressive DLs often do not yield optimal complexity bounds.
However, they are easy to implement and amenable for optimisations [5]. Moreover, efficient reasoners
implementing these algorithms are available [30, 27].

We want to point out that, in our algorithm, the witness of a blocked variable must be its ancestor. This
restriction, however, could be eliminated, and blocking with any previous occurrence of an isomorphicn-
tree could be used, without affecting the soundness and completeness of the algorithm. We use the stricter
conditions for blocking in order to make them closer to the conventional ones in DL tableaux, where it
is usually required that the blocking and the blocked variable are on the same path. Despite the fact that
this condition actually increases the overall complexity of the algorithm, it is imposed for practical reasons,
since it is considered better for implementation. If this condition is relaxed, blocking may occur sooner
and the resulting completion graph/forest may be exponentially smaller than the one we have described.
This exponential drop applies also to the satisfiability tableaux algorithms like in [36] and in [32]. With
this relaxed condition, we would obtain the same complexityupper bounds as those given in [43]. In
fact, the absence of this additional condition of ‘blockingon the same path’ is the actual reason why the
bounds in [43] are exponentially lower than the ones we obtained. Our algorithms may be further optimised
following the ideas in [19].

It was recently shown in [45] that answering CQs is 2EXPTIME-hard for all DLs containingALCI,
and thus also forSHIQ andSHOI. As a consequence, the 2EXPTIME upper bound given in [16] for
answering PQs inSHIQ is tight, and similarly the ones given in [40, 24] for answering CQs inSHIQ,
and the ones given in [13] for containment of CQs inDLR. In the light of these results, and considering the
CO-N2EXPTIME upper bound discussed above and the intrinsic non-determinism of tableaux algorithms,
it seems reasonable to conjecture that a 2EXPTIME upper bound can be achieved forSHOQ andSHOI.
To our knowledge, the question remains open and this work provides the first upper bounds. We point out
that decidability of CQs (with transitive roles) inSHOQ has been shown [25], but we are not aware of
any emerging complexity results. As forSHOI, no other decision procedures seem to be available, even
for more restricted classes of queries. In any case, since CQanswering inSHOI is already 2EXPTIME -
hard, the gap to ourCO-N2EXPTIME upper bound is rather small. ForSHOQ (in fact, for any logic

13For the specific case of CQ answering forSHIQ, the results generalise those in [48].

28 INFSYS RR 1843-07-07

containingALC) EXPSPACE-hardness of PQ answering was shown in [16], thus the gap is still not large.
A quite significant gap remains open for CQs, since only the EXPTIME-hardness that follows from instance
checking is known.

5 Extensions

In this section we will discuss further extensions of our algorithm, as well as some of its limits. First, in
Section 5.1, we present a family of hybrid knowledge representation languages combining DLs of theSH
family with DATALOG rules, which are a natural extension of the CARIN languages [43]. We also discuss
some other hybrid languages that can be extended on the basisof the results in this work.

In Section 5.2 we present a negative result: if inequality atoms are allowed in the queries, query entail-
ment becomes undecidable. This was already proved in [13], but in a slightly different setting (undecidability
of query containment under constraints). The difference ishowever minor, and the proof we provide is a
very simple adaptation of the one given there.

5.1 Hybrid Knowledge Bases

The CARIN family of languages, introduced in [43], combines DATALOG with some DLs of theALC family,
beingALCNR the most expressive one. The reasoning algorithms given in that work build on theexistential
entailment algorithmfor ALCNR. Since our algorithm is essentially an extension of it to thelogics of the
SH family, we can extend the CARIN languages to these DLs and provide reasoning algorithms forthem in
a natural way.

5.1.1 Extending non-recursive CARIN to theSH family

The authors of [43] proved that even rather weak DLs yield an undecidable formalism when combined
with recursive DATALOG. To gain decidability, three alternatives are proposed: (i) the DL constructors
causing decidability are identified and disallowed in the KB; (ii) only non-recursive rules are allowed; or
(iii) the variable occurrences in the DL atoms appearing in rulesare restricted, according to the so-called
role safetyconditions. Unfortunately, all three options severely restrict the expressiveness of the language.
In this section, we consider restriction (ii), i.e., we discuss the combination of theSH family of DLs with
non-recursive rules. We briefly discuss the topic of recursive rules in Section 5.1.2.

Definition 5.1 [DATALOG rules and DATALOG programs] LetP denote an alphabet of predicate names,
which we call rule predicates. Eachp ∈ P has an associated aritym ≥ 0. A DATALOG rule is an
expression of the form

q(X) :− p1(Y1), . . . , pn(Yn)

that satisfies the following:

1. q is a predicate name inP.

2. Eachpi is either a concept name inC, a role name inR, or a predicate name inP.

3. EachYi is a tuple of variables inVar or individuals inI of the same arity aspi. By definition, the
arity of pi is 1 if pi ∈ C, and 2 ifpi ∈ R.

4. X ⊆ Y1 ∪ . . . ∪ Yn.

INFSYS RR 1843-07-07 29

As usual,q(X) is called theheadof the rule, andp1(Y1), . . . , pn(Yn) is called thebody. If n = 0 for some
rule r, then the rule is called afact and can be written simply asq(X). A DATALOG program is just a set of
DATALOG rules.

Let P be a DATALOG program. Thedependency graph ofP, writtenD(P), is the graph that has as
nodes all the predicate namesp that occur in some rule ofP and an edgep→ p′ in E for each pair of
predicatesp, p′ such thatp′ occurs in the head andp in the body of a rule inP. The programP is recursive
if D(P) contains some cycle, and non-recursive otherwise.

Definition 5.2 [CARIN knowledge bases] ForL being a logic of theSH family, a CARIN-L knowledge base
is a tuple〈K,P〉, whereK is anL knowledge base, andP is a DATALOG program. A CARIN-L knowledge
base is (non-)recursive if the comprised DATALOG programP is (non-)recursive.

For any such CARIN-L knowledge baseK = 〈K,P〉, we will callK theDL componentof K, andP its
rule component. Note that, in the rule component, only rule predicates can occur in the head of rules. This
is a common feature of hybrid languages, where it is often assumed that the DL knowledge base provides a
commonly shared conceptualisation of a domain. The rule component, on the other hand, does not define
new classes or properties of this conceptual model, but rather some application-specific relations, and can
not change the structure of knowledge defined by the DL component.

Similarly to DLs, we can define the semantics of DATALOG programs in terms of first order interpreta-
tions.

Definition 5.3 [Semantics of DATALOG Programs] AninterpretationI = (∆I , ·I) for a DATALOG pro-
gramP is given by a non-emptydomain∆I and aninterpretation function·I that maps each predicate
p ∈ P∪C∪R of arity n to a subset of(∆I)n, and each individual inI to an element of∆I . A substitution
is a mappingσ : Var ∪ I → ∆I with σ(a) = aI for everya ∈ I. For an atomp(Y) and a substitutionσ, if
σ(Y) ∈ pI , then we say thatσ makesp(Y) true inI and writeI, σ |= p(Y). We say thatI satisfies a rule
r, denotedI |= r, if every substitution that makes true all the atoms in the body also makes true the atom in
the head. IfI |= r for eachr ∈ P, thenI is a model ofP, in symbolsI |= P.

