
I N F S Y S

R e s e a r c h

R e p o r t

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme

FDNC: Decidable Nonmonotonic

Disjunctive Logic Programs with

Function Symbols

Mantas Šimkus Thomas Eiter

INFSYS Research Report 1843-08-01

January 2008

INFSYS Research Report

INFSYS Research Report 1843-08-01, January 2008

FDNC: Decidable Nonmonotonic Disjunctive Logic

Programs with Function Symbols

Mantas Šimkus1 and Thomas Eiter1

Abstract. Current Answer Set Programming frameworks and systems are built on non-
monotonic logic programming without function symbols. As well-known, permitting func-
tion symbols leads to high undecidability in general. However, function symbols are highly
desirable for various applications that involve common-sense reasoning over infinite domains,
e.g., transition-based planning systems. This raises the challenge to find meaningful but still
decidable fragments of this setting. To this end, we present the class FDNC of logic pro-
grams which allows for function symbols, disjunction, non-monotonic negation under the
answer set semantics, and constraints, while still retaining the decidability of the standard
reasoning tasks. Thanks to these features, FDNC programs are a powerful formalism for
rule-based modeling of applications with potentially infinite processes and objects, which
allows also for common-sense reasoning. This is evidenced, for instance, by tasks in reason-
ing about actions and planning: brave and open queries capture the well-known problems of
plan existence and secure (conformant) plan existence problem, respectively, in transition-
based actions domains. As for reasoning from FDNC programs, we show that consistency
checking and brave as well as cautious reasoning tasks are ExpTime-complete in general,
but have lower complexity under syntactic restrictions that give rise to a family of program
classes. Furthermore, we also determine the complexity of open queries (i.e., with answer
variables), for which deciding non-empty answers is shown to be ExpSpace-complete under
cautious entailment. Furthermore, we present for all reasoning tasks algorithms that are
worst-case optimal. The majority of these algorithms resort to a finite representation of the
stable models of a FDNC program that employs maximal founded sets of knots, which are
labeled trees of depth 1 from which each stable model can be reconstructed. Due to this
property, reasoning over FDNC programs can in many cases be reduced to reasoning from
knots. Once the knot-representation for a program is derived (which can be done off-line),
several reasoning tasks are not more expensive than in the function-free case, and some are
even feasible in polynomial time. This knowledge compilation technique paves the way to
potentially more efficient online reasoning methods for FDNC and other formalisms.

1Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11,
A-1040 Vienna, Austria. Email: (eiter|simkus)@kr.tuwien.ac.at

Acknowledgements: This work was partially supported by the Austrian Science Funds (FWF)
project P17212 and the EC project REWERSE (IST-2003-506779).

Some of the results in this paper have been presented, in preliminary form, at the 14th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2007), Yerevan,
Armenia, October 15-19, 2007.

Copyright c© 2008 by the authors

INFSYS RR 1843-08-01 I

Contents

1 Introduction 1

2 Preliminaries 4

3 FDNC Programs 6

3.1 Characterization of Stable Models . 8
3.2 Finite Representation of Stable Models . 12

4 Complexity Results 16

5 Complexity of FDNC 18

5.1 Deriving Maximal Founded Set of Knots . 18
5.2 Deciding Consistency . 19
5.3 Brave Entailment of Queries . 22
5.4 Cautious Entailment of Open Queries . 24

6 Complexity of Fragments 26

6.1 Reasoning in FN and FNC . 26
6.2 Reasoning in FC . 27
6.3 Reasoning in F and FD . 31

7 Applications and Extensions 34

7.1 Reasoning about Actions and Planning . 34
7.2 Higher-arity FDNC . 38

8 Conclusion 41

8.1 Related Work . 41
8.2 Summary and Further Issues . 44

A Proofs and Constructions 45

A.1 Auxiliary Lemma . 45
A.2 Normalization of ALC KBs . 47
A.3 Brave Entailment in FDNC . 48
A.4 Open Queries . 49
A.5 Reasoning in FN . 53
A.6 Higher-arity FDNC . 55

INFSYS RR 1843-08-01 1

1 Introduction

Answer Set Programming (ASP) is a declarative problem solving paradigm that emerged from
Logic Programming and Non-Monotonic Reasoning [6, 37, 39, 44], and is particularly well-suited
for modeling and solving problems that involve common-sense reasoning. It is based on non-
monotonic logic programs under the Answer Set Semantics (also known as stable model semantics)
[23], which assigns a given program one, no, or multiple answer sets; this facilitates to encode
many problems into logic programs such that their solutions correspond to the answer sets of the
programs and can be easily extracted from them. This paradigm has been successfully applied to a
range of applications including data integration, configuration, reasoning about actions and change,
etc. We refer the reader [53] for a more detailed discussion and an overview of applications, whose
number has rapidly increased in the last years.

While Answer Set Semantics, which underlies ASP, was defined in the setting of a general first-
order language, current ASP frameworks and implementations, like DLV [21], Smodels [45], clasp
[22] and other efficient solvers (see [3]) are based in essence on function-free languages and resort
to Datalog with negation and its extensions.

However, it is widely acknowledged that this leads to drawbacks related to expressiveness, and
also to inconvenience in knowledge representation, cf. [8]. Since one is forced to work with finite
domains, potentially infinite processes cannot be represented naturally in ASP. Additional tools
to simulate unbounded domains must be used. A notable example is the DLVK [16] front-end of
the DLV system which implements the action language K [17]. Constants are used to instantiate a
sufficiently large domain (estimated by the user) for solving the problem; this may incur high space
requirements, and does not scale to large instances.

Function symbols, in turn, are a very convenient means for generating infinite domains and
objects, and allow for a more natural representation of problems in such domains. However, they
have been banned in ASP for a good reason: allowing them leads to undecidability even for (rather
simple) Horn programs [2],1 and negation under the answer set semantics, leads to high undecid-
ability, cf. [41, 38, 40]. This raises the challenge to single out meaningful fragments of ASP with
function symbols which allow to model infinite domains while still retaining the decidability of
the standard reasoning tasks. Several works have addressed this issue, including [11, 10, 8, 7, 51].
Most recently, Bonatti and his co-workers recently introduced finitary and finitely recursive logic
programs [8, 7]. They imposed syntactic conditions on the groundings of logic programs, which are
infinite in the presence of function symbols. Therefore, the verification of the conditions is difficult
(in fact, unsoluble), which limits the applicability of the results. Syrjänen [51] used a generalization
of stratification which can be effectively checked, while Chomicki and Imieliński [11, 10] programs
without negation in which restrictions applied to the rules individually. We refer to Section 8 for
more details and discussion of related work.

In this paper, we pursue an approach to obtain decidable logic programs with function symbols
by merely constraining, similar as in [11, 10], the rule syntax in a way that can be effectively
checked. To this end, we take inspiration from results in automated deduction and other areas
of knowledge representation, where many procedures, like tableaux algorithms with blocking, or
hyper-resolution, have been developed for deciding satisfiability in various fragments of first-order
logic. When function symbols (or existential quantification) may occur, these procedures are often
sophisticated because they have to deal with possibly infinite models. However, because of the

1See [34] for an interesting historic account of this result (quoted in [12]).

2 INFSYS RR 1843-08-01

peculiarities of Answer Set Semantics, transferring these results to logic programs with function
symbols is not straightforward. Reasoning with logic programs needs to be more refined since only
Herbrand models of a program are of interest and, moreover, only particular such models (fulfilling
the condition of stability), which happen to be special minimal Herbrand models.

The main contributions of this paper are briefly summarized as follows.

• We introduce the class FDNC of logic programs, which allow for function symbols, disjunction,
constraints, and non-monotonic negation under the answer set semantics [23]. In order to provide
decidable reasoning, FDNC programs are syntactically restricted in order to ensure that they have
the forest-shaped model property. To this end, in the first stage programs are considered in which
the predicates are unary and binary, and function symbols are unary; this gives us the class of
ordinary FDNC programs, described in Section 3. To accommodate predicates of higher arity, an
extension of FDNC to higher-arity predicates is conceived in Section 7. The syntactic restrictions
are similar to those in [11], and limit the use of functions symbols, but are more restrictive. This,
however, facilitates the development of special techniques for handling FDNC-programs, which are
needed in order to cope with negation, disjunction, and constraints, which had not been considered
in [11].

Furthermore, we consider the natural restrictions of FDNC program that arise if the constructs of
negation (N), disjunction (D) and constraints (C) are disallowed, giving rise to a whole family of
logic programs ranging from F to FDNC; the plainest language in this family, F, is a subclass of
Horn programs that is (apart from minor deviations) a fragment of DatalognS in [11].

• We study standard reasoning tasks for FDNC, including deciding the consistency of a given
program, i.e., existence of an answer set, brave entailment of a given ground atom A from a given
program P , as well as cautious entailment of a given ground atom A from a given program P .
Furthermore, we also consider answering existential queries of the form ∃~x.p(~x), where ~x is a tuple
of variables, and open queries λ~x.p(~x), (where the variables ~x must be bound to a ground term
prior to entailment checking) under both brave and cautious entailment.

For these problems, we develop algorithms and characterize their computational complexity over the
whole family programs from of F to FDNC, in terms of completeness results for suitable complexity
classes. As we show, for FDNC all reasoning tasks are ExpTime-complete, with the exception of
deciding answer existence for open queries under cautious entailment, which is ExpSpace-complete.
Disallowing either disjunction and constraints (which gives FN) or non-monotonic negation (which
gives FDC) does not lead to lower complexity, while all problems drop to PSpace-completeness
if both negation and disjunction are disallowed (which gives FC, that are Horn logic programs
with constraints). Depending on the reasoning task and the constructs available, the complexity
ranges in the other cases from polynomial time over co-NP, ΣP

2 , PSpace and ExpTime up to
ExpSpace. In particular, for F programs (which are Horn programs), entailment of ground atoms
is polynomial; note that even in the absence of function symbols, this problem is NP-hard for Horn
programs with binary predicates. A compact summary of the complexity results is given in Table 1
of Section 4, which also provides a detailed discussion.

• The ExpTime-hardness proofs for consistency checking of programs in the fragments FN, FDC,
and FDNC, are by a reduction from satisfiability testing in the ExpTime-complete Description
Logic ALC. As a side result, we obtain a polynomial time mapping of a well-known Description

INFSYS RR 1843-08-01 3

Logic (cf. [5]) to logic programs under answer set semantics. The mapping takes advantage of a
normal form of ALC knowledge bases which makes the mapping task quite easy, and is balanced
in the sense that it maps to class of logic program whose complexity is not higher then the one of
ALC (see Section 8 for a discussion of other mappings). These results are interesting in their own
right and may be exploited in other contexts.

• FDNC programs can have infinitely many and infinitely large stable models, which therefore can
not be explicitly represented for reasoning purposes. We provide a method to finitely represent all
the stable models of a given FDNC program. This is achieved by a composition technique that
allows to reconstruct stable models as forests, i.e., sets of trees, from knots, which are instances of
generic labeled trees of depth 1. The finite representation technique allows us to define an elegant
decision procedure for brave reasoning in FDNC. It may also be exploited for offline knowledge
compilation [9, 13] to speed up online reasoning, by precomputing and storing a knot representation
of a logic program P . Given such a representation, multiple query answering from P can be done
comparatively efficiently (some problems are solvable in polynomial time), and furthermore also
model building (which is of concern in ASP): starting from the knots as building blocks, any stable
model of P can be gradually constructed (leading to an infinite process in general), at no higher cost
than in the function-free case. In general, a knot representation of a logic program is exponential
in the size of the program; this is the usual tradeoff between time and space for such compilation,
and is encountered in other compilation forms as well (e.g., compilation of a propositional formula
into all its prime implicates [13]).

Thanks to their features, FDNC programs are a powerful formalism for rule-based modeling
of applications with potentially infinite processes or objects, which also accommodates common-
sense reasoning through non-monotonic negation. From a complexity perspective, FDNC and its
subclasses provide effective syntax for expressing problems in PSpace, ExpTime and ExpSpace

using logic programs with function symbols.
This can, for instance, be fruitfully exploited for reasoning about actions and planning. The

usability of answer set programming in this area is well-known and has been explored in many
works, including [14, 36, 6, 17, 52, 48, 49, 42]; the excellent book of Baral [6] devotes a whole
chapter to this subject and is recommended for a background. FDNC programs allow to encode
action domain descriptions in transition-based action formalisms which support incomplete states
and nondeterministic action effects, like C [25], K [17], or fragments of the situation calculus (see
e.g. [35] for background) in a way such that arbitrarily long action sequences can be naturally
handled.

As an appetizer for the use of FDNC programs in this area, we sketch here informally elements
of a simple encoding of a plain propositional variant of the situation calculus into FDNC programs.
To this end, we use unary predicates F (x) for fluents F that describe the state of the domain in
a certain situation, a unary predicate s(x) to denote situations x, and the constant init for the
initial situation. For the latter, a fact s(init) ← is set up, and the initial state of the domain is
then described by facts of the form F (init)← .

Transitions happen through the execution of actions a1, . . . , an, which are represented by
function symbols fa1

, . . . , fan ; intuitively, fai
(x) is the situation resulting if action ai is taken in

situation x. Using a binary predicate tr, we can express that a transition happened by tr(x, fai
(x));

a rule a1(x)∨· · ·∨an(x)← s(x) singles out some action in situation x for moving on. If the action ai

can be taken, which is assessed by some predicate possai
(x), then the transition is made, described

4 INFSYS RR 1843-08-01

by the rule tr(x, fai
(x)) ← ai(x), possai

(x); the new situation after taking an action is described
with s(y)← tr(x, y).

These rules and facts provide a generic backbone for describing an evolving action domain.
Particular action effects during transitions can be stated by rules of FDNC; e.g., the rule F (fa(x))←
tr(x, fa(x)) states that after executing the action α, F holds in the follow up situation. Importantly,
the availability of non-monotonic negation allows to conveniently state fluent inertia, i.e., the fluent
value when taking an action remains the same by default. For fluent F , this can be expressed using
the following two rules

F (y) ← F (x), tr(x, y), not F̄ (y),

F̄ (y) ← F̄ (x), tr(x, y), not F (y),

where F̄ (x) is a predicate for the complement of F (x) that can be simulated by adding the constraint
← F (x), F̄ (x). Possible states of the domain in a situation (in case of incomplete information) can
be captured by rules F (x) ∨ F̄ (x) ← s(x). Overall, the stable models of the program will then
correspond to trajectories of the action domain, i.e., sequences of actions together with the fluent
values at each stage of action execution. If we replace the disjunctive rule a1(x)∨· · ·∨an(x)← s(x)
with the rules a1(x)← s(x); . . . ; an(x)← s(x), then the stable models correspond to the unwindings
of the initial state according to the possible transitions.

Using these elements, FDNC may be used to represent a number of actions domains from the
literature, e.g., the Yale Shooting [26], Bomb in the Toilet, and others cf. [17], and to solve reasoning
and planning problems on them. In Section 7 we more concretely elaborate on an encoding of action
domains in a fragment of the language K into FDNC, and show on an example how query answering
can be used to elegantly solve, among others, conformant planning problems in K. The latter
problems are ExpSpace-complete in general, and show that FDNC-programs offer the complexity
which is tailored to these problems.

The remainder of this paper is organized as follows. Section 2 briefly introduces the basic
concepts and notation of disjunctive logic programs used in this paper. Section 3 then introduces
FDNC programs, and establishes basic semantic properties of them. It also introduces the finite
representation of stable models in terms of knots. Section 4 gives an overview and a discussion of
the complexity results in this paper, which are established in the subsequent Sections 5 and 6. In
the course of this, also reasoning techniques and algorithms are developed. Section 7 discusses a
possible application of FDNC-programs for planning, and considers and extension of ordinary to
higher-arity FDNC programs. The final Section 8 discusses related work and concludes with issues
for future work.

2 Preliminaries

We assume fixed countably infinite sets of constant symbols, function symbols, predicate symbols,
and variables. Moreover, each function and relation symbol has an associated positive integer, its
arity. A term is either a constant symbol, a variable or an expression of the form f(~t) where f is a
function symbol, ~t is an n-tuple of terms and n is the arity of f . An atom is an expression of the
form R(~t) where R is a predicate symbol, ~t is an n-tuple of terms and n is the arity of R. An atom
is ground if it contains no variables. An atom is also called a positive literal. An expression of the
form not A, where A is an atom, is a negative literal. A literal is a either a positive or a negative
literal.

INFSYS RR 1843-08-01 5

A disjunctive logic program (briefly, a program) is a set of (disjunctive) rules of the form

A1 ∨ . . . ∨An ← L1, . . . , Lm, (1)

where n + m > 0, A1, . . . , An are atoms and L1, . . . , Lm are literals. The atoms A1, . . . , An are
the head atoms of the rule, while L1, . . . , Lm are the body literals of the rule. For a rule r, let
head(r), body+(r) and body−(r) respectively denote the sets of head atoms, positive body literals,
and negative body literals of r, respectively. A fact is a rule (1) with empty body (m = 0), also
written A0., while a constraint is a rule with no atoms in the head (n = 0).

If body−(r) = ∅, then the rule r is positive. For a positive rule r, let body(r) := body+(r). A
program is positive, if it contains only positive rules.

The semantics of a program P is given in terms of Herbrand interpretations. Let HUP be the
Herbrand universe of P , i.e., the set of all terms that can be built from constants and function
symbols occurring in P . Similarly, HBP is the Herbrand base of P , i.e., the set of all atoms that
can be built from predicate symbols of P and terms in HUP . A Herbrand interpretation for P is
an arbitrary subset of HBP .

A term, atom, rule etc. is ground, if it contains no variables. A rule r′ is a ground instance of a
rule r ∈ P , if r′ is a ground rule obtained from r by replacing each variable in r by a term in HUP ;
by Ground(P) we denote the set of all ground instances of the rules in P .

A (Herbrand) interpretation I satisfies a positive ground rule r, if body(r) ⊆ I implies I ∩
head(r) 6= ∅. An interpretation I is a model of a positive ground program P , if I satisfies each rule
r ∈ P ; moreover, I is a minimal model of P , if no J ⊂ I is a model of P . The set of minimal
models of P is denoted by MM(P).

Given an interpretation I for a program P , the Gelfond-Lifschitz reduct [23] of P , denoted P I ,
is obtained from Ground(P) by

(i) removing all rules r such that body−(r) ∩ I 6= ∅, and

(ii) removing all negative literals from the remaining rules.

Then I is a stable model (or answer set) of P , if I ∈ MM(P I). The set of all stable models of a
program P is denoted by SM(P). A program P is consistent, if SM(P) 6= ∅.

A ground (atomic) query is a ground atom A, and an existential (atomic) query is an expression
∃~x.Q(~x), where ~x is a n-tuple of variables and Q is an n-ary predicate symbol. An open query is a
similar expression λ~x.Q(~x).

As usual, a program P bravely entails a ground query A (resp., an existential query ∃~x.Q(~x),
denoted P |=b A (resp., P |=b ∃~x.Q(~x)), if A (resp. ∃~x.Q(~x)) is true in some stable model I of P ,
i.e., I contains A (resp., some atom Q(~t)). Furthermore, P bravely entails an open query λ~x.Q(~x),
denoted P |=b λ~x.Q(~x), if P bravely entails some ground query Q(~t); any such ~t is called an answer
for the query.

The notion of cautious entailment, |=c, is dually defined, where “some stable model” replaces
“every stable.” Note that P |=b λ~x.Q(~x) iff P |=b ∃~x.Q(~x), while P |=c λ~x.Q(~x) implies P |=c

∃~x.Q(~x) but not vice versa; this is because λ~x requires that ~t is the same in all stable models,
while ∃~x permits varying terms in different stable models. Cautious entailment of open queries
is a useful tool e.g. in planning, to determine conformant (alias secure) plans, i.e., sequences of
actions whose execution lead to the goal, regardless of possibly incomplete knowledge about the
initial state and/or nondeterministic action effects (see Section 7).

6 INFSYS RR 1843-08-01

Example 1. Consider the program P consisting of the following rules:

D(a)←
B(f(x))←D(x), not A(x) C(x)←A(x)

A(x)←D(x), not B(f(x)) C(x)←B(f(x))

P has two stable models I1 = {D(a), B(f(a)), C(a)} and I2 = {D(a), A(a), C(a)}. This is because
I1 is a minimal model of

P I1 = {D(a)←;B(f i+1(a))← D(f i(a));A(f i+1(a))← D(f i+1(a));C(f i(a))← A(f i(a)) | i ≥ 0},

and I2 is a minimal model of
P I2 = {D(a)←;B(f i+2(a)); A(f i(a))← D(f i(a));C(f i(a))← A(f i(a));C(f i(x))← B(f i(x))}.

No other interpretation is a stable model of P . Note that P |=b ∃x.C(x) and P |=c ∃~x. C(x),
while P 6|=c λ~x. C(x), i.e., has no answer. On the other hand, P |=c λ.D(x) has the answer x = a.

3 FDNC Programs

We now introduce the class FDNC of logic programs with function symbols. The syntactic re-
strictions that are imposed ensure the decidability of the formalism, but allow infinitely many and
possibly infinite stable models. We then analyze the model-theoretic properties of FDNC programs
and introduce a method to finitely represent the (possibly infinite) collection of stable models of a
program.

For convenience, we use P±(~t) to generically denote one of the literals P (~t) and not P (~t).

