| NF SY S
RESEARCH
REPORT

Institut fur Informationssysteme
AB Wissensbasierte Systeme
Technische Universitat Wien
Favoritenstrassf3e 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

T

" ey e Iy

L IICITICT
I ENrraroraRnce LER
(p G PNTCRPPUEOERE £]

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

SEMANTIC FORGETTING INANSWERSET
PROGRAMMING

Thomas Eiter Kewen Wang

INFSYS RESEARCHREPORT1843-07-08
NoOVEMBER 2007

TU

WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-07-08, NbVvEMBER 2007

SEMANTIC FORGETTING INANSWER SET PROGRAMMING

Thomas Eitef and Kewen Wang

Abstract. The notion of forgetting, also known as variable eliminafibas been investigated ex-
tensively in the context of classical logic, but less so innfmonotonic) logic programming and
nonmonotonic reasoning. The few approaches that existasedoon syntactic modifications of a
program at hand. In this paper, we establish a declarate@rytof forgetting for disjunctive logic
programs under answer set semantics that is fully basednoargie grounds. The suitability of this
theory is justified by a number of desirable properties. higalar, one of our results shows that our
notion of forgetting can be entirely captured by classioaétting. We present several algorithms
for computing a representation of the result of forgettanggl provide a characterization of the com-
putational complexity of reasoning from a logic program entbrgetting. As applications of our
approach, we present a fairly general framework for reaghdonflicts in inconsistent knowledge
bases that are represented by disjunctive logic programisywa show how the semantics of inher-
itance logic programs and update logic programs from tleeditire can be characterized through
forgetting. The basic idea of the conflict resolution frarnewis to weaken the preferences of each
agent by forgetting certain knowledge that causes inctergiyg. In particular, we show how to use

the notion of forgetting to provide an elegant solution fogfprence elicitation in disjunctive logic
programming.

Keywords: answer set programming, honmonotonic logic programs, kedye representation,
forgetting, computational complexity.

Lnstitute of Information Systems, Knowledge-Based Syst&@roup, TU Vienna, Favoritenstrae 9-11, A-1040
Vienna, Austria. Email: eiter@kr.tuwien.ac.at

2School of Information and Communication Technology, QtffUniversity, Brisbane, QLD 4111, Australia.
Email: k.wang@agriffith.edu.au

Acknowledgements This work has been partially supported by the Austrian iBm@e-unds (FWF) Projects
P17212 and P18019, the EC project REWERSE (IST-2003-506#¥9Australia Research Council (ARC)
Discovery Projects DP0666107 and DP0666540.

Preliminary versions of this paper with some of the resudtgetbeen presented at AAAI 2006 and at NMR
2006.

Copyright(© 2007 by the authors

Contents

=

N

Introduction
Preliminaries

Forgetting in Logic Programming

3.1 Definition of Semantic Forgetting
3.2 Basic Propertiesof Forgetting e
3.3 Relationto Classical Forgetting
3.4 Forgettingvs. Independence e

Computation of Forgetting

4.1 Naive Algorithm e e

4.2 Improved Algorithm e e

4.3 Transformation-Based Algorithm e
4.3.1 Basic programtransformations 0 e
4.3.2 Logic programs with double negation
4.3.3 Thealgorithm

Computational Complexity

Applications

6.1 Resolving Conflicts in Multi-Agent Systems
6.2 Inheritance Logic Programs e e
6.3 Update Logic Programs e e e e e e

Conclusion

Appendix

12
13
13
14
15
17

20

23
23
25
27

27

29

1 Introduction

For intelligent agents, the ability to discard irrelevant information has besygnézed as an important
feature (that is mastered well by humans) and received broad attentiatificiah intelligence, both from
a cognitive and a computational perspective. In the area of knowleggesentation, this ability is often
referred to agorgetting[Lin and Reiter, 1994or variable elimination[Brown, 2003, but has been studied
under many different names including irrelevance, independencdyirdancy, novelty, or separability (see
[Subramaniaet al, 1997; Langet al,, 2003 for more details).

Forgetting has its root in Boolean Algebi@oole, 1841 where it is a fundamental reasoning process.
C. I. Lewis [1919 has pointed out that, for purposes of application of Boolean logic to comensas
reasoning, the elimination/forgetting is a process more important than sdlsiiore most processes of
reasoning take place through the elimination of “middle” variables. Boole weitsach middle variables
that it “usually happens in commonsense reasoning, and especially véheavwe more than one premises,
that some of the elements [in the premises] are not required to appear imtiesion.”

Forgetting and its applications have been investigated extensively in thextoitelassical logic,
for example, [Bledsoe and Hines, 1980; Larrosa, 2000; Larresal, 2005; Lin and Reiter, 1994;
Lang et al, 2003; Middeldorpet al, 1996; Moinard, 2007; Weber, 1986but less so in nonmono-
tonic logic programming and reasoning. In this context, it was first corsider[Zhanget al., 2005;
Zhang and Foo, 2006where two types of forgetting—strong and weak forgetting—have beénedi by
first transforming a logic prograr® into a reduced form and then deleting some rules (and literals) from
it. While this approach works well in a number of cases, it has two major crekeb First, its semantic
underpinning is not fully clear. Specifically, the relationship between thade# semantics of a logic pro-
gram, in terms of its answer sets, and the result of the syntactic transforsthtaimmre carried out by strong
and weak forgetting is unclear. Second, this approach does notadtisirable properties for a reasonable
notion of forgetting in nonmonotonic logic programming. In particular, one nskyehat is the difference
of these notions of forgetting from traditional approaches to deletionle$#iterals in logic programming
and databases.

A further aspect is that both strong and weak forgetting are syntasitisen i.e., programs that are
semantically equivalent may have different results after forgetting ghewtame literal. For example, the
programsP = {p «— . ¢ < not p} and@ = {p <} are equivalent under the answer set semantics.
Weak forgetting aboup from P yields the progranWForgetLP (P, p) = {q <} and from@ the program
WForgetLP(Q, p) = {}; clearly, these programs are not equivalent.

While the role of syntax in logic programming is well-acknowledged, one migjuteathat relative to the
semantics of this syntax, equivalent programs should behave in the samiawarticular, in this example
the result of forgetting abouytin P and@ should yield semantically the same result (note that, under answer
set semantics, the second rulefiris redundant).

A similar phenomenon can be observed for strong forgetting. Consider{q < not p. ¢ < not ¢}
and@ = {¢ <}. Then these two programs are equivalent under the answer set semahiiov-
ever, the results of strong forgetting abgufrom P and @) are SForgetLP(P,p) = {q¢ < not ¢} and
SForgetLP(Q, p) = {q <}, respectively, which are obviously not equivalent. The discrepanicgre even
more noticeable: the result of strong forgetting about an atom from @stensprogram can be inconsistent.

Thus, an alternative notion of forgetting for nonmonotonic logic programnsrdghly desirable. In

In [Lewis, 1918 a problem is formulated as a Boolean equation such that a solution of theaBaguation corresponds to a
solution of the given problem. In particular, solving a Boolean equatiore&dd as a process of eliminating/forgetting variables
that represent unknowns.

this paper, we choose answer set programming (ASPchitz, 2003 as the underlying nonmonotonic
logic. ASP is a new paradigm of logic programming under the answer sehsiesi&elfond and Lifschitz,
199d, which is becoming a major tool for knowledge representation and reagdnia to its simplicity,
expressive power, and connection to major nonmonotonic logics. A nuofledficient ASP solvers, such
as DLV, Smodels, ASSAT, Cmodels, or Clasp are available[&searagus homepage, Since 2)0&hich
can handle large problem instances.

Prior to defining a notion of forgetting for nonmonotonic logic programmingnveg pose the question
what desirable properties a reasonable theory of forgetting shoudd Adne following ones appear to be
natural candidates for us. L&t be a logic program and Ig?’ be the result of forgetting about a literiain
P.

(F1) The proposed notion of forgetting should be a “natural” generalizatiparaf relate to, forgetting in
classical logic.

(F2) No new symbols are introduced i?¥, i.e., the vocabulary stays the same.
(F3) The reasoning undéd?’ is equivalent to the reasoning und@if [is ignored

(F4) The result of forgetting is not sensitive to syntax in that the results oéftrg about in semantically
equivalent programs should also be semantically equivalent.

(F5) The semantic notion of forgetting is coupled with a syntactic counterpart, i.eg iheffective con-
structible syntax for representing the result of forgetting.

(F1) specifies the major intuition behind forgetting and clarifies the differefidorgetting from deletion.
(F2) is necessary because the forgetting is to eliminate redundant syniliidsis a difference between
forgetting and some approaches to revision, update, and deletion,sldfeseset al,, 1998; Buccafurret

al., 1999; Eiteret al, 2002; Granget al,, 1993; Waal and Gallagher, 1993iote that to combine forgetting
with other approaches to adding new information is a different issue.pie8)des a semantic justification

for the forgetting. Note thaP’ and P may have different answer sets in general (see Proposition 1); (F4)
guarantees that the notion of forgetting is semantically well-defined. Fing8Y,i$ useful for applications

of forgetting in knowledge representation.

To the best of our knowledgéhere is no theory of forgetting in nonmonotonic reasoning or logic pro-
gramming which is based on the above criteridowever, the definition of forgetting in classical logic
cannot be directly adapted to logic programming (cf. Section 3.1). The mainmations of the present
paper are as follows.

e \We establish a declarative, semantically defined notion of forgetting for disjeriogic programs un-
der answer set semantics callgmantic forgettingThe suitability of semantic forgetting is justified
by a number of desirable properties, including the ones given above.

e As one of them, we show that our notion of forgetting naturally capturesickdsforgetting. As
we show, this can be exploited for reasoning under forgetting about al lftem a logic program
by resorting to representations of a nonmonotonic logic program in termassfical logidLin and
Zhao, 2002; Lin and Zhao, 2004, Lee and Lifschitz, 2003

e As another such property, for every consistent disjunctive progfaend literall, a syntactic repre-
sentationforget (P, [) for forgetting about in P in terms of a nonmonotonic logic program always

2

exists. Besides two semantics-based algorithms for computing such eergptes, we also present
a transformation-based algorithm. This algorithm allows to obtain the resutirgétting about a
literal [in P via a series of program transformations and other rewritings.

e In connection with these algorithms, we characterize the computational catpgiEthe major rea-
soning tasks from logic programs under forgetting about a literal. As istaut, model checking
and credulous reasoning under forgetting about a literal from a loggram are more complex than
in the standard setting (by one level in the polynomial hierarchy), whiletsledpeasoning has the
same complexity. These results provide useful insights into feasible espagions of forgetting, and
suggest that a polynomial-size result of forgetting may not always tsblea This (and stronger
results) can be established by applying the theory of Cadoli €2600; 2002.

e As an application of our approach, we present a fairly general framefor resolving conflicts in
inconsistent knowledge bases. The basic idea of this framework is tewdad preferences of each
agent by forgetting certain knowledge that causes inconsistency.rtinytar, we show how to use
the notion of forgetting to provide an elegant solution for preference diaitan ASP.

e Furthermore, we show that inheritance prograBisccafurriet al., 1999, update programiEiter et
al., 2000; Eiteret al,, 2004 and fragments of dynamic prograf#sfereset al., 1998; Alfereset al,,
2004 can be characterized in terms of the semantic forgetting.

While in this paper, we focus on nonmonotonic logic programs, the basicuthe®slying our approach
to semantic forgetting may be applied to other well-known formalisms of nonmoicotasoning, such as
default logic[Reiter, 1980 or autoepistemic logitMoore, 198%, as well, of which nonmonotonic logic
programs under answer set semantics can be seen as particular tsagiméact, these formalisms extend
classical logic, and a notion of forgetting that complies with classical forgegtimich is based on seman-
tics) seems needed there. Our results thus also provide a benchmappfoaehes to forgetting in other
formalisms of nonmonotonic reasoning, which remain to be developed.

The rest of the paper is organized as follows. Section 2 briefly recatie $@sics of disjunctive logic
programs and the answer sets. Section 3 defines the notion of forgettingAnshows some important
properties, and relates it to classical forgetting and independeaog et al., 2003. Thereafter, Section 4
presents algorithms for computing the result of forgetting in ASP, while Sebtgindies some complexity
issues. Section 6 then presents some applications, namely to conflict resolutialti-agent systems, to
inheritance logic programs, and to logic program updates. The final 8&ctioncludes the work.

2 Preliminaries

We briefly review some basic definitions and notation in answer set prographatwill be used through-
out this paper.
A disjunctive logic progranfsimply, logic progran) is a finite set of rules of the form

al\/...\/as<—bl’.__7bm,n0tCl,...,TLOtCn, (1)

wheres, m,n > 0, and alla;, b;, ande, are from a seLit of classical literals in a propositional languége
We assume here that all are pairwise distinct, and similarly dl} and allc,. A literal is apositive literalp

The results of this paper may be lifted to the predicate case as usual.

3

or anegative literal—p for some atorm. For an atonp, p and—p are calleccomplementaryFor any literal
[, its complementary literal is denoted byi.

Given a ruler of form (1), head(r) = a1 V - - V as andbody(r) = body™ (r) U not body~ (r) where
body™(r) = {b1,...,bm}, body (r) = {e1,...,cn}, andnot body™ (r) = {not q | ¢ € body (r)}.
Occasionally, in abuse of notation we viésud(r) also as sefay, . .., as}.

A rule r of the form (1) isnormal or non-disjunctiveif s < 1; positive if n = 0; negative if m = 0;
constraint if s = 0; fact, if m = 0 andn = 0. The rule withs = n = m = 0 is the constarfialse A logic
programpP is callednormal (resp.positive negativ@, if every rule inP is normal (resp. positive, negative).

We denote byl.itp C Lit theliteral baseof logic programP, that is, the set of all literals occurring in
P. Unless stated otherwise or clear from the contéxtwill be implicitly given by Lit p. An interpretation
is a set of literalsX C Lit that contains no pair of complementary literals. A disjunctign - -- V a; is
satisfied byX, denotedX |~ a; V ---V as if a; € X for somei with 1 <1 < s. Aruler is satisfied byX,
denotedX = 7, if X & head(r) wheneverbody™ (r) C X andbody (r) N X = 0 hold. FurthermoreX
is a model ofP, denotedX |= P, if X = r for every ruler € P.

The semantics of a logic program is defined in terms of itenswer set§Gelfond and Lifschitz,
1991 as follows. Given an interpretatiol, the reductof P on X is defined asPX = {head(r) «
body™ (r) | r € P, body™ (r) N X = (}. ThenX is ananswer sebf P, if X is a minimal model ofP*. By
AS(P) we denote the collection of all answer setgrof

A logic programP may have zero, one or multiple answer seisis consistentif it has at least one
answer set. It is well-known that the answer sets of a logic prodfare incomparable: for an¥ and X’
in AS(P), X C X' impliesX = X".

Example 1 Let P be the logic program consisting the following rules:

aVb «— notc
d «— a
d «— b

ThenP has two answer set§; = {a, d} and X, = {b,d}. Obviously,X; and X, are incomparable.

Two logic programsP and P’ areequivalent denotedP = P, if AS(P) = AS(P'), i.e., P and P’
have the same answer sets.

By P =5 [and P |=. [we denote skeptical and credulous consequence of a litérain a logic
programP, respectively; that isP =, [iff [€ S for everyS € AS(P) andP . [iff | € S for some
S e AS(P).

3 Forgetting in Logic Programming

In this section, we define what it means to forget about a liferah logic programP. The idea is to obtain

a logic program which does not contditand is equivalent to the original logic program if we ignore the
existence of the literdl We believe that forgetting should go beyond syntactic removal of rulealitand

be close to classical forgetting and answer set semantics (keeping its afpth same time. Thus, the
definition of forgetting in this section is given in semantics terms, i.e., basedsveasets.

3.1 Definition of Semantic Forgetting

In classical propositional logic, the result of forgettifegget (7, p) about a propositiom in a finite theory
T is conveniently defined a8(p/true) V T'(p/ false), whereT'(p/true) andT(p/ false) are obtained
by taking the conjunction of all sentences’lihand replacing all occurrences pfwith true and false,
respectively. This method cannot be directly generalized to logic progragnrsiimce there is no notion
of the “disjunction” of two logic programs. However, if we look at forgettimgfrom a model-theoretic
perspective, then we can obtain the modelfoafet(T’, p) as follows: compute first all (2-valued) models of
T and then removg from each model if it containg. The resulting collection of se{d\/ \ {p} | M = T}

is exactly the set of all models érget(T', p).