Now we define the semantics of CARIN knowledge bases, which arises naturally from the semanticsof
its components.

Definition 5.4 [Semantics of CARIN knowledge bases] An interpretationI for a CARIN-SHOIQ knowl-
edge baseK = 〈K,P〉 is an interpretationI = (∆I , ·I) which is at the same time an interpretation forK
and forP. I is amodelof K, in symbolsI |= K, if I |= K andI |= P.

Following the original CARIN approach, we will define as main reasoning task the entailment of a
ground atom, which may be either a DL assertion or a DATALOG ground fact. In the following, we will use
the termatom to refer to any expression of the formp(X), wherep may be a DL concept or role name or
a rule predicate andX is a tuple of variables inVar or individuals inIK of the same arity asp. A ground
atomis an atom that contains no variables. Ifp is a rule predicate, we will callp(X) a (ground) rule atom.
Otherwise, we will call it(ground) DL atom. As usual, for a ground atomα and a knowledge baseK, K |= α
denotes thatI |= α for everyI such thatI |= K. Analogously, for a DATALOG programP, P |= α denotes
thatI |= α for everyI with I |= P.

Definition 5.5 [CARIN-SHOIQ entailment problem] Given a CARIN -SHOIQ knowledge baseK and a
ground atom of the formp(A), wherep is any predicate inCq ∪ RK ∪ P andA is a tuple of individuals of
the arity ofp, the CARIN-SHOIQ entailment problemis to decide whetherK |= p(A).

30 INFSYS RR 1843-07-07

Since the atom whose entailment is verified may be a DL assertion, all traditional DL reasoning tasks
that are reducible to instance checking (e.g. subsumption,concept satisfiability, KB consistency, etc. [2]) can
be reduced to the CARIN-SHOIQ entailment problem. Due to the close correspondence between UCQs
and non-recursive DATALOG rules, query entailment can be reduced to CARIN-SHOIQ entailment of a
rule predicate fact. Indeed, every PQ can be transformed into an equivalent UCQ. It can be easily verified
that, for a UCQU = Q1 ∨ · · · ∨ Qm, K |= U iff 〈K,PU 〉 |= q, wherePU = {q :−Q1, . . . , q :−Qm}
andq is a rule predicate of arity0. In the rest of this section, we will see that the converse also holds, i.e.,
the CARIN-SHOIQ entailment problem can be reduced to query answering over the DL component of the
knowledge base. As a consequence, we obtain a sound and complete reasoning algorithms whenever we
have a terminating procedure for deciding query entailment.

Definition 5.6 [Rule unfolding and program depth] Letr1 andr2 be two DATALOG rules of the form

r1 = q1(X1) :− p1(Y1), . . . , pn(Yn)

and

r2 = q2(X2) :− p′1(Y
′
1), . . . , p′m(Y ′

m)

whereq2 = pi for some1 ≤ i ≤ n. Let θ be the most general unifier ofX2 andYi. Theunfolding ofr1 with
r2 is the following ruler′:

r′ = q1(θX1) :− p1(θY1), . . . , pi−1(θYi−1),

p′1(θY
′
1), . . . , p

′
m(θY ′

m),

pi+1(θYi+1), . . . , pn(θYn)

Thewidthof a ruler, denotedwidth(r), is the number of atoms in the body ofr. By convention,width(r) =
1 if r is a fact. LetP be a non-recursive DATALOG program, and letr′ be the longest rule that can be obtained
from some ruler in P by repeatedly unfolding it with other rules ofP, until no more unfoldings can be
applied. Thedepth ofP, writtendepth(P) is the width ofr′. If P = ∅, thendepth(P) = 1.

Note that, ifP is a non-recursive program, no cycles are reached during theunfolding of a rule. This
ensures thatdepth(P) is finite and that it can be effectively computed. We also point out that that the
algorithm given below does not require the rules to be unfolded, it is sufficient to estimate an upper bound
for depth(P).

The key for extending our results for query answering to the CARIN-SHOIQ setting is given by a close
relation between UCQs and non-recursive DATALOG. In general, if we have a non-recursive DATALOG

programP and we want to verify entailment of an atomp(A), it is sufficient to consider the rules inP
whose head predicate isp. These rules can be unfolded into a set of rules where onlyp(A) occurs in the
head, and the bodies are arbitrary CQs. This set of rule is semantically equivalent to the UCQ that consists
of the disjunction of the rule bodies. Once we formalise thisrelationship, we will obtain a (semi-)decision
procedure for reasoning in CARIN SHOIQ in a rather straightforward way, and it will terminate for any
DL for which the given query entailment algorithm terminates.

Definition 5.7 [Unfolding of a program for a ground atom] LetP be a non-recursive DATALOG program
andp(A) a ground rule atom. Theunfolding ofP for p(A) is obtained as follows:

INFSYS RR 1843-07-07 31

1. LetPp denote the set of rules inP where the head is of the formp(X) for anyX of arity n. For each
rule r ∈ Pp, let θ be the most general unifier ofA andX. Replace each rule

r = p(X) :− q1(Y1), . . . , qn(Yn)

in Pp by the rule
r′ = p(θX) :− q1(θY1), . . . , qn(θYn)

to obtain the programPp(A). If there is no unifierθ of A andX for some rule with headp(X),
then the rule is removed fromPp(A). Note thatPp(A) is constituted of a set of rules of the form

p(A) :− q1(X1), . . . , qn(Xn).

2. Each rule inPp(A) is unfolded with the rules ofP until no further unfoldings can be done.

Clearly, any model ofP will also be a model ofPp(A). Intuitively, Pp(A) captures the part ofP that is

relevant for the entailment ofp(A). So, if we want to verifyP |= p(A), it is sufficient to verify whether
Pp(A) |= p(A). Moreover, this can be decided by transformingPp(A) into an equivalent UCQ.

Definition 5.8 [Query for a ground atom w.r.t. a non-recursive DATALOG program] LetP be a non-recursive
DATALOG program andα be a ground atom. Thequery forα w.r.t. P, denotedUP,α, is the UCQ defined as
follows:

• If α is a DL atom, thenUP,α = α.

• If α is a rule atom andPα = ∅, thenUP,α = ⊥. Otherwise, letPα be:

α :− q11(Y
1
1), . . . , q1n1

(Y 1
n1

)
...
α :− qm

1 (Y m
1), . . . , qm

nm
(Y m

nm
)

We defineUP,α = Q1 ∨ . . . ∨Qm where, for each0 ≤ i ≤ m:

Qi =

{

qi
1(Y

i
1) ∧ . . . ∧ qi

ni
(Y i

ni
) if ni > 0,

⊤ otherwise.