Definition 3.1 (FDNC program). An FDNC program is a finite disjunctive logic program whose
rules are of the following forms:

(R1) A1(x) ∨ . . . ∨An(x) ← B±

0 (x), . . . , B±

l
(x)

(R2) R1(x, y) ∨ . . . ∨Rn(x, y) ← P±

0 (x, y), . . . , P±

l
(x, y)

(R3) R1(x, f1(x)) ∨ . . . ∨Rn(x, fn(x)) ← P±

0 (x, g0(x)), . . . , P±

l
(x, gl(x))

(R4) A1(y) ∨ . . . ∨An(y) ← B±

0 (Z0), . . . , B
±

l
(Zl), R

±

0 (x, y), . . . , R±

k
(x, y)

(R5) A1(f(x)) ∨ . . . ∨An(f(x)) ← B±

0 (W0), . . . , B
±

l
(Wl), R

±

0 (x, f(x)), . . . , R±

k
(x, f(x))

(R6) R1(x, f1(x)) ∨ . . . ∨Rn(x, fk(x)) ← B±

0 (x), . . . , B±

l
(x)

(R7) C1(~c1) ∨ . . . ∨ Cn(~cn) ← D±

1 (~b1), . . . ,D
±

l
(~bl),

where n, l, k ≥ 0, each Zi ∈ {x, y}, Wi ∈ {x, f(x)}, and each ~ci, ~bi is a tuple of constants of arity
≤ 2. Each rule r is safe, i.e., each of its variables occurs in body+(r). For rules of type (R5) we
require at least on binary literal to be positive. Moreover, at least one rule in the program is of
type (R7) and is a fact.

The fragments obtained from FDNC by disallowing disjunction, constraints or negative literals
are denoted by omitting respectively D, C, and N in the name. The collection of all these fragments
is called the F family.

The structure of the rules in FDNC syntax, the availability of non-monotonic negation and
function symbols allows us to represent possibly infinite processes in a rather natural way. We
provide here an example from the biology domain.

INFSYS RR 1843-08-01 7

(01) Change(x, grow (x))←Young(x),Warm(x)

(02) Change(x, cell1(x))←Mature(x),Warm(x)

(03) Change(x, cell2(x))←Mature(x),Warm(x)

(04) Change(x,die(x))←Cold(x)

(05) Young(cell1(x))←Change(x, cell1(x))

(06) Young(cell2(x))←Change(x, cell2(x))

(07) Mature(grow (x))←Young(x),Change(x, grow (x))

(08) Warm(grow (x)) ∨ Cold(grow (x))←Change(x, grow (x))

(09) Warm(y)←Warm(x),Change(x, y), not Cold(y)

(10) Cold(y)←Cold(x),Change(x, y), not Warm(y)

(11) ←Cold(x),Warm(x)

(12) Young(b)←

(13) Warm(b)←

b

Ch

Y, W

Ch

Ch Ch

g(c1(g(b)))

Y, W
c1(g(b)) c2(g(b))

M, W g(b)

Y, W

M, W

Figure 1: Example: Evolution of a Cell

Example 2. As a running example, we use the FDNC program P ex in Figure 1, which represents
the evolution of a cell; its growth and splitting into two cells. (1)-(4) describe changes of a cell. If
it is warm, a young cell will grow and a mature cell will split into two cells; any cell dies if it is
cold. The rules (5)-(7) determine whether a cell is young or mature. The rules (8)-(11) state the
knowledge about the temperature. During the growth (which takes longer time), it might alter,
while in the other changes (which take short time), it stays the same; the latter is expressed by
inertia rules (9) and (10). Finally, (12) and (13) are the initialization facts. (For brevity, we also
shorten predicate symbols to W (arm), C(old), Y (oung), M(ature), and Ch(ange) and function
symbols to c(ell)1, c(ell)2, g(row), d(ie).)

It is easy to see that P is consistent. In fact, it has infinitely many stable models, corresponding
to the possible evolutions of the initial situation. It might have finite and infinite stable models, as
cell splitting might go on forever. The part of the stable model that is depicted in Figure 1 represents
a development where the temperature does not change during the growth of b and its child. An-
other stable model is {Young(b), Warm(b), Change(b, grow(b)), Cold(grow(b)), Mature(grow(b)),
Change(grow(b), die(grow(b)))} which corresponds to the situation that the temperature changes
and the bacterium dies.

The brave query ∃x.Cold(x) evaluates to true; this is not the case for the brave query Change(b,
die(b)). The query whether there is some evolution in which bacteria never die is expressed by
adding the constraint ← Change(x, die(x)) and asking whether the resulting program is consistent
(which is indeed the case).

Example 2 shows that in presence of function symbols, an FDNC program may have infinite
stable models. We note that FDNC programs do not have the finite-model property, i.e., a program
might have only infinite stable models. This is witnessed by the simple F program P = {A(c) ←
; R(x, f(x))← A(x); A(y)← R(x, y)}, whose single stable model contains infinitely many atoms.

Due to the lack of finite-model property, the search for stable models of an FDNC program
cannot be confined to a finite search-space, i.e., consistency cannot be decided by considering a finite
subset of the grounding of the program. We present in the sequel a method to finitely represent
the possibly infinite stable models. To this end, we first provide a semantic characterization of the
stable models of an FDNC program.

8 INFSYS RR 1843-08-01

3.1 Characterization of Stable Models

Like many decidable logics, including Description Logics, FDNC programs enjoy a forest-shaped
model property. A stable model of an FDNC program can be viewed as a graph and a set of trees
rooted at each of nodes in the graph.

Proposition 1. An interpretation I is forest-shaped, if the following hold:

(a) All the atoms in I are either unary or binary. Additionally, each binary atom in I of of the
form R(c, d), R(t, f(t)) or R(f(t), t), where c, d are constants, t is a term.

(b) If A ∈ I is an atom with a term of the form f(t) occurring as an argument, then for some
binary predicate symbol R, R(t, f(t)) ∈ I.

If H is an arbitrary interpretation for an FDNC program P and J ∈ MM(PH), then J is forest-
shaped. Therefore, every J ∈ SM(P) is forest-shaped.

Proof. The property follows directly from the structure of the rules and the minimality require-
ments. Suppose H is an arbitrary interpretation for P . Assume some J ∈ MM(PH) such that it
contains an atom violating (a) or (b). We can simply collect all the atoms violating (a) or (b) and
remove them from J . It is easy to see that such removal does not violate any rule in PH , and,
hence, we have that J is not minimal. Contradiction. The second claim follows from the definition
of stable models.

The methods that we present in this paper are aimed at providing the decidability results
together with the worst-case optimal algorithms for FDNC. We note, however, that the decidability
of the reasoning tasks discussed in this paper can be inferred from the results in [19]. The technique
in [19] shows how the stable model semantics for the disjunctive logic programs with functions
symbols can be expressed by formulae in second-order logic, where the minimality of models is
enforced by second-order quantifiers. Due to the forest-shaped model property, one can express
the semantics of FDNC programs in monadic second-order logic over trees SkS, which is known
to be decidable (see [43] for a related encoding). Unfortunately, optimal algorithms or exact
complexity characterizations are not apparent from such encodings, which are usually processed
using automata-based algorithms.

The semantic characterization and the reasoning methods later on follow an intuition that stable
models for an FDNC program P can be constructed by the iterative computation of stable models
of local programs. During the construction, local programs are obtained “on the fly” by taking
certain finite subsets of Ground(P) and adding facts (states) obtained in the previous iteration.

In the rest of Section 3, we assume that P is an arbitrary FDNC program. For convenience,
given a term t and a set of atoms I, we write t∈̂I, if there exists an atom in I having t as an
argument.

Definition 3.2 (State). Let t be a term. A state of t is an arbitrary set U t containing only unary
atoms ground with t (i.e., with t as the argument); the superscript t will be dropped if t is not of
particular interest. For a set of atoms I and a term t∈̂I, we denote by st(I, t) the state of t in I,
i.e., the set {A(t) | A(t) ∈ I}.

For a one-variable rule r in FDNC syntax, let r↓t denote the rule obtained by substituting every
occurrence of the variable in r with a term t. Without loss of generality, we assume that in rules

INFSYS RR 1843-08-01 9

K1 K2 K3

M(g(b)), W (g(b)),
Ch(g(b), c1(g(b))), Y (c1(g(b))),
W (c1(g(b))), Ch(g(b), c2(g(b))),
Y (c2(g(b))), W (c2(g(b)))

M(g(b)), Y (g(b)), W (g(b))
Ch(g(b), c1(g(b))), Ch(g(b), c2(g(b))),
Ch(g(b), g(g(b))), Y (c1(g(b))),
W (c1(g(b))), Y (c2(g(b))), W (c2(g(b))),
M(g(g(b))), C(g(g(b))),

Y (b), W (b),
Ch(b, g(b)),
M(g(b)), Y (g(b)),
W (g(b))

g(b)

Y, W

M, W

Y, W

c1(g(b)) c2(g(b))

Ch Ch

g(b)

Y, W Y, W

M, Y, W

Ch

c1(g(b)) g(g(b)) c2(g(b))

M, C

Ch
Ch

b

g(b)
M, Y, W

Y, W

Ch

Figure 2: Example knots

r of type (R2) or (R4), the tuple of variables in binary atoms is always 〈x, y〉, and denote by r↓s,t
the rule obtained by substituting every occurrence of x and y with a term s and t, respectively.

Definition 3.3 (Local Program). Let U t be a state. The local program P (U t) is the smallest
program containing the following rules:

– A(t)←, for each A(t) ∈ U t,

– r↓t, for each r ∈ P of type (R3), (R5), or (R6),

– r↓t,f(t), for each r ∈ P of type (R2) or (R4) and function symbol f of P , and

– r↓f(t), for each r ∈ P of type (R1) and function symbol f of P .

Suppose I is a forest-shaped interpretation for P , t∈̂I, and U is the state of t in I, i.e., U =
st(I, t). Intuitively, the stable models of P (U) define the set of possible immediate successor
structures for t in I. In other words, if I is a stable model of P , then I must contain a stable
model of P (U). Stable models of local programs have a simple structural property, captured by
the notion of knots.

Definition 3.4 (Knots). A knot with a root term t is a set of atoms K such that

(i) each atom in K has form A(t), R(t, f(t)), or A(f(t)) where A, R, and f are arbitrary, and

(ii) for each term f(t)∈̂K, there exists R(t, f(t)) ∈ K (connectedness).

We say K is over (the signature of) a program P , if each predicate and function symbol occurring
in K also occurs in P (t need not be from HUP). Let succ(K) denote the set of all terms f(t)∈̂K.

A knot with a root term t can be viewed as a labeled tree of depth at most 1, where succ(K)
are the leaves. The nodes are labeled with unary predicate symbols, while the edges are labeled
with binary predicate symbols. Note that ∅ is a knot whose root term can be arbitrary. Figure 2
shows an example of knots over the signature of the program P ex in Example 2.

10 INFSYS RR 1843-08-01

It is easy to see that due to the structure of local programs, their stable models satisfy the
conditions in the definition of knots, and therefore are knots. On the other hand, knots are also
the structures that appear in the trees of the forest-shaped interpretations. To “extract” a knot
occurring in a forest-shaped interpretation, the following will be helpful.

For a term t, let HBt denote the set of all atoms that can be built from unary and binary
predicate symbols using t and terms of the form f(t). For any forest-shaped interpretation I for P

and t∈̂I, the set K := I ∩HBt is a knot.
The following notion of stable knot is central. They are self-contained building blocks for stable

models of FDNC programs.

Definition 3.5 (Stable Knot). Let K be a knot with a root term t and U t = st(K, t). Then K is
stable w.r.t. the program P iff K ∈ SM(P (U t)).

Intuitively, stable knots encode an assumption and a solution. Suppose a knot K with a
root term t and U t = st(K, t) is stable w.r.t. P . Moreover, suppose t occurs in a forest-shaped
interpretation I for P , as a “leaf node”, i.e., there are no atoms of the form R(t, f(t)) in I. If the
states of t in I and K coincide, i.e., st(I, t) = U t, then intuitively K becomes an eligible set of
atoms that can be introduced in I to give t the necessary successors.

Example 3. (Continued) Consider the knots K1, K2 and K3 from Figure 2. It is easy to see that
there exists a stable model of P ex where K1 occurs, i.e., a stable model I such that I∩HBg(b) = K1.
In fact, such a stable model is depicted in Figure 1. On the other hand, K2 and K3 do not occur
in any stable model of P ex, since the rules of P ex do not force a domain element to satisfy both M

and Y .
The knot K1 is a stable knot. As easily checked, K1 is a stable model of the local program

P ex({M(g(b)), W (g(b))}). Even though K2 does not occur in stable model of P ex, it is a stable
model of P ex({M(g(b)), Y (g(b)), W (g(b))}), and therefore is stable. Intuitively, K2 is an eligible
building block for a stable model of P ex only if g(b) satisfies exactly W and both M and Y . The
knot K3 is not a stable knot, since the stable models of P ex({Y (b), W (b)}) are K3 \ {Y (g(b))} and
K3 \ {Y (g(b)), W (g(b))} ∪ {C(g(b))}.

After introducing the necessary notions for the tree-part of forest-shaped interpretations, we
turn to the graph part.

Definition 3.6 (PG). By PG we denote the program Ground(P ′), where P ′ is obtained from P by
removing all the rules containing function symbols.2

The following theorem characterizes the stable models of P . For an interpretation I, let Ic be
the set of all atoms A(~c) ∈ I such that ~c is a tuple of constants.

Theorem 1. Let I be an interpretation for P . The following two are equivalent.

(A) I is a stable model of P .

(B) I is a forest-shaped interpretation such that

(i) Ic is a stable model of PG, and

2Note that P
G is finite since its Herbrand universe contains only the constants of P .

INFSYS RR 1843-08-01 11

(ii) for each term t∈̂I, I ∩HBt is a knot that is stable w.r.t. P.

Proof. (A) ⇒ (B). Assume I is a stable model of P . We show that (i) follows. Let J := Ic and
Q := PG. Suppose J is a not a stable model of the program Q, i.e., J not a minimal model of QJ .
There are two possibilities:

- J is not a model of QJ . Then there exists a rule r in QJ such that body(r) ⊆ J and head(r)∩J = ∅.
This rule, by the definition, is grounded to constants only. Since, J is a restriction of I to the
atoms that only have constants as arguments, J and I agree on the reduct for the rules ground
with constants only. Hence, r ∈ P I . For the same reason, body(r) ⊆ I and head(r)∩I = ∅, which
implies that I is not a model of the reduct P I , i.e., I is not a stable model of P .

- J is a model of QJ , but is not minimal, i.e., there exists H ⊂ J such that H is a model of
QJ . First, notice that by the definition of PG and due to the fact that J is Ic, it holds that (∗)
r ∈ QJ iff r ∈ P I and r is ground to constants only. Define an interpretation M := H ∪ (I \ J).
Obviously, M is such that M ⊂ I. We verify that M is a model of P I . Indeed, M represents an
interpretation obtained from I by removing some constant-ground atoms. Due to the syntax of
FDNC programs, M could potentially violate only a rule r in P I that is ground to constants only.
However, by (∗), r ∈ QJ and we assumed that H is a model of QJ . We arrive at a contradiction.

In the similar fashion we show that (ii) follows. Suppose t∈̂I and K := I ∩HBt. That K is a knot
over the signature of P follows from the fact that I is a forest-shaped (see Proposition 1). Suppose
K is not stable w.r.t. P , i.e., K is not a stable model of P (U), where U = st(K, t). There are two
possibilities:

- K is not a model of P (U)K . Then there exists a rule r ∈ P (U)K such that body(r) ⊆ K and
head(r)∩K = ∅. It cannot be a fact since, by definition, each fact A(t)← is in P (U) iff A(t) ∈ K.
Then r ∈ Pt, where Pt denotes the program obtained from P (U) by removing the facts. By the
construction of local programs, Pt ⊆ Ground(P). Since K = I ∩ HBt, K and I agree on the
reduct for the rules in Pt and the interpretation of their atoms. This implies r ∈ P I , body(r) ⊆ I

and head(r) ∩ I = ∅. Therefore, I is not a stable model of P .

- K is a model of P (U)K , but is not minimal, i.e., there exists H ⊂ K such that H is a model of
P (U)K . Define a new interpretation M := H ∪ (I \K). Obviously, M ⊂ I. In the following we
show that M is a model of P I , and, hence, I is not a stable model of P . Suppose M is not a
model of P I . Then there is a violated rule r ∈ P I such that body(r) ⊆M and head(r) ∩M = ∅.
Since I is a model of P I and M is not, then r is of one of the following forms:

(a) A1(t) ∨ . . . ∨An(t)← B0(t), . . . , Bm(t),

(b) R1(t, f0(t)) ∨ . . . ∨Rn(t, fn(t))← P0(t, g0(t)), . . . , Pm(t, gm(t)),

(c) A1(f(t)) ∨ . . . ∨An(f(t))← B0(f(t)), . . . , Bm(f(t)),

(d) A1(f(t)) ∨ . . . ∨An(f(t))← B0(Z0), . . . , Bm(Zm), R0(t, f(t)), . . . , Rk(t, f(t)), or

(e) R1(t, f0(t)) ∨ . . . ∨Rn(t, fn(t))← B0(t), . . . , Bm(t),

where each Zi ∈ {t, f(t)}, n ≥ 0, and m, k > 0. Suppose r is of the form (a). Then K \ H

contains an atom A(t), for some unary predicate symbol A. It follows that H is not a model of
P (U)K . This is due to the fact that P (U)K contains A(t)← by the definition of local programs.

12 INFSYS RR 1843-08-01

Therefore r is of type (b), (c), (d), or (e). Due to K = I ∩ HBt and the definition of P (U),
it follows that r ∈ P (U)K . Due to body(r) ⊆ M , M = H ∪ (I \ K), and the atoms that may
occur in the body of r, we have body(r) ⊆ H. Furthermore, due to head(r) ∩M = ∅, we have
head(r) ∩H = ∅. Contradiction to the assumption that H is a model of P (U)K .

(B) ⇒ (A). Suppose (B) holds, but I is not a stable model of P , i.e., I is not a minimal model of
P I . Again, there are two possibilities:

- I is not a model of P I . Then there exists a rule r in P I such that body(r) ⊆ I and head(r)∩I = ∅.
It cannot be the case that r is ground to constants only. This is due to the fact that Ic is a stable
model of PG and that r is included in the reduct of PG w.r.t. Ic. Satisfaction of the rest of the
rules follows directly from the fact that, for each term t∈̂I, K := I ∩HBt is a knot that is stable
w.r.t. P.

- I is a model of P I , but is not minimal, i.e., there exists H ⊂ I such that H is a minimal model of
P I . Due to forest-shaped model property, H is forest-shaped. If Hc ⊂ Ic, then Ic is not a stable
model of PG. Then it has to be the case that Hc = Ic and there exists some term t satisfying
the following 2 conditions.

(a) It holds that:

(I) A(t) ∈ I and A(t) 6∈ H, for some unary predicate symbol A, and t is not a constant, or

(II) R(t, s) ∈ I and R(t, s) 6∈ H, for some binary predicate symbol R and a term s,

(b) Each subterm v of t violates (a).

Intuitively, t is some (smallest w.r.t. depth) term where I and H disagree on the interpretation
of atoms. Suppose t satisfies (I) (and possibly (II)), and is of the form f(s). By assumption,
K := I ∩ HBs is stable w.r.t. P . Due to the selection of t, K ′ := H ∩ HBs is a knot such
that K ′ ⊂ K and st(K ′, s) = st(K, s) =: U . It is easy to verify that since H is a model of P I ,
then K ′ is a model of P (U)K , and, hence, K is not stable w.r.t. P . Contradiction. Suppose t

does not satisfy (I) but satisfies (II). Again, by assumption, K := I ∩ HBt is stable w.r.t. P .
Due to the selection of t and failure of (II), K ′ := H ∩ HBt is a knot such that K ′ ⊂ K and
st(K ′, t) = st(K, t) =: U . Again, if H is a model of P I , then K ′ is a model of P (U)K , and, hence,
K is not stable w.r.t. P . Contradiction.

3.2 Finite Representation of Stable Models

By the semantic characterization of the stable models of an FDNC program from above, we may
view them as being composed of stable knots. More precisely, we show that Theorem 1 allows us to
obtain a finite representation of the stable models, which is based on the observation that although
infinitely many knots might occur in some stable model of a program, only finitely many of them
are non-isomorphic modulo the root term.

Definition 3.7 (K↓u). Let K be a knot with a root term t. By K↓u we denote the knot obtained
from K by replacing each occurrence of t in K with a term u.

INFSYS RR 1843-08-01 13

Indeed, if the program P has an infinite stable model I, then the set of knots L := {(I ∩HBt) |
t∈̂I} is infinite. However, for a fixed term t, the set L′ := {K↓t | K ∈ L} is finite as there are
only finitely many knots with the root term t over the signature of P . Intuitively, if we view t as a
variable, then each K ∈ L can be viewed as an instance of some knot in L′.

To talk about sets of knots with a common root term, we assume a special constant x not
occurring in any FDNC program. We call a set L of knots x-grounded, if all its knots have the root
term x. The following notion collects the knots occurring in a stable model and abstracts them
using x.

Definition 3.8 (Scanning). Let I be a forest-shaped interpretation for P . We define the set of
x-grounded knots as K(I) := {(I ∩HBt)↓x | t∈̂I}.

In the following, we show that x-grounded sets of knots can be used to represent the stable
models of an FDNC program. First, we observe that the stability of a knot is preserved under
substitutions.

Proposition 2. If K is a knot that is stable w.r.t. P , and u is an arbitrary term, then K↓u is
stable w.r.t. P .

Proof. Indeed, if we consider a stable model of a propositional program, then the global renaming
of propositional atoms in the model and in the program preserves the property.

We introduce a notion of founded sets of x-grounded knots. The intention is to capture the
properties of the set K(I) when I is a stable model of P . To this end, we need a notion of state
equivalence as a counterpart for substitutions in knots. Formally, states U t and V s are equivalent
(in symbols, U t≈V s), if U t = {A(t) | A(s) ∈ V s}, i.e., in both states terms satisfy the same unary
predicates.

Definition 3.9 (Founded Knot Set). Let S 6= ∅ be a set of states. A set L of x-grounded knots
that are stable w.r.t. the program P is founded w.r.t. P and S, if the following hold:

1. For each U ∈ S, there exists K ∈ L such that U ≈ st(K,x).

2. For each K ∈ L, the following hold:

a. for each s ∈ succ(K), there exists K ′ ∈ L s.t. st(K, s) ≈ st(K ′,x), and

b. there exists a sequence 〈K0, . . . , Kn〉 of knots in L such that:

- Kn = K,

- K0 is such that st(K,x) ≈ U for some U ∈ S, and

- for each 0 ≤ i < n, there exists s ∈ succ(Ki) s.t. st(Ki, s) ≈ st(Ki+1,x).