Similarly, given a consistent logic prograf and a literall, we could naively define the result of
forgetting about in P as a logic progran®’ whose answer sets are exacthp(P) \ I = {X \ {l} | X €
AS(P)}. However, this notion of forgetting cannot guarantee the existen£® foff even simple programs.
For example, consideP = {a «— . pV ¢ «}. Here AS(P) = {{a,p},{a,q}} and thusAS(P) \ p =
{{a},{a,q}}. Since{a} C {a,q} and, as well-known, answer sets are incomparable under set inclusion,
AS(P) \ p cannot be the set of answer sets of any logic program.

A solution to this problem is suitable notion of minimal answer s&ich that the definition of answer
sets, minimality, and forgetting can be fruitfully combined. To this end, we cadt A 5ani-subset of a set
X, denotedX’ C; X, if X'\ {I} C X \ {l}. Similarly, a setX' is a strict/-subset ofX, denotedX’ C; X,
if X"\ {l} ¢ X\ {l}. Two setsX and X" of literals arel-equivalent, denoted ~; X', if X’ C; X and
X C X,

Definition 1 (I-Answer Set) Let P be a consistent logic program, lébe a literal in Litp, and letX C
Litp be a set of literals.

1. For acollectionS of sets of literals X € S is I-minimalif there is noX’ € S such thatX’ c; X. By
min,; (S) we denote the collection of diminimal elements its.

2. An answer seX of logic programP is anl-answer seff X is [-minimal in AS(P). By AS,;(P) we
denote the set of allanswer sets af.

For exampleP = {a < . pV ¢ <} has two answer sef§ = {a,p} andX’' = {a, ¢}. X is ap-answer set
of P, but X’ is not. This example shows that, for a logic progréhand a literal/, not every answer set is
anl-answer set.

The sets inAS;(P) \ I = {X \{l} | X € AS;(P)} are incomparable, and so we can find a logic
program which has this collection as its answer sets. Note that to achievepacability, one could select
other answer sets than those which are minimad&(P) \ [(e.g., the maximal ones). However, selecting
minimal answer sets is in line with the guiding principle of logic programming and naptoaic reasoning
to minimize positive information.

Note that in the above definitio®, was assumed to be consistent (i4S(P) #). If a logic program
is inconsistent, the result of forgetting seems not to be clear, since thibiptyssf removing inconsistency
from the logic program might have to be considered. For example, a laggegnP may have partial stable
models[Sacca and Zaniolo, 199Wwhile it is inconsistent under the answer set semantics (i.e. the stable
model semantics). Forgetting from inconsistent programs is an interestirgy lmgt we do not consider it
here. In the rest of this paper, we always assumelfhata consistent logic program.

The following proposition collects some easy propertiesarfiswer sets.

Proposition 1 For every consistent programi and every literal in Lit p, the following holds:
1. Everyl-answer sefX of P is an answer set aP.
2. For every answer seY of P, there exists afranswer sefX’ of P such thatX’ C; X.
3. Every answer seX of P with € X is anl/-answer set oP.
4

. Ifan answer sek of P is not an/-answer set o, then! ¢ X and there exists afranswer set” of
Psuchthat € Y andY ¢; X.

5. Ifl ¢ Litp, thenX is ani-answer set o iff X is an answer set aP.

Having the notion of minimality about forgetting a literal, we are now in a position fmeéhe result of
forgetting about a literal in a logic program.

Definition 2 (Semantic Forgetting) Let P be a consistent logic program amde a literal. A logic program
P’ represents the result ébrgetting about in P, if

1. Bpr € Bp \ {l}, i.e.,l does not occur ir”’, and

2. AS(P') = AS;(P)\ I, i.e., for every seK’ of literals such that ¢ X', X' is an answer set of”’ iff
there exists af-answer sefX of P such thatX’ ~; X.

We useorget(P, 1) as a generic notation for a logic program representing the result of forggtilvout! in
P.

An important difference of the notion of forgetting here from existing apphes to updating and merging
logic programs, cf.[Alferes et al, 1998; Buccafurriet al, 1999; Eiteret al, 2002; Grantet al., 1993;
Waal and Gallagher, 1993s that merely and possibly some other literals are removed. However, no new
symbols are introduced iR’.

For a consistent logic prograi, some progran’ as in the above definition always exists (cf. Algo-
rithm 2 for details). However, different such prograi¥sexist. It follows from the definition that they are
all equivalent under answer set semantics.

Proposition 2 Let P be a consistent logic program and letc Litp be a literal. If P’ and P” are two
results for forgetting aboutin P, thenP’ and P” are equivalent.

Before further properties of forgetting are explored in Section 3.2 débak at some example programs.

Example2 1. If P, = {q < not p}, thenforget(P1,q) = 0 andforget(P1,p) = {q «}. Here,
forget(Py, p) is obtained fromP; by removingnot p in the ruleq < not p while forget(Py, q) is
obtained by removing the whole ruje— not p.

2. If P, = {q < not p. p < not ¢}, thenforget(P>, p) = (). The reason is thaP, has two answer sets
{p} and{q} but only{p} is a p-answer set af,. Thusforget(F»,p) has the single answer sét.
Similarly, forget(P, q) = {}.

3. ConsiderP; = {q < not p. p <}, which has the single answé¢p}. Thusforget(Ps,p) = {}
rather than{q < }. This is intuitive, because we are forgetting all impactg oh Ps. In particular,
“forgetting aboutp” is different from “assumingnot p”.

From the above examples, one might guess that some prdgrgen(P, p) can be obtained by simply
removing rules and/or literals with hegdand/or positive body literap, and by removinguot p in
the remaining rules. However, as the next example shows, this is nohtgpe@eral.

4. LetPy; = {a « not b. b + not a. p «— not a. ¢ «— not p}. According to[Zhanget al, 2009,
the result of weak forgetting aboptin Py is the programWForgetLP(Py,p) = {a <« not b. b —
not a. ¢ <}, while the result of strong forgetting abopin Py is the progranSForgetLP(Py, p) =
{a < not b. b — not a}. Neither is fully intuitive:c depends om (by means of double negation),
but in bothWForgetLP(P,, p) and SForgetLP(Py, p) any connection betweenand « is lost. In
contrast,forget(Py, p) = {a < not b. b — not a. ¢ < a} where the connection betweeanda is
maintained via the rule « a.

5. P = {pV q < not p. ¢ — ¢} has the single answer sé4, c}. Here,p is involved in unstratified
negation and must be false in every answer set. We olidegat(Ps,p) = {¢ < . ¢ <}, which
intuitively results by pushing through the only possible valuesfand simplifying the program.

6. LetPs = {a V p < not b. ¢ < not p. b <}. This program has the single answer $&tc}, and no
atom p is involved in cyclic negation. Forgetting abgut Py yieldsforget(Ps,p) = {c «— . b <},
which again corresponds to a simplified version of the progfanthe results after pushing through
the value ofy; note that the first rule inP; is never applicable.

We will discuss how to obtain a concrete progréumget(P, 1) in the next section.

3.2 Basic Properties of Forgetting

In this subsection, we present some further properties of forgettingt, Bie number of answer sets can
never increase.

Proposition 3 Let P be a consistent logic program. Then, for every litetain Litp, it holds that
|AS (forget(P,1))| < | AS(P)].

This is a simple consequence of the fact that only some, but not all asstgeofP arel/-answer sets.
Note that this property is compliant with the principle of closing the world, and edititig possibilities in
favor of a default case.

The following proposition generalizes Proposition 2.

Proposition 4 Let P and P’ be two consistent logic programs ahd literal in P. If P and P’ are equiva-
lent, thenforget(P,) andforget(P’, 1) are also equivalent.

However, forgetting here does not preserve some special equiealef logic programs stronger than or-
dinary equivalence like strong equivaleritéfschitz et al, 1999 or uniform equivalencéEiter and Fink,
2003.

We say that forgettingreservesan equivalences x on logic programs, if for every logic progranis
and @’ and for every literal, Q@ =x Q' implies forget(Q,l) =x forget(Q',1). Here X can be strong

equivalence, uniform equivalence, or any other equivalence melatiadhe collection of (disjunctive) logic
programs.

An equivalence relatioee x for logic programs orLit is invariant under literal extensions, if the fol-
lowing holds: wheneveP and P’ are programs such thdtit p, Litp: C Lit andl ¢ Lit is a new literal,
thenP =x P’ w.r.t. Lit iff P =x P’ w.r.t. Lit U {l}.

An equivalences x is strongerthan ordinary equivalence if the following conditions are satisfied:

1. For any program®& andP’, P =x P’ impliesP = P'.
2. There exist two program®B and P’ such that? = P’ andP #x P'.

Proposition 5 Let=x be a equivalence relation on a collection of logic programsilagnthat is stronger
than ordinary equivalence and invariant under literal extensions. Thagetting does not preserey.

Both strong and uniform equivalengkifschitz et al., 2001; Eiter and Fink, 20Q3re clearly stronger
than ordinary equivalence, and clearly also invariant under literahsixtes. Hence, none of them is pre-
served by the definition of forgetting introduced. This, however, is aeguence of the freedom to ar-
bitrarily instantiate the generic prograferget(P,). For specific realizations dbrget(P, 1), both strong
and uniform equivalence may be preserved under forgetting; fonpbea the realizationrget, (P, 1) and
forgety (P, 1) in Section 4 have this property. A suitable notion of forgetting which presestrong equiva-
lence is interesting for some applications, but beyond the scope of this pape

Proposition 6 For every consistent programi and every literal in Lit p, the following holds:
1. AS(forget(P,1)) = {X \ {l} | X € AS;(P)}.
2. If X € AS;(P)withl ¢ X, thenX € AS(forget(P,1)).
3. ForeveryX € AS(P)suchthat € X, X \ {l} € AS(forget(P,1)).
4. For everyX’ € AS(forget(P, 1)), eitherX’ or X’ U {l} isin AS(P).
5. ForeveryX € AS(P), there exists{’ € AS(forget(P, 1)) such thatX’ C X.

6. If I does not appear i#®, thenforget(P,) = P.

The next proposition says that, after forgetting about a literal in a logigrpm, the resulting program
is equivalent to the original one under skeptical reasoning, but wealder credulous reasoning (i.e.,
inferences are lost).

Proposition 7 Let P be a consistent logic program and let’ be literals in Lit p such that’ # [. Then,
1. P =, Uiff forget(P,1) =, I, and
2. P = Uif forget(P,1) = U.

The above definition of forgetting about a single litetah a logic programP can be straightforwardly
extended to a set’ of literals. We can similarly defin&y Cr Xo, X1 ~r X5, and F-answer sets of
a logic program, and the properties of forgetting about a single literal eageheralized to this setting.
Furthermore, the result of forgetting about a Batan be obtained by forgetting the literalsfirone by one.

8

Proposition 8 Let P be a consistent logic program and &t = {i4,...,l,} be a set of literals. Then
forget(P, F') = forget(forget(forget(P,11),12),...),lm).

Notice that the particular indexing of the literalsihdoes not matter. This result, which allows to reduce
forgetting to an base operation, is quite useful, but its proof (which isngiveAppendix) requires some
technicalities.

We remark that for removing a propositignentirely from a programP, it is suggestive to remove
both the literalsp and —p in P (i.e., all positive and negative information abgyt This can be easily
accomplished byorget(P, {p, -p}).

Let us consider a simple logic program which contains a pair of complemditeagyfs.

Example 3 Let P be the following logic program:

flies(Tweety) <« pigeon(Tweety).
—flies(Tweety) «— penguin(Tweety).
pigeon(Tweety) V penguin(Tweety)

If we forget about only one gfies and —flies, then the complementary literal must still be in the result of
forgetting. For instance, the prografarget (P, flies) still contains— flies:

—flies(Tweety) <« not penguin(Tweety).
pigeon(Tweety) V penguin(Tweety) «—

However,forget(forget(P, flies), —flies) andforget(forget(P, —flies), flies) are by Proposition 8 equiva-
lent and amount to
pigeon(Tweety) V penguin(Tweety) «—

3.3 Relation to Classical Forgetting

We now consider the relationship between classical forgefonget(7", p) and logic programming for-
getting forget(P, p). Besides the stable and the answer set semalffietfond and Lifschitz, 1988b;
Gelfond and Lifschitz, 1991 another influential semantics for nonmonotonic logic programming is the
Clarke’'s completion semanti¢€lark, 1978, which defines the semantics of logic programs in terms of
classical logic. It is well-known that answer set and completion semangadifferent in general. For ex-
ample, the logic progran? = {p < ¢; ¢ < p} has a unique answer sgt. However, Clarke’s completion
for P gives{p = ¢}, which has two model$} and {p, ¢}. Lin and Zhao[2002; 2004 showed that the
answer set semantics for a logic program can be characterized by a sixghsion of Clarke’s program
completion by adding so callddop formulas They consider normal logic programs that may contain con-
straints. This approach allows to compute the answer sets of a normal logi@pr using a classical SAT
solver. Lee and Lifschit{2003 extended this characterization to the class of disjunctive logic programs.
For simplicity, we assume in this subsection that programs have no strontipmegéich can be compiled
away in the standard way as usual.

For every logic progran®, its completioncomp(P) is the set of propositional formulas containing

e body(r) — head(r) for every ruler in P,

e and the formula: — V, ¢ p sepead(r) (00Y (1) A N pe(head(r)—{ay) ~P)- fOr €very atom.

Herehead(r)— L is, for any the set of atoms, the head set of atoms that occutigud () but not inL, and

“ wn

not " and comma “,” in rule bodies are translated into the negatiehdnd conjunction A” in classical
propositional logic, respectively. An empty helehd(r) is translated intal.

Given a logic progranP, its positive dependency grafghp is the directed graph whose vertices are
the atoms occurring it* and where there is an edge frgnto ¢ iff there exists some rule in P such that
p € head(r) andq € body™ (r). A nonempty sef. = {p1,...,px} of atoms is doop of P, if for every
distinctp;, p; € L there exists a path of nonzero length frpfito p; in G p such that all vertices in this path
belong toL. Theconjunctive loop formul#or L is

CLF(L) = (pr A+ Ape) = (Vper) @)

whereR(L) is the set of formulasody (r) A A\ ¢ eqa(r)—r, —p for all rulesr € P with head(r) N L # () and
body™(r) N L = (.

For example,L = {p,q} is a loop of the logic progran? = {r Vp < ¢; ¢ < p}. In this exam-
ple, R(L) = {} and thus the right hand side 6fLF'(L) is an empty disjunction. Thu€'’LF (L) is the
propositional formulgp A ¢) — L.

Let lcomp(P) = comp(P) U CLF(P), whereCLF(P) is the set of all loop formulas. A fundamental
result established by Lin and Zh&2002 shows that the generalized completioamp(P) exactly char-
acterizes the answer set semantics. This was extended to disjunctivefogjiamps by Lee and Lifschitz
[2009 as follows.

Theorem 1 (Lee and Lifschitz, 2003) Let P be a (disjunctive) logic program and I&f C Litp be a set
of atoms. ThetX is an answer set aP iff X is a model ofcomp(P).

SinceL = {p, ¢} is the only loop ofP = {r V p «— ¢; ¢ «— p}, we haveCLF(P) = {(p A q) — L}.
Since we haveomp(P) = {r — ¢ A —~q,p — q A —r, ¢ — p}, we obtain (after some simplifications) that
lcomp(P) ={p=q,r — L,p— —r,q —r,(pAq) — L}. This theory has exactly one model, namely
{}, which is the unique answer set Bf

It is easy to see thatomp(P) = comp(P) if P is negative. Hence,

Corollary 2 Let(@ be a negative program (without strong negation) andXet_ Litp be a set of literals.
ThenX is an answer set a if and only if X is a model otomp(Q).

This corollary is a special case of some previous resul{8éen-Eliyahu and Dechter, 1994; Erdem and
Lifschitz, 2003.