Note that ifα is a rule atom of the formp(A), thenp does not occur inUP,α, i.e., qi
j 6= p for every

0 ≤ i ≤ n, 0 ≤ j ≤ mn. Moreover, ifp(A) occurs as a fact inP, it also occurs as a fact inPp(A), and

UP,p(A) is trivially true (since it has a disjunct which is always true). If p(A) does not occur in the head of
any rule, thenUP,p(A) is always false.

Proposition 5.9 Let K = 〈K,P〉 be a non-recursiveCARIN-SHOIQ knowledge base and letα be a
ground atom. ThenK |= α iff K |= UP,α.

Proof. For the if direction, assumeK |= UP,α. Consider an interpretationI such thatI |= K. We
want to prove thatI |= α. As K |= UP,α andI |= K, we know thatI |= UP,α. If UP,α = α or
UP,α = ⊥, thenI |= α as desired. OtherwiseUP,α is of the formQ1 ∨ . . . ∨ Qm, and there is someQi

and some matchπ such thatI, π |= Qi. By construction, this implies that there is a ruler in Pα of the form

32 INFSYS RR 1843-07-07

α :− qi
1(Y

i
1) ∧ . . . ∧ qi

ni
(Y i

ni
) such thatI, π |= qi

j(Y
i
j) for eachqi

j(Y
i
j). SinceI |= P, I |= r. This implies

I, π |= α, and sinceα is a ground atom,I |= α holds.
For the other direction, supposeK |= α. If α is a DL-atom, then the claim is trivial, sinceK |=K α and

UP,α = α. Otherwise, letα = p(a1, . . . , an) for some rule predicatep of arity n anda1, . . . , an ∈ I. Let
I be an interpretation forK such thatI |= K and the extension of eachp ∈ P of arity n is the smallest
subset of(∆I)n that satsfiesσ(X) ∈ pI only if p(X) is the head of a ruler in P and there is a substitution
σ that makes true inI all the atoms in the body ofr. I.e. I can be any interpretation forK that is a model
of the DL component, extended to interpret the rule predicates in such a way that it is the minimal model
that satisfies the all the rules ofP. So, we have thatI |= K andI |= P. Clearly,aI1 , . . . , a

I
n ∈ pI iff there

is a ruler in Pα and a substitutionσ that makes inI every atom in the body ofr true. As a consequence,
if I |= α, then this substitutionσ is a match for some disjunctQi in Uα,P , soI, σ |= Qi andI |= Uα,P as
desired.

As discussed in Section 3, the proof of Proposition 3.27 holds whenevern is at least as large as the
number of atoms in the largest disjunct when the query is transformed into disjunctive normal form. Clearly,
for any atomα, the number of atoms in each disjunct inUP,α is bounded bydepth(P). Also, if only simple
roles occur inP, then the same holds forUP,α. Therefore, from Proposition 5.9 and Theorem 3.29, we
easily obtain:

Corollary 5.10 Letα be a ground atom andK = 〈K,P〉 be a non-recursiveCARIN-SHOIQ knowledge
base where only simple roles occur inP. Let n ≥ depth(P). ThenK |= α iff UP,α →֒ G for every
G ∈ ccfn(GK).

Thus we have a sound and complete reasoning procedure for theCARIN-L entailment problem whenever
we have an algorithm for obtaining the graphs inccfn(GK) and for deciding mappability of a UCQ in them.
This is the case whenL is any ofSHIQ, SHOQ or SHOI, and when only simple roles occur in the
DATALOG component. Under these restrictions, we also obtain the following complexity results:

Theorem 5.11 LetL be any ofSHIQ, SHOQ andSHOI, let K = 〈K,P〉 be a non-recursiveCARIN-
L knowledge base where only simple roles occur inP and letα be a ground atom. DecidingK |= α is
CONP-complete in data complexity and inCO-N4EXPTIME in combined complexity.

Proof. As usual, let||K,P|| denote the size of (the string encoding) the knowledge baseK and the
programP. It is easy to see that the depth of a non-recursive programP is at most single exponential in
||K,P||. If K 6|= α, then there is a completion graphG ∈ ccfdepth(P)(GK) such thatUP,α →֒ G does not
hold. Observing the proof of Proposition 4.6, we see that ifn is exponential in||K,P||, then thisG can be
obtained non-deterministically in 4-exponential time in||K,P||. SinceUP,α →֒ G can be trivially decided
in 4-exponential time, it’s easy to see thatK |= α can be checked in N4EXPTIME.

Under data complexity,P and all components ofK = 〈T ,R,A〉 except for the ABoxA are fixed,
thereforedepth(P) is constant. The proof of the claim is exactly as the proof of item 3 in Theorem 4.7.

Note that the optimisation we mentioned in Section 4.4 also applies in this context, thus we can easily
obtain a N3EXPTIME upper bound for combined complexity.

Finally, we point out that the decision procedure we have outlined requires that the queryUP,α is built
by unfoldingP, for each given inputα, and that mappability of this query is verified in all completion
graphs. Another alternative, that could be more convenientif several atoms are to be evaluated, is to obtain
all the completion graphs inccfn(GK) and then to syntactically evaluate all the rules of the program over

INFSYS RR 1843-07-07 33

each graph, in a bottom-up way. Roughly, for a completion graph G and a programP, we can obtain the
smallest setS(G,P) of atoms that contains all the DL ground facts entailed byG, and that contains the head
of a ruler whenever there is a match of the body atoms to the atoms in the set S(G,P) (under suitable
substitutions). It is not hard to see that, for every atomα, α ∈ S(G,P) iff K |= Uα,P . This procedure has
the same worst-case complexity as the one outlined above.

5.1.2 CombiningSH DLs and recursive DATALOG

When recursive DATALOG rules are considered, some further restrictions must be imposed in order to pre-
serve decidability. One possible alternative is to restrict the expressive power of the DL component, but this
is not feasible if we want to preserve the basic expressive features of the DLs of theSH family. Indeed, all
these DLs can internalise arbitrary TBoxes, and it follows from [43] that they are undecidable when com-
bined with recursive rules. The other possibility is to imposesafetyconditions on the rules, which restrict
the way in which variables can occur in the DL predicates within the rule component. One of the least
restrictive forms of such safety is the one known asweak safety, which was proposed for the formalism
DL+log in [52]. The following result is given in that work:

Theorem 5.12 (Theorem 11 in [52])For every DLL, satisfiability ofDL+log knowledge bases where the
DL component is expressed inL is decidable iff Boolean CQ/UCQ containment is decidable inL.

The author of [52] points out thatDL+log reasoning is decidable when the DL component is expressed
in DLR, or any of its sublanguages.DLR is an expressive DL that allows to build regular expressions
over binary roles for which containment of CQ/UCQs is known to be decidable [15]. He also conjectures
that the problem is decidable forSHIQ, but leaves the question open. In this work, we have proved that
containment of CQ/UCQs is decidable forSHIQ, SHOQ andSHOI if the queries contain only simple
roles. With this result, we can close the issue for all these logics. Moreover, the complexity results we have
given in Theorem 4.7 extend in the natural way to the setting of DL+log.

