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Abstract. The notion of forgetting, also known as variable elimination, has been investigated ex-
tensively in the context of classical logic, but less so in (nonmonotonic) logic programming and
nonmonotonic reasoning. The few approaches that exist are based on syntactic modifications of a
program at hand. In this paper, we establish a declarative theory of forgetting for disjunctive logic
programs under answer set semantics that is fully based on semantic grounds. The suitability of this
theory is justified by a number of desirable properties. In particular, one of our results shows that our
notion of forgetting can be entirely captured by classical forgetting. We present several algorithms
for computing a representation of the result of forgetting,and provide a characterization of the com-
putational complexity of reasoning from a logic program under forgetting. As applications of our
approach, we present a fairly general framework for resolving conflicts in inconsistent knowledge
bases that are represented by disjunctive logic programs, and we show how the semantics of inher-
itance logic programs and update logic programs from the literature can be characterized through
forgetting. The basic idea of the conflict resolution framework is to weaken the preferences of each
agent by forgetting certain knowledge that causes inconsistency. In particular, we show how to use
the notion of forgetting to provide an elegant solution for preference elicitation in disjunctive logic
programming.
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1 Introduction

For intelligent agents, the ability to discard irrelevant information has been recognized as an important
feature (that is mastered well by humans) and received broad attention in artificial intelligence, both from
a cognitive and a computational perspective. In the area of knowledge representation, this ability is often
referred to asforgetting[Lin and Reiter, 1994] or variable elimination[Brown, 2003], but has been studied
under many different names including irrelevance, independence, irredundancy, novelty, or separability (see
[Subramanianet al., 1997; Langet al., 2003] for more details).

Forgetting has its root in Boolean Algebra[Boole, 1847] where it is a fundamental reasoning process.
C. I. Lewis [1918] has pointed out that, for purposes of application of Boolean logic to commonsense
reasoning, the elimination/forgetting is a process more important than solution1 since most processes of
reasoning take place through the elimination of “middle” variables. Boole writesof such middle variables
that it “usually happens in commonsense reasoning, and especially when we have more than one premises,
that some of the elements [in the premises] are not required to appear in the conclusion.”

Forgetting and its applications have been investigated extensively in the context of classical logic,
for example, [Bledsoe and Hines, 1980; Larrosa, 2000; Larrosaet al., 2005; Lin and Reiter, 1994;
Lang et al., 2003; Middeldorpet al., 1996; Moinard, 2007; Weber, 1986], but less so in nonmono-
tonic logic programming and reasoning. In this context, it was first considered in [Zhanget al., 2005;
Zhang and Foo, 2006], where two types of forgetting—strong and weak forgetting—have been defined by
first transforming a logic programP into a reduced form and then deleting some rules (and literals) from
it. While this approach works well in a number of cases, it has two major drawbacks. First, its semantic
underpinning is not fully clear. Specifically, the relationship between the intended semantics of a logic pro-
gram, in terms of its answer sets, and the result of the syntactic transformations that are carried out by strong
and weak forgetting is unclear. Second, this approach does not address desirable properties for a reasonable
notion of forgetting in nonmonotonic logic programming. In particular, one may ask what is the difference
of these notions of forgetting from traditional approaches to deletion of rules/literals in logic programming
and databases.

A further aspect is that both strong and weak forgetting are syntax-sensitive, i.e., programs that are
semantically equivalent may have different results after forgetting aboutthe same literal. For example, the
programsP = {p ← . q ← not p} andQ = {p ←} are equivalent under the answer set semantics.
Weak forgetting aboutp from P yields the programWForgetLP(P, p) = {q ←} and fromQ the program
WForgetLP(Q, p) = {}; clearly, these programs are not equivalent.

While the role of syntax in logic programming is well-acknowledged, one might argue that relative to the
semantics of this syntax, equivalent programs should behave in the same way. In particular, in this example
the result of forgetting aboutp in P andQ should yield semantically the same result (note that, under answer
set semantics, the second rule inP is redundant).

A similar phenomenon can be observed for strong forgetting. ConsiderP = {q ← not p. q ← not q}
and Q = {q ←}. Then these two programs are equivalent under the answer set semantics. How-
ever, the results of strong forgetting aboutp from P andQ areSForgetLP(P, p) = {q ← not q} and
SForgetLP(Q, p) = {q ←}, respectively, which are obviously not equivalent. The discrepancyis here even
more noticeable: the result of strong forgetting about an atom from a consistent program can be inconsistent.

Thus, an alternative notion of forgetting for nonmonotonic logic programmingis highly desirable. In

1In [Lewis, 1918] a problem is formulated as a Boolean equation such that a solution of the Boolean equation corresponds to a
solution of the given problem. In particular, solving a Boolean equation is treated as a process of eliminating/forgetting variables
that represent unknowns.
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this paper, we choose answer set programming (ASP)[Lifschitz, 2002] as the underlying nonmonotonic
logic. ASP is a new paradigm of logic programming under the answer set semantics[Gelfond and Lifschitz,
1990], which is becoming a major tool for knowledge representation and reasoning due to its simplicity,
expressive power, and connection to major nonmonotonic logics. A numberof efficient ASP solvers, such
as DLV, Smodels, ASSAT, Cmodels, or Clasp are available (see[Asparagus homepage, Since 2005]), which
can handle large problem instances.

Prior to defining a notion of forgetting for nonmonotonic logic programming, wemay pose the question
what desirable properties a reasonable theory of forgetting should have. The following ones appear to be
natural candidates for us. LetP be a logic program and letP ′ be the result of forgetting about a literall in
P .

(F1) The proposed notion of forgetting should be a “natural” generalization of, and relate to, forgetting in
classical logic.

(F2) No new symbols are introduced inP ′, i.e., the vocabulary stays the same.

(F3) The reasoning underP ′ is equivalent to the reasoning underP if l is ignored.

(F4) The result of forgetting is not sensitive to syntax in that the results of forgetting aboutl in semantically
equivalent programs should also be semantically equivalent.

(F5) The semantic notion of forgetting is coupled with a syntactic counterpart, i.e., there is effective con-
structible syntax for representing the result of forgetting.

(F1) specifies the major intuition behind forgetting and clarifies the difference of forgetting from deletion.
(F2) is necessary because the forgetting is to eliminate redundant symbols.This is a difference between
forgetting and some approaches to revision, update, and deletion, such as[Alfereset al., 1998; Buccafurriet
al., 1999; Eiteret al., 2002; Grantet al., 1993; Waal and Gallagher, 1993]; note that to combine forgetting
with other approaches to adding new information is a different issue. (F3)provides a semantic justification
for the forgetting. Note thatP ′ andP may have different answer sets in general (see Proposition 1); (F4)
guarantees that the notion of forgetting is semantically well-defined. Finally, (F5) is useful for applications
of forgetting in knowledge representation.

To the best of our knowledge,there is no theory of forgetting in nonmonotonic reasoning or logic pro-
gramming which is based on the above criteria. However, the definition of forgetting in classical logic
cannot be directly adapted to logic programming (cf. Section 3.1). The main contributions of the present
paper are as follows.

• We establish a declarative, semantically defined notion of forgetting for disjunctive logic programs un-
der answer set semantics calledsemantic forgetting. The suitability of semantic forgetting is justified
by a number of desirable properties, including the ones given above.

• As one of them, we show that our notion of forgetting naturally captures classical forgetting. As
we show, this can be exploited for reasoning under forgetting about a literal from a logic program
by resorting to representations of a nonmonotonic logic program in terms of classical logic[Lin and
Zhao, 2002; Lin and Zhao, 2004; Lee and Lifschitz, 2003].

• As another such property, for every consistent disjunctive programP and literall, a syntactic repre-
sentationforget(P, l) for forgetting aboutl in P in terms of a nonmonotonic logic program always

2



exists. Besides two semantics-based algorithms for computing such a representation, we also present
a transformation-based algorithm. This algorithm allows to obtain the result of forgetting about a
literal l in P via a series of program transformations and other rewritings.

• In connection with these algorithms, we characterize the computational complexity of the major rea-
soning tasks from logic programs under forgetting about a literal. As it turns out, model checking
and credulous reasoning under forgetting about a literal from a logic program are more complex than
in the standard setting (by one level in the polynomial hierarchy), while skeptical reasoning has the
same complexity. These results provide useful insights into feasible representations of forgetting, and
suggest that a polynomial-size result of forgetting may not always be feasible. This (and stronger
results) can be established by applying the theory of Cadoli et al.[2000; 2002].

• As an application of our approach, we present a fairly general framework for resolving conflicts in
inconsistent knowledge bases. The basic idea of this framework is to weaken the preferences of each
agent by forgetting certain knowledge that causes inconsistency. In particular, we show how to use
the notion of forgetting to provide an elegant solution for preference elicitation in ASP.

• Furthermore, we show that inheritance programs[Buccafurriet al., 1999], update programs[Eiter et
al., 2000; Eiteret al., 2002] and fragments of dynamic programs[Alfereset al., 1998; Alfereset al.,
2000] can be characterized in terms of the semantic forgetting.

While in this paper, we focus on nonmonotonic logic programs, the basic ideasunderlying our approach
to semantic forgetting may be applied to other well-known formalisms of nonmonotonic reasoning, such as
default logic[Reiter, 1980] or autoepistemic logic[Moore, 1985], as well, of which nonmonotonic logic
programs under answer set semantics can be seen as particular fragments. In fact, these formalisms extend
classical logic, and a notion of forgetting that complies with classical forgetting (which is based on seman-
tics) seems needed there. Our results thus also provide a benchmark for approaches to forgetting in other
formalisms of nonmonotonic reasoning, which remain to be developed.

The rest of the paper is organized as follows. Section 2 briefly recalls some basics of disjunctive logic
programs and the answer sets. Section 3 defines the notion of forgetting in ASP, shows some important
properties, and relates it to classical forgetting and independence[Langet al., 2003]. Thereafter, Section 4
presents algorithms for computing the result of forgetting in ASP, while Section5 studies some complexity
issues. Section 6 then presents some applications, namely to conflict resolution in multi-agent systems, to
inheritance logic programs, and to logic program updates. The final Section 7 concludes the work.

2 Preliminaries

We briefly review some basic definitions and notation in answer set programming that will be used through-
out this paper.

A disjunctive logic program(simply, logic program) is a finite set of rules of the form

a1 ∨ · · · ∨ as ← b1, . . . , bm,not c1, . . . ,not cn, (1)

wheres, m, n ≥ 0, and allai, bj , andck are from a setLit of classical literals in a propositional language2.
We assume here that allai are pairwise distinct, and similarly allbj and allck. A literal is apositive literalp

2The results of this paper may be lifted to the predicate case as usual.
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or anegative literal¬p for some atomp. For an atomp, p and¬p are calledcomplementary. For any literal
l, its complementary literal is denoted by¬.l.

Given a ruler of form (1),head(r) = a1 ∨ · · · ∨ as andbody(r) = body+(r) ∪ not body−(r) where
body+(r) = {b1, . . . , bm}, body−(r) = {c1, . . . , cn}, andnot body−(r) = {not q | q ∈ body−(r)}.
Occasionally, in abuse of notation we viewhead(r) also as set{a1, . . . , as}.

A rule r of the form (1) isnormalor non-disjunctive, if s ≤ 1; positive, if n = 0; negative, if m = 0;
constraint, if s = 0; fact, if m = 0 andn = 0. The rule withs = n = m = 0 is the constantfalse. A logic
programP is callednormal(resp.positive, negative), if every rule inP is normal (resp. positive, negative).

We denote byLitP ⊆ Lit the literal baseof logic programP , that is, the set of all literals occurring in
P . Unless stated otherwise or clear from the context,Lit will be implicitly given byLitP . An interpretation
is a set of literalsX ⊆ Lit that contains no pair of complementary literals. A disjunctiona1 ∨ · · · ∨ as is
satisfied byX, denotedX |= a1 ∨ · · · ∨ as if ai ∈ X for somei with 1 ≤ i ≤ s. A rule r is satisfied byX,
denotedX |= r, if X |= head(r) wheneverbody+(r) ⊆ X andbody−(r) ∩X = ∅ hold. Furthermore,X
is a model ofP , denotedX |= P , if X |= r for every ruler ∈ P .

The semantics of a logic programP is defined in terms of itsanswer sets[Gelfond and Lifschitz,
1991] as follows. Given an interpretationX, the reduct of P on X is defined asPX = {head(r) ←
body+(r) | r ∈ P, body−(r) ∩X = ∅}. ThenX is ananswer setof P , if X is a minimal model ofPX . By
AS(P ) we denote the collection of all answer sets ofP .

A logic programP may have zero, one or multiple answer sets.P is consistent, if it has at least one
answer set. It is well-known that the answer sets of a logic programP are incomparable: for anyX andX ′

in AS(P ), X ⊆ X ′ impliesX = X ′.

Example 1 LetP be the logic program consisting the following rules:

a ∨ b ← not c
d ← a
d ← b

ThenP has two answer setsX1 = {a, d} andX2 = {b, d}. Obviously,X1 andX2 are incomparable.

Two logic programsP andP ′ areequivalent, denotedP ≡ P ′, if AS(P ) = AS(P ′), i.e., P andP ′

have the same answer sets.
By P |=s l andP |=c l we denote skeptical and credulous consequence of a literall from a logic

programP , respectively; that is,P |=s l iff l ∈ S for everyS ∈ AS(P ) andP |=c l iff l ∈ S for some
S ∈ AS(P ).

3 Forgetting in Logic Programming

In this section, we define what it means to forget about a literall in a logic programP . The idea is to obtain
a logic program which does not containl and is equivalent to the original logic program if we ignore the
existence of the literall. We believe that forgetting should go beyond syntactic removal of rules/literals and
be close to classical forgetting and answer set semantics (keeping its spirit)at the same time. Thus, the
definition of forgetting in this section is given in semantics terms, i.e., based on answer sets.
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3.1 Definition of Semantic Forgetting

In classical propositional logic, the result of forgettingforget(T, p) about a propositionp in a finite theory
T is conveniently defined asT (p/true) ∨ T (p/false), whereT (p/true) andT (p/false) are obtained
by taking the conjunction of all sentences inT and replacing all occurrences ofp with true andfalse,
respectively. This method cannot be directly generalized to logic programming, since there is no notion
of the “disjunction” of two logic programs. However, if we look at forgettingin from a model-theoretic
perspective, then we can obtain the models offorget(T, p) as follows: compute first all (2-valued) models of
T and then removep from each model if it containsp. The resulting collection of sets{M \ {p} |M |= T}
is exactly the set of all models offorget(T, p).

Similarly, given a consistent logic programP and a literall, we could naively define the result of
forgetting aboutl in P as a logic programP ′ whose answer sets are exactlyAS(P ) \ l = {X \ {l} | X ∈
AS(P )}. However, this notion of forgetting cannot guarantee the existence ofP ′ for even simple programs.
For example, considerP = {a ← . p ∨ q ←}. HereAS(P ) = {{a, p}, {a, q}} and thusAS(P ) \ p =
{{a}, {a, q}}. Since{a} ⊂ {a, q} and, as well-known, answer sets are incomparable under set inclusion,
AS(P ) \ p cannot be the set of answer sets of any logic program.