Since for a logic programP and an atomp, the two classical theoriekomp(forget(P,p)) and
forget(lcomp(P),p) can be formed, where in the former logic programming forgetting is applief to
and in the latter classical forgetting to the thetmymp(P), the natural question is how these two theories
are related. Intuitively, the models of the first theory are all incomparalfide the models of the second
theory may be not.

For example, le? = {p <« not q. ¢ « not p}. Thenlcomp(forget(P,p)) = {—q}, which has the
single modek }, while forget(lcomp(P),p) = {(T < —q) V (F < —¢)} = T, which has two comparable
models{q} and{). However, theminimal modelf forget(Ilcomp(P),p) are the same as thraodelsof
lcomp(forget(P, p)). In fact, this holds in general.

Theorem 3 Let P be a consistent (disjunctive) logic program anddet Lit p be an atom. TheX C Litp
is an answer set dbrget(P, p) iff X is a minimal model oforget(Ilcomp(P), p). That s,

AS (forget(P, p)) = MMod(forget(lcomp(P),p)),

10

S f o forget(P,p) |
s } orget(.,p) forget(P7 p) ‘
lcomp(.) o
forget,,, i (-
lcomp(P) I retn (7] lcomp(forget(P, p)) ‘

Figure 1: Commuting logic program completion and forgetting

where MMod(T') denotes the set of all minimal models (w&). of a theoryT" in classical logic.

The proof of this theorem is given in the Appendix. This result meandéhgdt(P, p) can be characterized
by forgetting in classical logic. If we uderget, ,,,(T, p) to denote a set of classical formulas whose models
are the minimal models of the classical forgettifogget(7, p), then the equation in Theorem 3 can be
reformulated as

lcomp(forget(P, p)) = forget,,;, (Icomp(P), p),

where= denotes classical equivalence. This result is graphically represientieel commutative diagram
in Figure 1. It is quite useful, since it implies that one can “bypass” the fiadagic programming engine
entirely and represent the answer setiafet(P, p) in the frameworks of circumscription and closed world
reasonindMcCarthy, 1980; Lifschitz, 1994; Gelfond and Lifschitz, 1988&his can be done by applying
circumscription tdcomp(P), which we explain in more detail.

In circumscription, minimality is understood as the impossibility of making, in the coofgxtedicate
logic, the extent of the predicatgs, . . . , pr. which are circumscribed in a thedfysmaller without changing
the extent of the other predicates. Furthermore, some predigates, z; among them may be allowed to
vary in the process of minimizing, . . ., px, which is needed in many applications. As for our concern of
propositional logic, alp; andz; are atoms an@irc(T’; p, 2) is a propositional formula with quantifiers on
atoms which semantically captures the circumscription of a finite thEamth respect ty' = (p1, . .., px)
andz = (z1,...,2). As well known, Circ(T'; p, 2) is logically equivalent to Gelfond et al.’s extended
closed world assumptioBCWA(T'; p,) [Gelfond and Lifschitz, 1988awhich augmentd” by additional
formulas.

Let us writeCirc(T', z) respectivelyECWA(T, z) for the case wherg contains a single atora andp’
all other atoms. Then)/ is a model ofCirc(T'; z) respectivelyECWA(T'; z), exactly if M is az-minimal
model of T in the sense that/’ C., M impliesM’ ~, M for every modelM’ of T'. We have the following
result.

Theorem 4 Let P be a consistent (disjunctive) logic program and et Litp be an atom. TheX C
Litp\{p} is an answer set dbrget (P, p) if and only if eitherX or X U{p} is a model oCirc(lcomp(P), p)
(resp.,ECWA(Icomp(P), p)).

(A proof is given in the appendix.) By this rather intuitive result, we may dkp@lso circumscription
engines for reasoning froforget (P, p), into which we feed the loop completidcomp(P) of P. Note that
the latter is exploited by some ASP solvers (viz. ASSAT, Cmodels) as a stegtpimg to compute answer
sets, and that classical forgettingzofrom Icomp(P) can be performed efficiently.

11

3.4 Forgetting vs. Independence

As itis argued irfLanget al,, 2003, the notion ofindependenci important in automated deduction, query
answering, and belief revision. For example, an intelligent agent museg®she ability of determining
and discarding irrelevant information efficiently. When reasoning is iralthe issue of independence (or
irrelevance) becomes more delicate and complex. The idea of forgetting iadependent literals can be
useful in improving reasoning procedures.

Informally, if a literall is independent of a logic program, then the answer set semanticsfo§hould
be unchanged if we forget abolufrom P. So, it is natural and reasonable to formally define the notion of
semantic independenes follows.

Definition 3 Let P be a consistent logic program. A literale Litp is semantically independenf P, if
AS(forget(P,1)) = AS(P).

Obviously, a literal which is semantically independent Bfcan be safely “forgotten.”

Example 4 Consider the progranP = {p < not q. s < s}. Then,forget(P,q) = {p — . s — s} and
forget(P, s) = {p < not q}. Clearly, P, forget(P, q), andforget(P, s) all have the single answer sép}.
Hence, boths and ¢ are semantically independent Bf

The following proposition provides an intuitive characterization for semamtiependence.

Proposition 9 Let P be a logic program. A literal € Litp is semantically independent &fif and only if
1 ¢ S for every answer sef of P.

This result, which is straightforward from Definition 2, is intuitive: a literal idépendent of if and only

[is false with respect to every answer setRyfthat is, P [~. [. In some cases, semantic independence of
literals can be verified syntactically, as shown by the next result. T¥ébe the program transformations
introduced in Section 4.3.1 and €t (P) be the respective canonical form of progr&m

Proposition 10 Let P be a logic program and ldte Litp be aliteral. Suppos”’ is any negative program
obtained fromP by transformations fronil* such that! does not occur inP’. Then! is semantically
independent oP. Furthermore, such a prograr®’ exists iffl does not occur inC*(P).

The converse of Proposition 10 is not true in general. For examplejdeorthe programP = {p «

not q. ¢ < not p. ¢ < p.}. Thenp is semantically independent &f. On the other hand; occurs in
every programP’ resulting fromP by (repeated) transformations i, and in particular in the canonical
form T*(P) = {p « not q. ¢ < not p. ¢ <— not ¢.}. It remains as an interesting issue whether there is
a set of program transformations that is strong enough to syntacticallgatBeze the notion of semantic
independence of literals.

4 Computation of Forgetting

As we have notedforget(P, () exists for any consistent logic prografand literall. In this section, we
discuss some issues on computing the result of forgetting.

12

Algorithm forget, (P, 1)

Input Consistent (disjunctive) logic programand a literal in P.
Output A normal logic program representifigrget(P,).
Method:

Step 1.ComputeAS(P) using an ASP solver (e.g., DLV or gnT).
Step 2.Remove from every set inAS(P) and denote the resulting collection.d&
Step 3.0btain.A” by removing all non-minimal sets frood’.
Step 4.ConstructP’ whose answer sets are exactl§f = {44, ..., A, }:
- Foreachd,;, let P, = {I' « not A; | I' € A;}, whereA; = Litp \ A;.
- LetP =P U---UP,.
Step 5.0utput P’ asforget(P,1).

Figure 2: Algorithmforget, (P, 1)

4.1 Naive Algorithm

By Definition 2, we can easily obtain a naive algorithm for compuftirget(P, /) using an ASP solver for
logic programs, like DLV Leoneet al., 2006 or GnT[Janhunert al., 2004, which is shown in Figure 2.

It is well-known that any collectios of sets of consistent literals which are pairwise incomparable, can
be represented by some logic progréhsuch thatdS(P) = S. In fact, suchP can be constructed frof
in polynomial time.

Algorithm forget, (P, 1) is sound and complete w.r.t. forgetting as in Definition 2.

Theorem 5 Given a consistent (disjunctive) logic prografrand a literall, Algorithmforget, (P, [) outputs
a correct representation dbrget(P,).

The above Step 2 may return collect many answer setf ihat are not minimal; in fact, it is easy to find
examples wherel’ contains exponentially many sets but only few of them are minimal. For example, le
P ={pVq+« . a;Vb; — q,1 <1 < n}. ThenP has the singlg-minimal answer sefp}, but exponentially
many other answer se{g, 1, . .., [, }, wherel; is eithera; or b;, which all lead to non-minimal sets iA’.

To avoid this problem, we present an improved version of Algorifbwget, (P, 1) in the next subsection.

4.2 Improved Algorithm

An improved version of Algorithnforget(P, 1), which is shown in Figure 3, pushes the task of minimality
checking for candidateanswer sets aP into constraint satisfiability of an augmented program. It exlpoits
in this way the constraint solving capabilities offered by some ASP solvers.

Since the answer sets Bf are exactly4, Algorithm forget, (P,) is sound and complete w.r.t. semantic
forgetting.

Theorem 6 For every consistent (disjunctive) logic prografhand a literall, Algorithmforget, (P,) out-
puts a correct representation &frget(P, [).

The advantage of Algorithrforget, (P, L) is that the strategy in the Steps 1 and 2 makesnimization
obsolete and thus no blowup into a large intermediate result with respect toriigen of answer sets as

13

Algorithm forget, (P, 1)

Input Consistent (disjunctive) logic programand a literal in P.
Output A normal logic program representifigrget(P,).
Method:

Step1LetP, = PU{ < not l}.
- Compute the answer sets Bf (e.g., using DLV or gnT).

- Remove from each obtained answer set. L&t be the resulting collection of sets. (Each setlin
is an answer set of forgetting abdutom P.)

Step2letP, =PU{—1}U{—a1,...,ax|{a1,...,ax} € A1 }.
- Compute the answer sets Bf (e.g., using DLV or gnT), and letl; be the result.
- Setthend = A; U As.
Step 3.ConstructP’ whose answer sets are exactly= {41, ..., A, }:
- ForeachA;, let P, = {I' «— not A; | I' € A;}, whereA; = Litp \ A;.
- LetP =P, U---UP,.
Step 4 Output P’ asforget(P,).

Figure 3: Improvement to Algorithrforget, (P, 1)

in Algorithm forget, (P, 1) can happen. Still, however, the resulting progr&nmay be large compared
to a small program representifigrget(P, 1), which might be constructed from® by other means. In the
next subsection, we discuss how to construct a representatforgef(P, /) in a more syntactic manner by
program transformations.

However, the “semantic” constructions Byget, (P,!) andforget,(P,[) also have an advantage: they
clearly preserve the equivalence of logic programs under any notieguifalence= x between logic pro-
grams that is stronger than ordinary equivalence, and thus in partiawder atrong and weak equivalence.
This is a simple consequence of the fact that for all progr&mwghich are ordinarily equivalent the output
of forget; (P, 1) is the same, and similarly fdorget, (P, 1).

4.3 Transformation-Based Algorithm

The algorithmforget, (P, [) andforget, (P,) are based on the semantic view of forgetting, and do not aim
at computing the result of forgetting in a more syntax-oriented manner, by ynuglithe rules inP. In
this subsection, we present an algoritfurget (P,) of this kind that is based on program transformations.
This algorithm outputs, differently frorforget, (P, [) andforget, (P, 1), not always ordinary logic programs
but sometime logic programs in which some literals are under double negatiaifuas.fThey inherit their
semantics from the more general class of nested logic prodiafashitz et al., 1999.

Before presenting algorithrforget; (P, 1), we need further preliminaries on program transformations
and programs with double negation as failure.

14

4.3.1 Basic program transformations

We start with recalling program transformations that were discuss@8rass and Dix, 1999; Wang and
Zhou, 200%. More precisely, we consider the following collecti@if of program transformations:

Elimination of Tautologies P’ is obtained fromP by the elimination of tautologies if there is a rute
head(r) < body™(r), not body~(r) in P such thatiead(r) N body™ (r) # 0 andP’ = P\ {r}.

Example 5 Let P, consist of the following rules:

rt: pVpr < notp

ro ! p — p,notq

T3 p <« Dpi,notq
T4 p1 < not q,not p2
5 Q1 < p2,notq

re: pVaq —

res o pLVps

T8 ! p3 <« p,notp.

Thenr, is a tautology and thu$, = {ry,r3,r4, 75,76, 77,78} Can be obtained fron® by the elimination
of tautologies.

Elimination of Head Redundancy P’ is obtained fromP by the elimination of head redundancy if there is
aruler in P such that literal is in bothhead(r) andbody ~ (r) andP’ = P\ {r}U{(head(r) —1) «—
body(r)}. Herehead(r) — lis the disjunction obtained by removiagrom head(r).

By the elimination of head redundanay, is simplified intor} : p < not p; and thusP, is transformed
into P3 = {7“/1, r3,74,75,76, 77, 7”8}.

The above two transformations guarantee that those rules whose lieddynhave common literals
are removed.

Positive Reduction P’ is obtained fromP by positive reduction if there is a rule: head(r) «
body™ (r), not body~(r) in P ande € body~(r) such thatc ¢ head(P) and P’ is obtained from
P by removingnot ¢ fromr. Thatis,P’ = P\ {r} U{head(r) < body™ (r), not (body~ (r)\ {c})}.
Herehead(P) = Uycphead(r).

Py = {r},rs,r),rt, 16,77, 78} Is Obtained fromPs = {r},rs,r4,rs5,rs,r7,rs} Dy the positive reduc-
tion, wherer) is the rulep; «— andry is ¢1 < po.

Negative Reduction P’ is obtained fromP by negative reduction if there are two rules head(r) «—
body™ (r), not body~ (r) andr’: head(r') « in P such thatiead(r') C body ™~ (r) andP’ = P\ {r}.

In our example Ps = {rs,r}, 75, 76,77, 73} IS Obtained fromP, by negative reduction, where= r}
andr’ = r}.

For defining the next program transformation, we need the notiomplicationsfor rules defined in
[Brass and Dix, 1999 We sayr’ is an implication ofr if head(r) C head(r"), body(r) C body(r’) and at
least one of the inclusions is strict.

15

Elimination of Implications P’ is obtained fromP by the elimination of implications if there are two
distinct rulesr andr’ of P such that’ is an implication ofr andP’ = P\ {r'}.

In the above example;; is an implication ofr and thusPs = {rs,r}, 7%, ¢, s} is obtained fromP;
by the elimination of implications.

Elimination of Contradictions P’ is obtained fromP by elimination of contradictions if there is a rute
in P such thatody ™ (r) N body ™~ (r) # 0 andP’' = P\ {r}.

By the elimination of contradictionsys can be removed fromP; and thus we obtainP;, =
{rs,ry,rk,r6}.

Unfolding P’ is obtained fromP by unfolding if there is a rule with body™ () # 0 such that

P= P\{)
U{ H(r,7',b) « B(r,7’,b) | b€ body™(r), " € P, b€ head(r'),
H(r,r',b) = head(r) U (head(r") — {b}),
B(r,r") = body™ (r) \ {b}), not body~(r), body(r') }.

Py is further transformed int&s = {5, 7}, 76} wherer; : p < not ¢ is obtained fromP; by unfolding
r3 andr), and in particular;, is removed as a special case of the unfolding since there is no rijenhose
head can be unfolded with the positive body litgrabf 7.

Note that the above example is only used to illustrate the definitions of progasasfdrmations. In
practice, one could make the process of simplifyiignore efficient by choosing different transformations
and different orderings.

As shown by[Brass and Dix, 1997 the program transformations froi* considered there, i.e., all
except the elimination of head redundancy, preserve the answensaties. The same also holds for the
latter transformation.

Proposition 11 Let P be a disjunctive program. 1P’ is obtained by the elimination of head redundancy
from P, thenP and P’ have the same answer sets.

Furthermore, byBrass and Dix, 1999%very disjunctive program can be converted with the transfor-
mations inT* considered there into an equivalent negative disjunctive programeder, by using the
elimination of tautologies and the elimination of head redundancy (which pessaegative rules), every
literal that occurs both in the head and the body of a rule can be removeds, We have the following
result.

Lemma 1 Every logic programP can be transformed into an equivalent negative progrsinia T* such
that every ruler in N fulfills head(r) N body(r) = 0.

In fact, transformations can be applied in arbitrary manner and no bekktgas necessary to construct
such a negative programi (i.e., choices for transformations are “don’t care”). In addition, weoihtice
only basic program transformations here. One can introduce some otgram transformations, such
as the elimination of s-implications ifwang and Zhou, 20Q5to further simplify the negative program
obtained from basic transformations.