Theorem 5.13 Satisfiability ofDL+log knowledge bases is decidable if the DL component is expressed in
SHIQ, SHOQ or SHOI and the rule component contains only simple roles.

Finally, we mention another interesting setting where our results could be useful for combining DLs
and rules. Namely, in [22]dl-programsare proposed, combiningSHOIN (D) and DATALOG programs
with negation. In this proposal the bodies of the rules may include a more general form ofdl-atoms, that
are interpreted as direct queries to the DL component. In these atoms some operators are considered that
update the extensions of the concepts and roles in the DL KB. This allows a certain flow of information from
the rules to the program, i.e., knowledge gained in the program can be supplied to the DL-component. In
contrast to the other approaches considered so far, it builds rules on top of ontologies, but also to a certain
extent, ontologies on top of rules. Different semantics canbe considered for the rule component, notably
well-founded semantics and some generalisations of the answer set semantics. In general, it preserves the
closed domain assumption of DATALOG, in the sense that rules are grounded w.r.t. the named constants in
the ABox. This restriction can be compared to the safeness conditions mentioned above. It also allows for
a sound and complete reasoner by combining an existing answer set reasoner with an existing DL reasoner,
but reasoning can not be divided into two separate stages. Indl-programs, the queries to the DL component
that can be stated in the rules are limited to instance checking, both for concepts and roles. It would be
interesting to explore the possibility of extending them with PQs. Due to the results we have presented, we

34 INFSYS RR 1843-07-07

know that this formalism will preserve decidability of reasoning. It should also provide more expressive
power, possibly capturing other approaches (likeDL+log), but this has not been yet explored, and the issue
remains for future work.

5.2 Undecidability of Queries with Inequality

A natural question that arises is whether the query languagewe are considering, CQs and UCQs, can be
extended with some other constructs known from related query languages. As an example of such additions,
we consider explicit inequality atoms between individualsand variables in the queries. In [13], the authors
prove that if inequalities are allowed in queries, then query containment becomes undecidable. Inequality
adds indeed a lot of expressive power, since when it is negated it enforces an unbounded number of equali-
ties. The results in [13] apply directly to our setting, and it follows that our technique can not yield a decision
procedure for queries with inequalities.

The proof of undecidability we give here is a straightforward adaptation of the one in [13], and it exploits
a reduction from the unbounded tiling problem [7]. The tiling problem consists in deciding whether, using
a finite set of square tile types with coloured edges and fixed orientation, a portion of the integer grid can
be tiled in such a way that adjacent tiles have the same colouron the common edge. In [28] it was shown
that the tiling problem is well suited to show undecidability of variants of modal and dynamic logics. These
kind of reductions have been often exploited for expressiveDLs. In particular, our proof is related to the
one given in [35] forSHIN+, a variant ofSHIN where non-simple roles are allowed to occur in number
restrictions, and to the one in [4] for three extensions ofALCN with complex role expressions.

In general, such reductions show how a given tiling systemD can be translated into a knowledge base
KD in such a way thatKD is satisfiable iff there is a compatible tiling forD. In order for this translation
to be possible, the DL in question must be able to express the following [4]: (i) describe a grid ofN × N,
where each point〈n,m〉 has exactly one vertical and one horizontal successor〈n + 1,m〉 and〈n,m + 1〉
respectively, and the vertical-horizontal and the horizontal-vertical successors of each point coincide in
〈n + 1,m + 1〉; (ii) express that a tiling is locally correct, i.e., that there is a compatible matching of the
colour on each side of a square and its neighbours; and (iii) that the compatibility of the tiling is propagated
on the entire grid.

AlreadyALC is expressible enough for (ii), and in the presence of arbitrary axioms (or in any logic of the
SH family) (iii) is quite easy to achieve. As for (i), ALC can force the existence of at least one vertical and
one horizontal successor for each point, andALCN can ensure that there is exactly one of each. However,
this is not enough to prove undecidability, since no DL contained inSHOIQ can force the coincidence
of vertical-horizontal and the horizontal-vertical successors of every point as needed. Any extension of
ALCN capable of forcing this coincidence is undecidable. In [35], a restriction of the form≤ 3R with a
transitive roleR is used for this purpose. In [4], it is achieved with role composition and union/intersection.
Our setting is similar to the one of [13], where the query is used to verify this coincidence. We present a
reduction of the tiling problem to non-entailment of a UCQ over anALC knowledge base with arbitrary
TBox axioms. Another easy alternative, that we will briefly discuss, is to use number restrictions reducing
the tiling problem to non-entailment of a CQ with just one inequality over anALCN knowledge base. The
latter is very similar to the reduction in [13].

Theorem 5.14 LetK be anALC knowledge base and letU be a UCQ that may contain atoms of the form
x 6= y. The query entailment problemK |= U is undecidable.

Proof.Consider an instance of the tiling problemD = (D,H, V) with tile typesD = {D1, . . . ,Dk}

INFSYS RR 1843-07-07 35

and sets of horizontally and vertically matching pairsH ⊆ D ×D andV ⊆ D ×D. We say that there is
a tiling for D of the N × N grid if each point〈n,m〉 ∈ N × N has a tile typed(n,m) ∈ D assigned and
the types of all adjacent horizontal and vertical pairs〈d(n,m), d(n+1,m)〉 and〈d(n,m), d(n,m+1)〉 are
contained inH andV respectively. For such a tiling system, we build a knowledgebaseKD as follows:

(1) T ile ⊑ ∃R.T ile ⊓ ∃T .T ile
(2) T ile ⊑ D1 ⊔ . . . ⊔Dk

(3) Di ⊑ ¬Dj for eachi, j ∈ {1, . . . , n}, i 6= j.
(4) Di ⊑ ∀R.(

⊔

〈Di,Dj〉∈H Dj) for eachi ∈ {1, . . . , k}.
(5) Di ⊑ ∀T .(

⊔

〈Di,Dj〉∈V Dj) for eachi ∈ {1, . . . , k}.
(6) T ile(a)

The conceptT ile denotes the points in the grid and the rolesR andT denote theright andup successors
respectively. Axiom(1) ensures the existence of horizontal and vertical successors for each point in the
grid. The conceptsD1, . . . ,Dk represent the types inD. By axioms(2) and(3) we ensure that every point
is covered with exactly one tile type. Axioms(4) and(5) impose the compatibility conditions on the tiling:
for each type, the adjacent horizontal and vertical successor must be in the matching pairs inH andV
respectively. The ABox assertion(6) ensures that the grid is not empty. Consider the query

U = Q1 ∨Q2 ∨Q3

with
Q1 = {R(x, y), R(x, z), y 6= z}
Q2 = {T (x, y), T (x, z), y 6= z}
Q3 = {R(x, y), T (y, z), T (x, y′), R(y′, z′), z 6= z′}

Claim. There is a tiling forD iff KD 6|= U .