For an interpretation I, let S(I) denote the set of states of constants occurring in I, i.e.,
S(I) := {st(I, c) | c∈̂I is a constant}. The following is easy to verify.

Proposition 3. Let I ∈SM(P). Then K(I) is a set of knots that is founded w.r.t. P and S(Ic).

In what follows, we provide a construction of stable models out of knots in a founded set.
Moreover, we show that for a given consistent program there exists a founded set of knots that
captures all the stable models.

14 INFSYS RR 1843-08-01

Generating Stable Models out of Knots

We state formally the construction of forest-shaped interpretations out of knots in a founded set.
To this end, we first state the construction of trees which are represented in the standard way by
prefix-closed sets of words. For a sequence of elements p = [e1, . . . , en], let τ(p) denote the last
element en, and [p|en+1] denote the sequence [e1, . . . , en, en+1].

Definition 3.10 (Tree Construction). Let L be a set of knots that is founded w.r.t. P and a set
of states S, and let U t be a state such that U t ≈ V , for some V ∈ S. A set T of sequences, where
each element in a sequence is a tuple of a knot and a term, is called a tree induced by L starting at
U t, if the following hold:

(a) [〈K, t〉] ∈ T , where K ∈ L is s.t. st(K,x) ≈ U t.

(b) If there exists p ∈ T with τ(p) = 〈K, t〉 and f(x) ∈ succ(K), then there exists [p|〈K ′, f(t)〉] ∈ T ,
where K ′ is a knot in L s.t. st(K, f(x)) ≈ st(K ′,x).

(c) T is minimal, i.e., each T ′ ⊂ T violates (a) or (b).

We state the transformation of trees into Herbrand interpretations.

Definition 3.11 (T↓). Let T be a tree induced by a founded set of knots L starting at some state.
We define the set of atoms T↓ := {K↓t | p ∈ T with τ(p) = 〈K, t〉}.

We generalize the construction of trees to forest-shaped interpretations.

Definition 3.12 (Forest Construction). Let G be a set of atoms ground with constants of program
P only, and L be a set of knots founded w.r.t. P and a set of states S ⊇ S(G). Then F(G, L) is
the largest set of forest-shaped interpretations

I = G ∪ (T c1)↓ ∪ . . . ∪ (T cn)↓,

where {c1, . . . , cn} is the set of all constants occurring in G and each T ci a tree induced by L

starting at st(G, ci).

F(G, L) represents all the interpretations that can be build from G by attaching, for each of
the constants, a tree induced by L.

Theorem 2. If G ∈ SM(PG), L is a set of knots that is founded w.r.t. P and some S ⊇ S(G),
then F(G, L) 6= ∅ and each I ∈ F(G, L) is a stable model of P .

Proof. Indeed, F(G, L) 6= ∅ due to foundedness of L. Assume some I ∈ F(G, L). Each K ∈ L is
stable w.r.t. P . Then due to Proposition 2, for each term t∈̂I, I ∩ HBt is a knot that is stable
w.r.t. P . Keeping in mind that G ∈ SM(PG), Theorem 1 implies that I is a stable model of P .

We showed that stable model existence can be proved by checking that some founded set of
knots exists. As we see next, the properties of founded sets of knots imply that we can obtain a
set capturing all the stable models of a program.

INFSYS RR 1843-08-01 15

Capturing Stable Models

The following property of founded sets of knots is obvious.

Proposition 4. Let L1 and L2 be sets of knots founded w.r.t. P and sets of states S1 and S2

respectively. Then L1 ∪ L2 is founded w.r.t. P and S1 ∪ S2.

At this point, we introduce a founded set of knots, which will capture all the stable models.
First, let S(P) denote the set of states that occur in the stable models of PG, i.e., S(P) := {st(G, c) |
G ∈ SM(PG) ∧ c∈̂G}.

Definition 3.13 (KP). We denote by KP the smallest set of knots which contains every set of
knots L that is founded w.r.t. P and some S ⊆ S(P).

Due to Proposition 4 and Definition 3.13, the following is immediate.

Proposition 5. For the program P , the following hold:

(a) If KP 6= ∅, then KP is founded w.r.t. P and some S ⊆ S(P).

(b) If L is a set of knots that is founded w.r.t. P and some S ⊆ S(P), then KP is founded w.r.t.
P and some S′ ⊇ S.

(c) Each L ⊃ KP is not founded w.r.t. P and any S ⊆ S(P).

It is easy to verify that a stable model I can be reconstructed out of knots in K(I). Naturally,
the same holds for any superset of K(I) satisfying Definition 3.9.

Proposition 6. If I is a stable model of P , then I ∈ F(Ic, L) for each set of knots L ⊇ K(I) s.t.
L is founded w.r.t. P and some set of states S ⊇ S(Ic).

The following will be helpful.

Definition 3.14 (Compatible KP). We say KP is compatible with a set of states S, if for each
state U ∈ S, there exists K ∈ KP s.t. U ≈ st(K,x).

The crucial property of KP is that it captures the tree-structures of all the stable models of P .
Together with the stable models of PG, it represents the stable models of P .

Theorem 3. Let I be an interpretation for P . Then, I ∈ SM(P) iff I ∈ F(G, KP), for some
G ∈ SM(PG) s.t. KP is compatible with S(G).

Proof. If I ∈ SM(P), then, by Proposition 3, K(I) is founded w.r.t. P and S(Ic). By definition,
K(I) ⊆ KP . By Proposition 5, KP is founded w.r.t. P and some S ⊇ S(Ic). By Proposition 6,
I ∈ F(Ic, KP). The other direction is proved by Theorem 2.

We have obtained a finite representation of the stable models of a FDNC program P . Indeed,
each of its stable models can be generated out of some stable model of PG and a set of knots KP .
We can view PG together with KP as a compilation of the logic program P that can be exploited
for reasoning and stable model building. We will discuss this further in Sections 5 and 6, where
computational cost is addressed.

16 INFSYS RR 1843-08-01

Problem F FD FC FDC, FN, FNC, FDNC

Consistency Trivial Trivial PSpace (6.2) ExpTime (5.2, 6.1)

P |=b A(~t) P (6.3) ΣP
2 (6.3) PSpace (6.2) ExpTime (5.3)

P |=b ∃~x.A(~x) PSpace (6.3) PSpace (6.3) PSpace (6.2) ExpTime (5.3)

P |=c A(~t) P (6.3) co-NP (6.3) PSpace ExpTime

P |=c ∃~x.A(~x) PSpace ExpTime PSpace ExpTime

P |=c λ~x.A(~x) PSpace ExpSpace (5.4) PSpace ExpSpace (5.4)

Table 1: Complexity of FDNC and Fragments (Completeness Results)

4 Complexity Results

This section gives a brief overview of our results on the complexity of the main reasoning tasks
in FDNC and its fragments, which are compactly summarized in Table 1. An in-depth analysis
and the reasoning techniques for the derivation are given in the following two sections. Here, we
give some intuition behind the results and discuss how some of them can be derived from a core of
results.

As shown in the previous section, FDNC programs have forest-shaped stable models. Naturally,
reasoning in FDNC involves construction of forest-shaped interpretations (in the following, forests).
Consistency testing involves building a forest-shaped stable model, while brave/cautious reasoning
requires checking whether some property holds in some/all stable models that can be built. How-
ever, an FDNC program may have infinitely large stable models, and therefore the construction
has to employ some direct or indirect blocking technique to stop the construction after sufficient
information is acquired.

The forest-shape model property implies that blocking of the model construction is feasible
and, hence, the decidability of FDNC for major reasoning tasks can be established. Indeed, a
continuous construction of a forest will lead to re-occurrences of patterns, e.g., states of terms, non-
isomorphic labeled arcs, or non-isomorphic trees of depth 1, etc. To give the algorithms for FDNC,
we could resort to the methods of Description Logics (DLs), which usually have a forest-shape
model property, and are usually decided by Tableaux methods with blocking. Unfortunately, such
methods are not very suitable for our case. First, they cannot easily handle minimality testing,
and are generally not worst-case optimal. Second, Tableaux methods are designed for consistency
testing, while some important tasks from non-monotonic reasoning, e.g., brave reasoning, cannot
be reduced to consistency testing.

Therefore, our algorithms for FDNC rely on the finite representation of stable models in terms
of maximal founded sets of knots. In Section 5.1, we show how to derive the set KP of knots
for a given FDNC program P in single exponential time in the size of P . This is possible as
the number of distinct x-grounded knots is bounded by a single exponential. Given KP , several
standard reasoning tasks can be solved in time polynomial in the size of KP ; hence, overall they
are in ExpTime. This includes consistency testing (Section 5.2), brave entailment of ground and
existential queries (Section 5.3), as well as cautious entailment of ground and existential queries
(which is easily reduced to consistency testing). These upper bounds are tight for FDNC. It
is easy to see that a decision procedure needs to explore forests whose depths are bounded by
a single exponential in the size of the input program. However, due to the disjunction or non-
monotonic negation in an FDNC program, the number of such candidate forests may be too high

INFSYS RR 1843-08-01 17

for a procedure to traverse them in polynomial space.TE: Intuition for EXPTIME-hardness is
not fully convincing. The ExpTime-hardness of consistency testing is proved in Section 5.2 by an
encoding of an ExpTime-hard Description Logic ALC, which is extended to FN in Section 6.1. The
hardness of consistency testing directly provides lower bounds for brave and cautious entailment of
ground and existential queries.

For the fragment FC of FDNC, the picture is different. Such programs have the unique model
property, i.e., if a stable model exists, it is unique. For the standard reasoning tasks, this implies
that a procedure needs to navigate a unique forest searching for a node with a certain property,
e.g., the one that causes an inconsistency, or satisfies a query. Furthermore, the procedure needs
to navigate only the depths bounded by a single exponential. Our algorithms navigate the forest
by non-deterministically guessing the paths through function symbols and building necessary parts
of a stable model. They run in polynomial space and can, by Savitch’s result [46], turned into
deterministic polynomial space algorithms. The PSpace-hardness of consistency testing is shown
by an encoding of PSpace Turing machines, which is extended to other standard reasoning tasks
(see Section 6.2 for more details).

If we disallow non-monotonic negation and constraints, the complexity drops even more. Con-
sistency testing in both F and FD is trivial, while the complexity of ground entailment drops to
lower levels of the polynomial hierarchy, and corresponds to the complexity of propositional logic
programming. This is because the consistency needs not be ensured, and the necessary condi-
tions can be verified locally within polynomial distance from the graph part of the input program.
Section 6.3 discusses the results for F and FD.

The last row in Table 1 lists the complexity of open queries. Deciding cautious entailment
of open queries in FDNC is ExpSpace-complete and thus harder than cautious entailment of
existential queries. Intuitively, this is because to search for a term that satisfies a property in each
stable model of a program, we must look at branches beyond single exponential length. However,
the length can be bounded by a double exponential, and we can thus manage to answer the query
in single exponential space; Section 5.4 provides the details.

The main entries in Table 1 are presented with the reference to the section that discusses the
problem in detail. The remaining entries can be justified as follows:

(i) F and FD are Horn programs, and therefore are always consistent.

(ii) PSpace-hardness (resp. ExpTime-hardness) of P |=c ∃~x.A(~x) in F and FC (resp. in FD and
FDC) follows since consistency checking with constraints in FC (resp. FDC) can be reduced to
cautious inference. On the other hand, completeness also follows because cautious inference
can be reduced to inconsistency testing in the standard way.

(iii) Similarly, PSpace (resp. ExpTime) membership of P |=c A(~t), where P is an FC program
(resp. FDC, FN, FNC or FDNC), is due to the fact that the task can be reduced to checking
consistency of P ∪ {← A(~t)}. On the other hand, hardness follows from the fact that P is
inconsistent iff P |=c A′(t) where A′ is a symbol not occurring in P and t is arbitrary.

(iv) PSpace-completeness of P |=c λ~x.A(~x) in F and FC follows because these fragments have the
unique stable model property, and hence cautions entailment of open and existential queries
coincide; the latter is PSpace-complete.

To ease presentation, we use a lemma that allows us to concentrate on unary queries.

18 INFSYS RR 1843-08-01

Lemma 1. Let C be a complexity class in Table 1, and let L be from the F family. Then:

(i) If deciding the consistency of a given program in L is C-hard, then deciding brave entailment
of queries (ground or existential, unary or binary) is C-hard in L as well.

(ii) Brave entailment of unary existential (resp., ground) queries is C-complete for L iff brave
entailment of binary existential (resp., ground) queries is C-complete for L.

(iii) Cautious entailment of unary open queries is C-complete for L iff cautious entailment of
binary open queries is C-complete for L.

5 Complexity of FDNC

This section discusses the complexity of reasoning in FDNC and provides worst-case optimal algo-
rithms together with the matching hardness results. The methods for consistency testing, deciding
brave entailment of ground and existential queries and cautious entailment of open queries rely on
the finite representation of stable models in terms of the set KP of knots which, together with the
set SM(PG), captures all the stable models of P (see Theorem 3).

5.1 Deriving Maximal Founded Set of Knots

To derive KP , we proceed in two phases. In the first phase, we generate the set of knots All(P) that
surely contains KP . In the second phase, we remove some knots from it to ensure that it satisfies
Definition 3.13.

To ease the presentation, for a knot set L, let states(L) := {st(K, s) | K ∈L, s∈ succ(K)}, i.e.,
states(L) is the set of all states of the successor terms of knots in L.

Definition 5.1 (All(P)). For an FDNC program P , let All(P) be the smallest set of x-grounded
knots satisfying the following conditions:

a) If U ∈ S(P) and K ∈ SM(P (U)), then K↓x ∈ All(P).

b) If U ∈ states(All(P)) and K ∈ SM(P (U)), then K↓x ∈ All(P).

Intuitively, All(P) contains by construction each set of knots that is founded w.r.t. P and some
set of states S ⊆ S(P). The problem is that All(P) might contain a knot K such that some
s ∈ succ(K) has no potential successor knot (see (2.a) in Definition 3.9). Such knots should be
removed from All(P).The second phase deals with this problem.

Definition 5.2 (reach(L, S)). For any set of x-grounded knots L and set of states S, reach(L, S)
is the smallest set of knots such that:

a) if U ∈ S, K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S), and

b) if U ∈ states(reach(L, S)), K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S).

Intuitively, reach(L, S) are the knots in L reachable from the states in S. Indeed, if reach(L, S) =
L, then L fulfills condition (2.b) of Definition 3.9 to be founded w.r.t. S.

Theorem 4. If P is an FDNC program, then KP = reach(All(P), S(P)).

INFSYS RR 1843-08-01 19

Proof. Let L := reach(All(P), S(P)). We verify that L satisfies the conditions in Definition 3.13,
i.e., L is the single ⊆-minimal set which contains each knot set L′ that is founded w.r.t. P and
some S ⊆ S(P).

Indeed, L′ ⊆ All(P) by construction. Moreover, due to the definition of reach, we have L′ ⊆ L.
Suppose L is not minimal, i.e., there exists some N ⊂ L that contains every knot set L that is
founded w.r.t. P and some S ⊆ S(P). Then L must be nonempty. It follows that L is founded w.r.t.
P and some S ⊆ S(P). First, the definition of All(P) ensures that all the knots in L are stable.
Second, reach ensures that every knot in L has proper successors to satisfy (2.a) in Definition 3.9,
and has a proper sequence of predecessors to satisfy (2.b) reaching a state in S(P). By assumption
on N and the foundedness of L, we have L ⊆ N . This, however, contradicts N ⊂ L. Thus L

satisfies Definition 3.13, i.e., KP = L.

It is easy to see that to compute KP we need time at most single exponential in the size of an
FDNC program P . The claim is immediate from the following observations:

– The number of x-grounded knots over P is bounded by a single exponential in the size of P .
More precisely, the number is bounded by max = 2n+k·(n+m), when P has k function, n unary,
and m binary predicate symbols.

– Computing All(P) requires adding at most max x-grounded knots. Each such knot has polyno-
mial size and its stability is verifiable using an ΣP

2 = NPNP oracle. Thus, All(P) is computable
in time single exponential in the size of P .

– The size of S(P) is bounded by a single exponential in the size of P .

– Computing reach(L, S) is polynomial in the combined size of L and S. Hence, reach(All(P),
S(P)) can be computed in time that is polynomial in the size of All(P) and S(P).

5.2 Deciding Consistency

Once the set KP for an FDNC program P is derived, it can be readily used for consistency testing.
We will see that the resulting algorithm is worst-case optimal.

Theorem 5. For every FDNC program P , the following are equivalent:

(i) P is consistent.

(ii) For some G ∈ SM(PG), the set KP is compatible w.r.t. S(G).

Proof. If I is a stable model of P , then by Theorem 3 there exists some G ∈ SM(PG) such that
KP is compatible w.r.t. S(G). The other direction is proved by Theorem 2.

By this theorem, to decide consistency of P we can search for a stable model G of the program
PG such that for each constant of P , KP can start the tree construction (i.e., KP is compatible
with S(G)). We obtain the following result.

Theorem 6. Deciding whether a given FDNC program is consistent is in ExpTime.

20 INFSYS RR 1843-08-01

Proof. Deciding whether KP is compatible w.r.t. S(G), for some G ∈ SM(PG), is feasible in time
polynomial in n + m, where m is the size of KP and n is the size of SM(PG). Overall, this can
be done in time single exponential in the size of P , since both m and n are single exponential
in the size of P . Since SM(PG) is computable in single exponential time, the result follow from
Theorem 5.

As we have pointed earlier already, we can see KP together with PG as a compilation of the
FDNC program P . Out of this compilation, we can gradually build a stable model of P by continuing
the tree construction for some stable model G of PG using knots from KP (and every stable model
of P results by proper choices). Here the hard part is computing a stable model G ∈ SM(PG),
which depending on the complexity of function-free logic programs is ΣP

2 -hard already for FD, NP-
hard already for FN, and polynomial for F and FC. Checking the compatibility of KP with S(G) is
polynomial, and each tree expansion step using a knot from KP is feasible with low computational
(clearly polynomial) cost. Note that this model-building technique is complementary to computing
a stable model of an ordinary (function-free) logic program, and may be realized on top of traditional
stable model engines (like DLV or Smodels).

In the following, we show that the algorithm emerging from Theorem 5 is worst-case optimal.
The proof is by a polynomial-time translation of consistency testing in the Description Logic ALC,
which is ExpTime-hard, to consistency testing in FDC. The translation is interesting in its own
right, as it provides a translation of the core of expressive Description Logics into logic programming.

Definition 5.3 (ALC Syntax). Let C ⊇ {⊤,⊥}, R, and I denote the sets of concept names, role
names, and individual names, respectively. Concepts are define inductively: (a) every concept name
in C is a concept, and (b) if C, D are concepts and R is a role, then C ⊓D, C ⊔D, ¬C, ∀R.C, and
∃R.C are also concepts. If A is an atomic concept, then A and ¬A are literal concepts.

A general concept inclusion axiom (GCI) is an expression C ⊑D where C, D are concepts. An
assertion is an expression C(a) or R(a, b), where a, b ∈ I, R is a role name, and C is a concept
name. An ALC knowledge base is a finite set of GCIs and assertions.

Each ALC knowledge base K has a model-theoretic semantics, which is given via a mapping of
K into a set of sentences in first-order logic, shown in Figure 3 (see e.g. [33] for details). The major
reasoning task in ALC is deciding the consistency of a given K, i.e., of the first-order theory Θ(K).

We now provide a polynomial time translation of normalized ALC knowledge bases K into FDC

programs PK such that K is consistent iff PK is consistent. Normalized knowledge bases obey
certain structural constraints which makes presenting the translation easier.

Definition 5.4 (ALC Normal Form). An ALC knowledge base K is in normal form, if its GCI
axioms are of one of the following forms:

(T1) A0 ⊓ . . . ⊓An ⊑B0 ⊔ . . . ⊔Bm,

(T2) A0 ⊓ . . . ⊓An ⊑⊥,

(T3) ⊤⊑B0 ⊔ . . . ⊔Bm,

(T4) A0 ⊑ ∃R.B0, or

(T5) A0 ⊑ ∀R.B0,

INFSYS RR 1843-08-01 21

Mapping knowledge base K

Θ(K) =
⋃

α∈K{Π(α)}

Mapping axioms

Π(C ⊑D) =(∀x)(π(C, x)→ π(D, x))
Π(C(a)) =pC(a)

Π(R(a, b)) =pR(a, b)

Mapping concepts and roles

π(A, X) =pA(X)
π(¬C, X) =¬π(C, X)
π(⊤, X) =⊤
π(⊥, X) =⊥

π(C ⊔D, X) =π(C, X) ∨ π(D, X)
π(C ⊓D, X) =π(C, X) ∧ π(D, X)
π(∀R.C, X) =(∀y)(pR(X, y)→ π(C, y))
π(∃R.C, X) =(∃y)(pR(X, y) ∧ π(C, y))

Note: X is a meta-variable that is replaced by an actual variable.

Figure 3: Semantics of the DL ALC by mapping to first-order logic

where n, m > 0, and each Ai and Bj is atomic, but is neither ⊤ nor ⊥.3 Additionally, if K is in
normal form and does not contain axioms of type (T3), then K is safe.

Importantly, we can normalize any ALC knowledge base K efficiently.

Proposition 7. Given any ALC knowledge base K, we can obtain in linear time a safe knowledge
base K′ in normal form such that K is consistent iff K′ is consistent.

The proof, which is based on well-known definitional form transformations, is given in the
appendix.