16

4.3.2 Logic programs with double negation

A disjunctive logic program with double negation as failDLP) is a finite set of rules of the form
a1 V---Vas«—by,...,by,not c1,...,not c,, not notdy,...,not not d; (2)

wheres, m,n,t > 0 and alla;, b;, c;, andd; are from a sefL:t of classical literals; as above, we assume
that alla;, and similarly allb;, all ¢;,, and alld;, are pairwise distinct. (Note that form (1) results fot 0.)
The definition ofhead(r), body™ (1), andbody ™~ (r) is analogous to ordinary rules (1), abedy "~ (r) =
{dy,...,d;}. Thus,r can be denotedead(r) « body™ (r),not body™ (r), not not body™~(r), where
not not body ™~ (r) = {not notl |l € body™(r)}.

Every DDLP P is a nested logic prografbifschitz et al, 1999, and inherits answer set semantics
from such programs. Formally, tlieductof P w.r.t. an interpretatiorX is defined asPX = {head(r) «
body™(r) | € P,body™ (r) N X = 0,body”~(r) C X}. As usual,X is ananswer sebf P iff X is a
minimal model of PX.

Different from ordinary logic programs, the answer sets of DDLP magdmaparable. For example,
the DDLPP = {p < not not p} has the two answer sefsand{p}. For our purposes, we will use those
answer sets aP which are minimal.

Clearly, all answer sets @? are minimal iff they are all incomparable, and the latter is equivalent to the
fact thatP can be rewritten to an ordinary logic program. While this is difficult and egperto check in
general, there is an attractive syntactic class for which a simple rewritintg exis

Similar as for logic programs with default negation in rule hedeue and Sakama, 199&louble
negations can be safely eliminated from a DDLP without changing its semafitiese is no cycle through
positive and double negated dependencies.

Definition 4 A DDLP P is N-acycliq if there is a level mapping : Litp — {0, 1,...} of the literals inP
to the non-negative integers such that for every rule P, the following two conditions hold:

(i) L(l) > L(I') forall I € head(r) andl’ € body™ (r).
(i) L(l) > L(I") forall I € head(r) andl’ € body~~(r).

Note that there are no conditiofgl) > L(l’), for alll € head(r) andl’ € body~(r),andL(l) = L(I'),
for all literalsl, !’ € head(r) as in the familiar definition of stratified logic programs.

Given a DDLPP, let 7 (P) be the logic program obtained frof by canceling every double negation
not not in it. For example, ifPy = {p < ¢, not ¢, not not ¢"}, thenT (Py) = {p < ¢, not ¢',¢"}. We
have the following result.

Theorem 7 For every N-acyclic DDLPP, it holds thatAS(P) = AS(7 (P)).

(See Appendix for the proof.) Note that since every ordinary logic ramgis trivially N-acyclic, we can
view N-acyclic DDPs as a syntactic extension of ordinary logic prograrhe. fact that N-acyclic DDLPs
can be easily cast to ordinary logic programs will be used for transformagaged forgetting.

4.3.3 The algorithm

We are now in a position to present a syntax-based algorithm for computigetfing in a logic program.
The algorithmforget; (P, 1), which is shown in Figure 4, first translates the input progfaimto a negative
programN (Step 1) and then separaidsom head disjunction (Step 2). After thais eliminated from rule

17

Algorithm forgets (P, 1)

Input Consistent (disjunctive) logic programand a literal in P.

Output DDLP logic programN’ whose minimal answer sets a# (forget(P,1)).
Method:

Step 1. Apply program transformations il* on P to obtain a negative prograr¥.
Step 2.Separaté from head disjunction via semi-shifting:

- Replace each rule € Ny such thathead(r) =1V 1 VvV --- V1, wherek > 1, by the two rules
l—notly,...,not g, body(r)andly V - - -Vl < not 1, body(r).

Let NV be the resulting logic program.

Step 3.Suppose thaty, ..., r, are the rules inV with head!, wherer; : [« not l;, ..., not l;,,; and
m; > 0for1 < j < n. Distinguish three cases:

3.1 Ifn = 0, then obtain the progra® by removing inN all literals not I.

3.2 Ifn > 0andm; = 0 for somel < j < n (i.e.,l « is arule inN), then obtain the progra by
removing fromN all rules whose bodies contaitvt .

33 1Ifn >0andm; > 0foralll < j < n, letD,,...,D, be all possible conjunctions of form
not not lig,, - -, not not l,,, whered <k <m;,1<j<n.

Obtain the progrand) by replacing inV eachnot [by all D; (one at a time).
Step 4Remove all rules wit in the head from@) and output the resulting prograivy’.

Figure 4: Syntax-based algorithm to compute forgetting

bodies (Step 3), and finally from rule heads (Step 4). The resulting bptpgram is, in general, a logic
program with double negation as failure.

Example 6 ConsiderPy; = {c < not q. p < not q. q < not p}. Then, in Step 1 we hav§, = P,
since Py is already negative, and in Step/2 = P, sinceP, is normal. In Step 3, we have= 1 andr

= p < not q. Thus, case three applies and we hd¥e = not not ¢; we obtain@Q = {¢ < not q. p «—

not q. ¢ <— not not q}. In Step 4, the progranV’ = {¢ < not q. ¢ < not not ¢} is output. This
program has the answer sefg} and{q}, which are both minimal. They are the same as the answer sets of
forget(Py, p).

Note that Algorithm 1 ifWanget al,, 2009 outputs on the input oP, andp the programV’ = {c «
not q. ¢ < q}, which has the single answer det}. However, the semantic result of forgetting abput
in P4, as definedWanget al, 2009 and in this paper, has another answer set, 4. This shows that
Algorithm 1 in [Wanget al., 2005 is incomplete, i.e., outputs in general a logic program that represents
only a subset of all answer sets after forgetting.

Several remarks on Algorithfiorget; (P, 1) are in order. (1) As formulated here, the algorithm is stated
in a very general form. A number of refinements and improvements can be imadder to make it more
efficient and the result more compact. For example, in Step 1 some progaasformmations could be
omitted for special programs and various heuristics could also be emplioy8tep 3, only thosé; need
to be considered which, after removal of duplicate literals, are not gyopentained in some othdp,. To
compute them, one can use efficient hypergraph transversal algorigeei&iter et al., 2007).

18

(2) In the construction ob);, not not l;; cannot be replaced withy; (even for a normal logic program).
As shown by Example 6, the resulting output progréen« not q. ¢ < ¢} would only represent a
subset ofAS,;(P), and thus would be incorrect. The use of double negation as failurehwénicedies this
problem, seems to be intuitive. It remains as an interesting issue whethernhis esvoided in a similar
transformation based algorithm.

(3) The running time of algorithrforget; (P, 1) is worst case exponential, and the output program may
be exponentially large. As follows from complexity considerations in Sectjaiére is no ordinary or
nested logic progran®’ representindorget(P,[) which can be constructed in polynomial time, even if
auxiliary literals might be used which are projected from the answer sét5 of

(4) In essence, algorithfiorgets (P, 1) improves the corresponding Algorithm 1 [wanget al,, 2009
in at least two ways: it works for the more expressive class of disjuntiiyic programs, and importantly,
its output correctly represents the result of forgetting. This is showndtly by the following result.

Theorem 8 Let P be a consistent disjunctive logic program andilet Lit p be a literal. Therforget;(P,[)
correctly representforget(P, 1), i.e., X is an answer set dbrget(P, () iff X is a minimal answer set a¥’.

(For a proof, see the Appendix.) While the output prograrfordet; (P, 1) generally contains double nega-
tion as failure and its minimal answer sets have to be considered, Theomravidgs a simple condition for
transforming the output of Algorithrforget; (P,) into an ordinary logic program in some cases.

Proposition 12 Let P be a consistent logic program, léte Litp be a literal, and letN’ be the output of
Algorithmforgets(P,1). If N is N-acyclic, thendS;(P) = AS(7 (P')), i.e., the ordinary logic program
7 (P’) correctly representforget (P,).

For arbitrary inputs, it is not clear whether the outpufwget; (P,) is an N-acyclic program. We note
here a relevant subclass which has this property, given by a simplesgandition that can be efficiently
recognized.

Recall that the standard dependency graph of a prodtadenotedDG p, hasLitp as vertices and a
positive edge from literal to literal I’ if | € head(r) andl’ € body™ (r) U (head(r) \ {I}) for some rule
r € P and a negative edge frohto !’ if | € head(r) andl’ € body~(r) for some ruler € P. A (directed)
cycle in the graplDGp is negative, if it contains at least one negative edge.

Proposition 13 Let P be a consistent normal logic program and le€ Litp be a literal. If no negative
cycle of DG p containsl, thenforgets (P, 1) outputs anN-acyclic program.

In Example 2, forl = p the programsP;, P3, and P, have this property (as well a% after removal
of the redundant disjunctive rule). Hence, the outputs of the respetdisforget;(P;, p) can be cast to
ordinary logic programs.

Unfortunately, the extension of Proposition 13 from normal to disjunctigelprograms fails, even for
the simple case wherB = {p vV ¢ — . } andl = p. However, it is possible to single out fragments for
which this is possible, which we leave for future work.

Computing a representation fafrget(P, 1) can be refined in different directions. One is to localize the
computation, such that only a relevant part of the progfam subject to modification when forgetting a
literal I, while the rest ofP remains untouched. This is, for example, eask i6 a normal logic program;
in that case, merely the value biin the single answer set @t has to be plugged in for all occurrenced of
in P and and the resulting program be simplified.

19

Another case is iP splits into separate componerfisU - - - U P,, such that the answer setsBfcan be
obtained by combining the local answer sets of eBch

To this end, we call a literdl in a programP unaffectedy the forgetting of literal, if there is no path
between and!’ in the undirected version of the dependency grayghy. Supposé/(P, 1) is the set of all
rules inP that only involve such literalg. Then the following easy property holds.

Proposition 14 For every (consistent) progran® and literal /, it holds thatforget(P,l) = U(P) U
forget(P\ U(P),1).

This property is in line withV-acyclicity: disconnected components cannot destroyNkacyclicity
of the (rewritten) program. Furthermore, it can be combined with Proposiaio enlarge the classes of
programsP for which forget(P, 1) is representable by an ordinary logic program.

Note that Proposition 14 is independent of the concrete syntactic foforgsft(P,[); it may well be
generalized for specific such forms and/or classes of programsx&de, if P can be splitinto programs
P, and P, such thatl occurs only inP;, programP, has a single answer s8t(e.g. if P, is normal and
stratified), and no head of a rule /4 occurs inP», thenforget;(P, 1) = forgets(Py U{l' «— . |1 €
S},1) U Ps. A detailed study of this issue remains for future work.

5 Computational Complexity

In this section, we address the computational complexity of forgetting fardiiit classes of logic programs.
Our main complexity results for forgetting are compactly summarized in Table ky $how that for
general logic programs, (1) model checking under forgettiig)icomplete; (2) credulous reasoning under
forgetting isX4-complete; and (3) skeptical reasoning under forgettii@ficomplete.

Intuitively, this complexity is explained by two respectively three interminglegtess of complexity
(i)—(iii): For problem (1), given an answer sgtof a programP and a literal, (i) the number of candidate
answer set$’ such thatS’ c; S and (ii) the test whether a given susghis in fact an answer set a?; for
problem (2), in addition (iii) the number of candiddtanswer set$ containing the query literdl. Note,
however, that for problem (3) source (i) is absent (by Propositiand)only (ii) and (iii) (in dual form) are
present, causing the same complexity as for standard skeptical rea@mitirayt forgetting).

For normal programs and negative logic programs, the complexity of dblemes is lowered by one
level of the Polynomial Hierarchy. Intuitively, the reason is that souiigei.€., model checking for such
programs, is polynomial in both cases.

In the rest of this section, we state and develop the complexity results forraatlyalso argue that
space-efficient representationsfefget(P, /) in terms of ordinary (disjunctive) logic programs are unlikely
to exist. The design of Algorithrforget; (P, 1) in Section 4 is heavily influenced by the complexity analysis.

Theorem 9 Given a consistent (disjunctive) logic prograf a literal [, and a set of literalsX, deciding
whetherX is ani-answer set of’ is II5-complete.

Intuitively, in order to show thak is anl-answer set, we have to witness ti¥ais an answer set (which is

coNP-complete to test), and that there is no answekéef P such thatX’ ¢; X. Any X' disproving this

can be guessed and checked using an NP-oracle in polynomial time. [Fansyer set checking is i},

as stated in Theorem 9. The hardness result is shown by a reductordé&ciding whether a given logic

programP (without strong negations) has no answer set, whidfficomplete[Eiter and Gottlob, 1995b
If P is either negative or normdakanswer checking is co-NP-complete.

20

programpP disjunctive negative normal
X € AS,;(P)? (model checking JNE co-NP co-NP
forget(P, 1) = I'? 4 2 2
forget(P, 1) =5 I'? JNES co-NP co-NP

Table 1. Complexity of forgetting (entries are completeness redultsare literals,P is a logic program,
X is a set of literals)

Theorem 10 Given a consistent normal logic prograf, a literal [, and a set of literalsX, deciding
whetherX is anl-answer set oP is co-NP-complete.

The proof of this theorem exploits that the reduction in the proof of Thedestill works for normal
programs, and that deciding whether a normal logic program has areasstwis well-known to be NP-
completelMarek and Truszczyski, 1991; Ben-Eliyahu and Dechter, 1994

Using a minor modification of the reduction in the proof of Theorem 9, we ¢temvshe co-NP-
completeness for negative programs. Notice that, as already mentiomédingevhether a given set of
literals is an answer set of negative program is feasible in polynomial timiehvetiplains the complexity
drop.

Theorem 11 Given a consistent negative prograf a literal [, and a set of literalsX, deciding whether
X is anl-answer set of is co-NP-complete.

The following theorem shows that credulous reasoning with forgetting égher complexity.

Theorem 12 Given a consistent (disjunctive) logic program and literals ! and [/, deciding whether
forget(P, 1) =, I is X-complete.

In Theorem 12, a suitableanswer set containinij can be guessed and checked, by Theorem 9 usjrg
oracle. Hence, credulous infererfoeget(P,) =, I" is in X%. TheX4-hardness is shown by an encoding of
guantified Boolean formulas (QBFs) of the foE#wY X 3Y ¢.

The construction in the proof of Theorem 11 can be lifted to show thatiwad inference with forget-
ting is ¥5-complete for negative programs.

Theorem 13 Given a consistent negative progrdfrand literalsl and!’, deciding whetheforget(N,) |=.
l'is Xb-complete.

In fact, the program constructed to show the hardness part of this ieeormal. Therefore, we easily
derive the following result.

Theorem 14 Given a consistent normal prograii and literals! and!’, deciding whetheforget(NV, 1) =,
l'is Xb-complete.

The complexity results for skeptical reasoning with forgetting are straigidiial from Proposition 7
and well-known results about the complexity of normal logic programs [Bi&er and Gottlob, 1995b;
Marek and Truszc#yski, 1991; Dantsirt al,, 2001).

21

Theorem 15 Given a consistent logic prograf and literals! and!’, deciding whetheforget(P, 1) =, I’
is (i) I15-complete for arbitrary disjunctive logic prograni3, and (ii) co-NP-complete for normal logic
programs and for negative logic progranis

By applying techniques that build on non-uniform complexity classes f@adoliet al., 2004, one can
show that for a given (disjunctive) prografhand literall there is generally no ordinary disjunctive program
P’ representindorget(P, 1) that has size polynomial in the size &% unless the Polynomial Hierarchy
collapses. This remains true even if auxiliary literals might be used ifor the representation which are
projected off the models @f’ to obtain the models dbrget(P, 7). This means that the exponential blow up
of forget(P, 1) is, in a formal sense, unavoidable in general.