From a tiling forD we obtain a modelI of KD where the query is not mappable. Simply set
T ileI = N × N andaI as the point〈0, 0〉 of the grid, satisfying(6). For each point〈n,m〉,
set 〈n + 1,m〉 and 〈n,m + 1〉 as itsR andU successors respectively to satisfy(1). The
interpretation of each conceptDi in D1, . . . ,Dk will contain exactly the points of the grid that
are marked by the tile typeDi, i.e., for eachm,n ∈ N, 〈n,m〉 ∈ DI

i for exactly onei in
{1, . . . , k}. This ensures that axioms(2) and(3) is satisfied. Since the horizontal and vertical
adjacent types match the conditions imposed byH andV , (4) and(5) also hold. Finally, we
will see thatI 6|= U , since in any grid every point has exactly one right and one upsuccessor,
and its right-up successor coincides with its up-right one.Suppose, towards a contradiction,
that I |= U . Then either (i) I |= Q1, or (ii) I |= Q2, or (iii) I |= Q3 must hold. Suppose
(i). Then there is a substitutionσ from the variables inQ1 to ∆I = N × N. If x is mapped
to some pointσ(x) = 〈n,m〉, theny has to be mapped to anR successor ofx, which must be
σ(y) = 〈n + 1,m〉. Since there is no otherR successor ofx, σ(z) = 〈n + 1,m〉 must also
hold, soy 6= z can not be satisfied andI 6|= Q1. Analogously, in order for (ii) to be satisfied, if
σ(x) = 〈n,m〉 then bothσ(y) andσ(z) have to take the value〈n,m+ 1〉 (since〈n,m+ 1〉 is
the onlyT successor of〈n,m〉), contradictingy 6= z, thusI 6|= Q2. Finally, suppose that (iii)
holds. This must be witnessed by some substitutionσ. Let 〈n,m〉 beσ(x). Thenσ(y) will be
the right successor ofσ(x), 〈n + 1,m〉, andσ(z) the up successor ofσ(y), 〈n + 1,m + 1〉;
σ(y′) will be the up successor ofσ(x), 〈n,m + 1〉, andσ(z′) will be the right successor of
σ(y′), 〈n+ 1,m+ 1〉. Thus,z 6= z′ can not hold, andI 6|= Q3.

36 INFSYS RR 1843-07-07

Conversely, consider a modelI of KD whereU is false. By axiom(6), there is someaI =
o ∈ ∆I such thato ∈ T ileI . Axiom (1) in KD forces each object in∆I to have some right
and some up successor. If any such objectox has two right successorsoy andoz, then there is a
mappingσ given byσ(x) = ox, σ(y) = oy, σ(z) = oz that makesI |= Q1 hold. Analogously,
if some objectox has two up successorsoy andoz, thenI |= Q2 would hold. ButU is false in
I, so neitherI |= Q1 nor I |= Q2 can hold. This proves that each object in∆I has exactly
one up successor and one right successor. Finally, suppose there is an object such that its up-
right and its right-up successors do not coincide. Letox be this object. Letoy be its unique
right successor andoz the up successor ofoy. Let oy′ be the up successor ofox andoz′ the
right successor ofoy′ . Since we are assuming thatoz is not the same object asoz′ , we can set
σ(x) = ox, σ(y) = oy, σ(z) = oz, σ(y′) = oy′ , σ(z′) = oz′ to show thatI |= Q3, but this
contradicts the fact thatI 6|= U . Thus, we have shown that for every point the up-right and
the right-up successors coincide, and this proves thatI is indeed a grid. Axioms(2) and(3)
ensure that each point of the grid has exactly one tile type, and by axioms(4) and(5) this tiling
respects the conditions given byH andV . Thus, this model ofKD shows that there is a tiling
for D.

Entailment of a CQ over anALCN knowledge base is also undecidable. To prove it, simply replace
the first axiom in the knowledge baseKD given in the above reduction by the following one, to obtain the
knowledge baseK ′

D:

(1) T ile ⊑ ∃R.T ile ⊓ ∃T .T ile⊓ ≤ 1R⊓ ≤ 1U

This axiom already enforces each element of the grid to have exactly one up and one right successor, so
we don’t need the queriesQ1 andQ2. To verify the coincidence of the right-up and the up-right successors
we use only the CQQ3. Following the above proof, it’s straightforward to verifythat there is a tiling forD
iff K ′

D 6|= Q3 for any given tiling systemD.

6 Conclusion

We have studied answering positive existential queries (PQs) over knowledge bases in the expressive De-
scription Logics (DLs) of theSH family, where we have focused on data complexity, i.e., measuring the
complexity of query answering with respect to the size of theABox while the query and the other parts
of the knowledge base are fixed. This setting is gaining importance since DL knowledge bases are more
and more used also for representing data repositories, especially in the context of the Semantic Web and in
Enterprise Application Integration.

Generalising a technique presented in [43] for a DL which is far less expressive thanSHIQ, SHOQ
andSHOI, and combining it with the techniques from [32], we have developed a novel tableaux-based
algorithm for answering PQs with no transitive roles. The algorithm manages the technical challenges
caused by the simultaneous presence of inverse roles, number restrictions, and general knowledge bases,
leading to DLs without the finite model property. We have presented blocking conditions that make it
suitable for deciding query entailment. They are more involved than previous blocking conditions in [32]
and use the query size as a parameter. Query answering itselfis then accomplished by a technique that maps
the query into completion graphs of bounded depth, which areconstructed using tableaux-style rules. The

INFSYS RR 1843-07-07 37

technique provides a sound and complete algorithm forSHIQ, SHOQ, andSHOI, while for SHOIQ
only soundness is established.

For the three mentioned sublogics ofSHOIQ, our algorithm is worst-case optimal in data complexity,
and allows us to characterise the data complexity of answering PQs for a wide range of DLs, including very
expressive ones. Namely, for each DL of theSH family exceptSHOIQ, answering PQs with no transitive
roles isCONP-complete with respect to data complexity. This narrows the gap between the knownCONP
lower bound and the EXPTIME upper bound for even weaker DLs, towards a negative answer tothe open
issue whether the data complexity of expressive DLs will similarly increase as their combined complexity.

We point out that our method can also be exploited for deciding containment of PQsQ1 andQ2, i.e., for
each knowledge baseK, doesK |= Q2 hold wheneverK |= Q1. As a simple consequence, we also obtain
decidability of the equivalence of positive queriesQ1 andQ2 having only simple roles inSHIQ, SHOQ,
andSHOI. This result can be exploited for query optimisation, and isto the best of our knowledge the first
result in this direction for PQs in expressive DLs.