A solution to this problem isa suitable notion of minimal answer setsuch that the definition of answer
sets, minimality, and forgetting can be fruitfully combined. To this end, we call a setX ′ anl-subset of a set
X, denotedX ′ ⊆l X, if X ′ \ {l} ⊆ X \ {l}. Similarly, a setX ′ is a strictl-subset ofX, denotedX ′ ⊂l X,
if X ′ \ {l} ⊂ X \ {l}. Two setsX andX ′ of literals arel-equivalent, denotedX ∼l X ′, if X ′ ⊆l X and
X ⊆l X ′.

Definition 1 (l-Answer Set) Let P be a consistent logic program, letl be a literal inLitP , and letX ⊆
LitP be a set of literals.

1. For a collectionS of sets of literals,X ∈ S is l-minimal if there is noX ′ ∈ S such thatX ′ ⊂l X. By
minl(S) we denote the collection of alll-minimal elements inS.

2. An answer setX of logic programP is an l-answer setif X is l-minimal inAS(P ). ByAS l(P ) we
denote the set of alll-answer sets ofP .

For example,P = {a← . p∨ q ←} has two answer setsX = {a, p} andX ′ = {a, q}. X is ap-answer set
of P , butX ′ is not. This example shows that, for a logic programP and a literall, not every answer set is
anl-answer set.

The sets inAS l(P ) \ l = {X \ {l} | X ∈ AS l(P )} are incomparable, and so we can find a logic
program which has this collection as its answer sets. Note that to achieve incomparability, one could select
other answer sets than those which are minimal inAS(P ) \ l (e.g., the maximal ones). However, selecting
minimal answer sets is in line with the guiding principle of logic programming and nonmonotonic reasoning
to minimize positive information.

Note that in the above definition,P was assumed to be consistent (i.e.,AS(P ) 6= ∅). If a logic program
is inconsistent, the result of forgetting seems not to be clear, since the possibility of removing inconsistency
from the logic program might have to be considered. For example, a logic programP may have partial stable
models[Sacca and Zaniolo, 1991] while it is inconsistent under the answer set semantics (i.e. the stable
model semantics). Forgetting from inconsistent programs is an interesting issue, but we do not consider it
here. In the rest of this paper, we always assume thatP is a consistent logic program.

The following proposition collects some easy properties ofl-answer sets.
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Proposition 1 For every consistent programP and every literall in LitP , the following holds:

1. Everyl-answer setX of P is an answer set ofP .

2. For every answer setX of P , there exists anl-answer setX ′ of P such thatX ′ ⊆l X.

3. Every answer setX of P with l ∈ X is anl-answer set ofP .

4. If an answer setX of P is not anl-answer set ofP , thenl 6∈ X and there exists anl-answer setY of
P such thatl ∈ Y andY ⊂l X.

5. If l /∈ LitP , thenX is anl-answer set ofP iff X is an answer set ofP .

Having the notion of minimality about forgetting a literal, we are now in a position to define the result of
forgetting about a literal in a logic program.

Definition 2 (Semantic Forgetting) LetP be a consistent logic program andl be a literal. A logic program
P ′ represents the result offorgetting aboutl in P , if

1. BP ′ ⊆ BP \ {l}, i.e.,l does not occur inP ′, and

2. AS(P ′) = AS l(P ) \ l, i.e., for every setX ′ of literals such thatl /∈X ′, X ′ is an answer set ofP ′ iff
there exists anl-answer setX of P such thatX ′ ∼l X.

We useforget(P, l) as a generic notation for a logic program representing the result of forgetting aboutl in
P .

An important difference of the notion of forgetting here from existing approaches to updating and merging
logic programs, cf.[Alferes et al., 1998; Buccafurriet al., 1999; Eiteret al., 2002; Grantet al., 1993;
Waal and Gallagher, 1993], is that merelyl and possibly some other literals are removed. However, no new
symbols are introduced inP ′.

For a consistent logic programP , some programP ′ as in the above definition always exists (cf. Algo-
rithm 2 for details). However, different such programsP ′ exist. It follows from the definition that they are
all equivalent under answer set semantics.

Proposition 2 Let P be a consistent logic program and letl ∈ LitP be a literal. If P ′ and P ′′ are two
results for forgetting aboutl in P , thenP ′ andP ′′ are equivalent.

Before further properties of forgetting are explored in Section 3.2, let us look at some example programs.

Example 2 1. If P1 = {q ← not p}, then forget(P1, q) = ∅ and forget(P1, p) = {q ←}. Here,
forget(P1, p) is obtained fromP1 by removingnot p in the ruleq ← not p while forget(P1, q) is
obtained by removing the whole ruleq ← not p.

2. If P2 = {q ← not p. p← not q}, thenforget(P2, p) = ∅. The reason is thatP2 has two answer sets
{p} and{q} but only{p} is a p-answer set ofP2. Thusforget(P2, p) has the single answer set{}.
Similarly, forget(P2, q) = {}.
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3. ConsiderP3 = {q ← not p. p ←}, which has the single answer{p}. Thusforget(P3, p) = {}
rather than{q ←}. This is intuitive, because we are forgetting all impacts ofp on P3. In particular,
“forgetting aboutp” is different from “assumingnot p”.

From the above examples, one might guess that some programforget(P, p) can be obtained by simply
removing rules and/or literals with headp and/or positive body literalp, and by removingnot p in
the remaining rules. However, as the next example shows, this is not truein general.

4. LetP4 = {a ← not b. b ← not a. p ← not a. c ← not p}. According to[Zhanget al., 2005] ,
the result of weak forgetting aboutp in P4 is the programWForgetLP(P4, p) = {a ← not b. b ←
not a. c ←}, while the result of strong forgetting aboutp in P4 is the programSForgetLP(P4, p) =
{a ← not b. b ← not a}. Neither is fully intuitive:c depends ona (by means of double negation),
but in bothWForgetLP(P4, p) and SForgetLP(P4, p) any connection betweenc and a is lost. In
contrast,forget(P4, p) = {a← not b. b← not a. c← a} where the connection betweenc anda is
maintained via the rulec← a.

5. P5 = {p ∨ q ← not p. c ← q} has the single answer set{q, c}. Here,p is involved in unstratified
negation and must be false in every answer set. We obtainforget(P5, p) = {q ← . c ←}, which
intuitively results by pushing through the only possible value forp and simplifying the program.

6. LetP6 = {a ∨ p← not b. c← not p. b←}. This program has the single answer set{b, c}, and no
atom p is involved in cyclic negation. Forgetting aboutp in P6 yieldsforget(P6, p) = {c ← . b ←},
which again corresponds to a simplified version of the programP6 the results after pushing through
the value ofp; note that the first rule inP6 is never applicable.

We will discuss how to obtain a concrete programforget(P, l) in the next section.

3.2 Basic Properties of Forgetting

In this subsection, we present some further properties of forgetting. First, the number of answer sets can
never increase.

Proposition 3 Let P be a consistent logic program. Then, for every literall in LitP , it holds that
|AS(forget(P, l))| ≤ |AS(P )|.

This is a simple consequence of the fact that only some, but not all answersets ofP arel-answer sets.
Note that this property is compliant with the principle of closing the world, and eliminating possibilities in
favor of a default case.

The following proposition generalizes Proposition 2.

Proposition 4 LetP andP ′ be two consistent logic programs andl a literal in P . If P andP ′ are equiva-
lent, thenforget(P, l) andforget(P ′, l) are also equivalent.

However, forgetting here does not preserve some special equivalences of logic programs stronger than or-
dinary equivalence like strong equivalence[Lifschitz et al., 1999] or uniform equivalence[Eiter and Fink,
2003].

We say that forgettingpreservesan equivalence≡X on logic programs, if for every logic programsQ
andQ′ and for every literall, Q ≡X Q′ implies forget(Q, l) ≡X forget(Q′, l). HereX can be strong
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equivalence, uniform equivalence, or any other equivalence relation on the collection of (disjunctive) logic
programs.

An equivalence relation≡X for logic programs onLit is invariant under literal extensions, if the fol-
lowing holds: wheneverP andP ′ are programs such thatLitP ,LitP ′ ⊆ Lit andl /∈ Lit is a new literal,
thenP ≡X P ′ w.r.t. Lit iff P ≡X P ′ w.r.t. Lit ∪ {l}.

An equivalence≡X is strongerthan ordinary equivalence≡ if the following conditions are satisfied:

1. For any programsP andP ′, P ≡X P ′ impliesP ≡ P ′.

2. There exist two programsP andP ′ such thatP ≡ P ′ andP 6≡X P ′.

Proposition 5 Let≡X be a equivalence relation on a collection of logic programs onLit that is stronger
than ordinary equivalence and invariant under literal extensions. Thenforgetting does not preserve≡X .

Both strong and uniform equivalence[Lifschitz et al., 2001; Eiter and Fink, 2003] are clearly stronger
than ordinary equivalence, and clearly also invariant under literal extensions. Hence, none of them is pre-
served by the definition of forgetting introduced. This, however, is a consequence of the freedom to ar-
bitrarily instantiate the generic programforget(P, l). For specific realizations offorget(P, l), both strong
and uniform equivalence may be preserved under forgetting; for example, the realizationsforget1(P, l) and
forget2(P, l) in Section 4 have this property. A suitable notion of forgetting which preserves strong equiva-
lence is interesting for some applications, but beyond the scope of this paper.

Proposition 6 For every consistent programP and every literall in LitP , the following holds:

1. AS(forget(P, l)) = {X \ {l} | X ∈ AS l(P )}.

2. If X ∈ AS l(P ) with l 6∈ X, thenX ∈ AS(forget(P, l)).

3. For everyX ∈ AS(P ) such thatl ∈ X, X \ {l} ∈ AS(forget(P, l)).

4. For everyX ′ ∈ AS(forget(P, l)), eitherX ′ or X ′ ∪ {l} is inAS(P ).

5. For everyX ∈ AS(P ), there existsX ′ ∈ AS(forget(P, l)) such thatX ′ ⊆ X.

6. If l does not appear inP , thenforget(P, l) ≡ P .

The next proposition says that, after forgetting about a literal in a logic program, the resulting program
is equivalent to the original one under skeptical reasoning, but weaker under credulous reasoning (i.e.,
inferences are lost).

Proposition 7 LetP be a consistent logic program and letl, l′ be literals inLitP such thatl′ 6= l. Then,

1. P |=s l′ iff forget(P, l) |=s l′, and

2. P |=c l′ if forget(P, l) |=c l′.

The above definition of forgetting about a single literall in a logic programP can be straightforwardly
extended to a setF of literals. We can similarly defineX1 ⊆F X2, X1 ∼F X2, andF -answer sets of
a logic program, and the properties of forgetting about a single literal can be generalized to this setting.
Furthermore, the result of forgetting about a setF can be obtained by forgetting the literals inF one by one.
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Proposition 8 Let P be a consistent logic program and letF = {l1, . . . , lm} be a set of literals. Then
forget(P, F ) ≡ forget(forget(forget(P, l1), l2), . . .), lm).

Notice that the particular indexing of the literals inF does not matter. This result, which allows to reduce
forgetting to an base operation, is quite useful, but its proof (which is given in Appendix) requires some
technicalities.

We remark that for removing a propositionp entirely from a programP , it is suggestive to remove
both the literalsp and¬p in P (i.e., all positive and negative information aboutp). This can be easily
accomplished byforget(P, {p,¬p}).

Let us consider a simple logic program which contains a pair of complementaryliterals.

Example 3 LetP be the following logic program:

flies(Tweety) ← pigeon(Tweety).
¬flies(Tweety) ← penguin(Tweety).

pigeon(Tweety) ∨ penguin(Tweety) ← .

If we forget about only one offlies and¬flies, then the complementary literal must still be in the result of
forgetting. For instance, the programforget(P,flies) still contains¬flies:

¬flies(Tweety) ← not penguin(Tweety).
pigeon(Tweety) ∨ penguin(Tweety) ← .

However,forget(forget(P,flies),¬flies) and forget(forget(P,¬flies), f lies) are by Proposition 8 equiva-
lent and amount to

pigeon(Tweety) ∨ penguin(Tweety) ← .

3.3 Relation to Classical Forgetting

We now consider the relationship between classical forgettingforget(T, p) and logic programming for-
getting forget(P, p). Besides the stable and the answer set semantics[Gelfond and Lifschitz, 1988b;
Gelfond and Lifschitz, 1991], another influential semantics for nonmonotonic logic programming is the
Clarke’s completion semantics[Clark, 1978], which defines the semantics of logic programs in terms of
classical logic. It is well-known that answer set and completion semantics are different in general. For ex-
ample, the logic programP = {p← q; q ← p} has a unique answer set{}. However, Clarke’s completion
for P gives{p ≡ q}, which has two models{} and{p, q}. Lin and Zhao[2002; 2004] showed that the
answer set semantics for a logic program can be characterized by a simpleextension of Clarke’s program
completion by adding so calledloop formulas. They consider normal logic programs that may contain con-
straints. This approach allows to compute the answer sets of a normal logic program using a classical SAT
solver. Lee and Lifschitz[2003] extended this characterization to the class of disjunctive logic programs.
For simplicity, we assume in this subsection that programs have no strong negation, which can be compiled
away in the standard way as usual.

For every logic programP , its completioncomp(P ) is the set of propositional formulas containing

• body(r)→ head(r) for every ruler in P ,

• and the formulaa→
∨

r∈P,a∈head(r)(body(r) ∧
∧

p∈(head(r)−{a}) ¬p), for every atoma.
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Herehead(r)−L is, for any the set of atomsL, the head set of atoms that occur inhead(r) but not inL, and
“not ” and comma “,” in rule bodies are translated into the negation “¬” and conjunction “∧” in classical
propositional logic, respectively. An empty headhead(r) is translated into⊥.

Given a logic programP , its positive dependency graphGP is the directed graph whose vertices are
the atoms occurring inP and where there is an edge fromp to q iff there exists some ruler in P such that
p ∈ head(r) andq ∈ body+(r). A nonempty setL = {p1, . . . , pk} of atoms is aloop of P , if for every
distinctpi, pj ∈ L there exists a path of nonzero length frompi to pj in GP such that all vertices in this path
belong toL. Theconjunctive loop formulafor L is

CLF (L) = (p1 ∧ · · · ∧ pk)→ (
∨

φ∈R(L) φ)

whereR(L) is the set of formulasbody(r)∧
∧

p∈head(r)−L ¬p for all rulesr ∈ P with head(r)∩L 6= ∅ and

body+(r) ∩ L = ∅.
For example,L = {p, q} is a loop of the logic programP = {r ∨ p ← q; q ← p}. In this exam-

ple, R(L) = {} and thus the right hand side ofCLF (L) is an empty disjunction. ThusCLF (L) is the
propositional formula(p ∧ q)→ ⊥.

Let lcomp(P ) = comp(P ) ∪ CLF (P ), whereCLF (P ) is the set of all loop formulas. A fundamental
result established by Lin and Zhao[2002] shows that the generalized completionlcomp(P ) exactly char-
acterizes the answer set semantics. This was extended to disjunctive logic programs by Lee and Lifschitz
[2003] as follows.

Theorem 1 ([Lee and Lifschitz, 2003]) LetP be a (disjunctive) logic program and letX ⊆ LitP be a set
of atoms. ThenX is an answer set ofP iff X is a model oflcomp(P ).