Applying Θ to a knowledge base K in normal form leads us close to the syntax of FDC programs.
However, the rules of type (T3), in which ⊤ is the only concept in the antecedent of an axiom,
causes a problem. Indeed, if K contains some axiom ⊤ ⊑ A, then Θ(K) contains the formula
∀x.A(x), which leads to A(x) ← in the rule representation. Non-ground rules containing empty
bodies, which are unsafe, are not allowed in FDNC programs, and therefore we require safety of
ALC knowledge bases.

We are now ready to define the translation. For any safe knowledge base K in normal form, let
PK denote the FDNC program that results after applying the translation rules in Table 2.

Proposition 8. Let K be a safe knowledge base in normal form. Then K is consistent iff PK is
consistent.

Proof. It is easy to verify that PK is a rule-representation of the first-order theory that is obtained
from Θ(K) by applying skolemization and a satisfiability preserving transformation for the axioms
of type (T4). By Herbrand’s Theorem [28], PK is consistent iff Θ(K) consistent.

3A similar normal form for the weaker Description Logic EL++ has been described in [4].

22 INFSYS RR 1843-08-01

Axioms of K Rules of PK

(T1) A0 ⊓ . . . ⊓An ⊑B0 ⊔ . . . ⊔Bm B0(x) ∨ . . . ∨Bm(x)← A0(x), . . . , An(x)

(T2) A0 ⊓ . . . ⊓An ⊑⊥ ← A0(x), . . . , An(x)

(T4) A⊑ ∃R.C R′(x, f(x))← A(x)
R(x, y)← R′(x, y)
C(y)← R′(x, y)

(T5) A⊑ ∀R.C C(y)← A(x), R(x, y)

A(a) A(a)←;

R(a, b) R(a, b)←;

where n ≥ 0, f is fresh function symbol, R′ is a fresh binary predicate symbol.

Table 2: Translating ALC into FDNC

Note that PK is in fact positive and constructible in linear time from K. Hence, Propositions 7
and 7 and the well-known ExpTime-hardness of ALC [47] imply that deciding consistency of FDC

and FDNC programs is ExpTime-hard. Combined with Theorem 6, we establish the completeness
result.

Theorem 7. For FDC and FDNC programs, checking consistency is ExpTime-complete.

5.3 Brave Entailment of Queries

As we did for consistency checking, we exploit the set KP for a program P to provide algorithms for
brave reasoning. We first discuss entailment of existential unary atomic queries, and then move to
ground queries. The general intuition behind the method is to perform some “back-propagation”
of unary predicate symbols in the set of knots.

Definition 5.5 (EL). Let L be a set of knots founded w.r.t. a FDNC program P and a set of states
S. Let C be the set of unary predicate symbols occurring in P . By EL we denote the smallest
relation over L× C closed under the following rules:

(a) if K ∈ L and some A(x) ∈ K, then 〈K, A〉 ∈ EL, and

(b) if K ′ ∈ L is a possible successor of K ∈ L, and 〈K ′, A〉 ∈ EL, then 〈K, A〉 ∈ EL.

Intuitively, 〈K, A〉 ∈ EL means that, starting from K, a sequence of possible successor knots
will eventually reach a knot containing A(x). Since KP together with SM(PG) capture the stable
models of P , we have the following:

Theorem 8. Let P be an FDNC program. The following two are equivalent.

(A) P |=b ∃x.A(x).

(B) There exists some G ∈ SM(PG) such that the following hold:

(i) KP is compatible w.r.t. S(G), and

(ii) for some constant c and K ∈ KP , st(G, c) ≈ st(K,x) and 〈K, A〉 ∈ EKP
holds.

INFSYS RR 1843-08-01 23

Theorem 8 provides us with an algorithm, since brave entailment of existential queries can be
decided by verifying the condition (B) of the theorem. As easily seen, the condition is verifiable
in time single exponential in the size of the P . Indeed, computing EKP

requires time quadratic in
the size of KP , or single exponential in the size of P . Once KP , EKP

, and SM(PG) are computed,
the conditions in (B) are verifiable in time polynomial in the combined size of KP , EKP

, and
SM(PG). Hence, (B) can be verified in time single exponential in the size of P , that is, for a given
FDNC program, the problem of deciding whether it bravely entails a unary existential query is in
ExpTime. On the other hand, due to Theorem 7 and Lemma 1, we know that brave entailment
of unary existential queries is ExpTime-hard already for FDC. Keeping that in mind, we conclude
the following.

Theorem 9. For FDC and FDNC programs, brave entailment of an existential unary query is
ExpTime-complete. The same holds for binary existential queries (see Lemma 1).

The method for deciding brave entailment of ground queries is based on an adaptation of the
algorithm for the existential queries.

Definition 5.6 (Gq
L). Let q = A(t) be a ground atom and L be a set of knots founded w.r.t. an

FDNC program P and a set of states S. Let T be the set of subterms of the term t. Then Gq
L is

the smallest relation over L×T such that:

(a) if K ∈ L and A(x) ∈ K, then 〈K, t〉 ∈ Gq
L, and

(b) if there exist (i) K ∈ L with f(x) ∈ succ(K) and (ii) K ′ ∈ L s.t. st(K, f(x)) ≈ st(K ′,x) and
〈K ′, f(v)〉 ∈ Gq

L, then 〈K, v〉 ∈ Gq
L.

Suppose we have a query q = A(f(g(f(c)))) and a knot K in L such that 〈K, c〉 ∈ Gq
L. Intuitively,

this means there exists a tree construction starting with a root term c that will eventually contain
the atom A(f(g(f(c)))). Due to the properties of KP , we have the following.

Theorem 10. Let P be an FDNC program and q a ground unary query. Suppose c is the single
constant occurring in q. The following two are equivalent:

(A) P |=b q.

(B) There exists some G ∈ SM(PG) such that

(i) KP is compatible w.r.t. S(G), and

(ii) there exists some K ∈ KP such that st(G, c) ≈ st(K,x) and 〈K, c〉 ∈ Gq
KP

.

By similar arguments as for existential queries, we can see that checking condition (B) is feasible
in time single exponential in the size of P and q. Note that computing Gq

KP
is feasible in time

polynomial in the size of KP and q, or single exponential in the size of P and q. Once KP ,
Gq

KP
, and SM(PG) are computed, the conditions in (B) can be verified in time polynomial in the

combined size of KP , Gq
KP

, and SM(PG), each of which is single exponential in the size of P and
q. It follows that for a given FDNC program, the problem of deciding whether it bravely entails
a unary ground query is in ExpTime. Combined with Theorem 7 and Lemma 1, we establish the
completeness result.

Theorem 11. For FDC and FDNC programs, brave entailment of a unary ground query is ExpTime-
complete. The same holds for binary ground queries (see Lemma 1).

24 INFSYS RR 1843-08-01

5.4 Cautious Entailment of Open Queries

In the previous sections, we presented methods for brave entailment of existentially quantified or
ground queries. As shown in Section 4, cautious reasoning can be easily reduced to consistency
testing. All these tasks are ExpTime-complete for FDNC. This section deals with cautious entail-
ment of open queries, which turns out to be harder (under widely adopted beliefs in complexity
theory).

Like for other reasoning methods discussed, we base our method on the set KP of an FDNC

program P . As we have seen, each stable model of P can be constructed by taking a compatible
graph and building a tree for each constant. Indeed, if P |=c A(t) holds, each tree construction
starting at the constant of t from knots in KP must eventually reach t satisfying A. To talk about
such forcing, we introduce the following notion.

Definition 5.7. (Converging Sequence) Let A be a unary predicate symbol of P . A nonempty
sequence [L0

c
, L1

f1
, . . . , Ln

fn
], were each Li ⊆ KP is nonempty, c is a constant, and f1, . . . , fn are

function symbols, is called a converging sequence for A (w.r.t. KP) if the following hold:

(1) for each K ∈ Lj−1, where 1 ≤ j ≤ n, fj(x) ∈ succ(K);

(2) for each K ∈ Lj−1, where 1 ≤ j ≤ n, and each K ′ ∈ KP , st(K, fj(x)) ≈ st(K ′,x) implies
K ′ ∈ Lj ;

(3) if K ∈ Ln, then A(x) ∈ K.

Furthermore, to talk about knots that can start model construction, we use the following notion.
For a constant c, let seeds(c, P) := {K ∈ KP | st(x, K) ≈ st(c, G) ∧G ∈ SM(PG)}.

Proposition 9. Let P be a consistent FDNC program and let λx.A(x) be an open query. Then P |=c

λx.A(x) iff there exists a converging sequence s = [L0

c
, L1

f1
, . . . , Ln

fn
] for A, where L0 = seeds(c, P).

The proposition above characterizes cautious entailment of open queries in terms of existence
of converging sequences. To provide an algorithm, we next show that the length of converging
sequences can be bounded by a double exponential in the size of the initial program.

Proposition 10. For every converging sequence [L0

c
, L1

f1
, . . . , Ln

fn
] for A there exists a converging

sequence [L0

c
,

L′

1

f ′

1

, . . . ,
L′

m

f ′

m
] for A such that m ≤ |F |×2|KP |+1, where F is the set of function symbols

occurring in P .

Proof. There are only |F |×2|KP | distinct pairs L
f

of a function symbol f and a set of knots L ⊆ KP .

Suppose s = [L0

c
, L1

f1
, . . . , Ln

fn
] is a converging sequence for A and L

f
is an element of s that occurs

more than once, first at position 0 < k and last at position k < l. It is easy to verify that
[L0

c
, L1

f1
, . . . , Lk

fk
,

Ll+1

fl+1
, . . . , Ln

fn
] is a converging sequence for A where L

f
occurs only once. Note that

the first element of the sequence is preserved. It follows that there exists a converging sequence
s′ for A that does not contain duplicates of its elements, while its first element is L0

c
. Indeed, s′

cannot be longer than |F | × 2|KP | + 1, and thus the claim holds.

The following theorem follows directly from Proposition 9 and Proposition 10.

INFSYS RR 1843-08-01 25

Algorithm openQueries (FDNC program P , open query λx.A(x))
Output: true iff there exists t s.t. P |=c A(t)
if P is inconsistent then

return true

end if

Guess some constant c of P ;
L := seeds(c, P);
repeat

if A(x) ∈ K for each K ∈ L then

return true

end if

Guess some f ∈ F ;
if there exists K ∈ L such that f(x) 6∈ K then

return false
else

Laux := {K ′ ∈ KP | st(x, K ′) ≈ st(f(x), K) ∧K ∈ L};
L := Laux;
i := i + 1

end if

until i = |F | × 2|KP | + 1
return false

Figure 4: Non-deterministic procedure for cautious entailment of open queries; KP is assumed to
be precomputed, F is the set of function symbols of P .

Theorem 12. Let P be an FDNC program and λx.A(x) be an open query. Then P |=c λx.A(x) iff
P is inconsistent or there exists a converging sequence [L0

c
, L1

f1
, . . . , Ln

fn
] for A, where L0 = seeds(c, P)

and n ≤ |F | × 2|KP | + 1.

Based on this theorem, we present in Figure 5.4 an algorithm that decides cautious entailment
of open queries by checking the existence of a converging sequence of at most double exponential
length. We assume that the set KP for the input program P is precomputed. The procedure
non-deterministically guesses a sequence of functions symbols and verifies the conditions in Defini-
tion 5.7. Furthermore, the procedure can be implemented to run in non-deterministic exponential
space. Indeed, storing the set KP and the double exponential counter requires at most exponential
space, while the rest of the constructs require at most linear space. By Savitch’s result [46], we can
turn the algorithm into an ExpSpace-algorithm, which establishes the ExpSpace-membership.
By a generic Turing machine encoding, we show that the problem is also ExpSpace-hard, even for
FD and FN programs (see appendix).

Theorem 13. Cautious entailment of open queries in FD, FN, FNC, FDC and FDNC programs
is ExpSpace-complete.

26 INFSYS RR 1843-08-01

6 Complexity of Fragments

In this section, we consider the complexity of reasoning in the fragments of FDNC. Some reasoning
tasks are already covered by the results of the previous section and the discussion in Section 4,
including cautious entailment of existential queries in FD (cf. Theorem 7) and cautious entailment
of open queries (cf. Theorem 13).

We first show that in FN, all reasoning tasks remain as hard as in full FDNC. All other reasoning
tasks that remain to be considered are at most PSpace-complete, and in some cases at low levels
of the polynomial hierarchy.

6.1 Reasoning in FN and FNC

We show that the consistency problem for FDC reduces in polynomial time to the consistency
problem for FN. Since the reasoning tasks that we considered (consistency and brave entailment)
are ExpTime-complete for FDC, the reduction implies that they are all ExpTime-complete for FN

and FNC.
The plan is as follows. We first construct, given an arbitrary FDC program P , an FN program

F (P) whose set of stable models coincides intuitively with the set of all possible (forest-shaped)
Herbrand interpretations for P . We then structurally transform P into an FN program P ′ such
that the FN program P ′ ∪ F (P) is consistent iff P is consistent.

We assume that for each unary (resp., binary) predicate symbol Q of P there is a unary (resp.,
binary) predicate symbol Q̄ available which does not occur in P . Moreover, let Dom and Ac be
fresh unary predicate symbols, and let S be a fresh binary predicate symbol not occurring in P .

Definition 6.1 (F (P)). By F (P) we denote the smallest FN program that consists of the following
rules:

(F1) Dom(c) ← ,

(F2) S(c, d) ← ,

(F3) S(x, f(x)) ← Dom(x),

(F4) Dom(y) ← S(x, y),

(F5) A(~x) ← Dom(~x), not Ā(~x),

(F6) Ā(~x) ← Dom(~x), not A(~x),

(F7) Ac(~x) ← A(~x), Ā(~x), not Ac(~x),

for each pair c, d of constants of P , each function symbol f of P , each predicate symbol A of P .
Above, ~x = 〈x〉 if A is unary, and ~x = 〈x, y〉 if A is binary.

The properties of F (P) are stated next.

Proposition 11. An interpretation I is a stable model of F (P) iff I is a forest-shaped interpretation
such that the following hold:

(1) S(c, d) ∈ I, for each pair c, d of constants of P ,

(2) Dom(t) ∈ I, for each term t∈̂I,

(3) S(t, f(t)) ∈ I, for each t∈̂I and each function symbol f of P ,

INFSYS RR 1843-08-01 27

(4) |{A(t), Ā(t)} ∩ I| = 1, for each t∈̂I and each unary predicate A of P , and

(5) S(s, t) ∈ I implies |{R(s, t), R̄(s, t)} ∩ I| = 1, for each pair s, t∈̂I and each binary predicate R

of P .

Intuitively, F (P) generates a set of forest-shaped interpretations for P . Next we show how to
filter out the interpretations that do not satisfy the rules in P . If some interpretation I remains, then
P is consistent. Note that such I would not necessarily correspond to a minimal model of P . For
technical reasons, we assume that the rules of type (R6) occurring in P are not disjunctive, i.e., there
is at most one literal in the head of the rule. It is easy to see that, in case P has such rules, they can
be eliminated in linear time while preserving consistency. Indeed, R1(x, f1(x))∨. . .∨Rn(x, fk(x))←
B0(x), . . . , Bl(x) occurring in P can be replaced by A1(x) ∨ . . . ∨ An(x) ← B0(x), . . . , Bl(x) and
Ri(x, fi(x))← Ai(x) for each i ∈ {1, . . . , n}. This transformation clearly preserves consistency.

Definition 6.2 (TR(P)). For a FDC program P as described, we denote by TR(P) the FN program
F (P) ∪ P ′, where P ′ is the FN program obtained from P by replacing each rule

W1(~t1) ∨ . . . ∨Wn(~tn)← Q1(~v1), . . . , Qm(~vm) ∈ P

with a rule
C(~t1)← Q1(~v1), . . . , Qm(vm), W̄1(~t1), . . . , W̄n(~tn), not C(~t1),

where C is a fresh predicate symbol with the arity of ~t1, and n, m > 0.

Indeed, TR(P) is an FN program; literals Wi(~ti) in the head of an initial rule can be shifted to
their “complements” W̄i(~ti) in the body without violating the syntax of FN programs. This would
not be the case if disjunctive heads were allowed for the rules of type (R6). The following is easy
to see (the proof is given in the appendix).

Proposition 12. The program P is consistent iff TR(P) is consistent.

We showed how to transform an FDC program into an FN program while preserving consistency.
As easily verified, the translation is polynomial in the size of the initial program P (more precisely,
quadratic in the size of P due to the facts (F2) of F (P); the rest is linear). Therefore, recalling
ExpTime-completeness of consistency testing in FDNC (Theorem 7), we conclude.

Theorem 14. For both FN and FNC programs, checking consistency is ExpTime-complete.

The ExpTime-completeness of consistency checking for FN allows us to obtain similar results for
brave query entailment. Since consistency testing is reducible to brave entailment (see Lemma 1),
and since brave entailment of existential and ground queries is ExpTime-complete (see Theorems 9
and 11), we obtain:

Theorem 15. For FN and FNC programs, brave entailment of a unary ground or existential query
is ExpTime-complete. The same holds for binary queries (see Lemma 1).

6.2 Reasoning in FC

We show that reasoning in FC is easier than in FDNC: consistency and brave reasoning reduce to
PSpace-completeness. To obtain these results, we cannot exploit the maximal founded set of knots
of a program as its size can be exponentially larger. Nevertheless, the semantic characterization
centering around Theorem 1 enables reasoning from FC programs by iterative construction of knots.
The following result, which holds for full FDNC, provides a basis for reasoning in FC.

28 INFSYS RR 1843-08-01

Theorem 16. Let P be a FDNC program. The following two are equivalent:

(i) There exists a stable model of P .

(ii) There exists a stable model G of PG such that, for each constant c of P , there exists a set of
knots that is founded w.r.t. P and the singleton set of states {st(G, c)}.

Proof. For the “(i) to (ii)” direction, assume that I is a stable model of P . By Theorem 1, Ic is
a stable model of PG. So let G := Ic. By Proposition 3, we know that K(I) is a set of knots that
is founded w.r.t. P and S(G). Simply take some set-inclusion minimal set L of knots closed under
the following rules:

a) L contains some K ∈ K(I) such that st(G, c) ≈ K,x, and

b) if K ∈ L and s ∈ succ(K), then L contains some K ′ ∈ L such that st(K, s) ≈ K ′,x.

Indeed, due to foundedness of K(I), the set L can be constructed and is founded w.r.t. P and
{st(G, c)}.

For the other direction, assume (ii) holds. Let Lc denote a set of knots that is founded w.r.t. P

and {st(G, c)}. Let C be the set of constants of P . Due to Proposition 4, the set L :=
⋃

c∈C Lc is
a set of knots that is founded w.r.t. P and S(G). Then Theorem 2 proves the claim.

The key feature of FC is the unique model property, i.e., if there exists a minimal model for an
FC program, then it is unique. From Theorem 16, we know that to decide whether a FC program
is consistent we can proceed in two steps:

(1) Check the existence of the single minimal model G of PG. If it exists, then proceed to the next
step. Otherwise, P is not consistent.

(2) Check whether for each constant c of P , there exists a set of knots that is founded w.r.t. P and
{st(G, c)}. If the answer is “yes”, then P is consistent. Otherwise it is not.

Indeed, G is computable in time polynomial in the size of P . For the second step, notice that
the local programs for P also have the unique-model property. This implies the uniqueness of a set
L that is founded w.r.t. P and {U}, where U is a state.

To decide the second step, in Figure 5 we present a generic non-deterministic procedure check-
Condition. The procedure takes as input an FDNC program P , a state U , and a Boolean function
that maps states to Boolean values. In the procedure, the value max is the number of distinct
x-grounded knots over the signature of P . As it was already argued, max = 2n+k·(n+m), where
n and m are the numbers of unary and binary predicate symbols of P , respectively, and k is the
number of function symbols in P .

Let cond1 be a Boolean function that maps each state U to true if the program P (U) is
inconsistent, and to false otherwise.

Proposition 13. Let P be an FC program, and let U be a state. There exists a set of knots that
is founded w.r.t. P and {U} iff no run of the procedure checkCondition(P, U, cond1) returns true.

Proof. The “only if” direction is trivial, while for the other direction, we can simply collect all the
knots that appeared at any run of the algorithm. It is easy to verify that such a collection is a set
that is founded w.r.t. P and {U}.

INFSYS RR 1843-08-01 29

func checkCond (program P , state U , function cond)
repeat

if cond(U) = true then

return true

end if ;
Choose K ∈MM(P (U)) and s ∈ succ(K);
Let U be a state obtained from st(K, s) by substituting s with x;
i := i + 1

until i = max;
return false

Figure 5: Non-deterministic procedure for PSpace algorithms

The algorithm checkCondition(P, U, cond1) runs in polynomial space. The procedure keeps
only a counter that counts up to a single exponential; this requires only polynomial space. Note
that the procedure at each iteration works only on a single local program that is of polynomial
size. This local program has a unique model property and, hence, representing its models requires
polynomial space also.

Indeed, to decide the second step, we need to make only a linear number of calls to checkCondition.
Summing up, both steps to decide consistency of P are feasible in co-NPSpace w.r.t. to the size
of P . By Savitch’s Theorem [46], we know co-NPSpace = PSpace.

Theorem 17. Deciding whether a given FC program is consistent is in PSpace.

We show PSpace-hardness of the problem by a simulation of PSpace Turing machines.

Definition 6.3. A deterministic Turing machine (DTM) is a quadruple (S, Σ, δ, s0), where S is a
finite set of states, Σ is a finite alphabet, δ is a transition function, and so ∈ S is the initial state.
The transition function δ is a partial function

δ : S × Σ→ (S ∪ {accept})× Σ× {−1, 0, +1},

where accept is a new state not occurring in S. We assume a special symbol b in Σ that stands for
blank symbol. By Ik we denote the kth symbol in the input string I = I0, . . . , I|I|−1.

Let L be a language in PSpace, and let T be a DTM which decides whether a given word I

is in L within space sb(I) that is polynomial in |I|. The computation of T on I can be simulated
by an F program P (T, I) (see Figure 6.2). Due to construction, we can use a single constraint to
decide whether I ∈ L. It is easy to see that I ∈ L iff P (T, I) ∪ {← Staccept(x)} is inconsistent.