Several issues remain for further work. In this paper, rolesin queries must be simple (this was also
assumed e.g. in [39]). A natural question is whether our results extend to queries with arbitrary roles. Such
queries are considered in [24] and in [25], where algorithmsfor answering arbitrary CQs inSHIQ and
SHOQ, respectively, were presented. The techniques used there,however, are quite different from ours
and are not based on tableaux. It remains unclear whether this kind of modified-tableaux techniques can be
exploited, since the presence of transitive roles imposes difficulties in establishing a bound on the depth of
completion graphs which need to be considered for answeringa given query.

A terminating algorithm for query answering inSHOIQ remains to be found, either tableaux-based
using suitable blocking conditions, or based on a differentapproach. It also remains to explore whether the
proposed technique can be applied to yet more expressive DLs, e.g., allowing reflexive-transitive closure in
the TBox (in the style of PDL), or to more expressive query languages. However, including inequality atoms
in CQs is infeasible; as follows from results in [13], such queries are undecidable for every DL of theSH
family.

Apart from the data complexity, also the combined complexity of query answering in expressive DLs
remains for further investigation, since no tight bounds are known forSHOQ andSHOI. Finally, an
interesting issue is whether other techniques may be applied to derive results similar to ours. For instance,
whether resolution-based techniques as in [38, 40] or techniques based on tree automata can be fruitfully
applied. While the latter have already been successfully applied for answering PQs, allowing also for atoms
that are regular expressions over roles, in very expressiveDLs [16], it remains unclear how the contribution
of the ABox may be singled out so as to establish data complexity.

Acknowledgements We thank Ian Horrocks and Birte Glimm for many fruitful and discussions, and are
grateful to them for pointing out errors in preliminary work. We are also very grateful to the anonymous
reviewers for their constructive comments, which greatly improved the presentation of this work.

A Appendix

Claim 2. Let G ∈ GK , let J |=K G, and letr be any rule in Table 1 that is applicable toG. Then, there
exist a completion graphG′ obtainable fromG by applyingr and an extended interpretationJ ′ equal toJ
modulonodes(G) such thatJ ′ |=K G′.

The proof of this claim is similar to the proof of completeness of the tableau algorithm forSHOIQ,

38 INFSYS RR 1843-07-07

given in detail in [33]. Although the technical details are quite different, the underlying intuition is essen-
tially the same. The main difference is that the authors of [33] use a tableauT to represent an arbitrary
model of the knowledge base, and they “steer” the application of the expansion rules through thisT . In
contrast, we follow an approach closer to [43] and look at completion graphs as a representation of a set of
models of the knowledge base, thus we do the steering directly with the model. In [33], it was proved that
there is a mappingπ from the nodes ofG to the elements ofT , satisfying certain conditions, which can be
extended after each rule application. The conditions imposed onπ are closely related to those for a model of
a completion graph. Here we prove that the interpretationJ can be extended and modelhood is preserved
after each rule application, similarly as this was proved for π.

Proof. We prove the Claim 2 for each ruler. First we consider the deterministic, non-generating rules.
There is only one completion graphG′ which can be obtained fromG by applyingr, and the models ofG are
exactly the models ofG′. For the case of the⊓-rule, there is some nodev in G s.t.C1 ⊓ C2 ∈ L(v). Since
J |=K G, we havevJ ∈ (C1 ⊓ C2)

J . By the definition of interpretation, bothvJ ∈ CJ
1 andvJ ∈ CJ

2

hold. The inequality relation and all labels inG′ are exactly as inG, the only change is that{C1, C2} ⊆ L(v)
in G′, soJ |= G′.

The cases of the∀-rule and the∀+-rule, are similar to the⊓-rule. The labels of all nodes inG are
preserved inG′, except for the nodew to which the rule was applied, and we have inG′ eitherC ⊆ L(w) or
∀R′.C ⊆ L(w) respectively. In the former case, sinceJ |= K, vJ ∈ (∀R.C)J , andw is anR-neighbour
of v, it follows thatwJ ∈ CJ . In the latter case,vJ ∈ (∀R.C)J andw andR′-neighbour ofv for some
R′ ⊑∗ R imply thatwJ ∈ (∀R′.C)J . ThusJ |=K G′ in both cases.

Let us analyse the non-deterministic rules. For the case of the⊔-rule, there is some nodev in G having
C1 ⊔ C2 ∈ L(v). After applying the⊔-rule, we will have two forestsG′

1, G′
2 with {C1} ⊆ L(v) in G′

1 and
{C2} ⊆ L(v) in G′

2, respectively. For everyJ such thatJ |=K G we havevJ ∈ (C1⊔C2)
J . By definition,

eithervJ ∈ CJ
1 or vJ ∈ CJ

2 holds. IfvJ ∈ CJ
1 , thenJ |=K G′

1, and otherwiseJ |=K G′
2, so the claim

holds.
The proof for the choose rule is easy. After applying it, we will have two forestsG′

1, G′
2 with {C} ⊆ L(v)

in G′
1 and{NNF (¬C)} ⊆ L(v) in G′

2 respectively, but sincevJ ∈ (C ⊔ ¬C)J holds for everyv, C and
extended interpretationJ , eitherJ |=K G′

1 or J |=K G′
2 holds.

When the≤-rule is applied to a nodev in G, some concept≤ nS.C in L(v) exists andv hasS-
neighboursw1, . . . , wn, wn+1 labelled withC. As J |=K G, it follows vJ ∈ (≤ nS.C)J , which implies
that there are at mosto1, . . . , on elements inG such that〈vJ , oi〉 ∈ SJ andoi ∈ CJ . Thusv hasS-
neighbourswi andwj , i 6= j, which are instances ofC such thatwJ

i = wJ
j . This implieswi 6≈ wj /∈ G,

and the nodes can be merged as a result of the rule application. HenceJ |=K G′, whereG′ is results from
G by mergingwi intowj .

Finally, we consider the two generating rules. For the∃-rule, since the propagation rule was applied,
there is somev in G such that∃R.C ∈ L(v). Hence, someo ∈ ∆J exists such that〈vJ , o〉 ∈ RJ and
o ∈ CJ . The completion graphG′ was obtained by adding a new nodew to G. J will be modified toJ ′ by
settingwJ ′

= o, and thusJ ′ |=K G′.
The case of the≥-rule is analogous to the∃-rule: if J |=K G′, we havewJ

i = oi for 1 ≤ i ≤ n, where
{w1, . . . , wn} are the nodes added toG ando1, . . . , on ∈ ∆J are such that〈vJ , oi〉 ∈ RJ andoi ∈ CJ for
the nodev in G to which the rule was applied.

The o-rule is applicable if{a} ∈ L(v) ∩ L(v′) for some nominal{a} and two nodesv andv′. Since
J |=K G, we havevJ = v′J = a, and thusv can be merged intov′ to obtainG′. Clearly,J |=K G′.

Finally, theo?-rule is only applicable tov if ≤ nS.C ∈ L(v) andv has anS-neighbourv′ with C ∈
L(v′). If m = 1 is guessed, then a new nodew will be generated inG′ with L(w) := {C, {w}} ∪ tcon(K).