SinceL = {p, q} is the only loop ofP = {r ∨ p ← q; q ← p}, we haveCLF (P ) = {(p ∧ q) → ⊥}.
Since we havecomp(P ) = {r → q ∧ ¬q, p→ q ∧ ¬r, q → p}, we obtain (after some simplifications) that
lcomp(P ) = {p ≡ q, r → ⊥, p → ¬r, q → r, (p ∧ q) → ⊥}. This theory has exactly one model, namely
{}, which is the unique answer set ofP .

It is easy to see thatlcomp(P ) = comp(P ) if P is negative. Hence,

Corollary 2 Let Q be a negative program (without strong negation) and letX ⊆ LitP be a set of literals.
ThenX is an answer set ofQ if and only ifX is a model ofcomp(Q).

This corollary is a special case of some previous results in[Ben-Eliyahu and Dechter, 1994; Erdem and
Lifschitz, 2003].

Since for a logic programP and an atomp, the two classical theorieslcomp(forget(P, p)) and
forget(lcomp(P ), p) can be formed, where in the former logic programming forgetting is applied toP
and in the latter classical forgetting to the theorylcomp(P ), the natural question is how these two theories
are related. Intuitively, the models of the first theory are all incomparable,while the models of the second
theory may be not.

For example, letP = {p ← not q. q ← not p}. Thenlcomp(forget(P, p)) = {¬q}, which has the
single model{}, while forget(lcomp(P ), p) = {(T ↔ ¬q) ∨ (F ↔ ¬q)} ≡ T, which has two comparable
models{q} and∅. However, theminimal modelsof forget(lcomp(P ), p) are the same as themodelsof
lcomp(forget(P, p)). In fact, this holds in general.

Theorem 3 LetP be a consistent (disjunctive) logic program and letp ∈ LitP be an atom. ThenX ⊆ LitP

is an answer set offorget(P, p) iff X is a minimal model offorget(lcomp(P ), p). That is,

AS(forget(P, p)) = MMod(forget(lcomp(P ), p)),
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P
forget(.,p)

//

lcomp(.)
��

forget(P, p)

lcomp(.)
��

lcomp(P )
forget

min
(.,p)

// lcomp(forget(P, p))

Figure 1: Commuting logic program completion and forgetting

whereMMod(T ) denotes the set of all minimal models (w.r.t.⊆) of a theoryT in classical logic.

The proof of this theorem is given in the Appendix. This result means thatforget(P, p) can be characterized
by forgetting in classical logic. If we useforgetmin(T, p) to denote a set of classical formulas whose models
are the minimal models of the classical forgettingforget(T, p), then the equation in Theorem 3 can be
reformulated as

lcomp(forget(P, p)) ≡ forgetmin(lcomp(P ), p),

where≡ denotes classical equivalence. This result is graphically representedin the commutative diagram
in Figure 1. It is quite useful, since it implies that one can “bypass” the use of a logic programming engine
entirely and represent the answer sets offorget(P, p) in the frameworks of circumscription and closed world
reasoning[McCarthy, 1980; Lifschitz, 1994; Gelfond and Lifschitz, 1988a]. This can be done by applying
circumscription tolcomp(P ), which we explain in more detail.

In circumscription, minimality is understood as the impossibility of making, in the contextof predicate
logic, the extent of the predicatesp1, . . . , pk which are circumscribed in a theoryT smaller without changing
the extent of the other predicates. Furthermore, some predicatesz1, . . . , zl among them may be allowed to
vary in the process of minimizingp1, . . . , pk, which is needed in many applications. As for our concern of
propositional logic, allpi andzj are atoms andCirc(T ; ~p, ~z) is a propositional formula with quantifiers on
atoms which semantically captures the circumscription of a finite theoryT with respect to~p = (p1, . . . , pk)
and~z = (z1, . . . , zl). As well known,Circ(T ; ~p, ~z) is logically equivalent to Gelfond et al.’s extended
closed world assumptionECWA(T ; ~p, ~z) [Gelfond and Lifschitz, 1988a], which augmentsT by additional
formulas.

Let us writeCirc(T, z) respectivelyECWA(T, z) for the case where~z contains a single atomz and~p
all other atoms. Then,M is a model ofCirc(T ; z) respectivelyECWA(T ; z), exactly ifM is az-minimal
model ofT in the sense thatM ′ ⊆z M impliesM ′ ∼z M for every modelM ′ of T . We have the following
result.

Theorem 4 Let P be a consistent (disjunctive) logic program and letp ∈ LitP be an atom. ThenX ⊆
LitP \{p} is an answer set offorget(P, p) if and only if eitherX or X∪{p} is a model ofCirc(lcomp(P ), p)
(resp.,ECWA(lcomp(P ), p)).

(A proof is given in the appendix.) By this rather intuitive result, we may exploit also circumscription
engines for reasoning fromforget(P, p), into which we feed the loop completionlcomp(P ) of P . Note that
the latter is exploited by some ASP solvers (viz. ASSAT, Cmodels) as a steppingstone to compute answer
sets, and that classical forgetting ofp from lcomp(P ) can be performed efficiently.
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3.4 Forgetting vs. Independence

As it is argued in[Langet al., 2003], the notion ofindependenceis important in automated deduction, query
answering, and belief revision. For example, an intelligent agent must possess the ability of determining
and discarding irrelevant information efficiently. When reasoning is involved, the issue of independence (or
irrelevance) becomes more delicate and complex. The idea of forgetting about independent literals can be
useful in improving reasoning procedures.

Informally, if a literal l is independent of a logic programP , then the answer set semantics ofP should
be unchanged if we forget aboutl from P . So, it is natural and reasonable to formally define the notion of
semantic independenceas follows.

Definition 3 Let P be a consistent logic program. A literall ∈ LitP is semantically independentof P , if
AS(forget(P, l)) = AS(P ).

Obviously, a literall which is semantically independent ofP can be safely “forgotten.”

Example 4 Consider the programP = {p ← not q. s ← s}. Then,forget(P, q) = {p ← . s ← s} and
forget(P, s) = {p← not q}. Clearly,P , forget(P, q), andforget(P, s) all have the single answer set{p}.
Hence, boths andq are semantically independent ofP .

The following proposition provides an intuitive characterization for semanticindependence.

Proposition 9 LetP be a logic program. A literall ∈ LitP is semantically independent ofP if and only if
l 6∈ S for every answer setS of P .

This result, which is straightforward from Definition 2, is intuitive: a literal is independent ofP if and only
l is false with respect to every answer set ofP , that is,P 6|=c l. In some cases, semantic independence of
literals can be verified syntactically, as shown by the next result. LetT

∗ be the program transformations
introduced in Section 4.3.1 and letT

∗(P ) be the respective canonical form of programP .

Proposition 10 LetP be a logic program and letl ∈ LitP be a literal. SupposeP ′ is any negative program
obtained fromP by transformations fromT∗ such thatl does not occur inP ′. Thenl is semantically
independent ofP . Furthermore, such a programP ′ exists iffl does not occur inT∗(P ).

The converse of Proposition 10 is not true in general. For example, consider the programP = {p ←
not q. q ← not p. q ← p.}. Thenp is semantically independent ofP . On the other hand,p occurs in
every programP ′ resulting fromP by (repeated) transformations inT∗, and in particular in the canonical
form T

∗(P ) = {p ← not q. q ← not p. q ← not q.}. It remains as an interesting issue whether there is
a set of program transformations that is strong enough to syntactically characterize the notion of semantic
independence of literals.

4 Computation of Forgetting

As we have noted,forget(P, l) exists for any consistent logic programP and literall. In this section, we
discuss some issues on computing the result of forgetting.
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Algorithm forget
1
(P, l)

Input: Consistent (disjunctive) logic programP and a literall in P .

Output: A normal logic program representingforget(P, l).

Method:

Step 1.ComputeAS(P ) using an ASP solver (e.g., DLV or gnT).

Step 2.Removel from every set inAS(P ) and denote the resulting collection asA′.

Step 3.ObtainA′′ by removing all non-minimal sets fromA′.

Step 4.ConstructP ′ whose answer sets are exactlyA′′ = {A1, ..., Am}:

- For eachAi, let Pi = {l′ ← not Āi | l
′ ∈ Ai}, whereĀi = LitP \Ai.

- Let P ′ = P1 ∪ · · · ∪ Pn.

Step 5.OutputP ′ asforget(P, l).

Figure 2: Algorithmforget1(P, l)

4.1 Naive Algorithm

By Definition 2, we can easily obtain a naive algorithm for computingforget(P, l) using an ASP solver for
logic programs, like DLV[Leoneet al., 2006] or GnT[Janhunenet al., 2000], which is shown in Figure 2.

It is well-known that any collectionS of sets of consistent literals which are pairwise incomparable, can
be represented by some logic programP such thatAS(P ) = S. In fact, suchP can be constructed fromS
in polynomial time.

Algorithm forget1(P, l) is sound and complete w.r.t. forgetting as in Definition 2.

Theorem 5 Given a consistent (disjunctive) logic programP and a literall, Algorithmforget1(P, l) outputs
a correct representation offorget(P, l).

The above Step 2 may return collect many answer sets inA′ that are not minimal; in fact, it is easy to find
examples whereA′ contains exponentially many sets but only few of them are minimal. For example, let
P = {p∨q ← . ai∨bi ← q, 1 ≤ i ≤ n}. ThenP has the singlep-minimal answer set{p}, but exponentially
many other answer sets{q, l1, . . . , ln}, whereli is eitherai or bi, which all lead to non-minimal sets inA′.

To avoid this problem, we present an improved version of Algorithmforget1(P, l) in the next subsection.

4.2 Improved Algorithm

An improved version of Algorithmforget(P, l), which is shown in Figure 3, pushes the task of minimality
checking for candidatel-answer sets ofP into constraint satisfiability of an augmented program. It exlpoits
in this way the constraint solving capabilities offered by some ASP solvers.

Since the answer sets ofP ′ are exactlyA, Algorithm forget2(P, l) is sound and complete w.r.t. semantic
forgetting.

Theorem 6 For every consistent (disjunctive) logic programP and a literall, Algorithmforget2(P, l) out-
puts a correct representation offorget(P, l).

The advantage of Algorithmforget2(P, L) is that the strategy in the Steps 1 and 2 makesl-minimization
obsolete and thus no blowup into a large intermediate result with respect to the number of answer sets as
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Algorithm forget
2
(P, l)

Input: Consistent (disjunctive) logic programP and a literall in P .

Output: A normal logic program representingforget(P, l).

Method:

Step 1.Let P1 = P ∪ { ← not l}.

- Compute the answer sets ofP1 (e.g., using DLV or gnT).

- Removel from each obtained answer set. LetA1 be the resulting collection of sets. (Each set inA1

is an answer set of forgetting aboutl from P .)

Step 2.Let P2 = P ∪ { ← l } ∪ { ← a1, . . . , ak | {a1, . . . , ak} ∈ A1 }.

- Compute the answer sets ofP2 (e.g., using DLV or gnT), and letA2 be the result.

- Set thenA = A1 ∪ A2.

Step 3.ConstructP ′ whose answer sets are exactlyA = {A1, ..., Am}:

- For eachAi, let Pi = {l′ ← not Āi | l
′ ∈ Ai}, whereĀi = LitP \Ai.

- Let P ′ = P1 ∪ · · · ∪ Pn.

Step 4.OutputP ′ asforget(P, l).

Figure 3: Improvement to Algorithmforget1(P, l)

in Algorithm forget1(P, l) can happen. Still, however, the resulting programP ′ may be large compared
to a small program representingforget(P, l), which might be constructed fromP by other means. In the
next subsection, we discuss how to construct a representation offorget(P, l) in a more syntactic manner by
program transformations.

However, the “semantic” constructions byforget1(P, l) andforget2(P, l) also have an advantage: they
clearly preserve the equivalence of logic programs under any notion ofequivalence≡X between logic pro-
grams that is stronger than ordinary equivalence, and thus in particular under strong and weak equivalence.
This is a simple consequence of the fact that for all programsP which are ordinarily equivalent the output
of forget1(P, l) is the same, and similarly forforget2(P, l).

4.3 Transformation-Based Algorithm

The algorithmforget1(P, l) andforget2(P, l) are based on the semantic view of forgetting, and do not aim
at computing the result of forgetting in a more syntax-oriented manner, by modifying the rules inP . In
this subsection, we present an algorithmforget3(P, l) of this kind that is based on program transformations.
This algorithm outputs, differently fromforget1(P, l) andforget2(P, l), not always ordinary logic programs
but sometime logic programs in which some literals are under double negation as failure. They inherit their
semantics from the more general class of nested logic programs[Lifschitz et al., 1999].

Before presenting algorithmforget3(P, l), we need further preliminaries on program transformations
and programs with double negation as failure.
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4.3.1 Basic program transformations

We start with recalling program transformations that were discussed in[Brass and Dix, 1999; Wang and
Zhou, 2005]. More precisely, we consider the following collectionT

∗ of program transformations:

Elimination of Tautologies P ′ is obtained fromP by the elimination of tautologies if there is a ruler:
head(r)← body+(r),not body−(r) in P such thathead(r) ∩ body+(r) 6= ∅ andP ′ = P \ {r}.

Example 5 LetP1 consist of the following rules:

r1 : p ∨ p1 ← not p1

r2 : p ← p,not q1

r3 : p ← p1,not q1

r4 : p1 ← not q,not p2

r5 : q1 ← p2,not q
r6 : p ∨ q1 ←
r7 : p1 ∨ p3 ←
r8 : p3 ← p,not p.

Thenr2 is a tautology and thusP2 = {r1, r3, r4, r5, r6, r7, r8} can be obtained fromP by the elimination
of tautologies.

Elimination of Head Redundancy P ′ is obtained fromP by the elimination of head redundancy if there is
a ruler in P such that łiterall is in bothhead(r) andbody−(r) andP ′ = P \{r}∪{(head(r)− l)←
body(r)}. Herehead(r)− l is the disjunction obtained by removingl from head(r).

By the elimination of head redundancy,r1 is simplified intor′1 : p ← not p1 and thusP2 is transformed
into P3 = {r′1, r3, r4, r5, r6, r7, r8}.

The above two transformations guarantee that those rules whose head and body have common literals
are removed.

Positive Reduction P ′ is obtained fromP by positive reduction if there is a ruler: head(r) ←
body+(r),not body−(r) in P andc ∈ body−(r) such thatc 6∈ head(P ) andP ′ is obtained from
P by removingnot c from r. That is,P ′ = P \{r}∪{head(r)← body+(r),not (body−(r)\{c})}.
Herehead(P ) = ∪r∈P head(r).

P4 = {r′1, r3, r
′
4, r

′
5, r6, r7, r8} is obtained fromP3 = {r′1, r3, r4, r5, r6, r7, r8} by the positive reduc-

tion, wherer′4 is the rulep1 ← andr′5 is q1 ← p2.

Negative Reduction P ′ is obtained fromP by negative reduction if there are two rulesr: head(r) ←
body+(r),not body−(r) andr′: head(r′)← in P such thathead(r′) ⊆ body−(r) andP ′ = P \ {r}.

In our example,P5 = {r3, r
′
4, r

′
5, r6, r7, r8} is obtained fromP4 by negative reduction, wherer = r′1

andr′ = r′4.
For defining the next program transformation, we need the notion ofimplicationsfor rules defined in

[Brass and Dix, 1999]. We sayr′ is an implication ofr if head(r) ⊆ head(r′), body(r) ⊆ body(r′) and at
least one of the inclusions is strict.