Keeping in mind that the translation is clearly polynomial in the size of T and I, we have
that checking if I ∈ L is reducible in polynomial time to consistency checking of an FC program.
Keeping in mind Theorem 17, we conclude the following.

Theorem 18. For FC programs, checking consistency PSpace-complete.

Since FC programs have the single-stable model property, the problem of brave entailment of
existential queries can be easily expressed by constraints that are allowed in FC.

30 INFSYS RR 1843-08-01

Generating time:

Time(st)←
N(x, f(x))← Time(x)
Time(y)← N(x, y)

Initial configuration:

Symα,π(st)← for 0 ≤ π < |I| such that α = Iπ

Symb,π(st)← for |I| ≤ π ≤ sb(I)
Cur0(st)←
Sts0

(st)←

Transition δ(s, σ) = 〈s′, σ′, d〉, where 0 ≤ π ≤ sb(I)

Symσ′,π(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)
Sts′(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)
Curπ+d(y)← N(x, y), Sts(x), Symσ,π(x), Curπ(x)

Inertia rules, where 0 ≤ π < π′ ≤ sb(I):

Symσ,π(y)← N(x, y), Symσ,π(x), Curπ′(x)
Symσ,π′(y)← N(x, y), Symσ,π′(x), Curπ(x)

Figure 6: Reduction of DTM T with input I to FC program P (T, I).

Proposition 14. Let P be an FC program. Then P |=b ∃x.A(x) iff P is consistent and P ∪ {←
A(x)} is not consistent.

The proposition implies that brave entailment of an existential unary query in FC can be
polynomially reduced to consistency checking in FC. Keeping in mind that the task is PSpace-
hard (Lemma 1), we conclude the following.

Theorem 19. For FC programs, brave entailment of unary existential queries is PSpace-complete.
The same holds for binary existential queries (see Lemma 1).

In a similar fashion, we prove PSpace-completeness for ground queries. The following propo-
sition is helpful.

Proposition 15. Let P be a FC program, and let A(t) be a ground atom with t = fn(. . . f1(c0) . . .).
Let P ′ be the program obtained by adding to P the following rules:

(a) C0(c0)←,

(b) R(x, fi+1(x))← Ci(x), where 0 ≤ i < n,

(c) Ci+1(y)← Ci(x), R(x, y), where 0 ≤ i < n, and

(d) D(x)← Cn(x), A(x),

(e) ← D(x),

where C0, . . . , Cn, R and D are fresh predicates not occurring in P . Then P |=b A(t) iff P is
consistent and P ′ is not consistent.

INFSYS RR 1843-08-01 31

The proposition implies that brave entailment of a ground unary query in FC program P can be
decided by adding polynomially many rules to P and making two consistency checks, and hence is
polynomially reducible to consistency checking in FC. Since the latter is PSpace-hard by Lemma 1,
we have the following result.

Theorem 20. For FC programs, brave entailment of unary ground queries is PSpace-complete.
The same holds for binary queries (see Proposition 1).

6.3 Reasoning in F and FD

F and FD programs are Horn programs, and therefore are always consistent. We discuss here brave
entailment of existential queries together with brave and cautious entailment of ground queries.
PSpace and ExpTime completeness of cautious entailment in F and FD respectively follows from
completeness results for consistency testing in FC and FDC (see observation (i) in Section 4).

As known, for a given F program P , deciding P |=b ∃x.A(x) can be done PSpace (see The-
orem 19). It is easy to see that the problem is PSpace-hard. Recall the F program P T from
Section 6.2 that simulates a Turing machine T on the input I. To check whether T accepts the
input, we can pose a brave query asking whether Staccept(t) is in the minimal model of P T for some
term t, i.e., I ∈ L iff P T |=b ∃.Staccept(x). As already argued, P T is of polynomial in size T and I.

Theorem 21. For F programs, brave entailment of unary existential queries is PSpace-complete.
The same holds for binary existential queries (see Proposition 1).

For FD programs, PSpace-completeness of brave existential queries is not straightforward,
since they may have several minimal models and hence the task can not be simply reduced to
consistency testing as for F. Using constraints leads to FDC, where consistency testing is already
ExpTime-complete.

The strategy is to use the non-deterministic procedure checkCondition from Section 6.2 for
consistency testing in FC. To this end, we observe that the semantic characterization of stable
models of FDNC allows us conclude the following.

Theorem 22. Let P be a FD program. The following two are equivalent:

(i) P |=b ∃x.A(x).

(ii) There exists a minimal model G of PG, a constant c of P , a set of knots L founded w.r.t. P

and {st(G, c)} such that L contains some knot K with A(x) ∈ K.

Proof. If (i) holds, then, due to Theorem 1, we can easily define G and L such that the conditions
in (ii) are satisfied. On the other hand, if (ii) is satisfied, then consistency of P and Theorem 1
implies that a minimal model of P such that A(t) ∈ P for some term t is constructible.

Let q = ∃x.A(x) be a query and P be an FD program. The theorem above suggests a method
to decide P |=b q. The crucial point is to have a procedure to decide whether for a given state U

over P , there exists a set of knots L t founded w.r.t. P and {U} containing some knot K such that
A(x) ∈ K.

Let cond2 be a Boolean function that maps each world state U to true if A(x) ∈ U , and to
false otherwise.

32 INFSYS RR 1843-08-01

Proposition 16. Let U be a state, and P be an FD program. The following two are equivalent.

(i) There exists a set of knots L founded w.r.t. P and {U}, ant A(x) ∈ K, for some K ∈ L.

(ii) There exists a run of the procedure checkCondition(P, U, cond2) that returns true.

Proof. (i) ⇒ (ii): this holds since the size of L is bounded by max.

(ii) ⇒ (i): consider the sequence of knots that was constructed during the run of the procedure
that returned true. Since P has no constraints, this sequence can be always augmented to a founded
set by computing the successors knots that are missing.

Similarly as it was argued for consistency check in FC, checkCondition runs in PSpace in the
size of the input. Note that traversing the world states of constants occurring in minimal models of
PG can obviously be done in PSpace. Therefore, we conclude that the condition (ii) in Theorem 22
can be decided in PSpace with a PSpace oracle, which amounts to PSpace. Keeping in mind
that deciding P |=b q is PSpace-hard (see Lemma 1), we conclude:

Theorem 23. For FD programs, brave entailment of a unary existential query is PSpace-complete.
The same holds for binary existential queries (see Lemma 1).

In contrast to existential queries, brave and cautious reasoning with ground queries is easier in
F and FD than in FC and FN. The methods are based on constructing only relevant parts of stable
models to answer a given query. Since F and FD do not allow for constraints, we do not need to
care about the global consistency of interpretations. By the relevant part of a model, we essentially
mean a sequence of knots that is constructed following the path encoded in the term t of a ground
query A(t). The following proposition elaborates on that.

Proposition 17. Let P be a FD program, A(t) a ground atom, and c the only constant occurring
in t. Moreover, let l = 〈s1, . . . , sn〉 be the list of subterms of t ordered by increasing depth of terms,
i.e., s1 = c and sn = t. Then the following two are equivalent.

1. P |=b A(t) if and only if (⋆) there exists some stable model G of PG and a sequence 〈K1, . . . , Kn〉
of stable knots with root(Ki) = si, 1 ≤ i ≤ n, such that:

(a) st(G, s1) = st(K1, s1),

(b) si+1 ∈ succ(Ki) and st(Ki, si+1) = st(Ki+1, si+1), where 1 ≤ i ≤ n, and

(c) A(sn) ∈ Kn.

2. P 6|=c A(t) if and only if (⋆⋆) there exists some model G of PG and a sequence 〈K1, . . . , Kn〉 of
knots with root(Ki) = si, 1 ≤ i ≤ n, such that:

(a) st(G, s1) = st(K1, s1),

(b) si+1 ∈ succ(Ki) and st(Ki, si+1) = st(Ki+1, si+1), where 1 ≤ i ≤ n,

(c) Ki is a model of P (st(Ki, si)), where 1 ≤ i ≤ n, and

(d) A(sn) 6∈ Kn.

INFSYS RR 1843-08-01 33

Proof. For the only-if direction of the first claim, assume we have a stable model I of P such that
A(t) ∈ I. Due to Theorem 1, we can simply define G := Ic and Ki := HBsi

∩ I, where 1 ≤ i ≤ n.

For the if direction, since FD programs are always consistent, due to Theorem 1, we can easily
construct a stable model containing A(sn); simply start with G ∪ K1 ∪ . . . ,∪Kn and extend the
interpretation with the necessary stable knots. Due to consistency of P , such an extension is always
possible.

For the “only if” direction of the second claim, the arguments is as for the first one. If I is a
stable model of P such that A(t) 6∈ I, then, due to Theorem 1, we can easily define necessary G

and the sequence of knots. Again, take G := Ic and : Ki = HBsi
∩ I, where 1 ≤ i ≤ n.

For the other direction, let I be the unique stable model of P . Let K ′
i := HBsi

∩ I, where
1 ≤ i ≤ n. Due to Theorem 1, we have Ic ⊆ G and K ′

i ⊆ Ki, where 1 ≤ i ≤ n. Hence,
A(sn) 6∈ I.

Proposition 17 allows use to derive complexity results for F and FD.

Suppose P is an F program and A(t) a ground query. Since P is a Horn program, the local
programs for P have least models computable in polynomial time. Moreover, the least model
of PG is also computable in polynomial time. Hence, P |=b A(t) can be decided according to
Proposition 17 by constructing in polynomial time the least model of PG and the unique sequence
of knots. Hence, P |=b A(t) is in P. On the other hand, since P has the least model, P |=b A(t) iff
P |=c A(t). Hence, P |=c A(t) is also in P.

Now suppose that P is an FD program and A(t) a ground query. It is easy to see that the
condition (⋆) for the program P can be verified in ΣP

2 . Indeed, guess an interpretation I for PG

and a suitable candidate sequence of knots over the signature of P ; this results in a structure of
polynomial size. For any such guess, one can check in polynomial time with an NP oracle whether
I is minimal and each of the knots satisfies the conditions in (⋆).

To decide P 6|=c A(t), it suffices to verify the condition (⋆⋆) in Proposition 17. Since the
condition does not require minimality of models, it can be decided in NP. Indeed, we need to guess
an interpretation for PG and a candidate sequence of knots over the signature of P . After the guess
is made it is possible to decide in polynomial time if the structure satisfies (⋆⋆). Hence, P 6|=c A(t)
is in NP, while P |=c A(t) is in co-NP.

It is not difficult to see that the given upper bounds are tight, since they correspond to com-
plexity of brave and cautious reasoning in the propositional case. Simply consider fragments Fp

of F and FDp of FD that allow only for rules of type (R1), unary facts, and only one constant.
Indeed, any propositional Horn (resp. propositional positive disjunctive program) can be rewritten
in LogSpace into an Fp (resp. FDp) program while preserving the set of minimal models (up to
renaming of atoms). This implies that brave/cautious reasoning in propositional Horn and positive
disjunctive logics programs are LogSpace-reducible to brave/cautious entailment of ground unary
queries in F and FD programs respectively. Since brave entailment for propositional disjunctive pro-
grams is ΣP

2 -complete and cautious entailment co-NP-complete, while both tasks are P-complete
for Horn programs [18], we obtain completeness results for our formalisms.

Theorem 24. For FD programs, brave and cautious entailment of unary ground queries is complete
ΣP

2 and co-NP, respectively. Both problems are P-complete for F programs. These results extend
to binary queries (see Lemma 1).

34 INFSYS RR 1843-08-01

7 Applications and Extensions

In Section 5, we have already encountered an application of FDNC programs to Description Logics.
In this section, we consider first a further application of FDNC programs in the area of reasoning
about actions and planning; recall that non-monotonic logic programs under answer set semantics
have been widely used in this area. In particular, we apply FDNC programs to planning under
incomplete knowledge and non-deterministic action effects, based on the expressive action language
K [17]. We then consider a decidable extension of FDNC that supports predicate and function
symbols of higher arities, which allows for more succinct and convenient knowledge representation
in practice, which we discuss also on a planning scenario.

7.1 Reasoning about Actions and Planning

Transition-based action formalisms are based on languages for describing legal transitions between
states of the world which happen due to the execution of actions by some agent. A classical problem
is that of plan existence, which consists of finding a sequence of actions that leads the agent from
an initial to some desired goal state of the world. Apart from this, many problems have been
considered, including plan verification (i.e., whether a given candidate plan is good to reach a goal
state) and temporal projection (i.e., reasoning about the hypothetical future if a sequence of action
would be taken); as for the concerns of this paper, we refer to [6] for background and a study of
these problems based on logic programs under answer set semantics.

As for temporal projection in Example 2, view grow , cell1, cell2, and die as actions and Young ,
Warm, Cold , and Mature as fluents. As seen, if the sequence of actions grow and cell1 would
happen, the fluent Young would be possibly true, as Young(cell1(grow(b))) is bravely entailed by
the program. On the other hand, Young is not necessarily true after this action sequence. Indeed,
using similarly as in Proposition 15 an auxiliary fact C0(b). and rules R(x, grow(x)) ← C0(x);
C1(y)← C0(x), R(x, y); R(x, cell1(x))← C1(x); and ← R(x, y), not Change(x, y), we can eliminate
those stable models of P ex which do not correspond to the occurrence of this sequence; the resulting
program P ′ does not cautiously entail Young(cell1(grow(b))), as it has a stable model which does
not contain this atom. In this scenario, planning seems not to make sense (as bacteria can’t really
take actions), and we thus consider a different one.

For modeling planning domains, several dedicated action languages have been proposed that
are rooted in knowledge representation formalisms, including A [24] (which was extensively studied
in [6]), C [25], and K [17]. The latter, which we consider in the sequel, is based on the principles
of logic programming under the stable model semantics. In contrast to the other languages, K
allows to describe transitions between knowledge states, which are incompletely described states
of the world. The availability of non-monotonic negation in K makes the formalism suitable for
common-sense and heuristic reasoning in planning applications.

In K, a planning domain PD is a set of rules that describes the initial state I and legal
transitions. At the core, it distinguishes two kinds predicates: fluents and actions.4 A state is

4We consider here merely a simplified version of K that contains the salient elements; missing features like static
predicates, typing and others can be added easily on top. Furthermore, we assume that actions are not executed in
parallel (parallel execution may be encoded using designated action symbols), that at each stage some action has to
be taken to move on (thus passage of time would have to be modeled explicitly by an action), and that taking an
executable action always results in a follow up state. Technically, such planning domains are proper and more general
than plain ones in the sense of [17].

INFSYS RR 1843-08-01 35

given by a set of ground fluent literals which are known to hold at a particular stage. A goal G is
a set of ground fluent literals, each of which can also be default negated.

An optimistic (aka credulous) plan for a given planning domain PD and a goal G is a sequence
of action occurrences 〈A1, . . . , An〉, n ≥ 0, that legally transforms the initial state I into some state
that satisfies the goal G, i.e., for some sequence of state S0, . . . , Sn, we have (i) S0 = I, (ii) each
Si, Ai+1, Si+1 is a legal transition, and (iii) Sn satisfies G.

In case of non-deterministic action effects or incomplete information about the initial state,
executing an optimistic plan does not necessarily establish the goal. This is ensured by secure plans,
aka as conformant plans, which are optimistic plans such that, regardless of such incompleteness
and non-deterministic action effects, all actions can be executed and the goal is established after
the last action.

The legal state transitions are defined in K in terms of stable model semantics. Roughly
speaking, this is accomplished using a set of statements, similar to logic program rules, which
describe the value of the fluents in the successor state S′ depending on the previous state S, the
action A that was taken, and the the value of other fluents in S′. Because of this similarity, planning
problems in K can be naturally encoded into FDNC programs. Via such encodings, optimistic and
secure plan existence can be characterized in terms of brave entailment of existential queries and
cautious entailment of open queries, respectively.

More in detail, we consider here the propositional fragment of K, i.e., predicates are nullary
(predicates of higher arity will be addressed in the next subsection). A planning domain PD in
K consists of causation rules, executability conditions, and initial state constraints. The causation
rules of propositional K are of the form

caused d if b1, . . . , bn, not bn+1, . . . , not bk

after c1, . . . , cm, not cm+1, . . . , not cl

a1, . . . , av, not av+1, . . . , not aw

(2)

k, l, w ≥ 0, where d and b1, . . . , bk, c1, . . . , cl are fluent literals, and a1, . . . , aw are action atoms.
Intuitively, the rule (2) describes the (incomplete) knowledge state after action execution, where
the knowledge depends on the fluents that hold or do not hold in the previous and current state
and the actions that were or were not executed.

The executability conditions in K are of the form

executable a if b1, . . . , bn, not bn+1, . . . , not bk,

a1, . . . , am, not am+1, . . . , not al,
(3)

where a, a1, . . . , al are action atoms, and b1, . . . , bk are fluent literals, k, l ≥ 0, Intuitively, they are
the rules constraining the states for which a given action can be executed.

The initial state constraints in K are of the form

initially caused d if b1, . . . , bn, not bn+1, . . . , not bk (4)

where d, b1, . . . , bk are fluent literals, k ≥ 0. These rules describe the initial knowledge. Uncondi-
tional initial knowledge is described by the rules with an empty if part.

We next sketch the elements of a possible encoding of the planning domain PD into an FDNC

program. For this purpose, we tacitly enhance FDNC programs with “strong” negation ¬p(~x) [23],
which is expressed in the core language as usual (view ¬p as a fresh predicate symbol and add

36 INFSYS RR 1843-08-01

constraints ← p(~x),¬p(~x)); we assume this enhancement also for the predicate-version of K in
Section 7.2.

• For each propositional fluent symbol d, we use a unary predicate symbol d in the encoding.
The meaning of d(x) is that d holds at stage x. For each propositional action a, we use a
binary predicate symbol a in the encoding. Intuitively, a(x, y) means that a is executed in
stage x with the resulting stage y.

• We use a unary predicate symbol s, with s(x) meaning that x is a stage (or a situation). For
the encoding we add the fact s(init) ← denoting that the constant init is the initial stage.
We also use a designated binary predicate symbol tr to denote the transition to the next
stage. For this reason, we also add s(y)← tr(x, y).

• We adopt a function symbol fa for each action a of the planning domain. Additionally, for
each action a, we add the rule a(x, fa(x))← execa(x) and the rule tr(x, y)← a(x, y), where
execa is a designated predicate name. Intuitively, the first rule “implements” the action
execution, i.e., if execa holds at some stage x, then a is executed, which results in the follow
up stage fa(x). The second rule makes tr capture all executed transitions.

We can now state the encoding of the three types of rules of the planning domain PD.

• The causation rule (2) is transformed into the following rule:

d(y)← b1(y), . . . , bn(y), not bn+1(y), . . . , not bk(y),
c1(x), . . . , cm(x), not cm+1(x), . . . , not cl(x),
a1(x, y), . . . , av(x, y), not av+1(x, y), . . . , not aw(x, y), tr(x, y)

• The executability condition (3) is transformed into the following rule:

execa(y)← s(y), b1(y), . . . , bn(y), not bn+1(y), . . . , not bk(y),
a1(x, y), . . . , av(x, y), not av+1(x, y), . . . , not aw(x, y).

Here, we assume for simplicity as in [16] that there are no positive cyclic interdependencies
between actions.

• The initial state constraint (4) is transformed into the following rule:

d(init)← b1(init), . . . , bn(init), not bn+1(init), . . . , not bk(init),

The translation above allows to reformulate planning problems in PD as reasoning tasks for FDNC

programs. A goal G in PD is an expression of the form

g1, . . . , gn, not gn+1, . . . , not gk (5)

where each gi is a fluent literal. For this, we add to the translation the following rule:

plan(x)← g1(x), . . . , gn(x), not gn+1(x), . . . , not gk(x) (6)

where plan is a new predicate symbol. Let P (PD, G) denote the resulting program.

INFSYS RR 1843-08-01 37

To know whether an optimistic plan for G in PD exists, we can pose the brave query ∃x.plan(x)
to the program P (PD, G). Similarly, the cautious open query λx.plan(x) can be posed for a secure
plan. Due to the stable model semantics of both languages, it is not hard (yet technical) to show
that a stable model of P (PD, G) encodes a set of possible trajectories S0, A1, S1, A2, . . . in PD

where S0 is any initial knowledge state; the whole set SM(P (PD, G)) captures all the trajectories
for PD.

Further, each term t such that P (PD, G) |=b plan(t) naturally encodes an optimistic plan for
the problem, and each term t that is an answer for λx.plan(x) under cautious entailment encodes
a secure plan. Thus, plan correctness and security verification problems can be readily solved by
the standard inference tasks P (PD, G) |=b plan(t) and P (PD, G) |=c plan(t).

We note at this point that deciding the existence of some secure plan (of arbitrary length) to
establish a given goal G in a given K action domain that conforms to the setting considered here
is ExpSpace-complete (this is well-known for a generic related action formalism [27]; the hardness
part can be shown by slightly adapting the NExpTime-hardness proof for the problem when a
prescribed plan length is part of the input [17]).

Finally, also temporal projection with respect to an action sequence ~a = a1, a2, . . . , ak, k ≥ 1
can be easily expressed: whether a fluent d is possibly true after hypothetically taking ~a is expressed
by the entailment P (PD) |=b d(t) where t = fak

(fak−1
· · · (fa1

(init))) where P (PD) is P (PD, G)
except the rules (5) and (6). Whether d is necessarily true when ~a would have happened can be
expressed, using again a similar technique as in Proposition 15, as cautious entailment of d(t) from
P (D) augmented with the auxiliary fact C0(init). and rules R(x, fai+1

(x))← Ci(x), for 0 ≤ i < k,
Ci+1(y) ← Ci(x), R(x, y), for 0 ≤ i < k − 1, and ← R(x, y), not tr(x, y), where all Ci and R are
fresh predicates (this singles out the models in which ~a would be taken).

Further tasks like reasoning about the initial state or observation assimilation [6] can be similarly
expressed.