More precisely, it can be shown that the model checking problem fgefting is complete for the
complexity clasgh~I15 defined in[Cadoliet al, 2000; Cadoliet al, 2004. Informally, this means that
problem is among the hardest |ir-115, which contains those problems that are decidabléjmwith pre-
processing of the input (which depends on a “fixed” part and the $iteeanput). The preprocessing can
resort to precompiled knowledge in polynomial-size data structures, vihereompilation cost does not
count. Technically, théI5-completness of model checking for forgetting implies that (a syntactic vtarian
of) the problem belongs tp-115. On the other hand, the problem|fis:IT5-hard, as evaluting a QBF of the
form VX 3Y ¢ can be reduced (under the suitable notion of reduction) to model chefckifargetting. The
proof is similar in spirit to the one of Theorem 3.2[@adoliet al, 2003, which showsh~II5 hardness
of clause inference from the minimal models of a propositional CNF, bug theeencoding of QBFs into
model checking for forgetting given in the proof of Theorem 9 \&#ter and Gottlob, 1995b We refrain
here from further details.

Now while model checking for forgetting i§-II5-hard, model checking for ordinary disjunctive
progams is well-known to be in co-NP (dEiter and Gottlob, 1995a; Dantset al, 2001). From The-
orem 5 in[Cadoliet al., 2004, it follows that for arbitrary logic program®& and literals! there exists no
representation dbrget(P, [) by an ordinary (disjunctive) logic program of size polynomial in the siz€ of
unless the Polynomial Hierarchy collapses (which is considered to be lylike

Analogously, one can show that for normal prografmsforget(P,[) is not representable by normal
programs of polynomial size in the size 6% unless the Polynomial Hierarchy collapses, again even if
auxiliary literals might be used as above.

However, we point out that if auxiliary literals would be allowed, then we regmesenforget(P,[) in
terms of the minimal answer sets of a polynomial-size logic program with doubbgine as failure. More
precisely, lets andp,; be fresh auxiliary literals, and ugéself as an auxiliary literal. Let

e P be the program resulting frol by addingnot s in each rule body, let

e P, be the program resulting frof by replacing each occurrencelokith p; and by adding in each
rule body, and let

e Q=P iUP,U{s«< notnots. l+s. <« notl,nots. <« pp,s}.

Note that() is easily constructed fron®? and! (in linear time). Informally,s is a switch betwee®; and
P,, to compute the answer sets Bfwherel is true (viaP; and the constraint— not I, not s, whens is
false) respectively false (vi&;, whens is true). In order to make these answer getemparable, in the
computations ofP, the literalp; replaced and! is artifically included (byl < s) while p; is excluded
(through < p;, s). The answer set§ of (which all contain/ and but not;) correspond then one-to-one
to the answer sets dP. Now everyS such thats ¢ S is a minimal answer set @, while if s € S, then

22

S is minimal iff it contains no answer sét' of @ such thats ¢ S’ properly. Consequently, the minimal
answer set$ of Q encode thé-answer sets aP, and thus the answer setsfofget(P, 1), which are given

by S\ {, s}.

6 Applications

In this section, we present some applications of the results on forgettimgdgic programs in the previous
sections. In particular, we consider applications to conflict resolution iicdogsed multi-agent systems,
which is obviously an important task, to inheritance logic programs, which hotijlects and classes with
inheritance of properties, and to logic program updates. A further aiglitin the area of ontology merging
and alignment (in an extended framework), is describefEiter et al, 2006. The applications show
the usefulness of our results about forgetting in different respectsth® one hand, for finding novel
solutions to problems (like in conflict resolution and ontology merging), antherother hand, to obtain
novel characterizations (and thus interpretations) of existing condé@ddr inheritance logic programs
and logic program updates).

6.1 Resolving Conflicts in Multi-Agent Systems

As the first application, we present a general framework for resolgorglicts in multi-agents systems,
which is inspired from thereference recovemyroblem[Lang and Marquis, 20Q2In particular, an example
is given to show the elegance of using the semantic forgetting in answeraggamming to solve the
problem of preference recovery for multi-agents.

Suppose that there areagents who may have different preferences on the same issue. In asag; C
these preferences (or constraints) have conflicts and thus canmatibfied at the same time. It is an
important issue in constraint reasoning to find intuitive criteria such thé¢nemces with higher priorities
are satisfied. Consider the following example.

Example 7 (Lang and Marquis, 2004) Suppose that a group of four residents in a complex tries to reach
an agreement on building swimming pooland/or atennis court The preferences and constraints are as
follows.

1. Building a tennis court or a swimming pool costs each one unit of money

2. A swimming pool can be eithezdor blue

3. The first resident would not like to spend more than one money udiprafers a red swimming pool.
4

. The second resident would like to build at least one of tennis courdw&imdming pool. If a swimming
pool is built, he would prefer a blue one.

o

The third resident would prefer a swimming pool but either colour is\irie him.

6. The fourth resident would like both tennis court and swimming pool taube e does not care
about the colour of the pool.

Obviously, the preferences of the group are jointly inconsistent and thsisnitpossible to satisfy them at
the same time.

23

In the following, we will show how to resolve this kind of preference cotsglend find possible agreements
with minimal costs using the theory of forgetting.

An n-agent systers§§ is ann-tuple (P, P», ..., P,) of logic programsy > 0, whereP; represents agent
i's knowledge (including preferences, constraints).

As shown in Example 7P, U P, U - - - U P,, may be inconsistent. The basic idea in our approach is to
forget some literals for each agent so that conflicts can be resolved.

Definiton 5 LetS = (P, Ps,..., P,) be ann-agent system. Aompromiseof S is a sequenc&’ =
(Fy, Fs, ..., F,) where eacht; is a set of literals. Aragreemenbf S on C' is an answer set of the logic
programforget(S, C') whereforget(S, C) = forget(Py, F1) U forget(Py, F3) U - - - U forget(Py, Fr,).

Intuitively, the setF; in a compromise contains those aspects which ageidudes not care much about.
For a specific application, we may need to impose certain conditions onféach

Example 8 (Example 7 continued) The scenario can be encoded as a collectior dfdjunctive programs
(P stands for general constraints§ = (P, Py, P», P3, Py) where

Py={redV blue — s. « red,blue. ug < not s, not t.
uy < not s,t. uy < s,nott. ug < s,t. h
Py ={ugVu . red «— s};
Py={sVt«— . blue — s};
P3={s <},
Py={s«— .t}

Since this knowledge base is jointly inconsistent, each resident may hagakemsome of her preferences
so that an agreement is reached. Some possible compromises are:

1. Cy = (0, F,F,F,F) where FF = {s,blue,red}: Every resident would be willing to weaken her
preferences on the swimming pool and its colour. Sfogeet(S,C1) = PBhoU{ugVuy «— . t <}, S
has a unique agreemefit, u; } onCy. That is, only a tennis court is built.

2. Co = (0, F,F, F, F)whereF = {ug,u1,us, blue, red }: Every resident can weaken her preferences
on the price and the pool colour. Sinégget(S,C2) = PpU{sV it . s« .t} Shastwo
possible agreements:, ¢, red } and {s, t, blue} on Cs. That is, both a tennis court and a swimming
pool will be built but the pool colour can be either red or blue.

3. C3 = (0, {blue, red},D,0,{t}): The first resident can weaken her preference on pool colour aad th
fourth resident can weaken her preference on tennis court. $nge (S, C3) = PyUP>UP3U{ugV
up <+ . sVt .s <}, Shasaunique agreemefit, blue,u; } on Cs. That is, only a swimming
pool will be built and its colour is blue.

4. Cy = (0,{blue, red},{blue, red},{s,t}, {s,t}): The first and second residents can weaken her pref-
erence on pool colour; the third and fourth residents would not mind ifisecwurt or swimming pool
is built. Sinceforget(S, Cy) = PoU{upVu1 < . sVt «—}, S hasthree possible agreemefts,, t},
{u, s, blue}, {u1, s, red} onCy.

24

It should be noted that a solution to this problem is also providefLang and Marquis, 2002
where the forgetting for propositional logic is used where a theory ingeitipnal logic rather than pos-
sible agreements are produced. A model of that theory may not reprasesgreement in the sense
of Definition 5. For example, the solution faF, given in [Lang and Marquis, 20Q2is the theory
Ty = {s — red V blue, (red A blue) — L, (=s At) — uy, (s A—t) — uy, (s At) — ug, (0s A —t) — ug}
and its models also include some agreements that have non-minimal cos{sfesgt, red} is a model of
Ty).

However, in our approach each answer set corresponds to exaetlggreement with minimal cost.
In addition, the issue of resolving conflicts in multi-agent systems has bedlemfing and numerous
proposals have been suggested for different systems (for exampldessieret al, 2001). Thus it would
be interesting to explore applications of our technique in practical multi-aystems.

6.2 Inheritance Logic Programs

In this section, we investigate relationships between forgetting in logic pregaad inheritance logic pro-
grams]Buccafurriet al., 2004. As we show, the semantics of such programs can be expressed éffifayg
from a logic program.

Let P be a logic program with classical negation and each#@gP is labeled with either the symbol
'’ or the symbol '". The symbol '’ means that is a defeasiblerule and the symbol '’ means that
is astrict rule. In the approach proposed[iBuccafurriet al, 2004, P is aninheritance progranif P is
classified into different objects and an object may have higher priority dinather object. For any two
objectso; andos, 01 < 09 denotes that; has higher priority ovess. This priority relation naturally defines
a priority for rules in these two objects; < ry if r1 € 01, 1o € 02 ando; < 0s.

Example 9 Let (P, <) be an inheritance logic program that consists of three objegtsos, 03 where

o1 = { penguin(Tweety) <!}
02 { bird(z) « penguin(z)!, —flies(z) «— penguin(z). }
o3 = { flies(x) < bird(x). }.

01 < 02 < 03 since more specific rules have higher priority.

In the rest of this section, we view in accordance WBuccafurriet al, 2004 inheritance programs
as pairg P, <), whereP is a ground (propositional) logic program with classical negation-argla strict
preorder (irreflexive and transitive relation) on the rule®irsuch that < ' iff has higher priority than
.3

The semantics of inheritance programs is defined in ternmhefitance answer seta/hich are based on
the notion ofmodelsof an inheritance program. The notion of satisfiability of rules for inherggrograms
encodes priority information and thus is quite different from the traditiontibn.

Given two (ground) rules; andrs, we sayr; threatensry, on a literal [if (1) —.0 € head(r1), (2)
r1 < rg, and (3)r, is defeasible (recall that.l denotes the complement of litergl

Definition 6 Given an inheritance progrartiP, <) and an interpretationS, a rule r; overridesry in S if
(1) v threatensr, on a literall, (2) —.l € S and (3).S |= body(r2). Aruler is overriddenin S if for each
[€ head(r) there exists a rule’ in P such that’ overridesr onlin S.

3Cf. [Buccafurriet al, 2002, p.29F for technical assumptions to ensure this.

25

Informally, a ruler is overridden by another rulé, if it has lower priority than’ and is in conflict withr'.
Obviously, a strict rule cannot be overridden.

An interpretationS is a model of(P, <), if every rule inP is either satisfied or overridden 51 The
Gelfond-Lifschitz reduct is extended to inheritance programs as follows.

Definition 7 Given an inheritance prograrf, <) and an interpretatior, thereductionof (P, <) w.r.t. S,
denoted P, <)°, is the set of rules obtained fro by removing (1) every rule overridden & (2) every
rule r such thatbody = (r) N S # 0, and (3)body ™~ (r) from each remaining rule.

An interpretationS is an inheritance answer set 0P, <), if S is a minimal model of P, <)*.

Example 10 The ground version of the inheritance program in Examplg/8und(P), <), has the single
inheritance answer se&f = {penguin(Tweety), bird(Tweety), - flies(Tweety) }. Indeed, the instance of
the rule inos, flies(Tweety) «— bird(Tweety), is overridden by the rule instanceflies(Tweety) «—
penguin(Tweety) from oy in S; (ground(P),<)° consists of the three rulegenguin(Tweety) « ,
bird(Tweety) «— penguin(Tweety), and —flies(Tweety) «— penguin(Tweety). Clearly, S is their
unique answer set, which means tsais an inheritance answer set @jround(P), <).

Let (P, <) be an inheritance program arstbe a set of literals. We introduce a new litetafor each
literal 7 in P. For each rule in P, if r is overridden inS, then every literal in head(r) is replaced with'.
The resulting program fron® is denotedP’. Let FF = {lI’ | I is a new literal and’ € head(r’) for some
r' € P'}.

The following theorem provides a semantic characterization of inheritanogggms in terms of seman-
tic forgetting.

Theorem 16 Let (P, <) be an inheritance program and Iétbe a set of literals. Thef is an inheritance
answer set of P, <) iff S is an answer set dbrget(P’, F') whereP’ is obtained as above.

Example 11 Continuing our birds example, faf = { penguin(Tweety), bird(Tweety), - flies(Tweety)}
the corresponding ordinary logic prograground(P)’ consists of the following rules:

penguin(Tweety) «—
bird(Tweety) <« penguin(Tweety),
—flies(Tweety) «— penguin(Tweety),
flies(Tweety)” «— bird(Tweety).

For I’ = {flies(Tweety)'}, we obtain thatforget(ground(P)’, F) is represented by the first three rules
above. This program has the unique answer$eds stated by Theorem 16.

The proof of Theorem 16 is based on the following result, which is of irddpnt interest.

Proposition 15 Let P be a logic program and lef’ be a consistent set of literals. Suppose that (1) no literal
in F occurs in a rule body irP, and (2) for each rule-, either no or every literal imead(r) is in F'. Then
forget(P, F') = P\ R(F), whereR(F) = {r € P | r contains a literal ofF'}.

Note that the conclusion of Proposition 15 may not be trug dontains opposite literals. For example,
consider the logic prograr? = {p «— a; —p < a; a < not b; b — not a} andF = {p,—p}. Then
P\ R(F) = {b < not a; a < not b}, which has two answer se{a} and{b}, while forget(P, F') has
only one answer s€t}.

26

6.3 Update Logic Programs

Update programé§Eiter et al, 2000; Eiteret al, 2004 and dynamic logic prograni#\lfereset al, 1998;
Alfereset al,, 2004 are besidefMarek and Truszc#yski, 1998; Sakama and Inoue, 2003; Zhang and Foo,
1997 major approaches to updating nonmonotonic logic programs, and are inufargeared towards
modeling sequences of updates (E&eang, 2006 for a recent survey and comparison of these and other
approaches).

An update progranis a sequenc® = [Py, P, ..., P, t > 1, where eaclP; is a normal logic program
for 1 <t < t. Informally, P;;, is assumed to update the information representeldpy. . ., P;]. S0P,
represents more recent information th8n and the rules inP;;, are assigned higher priority in case of
conflicts. The semantics of update programs has been given by meatrarglation into an ordinary logic
programP, and can be equivalently defined in terms of the answerSetisan ordinary logic program
Ui, P\ Rej(S,P), whereRej(S, P) is the set of rules which are rejected w.6t.

It has been shown ifEiter et al., 2000; Eiteret al., 2007 that every update prograf can be naturally
translated into an equivalent inheritance logic progtap(P) = (P, <) wherer < r’if r € P; andr’ € P;
such thatl < ¢ < j < t. More precisely,

Lemma 2 (Eiter et al., 2004) For every update prograr® = [P}, P», ..., P, a setS is an answer set of
P iff S is an answer set of the inheritance prograhp(P).

Combining this lemma and Theorem 16 gives us a characterization of upaeapams in terms of
semantic forgetting from a logic program.

Corollary 17 LetP be an update program and I&t be a set of literals. Thel is an answer set dP if
and onlyS is an answer set dbrget(P’, F'), whereihp(P) = (P, <) and P’ is obtained from P, <) as
described above.

Finally, results in[Eiter et al, 2004 show that for certain classes of update programs, the semantics
coincides with the one under dynamic logic programming d#\Ifereset al, 1998; Alfereset al, 200(.
Hence, the respective classes of dynamic logic programs can alsoraetehiaed by semantic forgetting in
the way described.

7 Conclusion

While it is widely acknowledged that forgetting about atomic propositions imkedge bases is an impor-
tant technique for many Al applications, it has been less clear how thiddshmaterialize in the context
of nonmonotonic reasoning and logic programming. To the best of our lkdge, this paper is the first
attempt towards identifying criteria for this operation in this context. In particula have specified some
desirable properties for forgetting in nonmonotonic logic programming. dasghese criteria, we have
then proposed a semantics-based theory of forgetting literals in (disjepltgic programming. Compared
to preliminary work, a distinguishing feature of our approach is that torggis defined in purely semanti-
cal terms. However, we have shown that this declarative approachgettiog has a syntactic counterpart
based on program transformations.

