
I N F S Y S

R e s e a r c h

R e p o r t

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

Institut für Informationssysteme

Abteilung Wissensbasierte Systeme

Exploiting Conjunctive Queries in

Description Logic Programs

Thomas Eiter Giovambattista Ianni

Thomas Krennwallner Roman Schindlauer

INFSYS Research Report 1843-08-02

March 2008

INFSYS Research Report

INFSYS Research Report 1843-08-02, March 2008

Exploiting Conjunctive Queries in

Description Logic Programs

Thomas Eiter
1

Giovambattista Ianni
2 1

Thomas Krennwallner
1

Roman Schindlauer
1

Abstract. Towards combining rules and ontologies for the Semantic Web, nonmonotonic
Description Logic Programs (dl-programs) have been proposed as a powerful formalism to
couple nonmonotonic logic programming and Description Logic reasoning on a clear semantic
basis. In this paper, we present cq-programs, which enhance dl-programs with conjunctive
queries (CQ) and union of conjunctive queries (UCQ) over Description Logics knowledge
bases, as well as with disjunctive rules. The novel formalism has two advantages. First, it
offers increased expressivity due to possible (U)CQs in the bodies of the rules. By means of
this, unnamed individuals can be accessed in query evaluation, and from a complexity per-
spective much harder problems can be represented and solved; cq-programs over a knowledge
base in the Description Logic SHIF(D), for example, can host all problems of complexity
in 2-EXP via polynomial time transformations, while ordinary dl-programs can host only
problems in NEXP. And second, when implemented as a combination between a logic pro-
gramming system and a DL-reasoner, this integration of rules and ontologies gives rise to
strategies for optimizing calls to the DL-reasoner, by exploiting specific (U)CQ facilities
that are supported. To this end, we present equivalence preserving transformations which
can be used for program rewriting, and we present respective generic rewriting algorithms.
Experimental results for a cq-program prototype show that this can lead to significant per-
formance improvements, and suggest that cq-programs and program rewriting provide a
useful basis for dl- and cq-program optimization.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna,
Austria; email: {eiter,ianni,tkren,roman}@kr.tuwien.ac.at.

2Dipartimento di Matematica, Università della Calabria, P.te P. Bucci, Cubo 30B, I-87036 Rende, Italy

Acknowledgements: This work has been partially supported by the EC NoE REWERSE (IST
506779) and the Austrian Science Fund (FWF) project P17212-N04.

Preliminary versions of this paper have been presented at 2007 International Workshop on Descrip-
tion Logics (DL2007), June 8-10, 2007, Bressanone, Italy, and the 10th International Symposium on
Artificial Intelligence and Mathematics (ISAIM 2008), January 2-4, 2008, Ft. Lauderdale, Florida.

Copyright c© 2008 by the authors

INFSYS RR 1843-08-02 I

Contents

1 Introduction 1

2 Description Logics 3
2.1 (Unions of) Conjunctive Queries . 4

3 CQ Programs 5
3.1 Syntax . 6
3.2 Semantics . 7
3.3 Minimal-model semantics for positive cq-programs 8
3.4 Strong answer-set semantics for cq-programs . 9

4 Computational Complexity 11

5 Rewriting Rules 13
5.1 Proof of Theorem 5.5 . 17
5.2 Proof of Theorem 5.6 and 5.7 . 18

6 Rewriting Algorithms 21

7 Implementation and Experiments 25

8 Conclusion 28

A Proofs of Lemmas 29
A.1 Proof of Lemma 3.8 . 29
A.2 Proof of Lemma 5.8 . 29
A.3 Proof of Lemma 5.9 . 30
A.4 Proof of Lemma 5.10 . 30
A.5 Proof of Lemma 5.11 . 30
A.6 Proof of Lemma 5.12 . 31