15



Elimination of Implications P ′ is obtained fromP by the elimination of implications if there are two
distinct rulesr andr′ of P such thatr′ is an implication ofr andP ′ = P \ {r′}.

In the above example,r7 is an implication ofr′4 and thusP6 = {r3, r
′
4, r

′
5, r6, r8} is obtained fromP5

by the elimination of implications.

Elimination of Contradictions P ′ is obtained fromP by elimination of contradictions if there is a ruler
in P such thatbody+(r) ∩ body−(r) 6= ∅ andP ′ = P \ {r}.

By the elimination of contradictions,r8 can be removed fromP6 and thus we obtainP7 =
{r3, r

′
4, r

′
5, r6}.

Unfolding P ′ is obtained fromP by unfolding if there is a ruler with body+(r) 6= ∅ such that

P ′ = P \ {r}

∪ { H(r, r′, b)← B(r, r′, b) | b ∈ body+(r), r′ ∈ P, b ∈ head(r′),

H(r, r′, b) = head(r) ∪ (head(r′)− {b}),

B(r, r′) = body+(r) \ {b}),not body−(r), body(r′) }.

P7 is further transformed intoP8 = {r′3, r
′
4, r6}wherer′3 : p← not q1 is obtained fromP7 by unfolding

r3 andr′4, and in particular,r′5 is removed as a special case of the unfolding since there is no rule inP7 whose
head can be unfolded with the positive body literalp2 of r′5.

Note that the above example is only used to illustrate the definitions of program transformations. In
practice, one could make the process of simplifyingP1 more efficient by choosing different transformations
and different orderings.

As shown by[Brass and Dix, 1997], the program transformations fromT∗ considered there, i.e., all
except the elimination of head redundancy, preserve the answer set semantics. The same also holds for the
latter transformation.

Proposition 11 Let P be a disjunctive program. IfP ′ is obtained by the elimination of head redundancy
fromP , thenP andP ′ have the same answer sets.

Furthermore, by[Brass and Dix, 1999] every disjunctive program can be converted with the transfor-
mations inT

∗ considered there into an equivalent negative disjunctive program. Moreover, by using the
elimination of tautologies and the elimination of head redundancy (which preserves negative rules), every
literal that occurs both in the head and the body of a rule can be removed. Thus, we have the following
result.

Lemma 1 Every logic programP can be transformed into an equivalent negative programN via T
∗ such

that every ruler in N fulfills head(r) ∩ body(r) = ∅.

In fact, transformations can be applied in arbitrary manner and no backtracking is necessary to construct
such a negative programN (i.e., choices for transformations are “don’t care”). In addition, we introduce
only basic program transformations here. One can introduce some other program transformations, such
as the elimination of s-implications in[Wang and Zhou, 2005], to further simplify the negative program
obtained from basic transformations.
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4.3.2 Logic programs with double negation

A disjunctive logic program with double negation as failure(DDLP) is a finite set of rulesr of the form

a1 ∨ · · · ∨ as ← b1, . . . , bm,not c1, . . . ,not cn,not not d1, . . . ,not not dt (2)

wheres, m, n, t ≥ 0 and allai, bj , ck, anddl are from a setLit of classical literals; as above, we assume
that allai, and similarly allbj , all ck, and alldl, are pairwise distinct. (Note that form (1) results fort = 0.)
The definition ofhead(r), body+(r), andbody−(r) is analogous to ordinary rules (1), andbody−−(r) =
{d1, . . . , dt}. Thus,r can be denotedhead(r) ← body+(r),not body−(r),not not body−−(r), where
not not body−−(r) = {not not l | l ∈ body−−(r)}.

Every DDLPP is a nested logic program[Lifschitz et al., 1999], and inherits answer set semantics
from such programs. Formally, thereductof P w.r.t. an interpretationX is defined asPX = {head(r) ←
body+(r) | r ∈ P, body−(r) ∩ X = ∅, body−−(r) ⊆ X}. As usual,X is ananswer setof P iff X is a
minimal model ofPX .

Different from ordinary logic programs, the answer sets of DDLP may becomparable. For example,
the DDLPP = {p ← not not p} has the two answer sets∅ and{p}. For our purposes, we will use those
answer sets ofP which are minimal.

Clearly, all answer sets ofP are minimal iff they are all incomparable, and the latter is equivalent to the
fact thatP can be rewritten to an ordinary logic program. While this is difficult and expensive to check in
general, there is an attractive syntactic class for which a simple rewriting exists.

Similar as for logic programs with default negation in rule heads[Inoue and Sakama, 1998], double
negations can be safely eliminated from a DDLP without changing its semantics,if there is no cycle through
positive and double negated dependencies.

Definition 4 A DDLPP is N-acyclic, if there is a level mappingL : LitP → {0, 1, . . .} of the literals inP
to the non-negative integers such that for every ruler in P , the following two conditions hold:

(i) L(l) ≥ L(l′) for all l ∈ head(r) andl′ ∈ body+(r).

(ii) L(l) > L(l′) for all l ∈ head(r) andl′ ∈ body−−(r).

Note that there are no conditionsL(l) > L(l′), for all l ∈ head(r) andl′ ∈ body−(r), andL(l) = L(l′),
for all literalsl, l′ ∈ head(r) as in the familiar definition of stratified logic programs.

Given a DDLPP , let T (P ) be the logic program obtained fromP by canceling every double negation
not not in it. For example, ifP0 = {p ← q,not q′,not not q′′}, thenT (P0) = {p ← q,not q′, q′′}. We
have the following result.

Theorem 7 For every N-acyclic DDLPP , it holds thatAS(P ) = AS(T (P )).

(See Appendix for the proof.) Note that since every ordinary logic program is trivially N-acyclic, we can
view N-acyclic DDPs as a syntactic extension of ordinary logic programs. The fact that N-acyclic DDLPs
can be easily cast to ordinary logic programs will be used for transformation-based forgetting.

4.3.3 The algorithm

We are now in a position to present a syntax-based algorithm for computing forgetting in a logic program.
The algorithmforget3(P, l), which is shown in Figure 4, first translates the input programP into a negative
programN (Step 1) and then separatesl from head disjunction (Step 2). After that,l is eliminated from rule
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Algorithm forget
3
(P, l)

Input: Consistent (disjunctive) logic programP and a literall in P .

Output: DDLP logic programN ′ whose minimal answer sets areAS(forget(P, l)).

Method:

Step 1.Apply program transformations inT∗ onP to obtain a negative programN0.

Step 2.Separatel from head disjunction via semi-shifting:

- Replace each ruler ∈ N0 such thathead(r) = l ∨ l1 ∨ · · · ∨ lk, wherek ≥ 1, by the two rules
l← not l1, . . . ,not lk, body(r) andl1 ∨ · · · ∨ lk ← not l, body(r).

Let N be the resulting logic program.

Step 3.Suppose thatr1, . . . , rn are the rules inN with headl, whererj : l ← not lj1, ..., not ljmj
and

mj ≥ 0 for 1 ≤ j ≤ n. Distinguish three cases:

3.1 If n = 0, then obtain the programQ by removing inN all literalsnot l.

3.2 If n > 0 andmj = 0 for some1 ≤ j ≤ n (i.e., l ← is a rule inN ), then obtain the programQ by
removing fromN all rules whose bodies containnot l.

3.3 If n > 0 andmj > 0 for all 1 ≤ j ≤ n, let D1, . . . ,Ds be all possible conjunctions of form
not not l1k1

, · · · ,not not lnkn
where0 ≤ k1 ≤ mj , 1 ≤ j ≤ n.

Obtain the programQ by replacing inN eachnot l by all Di (one at a time).

Step 4.Remove all rules withl in the head fromQ and output the resulting programN ′.

Figure 4: Syntax-based algorithm to compute forgetting

bodies (Step 3), and finally from rule heads (Step 4). The resulting output program is, in general, a logic
program with double negation as failure.

Example 6 ConsiderP4 = {c ← not q. p ← not q. q ← not p}. Then, in Step 1 we haveN0 = P4

sinceP4 is already negative, and in Step 2N = P4 sinceP4 is normal. In Step 3, we haven = 1 andr1

= p ← not q. Thus, case three applies and we haveD1 = not not q; we obtainQ = {c ← not q. p ←
not q. q ← not not q}. In Step 4, the programN ′ = {c ← not q. q ← not not q} is output. This
program has the answer sets{c} and{q}, which are both minimal. They are the same as the answer sets of
forget(P4, p).

Note that Algorithm 1 in[Wanget al., 2005] outputs on the input ofP4 andp the programN ′ = {c ←
not q. q ← q}, which has the single answer set{c}. However, the semantic result of forgetting aboutp
in P4, as defined[Wanget al., 2005] and in this paper, has another answer set, viz.{q}. This shows that
Algorithm 1 in [Wanget al., 2005] is incomplete, i.e., outputs in general a logic program that represents
only a subset of all answer sets after forgetting.

Several remarks on Algorithmforget3(P, l) are in order. (1) As formulated here, the algorithm is stated
in a very general form. A number of refinements and improvements can be made in order to make it more
efficient and the result more compact. For example, in Step 1 some program transformations could be
omitted for special programs and various heuristics could also be employed.In Step 3, only thoseDi need
to be considered which, after removal of duplicate literals, are not properly contained in some otherDj . To
compute them, one can use efficient hypergraph transversal algorithms (see[Eiteret al., 2007]).
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(2) In the construction ofDi, not not lij cannot be replaced withlij (even for a normal logic program).
As shown by Example 6, the resulting output program{c ← not q. q ← q} would only represent a
subset ofAS l(P ), and thus would be incorrect. The use of double negation as failure, which remedies this
problem, seems to be intuitive. It remains as an interesting issue whether this can be avoided in a similar
transformation based algorithm.

(3) The running time of algorithmforget3(P, l) is worst case exponential, and the output program may
be exponentially large. As follows from complexity considerations in Section 5, there is no ordinary or
nested logic programP ′ representingforget(P, l) which can be constructed in polynomial time, even if
auxiliary literals might be used which are projected from the answer sets ofP ′.

(4) In essence, algorithmforget3(P, l) improves the corresponding Algorithm 1 in[Wanget al., 2005]
in at least two ways: it works for the more expressive class of disjunctive logic programs, and importantly,
its output correctly represents the result of forgetting. This is shown formally by the following result.

Theorem 8 LetP be a consistent disjunctive logic program and letl ∈ LitP be a literal. Thenforget3(P, l)
correctly representsforget(P, l), i.e.,X is an answer set offorget(P, l) iff X is a minimal answer set ofN ′.

(For a proof, see the Appendix.) While the output program offorget3(P, l) generally contains double nega-
tion as failure and its minimal answer sets have to be considered, Theorem 7 provides a simple condition for
transforming the output of Algorithmforget3(P, l) into an ordinary logic program in some cases.

Proposition 12 Let P be a consistent logic program, letl ∈ LitP be a literal, and letN ′ be the output of
Algorithm forget3(P, l). If N ′ is N-acyclic, thenAS l(P ) = AS(T (P ′)), i.e., the ordinary logic program
T (P ′) correctly representsforget(P, l).

For arbitrary inputs, it is not clear whether the output offorget3(P, l) is anN -acyclic program. We note
here a relevant subclass which has this property, given by a simple syntactic condition that can be efficiently
recognized.

Recall that the standard dependency graph of a programP , denotedDGP , hasLitP as vertices and a
positive edge from literall to literal l′ if l ∈ head(r) andl′ ∈ body+(r) ∪ (head(r) \ {l}) for some rule
r ∈ P and a negative edge froml to l′ if l ∈ head(r) andl′ ∈ body−(r) for some ruler ∈ P . A (directed)
cycle in the graphDGP is negative, if it contains at least one negative edge.

Proposition 13 Let P be a consistent normal logic program and letl ∈ LitP be a literal. If no negative
cycle ofDGP containsl, thenforget3(P, l) outputs anN -acyclic program.

In Example 2, forl = p the programsP1, P3, andP4 have this property (as well asP6 after removal
of the redundant disjunctive rule). Hence, the outputs of the respective callsforget3(Pi, p) can be cast to
ordinary logic programs.

Unfortunately, the extension of Proposition 13 from normal to disjunctive logic programs fails, even for
the simple case whereP = {p ∨ q ← . } and l = p. However, it is possible to single out fragments for
which this is possible, which we leave for future work.

Computing a representation offorget(P, l) can be refined in different directions. One is to localize the
computation, such that only a relevant part of the programP is subject to modification when forgetting a
literal l, while the rest ofP remains untouched. This is, for example, easy ifP is a normal logic program;
in that case, merely the value ofl in the single answer set ofP has to be plugged in for all occurrences ofl
in P and and the resulting program be simplified.
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Another case is ifP splits into separate componentsP1 ∪ · · · ∪Pn such that the answer sets ofP can be
obtained by combining the local answer sets of eachPi.

To this end, we call a literall′ in a programP unaffectedby the forgetting of literall, if there is no path
betweenl andl′ in the undirected version of the dependency graphDGP . SupposeU(P, l) is the set of all
rules inP that only involve such literalsl′. Then the following easy property holds.

Proposition 14 For every (consistent) programP and literal l, it holds that forget(P, l) ≡ U(P ) ∪
forget(P \ U(P ), l).

This property is in line withN -acyclicity: disconnected components cannot destroy theN -acyclicity
of the (rewritten) program. Furthermore, it can be combined with Proposition13 to enlarge the classes of
programsP for which forget(P, l) is representable by an ordinary logic program.

Note that Proposition 14 is independent of the concrete syntactic form offorget(P, l); it may well be
generalized for specific such forms and/or classes of programs. For example, ifP can be split into programs
P1 andP2 such thatl occurs only inP1, programP2 has a single answer setS (e.g. if P2 is normal and
stratified), and no head of a rule inP1 occurs inP2, then forget3(P, l) ≡ forget3(P1 ∪ {l

′ ← . | l′ ∈
S}, l) ∪ P2. A detailed study of this issue remains for future work.

5 Computational Complexity

In this section, we address the computational complexity of forgetting for different classes of logic programs.
Our main complexity results for forgetting are compactly summarized in Table 1. They show that for
general logic programs, (1) model checking under forgetting isΠp

2-complete; (2) credulous reasoning under
forgetting isΣp

3-complete; and (3) skeptical reasoning under forgetting isΠp
2-complete.

Intuitively, this complexity is explained by two respectively three intermingled sources of complexity
(i)–(iii): For problem (1), given an answer setS of a programP and a literall, (i) the number of candidate
answer setsS′ such thatS′ ⊂l S and (ii) the test whether a given suchS′ is in fact an answer set ofP ; for
problem (2), in addition (iii) the number of candidatel-answer setsS containing the query literall′. Note,
however, that for problem (3) source (i) is absent (by Proposition 7)and only (ii) and (iii) (in dual form) are
present, causing the same complexity as for standard skeptical reasoning(without forgetting).

For normal programs and negative logic programs, the complexity of all problems is lowered by one
level of the Polynomial Hierarchy. Intuitively, the reason is that source (ii), i.e., model checking for such
programs, is polynomial in both cases.

In the rest of this section, we state and develop the complexity results formally,and also argue that
space-efficient representations offorget(P, l) in terms of ordinary (disjunctive) logic programs are unlikely
to exist. The design of Algorithmforget3(P, l) in Section 4 is heavily influenced by the complexity analysis.