INFSYS RR 1843-07-07 39

Since{C} ∪ tcon(K) ⊆ L(v′) andv′ is anS-neighbour ofv, we can modifyJ to J ′ by settingwJ = v′;
then,J ′ |= G′ holds.

Claim 3. If 〈π(x), π(y)〉 ∈ E(R′), thenµ(y) is anR′-neighbour ofµ(x).

Proof. By the definition ofE(R′) and ofR′-step, if〈π(x), π(y)〉 ∈ E(R′) then either: (i) tail′(π(y)) is
anR′-successor oftail(π(x)), or (ii) tail′(π(x)) is anInv(R′)-successor oftail(π(y)).

We prove that (i) implies thatµ(y) is anR′-successor ofµ(x). Analogously, (ii) implies thatµ(x) is
an Inv(R′)-successor ofµ(y). Together, these two facts complete the proof of the claim. We consider three
cases:

1) π(x) = [a
a
] ∈ in(Gπ): thenµ(x) = tail′(π(x)) = tail(π(x)) = a. If tail′(π(y)) is anR′-successor of

tail(π(x)) = a, thentail′(π(y)) is anR′-successor of an individual node. This implies that eithertail′(π(y))
is also an individual node; or it is a variable node that is notn-blocked andπ(y) is in someGi with
afterblocked(Gi) = ∅. In both casesµ(y) = tail′(π(y)) = tail(π(y)) holds and thusµ(y) is anR′-successor
of µ(x).

2) π(y) = [a
a
] ∈ in(Gπ): thenµ(y) = tail′(π(y)) = tail(π(y)) = a. By construction ofπ(x), either

tail(π(x)) = tail′(π(x)) or tail(π(x)) = ψ(tail′(π(x))). The claim thus holds ifµ(x) = tail(π(x)).
Suppose this is not the case. Then there are two possibilities.

2a) µ(x) = tail′(π(x)), tail′(π(x)) 6= tail(π(y)) andtail(π(x)) = ψ(tail′(π(x))).

In this case,tail′(π(x)) is a leaf of a blockedn-graph, and it is blocked bytail(π(x)) = ψ(tail′(π(x))).
Sinceµ(y) = a is anR′-successor oftail(π(x)) = ψ(tail′(π(x))), we have thatψ−1(a) is anR′-
successor oftail′(π(x)). Sinceψ−1(a) = a (recall that nominals occur in at most one node label,
thus an individual node can only be isomorphic to itself), wehave thata = µ(y) is anR′-successor of
tail′(π(x)) = µ(x) as desired.

2b) µ(x) = ψ(tail′(π(x))), ψ(tail′(π(x))) 6= tail(π(y)) andtail(π(x)) = tail′(π(x)).

Thenπ(x) is a node of someGi with afterblocked(Gi) 6= ∅, andπ(x) 6∈ afterblocked(Gi). Also in
this case,tail′(π(x)) is blocked byψ(tail′(π(x))). Thus,µ(y) = a anR′-successor oftail(π(x)) =
tail′(π(x)) implies thatψ(a) is anR′-successor ofψ(tail′(π(x))). Asψ(a) = a, we have thata = µ(y)
is anR′-successor ofψ(tail′(π(x))) = µ(x) and the claim holds.

3) If π(x), π(y) 6∈ in(Gπ), thenπ(x) andπ(y) are nodes of someGi.
First, suppose thatafterblocked(Gi) = ∅. Thenµ(x) = tail′(π(x)). Sinceπ(y) is anR′-step of

π(x), we havetail′(π(x)) = tail(π(x)) (otherwiseπ(y) ∈ afterblocked(Gi) would follow, contradicting
afterblocked(Gi) = ∅). Clearly, if tail′(π(y)) is anR′-successor oftail(π(x)), thenµ(y) = tail′(π(y)) is
anR′-successor ofµ(x) = tail′(π(x)) = tail(π(x)).

Now we assumeafterblocked(Gi) 6= ∅. We can further distinguish the following cases:

3a) {π(x), π(y)} ⊆ afterblocked(Gi).

In this case, by definition,µ(x) = tail′(π(x)) andµ(y) = tail′(π(y)). Note that, by the definition
of n-blocking, if there is somep with tail(p) 6= tail′(p) and somep′ which is a descendant ofp,
then tail(p′) 6= tail′(p′) can only hold if the distance betweenp and p′ is greater thann. As a
consequence, and since the path length ofGi is bounded byn, tail(p) = tail′(p) holds for each
p ∈ afterblocked(Gi). Clearly, if tail′(π(y)) is anR′-successor oftail(π(x)), we have thatµ(y) =
tail′(π(y)) is anR′-successor ofµ(x) = tail′(π(x)) = tail(π(x)) as desired.

40 INFSYS RR 1843-07-07

3b) π(x) 6∈ afterblocked(Gi) andπ(y) ∈ afterblocked(Gi).

In this caseµ(x) = ψ(tail′(π(x))) and µ(y) = tail′(π(y)). It is also easy to see thatπ(x) ∈
blockedLeaves(Gi), thustail(π(x)) 6= tail′(π(x)) andtail(π(x)) = ψ(tail′(π(x))). Hence iftail′(π(y))
is anR′-successor oftail(π(x)), thenµ(y) = tail′(π(y)) is anR′-successor ofµ(x) = ψ(tail′(π(x))).

3c) Neitherπ(x), π(y) 6∈ afterblocked(Gi).

By definition, µ(x) = ψ(tail′(π(x))) and µ(y) = ψ(tail′(π(y))) hold. We can also verify that
tail(π(x)) = tail′(π(x)), as otherwiseπ(y) ∈ afterblocked(Gi) would hold. By the definition
of n-graph equivalence, iftail′(π(y)) is anR′-successor oftail(π(x)) = tail′(π(x)), thenµ(y) =
ψ(tail′(π(y))) is anR′-successor ofµ(x) = ψ(tail′(π(x))) as desired.

Note that the caseπ(y) 6∈ afterblocked(Gi) andπ(x) ∈ afterblocked(Gi) is not possible. This proves the
claim.

References

[1] G. Antoniou, C. V. Damasio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and P. F. Patel-
Schneider. Combining rules and ontologies. A survey. Technical Report Deliverable I3-D3, REW-
ERSE Project, Feb. 2005. Available athttp://rewerse.net/deliverables/m12/i3-d3.
pdf.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[3] F. Baader and P. Hanschke. A schema for integrating concrete domains into concept languages. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence(IJCAI’91), pages 452–457, 1991.

[4] F. Baader and U. Sattler. Expressive number restrictions in description logics.J. of Logic and Compu-
tation, 9(3):319–350, 1999.

[5] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.Studia Logica,
69(1):5–40, 2001.

[6] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning onUML class diagrams.Artificial Intelli-
gence, 168(1–2):70–118, 2005.

[7] R. Berger. The undecidability of the dominoe problem.Mem. Amer. Math. Soc., 66:1–72, 1966.

[8] A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In Baader et al. [2],
chapter 10, pages 349–372.