INFSYS RR 1843-08-02 1

1 Introduction

Rule formalisms that combine logic programming with other sources of knowledge, especially termi-
nological knowledge expressed in Description Logics (DLs), have gained increasing interest in the
past years. This process was mainly fostered by current efforts in the Semantic Web development
of designing a suitable rules layer on top of the existing ontology layer. Such couplings between
DLs (in the form of ontologies) and logic programming appear in different flavors, which roughly
can be categorized in (i) systems with full semantic integration, (ii) systems with strict semantic
integration and (iii) systems with strict semantic separation, which amounts to coupling heteroge-
neous systems [1, 8, 32, 33]. In this paper, we will concentrate on the latter, considering ontologies
as an external source of information with semantics that are independent from the logic program.
One representative of this category was presented in [8, 10], extending the answer-set semantics
of logic programs towards so-called dl-programs, which have been conceived to couple existing rea-
soning engines for nonmonotonic logic programming and for Description Logics, respectively, in a
meaningful way despite all syntactic and semantic mismatches between the underlying formalisms.

A dl-program consists of a DL part L and a rule part P , and allows queries from P to L. These
queries are facilitated by a special type of atoms, which also permit to hypothetically enlarge the
assertional part of L with facts imported from the logic program P , thus allowing for a bidirectional
flow of information.

The types of queries expressible by dl-atoms in [8, 10] are concept and role membership queries,
as well as subsumption queries. Since the semantics of logic programs is usually defined over a
domain of explicit individuals, this approach may fail to derive certain consequences, which are
implicitly contained in L. This is illustrated by the following example.

Example 1.1. Consider the following simplified version of a scenario in [28].

L =

hates(Cain,Abel), hates(Romulus,Remus),
father(Cain,Adam), father(Abel ,Adam),
father ⊑ parent ,
∃father .∃father−.{Remus}(Romulus)

P = {BadChild(X)← DL[parent](X, Z), DL[parent](Y, Z), DL[hates](X, Y)}

Apart from the explicit facts, L states that each father is also a parent and that Romulus and
Remus have a common father. The single rule in P specifies that an individual hating a sibling is a
BadChild. From this dl-program, BadChild(Cain) can be concluded, but not BadChild(Romulus).

The reason is that, in a dl-program, variables must be instantiated over its Herbrand base
(containing the individuals in L and P), and thus unnamed individuals, like the father of Romulus
and Remus, are not considered. In essence, this means that dl-atoms only allow for building
conjunctive queries that are DL-safe in the spirit of [28], which ensures that all variables in the
query can be instantiated to named individuals. While this was mainly motivated by retaining
decidability of the formalisms, unsafe conjunctive queries are admissible under certain conditions
[33]. In this vein, we extend dl-programs by permitting conjunctive queries or unions thereof
(respectively, CQs and UCQs in the following), to L as first-class citizens in the language.

Example 1.2. In the example above, we may use

P ′ = {BadChild(X)← DL[parent(X, Z), parent(Y, Z), hates(X, Y)](X, Y)},

2 INFSYS RR 1843-08-02

where the body of the rule is a CQ {parent(X, Z), parent(Y, Z), hates(X, Y)} to L with distinguished
variables X and Y . Then we shall obtain the desired result, that BadChild(Romulus) is concluded.

The extension of dl-programs to cq-programs, introduced in this paper, has some attractive
features.

• First and foremost, the expressiveness of the formalism is increased significantly, since existentially
quantified and therefore unnamed individuals can be respected in query answering through the
device of (u)cq-atoms.

• In addition, cq-programs have the nice feature that the integration of rules and the ontology
is decidable whenever answering (U)CQs over the ontology (possibly extended with assertions) is
decidable. In particular, recent results on the decidability of answering (U)CQs for expressive
DLs can be exploited in this direction [14, 30, 31]. Furthermore, it also allows to express, via
conjunction of cq-atoms and negated cq-atoms in rule bodies, certain decidable conjunctive queries
with negations; note that negation quickly leads to undecidability [35].

• The availability of CQs opens the possibility to express joins in different, equivalent ways and
therefore to the design of a module using automatic rewriting techniques. Such module, starting
from a given program (L, P), might produce an equivalent, yet more efficient, program (L, P ′).