The properties of forgetting show that the approach in this paper extemdiassical notion of forgetting
and, moreover, satisfies all criteria that we have identified. As we halaiegd before, it also naturally
generalizes the notion of forgetting for normal programs investigat@d/amget al., 2004. Furthermore,

27

we have presented algorithms and analyzed the computational complexity ofreegoning tasks under
forgetting.

Another approach to forgetting for normal logic programs was propisgthanget al, 2005; Zhang
and Foo, 200pb Different from ours, the approach by Zhang and colleagues isedwral. The result of
forgetting is obtained by removing some rules and/or literals, but little semanticgastfi for the removals
is provided from a global perspective.

As an application of forgetting, we have also presented a fairly germamalefvork for resolving con-
flicts in disjunctive logic programming. In particular, this framework provideselegant solution to the
preference recovery problem. Furthermore, our results show thasetimantic forgetting has a close
relationship with inheritance prograniBuccafurriet al, 1999, update programsEiter et al, 2000;
Eiteret al, 2004 and fragments of dynamic logic prograi#sfereset al., 1998; Alfereset al,, 200(.

In further work, semantic forgetting has been exteridgteret al., 2004 to HEx-programs, which allow
to combine logic programs with Description LogidSiter et al., 2009 and, applied in defining a notion of
forgetting for the Web Ontology Language (OWL).

Furthermore, a system prototype for our semantic forgetting, caledrget, which comprises two
modules has been implemented and is available for experimeFite. moduleForgetting serves for com-
puting the result of forgetting about certain literals in a logic program utideanswer set semantics; all
algorithms introduced in this paper have been implemented in it. The other modmled@RS, facilitates
conflict resolution (or preference recovery) in multi-agent systemgatlamapproach in Section 6.1. In our
system, once the constraints for different agents are spedfiegiwill first check whether these constraints
are consistent. If they are not consistent, the user can make compromieegditing about some literals
such that an agreement is reached. The system can also make recotionerfdathe set of literals to be
forgotten. However, the current recommendation algorithm is not optimieedapd it remains to explore
more efficient algorithms.

Several interesting issues remain for further research. One issowegeefficient implementations and
improved algorithms for computing the result of forgetting. In particulaegia disjunctive logic program
P and aliteral, Algorithmforget; (P,) outputs generally a nested logic program which represents the result
of forgetting about from P by its minimal answer sets. It is well-known that nested logic programs can be
efficiently transformed into equivalent ordinary disjunctive programeif symbols are allowelPearceet
al., 2001. However, this does not carry over to minimal answer sets, and furthémimation is needed. It
would be interesting to see a syntax-based algorithm (i.e., based merelygramprtransformations but not
on the actual answer sets) that outputs an ordinary disjunctive logicgmogn the original vocabulary as
the result of forgetting.

Another issue is the application of forgetting in various scenarios of corgbolving, such as ontology
merging and alignment in the Semantic W&y and Stuckenschmidt, 20p3n these applications, both
closed and open world reasoning are involved. Exploring a theoryrgefing in such a setting is an
interesting issue.

Strong equivalenciifschitz et al., 2001 has received a lot of attention in nonmonotonic logic program-
ming because of its importance for program modularity and in applications likeniation integration. It
would be interesting to introduce a notion of semantics forgetting that pessstnong equivalence, in line
with the properties and the approach in this paper.

Finally, an extension of the approach in this paper to other semantics of mabtomic logic program-
ming and more general formalisms, such as default logic or autoepistemicitogitintriguing issue.

“http:/www.w3.0rg/2004/OWL/
5The LPForget website ishttp://www.cit.gu.edu.au/ ~kewen/LPForget

28

Acknowledgements

The authors would like to thank Fu-Leung Cheng, Esra Erdem, Paolariseffangzhen Lin, Abdul Sattar,
Kaile Su, Rodney Topor and Yan Zhang for helpful comments and discisss

8 Appendix

Proposition 5 Let=x be a equivalence relation on a collection of logic programslatithat is stronger
than ordinary equivalence and invariant under literal extensions. Thegetting does not preservey.

Proof. Since=x is stronger than ordinary equivalence of logic programs, there musttexiprograms
P and P’ such thatP = P’ but P #x P’. Letl be a new literal that appears neither/thnor P’. Then
forget(P,l) = P and thusP’ is also a result of forgetting abolin P. Obviously,P =x P but their results
of forgetting (i.e.P and P’) are not equivalent undes . O

Proposition 8 Let P be a consistent logic program and &t = {i4,...,l,} be a set of literals. Then
forget(P, F') = forget(forget(forget(P,11),l2),...),lm)-

Proof. ~ Assume thatn > 1. Let M = AS(forget(P, F)), M’ = AS(forget(P,F’')) and M" =
AS (forget(forget(P, F'),l,,)) whereF” = {l1,...,l;—1}.

We claim thatM = M"”. To prove this, we first show that/ C M". Consider any seX € M. Then,
by an analogue of item 5 in Proposition 6, there exists a stable nsooieP such thatX = S — F. Now in
the process of iterative construction, let

P, = P,
P, = forget(P;,_1,l;), fori=1,...,m.

By item 5 of Proposition 6 and the fact thatdoes not occur inP;, we can show by induction oh =
1,2,...,m that there must exist some answer Setof P; such thatS; C S;_; — {l;}. Consequently,
Sm €S —{ly,...,l,n} =S — F. Hence, there exists an answer Sgtof P,, such thatS,, C X.

FurthermoreS,, C X is impossible. Otherwise&,, N X c X would hold. ThusS,, U F’, for some
F’ C F,is an answer set dP, andS,, U F’ C S\ F. Hence,S is not anF'-answer set of?, which is a
contradiction. Thus, we hav&,, = X. In conclusionM C M".

Conversely, suppos& € M”. That is, X is an answer set of,,. By the definition of one-literal
forgetting, this means that there exists an answe$ sdtP such thatS \ F' = X. Towards a contradiction,
suppose thak’ ¢ M. Then there exists a sitin M such tha” C X. As already showny” is an answer
set of P,,. But this contradicts thaX is an answer set af,,,, asX is not minimal. HenceX € M. O

Theorem 3 Let P be a consistent (disjunctive) logic program andgdet Litp be an atom. TheX C Litp
is an answer set dbrget(P, p) iff X is a minimal model oforget(Ilcomp(P), p). That s,

AS (forget(P, p)) = MMod(forget(lcomp(P), p)).
Proof. We use the following lemma.

Lemma 3 LetX C Litp\{p} suchthatX = forget(lcomp(P),p). Then eithetX € AS(P)or XU{p} €
AS(P).

29

Proof of Lemma 3 By Theorem 1,X' € AS(P) iff X’ | Icomp(P) holds for eachX’ C Litp.
Sinceforget(lcomp(P), p) = lcomp(P)(p/true) V lcomp(P)(p/ false), for eachX C Litp \ {p} such
that X | forget(lcomp(P),p) thus eitherX’ = X € AS(P) (if X = lcomp(P)(p/false)) or X' =
X U{p} € AS(P) (if X = Icomp(P)(p/true)) holds.]

(i) AS(forget(P,p)) € MMod(forget(lcomp(P),p)): LetX € AS(forget(P,p)). Then, there exists
someS € AS,(P) such thatX ~, S. By Theorem 1,5 |= lcomp(P). SinceS \ {p} = X, we
have X = forget(lcomp(P),p). To show thatX is also minimal, assume towards a contradiction that
someX’ C X exists such thaX’ |= forget(lcomp(P),p). By Lemma 3,5 € AS(P) holds for either
S"=X"orS" = X'"U {p}. Inboth casesS’ C,, S; however, this contradictS € AS,(P). This proves
X € MMod(forget(lcomp(P),p)).

(i) MMod(forget(lcomp(P),p)) C AS(forget(P,p)): Let X € MMod(forget(lcomp(P),p)). By
Lemma 3,5 € AS(P) for eitherS=X or S=X U {p}. We show that in both cases € AS,(P).
Towards a contradiction, suppose tttat¢ AS,(P). Then there exists som& < AS,(P) such that
S" ¢, S and, by item 1 of Proposition 6’ := 5"\ {p} € AS(forget(P,p)). By part (i), it follows that
X' € MMod(forget(lcomp(P),p)); SinceX’ C X, this contradictsX € MMod(forget(Ilcomp(P),p)).

Hence,S € AS,(P). By item 1 of Proposition 65\ {p} = X € AS(forget(P,p)). This proves the result.
O

Theorem 4 Let P be a consistent (disjunctive) logic program andpet Litp be an atom. TheX C
Litp\{p} is an answer set dbrget(P, p) if and only if eitherX or X U{p} is a model ofirc(lcomp(P), p)
(resp.,ECWA(Icomp(P), p)).

Proof. By Theorem 1,AS(P) = {S C Litp | S = lcomp(P)}. Hence, from the characterization of
models ofCirc(lcomp(P), p) in terms ofC,, and~,, it is easily seen thatlS,(P) = {S C Litp | S |=
Circ(lcomp(P),p)}.

ConsiderX C Litp \ {p}. Suppose first thak < AS(forget(P,p)). ThenX ~, S for some
S € AS,(P), and eitherS = X or S = X U {p} must hold. AsS = Circ(lcomp(P),p), the only-if
direction of the theorem holds. Conversely, suppose $hat Circ(lcomp(P),p) for eitherS = X or
S =X U{p}. ThenS € AS,(P) and by item 1 of Proposition & \ {p} = X € AS(forget(P,p)). This
proves the result. O

Theorem 6 For every consistent (disjunctive) logic prografhand a literal I, Algorithm forget, (P, 1)
outputs a correct representation fafrget(P, 7). Proof. By the construction of; in Step 1,AS(P;) =

{X € AS(P) |l € X}. By Proposition 1,4; consists thus of all set& such that ¢ X andX U {l} €
AS(P).

In Step 2, the constrairt- [guarantees that each answer Xebof P, is an answer set aP such that
I ¢ X. The constraint— a1, ...,ax, for M = {a1,...,a;} € Aj, enforces thal/ U {I} ¢ X holds.
ConsequentlyA; consists of all setX € AS;(P) such thal ¢ X.

Combining the two casesdS;(P) = {X U {i} | X € A;} U Ay; thus by item 1 of Proposition 6,
AS(forget(P,1)) = A = A; U As. Itis easy to see thalS(P’) = A; this proves the result. O

Proposition 11 Let P be a disjunctive program. P’ is obtained by the elimination of head redundancy
from P, thenP and P’ have the same answer sets. ProofLet P = PyU{r} with [€ head(r)Nbody~ (r)

and letP’ = Py U {(head(r) — 1) < body(r)}. We show that for eveng C Litp, the following statement
holds: (*) S € AS(P) iff S € AS(P'). If I € S, thenP® = (P')¥ and therefore (*) holds. Otherwise

30

(i.e.,l ¢ S), the ruler; = head(r) « body™ (r) is in P° iff the rule ro = (head(r) — 1) « body™ (r)
is in (P')°. Furthermore, for each’ C S it holds thatS’ = ry iff S’ |= 7o, and therefores’ = P iff
S’ = (P")%. Again it follows that (*) holds. O

To prove Theorem 7, we first show a lemma.

Lemma 4 Let P be a DDLP and letS be an interpretation of. If S € AS(7(P)), thenS is a minimal
answer set of.

Proof. LetS € AS(7(P)). We first show thatS € AS(P). Letr’ € P° such thatS = body(r').
Thens' must be of the formhead(r) « body™ (r) for somer € P such thatbody (1) NS = § and
body~~(r) C S. Furthermore, the rule” = head(r) « body™ (r), not not body ™ (r) is in T (P). Now
if body™(r) C S, thenS |= head(r) asS |= body™~(r). Hence,S = r'. It follows thatS = P°.

Consider anys’ C S such thats’ = P°. ThenS’ = T (P)%, as each rule iff (P)° results from a rule
in P9 by adding literals in the body. AS € AS(7 (P)), it follows thatS’ = S. This provesS € AS(P).
It remains to show tha$ is minimal. Consider any’ € AS(P) such thats’ C S. ThenS’ = T(P)%'.
SinceT (P)S C T(P)¥, 8" = T(P)S. As S € AS(T(P)), it follows thatS’ = S. O

Theorem 7 For every N-acyclic DDLPP, it holds thatAS(P) = AS(7 (P)).

Proof. AS(7(P)) C AS(P): Immediate from Lemma 4.

AS(P) € AS(T(P)): SupposeS € AS(P) butS ¢ AS(T(P)). ThenS is not a minimal model of
T(P)®. Note thatS |= 7 (P)*. Hence, there exists some interpretatfnc S such thats’ = 7 (P)°. We
show that then some interpretatiSfi exists such tha$ C S” ¢ S andS” = P¥; this means tha$ is not
a minimal model ofP* and thus contradicts tha&t € AS(P), proving the result.

We first assume thaP is normal, i.e.,|head(r)| < 1 for eachr € P. Let L be a level mapping
witnessing the N-acyclicity oP and letX = {{ € S\ S | VI’ € S\ S’ : L(I) < L(I')} be the set of all
literals in S\ S’ having the smallest level. Sin&® C S, X # (). We claim thatS” := S\ X |= P°.

Towards a contradiction, suppose ti##t [~ r for somer € P%. SinceS = P, r is of the form
| — body™(r) wherel € X andbody™(r) C S”. Sincer stems from a rule’ € P such thatS |= r/
(i.e.,r = head(r') < body™ (")) and S’ |= T (P)?®, it follows that either (apody™ (r) \ S’ # 0 or (b)
body~~(r") \ S" # (. The minimality of L() implies that (a) is the case and thaidy™* (r) N X # 0,
and thushody ™ (r) ¢ S”; this is a contradiction. This proves the claéfi |= P, which contradicts that
S € AS(P). Hence, the result for normal prograrRss proved.

The result for arbitrary programs is an easy consequence of this aesithe following two facts. Call
a programP’ asplitof a DDLP P, if P’ results fromP by replacing every rule of form i, Vv --- Vi < B,
k > 2, by at least one of the normal rules— B, ...,l; — B. Now,

Fact A For everyS € AS(P) there exists a spliP’ of P such thatS € AS(P").

Indeed, every splif’ of P such that- is replaced by all rule§ — B with [; € S wheneverhead(r) N
S # (), hasS as an answer set. (This is a simple extension of a folklore result for eydimgic programs.)

Fact B. If a DDLP P is N-acyclic, then every spliP’ of P is N-acyclic. O

Theorem 8 Let P be a consistent disjunctive logic program and/let Lit p be a literal. Therforget;(P, ()
correctly representforget(P, 1), i.e., X is an answer set dbrget(P,) iff X is a minimal answer set agf’.

Proof. ByLemma 1,P can be transformed into an equivalent negative progkanurthermore, an easy
extension of Corollary 2 implies tha{, is equivalent taV. Hence,P = N andforget(P,) = forget(N,).

31

Let AS,.in(N') denote the minimal answer sets of prografh(w.r.t. C). To prove the theorem, it is
now by item 1 of Proposition 6 sufficient to prove the following claim:

Claim. For every setX’ of literals such thal ¢ X', X' € A8, (N’) iff X' = X \ {{} for some
X € .AS[(N)

Due to the elimination of tautology and the elimination of head redundaray(r) N body(r) = 0
for each ruler € N. Thus the progranmiV can be split into three disjoint parts¥ = N; U Ny U N3
whereN; consists of rules iV in which does not appeatys = {r € N |l € head(r),l & body™(r)};
andNs = {r € N | | € head(r),l € body~(r)}. Notice that Step 3 in Algorithnforgets(P,1) is
performed only on the rules V3. Let the programVy result fromN3 by the transformations in Step 3.
ThenN’ = Ny U Nj. Let Dy, Do, ..., Dy denote all possible conjunctions constructed frigiim Step 3;
note thatNV, = {ry, ...,r,}. We consider the three cases in Step 3.