Theorem 9 Given a consistent (disjunctive) logic programP , a literal l, and a set of literalsX, deciding
whetherX is anl-answer set ofP is Πp

2-complete.

Intuitively, in order to show thatX is anl-answer set, we have to witness thatX is an answer set (which is
coNP-complete to test), and that there is no answer setX ′ of P such thatX ′ ⊂l X. Any X ′ disproving this
can be guessed and checked using an NP-oracle in polynomial time. Thus,l-answer set checking is inΠp

2,
as stated in Theorem 9. The hardness result is shown by a reduction from deciding whether a given logic
programP (without strong negations) has no answer set, which isΠp

2-complete[Eiter and Gottlob, 1995b].
If P is either negative or normal,l-answer checking is co-NP-complete.
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programP disjunctive negative normal

X ∈ AS l(P )? (model checking) Πp
2 co-NP co-NP

forget(P, l) |=c l′? Σp
3 Σp

2 Σp
2

forget(P, l) |=s l′? Πp
2 co-NP co-NP

Table 1: Complexity of forgetting (entries are completeness results;l, l′ are literals,P is a logic program,
X is a set of literals)

Theorem 10 Given a consistent normal logic programP , a literal l, and a set of literalsX, deciding
whetherX is anl-answer set ofP is co-NP-complete.

The proof of this theorem exploits that the reduction in the proof of Theorem 9 still works for normal
programs, and that deciding whether a normal logic program has an answer set is well-known to be NP-
complete[Marek and Truszczýnski, 1991; Ben-Eliyahu and Dechter, 1994].

Using a minor modification of the reduction in the proof of Theorem 9, we can show the co-NP-
completeness for negative programs. Notice that, as already mentioned, deciding whether a given set of
literals is an answer set of negative program is feasible in polynomial time, which explains the complexity
drop.

Theorem 11 Given a consistent negative programP , a literal l, and a set of literalsX, deciding whether
X is anl-answer set ofP is co-NP-complete.

The following theorem shows that credulous reasoning with forgetting hasa higher complexity.

Theorem 12 Given a consistent (disjunctive) logic programP and literals l and l′, deciding whether
forget(P, l) |=c l′ is Σp

3-complete.

In Theorem 12, a suitablel-answer set containingl′ can be guessed and checked, by Theorem 9 usingΣp
2-

oracle. Hence, credulous inferenceforget(P, l) |=c l′ is in Σp
3. TheΣp

3-hardness is shown by an encoding of
quantified Boolean formulas (QBFs) of the form∃Z∀X∃Y φ.

The construction in the proof of Theorem 11 can be lifted to show that credulous inference with forget-
ting isΣp

2-complete for negative programs.

Theorem 13 Given a consistent negative programP and literalsl andl′, deciding whetherforget(N, l) |=c

l′ is Σp
2-complete.

In fact, the program constructed to show the hardness part of this result is normal. Therefore, we easily
derive the following result.

Theorem 14 Given a consistent normal programN and literalsl andl′, deciding whetherforget(N, l) |=c

l′ is Σp
2-complete.

The complexity results for skeptical reasoning with forgetting are straightforward from Proposition 7
and well-known results about the complexity of normal logic programs (see[Eiter and Gottlob, 1995b;
Marek and Truszczýnski, 1991; Dantsinet al., 2001]).

21



Theorem 15 Given a consistent logic programP and literalsl and l′, deciding whetherforget(P, l) |=s l′

is (i) Πp
2-complete for arbitrary disjunctive logic programsP , and (ii) co-NP-complete for normal logic

programs and for negative logic programsP .

By applying techniques that build on non-uniform complexity classes from[Cadoliet al., 2000], one can
show that for a given (disjunctive) programP and literall there is generally no ordinary disjunctive program
P ′ representingforget(P, l) that has size polynomial in the size ofP , unless the Polynomial Hierarchy
collapses. This remains true even if auxiliary literals might be used inP ′ for the representation which are
projected off the models ofP ′ to obtain the models offorget(P, l). This means that the exponential blow up
of forget(P, l) is, in a formal sense, unavoidable in general.

More precisely, it can be shown that the model checking problem for forgetting is complete for the
complexity class‖;Πp

2 defined in[Cadoli et al., 2000; Cadoliet al., 2002]. Informally, this means that
problem is among the hardest in‖;Πp

2, which contains those problems that are decidable inΠp
2 with pre-

processing of the input (which depends on a “fixed” part and the size of the input). The preprocessing can
resort to precompiled knowledge in polynomial-size data structures, wherethe compilation cost does not
count. Technically, theΠp

2-completness of model checking for forgetting implies that (a syntactic variant
of) the problem belongs to‖;Πp

2. On the other hand, the problem is‖;Πp
2-hard, as evaluting a QBF of the

form ∀X∃Y φ can be reduced (under the suitable notion of reduction) to model checkingfor forgetting. The
proof is similar in spirit to the one of Theorem 3.2 in[Cadoli et al., 2002], which shows‖;Πp

2 hardness
of clause inference from the minimal models of a propositional CNF, but uses the encoding of QBFs into
model checking for forgetting given in the proof of Theorem 9 via[Eiter and Gottlob, 1995b]. We refrain
here from further details.

Now while model checking for forgetting is‖;Πp
2-hard, model checking for ordinary disjunctive

progams is well-known to be in co-NP (cf.[Eiter and Gottlob, 1995a; Dantsinet al., 2001]). From The-
orem 5 in[Cadoliet al., 2000], it follows that for arbitrary logic programsP and literalsl there exists no
representation offorget(P, l) by an ordinary (disjunctive) logic program of size polynomial in the size ofP
unless the Polynomial Hierarchy collapses (which is considered to be unlikely).

Analogously, one can show that for normal programsP , forget(P, l) is not representable by normal
programs of polynomial size in the size ofP , unless the Polynomial Hierarchy collapses, again even if
auxiliary literals might be used as above.

However, we point out that if auxiliary literals would be allowed, then we canrepresentforget(P, l) in
terms of the minimal answer sets of a polynomial-size logic program with double negation as failure. More
precisely, lets andpl be fresh auxiliary literals, and usel itself as an auxiliary literal. Let

• P1 be the program resulting fromP by addingnot s in each rule body, let

• P2 be the program resulting fromP by replacing each occurrence ofl with pl and by addings in each
rule body, and let

• Q = P1 ∪ P2 ∪ {s← not not s. l← s. ← not l,not s. ← pl, s}.

Note thatQ is easily constructed fromP andl (in linear time). Informally,s is a switch betweenP1 and
P2, to compute the answer sets ofP wherel is true (viaP1 and the constraint← not l,not s, whens is
false) respectively false (viaP2, whens is true). In order to make these answer setsl-comparable, in the
computations ofP2 the literalpl replacesl and l is artifically included (byl ← s) while pl is excluded
(through← pl, s). The answer setsS of Q (which all containl and but notpl) correspond then one-to-one
to the answer sets ofP . Now everyS such thats /∈ S is a minimal answer set ofQ, while if s ∈ S, then
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S is minimal iff it contains no answer setS′ of Q such thats /∈ S′ properly. Consequently, the minimal
answer setsS of Q encode thel-answer sets ofP , and thus the answer sets offorget(P, l), which are given
by S \ {l, s}.

6 Applications

In this section, we present some applications of the results on forgetting from logic programs in the previous
sections. In particular, we consider applications to conflict resolution in logic-based multi-agent systems,
which is obviously an important task, to inheritance logic programs, which model objects and classes with
inheritance of properties, and to logic program updates. A further application in the area of ontology merging
and alignment (in an extended framework), is described in[Eiter et al., 2006]. The applications show
the usefulness of our results about forgetting in different respects: On the one hand, for finding novel
solutions to problems (like in conflict resolution and ontology merging), and onthe other hand, to obtain
novel characterizations (and thus interpretations) of existing concepts (like for inheritance logic programs
and logic program updates).

6.1 Resolving Conflicts in Multi-Agent Systems

As the first application, we present a general framework for resolvingconflicts in multi-agents systems,
which is inspired from thepreference recoveryproblem[Lang and Marquis, 2002]. In particular, an example
is given to show the elegance of using the semantic forgetting in answer set programming to solve the
problem of preference recovery for multi-agents.

Suppose that there aren agents who may have different preferences on the same issue. In many cases,
these preferences (or constraints) have conflicts and thus cannot besatisfied at the same time. It is an
important issue in constraint reasoning to find intuitive criteria such that preferences with higher priorities
are satisfied. Consider the following example.

Example 7 ([Lang and Marquis, 2002]) Suppose that a group of four residents in a complex tries to reach
an agreement on building aswimming pooland/or atennis court. The preferences and constraints are as
follows.

1. Building a tennis court or a swimming pool costs each one unit of money.

2. A swimming pool can be eitherredor blue.

3. The first resident would not like to spend more than one money unit, and prefers a red swimming pool.

4. The second resident would like to build at least one of tennis court andswimming pool. If a swimming
pool is built, he would prefer a blue one.

5. The third resident would prefer a swimming pool but either colour is finewith him.

6. The fourth resident would like both tennis court and swimming pool to be built. He does not care
about the colour of the pool.

Obviously, the preferences of the group are jointly inconsistent and thus itis impossible to satisfy them at
the same time.
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In the following, we will show how to resolve this kind of preference conflicts and find possible agreements
with minimal costs using the theory of forgetting.

An n-agent systemS is ann-tuple(P1, P2, . . . , Pn) of logic programs,n > 0, wherePi represents agent
i’s knowledge (including preferences, constraints).

As shown in Example 7,P1 ∪ P2 ∪ · · · ∪ Pn may be inconsistent. The basic idea in our approach is to
forget some literals for each agent so that conflicts can be resolved.

Definition 5 Let S = (P1, P2, . . . , Pn) be ann-agent system. Acompromiseof S is a sequenceC =
(F1, F2, . . . , Fn) where eachFi is a set of literals. Anagreementof S on C is an answer set of the logic
programforget(S, C) whereforget(S, C) = forget(P1, F1) ∪ forget(P2, F2) ∪ · · · ∪ forget(Pn, Fn).

Intuitively, the setFi in a compromise contains those aspects which agentsi does not care much about.
For a specific application, we may need to impose certain conditions on eachFi.

Example 8 (Example 7 continued) The scenario can be encoded as a collection of five disjunctive programs
(P0 stands for general constraints):S = (P0, P1, P2, P3, P4) where

P0 = { red ∨ blue ← s. ← red , blue. u0 ← not s,not t.

u1 ← not s, t. u1 ← s,not t. u2 ← s, t. };

P1 = {u0 ∨ u1 ← . red ← s};

P2 = {s ∨ t← . blue ← s};

P3 = {s←};

P4 = {s← . t←}.

Since this knowledge base is jointly inconsistent, each resident may have to weaken some of her preferences
so that an agreement is reached. Some possible compromises are:

1. C1 = (∅, F, F, F, F ) whereF = {s, blue, red}: Every resident would be willing to weaken her
preferences on the swimming pool and its colour. Sinceforget(S, C1) = P0 ∪ {u0 ∨ u1 ← . t←}, S
has a unique agreement{t, u1} onC1. That is, only a tennis court is built.

2. C2 = (∅, F, F, F, F ) whereF = {u0, u1, u2, blue, red}: Every resident can weaken her preferences
on the price and the pool colour. Sinceforget(S, C2) = P0 ∪ {s ∨ t ← . s ← . t ←}, S has two
possible agreements{s, t, red} and{s, t, blue} on C2. That is, both a tennis court and a swimming
pool will be built but the pool colour can be either red or blue.

3. C3 = (∅, {blue, red}, ∅, ∅, {t}): The first resident can weaken her preference on pool colour and the
fourth resident can weaken her preference on tennis court. Sinceforget(S, C3) = P0∪P2∪P3∪{u0∨
u1 ← . s ∨ t ← . s ←}, S has a unique agreement{s, blue, u1} on C3. That is, only a swimming
pool will be built and its colour is blue.

4. C4 = (∅, {blue, red}, {blue, red}, {s, t}, {s, t}): The first and second residents can weaken her pref-
erence on pool colour; the third and fourth residents would not mind if tennis court or swimming pool
is built. Sinceforget(S, C4) = P0∪{u0∨u1 ← . s∨ t←}, S has three possible agreements{u1, t},
{u1, s, blue}, {u1, s, red} onC4.
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It should be noted that a solution to this problem is also provided in[Lang and Marquis, 2002]
where the forgetting for propositional logic is used where a theory in propositional logic rather than pos-
sible agreements are produced. A model of that theory may not represent an agreement in the sense
of Definition 5. For example, the solution forC4 given in [Lang and Marquis, 2002] is the theory
T4 = {s→ red ∨ blue, (red ∧ blue)→ ⊥, (¬s ∧ t)→ u1, (s ∧ ¬t)→ u1, (s ∧ t)→ u2, (¬s ∧ ¬t)→ u0}
and its models also include some agreements that have non-minimal costs (e.g.{u2, s, t, red} is a model of
T4).

However, in our approach each answer set corresponds to exactly one agreement with minimal cost.
In addition, the issue of resolving conflicts in multi-agent systems has been challenging and numerous
proposals have been suggested for different systems (for example, see[Tessieret al., 2001]). Thus it would
be interesting to explore applications of our technique in practical multi-agentsystems.

6.2 Inheritance Logic Programs

In this section, we investigate relationships between forgetting in logic programs and inheritance logic pro-
grams[Buccafurriet al., 2002]. As we show, the semantics of such programs can be expressed by forgetting
from a logic program.

Let P be a logic program with classical negation and each ruler of P is labeled with either the symbol
’.’ or the symbol ’!’. The symbol ’.’ means thatr is a defeasiblerule and the symbol ’!’ means thatr
is astrict rule. In the approach proposed in[Buccafurriet al., 2002], P is an inheritance programif P is
classified into different objects and an object may have higher priority thananother object. For any two
objectso1 ando2, o1 < o2 denotes thato1 has higher priority overo2. This priority relation naturally defines
a priority for rules in these two objects:r1 < r2 if r1 ∈ o1, r2 ∈ o2 ando1 < o2.

Example 9 Let (P, <) be an inheritance logic program that consists of three objects:o1, o2, o3 where

o1 = { penguin(Tweety)←! }
o2 = { bird(x)← penguin(x)!, ¬flies(x)← penguin(x). }
o3 = { flies(x)← bird(x). }.

o1 < o2 < o3 since more specific rules have higher priority.

In the rest of this section, we view in accordance with[Buccafurriet al., 2002] inheritance programs
as pairs(P, <), whereP is a ground (propositional) logic program with classical negation and< is a strict
preorder (irreflexive and transitive relation) on the rules inP , such thatr < r′ iff r has higher priority than
r′. 3

The semantics of inheritance programs is defined in terms ofinheritance answer sets, which are based on
the notion ofmodelsof an inheritance program. The notion of satisfiability of rules for inheritance programs
encodes priority information and thus is quite different from the traditional notion.

Given two (ground) rulesr1 andr2, we sayr1 threatensr2 on a literal l if (1) ¬.l ∈ head(r1), (2)
r1 < r2, and (3)r2 is defeasible (recall that¬.l denotes the complement of literall).

Definition 6 Given an inheritance program(P, <) and an interpretationS, a rule r1 overridesr2 in S if
(1) r1 threatensr2 on a literal l, (2)¬.l ∈ S and (3)S |= body(r2). A ruler is overriddenin S if for each
l ∈ head(r) there exists a ruler′ in P such thatr′ overridesr on l in S.