Example 1.3. Both

r : BadParent(Y)← DL[parent](X, Y), DL[hates](Y, X)

and

r′ : BadParent(Y)← DL[parent(X, Y), hates(Y, X)](X, Y)

equivalently single out (not necessarily all) bad parents. Here, in r the join between parent and
hates is performed in the logic program, while in r′ it is performed on the DL-side.

DL-reasoners including RACER, KAON2, and Pellet increasingly support answering CQs. This
can be exploited to push joins of multiple atoms from the rule part to the DL-reasoner, or vice versa.
Multiple calls to the DL-reasoner are an inherent bottleneck in evaluating cq-programs. Reducing
the number of calls can significantly improve performance.

Motivated by the last aspect, we then focus on the following contributions.

• We present a suite of equivalence-preserving transformation rules, by which rule bodies and rules
involving (u)cq-atoms can be rewritten. Based on these rules, we then describe algorithms which
transform a given cq-program P into an equivalent, optimized cq-program P ′.

• We report an experimental evaluation of such rewriting techniques, based on a prototype im-
plementation of cq-programs using dlvhex [9, 37] and RACER. It shows the effectiveness of the
techniques, and that significant performance increases can be gained. The experimental results are
interesting in their own right, since they shed light on combining conjunctive query results from a
DL-reasoner.

• The experimental prototype for cq-programs is ready for use (see Section 7). To our knowledge,
it is currently the most expressive implementation of a system integrating nonmonotonic rules and
ontologies.

INFSYS RR 1843-08-02 3

• Furthermore, we analyze the computational complexity of cq-programs and show that they have
higher complexity than dl-programs; already for the description logic SHIF(D), which underlies
the OWL-Lite standard, deciding the existence of an answer set is 2-EXP-complete, as compared to
the PNEXP-completeness of the problem for dl-programs. Thus, cq-programs are a more expressive
formalism for representing problems than dl-programs from a computational perspective.

The remainder of the paper is structured as follows. The next section recalls concepts of
Description Logics. In Section 3, we formally define cq-programs and consider some elementary
semantic properties, while in Section 4 we consider their computational complexity. After that, we
present in Section 5 a suite of equivalence preserving rewriting rules, which are used by a generic
rewriting algorithm that is given in Section 6. Experimental results for a prototype implementation
are reported in Section 7. Section 8 concludes the paper with a discussion of related work and further
issues.

2 Description Logics

In this section, we recall the Description Logics (DLs) SHIF(D) and SHOIN (D), which provide
the logical underpinning of the Web ontology languages OWL-Lite and OWL-DL, respectively
(see [2, 16, 18] for further details and background on DLs).1 Intuitively, DLs model a domain of
interest in terms of concepts and roles, which represent classes of individuals and binary relations on
classes of individuals, respectively. A DL-knowledge base encodes in particular subset relationships
between classes of individuals, subset relationships between binary relations on classes of individuals,
the membership of individuals to classes, and the membership of pairs of individuals to binary
relations on classes. Other important ingredients of SHIF(D) (resp., SHOIN (D)) are datatypes
(resp., datatypes and individuals) in concept expressions.

We first describe the syntax of SHOIN (D), which has the following datatypes and elementary
ingredients. We assume a set E of elementary datatypes and a set V of data values. A datatype
theory D = (∆D, ·D) consists of a datatype (or concrete) domain ∆D and a mapping ·D that
assigns to every elementary datatype a subset of ∆D and to every data value an element of ∆D.
Let Ψ = (A ∪ RA ∪ RD, I ∪V) be a vocabulary, where A, RA, RD, and I are pairwise disjoint
(denumerable) sets of atomic concepts, abstract roles, datatype (or concrete) roles, and individuals,
respectively. We denote by R−

A the set of inverses R− of all R ∈ RA.
Roles and concepts are defined as follows. A role is an element of RA ∪R−

A ∪RD. Concepts are
inductively defined as follows. Every atomic concept C ∈ A is a concept. If o1, o2, . . . are individuals
from I, then {o1, o2, . . .} is a concept (called oneOf). If C and D are concepts, then also (C ⊓D),
(C ⊔D), and ¬C are concepts (called conjunction, disjunction, and negation, respectively). If C is
a concept, R is an abstract role from RA ∪R−

A, and n is a nonnegative integer, then ∃R.C, ∀R.C,
≥nR, and ≤nR are concepts (called exists, value, atleast, and atmost restriction, respectively). If D
is a datatype, U is a datatype role from RD, and n is a nonnegative integer, then ∃U.D, ∀U.D, ≥nU ,
and ≤nU are concepts (called datatype exists, value, atleast, and atmost restriction, respectively).