(3.1) If n = 0, then no rule inV hasl in the head. Thusis false in every answer set of, and hence
N = N’ and AS;(N) = AS(N). SinceN’ is an ordinary programAS,,i,(N') = AS(N'). It follows
that AS,,in(N') = AS;(IV) and the claim holds.

(3.2) If n > 0 andm; = 0 for somej € {1,...,n}, then the ruld — is in N. Hence, every answer
set of N containg, and clearlyX’ € AS(N') iff X’ U {l} € AS(N) holds for every set of literalX” with
[¢ X'. Asin the previous caselS;(N) = AS(N) andAS,,in(N') = AS(N'), and the claim holds.

(3.1)n > 1 andm; > 1 for everyi = 1,...,n. We use the following lemmas.

Lemmas5 If [¢ X" and X’ |= D;, for someig with 1 < 4y < s, then(N3)X = (N5,
Lemma 6 For everyX' € AS,,in(N'),

(1) if X’ = D,, for someip, 1 <ip < s, thenX’ € AS(N).

(2) if X' £ D;foralli=1,...,s,thenX’ U{l} € AS(N).

Proof of Lemma 6 (1) NX = (N)X U (N3)X sinceX’ = D,, implies! ¢ X’. By Lemma 5,
(N3)X" = (N))X" and thusN X' = (N')X'. So X’ = N X,

If X” C X’ andX” = N¥', thenX” = (N')X'. SinceX’ is a minimal model ofNX', X" = X',
Therefore X' € AS(N).
(2) Let X = X' U {I}. Sincel € X andl does not appear iiV;, we haveN* = (N; U No U N3)¥X =
(NDX U (V)X = (N)X U (W)X = (V)X U {I <}. By the assumptionX’ |= (N;)X and thus
X = (N)X'. Obviously,X |= (N2)¥ sincel € X and every rule inV, has head. Thus, X = N¥X.

Now suppose that’ C X andY = NX. Sincel < isin NX,l €Y. LetY = Y'U{l} wherel ¢ Y.
ThenY’ = (N)X'. By (N')X" = (N)X', we haveY’ = (N)X'. Thus,Y’ = X’ by Y’ C X’ and the
minimality of X’. This impliesY’ = X. SoX is a minimal model ofV¥X, and thusX € AS(N).]

We now prove the claim.

(=): Let X’ € AS;(N). ThenX € AS(N) for eitherX = X' or X = X’ U {I}, wherel ¢ X. Consider
two cases:

Case 1.X = X': Note thatX’ = D;, for someip, 1 < ip < s, sincel ¢ X'. By Lemma 5,(N3)X' =
(N5)X'. Therefore(N)X" = (N1)X U (NH)X = (N1)X U (N3)X'. This impliesX’ = (N')X".

Suppose nowk” C X’ andX” = (N)X'. ThenX” = NX'. SinceX’ is a minimal model ofN-X",
we haveX” = X'. Thus, X’ € AS(N').

32

Suppose that” € AS,,in(N') andY C X', If Y |= D;, for somejy (1 < jo < s), then by Lemma 6
Y € AS(N) and thus it follows that” = X'. So X' € AS,,in(N'). If Y £ D; foralli (1 < jo < s),
thenY U {i} € AS(N) again by Lemma 6. This implieX’ ¢ AS;(NN), a contradiction. Therefore,
X' € ASpin(N').
Case 2.X = X' U {l}: ThenNX = NX{} = (N)X" U {I «—}. Sincel € X, we haveX [~ D; for
everyi, 1 < i < s. Froml ¢ X', it follows that X’ (= D; for everyi, 1 < i < s. Thus,(N')X" =
(N)X U (NHX = (N1)X'. SinceX = NX, X’ |= (N)X and thusX’ |= (N")X'.

If X" C X’ andX” = (N")X', thenX” U {I} = NX. By the minimality of X, X" U {I} = X. Since
I ¢ X"andl ¢ X", we haveX” = X'. Thus, X' € AS(N').

If Y € ASpin(N')andY C X', thenY £ D, foralli =1,...,s. Consequentlyy U {l} € AS(N).
SoY U {l} C X' U{l}. Thismeang” = X', since the answer sets d&f are incomparable undet. Thus
X' € ASpin(N').

(«<): Suppose thak’ € AS,,i»(N'). Consider two possible cases:

Case 1.X' (£ D;foralli=1,...,s: ByLemma6,X = X' U {l} € AS(N). ThusX’ € AS;(N) since

l € X by item 3 of Proposition 1.

Case 2.X' = D;, for someig with 1 < iy < s: By Lemma 6,X’ € AS(N). Consider anyy” € AS(N),
Y # X', such that” \ {I} C X’. Thenl € Y sincel ¢ X' and answer sets df are incomparable. Thus
Y € AS;(N) by Proposition 1. From the proof of the only-if pa¥t,\ {l} is a (minimal) answer set af’.
By the minimality of X', Y\ {I} = X’. This provesX’ € AS;(N).

Proposition 13 Let P be a consistent normal logic program and let Litp be a literal. If no negative
cycle of DG p containsl, thenforgets (P, 1) outputs anN-acyclic program.

Proof. The result is a consequence of the fact that for a progPaas described, also in the dependency
graph DGy, for the programNy from Step 1 offorget;(P,1) no negative cycle will contai. This is
because each of the transformationsIih preserves the property that if a litedadoes not occur on a
negative cycle ofDG p, of the original progranF, then it does not occur on a negative cycleaf p, in
the transformed prograifi, . Indeed, each transformation except Unfolding only removes edgésidihg
can add only some positive edges from I’ such that positive edges frohto I” and fromi” to I’ exist, for
some literal”, and some negative edges frémo I’ such that a positive edge frohto /”” and a negative edge
from [” to I’ exist, for some literal”. Thus, occurrence dfin a negative cycle oDG p, implies occurrence
of in a negative cycle oDGp,.

As a consequence, in Step 3 (whé¥e= Ny) no replacements afot [by D; will be performed that
can violate the condition (ii) aiV-acyclicity; condition (i) is vacuously true. O

Theorem 9 Given a consistent (disjunctive) logic prograf a literal [, and a set of literalsX, deciding
whetherX is ani-answer set of” is I1;-complete. Proof. Deciding whethetX ¢ AS;(P) can be done

in NP time using an NP oracle: we must show that eithet{1¥ AS(P) (which is in co-NP, cf[Eiter and
Gottlob, 1995h), or that (2) there exists som¢’ € AS(P) such thatX’ c; X; such anX’ can be guessed
and checked using an NP-oracle in polynomial time. Consequésahswer set checking is in co-NP =
112,

The hardness result is shown by a reduction from deciding whetheea tigic programP (without
strong negations) has no answer set, whidijscompleteEiter and Gottlob, 1999b

In fact, given a (disjunctive) logic progran®, construct a logic progranP’ = {head(r) <
p,body(r) | r € P}U{q < not p. p — not q} U {a «— not p | a appearsinP}, wherep andq

33

are two fresh atoms. This prografti has one answer s&f, in which p is false and all other atoms are true;
all other answer sets are of the fotkhU {p}, whereX € AS(P). It holds thatX, € AS,(P’) iff P has
no answer set. O

Theorem 10 Given a consistent normal logic prograi, a literal [, and a set of literalsX, deciding
whetherX is ani-answer set of? is co-NP-complete. Proof. Similar to the proof of Theorem 9, in order

to show thatX ¢ AS,;(P), we must that either (1X ¢ AS(P) (which can be tested in polynomial time),
or that (2) there exists somg’ € AS(P) such thatX’ ¢; X. Such anX’ can be guessed and checked
in polynomial time. Hence, deciding ¢ AS;(P) is in NP, which implies that-answer set checking is in
co-NP.

The hardness result is shown by the reduction in Theorem 9. In faettimet if we consider only normal
programsP (without strong negation), theR’ is also a normal program. The problem of deciding whether
P has no answer set, which is co-NP-complete, is thus reduced to decidatljex is ap-answer set of
P O

Theorem 11 Given a consistent negative progrdia literal [, and a set of literalsX, deciding whetheX
is anl-answer set of is co-NP-complete. Proof. The co-NP membership follows from that fact that for

any given set of literalX and negative prograrR, deciding whetheX € AS(P) is polynomial. (Indeed,
X € AS(P)iff X = PX andX \ {I} £ P¥, for everyl € X.) Thus, testing that (LX ¢ AS(P) and
that (2) there is n&{’ € AS(P) such thatX’ c; X is feasible in co-NP.

As for co-NP-hardness, 16t = C; A --- A Ci, be a propositional CNF over atongs, . . . , ¥, where
eachC) is non-empty. Define

N = U(NZ U{ < not C{}) U{l « not y1.1 — not yi},
i=1

where

N; = {y; < notyi. yi — not y;. y; — not l. y, «— notl}, 1<i<m,
C; = {vilyieCiyU{y | ~wieC}, 1<j<k

Clearly, the satisfying assignments@fcorrespond one-to-one to the answer setd’afontainingl. Fur-
thermore, the seX = {y;,y; | 1 <i < m} is an answer set aV. It holds thatX is also an-answer set of
N iff Cis unsatisfiable, which establishes the co-NP-hardness. O

Theorem 12 Given a consistent (disjunctive) logic prografhand literals! and !, deciding whether
forget(P,l) . ! is Xi-complete. Proof. Given a logic programP and two literals! and !,

forget(P, 1) = I’ holds iff there exists somé& € AS;(P) such that’ € S. Since deciding € AS;(P) is
in I, the problem thus is ix%.

The X%-hardness can be shown by an encoding of quantified Boolean forf@Bfss) of the form
3ZvX3Y C. It is well-known that the problem of deciding whether a disjunctive logimgpam has no
answer sets i$I5-complete[Eiter and Gottlob, 1999b As shown there, for every QBF = VX3YC
there exists a polynomial-time constructible logic progrBmwhich has no answer set iff is true. We
extend this program to an encoding of a QBF= 3ZVX3Y C into credulous inference under forgetting
as follows.

34

First, Pr can be easily extended to a progrdtp|; encoding a QBR[Z] = VX3Y C[Z] with free
variables (i.e., parameter&) where all new atoms ¥z are fromZ and do not occur in rule heads, such
that for every truth assignmento Z, the progranPr /(7)) = Ppiz)U{z < . | 2 € Z,7(Z) = true} has
no answer set iff the QBE'[Z/7(Z)] evaluates to true, whetE[Z/7(Z)] results fromF[Z] by replacing
everyz € Z with T if 7(z) = true and withF if 7(z) = false.

More in detail, suppose without loss of generality thaZ] = C; A --- A C, where eaclC; = ;1 V
;2 V ¢; 3 is adisjunction of literalg; ; overatomsX UY U Z. Let X' = {2/ |z € X},Y' = {y |y € Y},
andw be new atoms. TheRy(z consists of the rules

Vo —. foreachz € X,
yVy —. y—w y —w wuy,y. foreachyeV,
w— o(~dg1),0(—lk2),0(—dk3). foreachk =1,...,r,

w «— not w.
whereo maps classical literaléto classical andiot literals as follows:

' if £ = —x for somexr € X
o(0) = Y ?ff:ﬁyforsomeer

not z If £ = —zforsomez € Z
Y4 otherwise

Notice that the onlynot literals occurring inPrz; arenot w in the last rule and the literalsot = in rule
bodies; furthermore, atoms froi occur only in rule bodies. For void, the programPpz amounts to
the programPz in [Eiter and Gottlob, 1995b, Proof of Theorerh(after converting th&/3-QBF into the
Jv-QBF used there). A simple extension of the proof of Theorem[Eiter and Gottlob, 1995tgives the
following lemma.

Lemma 7 For each truth assignmentto Z, vX3Y C[Z/7(Z)] evaluates to true iff the prograliz ;- (7,
has no answer set.

Let Z' = {2’ | = € Z}, [, andl’, be fresh atoms, and |t be the logic program obtained froi;) by
adding! to the body of each rule and the following further rules:

(1) I < notl'. I < notl.,

(2) 2z« not 2/. 2« not z, foreachz € Z,

(3) x«—mnotl. ' «—mnotl. y<—mnotl. 3y «—notl, foreachw € X,y €Y, and
(4) therule w « not L.

Informally, the rules in (1) select one 6find!’, and the rules in (2) select a truth assignmemd Z. If |
is selected, then the prograRy) is activated and evaluated for the selecteavhile the rules (3) and (4)
are discarded. The evaluation will lead to some answes'sgff the programPp(z,-(z) has some answer
set; note that every suc$icontainsl. On the other hand, if is selected, then only the rules in (2)-(4) are
active. The truth assignmentselected in (2) will be complemented wiiu X' UY UY’ U {w} to a
unique answer set’ of the programp.

Now SL. c; S¥ holds for everySL. Furthermore, answer se$sand.S’ corresponding to different truth
assignments and7’, respectively, are always incomparable w&ton Z U Z’, and thus also w.r.iC;.

35

Therefore, for every, Si' is anl-answer set oP iff no answer setS!. exists, i.e.,Pp(z/+(2)) has no answer
set, which by Lemma 7 equals thaX 3Y C[Z/7(Z)] evaluates to true. Hence, for somesS? is ani-
answer set oP iff F/ = 3ZvX3Y C evaluates to true. Since evdranswer set o that containg’ is of
the formSY for 7, it follows from Proposition 6 thaforget(P, 1) |=. I’ iff F' evaluates to true. Since is
constructible in polynomial time from”, theX%-hardness is proved. O

Theorem 13 Given a consistent negative prografrand literalsl and!’, deciding whetheforget(V,) |=.
I'is XE-complete. Proof. By Theorem 11, a guess for soritranswer sefX of P such that’ € X can be

verified with an NP oracle in polynomial time. Hence, decidioget(P, () . I is in 35.

As for 35-hardness, take a QBEXVZ E, whereE = \/*_, D; is a DNF onX U Z such that without
loss of generality in each disjunf£}; some variable fron¥ occurs. Construct the same program as above
in Theorem 11 folC = —FE and whereY” = X U Z andy; is an arbitrary variable fron¥, but (1) omit the
clausesr; — not [andz] «— not [, and (2) add a claugé < not [, wherel’ is a fresh literal. Then for
each sefX’ C X, the set

Sxr =X U{a}|zi e X\XYUZU{z |z € Z}u{l'}

is an answer set aV. The setsSy: are also all answer sets of that contain’ (and do not contai).
Furthermore Sy is anl-answer set a¥ iff there exists no satisfying truth assignment o= —F) which
corresponds oX to Sy in the obvious way. In summary, this means thahasi-answer set in whicH is
true, i.e.forget(N, 1) =, U, iff the formulad XVZ E evaluates to true. O

Theorem 14 Given a consistent normal prograivi and literals! and!’, deciding whetheforget(V, 1) =,
I'isXE-complete. Proof. Itis sufficient to note that the prograi constructed in the proof of Theorem 13

is normal. 0O

Theorem 15 Given a consistent logic prograif and literals! and!’, deciding whetheforget(P, 1) =5 I’
is (i) II5-complete for arbitrary disjunctive logic prograni3, and (ii) co-NP-complete for normal logic
programs and for negative logic prograntd Proof. By Theorem 7, to decidérget(P,l) |5 I/, we

need only to decid® =, I’. The latter islT5-complete for logic programkEiter and Gottlob, 1995band
co-NP complete for normal/negative programs; for both cases, membarstug\NP follows since testing
X € AS(P) is polynomial (cf. proof of Theorem 11 for negative programs), andN® hardness from the
results in[Marek and Truszc#yski, 1991 (incorporating the consistency requirement is easy). O

Proposition 15 Let P be a logic program and lef’ be a consistent set of literals. Suppose that (1) no
literal in F' occurs in a rule body irP, and (2) for each rule-, either no or every literal irhead(r) isin F.
Thenforget(P, F) = P\ R(F).

We first provide two lemmas, which are straightforward corollaries of thikkmewn, more general
Splitting Set Theorem ifiLifschitz and Turner, 1994and elementary properties of answer set semantics.
To avoid introducing the necessary notions for that result, we providgefé.containedness simple genuine
proofs.

Lemma8 Let P, F and@ = P\ R(F) be given as in Proposition 15. B’ is an answer set af), then
there exists a subs&t’ of F' such thatS’ UY” is an answer set aP.