3Cf. [Buccafurriet al., 2002, p.297] for technical assumptions to ensure this.
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Informally, a ruler is overridden by another ruler′, if it has lower priority thanr′ and is in conflict withr′.
Obviously, a strict rule cannot be overridden.

An interpretationS is a model of(P, <), if every rule inP is either satisfied or overridden inS. The
Gelfond-Lifschitz reduct is extended to inheritance programs as follows.

Definition 7 Given an inheritance program(P, <) and an interpretationS, thereductionof (P, <) w.r.t.S,
denoted(P, <)S , is the set of rules obtained fromP by removing (1) every rule overridden inS, (2) every
rule r such thatbody−(r) ∩ S 6= ∅, and (3)body−(r) from each remaining ruler.

An interpretationS is an inheritance answer set of(P, <), if S is a minimal model of(P, <)S .

Example 10 The ground version of the inheritance program in Example 9,(ground(P), <), has the single
inheritance answer setS = {penguin(Tweety), bird(Tweety),¬flies(Tweety)}. Indeed, the instance of
the rule ino3, flies(Tweety) ← bird(Tweety), is overridden by the rule instance¬flies(Tweety) ←
penguin(Tweety) from o2 in S; (ground(P), <)S consists of the three rulespenguin(Tweety) ← ,
bird(Tweety) ← penguin(Tweety), and ¬flies(Tweety) ← penguin(Tweety). Clearly, S is their
unique answer set, which means thatS is an inheritance answer set of(ground(P), <).

Let (P, <) be an inheritance program andS be a set of literals. We introduce a new literall′ for each
literal l in P . For each ruler in P , if r is overridden inS, then every literall in head(r) is replaced withl′.
The resulting program fromP is denotedP ′. Let F = {l′ | l′ is a new literal andl′ ∈ head(r′) for some
r′ ∈ P ′}.

The following theorem provides a semantic characterization of inheritance programs in terms of seman-
tic forgetting.

Theorem 16 Let (P, <) be an inheritance program and letS be a set of literals. ThenS is an inheritance
answer set of(P, <) iff S is an answer set offorget(P ′, F ) whereP ′ is obtained as above.

Example 11 Continuing our birds example, forS = {penguin(Tweety), bird(Tweety),¬flies(Tweety)}
the corresponding ordinary logic programground(P)′ consists of the following rules:

penguin(Tweety) ← ,
bird(Tweety) ← penguin(Tweety),
¬flies(Tweety) ← penguin(Tweety),
flies(Tweety)′ ← bird(Tweety).

For F = {flies(Tweety)′}, we obtain thatforget(ground(P)′, F ) is represented by the first three rules
above. This program has the unique answer setS, as stated by Theorem 16.

The proof of Theorem 16 is based on the following result, which is of independent interest.

Proposition 15 LetP be a logic program and letF be a consistent set of literals. Suppose that (1) no literal
in F occurs in a rule body inP , and (2) for each ruler, either no or every literal inhead(r) is in F . Then
forget(P, F ) = P \R(F ), whereR(F ) = {r ∈ P | r contains a literal ofF}.

Note that the conclusion of Proposition 15 may not be true ifF contains opposite literals. For example,
consider the logic programP = {p ← a; ¬p ← a; a ← not b; b ← not a} andF = {p,¬p}. Then
P \ R(F ) = {b ← not a; a ← not b}, which has two answer sets{a} and{b}, while forget(P, F ) has
only one answer set{b}.
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6.3 Update Logic Programs

Update programs[Eiter et al., 2000; Eiteret al., 2002] and dynamic logic programs[Alfereset al., 1998;
Alfereset al., 2000] are besides[Marek and Truszczýnski, 1998; Sakama and Inoue, 2003; Zhang and Foo,
1997] major approaches to updating nonmonotonic logic programs, and are in particular geared towards
modeling sequences of updates (see[Zhang, 2006] for a recent survey and comparison of these and other
approaches).

An update programis a sequenceP = [P1, P2, . . . , Pt], t ≥ 1, where eachPi is a normal logic program
for 1 ≤ t ≤ t. Informally, Pi+1 is assumed to update the information represented by[P1, . . . , Pi]. SoPi+1

represents more recent information thanPi, and the rules inPi+1 are assigned higher priority in case of
conflicts. The semantics of update programs has been given by means of atranslation into an ordinary logic
programP⊳, and can be equivalently defined in terms of the answer setsS of an ordinary logic program
⋃t

i=1 Pi \Rej(S,P), whereRej(S,P) is the set of rules which are rejected w.r.t.S.
It has been shown in[Eiteret al., 2000; Eiteret al., 2002] that every update programP can be naturally

translated into an equivalent inheritance logic programihp(P) = (P, <) wherer < r′ if r ∈ Pi andr′ ∈ Pj

such that1 ≤ i < j ≤ t. More precisely,

Lemma 2 ([Eiter et al., 2002]) For every update programP = [P1, P2, . . . , Pt], a setS is an answer set of
P iff S is an answer set of the inheritance programihp(P).

Combining this lemma and Theorem 16 gives us a characterization of update programs in terms of
semantic forgetting from a logic program.

Corollary 17 LetP be an update program and letS be a set of literals. ThenS is an answer set ofP if
and onlyS is an answer set offorget(P ′, F ), whereihp(P) = (P, <) andP ′ is obtained from(P, <) as
described above.

Finally, results in[Eiter et al., 2002] show that for certain classes of update programs, the semantics
coincides with the one under dynamic logic programming as in[Alfereset al., 1998; Alfereset al., 2000].
Hence, the respective classes of dynamic logic programs can also be characterized by semantic forgetting in
the way described.

7 Conclusion

While it is widely acknowledged that forgetting about atomic propositions in knowledge bases is an impor-
tant technique for many AI applications, it has been less clear how this should materialize in the context
of nonmonotonic reasoning and logic programming. To the best of our knowledge, this paper is the first
attempt towards identifying criteria for this operation in this context. In particular, we have specified some
desirable properties for forgetting in nonmonotonic logic programming. Based on these criteria, we have
then proposed a semantics-based theory of forgetting literals in (disjunctive) logic programming. Compared
to preliminary work, a distinguishing feature of our approach is that forgetting is defined in purely semanti-
cal terms. However, we have shown that this declarative approach to forgetting has a syntactic counterpart
based on program transformations.

The properties of forgetting show that the approach in this paper extendsthe classical notion of forgetting
and, moreover, satisfies all criteria that we have identified. As we have explained before, it also naturally
generalizes the notion of forgetting for normal programs investigated in[Wanget al., 2005]. Furthermore,
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we have presented algorithms and analyzed the computational complexity of major reasoning tasks under
forgetting.

Another approach to forgetting for normal logic programs was proposedin [Zhanget al., 2005; Zhang
and Foo, 2006]. Different from ours, the approach by Zhang and colleagues is procedural. The result of
forgetting is obtained by removing some rules and/or literals, but little semantic justification for the removals
is provided from a global perspective.

As an application of forgetting, we have also presented a fairly general framework for resolving con-
flicts in disjunctive logic programming. In particular, this framework providesan elegant solution to the
preference recovery problem. Furthermore, our results show that thesemantic forgetting has a close
relationship with inheritance programs[Buccafurri et al., 1999], update programs[Eiter et al., 2000;
Eiteret al., 2002] and fragments of dynamic logic programs[Alfereset al., 1998; Alfereset al., 2000].

In further work, semantic forgetting has been extended[Eiteret al., 2006] to HEX-programs, which allow
to combine logic programs with Description Logics[Eiter et al., 2005] and, applied in defining a notion of
forgetting for the Web Ontology Language (OWL).4

Furthermore, a system prototype for our semantic forgetting, calledLPForget, which comprises two
modules has been implemented and is available for experiments.5 The moduleForgetting serves for com-
puting the result of forgetting about certain literals in a logic program underthe answer set semantics; all
algorithms introduced in this paper have been implemented in it. The other module, namedCRS, facilitates
conflict resolution (or preference recovery) in multi-agent systems along the approach in Section 6.1. In our
system, once the constraints for different agents are specified,CRS will first check whether these constraints
are consistent. If they are not consistent, the user can make compromises by forgetting about some literals
such that an agreement is reached. The system can also make recommendations for the set of literals to be
forgotten. However, the current recommendation algorithm is not optimized yet, and it remains to explore
more efficient algorithms.

Several interesting issues remain for further research. One issue aremore efficient implementations and
improved algorithms for computing the result of forgetting. In particular, given a disjunctive logic program
P and a literall, Algorithm forget3(P, l) outputs generally a nested logic program which represents the result
of forgetting aboutl from P by its minimal answer sets. It is well-known that nested logic programs can be
efficiently transformed into equivalent ordinary disjunctive programs if new symbols are allowed[Pearceet
al., 2001]. However, this does not carry over to minimal answer sets, and further minimization is needed. It
would be interesting to see a syntax-based algorithm (i.e., based merely on program transformations but not
on the actual answer sets) that outputs an ordinary disjunctive logic program on the original vocabulary as
the result of forgetting.

Another issue is the application of forgetting in various scenarios of conflict resolving, such as ontology
merging and alignment in the Semantic Web[Noy and Stuckenschmidt, 2005]. In these applications, both
closed and open world reasoning are involved. Exploring a theory of forgetting in such a setting is an
interesting issue.

Strong equivalence[Lifschitzet al., 2001] has received a lot of attention in nonmonotonic logic program-
ming because of its importance for program modularity and in applications like information integration. It
would be interesting to introduce a notion of semantics forgetting that preserves strong equivalence, in line
with the properties and the approach in this paper.

Finally, an extension of the approach in this paper to other semantics of nonmonotonic logic program-
ming and more general formalisms, such as default logic or autoepistemic logic,is an intriguing issue.

4http://www.w3.org/2004/OWL/
5TheLPForget website ishttp://www.cit.gu.edu.au/ ˜ kewen/LPForget .
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8 Appendix

Proposition 5 Let≡X be a equivalence relation on a collection of logic programs onLit that is stronger
than ordinary equivalence and invariant under literal extensions. Thenforgetting does not preserve≡X .

Proof. Since≡X is stronger than ordinary equivalence of logic programs, there must exist two programs
P andP ′ such thatP ≡ P ′ but P 6≡X P ′. Let l be a new literal that appears neither inP nor P ′. Then
forget(P, l) ≡ P and thusP ′ is also a result of forgetting aboutl in P . Obviously,P ≡X P but their results
of forgetting (i.e.P andP ′) are not equivalent under≡X . 2

Proposition 8 Let P be a consistent logic program and letF = {l1, . . . , lm} be a set of literals. Then
forget(P, F ) ≡ forget(forget(forget(P, l1), l2), . . .), lm).

Proof. Assume thatm > 1. Let M = AS(forget(P, F )), M ′ = AS(forget(P, F ′)) and M ′′ =
AS(forget(forget(P, F ′), lm)) whereF ′ = {l1, . . . , lm−1}.

We claim thatM = M ′′. To prove this, we first show thatM ⊆ M ′′. Consider any setX ∈ M . Then,
by an analogue of item 5 in Proposition 6, there exists a stable modelS of P such thatX = S −F . Now in
the process of iterative construction, let

P0 = P,

Pi = forget(Pi−1, li), for i = 1, . . . , m.

By item 5 of Proposition 6 and the fact thatli does not occur inPi, we can show by induction oni =
1, 2, . . . , m that there must exist some answer setSi of Pi such thatSi ⊆ Si−1 − {li}. Consequently,
Sm ⊆ S − {l1, . . . , lm} = S − F . Hence, there exists an answer setSm of Pm such thatSm ⊆ X.

Furthermore,Sm ⊂ X is impossible. Otherwise,Sm ∩X ⊂ X would hold. Thus,Sm ∪ F ′, for some
F ′ ⊆ F , is an answer set ofP , andSm ∪ F ′ ⊂ S \ F . Hence,S is not anF -answer set ofP , which is a
contradiction. Thus, we haveSm = X. In conclusion,M ⊆M ′′.

Conversely, supposeX ∈ M ′′. That is,X is an answer set ofPm. By the definition of one-literal
forgetting, this means that there exists an answer setS of P such thatS \ F = X. Towards a contradiction,
suppose thatX 6∈ M . Then there exists a setY in M such thatY ⊂ X. As already shown,Y is an answer
set ofPm. But this contradicts thatX is an answer set ofPm, asX is not minimal. Hence,X ∈M . 2

Theorem 3 LetP be a consistent (disjunctive) logic program and letp ∈ LitP be an atom. ThenX ⊆ LitP

is an answer set offorget(P, p) iff X is a minimal model offorget(lcomp(P ), p). That is,

AS(forget(P, p)) = MMod(forget(lcomp(P ), p)).

Proof. We use the following lemma.

Lemma 3 LetX ⊆ LitP \{p} such thatX |= forget(lcomp(P ), p). Then eitherX ∈ AS(P ) or X∪{p} ∈
AS(P ).
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Proof of Lemma 3 By Theorem 1,X ′ ∈ AS(P ) iff X ′ |= lcomp(P ) holds for eachX ′ ⊆ LitP .
Sinceforget(lcomp(P ), p) = lcomp(P )(p/true) ∨ lcomp(P )(p/false), for eachX ⊆ LitP \ {p} such
that X |= forget(lcomp(P ), p) thus eitherX ′ = X ∈ AS(P ) (if X |= lcomp(P )(p/false)) or X ′ =
X ∪ {p} ∈ AS(P ) (if X |= lcomp(P )(p/true)) holds.

(i) AS(forget(P, p)) ⊆ MMod(forget(lcomp(P ), p)): Let X ∈ AS(forget(P, p)). Then, there exists
someS ∈ ASp(P ) such thatX ∼p S. By Theorem 1,S |= lcomp(P ). SinceS \ {p} = X, we
haveX |= forget(lcomp(P ), p). To show thatX is also minimal, assume towards a contradiction that
someX ′ ⊂ X exists such thatX ′ |= forget(lcomp(P ), p). By Lemma 3,S′ ∈ AS(P ) holds for either
S′ = X ′ or S′ = X ′ ∪ {p}. In both cases,S′ ⊂p S; however, this contradictsS ∈ ASp(P ). This proves
X ∈ MMod(forget(lcomp(P ), p)).

(ii) MMod(forget(lcomp(P ), p)) ⊆ AS(forget(P, p)): Let X ∈ MMod(forget(lcomp(P ), p)). By
Lemma 3,S ∈ AS(P ) for eitherS =X or S = X ∪ {p}. We show that in both casesS ∈ ASp(P ).
Towards a contradiction, suppose thatS /∈ ASp(P ). Then there exists someS′ ∈ ASp(P ) such that
S′ ⊂p S and, by item 1 of Proposition 6,X ′ := S′ \ {p} ∈ AS(forget(P, p)). By part (i), it follows that
X ′ ∈ MMod(forget(lcomp(P ), p)); SinceX ′ ⊂ X, this contradictsX ∈ MMod(forget(lcomp(P ), p)).
Hence,S ∈ ASp(P ). By item 1 of Proposition 6,S \ {p} = X ∈ AS(forget(P, p)). This proves the result.

2

Theorem 4 Let P be a consistent (disjunctive) logic program and letp ∈ LitP be an atom. ThenX ⊆
LitP \{p} is an answer set offorget(P, p) if and only if eitherX or X∪{p} is a model ofCirc(lcomp(P ), p)
(resp.,ECWA(lcomp(P ), p)).