Example 4. Table 3 presents an example encoding of a propositional planning domain in K into
an FDN program P , which is an adaptation of the classical Yale-Shooting example [26]. Here we
assume three fluents See, Loaded, Hit, and two actions load and shoot. In the initial situation, a
hunter sees a target, but his gun is not loaded (row (1)). The fluents See and Loaded are inertial,
i.e., their truth values do not change unless proved otherwise (rows (2) and (3)). The hunter can
load the gun only if it is unloaded, and can shoot only if the gun is loaded (rows (4) and (5)).
The gun becomes loaded after loading occurs (row(6)). Finally, the hunter hits the target, if he
shoots while seeing the target (row (7)). The goal in the planning domain is Hit, and hence the
rule plan(x)← Hit(x) is added to the encoding.

It is easy to see that P |=b ∃x.plan(x), i.e., there exists a plan where the hunter hits the target
and is witnessed by the term t = shoot(load(init)). The inertia of See is crucial; dropping the
statement in row (3) wouldn’t let us assume that the hunter still sees the target after loading the
gun.

The term t also encodes a secure plan for the domain, i.e., t witnesses the open query λx.plan(x).
This becomes false when instead of sure knowledge that the gun is not loaded in the initial state,
the status of the gun in the initial stage can vary freely. This situation is modeled by the two rules
caused Loaded if not ¬Loaded and caused ¬Loaded if not Loaded. In this case, t is still an
optimistic plan for the domain, but is not secure (as the first step might not be executable). On
the other hand, if hypothetically t would happen, then Hit would be both possibly and necessarily
true after it.

38 INFSYS RR 1843-08-01

(1) initially caused See,¬Loaded See(init)←; ¬Loaded(init)←;

(2) caused Loaded if not ¬Loaded Loaded(y)← Loaded(x), tr(x, y), not ¬Loaded(y)

after Loaded

(3) caused See if not ¬See after See See(y)← See(x), tr(x, y), not ¬See(y)

(4) executable load if ¬Loaded execload(x)← ¬Loaded(x)

(5) executable shoot if Loaded execshoot(x)← Loaded(x)

(6) caused Loaded after load Loaded(y)← load(x, y), tr(x, y)

(7) caused Hit after See, shoot Hit(y)← See(x, y), shoot(x), tr(x, y)

Table 3: Example of Planning Domain Encoding

To provide a procedure for deciding plan existence in the planning domains of K, the authors
of [17] encode the domain into a disjunctive Datalog program and reformulate plan existence in
terms of brave entailment. Since Datalog does not allow for function symbols, the encoding uses
constants to instantiate the necessary successor stages. Obviously, only a finite number of constants
can be used and hence, it has to be fixed in advance. For this reason the encoding is not general;
only plans of certain length can be captured. Furthermore, such an encoding may also incur high
space requirements.

The encoding into FDNC solves the problems of above. The availability of function symbols
allows to easily generate an infinite time-line, and, hence, to avoid the usage of constants. Due to
the properties of FDNC, the encoding also allows to generate the successors states “on-demand”
during the model construction; in this way, space might be saved.

7.2 Higher-arity FDNC

In the previous section, we discussed how FDNC can be used to model propositional planning
domains. However, a propositional setting is not always convenient to model complex planning
problems. Parameterized actions and fluents are a means for more compact representation. It
allows us to work with actions that, for instance, move an object x from a location l1 to the
location l2. In this way, we avoid to introduce separate actions for each possible combination of x,
l1, and l2 as needed in the propositional setting. (This is, e.g., widely used in [6].)

In this section, we extend the class FDNC of logic programs to allow for predicate and function
symbols of higher arities. We assume two disjoint sets U and B of predicate names having arities
at least 1 and 2, respectively. Given an atom A(t1, . . . , tn) with A ∈ U or a term f(t1, . . . , tn), its
local positions are 0, . . . , n − 1 and its global position is n. Similarly, given an atom A(t1, . . . , tn)
with A ∈ B, its local positions are 0, . . . , n − 2 and its global positions are n − 1 and n. An atom
A(~t) with A ∈ U (resp., A ∈ B) is g-unary (resp., g-binary).

Definition 7.1. A higher arity FDNC program is a finite disjunctive logic program whose rules
are of the following forms:

(R1)
∨n

i=1 Ai(~ti, X) ←
∧l

j=0 B±
j (~uj , X)

(R2)
∨n

i=1 Ri(~vi, X, Y) ←
∧l

j=0 P±
j (~uj , X, Y)

(R3)
∨n

i=1 Ri(~vi, X, fi(~ti, X)) ←
∧l

j=0 P±
j (~wj , X, gj(~uj , X))

INFSYS RR 1843-08-01 39

(R4)
∨n

i=1 Ai(~ti, Y) ← R(~w, X, Y),
∧l

j=0 B±
j (~uj , Zj)

(R5)
∨n

i=1 Ai(~ti, f(~v, X)) ← R(~w, X, f(~v, X)),
∧l

j=0 B±
j (~uj , Wj)

(R6)
∨n

i=1 Ri(~vi, X, fi(~ti, X)) ←
∧l

j=0 B±
j (~uj , X)

(R7)
∨n

i=1 Ai(~ti, b) ∨
∨m

i=1 Ri(~vi, c, d) ←
∧k

i=0 B±
i (~ti, b

′),
∧l

i=0 P±
i (~ti, c

′, d′),

where m, n, l, k ≥ 0, and

– each Zi ∈ {X, Y }, Wi ∈ {X, f(~v, X)},

– each Ai and Bj is from U , and each Ri and Pj is from B,

– the tuples ~v, ~w, and all ~vi, ~ti, ~uj are tuples of variables or constants.

– b, c, d, b′, c′, d′ are constants,

– Ci and Dj is a name from U ∪B,

– X and Y do not occur in local positions of atoms and function symbols, and

– each rule r is safe, i.e., each of its variables occurs in body+(r).

We additionally assume that each constant c of the program, does not occur both in the local
position of an atom and in the global position of another atom.

The restrictions on the variable interaction allow us to transform higher-arity FDNC programs
naturally into ordinary FDNC programs in a way such that the methods that were introduced for
reasoning in the previous sections can be used. In the following, we present the transformation and
a use case of a higher-arity FDNC program.

Definition 7.2. Let P be a higher-arity FDNC program. Let ld(P) denote the set of constants
occurring in the local positions of atoms in P . For a rule r, let lv(r) denote the set of variables
occurring in local positions of atoms in r. We say r′ is a parameter-ground instance of r w.r.t.
a set of constants S, if r′ can be obtained by substituting each variable in lv(r) with a constant
in S. Let gr(r, S) denote the set of all locally-ground instances of r w.r.t. S. The parameter-
grounding of P is the program pgr(P) = {r′ ∈ gr(r, ld(P)) | r ∈ P}. The FDNC-reduction of
P is the FDNC program red(P) obtained from P by replacing each g-unary atom A(t1, . . . , tn)
(resp., g-binary atom R(t1, . . . , tn)) occurring in the rules of pgr(P) with an atom At1,...,tn−1

(tn)
(resp., Rt1,...,tn−2

(tn−1, tn)). Similarly, the FDNC-reduction of an interpretation I for P is defined
as red(I) := {At1,...,tn−1

(tn) | A(t1, . . . , tn) ∈ I, A ∈ U} ∪ {Rt1,...,tn−2
(tn−1, tn) | R(t1, . . . , tn) ∈

I, R ∈ B}.

The following result is then not difficult to establish.

Theorem 25. For any higher-arity FDNC program P ,

SM(P) = {I | red(I) ∈ SM(red(pgr(P)))}.

40 INFSYS RR 1843-08-01

Since red(P) is finite, higher-arity FDNC programs inherit decidability from ordinary FDNC

programs. However, their complexity is higher (by one exponential) in the general case. This is
not surprising, since the parameter-grounding of P is exponential in the size of P .5

An exponential blow-up only occurs when arbitrarily many parameters are allowed in rules, i.e.,
if the number of variables that can occur in local position is unbounded. If the maximal number
of variables in local positions is fixed, then the parameter-grounding is polynomial in the size of a
higher-arity program, and our complexity results carry over for higher-arity FDNC.

Below is an example of an application of higher-arity FDNC programs to compactly represent
the blocks world problem (the example is an adaptation of the one in [17]).

Example 5. We assume that initially we have 3 blocks a, b, and c. In the initial state, a and b

are on the table (table), while c is on top of a. This is formalized by the following facts:

block(a, 0)← on(a, table, 0)←
block(b, 0)← on(b, table, 0)←
block(c, 0)← on(c, a, 0)←

loc(table, 0)←

We need to state the static knowledge about the objects, i.e., the properties of objects that
do not change during the execution of actions. We thus state that blocks remain blocks, locations
remain locations, and that occupation is determined by having a block on top:

block(B, y)← block(B, x), change(x, y)
loc(L, y)← loc(L, x), change(x, y)
loc(B, x)← block(B, x)

occupied(B, x)← on(B1, B, x), block(B, x)

Next are the effects of action execution. We need to mark the locations that become occu-
pied/unoccupied after moving a block from one location to another. On the other hand, we need
to state that the rest of the configuration does not change:

on(B,L, y)← block(B, x), loc(L, x), change(x,move(B,L, x))
¬on(B,L1,move(B,L, x))← block(B, x), loc(L, x), change(x,move(B,L, x)), on(B,L1, x), neq(L,L1)

on(B,L,move(B,L, x))← on(B,L, x), change(x,move(B,L, x)), not ¬on(B,L,move(B,L, x))

We use an inequality neq(x, y) predicate over parameters, which is axiomatized by adding for
each pair c1, c2 ∈ ld(P) such that c1 6= c2, the fact neq(c1, c2)← to the program.

Next is the executability of an action; only blocks can be moved, and they can only be placed
in some location.

change(x,move(B,L, x)) ∨ ¬change(x,move(B,L, x))← block(B, x), loc(L, x)

The disjunctive rule allows to freely execute the action. Since there might be several blocks that
can be moved, the last rule does not force the execution of all applicable action simultaneously.

5The hardness results for ExpTime, co-NExpTime, and co-NExpTimeNP corresponding to P, co-NP, and ΣP
2 ,

respectively, follow from the complexity of ordinary function-free logic programs [12]; ExpSpace and 2-ExpSpace

corresponding to PSpace and ExpSpace can be obtained by generalizing the given Turing machine encodings. As
for 2-ExpTime corresponding to ExpTime, one can show ExpTime-hardness of reasoning in ordinary FDC and FN

by adapting the given encoding of PSpace Turing machines into FC to alternating PSpace-Turing machines (which
capture ExpTime). With parameters, this can be further lifted to alternating ExpSpace = 2-ExpTime.

INFSYS RR 1843-08-01 41

The execution of an action can be prohibited by the constraints. In our setting, the block
cannot be moved if either the destination is occupied or the block has a block on top of it:

¬change(x, move(B, L, x))←occupied(B, x)
¬change(x, move(B, L, x))←occupied(L, x)

We ask the question whether there exists a sequence of actions that transforms the initial configu-
ration into the one where a is on the table, b is on a and c is on b. This is expressed by the following
rule:

plan(x)←on(c, b, x), on(b, a, x), on(a, table, x)

The existence of a plan for the encoded problem can now be decided by the brave query ∃x.plan(x)
to the higher-arity program that we constructed. It is easy to verify that there exists a stable model
where the following term t satisfies the predicate plan:

t = move(c, b, move(b, a, move(c, table, 0)))

The term t encodes the plan of moving c to the table, b on top of a, and finally c on top of b. The
same t is also an answer for the cautious open query λx.plan(x) to the program, and encodes a
secure plan for the goal.

However, if the initial location of b were not known, i.e., on(b, table, 0) ← is replaced by
on(b, table, 0) ∨ on(b, c, 0) ←, then the above plan is no longer secure, as the first step is not
executable in the case where b is on top of c. Here, the answer

t = move(c, b, move(b, a, move(c, table, move(b, table, 0))))

to the cautious open query λx.plan(x) encodes a secure plan.

We finally remark that higher-arity FDNC programs can be used to encode suitable fragments
of the predicate version of the action language K, but omit further of this issue.

8 Conclusion

8.1 Related Work

Several works have considered decidable logic programs with function symbols that are related to
our work, including [11, 10, 8, 7, 51], as well as function-free programs that have similar semantic
properties [30]. We discuss this now in more detail.

DatalognS. A close relative of FDNC is DatalognS [11, 10], which provides an extension of the
Datalog language in deductive databases with function symbols in a way that is more liberal in
spirit than in FDNC programs. The syntax of DatalognS allows for rules in which atoms with
complex terms affect atoms with less complex terms, which is not allowed in FDNC programs.
On the other hand, DatalognS features neither of disjunction, negation, and constraints, and thus
has to be compared with F; modulo minor differences, ordinary and higher-arity F programs are
DatalognS programs.

Chomicki and Imieliński presented in [11] a an algebraic approach to compile the least Her-
brand models of DatalognS programs (i.e., their single stable models) via homomorphisms into
finite structures, on which query answering can be performed. Different representations of these

42 INFSYS RR 1843-08-01

structures, viz. a graph specification and an equational specification that uses a congruence relation,
have been described and analyzed; other representation methods for restricted classes of programs
in the literature were also discussed. The compilation technique in [11] does not extend to FDNC

programs, which can have multiple (even infinitely many) stable models. The techniques of knots,
which constitute building blocks of stable models, handles multiplicity of models by knot sharing,
in a way such that every stable model can be readily assembled from knots.

Notably, ordinary and higher-arity F have lower complexity than DatalognS , at least regarding
data complexity (which was considered in [11]). As reported there, cautious entailment of ground
queries in DatalognS is ExpTime-complete with respect to data complexity, i.e., w.r.t. the size
of the set of facts in the program. On the other hand, cautious entailment of ground queries
from F programs (which coincides with brave entailment) is feasible in polynomial time; the same
holds for higher-arity F programs when the number of parameters in each rule is bounded by a
constant, since then the parameter grounding pgr(P) and the FDNC-reduct of P have polynomial
size; thus, the ground query can be answered in polynomial time when the rules are fixed. This
continues to hold when facts added to P may also involve function symbols (in global positions
only): complex terms in facts can be compiled away in polynomial time (e.g., by doing a partial
instantiation and introducing fresh predicate and constant symbols for ground terms). Hence, w.r.t.
data complexity, our F-programs constitute a meaningful, tractable fragment of DatalognS . In [10],
different evaluation strategies for query answering from DatalognS programs have been considered;
by their relationship to F-programs, they can applied to the latter as well.

Finitely recursive and finitary programs. Our class FN, which results from FDNC by dis-
allowing constraints and disjunction, is a decidable subclass of the Finitely Recursive Programs
(FRPs) [8, 7]. FRPs are normal logic programs P with function symbols that are restricted in
a way such that in the grounding of P , each atom depends only on finitely many atoms. In this
formalism, inconsistency checking is r.e.-complete and brave ground entailment is co-r.e.-complete
in general [7]. For FN and our full class FDNC, which implicitly obeys the condition of FRPs,
these problems are ExpTime-complete. On the other hand, FN is not a subclass of the Finitary
Programs (FPs) [8], which are those RFPs in whose grounding only finitely many atoms occur
in odd cycles. For FPs, consistency checking is decidable, and brave and cautious entailment are
decidable for ground queries but r.e.-complete for existential atomic queries. Note that for FN, all
these problems are decidable in exponential time. Finally, the explicit syntax of FN, as well as of
our other fragments of FDNC, allows for effective recognition of such programs. FRPs and FPs,
instead, suffer from undecidability of the conditions defining the classes, i.e., FRPs and FPs cannot
be effectively recognized.

Omega-restricted logic programs. For logic programs with negation under stable model se-
mantics, ω-restricted logic programs have been presented in [51]. These are normal logic programs
that allow for function symbols of arbitrary arities and an unbounded number of variables, but
have restricted syntax to ensure that they have the finite-model property, i.e., that finite answer
sets always exist. The restriction is a generalization of classical stratification based on the exis-
tence of an acyclic ordering of the atom dependencies, which adds a special ω-stratum that holds
all unstratifiable predicates of the logic program. In contrast, our FDNC programs as presented
in this paper do not exclude cyclic dependencies, and they do not have the finite model property.
Furthermore, FDNC programs have lower computational complexity. While consistency testing

INFSYS RR 1843-08-01 43

in general ω-restricted programs is 2-NExpTime-complete, the test can be done in ExpTime for
ordinary and in 2-ExpTime for higher-arity FDNC programs.

Local extended conceptual logic programs. Another formalism related to FDNC-programs
are Local Extended Conceptual Logic Programs (LECLPs) [30] which evolved from [29]. Such
programs are function-free but have answer sets over open domains, i.e., of the grounding of P

with an arbitrary superset of the constants in P . LECLPs are syntactically restricted to ensure
the forest-shape model property of answer sets. Deciding consistency of an LECLP P is feasible
in 3-NExpTime, as one can ground P with double exponentially many constants in the size of P ,
and then use a standard ASP solver. For FDNC, deciding the consistency is ExpTime-complete
and thus less complex.

Comparing the expressiveness of LECLPs and FDNC is intricate due the different settings. At
least, both formalisms can encode certain description logics (e.g., ALC). LECLPs may be more
expressive than FDNC programs, since the expressive DL ALCHOQ is reducible to satisfiability
in LECLPs. On the other hand, LECLPs undermine the general intuition behind minimal model
semantics of logic programs. So-called free rules of the form p(x)∨not p(x)←; allow to unfoundedly
add atoms for p in an answer set. FDNC, instead, has no free rules, and each atom in a stable
model of P must be justified from the facts of P .

Reductions of Description Logics to ASP Reductions of Description Logics to ASP have been
considered e.g. in [1, 6, 50, 32, 31, 30]. Alsaç and Baral [1, 6] gave a reduction of ALCQI to normal
function-free logic programs (i.e., Datalog with stable negation), which was geared towards the
Herbrand domain of a knowledge base; by adding rules to generate inductively terms with a function
symbol, they extended it to infinite domains. Their reduction is, in a sense, less constructive than
the one given here and others, where function symbols are used to handle existential quantifiers
by skolemization. Swift [50] reported a reduction of deciding satisfiability of ALCQI concepts to
Datalog with stable negation, which exploits the finite model property of this problem. Heymans
et al. [31, 30] reduced SHIQ (which subsumes ALCQI) to their Conceptual Logic Programs and
extensions; however, they used answer sets over open domains rather than the standard Herbrand
domain.

Most relevant for the present paper is Hustadt et al.’s [32]. They reduced reasoning in SHIQ
to the evaluation of a positive disjunctive Datalog program. The program is generated in three
steps. First, the knowledge base is translated into first-order logic in a standard way. After that,
resolution and superposition techniques are applied to saturate a clausal form of the transformation.
Finally, function symbols are removed using new constant symbols.

The reduction of ALC to FDC in Section 5.2 is, in essence, similar to others and a close relative
of the one in [32]. The main differences to the latter are with respect to step 2, where our method
uses knots for compilation, and that our method aims at model building while the one in [32] is
geared towards query answering. Notably, the disjunctive Datalog program constructed in [32]
is generally exponential in the size of K (but is evaluable in co-NP), while the FDC program is
polynomial (but may need exponential time for evaluation).

Furthermore, the reduction contributes in two respects. First, the knowledge base K is rewritten
on the DL syntax side into a normal form (which can be done very efficiently), rather than on the
first-order logic side after the mapping. Second, a transformation into FDC as a language opens the

44 INFSYS RR 1843-08-01

possibility to use any dedicated evaluation algorithm for such programs, beyond a specific method
(like the one in this paper).

Reasoning about Actions and Planning. As already discussed in the previous sections, the
use of non-monotonic logic programs under answer set semantics as a tool for expressing and solving
problems in reasoning about actions has been considered in many papers, including [14, 36, 6, 17, 52,
48, 49, 42]. The work presented here adds to these other works by providing an underpinning of the
computational properties of non-monotonic logic programs with functions symbols that naturally
emerge in this context, and, importantly, capture indefinitely long action sequences. They help in
assessing the complexity of particular problems and may be useful to show that tractability can be
achieved in some cases. Furthermore, our results provide algorithms to solve problems expressed
in the language.

Using higher arity FDNC, we can represent the Yale-Shooting scenario in Example 4 alterna-
tively using a generic predicate holds(f, x) to express truth of the fluent f in a situation x, where
f is reified using a constant symbol, in the style of [6]; e.g., holds(Loaded , init) corresponds then to
Loaded(init). Further predicates, e.g. abnormal(f, x), can be used to express other aspects of flu-
ents. While the syntax of FDNC does not allow reification of fluents with parameters, e.g. on(A, B)
to holds(on(A, B), x), which is also used [6], this can be easily accommodated with tailored pred-
icates, e.g. holdson(A, B, x); on the other hand, an extension of the syntax of FDNC programs
that allows such terms in local positions is easily accomplished, and does not affect the worst case
complexity.

8.2 Summary and Further Issues

In line with efforts to pave the way for effective Answer Set Programming engines with function
symbols [8, 7], we presented FDNC programs as a decidable class of disjunctive logic programs with
function symbols under stable model semantics.

FDNC and its subclass are a powerful tool for knowledge representation and reasoning for
some applications involving infinite processes and objects, like evolving action domains. They
are, by their intrinsic complexity, the proper fragment of logic programs to capture secure (alias
conformant) planning in declarative action languages with a transition-based semantics like K, C,
and similar languages, which is an ExpSpace-complete problem.

Notably, FDNC programs can have infinitely many and infinitely large stable models. To finitely
represent those models, we introduced a technique that allows to reconstruct stable models as forests
from so called knots from maximal founded set of knots. The finite representation technique allowed
us to define an elegant decision procedure for brave reasoning in FDNC, and may also be exploited
for offline knowledge compilation to speed up online reasoning and model building, by precomputing
and storing the knots of a program. From the precomputed set of knots, stable models can be built
online comparatively fast.