36

Since we have a very special case here, Lemma 8 also allows a simple proof.
Proof. Suppose tha$’ is an answer set d@)). DenoteD’ = {head(r) | r € R(F),S’ |= body(r)}. Then
every literal inD’ must be inF'. Let Y’ be a minimal model o)’ andS = S” U Y". By the assumption of
F,S"NnY’ = @ and thusS is consistent. We show thatis an answer set o?.

First, sinceP® = PS5 = Q% U (R(F))"’, we haveS |= P°. Next, suppose&X C S andX |= P,
TakeX’' = X \ F;thenX’ C S’. We can see thaX’ = Q° and thusX’ = S’. Notice thatY” = SN Fis
a minimal model ofD’, and thatX N F = D’ impliesX N F = SN F. Thus,X = S. O

Lemma9 Let P, Fand@ = P\ R(F') be given as in Proposition 15. ¥ is an answer set of, then
S\ Fis an answer set df).

Proof. By P° = P5 andQ C P, itis easy to see that’ |= Q% whereS’ = S\ F.

Suppose that” C S’ andY’ = Q%'. ThenY |= PS5 = P9 whereY = Y’ U (SN F). ThusY = S.
SinceY’ =Y N F andS’ = SN F, we haveY’ = S’. HereF' = Litp \ F.

Therefore,S \ F'is an answer set @. O

Proof of Proposition 15 DenoteQ = P\ R(F'). Suppose that’ is an answer set @f. By Lemma 8,
there exists a subs&t of F' such thatS = S’ U Y’ is an answer set af.

To show thatS’ is an answer set dbrget(P, F'), it suffices to prove tha$ is an F-answer set of. In
fact, if Z is an answer set @dP such thatZ Cr S, thenZ’ C S’ whereZ’ = Z \ F. By Lemma 9,7’ is an
answer set of). ThusS’ = 7/, which meansZ ~ S. Thatis,S is anF-answer set of.

On the other hand, i’ is an answer set dbrget(P, F'), then there exists aR-answer sef of P such
thatS’ = S\ F. By Lemma 9,5’ is also an answer set ¢f. []

We are now ready to prove Theorem 16.

Theorem 16 Let (P, <) be an inheritance program and Iétbe a set of literals. Thef is an inheritance
answer set of P, <) iff S is an answer set dbrget(P’, F') whereP’ is obtained as above.

Proof. S is an inheritance answer set(@®, <) iff S is a minimal model of P, <) iff .S is an answer set
of P\ R(F) iff Sis an answer set dbrget(P’, F'), by Proposition 15. O

References

[Alfereset al, 1999 J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and Tyfsinski. Dynamic logic program-
ming. In A. Cohn, L. Schubert, and S. Shapiro, editthgceedings of the Sixth International Conference on the
Principles of Knowledge Representation and Reasqrmiages 98-109. Morgan Kaufmann Publishers, 1998.

[Alfereset al, 2004 J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and TyRusinski. Dynamic updates of
non-monotonic knowledge basekurnal of Logic Programmingd5(1-3):43-70, 2000.

[Asparagus homepage, Since 2D0%sparagus homepage. http://asparagus.cs.uni-potsdam.de/ ,
Since 2005.

[Ben-Eliyahu and Dechter, 19p4R. Ben-Eliyahu and R. Dechter. Propositional semanticslijunctive logic pro-
grams.Annals of Mathematics and Artificial Intelligenck2(1-2):53—-87, 1994.

[Bledsoe and Hines, 19B0W. Bledsoe and L. Hines. Variable elimination and chainimg@ iresolution-based prover
for inequalities. InProceedings of 5th Conference on Automated Deduction (§AR#ges 70-87, 1980.

37

[Boole, 1847 G. Boole. The Mathematical Analysis of Logid.ondon: G. Bell (Reprinted by Philosophy Library,
New York, 1948), 1847.

[Brass and Dix, 1997 S. Brass and J. Dix. Characterizations of the disjunctiablstsemantics by partial evaluation.
Journal of Logic Programming32(3):207—228, 1997.

[Brass and Dix, 1999 S. Brass and J. Dix. Semantics of disjunctive logic progréssed on partial evaluation.
Journal of Logic Programming38(3):167—312, 1999.

[Brown, 2003 F. Brown. Boolean Reasoning: The Logic of Boolean Equations (2ndddit Dover Publications,
2003.

[Buccafurriet al, 1999 F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic gnams with inheritance. In
Proceedings of the International Conference on Logic Pangming pages 79-93. The MIT Press, 1999.

[Buccafurriet al, 2004 F. Buccafurri, W. Faber, and N. Leone. Disjunctive Logicdreons with Inheritancelheory
and Practice of Logic Programmin@(3):293-321, May 2002.

[Cadoliet al, 200§ M. Cadoli, F. Donini, P. Liberatore, and M. Schaerf. SpadiciEncy of Propositional Knowl-
edge Representation Formalisndsurnal of Artificial Intelligence Research3:1-31, 2000.

[Cadoliet al, 2003 M. Cadoli, F. Donini, P. Liberatore, and M. Schaerf. Prepssing of intractable problems.
Information and Computatiqri 76(2):89-120, 2002.

[Clark, 1978 K. Clark. Negation as failure. In H. Gallaire and J. Minkedjters, Logic and Data Basegages
293-322. Plenum Press, 1978.

[Dantsinet al, 2001 E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complgxitnd expressive power of logic
programming ACM Computing Survey83(3):374-425, 2001.

[Eiter and Fink, 200B T. Eiter and M. Fink. Uniform Equivalence of Logic Programsder the Stable Model Se-
mantics. In Catuscia Palamidessi, ediingceedings 19th International Conference on Logic Prognsing (ICLP
2003) number 2916 in LNCS, pages 224-238. Springer, 2003.

[Eiter and Gottlob, 1999aT. Eiter and G. Gottlob. The complexity of logic-based alihrc Journal of the ACM
42:3-42, 1995.

[Eiter and Gottlob, 1999bT. Eiter and G. Gottlob. On the computational cost of disfiveclogic programming:
Propositional caseAnnals of Mathematics and Artificial Intelligencks(3-4):289—-323, 1995.

[Eiteret al, 2004 T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Consideras on updates of logic programs. In
Proceedings of the Seventh European Workshop on Logicdificiat Intelligence (JELIA’2000)volume 1919 of
Lecture Notes in Atrtificial Intelligencgages 2—20. Springer-Verlag, 2000.

[Eiteret al, 2004 T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On propesti¢ update sequences based on causal
rejection. Theory and Practice of Logic Programmin2(6):711-767, 2002.

[Eiteret al, 2009 T. Eiter, G. lanni, R. Schindlauer, and H. Tompits. A unifoimtegration of higher-order rea-
soning and external evaluations in answer set programmiimd.eslie Pack Kaelbling and Alessandro Saffiotti,
editors,Proceedings of the 19th International Joint Conference difiéial Intelligence (IJCAI-05) pages 90-96.
Professional Book Center, 2005.

[Eiteret al, 2004 T. Eiter, G. lanni, R. Schindlauer, H. Tompits, and K. Wangrdeétting in managing rules and
ontologies. InProceedings of the IEEE/WIC/ACM International ConferemceWeb Intelligence (WI 2006),
Hongkong, Dec. 20Qpages 411-419. IEEE Computer Society, 2006.

[Eiteret al, 2007 T. Eiter, K. Makino, and G. Gottlob. Computational aspedtsnenotone dualization: A brief
survey.Discrete Applied Mathematic2007. doi:10.1016/j.dam.2007.04.017.

[Erdem and Lifschitz, 2043E. Erdem and V. Lifschitz. Tight Logic Program3heory and Practice of Logic Pro-
gramming 3:499-518, 2003.

38

[Gelfond and Lifschitz, 1988aM. Gelfond and V. Lifschitz. Compiling circumscriptive thees into logic programs.
In AAAI, pages 455-449, 1988.

[Gelfond and Lifschitz, 198§bM. Gelfond and V. Lifschitz. The stable model semantics émi¢ programming. In
Proceedings of the International Conference on Logic Paogming pages 1070-1080. The MIT Press, 1988.

[Gelfond and Lifschitz, 1990 M. Gelfond and V. Lifschitz. Logic programs with classicagation. InProceedings
of the International Conference on Logic Programmipgges 579-597, 1990.

[Gelfond and Lifschitz, 1991 M. Gelfond and V. Lifschitz. Classical negation in logic grams and deductive
databasedNew Generation Computing:365-385, 1991.

[Grantet al, 1993 J. Grant, J. Horty, J. Lobo, and J. Minker. View updates iatited disjunctive databasegar,
11(2):249-267, 1993.

[Inoue and Sakama, 19P&. Inoue and C. Sakama. Negation as failure in the hdadrnal of Logic Programming
35(1):39-78, 1998.

[Janhunert al, 200Q T Janhunen, I. Niem&| P. Simons, and J.-H. You. Partiality and Disjunctions iab
Model Semantics. In A.G. Cohn, F. Giunchiglia, and B. Selnaatitors,Proceedings of the Seventh International
Conference on Principles of Knowledge Representation asmb&hing (KR 2000), April 12-15, Breckenridge,
Colorado, USApages 411-419. Morgan Kaufmann Publishers, Inc., 2000.

[Lang and Marquis, 20¢2J. Lang and P. Marquis. Resolving inconsistencies by viarimgetting. InProceedings
of the Eighth International Conference on the PrincipleKobwledge Representation and Reasonpages 239—
250, 2002.

[Langet al, 2003 J. Lang, P. Liberatore, and P. Marquis. Propositional iedelence: Formula-variable indepen-
dence and forgettingl. Artif. Intell. Res. (JAIR)18:391-443, 2003.

[Larrosaet al., 2009 J. Larrosa, E. Morancho, and D. Niso. On the practical useflile elimination in constraint
optimization problems: ’still-life’ as a case study. Artif. Intell. Res. (JAIR)23:421-440, 2005.

[Larrosa, 200D J. Larrosa. Boosting search with variable eliminationCR pages 291-305, 2000.

[Lee and Lifschitz, 2008 J. Lee and V. Lifschitz. Loop Formulas for Disjunctive Lodtcograms. IrProceedings
of the Nineteenth International Conference on Logic Progming (ICLP-03) volume 2916 of_ecture Notes in
Computer Scien¢@ages 451-465. Springer, December 2003.

[Leoneet al, 2004 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Pemid F. Scarcello. The DLV System
for Knowledge Representation and Reason®gM Transactions on Computationl Logi(3):499-562, 2006.

[Lewis, 1918 C. I. Lewis. A Survey of Symbolic LogidJniversity of California Press (Reprinted by Dover Pub’s.
Inc., New York, 1960. Chapter Il, "The Classic, or Boole-8uter Algebra of Logic”), 1918.

[Lifschitz and Turner, 1994 V. Lifschitz and H. Turner. Splitting a logic program. Rroceedings of the 11th Inter-
national Conference on Logic Programmirgages 23-37, 1994.

[Lifschitz et al, 1999 V. Lifschitz, L. Tang, and H. Turner. Nested expression®id programsAnnals of Mathe-
matics and Atrtificial Intelligence25:369-389, 1999.

[Lifschitz et al, 2001 V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivdllgic programs ACM Transac-
tions on Computationl Logj@(4):426-541, 2001.

[Lifschitz, 1994 V. Lifschitz. Minimal belief and negation as failurdrtificial Intelligence 70:53—72, 1994.
[Lifschitz, 2003 V. Lifschitz. Answer set programming and plan generatidrtificial Intelligence 138:39-54, 2002.

[Lin and Reiter, 1994 F. Lin and R. Reiter. Forget it. IRroceedings of the AAAI Fall Symposium on Relevance
pages 154-159. New Orleans (LA), 1994,

39

[Lin and Zhao, 200 F. Lin and Y. Zhao. Assat: Computing answer set of a logic @ogby sat solvers. IRro-
ceedings of the AAAI National Conference on Atrtificial ligehce page ? The AAAI Press, 2002.

[Lin and Zhao, 200K F. Lin and Y. Zhao. Assat: Computing answer set of a logic mogby sat solversArtificial
Intelligence 157:115-137, 2004.

[Marek and Truszczyski, 1991 W. Marek and M. Truszc#yski. Autoepistemic Logic. Journal of the ACM
38(3):588-619, 1991.

[Marek and Truszczyski, 1998 W. Marek and M. Truszc#yski. Revision ProgrammingTheoretical Computer
Science190:241-277, 1998.

[McCarthy, 198D J. McCarthy. Circumscription — a form of nonmonotonic regieg. Artificial Intelligence 13(1-
2):27-39, 1980.

[Middeldorpet al, 1994 A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strongyqueteness and eager
variable elimination.Theor. Comput. Sgi167(1&2):95-130, 1996.

[Moinard, 2007 Y. Moinard. Forgetting literals with varying propositidreymbols.Journal of Logic and Computa-
tion, 17(5):955-982, 2007.

[Moore, 1985 R.C. Moore. Semantical considerations on nonmonotonic$odArtificial Intelligence 25:75-94,
1985.

[Noy and Stuckenschmidt, 20D3.F. Noy and H. Stuckenschmidt. Ontology alignment: An aatesl bibliogra-
phy. In Semantic Interoperability and Integratipmolume 04391 obagstuhl Seminar Proceeding8FI, Schloss
Dagstuhl, Germany, 2005.

[Pearceet al., 2001 D. Pearce, H. Tompits, and S. Woltran. Encodings for Equllin Logic and Logic Programs
with Nested Expressions. In Pavel Brazdil andpid Jorge, editors10th Portuguese Conference on Atrtificial
Intelligence (EPIA 2001)pages 306—320, December 2001.

[Reiter, 1980 R. Reiter. A logic for default reasonindrtificial Intelligence 13:81-132, 1980.

[Sacca and Zaniolo, 1991D. Sacca and C. Zaniolo. Partial models and three-valudtestaodels in logic programs
with negation. InProceedings of the Workshop on Nonmonotonic Reasoning agid Programmingpages 87—
101, 1991.

[Sakama and Inoue, 20PZ. Sakama and K. Inoue. An abductive framework for computimgvledge base updates.
Theory and Practice of Logic Programming(6):671—-713, 2003.

[Subramaniaet al, 1997 D. Subramanian, R. Greiner, and J. Pearl, editAr§ficial Intelligence Journal: Special
Issue on Relevancé&lsevier, 1997. Volume 97, Numbers 1-2.

[Tessiert al, 200] C. Tessier, L. Chaudron, and H. Mll€onflicting Agents - Conflict Management in Multi-Agent
SystemsKluwer Academic Publishers, Cambridge, 2001.

[Waal and Gallagher, 1993A. Waal and J. Gallagher. Logic program specialisation aihetion of useless clauses.
In Proceedings of the 1993 International Symposium on LogigfRmming page 632, 1993.

[Wang and Zhou, 20Q5K. Wang and L. Zhou. Comparisons and computation of welhfted semantics for disjunc-
tive logic programsACM Transactions on Computationl Logi®(2):295-327, 2005.

[Wanget al, 2009 K. Wang, A. Sattar, and K. Su. A theory of forgetting in logimgramming. InProceedings of
the 20th National Conference on Artificial Intelligengages 682—-687. AAAI Press, 2005.

[Weber, 1986 A. Weber. Updating propositional formulas. Rroceedings of the First Conference on Expert
Database Systempages 487-500, 1986.

[Zhang and Foo, 1997Y. Zhang and N.Y. Foo. Towards Generalized Rule-Based WgsdainProceedings IJCAI
‘97, pages 82-87, 1997.

40

[Zhang and Foo, 2006Y. Zhang and N.Y. Foo. Solving logic program conflict throigitong and weak forgettings.
Artificial Intelligence 170(8-9):739-778, 2006.

[Zhanget al., 2009 Y. Zhang, N. Foo, and K. Wang. Solving logic program conflitteough strong and weak
forgettings. InProceedings of the International Joint Conference on Aitfilntelligence pages 627—632, 2005.

[Zhang, 2006 Y. Zhang. Logic program-based updatesCM Transactions on Computationl Logit(3):421-472,
2006.

41