Proof. By Theorem 1,AS(P ) = {S ⊆ LitP | S |= lcomp(P )}. Hence, from the characterization of
models ofCirc(lcomp(P ), p) in terms of⊆p and∼p, it is easily seen thatASp(P ) = {S ⊆ LitP | S |=
Circ(lcomp(P ), p)}.

ConsiderX ⊆ LitP \ {p}. Suppose first thatX ∈ AS(forget(P, p)). ThenX ∼p S for some
S ∈ ASp(P ), and eitherS = X or S = X ∪ {p} must hold. AsS |= Circ(lcomp(P ), p), the only-if
direction of the theorem holds. Conversely, suppose thatS |= Circ(lcomp(P ), p) for eitherS = X or
S = X ∪ {p}. ThenS ∈ ASp(P ) and by item 1 of Proposition 6,S \ {p} = X ∈ AS(forget(P, p)). This
proves the result. 2

Theorem 6 For every consistent (disjunctive) logic programP and a literal l, Algorithm forget2(P, l)
outputs a correct representation offorget(P, l). Proof. By the construction ofP1 in Step 1,AS(P1) =

{X ∈ AS(P ) | l ∈ X}. By Proposition 1,A1 consists thus of all setsX such thatl /∈ X andX ∪ {l} ∈
AS l(P ).

In Step 2, the constraint← l guarantees that each answer setX of P2 is an answer set ofP such that
l 6∈ X. The constraint← a1, . . . , ak, for M = {a1, . . . , ak} ∈ A1, enforces thatM ∪ {l} 6⊂ X holds.
Consequently,A2 consists of all setsX ∈ AS l(P ) such thatl /∈ X.

Combining the two cases,AS l(P ) = {X ∪ {l} | X ∈ A1} ∪ A2; thus by item 1 of Proposition 6,
AS(forget(P, l)) = A = A1 ∪ A2. It is easy to see thatAS(P ′) = A; this proves the result. 2

Proposition 11 Let P be a disjunctive program. IfP ′ is obtained by the elimination of head redundancy
fromP , thenP andP ′ have the same answer sets. Proof.Let P = P0∪{r} with l ∈ head(r)∩body−(r)

and letP ′ = P0 ∪ {(head(r)− l)← body(r)}. We show that for everyS ⊆ LitP , the following statement
holds: (*) S ∈ AS(P ) iff S ∈ AS(P ′). If l ∈ S, thenPS = (P ′)S and therefore (*) holds. Otherwise
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(i.e., l 6∈ S), the ruler1 = head(r) ← body+(r) is in PS iff the rule r2 = (head(r) − l) ← body+(r)
is in (P ′)S . Furthermore, for eachS′ ⊆ S it holds thatS′ |= r1 iff S′ |= r2, and thereforeS′ |= PS iff
S′ |= (P ′)S . Again it follows that (*) holds. 2

To prove Theorem 7, we first show a lemma.

Lemma 4 Let P be a DDLP and letS be an interpretation ofP . If S ∈ AS(T (P )), thenS is a minimal
answer set ofP .

Proof. Let S ∈ AS(T (P )). We first show thatS ∈ AS(P ). Let r′ ∈ PS such thatS |= body(r′).
Then r′ must be of the formhead(r) ← body+(r) for somer ∈ P such thatbody−(r) ∩ S = ∅ and
body−−(r) ⊆ S. Furthermore, the ruler′′ = head(r)← body+(r),not not body−−(r) is in T (P )S . Now
if body+(r) ⊆ S, thenS |= head(r) asS |= body−−(r). Hence,S |= r′. It follows thatS |= PS .

Consider anyS′ ⊆ S such thatS′ |= PS . ThenS′ |= T (P )S , as each rule inT (P )S results from a rule
in PS by adding literals in the body. AsS ∈ AS(T (P )), it follows thatS′ = S. This provesS ∈ AS(P ).
It remains to show thatS is minimal. Consider anyS′ ∈ AS(P ) such thatS′ ⊆ S. ThenS′ |= T (P )S′

.
SinceT (P )S ⊆ T (P )S′

, S′ |= T (P )S . As S ∈ AS(T (P )), it follows thatS′ = S. 2

Theorem 7 For every N-acyclic DDLPP , it holds thatAS(P ) = AS(T (P )).

Proof. AS(T (P )) ⊆ AS(P ): Immediate from Lemma 4.
AS(P ) ⊆ AS(T (P )): SupposeS ∈ AS(P ) but S 6∈ AS(T (P )). ThenS is not a minimal model of
T (P )S . Note thatS |= T (P )S . Hence, there exists some interpretationS′ ⊂ S such thatS′ |= T (P )S . We
show that then some interpretationS′′ exists such thatS ⊆ S′′ ⊂ S andS′′ |= PS ; this means thatS is not
a minimal model ofPS and thus contradicts thatS ∈ AS(P ), proving the result.

We first assume thatP is normal, i.e.,|head(r)| ≤ 1 for eachr ∈ P . Let L be a level mapping
witnessing the N-acyclicity ofP and letX = {l ∈ S \ S′ | ∀l′ ∈ S \ S′ : L(l) ≤ L(l′)} be the set of all
literals inS \ S′ having the smallest level. SinceS′ ⊂ S, X 6= ∅. We claim thatS′′ := S \X |= PS .

Towards a contradiction, suppose thatS′′ 6|= r for somer ∈ PS . SinceS |= PS , r is of the form
l ← body+(r) wherel ∈ X andbody+(r) ⊆ S′′. Sincer stems from a ruler′ ∈ P such thatS |= r′

(i.e., r = head(r′) ← body+(r′)) andS′ |= T (P )S , it follows that either (a)body+(r) \ S′ 6= ∅ or (b)
body−−(r′) \ S′ 6= ∅. The minimality ofL(l) implies that (a) is the case and thatbody+(r) ∩ X 6= ∅,
and thusbody+(r) 6⊆ S′′; this is a contradiction. This proves the claimS′′ |= PS , which contradicts that
S ∈ AS(P ). Hence, the result for normal programsP is proved.

The result for arbitrary programs is an easy consequence of this result and the following two facts. Call
a programP ′ asplit of a DDLPP , if P ′ results fromP by replacing every ruler of form l1 ∨ · · · ∨ lk ← B,
k ≥ 2, by at least one of the normal rulesl1 ← B, . . . , lk ← B. Now,

Fact A. For everyS ∈ AS(P ) there exists a splitP ′ of P such thatS ∈ AS(P ′).

Indeed, every splitP ′ of P such thatr is replaced by all rulesli ← B with li ∈ S wheneverhead(r) ∩
S 6= ∅, hasS as an answer set. (This is a simple extension of a folklore result for ordinary logic programs.)

Fact B. If a DDLP P is N-acyclic, then every splitP ′ of P is N-acyclic. 2

Theorem 8 LetP be a consistent disjunctive logic program and letl ∈ LitP be a literal. Thenforget3(P, l)
correctly representsforget(P, l), i.e.,X is an answer set offorget(P, l) iff X is a minimal answer set ofN ′.

Proof. By Lemma 1,P can be transformed into an equivalent negative programN0. Furthermore, an easy
extension of Corollary 2 implies thatN0 is equivalent toN . Hence,P ≡ N andforget(P, l) ≡ forget(N, l).
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Let ASmin(N ′) denote the minimal answer sets of programN ′ (w.r.t.⊆). To prove the theorem, it is
now by item 1 of Proposition 6 sufficient to prove the following claim:

Claim. For every setX ′ of literals such thatl 6∈ X ′, X ′ ∈ ASmin(N ′) iff X ′ = X \ {l} for some
X ∈ AS l(N).

Due to the elimination of tautology and the elimination of head redundancy,head(r) ∩ body(r) = ∅
for each ruler ∈ N . Thus the programN can be split into three disjoint parts:N = N1 ∪ N2 ∪ N3

whereN1 consists of rules inN in which l does not appear;N2 = {r ∈ N | l ∈ head(r), l 6∈ body−(r)};
and N3 = {r ∈ N | l 6∈ head(r), l ∈ body−(r)}. Notice that Step 3 in Algorithmforget3(P, l) is
performed only on the rules inN3. Let the programN ′

3 result fromN3 by the transformations in Step 3.
ThenN ′ = N1 ∪ N ′

3. Let D1, D2, . . . , Ds denote all possible conjunctions constructed fromli in Step 3;
note thatN2 = {r1, . . . ,rn}. We consider the three cases in Step 3.

(3.1) If n = 0, then no rule inN hasl in the head. Thusl is false in every answer set ofN , and hence
N ≡ N ′ andAS l(N) = AS(N). SinceN ′ is an ordinary program,ASmin(N ′) = AS(N ′). It follows
thatASmin(N ′) = AS l(N) and the claim holds.

(3.2) If n > 0 andmj = 0 for somej ∈ {1, . . . , n}, then the rulel ← is in N . Hence, every answer
set ofN containsl, and clearlyX ′ ∈ AS(N ′) iff X ′ ∪ {l} ∈ AS(N) holds for every set of literalsX ′ with
l /∈ X ′. As in the previous case,AS l(N) = AS(N) andASmin(N ′) = AS(N ′), and the claim holds.

(3.1)n ≥ 1 andmi ≥ 1 for everyi = 1, . . . , n. We use the following lemmas.

Lemma 5 If l 6∈ X ′ andX ′ |= Di0 for somei0 with 1 ≤ i0 ≤ s, then(N3)
X′

= (N ′
3)

X′

.

Lemma 6 For everyX ′ ∈ ASmin(N ′),

(1) if X ′ |= Di0 for somei0, 1 ≤ i0 ≤ s, thenX ′ ∈ AS(N).

(2) if X ′ 6|= Di for all i = 1, . . . , s, thenX ′ ∪ {l} ∈ AS(N).

Proof of Lemma 6 (1) NX′

= (N1)
X′

∪ (N3)
X′

sinceX ′ |= Di0 implies l 6∈ X ′. By Lemma 5,
(N3)

X′

= (N ′
3)

X′

and thusNX′

= (N ′)X′

. SoX ′ |= NX′

.
If X ′′ ⊆ X ′ andX ′′ |= NX′

, thenX ′′ |= (N ′)X′

. SinceX ′ is a minimal model ofNX′

, X ′′ = X ′.
Therefore,X ′ ∈ AS(N).
(2) Let X = X ′ ∪ {l}. Sincel ∈ X andl does not appear inN1, we haveNX = (N1 ∪ N2 ∪ N3)

X =
(N1)

X ∪ (N2)
X = (N1)

X′

∪ (N2)
X = (N1)

X′

∪ {l ←}. By the assumption,X ′ |= (N1)
X′

and thus
X |= (N1)

X′

. Obviously,X |= (N2)
X sincel ∈ X and every rule inN2 has headl. Thus,X |= NX .

Now suppose thatY ⊆ X andY |= NX . Sincel ← is in NX , l ∈ Y . Let Y = Y ′ ∪ {l} wherel 6∈ Y ′.
ThenY ′ |= (N1)

X′

. By (N ′)X′

= (N1)
X′

, we haveY ′ |= (N ′)X′

. Thus,Y ′ = X ′ by Y ′ ⊆ X ′ and the
minimality of X ′. This impliesY = X. SoX is a minimal model ofNX , and thusX ∈ AS(N).

We now prove the claim.

(⇒): Let X ′ ∈ AS l(N). ThenX ∈ AS(N) for eitherX = X ′ or X = X ′ ∪ {l}, wherel /∈ X. Consider
two cases:

Case 1.X = X ′: Note thatX ′ |= Di0 for somei0, 1 ≤ i0 ≤ s, sincel 6∈ X ′. By Lemma 5,(N3)
X′

=
(N ′

3)
X′

. Therefore,(N ′)X′

= (N1)
X′

∪ (N ′
3)

X′

= (N1)
X′

∪ (N3)
X′

. This impliesX ′ |= (N ′)X′

.
Suppose nowX ′′ ⊆ X ′ andX ′′ |= (N ′)X′

. ThenX ′′ |= NX′

. SinceX ′ is a minimal model ofNX′

,
we haveX ′′ = X ′. Thus,X ′ ∈ AS(N ′).
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Suppose thatY ∈ ASmin(N ′) andY ⊆ X ′. If Y |= Dj0 for somej0 (1 ≤ j0 ≤ s), then by Lemma 6
Y ∈ AS(N) and thus it follows thatY = X ′. SoX ′ ∈ ASmin(N ′). If Y 6|= Di for all i (1 ≤ j0 ≤ s),
thenY ∪ {l} ∈ AS(N) again by Lemma 6. This impliesX ′ 6∈ AS l(N), a contradiction. Therefore,
X ′ ∈ ASmin(N ′).

Case 2.X = X ′ ∪ {l}: ThenNX = NX′∪{l} = (N1)
X′

∪ {l ←}. Sincel ∈ X, we haveX 6|= Di for
every i, 1 ≤ i ≤ s. From l 6∈ X ′, it follows thatX ′ 6|= Di for every i, 1 ≤ i ≤ s. Thus,(N ′)X′

=
(N1)

X′

∪ (N ′
3)

X′

= (N1)
X′

. SinceX |= NX , X ′ |= (N1)
X′

and thusX ′ |= (N ′)X′

.
If X ′′ ⊆ X ′ andX ′′ |= (N ′)X′

, thenX ′′ ∪ {l} |= NX . By the minimality ofX, X ′′ ∪ {l} = X. Since
l 6∈ X ′ andl 6∈ X ′′, we haveX ′′ = X ′. Thus,X ′ ∈ AS(N ′).

If Y ∈ ASmin(N ′) andY ⊆ X ′, thenY 6|= Di for all i = 1, . . . , s. Consequently.Y ∪ {l} ∈ AS(N).
SoY ∪ {l} ⊆ X ′ ∪ {l}. This meansY = X ′, since the answer sets ofN are incomparable under⊆. Thus
X ′ ∈ ASmin(N ′).

(⇐): Suppose thatX ′ ∈ ASmin(N ′). Consider two possible cases:

Case 1.X ′ 6|= Di for all i = 1, . . . , s: By Lemma 6,X = X ′ ∪ {l} ∈ AS(N). ThusX ′ ∈ AS l(N) since
l ∈ X by item 3 of Proposition 1.

Case 2.X ′ |= Di0 for somei0 with 1 ≤ i0 ≤ s: By Lemma 6,X ′ ∈ AS(N). Consider anyY ∈ AS(N),
Y 6= X ′, such thatY \ {l} ⊆ X ′. Thenl ∈ Y sincel 6∈ X ′ and answer sets ofN are incomparable. Thus
Y ∈ AS l(N) by Proposition 1. From the proof of the only-if part,Y \ {l} is a (minimal) answer set ofN ′.
By the minimality ofX ′, Y \ {l} = X ′. This provesX ′ ∈ AS l(N).

Proposition 13 Let P be a consistent normal logic program and letl ∈ LitP be a literal. If no negative
cycle ofDGP containsl, thenforget3(P, l) outputs anN -acyclic program.