Furthermore, we have characterized the complexity of reasoning in FDNC programs, which is
lower than in the most popular of the recent approaches to enhance Answer Set Programming with
functions symbols. FDNC and its subclasses provide effective syntax for expressing problems in
PSpace, ExpTime, and ExpSpace using logic programs with function symbols.

The are several avenues for future research. One is to generalize the syntax of FDNC, while
keeping decidability and benign semantic properties. An interesting such extension is to allow

INFSYS RR 1843-08-01 45

rules of the form R(y, x) ← R(x, y). The ability to define inverse relations, which are common
in expressive DLs and related modal logics, would allow for the bi-directional flow of information
between elements in the domain; the resulting programs are, as seem by a reduction to monadic
second-order logic over trees SkS, still decidable. While the forest-shaped model property would
remain, such relations are problematic due to the stable model semantics. In presence of inverse
relations, testing the minimality of interpretation for a program becomes more involved. Intuitively,
the justification of atoms in an interpretation can no longer be verified by only considering the
structurally less complex atoms. To deal with these issues, we plan to generalize the knot-based
technique for the finite representation of stable models.

FDNC and, in particular, the finite representation of stable models is a promising basis of
developing algorithms for answering more complex queries than those considered in this paper.
Since FDNC easily captures some basic DLs, the algorithms developed for FDNC may be applicable
in other domains also. In general, query answering algorithms need to construct a set of models in
order answer the query. The algorithms using the maximal founded set of knots as an input, would
be relieved from computationally expensive model building since the relevant part of the model can
be built using knots without the need to ensure the consistency.

Finally, implementation of FDNC-programs is a subject of future work. Since the stable knots
are defined as stable models of local programs (which are finite propositional disjunctive logic
programs), the implementation will certainly include exporting parts of reasoning to one of the
highly optimized answer set solvers currently available. In particular, recent extensions of the DLV
system like DLVHEX, which implements hex programs [20] that feature external function calls (by
which limited skolemization could be simulated), may be attractive for this.

Acknowledgments

We are grateful to the reviewers of the preliminary LPAR 2007 paper and our colleagues for useful
comments on this paper.

A Proofs and Constructions

A.1 Auxiliary Lemma

Proof of Lemma 1. The statement (i) follows directly from the fact that in the basic fragment F

we can state unary and binary facts. Indeed, P is consistent iff P ∪ {Q(c)←} |=b ∃x.Q(x), where
Q and c are fresh symbols not occurring in P . Hence, whenever a fragment allows for unary facts,
the consistency problem in that fragment can be reduced in logarithmic space to brave entailment
of existential unary queries in the same fragment. The same can be shown for binary existential
queries, and also for ground queries.

It is easy to see that the statement (ii) holds for existential queries. Indeed, for an arbitrary
logic program P , the following hold:

1) P |=b ∃x, y.R(x, y) iff P ∪ {Q(x)← R(x, y)} |=b ∃x.Q(x), and

2) P |=b ∃x.A(x) iff P ∪ {W (x, f(x))← A(x)} |=b ∃x.W (x, y),

46 INFSYS RR 1843-08-01

where Q, W , and f are fresh symbols not occurring in P . This defines a logarithmic space reduction
from brave entailment of binary existential queries to unary ones, and vice versa. Since even in the
basic F fragment the syntax allows to add the necessary rule, the claim follows.

As in the case above, by utilizing additional rules, brave entailment of binary ground queries can
be reduced in logarithmic space to brave entailment of unary ground queries, and vice versa. Hence,
the statement (ii) also holds for ground queries. We state the properties that allow for reduction.
Let q be a binary ground atom, and let P be an an FDNC program. Due to the forest-shape model
property, if q is not of the form (a) R(c, d) or (b) R(t, f(t), where c, d are constants, then P 6|=b q.
Therefore, without loss of generality, we can assume that binary queries over FDNC programs are
of the form (a) or (b). The reduction then follows from the following properties:

a) P |=b R(c, d) iff P ∪ {R′(c, d)←; R′′(x, y)← R(x, y), R′(x, y); Q(y)← R′′(x, y)} |=b Q(d),

b) P |=b R(t, f(t)) iff P ∪ {Q(y)← R(x, y)} |=b Q(f(t)),

c) P |=b A(v) iff P ∪ {R′(x, f(x))← A(x)} |=b R′(v, f(v)),

where Q, R′, R′′, and f are fresh symbols not occurring in P .

For the statement (iii), it is easy to see that cautious entailment of unary open queries can be
reduced in linear time to cautious entailment of binary open queries. Indeed, P |=c λx.A(x) with
the answer x = t iff P ∪ {R(x, f(x)) ← A(x)} |=c λx, y.R(x, y) with the answer x = t, y = f(t),
where R and f are fresh symbols not occurring in P . For the reduction in the other direction,
consider a FDNC program P and a query λx, y.R(x, y). We define the program P ′ obtained from
P by adding

(a) for each pair c, d of constants of P , the rules

– R′
c,d(c, d)←,

– Rc,d(x, y)← R′
c,d(x, y), R(x, y), and

– Ac,d(y)← Rc,d(x, y),

where R′
c,d, Rc,d and Ac,d are fresh symbols, and

(b) for each function symbol f of P , the rule Af (f(y))← R(x, f(x)), where Af is a fresh symbol.

It is easy to verify that P |=c λx, y.R(x, y) iff at least one of the following holds:

1. for some pair c, d of constants of P , P |=c λx.Ac,d(x), or

2. for some function symbol f of P , P |=c λx.Af (x).

where each of the predicate symbols in the heads is a fresh symbol. By this construction, cau-
tious entailment of a binary open query can be decided by polynomially many cautious entailment
problems of unary open queries that are constructible in polynomial time. Hence statement (iii)
holds.

INFSYS RR 1843-08-01 47

Ph.1

D ⊕ Ĉ ⊑ E D ⊕A⊑ E, Ĉ ⊑A

D ⊑ E ⊕ Ĉ D ⊑ E ⊕A, A⊑ Ĉ

QR.Ĉ ⊑ E Ĉ ⊑A, QR.A⊑ E

D ⊑QR.Ĉ D ⊑QR.A, A⊑ Ĉ

Ph.2

Ĉ ⊑ D̂ Ĉ ⊑A, A⊑ D̂

C ⊔D ⊑B C ⊑B,D ⊑B

B ⊑ C ⊓D B ⊑ C, B ⊑D

Ph.3 QR.B ⊑D ⊤⊑A ⊔D, A⊑Q−R.A′, A′ ⊓B ⊑⊥

Ph.4

C ⊑D ⊔ ¬E C ⊓ E ⊑D

C ⊓ ¬D ⊑ E C ⊑D ⊔ E

⊥ ⊓D ⊑ E ∅

D ⊑ E ⊔ ⊤ ∅

⊤ ⊓D ⊑ E D ⊑ E

D ⊑ E ⊔ ⊥ D ⊑ E

where ⊕ ∈ {⊓,⊔}, Q ∈ {∀,∃}, concepts Ĉ, D̂ are not literal concepts,
A, A′ are fresh concepts, B is atomic, the rest are arbitrary.

Table 4: Rules for Rewriting into Normal Form

A.2 Normalization of ALC KBs

We show how to transform in linear time an arbitrary ALC KB K1 into a KB K2 such that K2 is in
normal form, is safe, and K1 is satisfiable iff K2 is satisfiable (i.e., K1 and K2 are equi-satisfiable).
For technical reasons, we assume that ALC KBs contain only concepts that are in negation normal
form, i.e., negation may occur only in front of atomic concepts. It is well known that an arbitrary
ALC concept can be transformed in linear time into an equivalent concept in negation normal form.
We start with the transformation into normal form and then move to safety of KBs.

Given an arbitrary ALC KB K, an equi-satisfiable KB K′ in normal form can be obtained by
exhaustive rewriting of axioms in K using the rules in Table 4. The rewriting is performed in 4
phases. It is easy to verify that the transformation is terminating, preserves the consistency, and
after the exhaustive rewriting in the final Phase 4 yields a KB in normal form.

We analyze the computational complexity of rewriting in each of the phases. Following the
standard assumption in Description Logics, we assume that each of the atomic concepts in C is of
constant size, i.e., the size of the representation of atomic concepts does not depend on a particular
knowledge base. Since the number of axioms in K is linear in |K|, w.l.o.g. we assume that K
contains only one axiom α.

It is easy to see that in Phase 1 the number of rewritings is bounded by c + q, where c and
q respectively denote the number of binary connectives, and quantifiers (“∀” or “∃”) occurring in

48 INFSYS RR 1843-08-01

K. Since each application of a rule removes an axiom and adds two axioms, the number of axioms
resulting by rewriting α is bounded by c + q. Since the application of a rewrite rule to an axiom
yields two axioms whose combined size increases by some fixed constant not depending on the size
of the KB (due to the assumption on the size of atomic concepts), the rewriting in Phase 1 is
feasible in linear time in the size of the initial KB.

Phase 2 is feasible in linear time in the size of the knowledge base obtained in Phase 1. Indeed,
only linearly many rule applications can occur and each of the rewriting causes a constant overhead
in the representation of new axioms.

Phase 3 that deals with the elimination of quantifier in the antecedent of an axiom is clearly
linear in the size of the KB obtained in Phase 3.

In Phase 4 the number of rewrite steps is bounded by the number of negation symbols and
occurrences of ⊤ and ⊥ in the knowledge base resulting from Phase 3, i.e., it is clearly linear.

Since each phase requires at most linear time in the size of the input, we conclude that normal-
izing a KB K is feasible in linear in the size of K.

We now show that each ALC KB in normal form can be transformed in linear time into a safe
KB in normal form while preserving the consistency. For a given KB K we can construct the safe
knowledge base K′ by modifying K in the following way:

– for each individual name i occurring in K, adding the assertion Dom(i) to K,

– for each role R of K, adding Dom⊑ ∀R.Dom to K, and

– replacing each axiom ⊤⊑D ∈ K of type (T3), by Dom⊑D,

where Dom is a fresh concept name not occurring in K. Indeed, K′ is safe and in normal form
by construction. It is easy to verify that K is consistent iff K′ is consistent. Indeed, if I is a
first-order interpretation that is the model of Θ(K), then we can extend I to be a model of Θ(K′)
by extending I to interpret Dom as the whole domain of I. For the other direction, suppose K′ is
consistent. Since ALC has the forest-shaped model property REF , due to the construction, there
exists a model I of Θ(K′) where every domain element satisfies Dom. Then, trivially, I is a model
of Θ(K). The construction of K′ is clearly linear in the size of K.

A.3 Brave Entailment in FDNC

Proof of Theorem 8. Suppose (A) holds, i.e., there exists some I ∈ SM(P) such that A(t) ∈ I, for
some term t. By Theorem 1, Ic ∈ SM(PG). Let G := Ic. By Proposition 3, K(I) is a set of knots
that is founded w.r.t. P and S(G). Due to the definition of KP and Proposition 5, we have that
KP is compatible w.r.t. S(G). It remains to show that (ii) in (B) holds. Consider EK(I). Due to the
fact that A(t) ∈ I and the construction of EK(I), for some constant c there exists K ∈ K(I) such
that st(G, c) ≈ st(K,x) and 〈K, A〉 ∈ EK(I). Due to the definition of KP , K(I) ⊆ KP . Therefore
K ∈ KP . Moreover, it trivially holds that 〈K, A〉 ∈ EK(I) implies 〈K, A〉 ∈ EKP

. Therefore, (ii)
holds.

Suppose (B) holds. The facts that G ∈ SM(PG), and that KP is compatible w.r.t. S(G) imply
that F(G, KP) 6= ∅ and each I ∈ F(G, KP) is a stable model of P (see Theorem 2). The condition
(ii) and the construction of forest-shaped interpretations ensure that some I ∈ F(G, KP) contains
an atom A(t), where t is some term.

Proof of Theorem 10. Similar to the proof of Theorem 8, and thus omitted.

INFSYS RR 1843-08-01 49

A.4 Open Queries

Proof of Proposition 9. For the “only if” direction, suppose a term t is such that P |=c A(t).
Suppose c is the constant of t, and t = fn(. . . f1(c) . . .). Let t0, . . . , tn be the list of subterms of t

ordered w.r.t. increasing term depth, i.e., t0 = c and ti = fi(. . . f1(c) . . .), where i ∈ {1, . . . , n}.
Define the sequence s = [L0

c
, L1

f1
, . . . , Ln

fn
], where Li = {K↓x | I ∈ SM(P), K = I ∩ HBti}, for

i ∈ {0, . . . , n}. We verify that s is convergent.
Since P is consistent, each Li is a nonempty subset of KP . Since P |=c A(t), the sequence s

trivially satisfies the conditions (1) and (3) in Definition 5.7. Suppose (2) is not satisfied. Then there
exists some j ∈ {1, . . . , n}, some K ∈ Lj−1 and some K ′ ∈ KP such that st(K, fj(x)) ≈ st(K ′,x)
and K ′ 6∈ Lj . Take the smallest index j for which the statement above holds. Then there exists a

sequence K0, . . . , Kj−1, Kj of knots in KP such that the sequence N = [K0

t0
, . . . ,

Kj−1

tj−1
,

Kj

tj
] has the

following properties:

– Ki ∈ Li for each i ∈ {0, . . . , j − 1}, while Kj 6∈ Lj ;

– st(Ki, fi+1(x)) ≈ st(Ki+1,x) for each i ∈ {0, . . . , j − 1}.

Let S = st(K0,x). Due to the definition of trees, we know that there exists a tree T induced by KP

starting at S such that N ∈ T . Consider the stable model I ∈ SM(P) where st(c, I) ≈ S. Such
I must exists due to the way we defined L0. By the semantic characterization (see Theorem 3), I

can be represented as I = Ic ∪ (T c1)↓ ∪ . . . ∪ (T cn)↓, where {c1, . . . , cn} is the set of all constants
of P , and each T ci is a tree induced by KP starting at st(ci, I

c). Suppose c1 = c. Simply define
I ′ := Ic ∪ (T)↓ ∪ (T c2)↓ ∪ . . . ∪ (T cn)↓. By Theorem 2, we have that I ′ is also a stable model of P .
We arrive at a contradiction to the assumption that Kj 6∈ Lj . Indeed, Kj = (I ′ ∩HBtj)↓x, and,

due to the definition of s, Kj ∈ Lj .
For the other direction we show that the failure of (A) implies the failure of (B). Suppose for each

term t, P 6|=c A(t). Furthermore, assume there exists a converging sequence s = [L0

c
, L1

f1
, . . . , Ln

fn
]

for A, where L0 = seeds(c, P). First, we reconstruct the term encoded in the sequence. Let t0 = c,
while tn is defined inductively as ti := fi(ti−1), where 1 ≤ i ≤ n. Consider the term tn. By
assumption, there exists a model I of P such that A(tn) 6∈ I. There are two possibilities.

a) ti∈̂I, for each i ∈ {0, . . . , n}. Due to the definition of KP and the fact that K(I) is founded, we
have that each Ki := (HBti ∩ I)↓x is in KP , where 0 ≤ i ≤ n. By assumption, we have K0 ∈ L0.
The condition (2) in Definition 5.7 implies that Kn ∈ Ln. Since A(x) 6∈ Kn, we have that s is
not a converging sequence for A due to violation of (3) in Definition 5.7.

b) For some i, where 0 < i ≤ n, we have tiˆ6∈I. Note that t0∈̂I since it is a constant. Take the
smallest m, where 0 ≤ m < n, such that tm+1

ˆ6∈I. As it was argued, each Ki := (HBti ∩ I)↓x is
in KP , where 0 ≤ i ≤ m. By assumption, we have K0 ∈ L0. The condition (2) in Definition 5.7
implies that Km ∈ Lm. Since Km := (HBtm ∩ I)↓x and tm+1

ˆ6∈I, we have that fm(x) 6∈ succ(Km).
We have that s is not a converging sequence for A due to violation of (1) in Definition 5.7.

In both cases s is a converging sequence for A, which contradicts the assumption.

Proof of Theorem 13 (ExpSpace-Hardness). Consider a language L over an alphabet Σ which is
in ExpSpace. Then there is a Turing machine M = (S, Σ, δ, s0) as in Definition 6.3 that decides
membership of a given word I in L on a tape whose length is bounded by an exponential in the

50 INFSYS RR 1843-08-01

size of I. We construct a FD program P (M, I) of size polynomial in M and I such that acceptance
of I by M is equivalent to the existence of an answer for an open query ∃x.A(x) under cautious
entailment.

For convenience, we assume here that I is not the empty word. Suppose the number of cells
(the space) used by M on the input I is bounded by m := 2as, where as is polynomial in the size
of I. The reduction relies on keeping two addresses of the cells in the work tape, each of which is
represented using as = log2 m bits. The first address is the position of the read/write (r/w) head,
which is encoded by the unary predicate symbols rwposb

0, . . ., rwposb
as, b ∈ {0, 1}. For each bit

of the address, we dedicate two symbols and will ensure that exactly one of them holds for each
term. In our encoding, terms will represent stages reached in the computation of the machine on
some path. Similarly, the second address is the one of the observed cell, which is encoded by the
unary predicate symbol oposb

0, . . . , oposb
as, b ∈ {0, 1}. Intuitively, the observed cell is the single

cell of the machine for which the correct state transition will be ensured by the program. By non-
deterministically generating all cells for observation in parallel, and exploiting the properties of
cautious entailment of open queries we will ensure that accepting computations of M (represented
by terms) can be singled out.

We sketch the construction of the program P (M, I) in steps. We need rules for checking the
equality of the r/w head address and the address of the observed cell. To this end, for a bit b, let
b̄ = 1 − b denote the complement of b. For the comparison of separate bits in the two addresses,
we add the following rule

equi(x)← oposb
i(x), rwposb

i(x) for all i ∈ {0, . . . , as} and b ∈ {0, 1}. (7)

The equality of two addresses at some point of computation is then expressed easily by the rule

rwoequ(x)← equ0(x), . . . , equas(x). (8)

The inequality is also easily expressed by the rules

nonequ(x)← oposb
i(x), rwposb̄

i(x) (9)

for all i ∈ {0, . . . , as} and b ∈ {0, 1}.
We move to the representation of the initial configuration of the machine, which we do from

the perspective of an observed cell. To this end, we add, for 0 ≤ i ≤ as, the facts

rwpos0
i (st) ← , (10)

states0
(st) ← , (11)

opos1
i (st) ∨ opos0

i (st) ← . (12)

Intuitively, (10) sets the position of the r/w head to the left most cell and (11) set the machine into
the start state, while (12) non-deterministically chooses an observed cell of the tape. To represent
the content of each observed cells in the initial configuration, we proceed as follows.

For each symbol α ∈ Σ, we use a designated unary predicate symbol symbolα. Let n ≥ 0 be
the position of the last symbol of I written on the tape, i.e., I = I0I1 · · · In is on positions 0,. . . ,n.
For each position i ≤ n with binary representation i = b0 · · · bas = i and α = Ii, we add the rule

symbolα(st)← oposb0
0 (st), . . . , oposbas

as (st). (13)

INFSYS RR 1843-08-01 51

For all other positions, the symbols are blank. Assuming that n = b∗0 · · · b
∗
as in binary, we express

this with rules
symbolb(st)← opos

b∗
1

1 (x), . . . , opos
b∗j−1

j−1 (x), opos1
j (x), (14)

for all j ∈ {0 . . . , as} such that b∗j = 0.
This describes the initial configuration; note that it is captured by the whole set of models for

the program described so far. Although each model captures only the content of one (the observed)
cell, the contents of the whole work tape is entirely captured as the addresses of the observed cells
cover the whole work space of M .

To encode the transitions, it is handy to view δ as a table. For each tuple t = 〈s, α, s′, α′, D〉
such that δ(s, α) = 〈s′, α′, D〉, we use a function symbol t̄ and define the following rules:

next(x, t̄(x)) ← rwoequ(x), states(x), symbolα(x), (15)

next(x, t̄(x)) ← nonequ(x), states(x), (16)

states′(t̄(x)) ← next(x, t̄(x)), (17)

symbolα′(t̄(x)) ← rwoequ(x), next(x, t̄(x)), (18)

moveD(t̄(x)) ← next(x, t̄(x)). (19)

The rules above are explained as follows. If the r/w head is at the position of the observed cell,
and the symbol and the state are correct for the transition, the transition is made (15). If the r/w
head is not at the position of the observed cell, the transition is made blindly (16). The single case
where the transition is not made is if the r/w head is at the position of the observed cell, but either
the symbol or the state is not the right one. The rule (17) sets the new state, while (18) sets the
new symbol of the observed cell. The rule (19) triggers the movement of the r/w head. The effect
of moveD is explained next. Moving the r/w head boils down to adding or subtracting one bit from
the address. To this end, we use unary predicates shiftb0,. . ., shiftbas, b ∈ {0, 1}, to simulate the
values of the carry bit. When the r/w head position changes, the last bit should be inverted. This
is stated by the rules

shift1as(x) ← move+1(x), (20)

shift1as(x) ← move−1(x), (21)

shift0as(x) ← move0(x). (22)

The position of r/w head after shifting is then defined by the following rules for each j ∈ {0, . . . , as},
j′ ∈ {1, . . . , as}, and b ∈ {0, 1}:

rwposb̄
j(y) ← shift1j (y), rwposb

j(x), next(x, y), (23)

rwposb
j(y) ← shift0j (y), rwposb

j(x), next(x, y), (24)

shiftbj′−1(y) ← move+1(y), shift1j′(y), rwposb
j′(x), next(x, y), (25)

shiftb̄j′−1(y) ← move−1(y), shift1j′(y), rwposb
j′(x), next(x, y), (26)

shift0j (x) ← move0(x). (27)

Furthermore, we have to state that the address of the observed cell does not change, i.e., is fixed
for a model. This expressed by the rules

oposb
i(y)← oposb

i(x), next(x, y), (28)

52 INFSYS RR 1843-08-01

for each i ∈ {0, . . . , as} and b ∈ {0, 1}. Finally, we ensure that the symbol written in the observed
cell does not change if it is not affected by the transition. This is expressed by the following inertia
rule for each α ∈ Σ:

symbolα(y)← nonequ(x), symbolα(x), next(x, y). (29)

This completes the description of the program P (M, I). It is not hard to see that P (M, I) has
exactly m = 2as minimal models (and thus stable models, as in P (M, I) no negation occurs) that
are induced by different choices of the position of the observed cell. Let R0, . . . , Rm−1 be these
models ordered with respect to the position of the observed cell, i.e., R0 is the one for first position
0 while Rm−1 is the one for the last position m− 1.