[9] D. Calvanese and G. De Giacomo. Expressive description logics. In Baader et al. [2], chapter 5, pages
178–218.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, andR. Rosati. DL-Lite: Tractable description
logics for ontologies. InProc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI2005), pages 602–
607, 2005.

INFSYS RR 1843-07-07 41

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, andR. Rosati. Data complexity of query
answering in description logics. InProc. of the 10th Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR 2006), pages 260–270, 2006.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, andR. Rosati. Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

[13] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under
constraints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[14] D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views over description
logics knowledge bases. InProc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI2000), pages
386–391, 2000.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, andR. Rosati. Description logic framework
for information integration. pages 2–13, 1998.

[16] D. Calvanese, T. Eiter, and M. Ortiz. Answering regularpath queries in expressive description logics:
An automata-theoretic approach. InProc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI2007),
pages 391–396, 2007.

[17] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms.J. of
Artificial Intelligence Research, 11:199–240, 1999.

[18] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data
bases. InProc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pages 77–90, 1977.

[19] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and algo-
rithms for converse-PDL.Information and Computation, 160(1–2):117–137, 2000.

[20] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept languages: From sub-
sumption to instance checking.J. of Logic and Computation, 4(4):423–452, 1994.

[21] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.AL-log: Integrating Datalog and description
logics. J. of Intelligent Information Systems, 10(3):227–252, 1998.

[22] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with
description logics for the semantic web. InProc. of the 9th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2004), 2004.

[23] E. Franconi and S. Tessaris. Rules and queries with ontologies: a unified logical framework. In
Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR-04), 2004.

[24] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence(IJCAI 2007), pages 399–404,
2007.

42 INFSYS RR 1843-07-07

[25] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive query entailment forSHOQ. In Proc. of the 2007
Description Logic Workshop (DL 2007), volume 250 ofCEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-250/, pages 65–75, 2007.

[26] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. InProc. of the 23rd ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2004), pages 189–200,
2004.

[27] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR 2001), volume 2083 ofLecture Notes in Artificial Intelligence, pages 701–705.
Springer, 2001.

[28] D. Harel. Recurring dominoes: Making the highly undecidable highly understandable. 24:51–72,
1985.

[29] J. Heflin and J. Hendler. A portrait of the Semantic Web inaction.IEEE Intelligent Systems, 16(2):54–
59, 2001.

[30] I. Horrocks. The FaCT system. In H. de Swart, editor,Proc. of the 7th Int. Conf. on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397 ofLecture
Notes in Artificial Intelligence, pages 307–312. Springer, 1998.

[31] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. FromSHIQ and RDF to OWL: The making
of a web ontology language.J. of Web Semantics, 1(1):7–26, 2003.

[32] I. Horrocks and U. Sattler. A tableaux decision procedure forSHOIQ. In Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2005), pages 448–453, 2005.

[33] I. Horrocks and U. Sattler. A tableaux decision procedure forSHOIQ. Technical report, Department
of Computer Science, University of Manchester, 2005. Available athttp://www.cs.man.ac.
uk/∼sattler/publications/shoiq-tr.pdf.

[34] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
H. Ganzinger, D. McAllester, and A. Voronkov, editors,Proc. of the 6th Int. Conf. on Logic for Pro-
gramming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelli-
gence, pages 161–180. Springer, 1999.

[35] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive description logics.
8(3):239–264, 2000.

[36] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logicSHIQ.
In D. McAllester, editor,Proc. of the 17th Int. Conf. on Automated Deduction (CADE 2000), volume
1831 ofLecture Notes in Computer Science, pages 482–496. Springer, 2000.

[37] I. Horrocks and S. Tessaris. A conjunctive query language for description logic ABoxes. InProc. of
the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 399–404, 2000.

[38] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision procedures by resolution-
based calculi. InProc. of the 11th Int. Conf. on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2004), pages 21–35, 2004.

INFSYS RR 1843-07-07 43

[39] U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ-description logic to disjunctive datalog pro-
grams. InProc. of the 9th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2004), pages 152–162, 2004.

[40] U. Hustadt, B. Motik, and U. Sattler. Data complexity ofreasoning in very expressive description
logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence(IJCAI 2005), pages 466–471,
2005.

[41] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of the 21st ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 2002), pages 233–246, 2002.

[42] A. Y. Levy and M.-C. Rousset. The limits on combining recursive Horn rules with description logics.
pages 577–584, 1996.

[43] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artificial
Intelligence, 104(1–2):165–209, 1998.

[44] C. Lutz. Description logics with concrete domains: A survey. In P. Balbiani, N.-Y. Suzuki, F. Wolter,
and M. Zakharyaschev, editors,Advances in Modal Logics, volume 4. King’s College Publications,
2003.

[45] C. Lutz. Inverse roles make conjunctive queries hard. In Proc. of the 2007 Description Logic Work-
shop (DL 2007), volume 250 ofCEUR Electronic Workshop Proceedings,http://ceur-ws.org/
Vol-250/, pages 100–111, 2007.

[46] R. MacGregor. Inside the LOOM description classifier. 2(3):88–92, 1991.

[47] B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis,
Univesitaet Karlsruhe, Karlsruhe, Germany, Jan. 2006.

[48] M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for conjunctive query answering
in expressive description logics. InProc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI2006),
pages 275–280, 2006.

[49] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity ofanswering unions of conjunctive queries in
SHIQ. In B. Parsi, U. Sattler, and D. Toman, editors,Proc. of the 2006 Description Logic Workshop
(DL 2006), pages 62–73, 189, 2006. CEUR Workshop Proceedings.

[50] P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language semantics and ab-
stract syntax. W3C Recommendation, Feb. 2004. Available athttp://www.w3.org/TR/
owl-semantics/.

[51] P. F. Patel-Schneider, D. L. McGuinness, R. J. Brachman, L. A. Resnick, and A. Borgida. The CLAS-
SIC knowledge representation system: Guiding principles and implementation rational. 2(3):108–113,
1991.

[52] R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog. InProc. of the 10th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pages 68–98,
2006.

44 INFSYS RR 1843-07-07

[53] A. Schaerf. On the complexity of the instance checking problem in concept languages with existential
quantification.J. of Intelligent Information Systems, 2:265–278, 1993.

[54] A. Schaerf. Reasoning with individuals in concept languages. Data and Knowledge Engineering,
13(2):141–176, 1994.

[55] S. Tobies. The complexity of reasoning with cardinality restrictions and nominals in expressive de-
scription logics.J. of Artificial Intelligence Research, 12:199–217, 2000.

[56] S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD
thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany, 2001.

[57] M. Y. Vardi. The complexity of relational query languages. InProc. of the 14th ACM SIGACT Symp.
on Theory of Computing (STOC’82), pages 137–146, 1982.

[58] J. Yen, R. Neches, and R. MacGregor. CLASP: Integratingterm subsumption systems and production
systems. 3(1):25–31, 1991.