Proof. The result is a consequence of the fact that for a programP as described, also in the dependency
graphDGN0

for the programN0 from Step 1 offorget3(P, l) no negative cycle will containl. This is
because each of the transformations inT

∗ preserves the property that if a literall does not occur on a
negative cycle ofDGP0

of the original programP0, then it does not occur on a negative cycle ofDGP1
in

the transformed programP1. Indeed, each transformation except Unfolding only removes edges; Unfolding
can add only some positive edges froml to l′ such that positive edges froml to l′′ and froml′′ to l′ exist, for
some literall′′, and some negative edges froml to l′ such that a positive edge froml to l′′ and a negative edge
from l′′ to l′ exist, for some literall′′. Thus, occurrence ofl in a negative cycle ofDGP1

implies occurrence
of l in a negative cycle ofDGP0

.
As a consequence, in Step 3 (whereN = N0) no replacements ofnot l by Di will be performed that

can violate the condition (ii) ofN -acyclicity; condition (i) is vacuously true. 2

Theorem 9 Given a consistent (disjunctive) logic programP , a literal l, and a set of literalsX, deciding
whetherX is an l-answer set ofP is Πp

2-complete. Proof. Deciding whetherX /∈ AS l(P ) can be done

in NP time using an NP oracle: we must show that either (1)X /∈ AS(P ) (which is in co-NP, cf.[Eiter and
Gottlob, 1995b]), or that (2) there exists someX ′ ∈ AS(P ) such thatX ′ ⊂l X; such anX ′ can be guessed
and checked using an NP-oracle in polynomial time. Consequently,l-answer set checking is in co-NPNP =
Πp

2.
The hardness result is shown by a reduction from deciding whether a given logic programP (without

strong negations) has no answer set, which isΠp
2-complete[Eiter and Gottlob, 1995b].

In fact, given a (disjunctive) logic programP , construct a logic programP ′ = {head(r) ←
p, body(r) | r ∈ P} ∪ {q ← not p. p ← not q} ∪ {a ← not p | a appears inP}, wherep and q
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are two fresh atoms. This programP ′ has one answer setX0 in whichp is false and all other atoms are true;
all other answer sets are of the formX ∪ {p}, whereX ∈ AS(P ). It holds thatX0 ∈ ASp(P

′) iff P has
no answer set. 2

Theorem 10 Given a consistent normal logic programP , a literal l, and a set of literalsX, deciding
whetherX is anl-answer set ofP is co-NP-complete. Proof. Similar to the proof of Theorem 9, in order

to show thatX /∈ AS l(P ), we must that either (1)X /∈ AS(P ) (which can be tested in polynomial time),
or that (2) there exists someX ′ ∈ AS(P ) such thatX ′ ⊂l X. Such anX ′ can be guessed and checked
in polynomial time. Hence, decidingX /∈ AS l(P ) is in NP, which implies thatl-answer set checking is in
co-NP.

The hardness result is shown by the reduction in Theorem 9. In fact, note that if we consider only normal
programsP (without strong negation), thenP ′ is also a normal program. The problem of deciding whether
P has no answer set, which is co-NP-complete, is thus reduced to deciding whetherX0 is ap-answer set of
P ′. 2

Theorem 11 Given a consistent negative programP , a literal l, and a set of literalsX, deciding whetherX
is an l-answer set ofP is co-NP-complete. Proof. The co-NP membership follows from that fact that for

any given set of literalsX and negative programP , deciding whetherX ∈ AS(P ) is polynomial. (Indeed,
X ∈ AS(P ) iff X |= PX andX \ {l} 6|= PX , for everyl ∈ X.) Thus, testing that (1)X ∈ AS(P ) and
that (2) there is noX ′ ∈ AS(P ) such thatX ′ ⊂l X is feasible in co-NP.

As for co-NP-hardness, letC = C1 ∧ · · · ∧ Ck be a propositional CNF over atomsy1, . . . , ym, where
eachCj is non-empty. Define

N =
m
⋃

i=1

(Ni ∪ { ← not C ′
i}) ∪ {l← not y1. l← not y′1},

where

Ni = {yi ← not y′i. y′i ← not yi. yi ← not l. y′i ← not l}, 1 ≤ i ≤ m,

C ′
j = {yi | yi ∈ Cj} ∪ {y

′
i | ¬yi ∈ Cj}, 1 ≤ j ≤ k.

Clearly, the satisfying assignments ofC correspond one-to-one to the answer sets ofN containingl. Fur-
thermore, the setX = {yi, y

′
i | 1 ≤ i ≤ m} is an answer set ofN . It holds thatX is also anl-answer set of

N iff C is unsatisfiable, which establishes the co-NP-hardness. 2

Theorem 12 Given a consistent (disjunctive) logic programP and literals l and l′, deciding whether
forget(P, l) |=c l′ is Σp

3-complete. Proof. Given a logic programP and two literalsl and l′,

forget(P, l) |=c l′ holds iff there exists someS ∈ AS l(P ) such thatl′ ∈ S. Since decidingS ∈ AS l(P ) is
in Πp

2, the problem thus is inΣp
3.

The Σp
3-hardness can be shown by an encoding of quantified Boolean formulas(QBFs) of the form

∃Z∀X∃Y C. It is well-known that the problem of deciding whether a disjunctive logic program has no
answer sets isΠp

2-complete[Eiter and Gottlob, 1995b]. As shown there, for every QBFF = ∀X∃Y C
there exists a polynomial-time constructible logic programPF which has no answer set iffF is true. We
extend this program to an encoding of a QBFF ′ = ∃Z∀X∃Y C into credulous inference under forgetting
as follows.
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First, PF can be easily extended to a programPF [Z] encoding a QBFF [Z] = ∀X∃Y C[Z] with free
variables (i.e., parameters)Z, where all new atoms inPF [Z] are fromZ and do not occur in rule heads, such
that for every truth assignmentτ toZ, the programPF [Z/τ(Z)] = PF [Z]∪{z ← . | z ∈ Z, τ(Z) = true} has
no answer set iff the QBFF [Z/τ(Z)] evaluates to true, whereF [Z/τ(Z)] results fromF [Z] by replacing
everyz ∈ Z with T if τ(z) = true and withF if τ(z) = false.

More in detail, suppose without loss of generality thatC[Z] = C1 ∧ · · · ∧ Cr where eachCi = ℓi,1 ∨
ℓi,2∨ ℓi,3 is a disjunction of literalsℓi,j over atomsX ∪Y ∪Z. LetX ′ = {x′ | x ∈ X}, Y ′ = {y′ | y ∈ Y },
andw be new atoms. ThenPF [Z] consists of the rules

x ∨ x′ ← . for eachx ∈ X,

y ∨ y′ ← . y ← w. y′ ← w. w ← y, y′. for eachy ∈ Y ,

w ← σ(¬.lk,1), σ(¬.lk,2), σ(¬.lk,3). for eachk = 1, . . . , r,

w ← not w.

whereσ maps classical literalsℓ to classical andnot literals as follows:

σ(ℓ) =















x′ if ℓ = ¬x for somex ∈ X
y′ if ℓ = ¬y for somey ∈ Y
not z if ℓ = ¬z for somez ∈ Z
ℓ otherwise

Notice that the onlynot literals occurring inPF [Z] arenot w in the last rule and the literalsnot z in rule
bodies; furthermore, atoms fromZ occur only in rule bodies. For voidZ, the programPF [Z] amounts to
the programPF in [Eiter and Gottlob, 1995b, Proof of Theorem 3] (after converting the∀∃-QBF into the
∃∀-QBF used there). A simple extension of the proof of Theorem 3 in[Eiter and Gottlob, 1995b] gives the
following lemma.

Lemma 7 For each truth assignmentτ to Z, ∀X∃Y C[Z/τ(Z)] evaluates to true iff the programPF [Z/τ(Z)]

has no answer set.

Let Z ′ = {z′ | z ∈ Z}, l, andl′, be fresh atoms, and letP be the logic program obtained fromPF [Z] by
addingl to the body of each rule and the following further rules:

(1) l← not l′. l′ ← not l.,

(2) z ← not z′. z′ ← not z, for eachz ∈ Z,

(3) x← not l. x′ ← not l. y ← not l. y′ ← not l, for eachx ∈ X, y ∈ Y , and

(4) the rule w ← not l.

Informally, the rules in (1) select one ofl andl′, and the rules in (2) select a truth assignmentτ to Z. If l
is selected, then the programPF [Z] is activated and evaluated for the selectedτ , while the rules (3) and (4)
are discarded. The evaluation will lead to some answer setSl

τ , iff the programPF [Z/τ(Z)] has some answer
set; note that every suchS containsl. On the other hand, ifl′ is selected, then only the rules in (2)-(4) are
active. The truth assignmentτ selected in (2) will be complemented withX ∪ X ′ ∪ Y ∪ Y ′ ∪ {w} to a
unique answer setSl′

τ of the programP .
Now Sl

τ ⊂l Sl′
τ holds for everySl

τ . Furthermore, answer setsS andS′ corresponding to different truth
assignmentsτ andτ ′, respectively, are always incomparable w.r.t.⊆ on Z ∪ Z ′, and thus also w.r.t.⊆l.
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Therefore, for everyτ , Sl′
τ is anl-answer set ofP iff no answer setSl

τ exists, i.e.,PF [Z/τ(Z)] has no answer

set, which by Lemma 7 equals that∀X∃Y C[Z/τ(Z)] evaluates to true. Hence, for someτ , Sl′
τ is an l-

answer set ofP iff F ′ = ∃Z∀X∃Y C evaluates to true. Since everyl-answer set ofP that containsl′ is of
the formSl′

τ for τ , it follows from Proposition 6 thatforget(P, l) |=c l′ iff F ′ evaluates to true. SinceP is
constructible in polynomial time fromF ′, theΣp

3-hardness is proved. 2

Theorem 13 Given a consistent negative programP and literalsl andl′, deciding whetherforget(N, l) |=c

l′ is Σp
2-complete. Proof. By Theorem 11, a guess for somel-answer setX of P such thatl′ ∈ X can be

verified with an NP oracle in polynomial time. Hence, decidingforget(P, l) |=c l′ is in Σp
2.

As for Σp
2-hardness, take a QBF∃X∀ZE, whereE =

∨k
i=1 Di is a DNF onX ∪ Z such that without

loss of generality in each disjunctDi some variable fromZ occurs. Construct the same program as above
in Theorem 11 forC = ¬E and whereY = X ∪ Z andy1 is an arbitrary variable fromZ, but (1) omit the
clausesxi ← not l andx′

i ← not l, and (2) add a clausel′ ← not l, wherel′ is a fresh literal. Then for
each setX ′ ⊆ X, the set

SX′ = X ′ ∪ {x′
i | xi ∈ X \X ′} ∪ Z ∪ {z′j | zj ∈ Z} ∪ {l′}

is an answer set ofN . The setsSX′ are also all answer sets ofN that containl′ (and do not containl).
Furthermore,SX′ is anl-answer set ofN iff there exists no satisfying truth assignment forC (=¬E) which
corresponds onX to SX′ in the obvious way. In summary, this means thatN hasl-answer set in whichl′ is
true, i.e.,forget(N, l) |=c l′, iff the formula∃X∀ZE evaluates to true. 2

Theorem 14 Given a consistent normal programN and literalsl andl′, deciding whetherforget(N, l) |=c

l′ is Σp
2-complete. Proof. It is sufficient to note that the programN constructed in the proof of Theorem 13

is normal. 2

Theorem 15 Given a consistent logic programP and literalsl andl′, deciding whetherforget(P, l) |=s l′

is (i) Πp
2-complete for arbitrary disjunctive logic programsP , and (ii) co-NP-complete for normal logic

programs and for negative logic programsP . Proof. By Theorem 7, to decideforget(P, l) |=s l′, we

need only to decideP |=s l′. The latter isΠp
2-complete for logic programs[Eiter and Gottlob, 1995b] and

co-NP complete for normal/negative programs; for both cases, membershipin co-NP follows since testing
X ∈ AS(P ) is polynomial (cf. proof of Theorem 11 for negative programs), and co-NP hardness from the
results in[Marek and Truszczýnski, 1991] (incorporating the consistency requirement is easy). 2

Proposition 15 Let P be a logic program and letF be a consistent set of literals. Suppose that (1) no
literal in F occurs in a rule body inP , and (2) for each ruler, either no or every literal inhead(r) is in F .
Thenforget(P, F ) = P \R(F ).

We first provide two lemmas, which are straightforward corollaries of the well-known, more general
Splitting Set Theorem in[Lifschitz and Turner, 1994] and elementary properties of answer set semantics.
To avoid introducing the necessary notions for that result, we provide for self-containedness simple genuine
proofs.

Lemma 8 Let P , F andQ = P \ R(F ) be given as in Proposition 15. IfS′ is an answer set ofQ, then
there exists a subsetY ′ of F such thatS′ ∪ Y ′ is an answer set ofP .
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Since we have a very special case here, Lemma 8 also allows a simple proof.
Proof. Suppose thatS′ is an answer set ofQ. DenoteD′ = {head(r) | r ∈ R(F ), S′ |= body(r)}. Then
every literal inD′ must be inF . Let Y ′ be a minimal model ofD′ andS = S′ ∪ Y ′. By the assumption of
F , S′ ∩ Y ′ = ∅ and thusS is consistent. We show thatS is an answer set ofP .

First, sincePS = PS′

= QS′

∪ (R(F ))S′

, we haveS |= PS . Next, supposeX ⊆ S andX |= PS .
TakeX ′ = X \ F ; thenX ′ ⊆ S′. We can see thatX ′ |= QS′

and thusX ′ = S′. Notice thatY ′ = S ∩ F is
a minimal model ofD′, and thatX ∩ F |= D′ impliesX ∩ F = S ∩ F . Thus,X = S. 2

Lemma 9 Let P , F andQ = P \ R(F ) be given as in Proposition 15. IfS is an answer set ofP , then
S \ F is an answer set ofQ.

Proof. By PS = PS′

andQ ⊆ P , it is easy to see thatS′ |= QS′

whereS′ = S \ F .
Suppose thatY ′ ⊆ S′ andY ′ |= QS′

. ThenY |= PS′

= PS whereY = Y ′ ∪ (S ∩ F ). ThusY = S.
SinceY ′ = Y ∩ F̄ andS′ = S ∩ F̄ , we haveY ′ = S′. HereF̄ = LitP \ F .

Therefore,S \ F is an answer set ofQ. 2

Proof of Proposition 15 DenoteQ = P \ R(F ). Suppose thatS′ is an answer set ofQ. By Lemma 8,
there exists a subsetY ′ of F such thatS = S′ ∪ Y ′ is an answer set ofP .

To show thatS′ is an answer set offorget(P, F ), it suffices to prove thatS is anF -answer set ofP . In
fact, if Z is an answer set ofP such thatZ ⊆F S, thenZ ′ ⊆ S′ whereZ ′ = Z \ F . By Lemma 9,Z ′ is an
answer set ofQ. ThusS′ = Z ′, which meansZ ∼F S. That is,S is anF -answer set ofP .

On the other hand, ifS′ is an answer set offorget(P, F ), then there exists anF -answer setS of P such
thatS′ = S \ F . By Lemma 9,S′ is also an answer set ofQ.

We are now ready to prove Theorem 16.

Theorem 16 Let (P, <) be an inheritance program and letS be a set of literals. ThenS is an inheritance
answer set of(P, <) iff S is an answer set offorget(P ′, F ) whereP ′ is obtained as above.

Proof. S is an inheritance answer set of(P, <) iff S is a minimal model of(P, <)S iff S is an answer set
of P \R(F ) iff S is an answer set offorget(P ′, F ), by Proposition 15. 2
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