Without loss of generality, we view a run of M on an input I as a sequence t1, . . . , tn of
transitions, and assume that it is always non-empty. The run is accepting, if after performing tn,
the machine enters the accepting state accept. We establish the following lemmas.

Lemma 2. If the machine M accepts the input I on the run t1, . . . , tn, n ≥ 1, then P (M, I) |=c

stateh(u), where u = t̄n(. . . t̄1(st) . . .).

Proof. Suppose that I0 = Ib · · · b is the word describing the initial tape contents, and that after
executing the transitions t1, . . . , ti, (i) Ii is the word given by the tape contents, (ii) si is the state
of the machine, and (iii) posi is the position of the r/w head.

We show that for each Rw, w ∈ {0, . . . , m − 1}, we have stateaccept(u) ∈ Rw. To this end,
we show that in Rw the content of the observed cell w, the state, and the r/w head position are
correctly reflected through the computation. More formally, let u0 := st, and ui := t̄i(ui−1), where
0 < i ≤ n. Then we argue that, for each j ∈ {0, . . . , n}, (i) symbolα(uj) ∈ Rw whenever α = I

j
w,

i.e., α is written in cell w, (ii) statesj
(uj) ∈ Rw, and (iii) posj is, encoded, in binary, by the atoms

rwposb
i(uj) ∈ Rw, 0 ≤ i ≤ as. Note that this will prove the lemma, since sn = accept.

We proceed by induction on j ≥ 0. The base case j = 0 is clear by the encoding of the initial
word (rules (13) and (14)), the initial r/w head position (facts (10)) and the initial state (fact (11)).

For the inductive case, assume the claim holds for 0 ≤ j < n and consider j + 1. By the
induction hypothesis, symbolα(ui) ∈ Rw, statesj

(uj) ∈ Rw, and posj is described by the atoms
rwposb

i(uj) ∈ Rw. There are now, by the rules (7) – (9) two disjoint cases: either nonequ(uj) ∈ Rw

or rwoequ(uj) ∈ Rw. In the former case, next(uj , tj+1(uj)) ∈ Rw by the rule (16); by the rule (29),
we then have symbolα(uj+1) ∈ Rw. In the latter case, next(uj , tj+1(uj)) ∈ Rw by the rule (15); by
the rule (18), we then have symbolα′(uj+1) ∈ Rw. In both cases, Rw contains symbolα(uj+1) where
Ii+1
w = α. Hence (i) holds for j + 1.

As for (ii), as we have next(uj , tj+1(uj)) ∈ Rw, by the rule (17) we have statesi+1
(ui+1) ∈ Rw,

and thus (ii) holds for j + 1. Finally, the rules (19) and (20) – (27) effect that atoms posb
i(uj+1)

which correctly represent posj+1 are derived. Hence, (iii) holds for j + 1.

Lemma 3. If P (M, I) |=c λx.stateaccept(x), then there exists an accepting run of M .

Proof. Suppose P (M, I) |=c stateaccept(u). By assumption, the initial state is not accept and thus
u = t̄n(. . . t̄1(st) . . .), where n ≥ 1. Let u0 := st, and ui := t̄i(ui−1), where 0 < i ≤ n. Then,
in each model Rw, we must clearly must have next(ui−1, ti(ui−1)) for each 0 < i ≤ n (otherwise,
stateaccept(un) would not be contained in Rw).

For each i ∈ {0, . . . , n}, define (i) the word Ii = α0 · · ·αm−1 where αj is such that symbolαj
(ui) ∈

Rj , 0 ≤ j < m, (ii) si as the state s such that states(ui) ∈ Rw, and (iii) posi as the integer which,

INFSYS RR 1843-08-01 53

in binary, is encoded by the facts rwposbi

i (uj) ∈ Rw, i.e., posi = b0 · · · bas, where w ∈ {0, . . . , m−1}
is arbitrary.

We claim that each Ii, si, and posi is well-defined and is the tape contents, state, and r/w head
position, respectively, after the partial run t1, . . . , ti of M on the input I. Since sn = accept, this
will prove the lemma.

The proof is by induction on i ≥ 0. For the base case i = 0, by construction, I0 clearly is
the initial tape contents, s0 = s0, and pos0 = 0 by the facts and rules (10) – (14). Suppose
the claim holds for 0 ≤ i < n and consider i + 1. Assume ti+1 = 〈s, α, s′α′, D〉. Since we have
next(ui, ti+1(ui)) in each Rw, we must have states′(ui+1) in Rw by rule (17); since no other fact
states′′(ui+1) can be in Rw, si+1 is well-defined. Furthermore, we must have states(ui) in Rw and
either (a) rwoequ(ui) ∈ Rw or (b) nonequ(ui) ∈ Rw; by the induction hypothesis and the rules (7)
– (9), (a) is the case if posi = w and (b) if posi 6= w. In case (a), we must have symbolα(ui) ∈ Rw

and symbolα′(ui+1) ∈ Rw by rule (18), and in case (b) symbolα(ui+1) ∈ Rw by rule (29), where
symbolα(ui) ∈ Rw. Since no other facts symbolα′′(ui+1) can be in Rw, Ii+1 is well-defined. Finally,
we must have moveD(ui+1) in Rw by rule (19); by the induction hypothesis and the rules (20) –

(27), we have facts rwpos
bj

j (ui+1) in Rw, 0 ≤ j ≤ as, such that b0, . . . , bas represents posi + D =

posi+1 in binary.

Summing up, Ii+1, s+1, and posi+1 are all well-defined and encode tape contents, state, and r/w
head position, respectively, after the partial run t1, . . . , ti+1 of M on the input I, which concludes
the induction step.

As P (M, I) and λx.stateaccept(x) are constructible in polynomial time from M and I, from
Lemmas 2 and 3 the claimed ExpSpace-hardness result follows for FD, FDN, and FDNC; by
replacing the disjunctive guessing rules (12) with unstratified rules opos1

i (st) ← not opos0
i (st);

opos0
i (st)← not opos1

i (st), we obtain the result for FN and FNC.

A.5 Reasoning in FN

Proof of Proposition 11. Let I be a stable model of F (P). The properties (1), (2) and (3) hold
by the construction of F (P), i.e., due to the fact that I is a stable model that satisfies (F1)-
(F4) rules of F (P). Suppose I does not satisfy (4), i.e., for some term t∈̂I and some unary
predicate A of P , either (a) {A(t), Ā(t)} ∩ I = ∅, or (b) {A(t), Ā(t)} ⊆ I. In case (a), we have
{A(t) ← Dom(t); Ā(t) ← Dom(t)} ⊆ F (P)I . Since Dom(t) ∈ I, I is not a model of F (P)I .
Contradiction. Assume the case (b). There are two possibilities: (i) either Ac(t) ∈ I, or (ii)
Ac(t) 6∈ I. Assume (i). Since the single rule (the reduct of the rule of type (F7)), where Ac(t)
occurs in the head, is not in F (P)I , we have that I is not a minimal model of F (P)I . Contradiction.
Assume (ii). Then the rule Ac(t)← A(t), Ā(t) is in F (P)I , and the body is in I by the assumption
(b). It follows that I is not a model of F (P). Contradiction. To sum up, both (a) and (b) lead to
the contradiction to the assumption that I is a stable model of F (P). Analogously to the argument
for (4), one can show that the property (5) holds.

For the other direction, assume an interpretation I of F (P) for which the given properties hold.
It is easy to see that such an interpretation satisfies each of the rules in F (P)I . We verify that I a
minimal model of F (P)I . By the construction of F (P), each minimal model of F (P) has to satisfy
(1), (2) and (3). Therefore, if I is not a minimal model of F (P)I , there should exists a model
H ⊂ I of F (P)I for which (4) or (5) does not hold. We arrive to a contradiction. Due to the rules

54 INFSYS RR 1843-08-01

of type (F5) or (F6) in F (P), H cannot be a model of F (P)I .

Proof of Proposition 12. Suppose I is a minimal model of P . We know that I is forest-shaped.
Let J be a Herbrand interpretation for TR(P) defined as the smallest set of atoms satisfying the
following conditions:

a) I ⊆ J ,

b) S(c, d) ∈ J , for each pair c, d of constants of P ,

c) if t∈̂J , then Dom(t) ∈ J ,

d) if t∈̂J and f is a function symbol of P , then S(t, f(t)) ∈ J ,

e) if t∈̂J and A(t) 6∈ J , then Ā(t) ∈ J , and

f) if S(s, t) ∈ I and R(s, t) 6∈ I, then R̄(s, t) ∈ J ,

where A and R are predicate symbols of P . We show that J is a stable model of TR(P). Assume
that it is not the case. There are two possibilities.

- J is not a model of TR(P)J . Since F (P) ⊆ TR(P), we have F (P)J ⊆ TR(P)J . From the
construction of J it follows that J is a model of F (P)J . Then there has to exists some ground
rule C(~v1)← Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn) in TR(P)J such that

(⋆) {Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn} ⊆ J and C(~v1) 6∈ J .

Due to construction, P contains the rule W1(~t1)∨ . . .∨Wn(~tn)← Q1(~v1), . . . , Qm(~vm). Since I is
a model of P , then either (a) {Q1(~v1), . . . , Qm(~vm)} 6⊆ I or (b) {W1(~t1) ∨ . . . ∨Wn(~tn)} ∩ I 6= ∅.
In case (a), by the definition of J , (⋆) does not hold. In case (b), for some Wi(~ti) of the rule,
W̄i(~ti) 6∈ J and, hence, (⋆) does not hold.

- J is a model but is not a minimal model of TR(P)J . Since F (P) ⊆ TR(P), we have F (P)J ⊆
TR(P)J . Then we also have that J is a model of F (P)J , but is not minimal. We arrive at a con-
tradiction, since J is a minimal model of F (P)J due to the construction of J and Proposition 11.

For the other direction, let I be a stable model of TR(P). Let J be the interpretation obtained by
restricting I to the predicates of P . Suppose J is not a model of P . Then Ground(P) contains a rule
W1(~t1) ∨ . . . ∨Wn(~tn)← Q1(~v1), . . . , Qm(~vm), where n, m > 0, such that {Q1(~v1), . . . , Qm(~vm)} ⊆
I and {W1(~t1), . . . , Wn(~tn)} ∩ I = ∅. By construction, Ground(TR(P)) contains r = C(~t1) ←
Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn), not C(~t1). Furthermore, due to the assumption that I ∈
SM(TR(P)) and Proposition 11, we have {Q1(~v1), . . . , Qm(~vm), W̄1(~t1), . . . , W̄n(~tn} ⊆ I. It holds
that either C(~v1) 6∈ J , or C(~v1) ∈ I. The former case implies that I is not a model of TR(P). In
the later case we get that I is not a minimal model of TR(P) since by definition r is the single rule
where C(~t1) occurs in the head. However, the rule r 6∈ TR(P) by definition of the GL reduct. We
arrived at a contradiction that I be a stable model of TR(P). At this point we know that J is a
model of P . J might not be minimal, but that is enough to prove that P is consistent.

INFSYS RR 1843-08-01 55

A.6 Higher-arity FDNC

Proof of Theorem 25. We analyze the impact of restricted variable interaction in higher-arity FDNC.
As easily verified, the atoms that can be motivated in the stable models are of the particular form.
Let P be a higher-arity FDNC program, and let pterms(P) be the set of proper terms defined as
the smallest set such that

a) if c ∈ HUP is a constant and c 6∈ ld(P), then c ∈ pterms(P);

b) if t ∈ HUP is a complex term such that (1) in its local positions there are only constants from
ld(P), and (2) in its global positions are the terms from pterms(P), then t ∈ pterms(t).

Note that pterms(P) is closed under subterms. Let patoms(P) be the set of all proper atoms for
P , which are the atoms in HBP that have constants from ld(P) in the local positions and terms
from pterms(P) in the global positions.

Due to the syntax of higher-arity FDNC, given any Herbrand interpretation I of P , a rule r in
the reduct P I contains a non-proper atom iff it contains a non-proper atom in the body. Hence,
every minimal model J ⊆ I of P I must satisfy J ⊆ patoms(P). Thus if P ′ is the program obtained
from Ground(P) by deleting each rule that contains an atom A 6∈ patoms(P), then P I and P ′I have
the same minimal models. This implies that SM(P) = SM(P ′). Moreover, only proper atoms can
be motivated in stable models of P , i.e., I ⊆ patoms(P) holds for each I ∈ SM(P).

Trivially, SM(P ′) = {I | red(I) ∈ SM(red(P ′))}. On the other hand, we can easily verify that
red(P ′) = Ground(red(pgr(P))). Since SM(Ground(red(pgr(P))) = SM(red(pgr(P)))), it follows
that SM(P) = {I | red(I) ∈ SM(red(pgr(P)))} as claimed.

References

[1] G. Alsaç and C. Baral. Reasoning in description logics using declarative logic programming. Technical
report, Department of Computer Science and Engineering, Arizona State University, 2001.

[2] H. Andreka and I. Nemeti. The generalised completeness of Horn predicate logic as programming
language. Acta Cybernetica, 4(1):3–10, 1978.

[3] Asparagus homepage. http://asparagus.cs.uni-potsdam.de/, Since 2005.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P. Kaelbling and A. Saffiotti,
editors, IJCAI, pages 364–369. Professional Book Center, 2005.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[6] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University
Press, 2002.

[7] S. Baselice, P. A. Bonatti, and G. Criscuolo. On finitely recursive programs. In ICLP, 2007. Accepted
for publication.

[8] P. A. Bonatti. Reasoning with infinite stable models. Artif. Intell., 156(1):75–111, 2004.

[9] M. Cadoli and F. Donini. A survey on knowledge compilation. AI Communications, 10(3-4):137–150,
1997.

http://asparagus.cs.uni-potsdam.de/

56 INFSYS RR 1843-08-01

[10] J. Chomicki. Depth-bounded bottom-up evaluation of logic programs. Journal of Logic Programming,
25(1):1–31, 1995.

[11] J. Chomicki and T. Imielinski. Finite representation of infinite query answers. ACM Trans. Database
Syst., 18(2):181–223, 1993.

[12] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic program-
ming. ACM Computing Surveys, 33(3):374–425, 2001.

[13] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[14] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in nonmonotonic logic programs.
In Proceedings of the European Conference on Planning 1997 (ECP-97), pages 169–181. Springer Verlag,
1997.

[15] J. Dix, U. Furbach, and A. Nerode, editors. Logic Programming and Nonmonotonic Reasoning, 4th In-
ternational Conference, LPNMR’97, Dagstuhl Castle, Germany, July 28-31, 1997, Proceedings, volume
1265 of Lecture Notes in Computer Science. Springer, 1997.

[16] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to knowledge-
state planning, II: The dlvK system. Artificial Intelligence, 144(1-2):157–211, 2003.

[17] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to knowledge-
state planning: Semantics and complexity. ACM Transactions on Computational Logic, 5(2):206–263,
Apr. 2004.

[18] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: Propositional
Case. Annals of Mathematics and Artificial Intelligence, 15(3/4):289–323, 1995.

[19] T. Eiter and G. Gottlob. Expressiveness of stable model semantics for disjunctive logic programs with
functions. J. Log. Program., 33(2):167–178, 1997.

[20] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning
and external evaluations in answer set programming. In L. P. Kaelbling and A. Saffiotti, editors,
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pages 90–
96. Professional Book Center, 2005.

[21] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for non-monotonic
reasoning. In Dix et al. [15], pages 364–375.

[22] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-driven answer set solver. In
C. Baral, G. Brewka, and J. S. Schlipf, editors, LPNMR, volume 4483 of Lecture Notes in Computer
Science, pages 260–265. Springer, 2007.

[23] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Comput., 9(3/4):365–386, 1991.

[24] M. Gelfond and V. Lifschitz. Representing actions in extended logic programming. In JICSLP, pages
559–573, 1992.

[25] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary report. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI ’98), pages 623–630,
1998.

[26] S. Hanks and D. V. McDermott. Nonmonotonic logic and temporal projection. Artif. Intell., 33(3):379–
412, 1987.

[27] P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete information.
In S. Biundo and M. Fox, editors, ECP, volume 1809 of Lecture Notes in Computer Science, pages
308–318. Springer, 1999.

INFSYS RR 1843-08-01 57

[28] J. Herbrand. Logical Writings. Harvard University Press, 1971. Edited by Warren D. Goldfarb.

[29] S. Heymans. Decidable Open Answer Set Programming. PhD thesis, Theoretical Computer Science
Lab (TINF), Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, B1050 Brussel,
Belgium, February 2006.

[30] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic ontological and rule-based reasoning
with extended conceptual logic programs. In ESWC, pages 392–407, 2005.

[31] S. Heymans and D. Vermeir. Integrating semantic web reasoning and answer set programming. In M. de
Vos and A. Provetti, editors, Proceedings ASP-2003 — Answer Set Programming: Advances in Theory
and Implementation, volume 78 of CEUR Workshop Proceedings, pages 194–208. CEUR-WS.org, 2003.

[32] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to disjunctive datalog programs.
In Proceedings KR-2004, pages 152–162. AAAI Press, 2004.

[33] U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order fragments and description
logics. JoRMiCS, 1:251–276, 2004.

[34] A. Itai and J. A. Makowsky. Unification as a complexity measure for logic programming. Journal of
Logic Programming, 4:105–117, 1987.

[35] H. J. Levesque, F. Pirri, and R. Reiter. Foundations for the situation calculus. Electron. Trans. Artif.
Intell., 2:159–178, 1998.

[36] V. Lifschitz. Answer Set Planning. In D. D. Schreye, editor, Proceedings of the 16th International
Conference on Logic Programming (ICLP’99), pages 23–37, Las Cruces, New Mexico, USA, Nov. 1999.
The MIT Press.

[37] V. Lifschitz. Answer Set programming and plan generation. Artificial Intelligence, 138:39–54, 2002.

[38] V. W. Marek and J. B. Remmel. On the expressibility of stable logic programming. In LPNMR, pages
107–120, 2001.

[39] V. W. Marek and M. Truszczyński. Stable models and an alternative logic programming paradigm. In
K. Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, editors, The Logic Programming Paradigm
– A 25-Year Perspective, pages 375–398. Springer, 1999.

[40] W. Marek, A. Nerode, and J. Remmel. How Complicated is the set of stable models of a recursive logic
program? Annals of Pure and Applied Logic, 56:119–135, 1992.

[41] W. Marek, A. Nerode, and J. Remmel. The stable models of a predicate logic program. Journal of
Logic Programming, 21(3):129–153, 1994.

[42] A. R. Morales, P. H. Tu, and T. C. Son. An extension to conformant planning using logic programming.
In M. M. Veloso, editor, IJCAI, pages 1991–1996, 2007.

[43] B. Motik, I. Horrocks, and U. Sattler. Bridging the gap between OWL and relational databases. In
Proc. of WWW 2007, pages 807–816, 2007.

[44] I. Niemelä. Logic programming with stable model semantics as constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.

[45] I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded semantics
for normal lp. In Dix et al. [15], pages 421–430.

[46] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J. Comput.
Syst. Sci., 4(2):177–192, 1970.

[47] K. Schild. A correspondence theory for terminological logics: Preliminary report. In IJCAI, pages
466–471, 1991.

58 INFSYS RR 1843-08-01

[48] T. C. Son, C. Baral, N. Tran, and S. A. McIlraith. Domain-dependent knowledge in answer set planning.
ACM Transactions on Computational Logic, 7(4):613–657, 2006.

[49] T. C. Son, P. H. Tu, M. Gelfond, and A. R. Morales. Conformant planning for domains with constraints-
a new approach. In M. M. Veloso and S. Kambhampati, editors, AAAI, pages 1211–1216. AAAI Press
/ The MIT Press, 2005.

[50] T. Swift. Deduction in ontologies via ASP. In Proceedings LPNMR-2004, volume 2923 of LNCS/LNAI,
pages 275–288. Springer, 2004.

[51] T. Syrjänen. Omega-restricted logic programs. In T. Eiter, W. Faber, and M. Truszczynski, editors,
LPNMR, volume 2173 of Lecture Notes in Computer Science, pages 267–279. Springer, 2001.

[52] P. H. Tu, T. C. Son, and C. Baral. Reasoning and planning with sensing actions, incomplete information,
and static causal laws using answer set programming. Journal of the Theory and Practice of Logic
Programming, 7(4):377–450, 2007.

[53] S. Woltran. Answer Set Programming: Model applications and proofs-of-concept. Technical Report
WP5, Working Group on Answer Set Programming (WASP, IST-FET-2001-37004), July 2005. Available
at http://www.kr.tuwien.ac.at/projects/WASP/report.html.

http://www.kr.tuwien.ac.at/projects/WASP/report.html

	Introduction
	Preliminaries
	F D N C Programs
	Characterization of Stable Models
	Finite Representation of Stable Models

	Complexity Results
	Complexity of F D N C
	Deriving Maximal Founded Set of Knots
	Deciding Consistency
	Brave Entailment of Queries
	Cautious Entailment of Open Queries

	Complexity of Fragments
	Reasoning in F N and F N C
	Reasoning in F C
	Reasoning in F and F D

	Applications and Extensions
	Reasoning about Actions and Planning
	Higher-arity F D N C

	Conclusion
	Related Work
	Summary and Further Issues

	Proofs and Constructions
	Auxiliary Lemma
	Normalization of ALC KBs
	Brave Entailment in F D N C
	Open Queries
	Reasoning in F N
	Higher-arity F D N C