We next define axioms and knowledge bases as follows. An axiom is an expression of one of the
following forms:

1. C ⊑ D, called concept inclusion axiom, where C and D are concepts;

1We focus on these DLs because of the importance of the OWL standard. Conceptually, cq-programs can be
defined for other DLs as well with little change.

4 INFSYS RR 1843-08-02

2. R ⊑ S, called role inclusion axiom, where either R, S ∈ RA or R, S ∈ RD;

3. Trans(R), called transitivity axiom, where R ∈ RA;

4. C(a), called concept membership axiom, where C is a concept and a ∈ I;

5. R(a, b) (resp., U(a, v)), called role membership axiom, where R ∈ RA (resp., U ∈ RD) and
a, b ∈ I (resp., a ∈ I and v is a data value); and

6. a = b (resp., a 6= b), or = (a, b) (resp., 6= (a, b)), called equality (resp., inequality) axiom,
where a, b ∈ I.

The syntax of SHIF(D) is the one of SHOIN (D), but without the oneOf constructor and
with the atleast and atmost constructors limited to 0 and 1.

Definition 2.1. A (SHOIN (D)) DL knowledge base (DL-KB) L is a finite set of axioms. It is
in SHIF(D), if all its axioms are from SHIF(D).

In the introductory Example 1.1, for instance, we have a DL-KB L which has four role mem-
bership axioms, one concept membership axiom, and one concept inclusion axiom; clearly, it is in
SHIF(D).

The semantics of a DL-KB L is given in terms of first-order interpretations I = (∆I , ·I) with
respect to a datatype theory D = (∆D, ·D) (alternatively, it can be given by a mapping π(L) of L
to first-order logic, cf. [2]). It consists of a nonempty (abstract) domain ∆I disjoint from ∆D, and
a mapping ·I that assigns to each C∈A a subset CI of ∆I , to each o ∈ I an element oI of ∆I , to
each R ∈ RA a subset RI of ∆I ×∆I , and to each U ∈ RD a subset UI of ∆I ×∆D; the mapping
is extended to all concepts and roles as usual.

The interpretation I is a model of a L, if it satisfies each axiom α in L, where satisfaction I |= α
is defined as usual, cf. [2, 16, 18]. An axiom α is a logical consequence of L, denoted L |= α, if
I |= α for each model I of L.

A DL-KB L is satisfiable, if L has some model. To gain decidability of this problem, number
restrictions in L are restricted to so called simple abstract roles [17]; as for computability, we tacitly
assume that DL-KBs fulfill this condition.

Example 2.2. The DL-KB L in Example 1.1 is clearly satisfiable; e.g., the interpretation I =
(∆I , ·I) such that ∆I = {Cain,Abel ,Adam,Romulus,Remus,Mars}, each individual o is inter-
preted by itself (i.e., oI = o), and for hatesI = {(Cain,Abel), (Romulus,Remus)} and fatherI =
parentI = {(Cain,Adam), (Abel ,Adam), (Remus, Mars), (Romulus, Mars)} is a model of L.
Moreover, L |= ¬parent ⊑ ¬father but L 6|= ∃father−.{Adam}.

2.1 (Unions of) Conjunctive Queries

Definition 2.3. A conjunctive query (CQ) q(~X) is an expression

{ ~X | Q1(~X1), . . . , Qn(~Xn)}, (1)

where each Qi is a concept or role expression and each ~Xi is a singleton or pair of variables and
individuals, and where ~X ⊆

⋃n
i=1

vars(~Xi) are its distinguished (or output) variables. A union of

conjunctive queries (UCQ) q(~X) is a disjunction

q1(~X) ∨ · · · ∨ qm(~X) (2)

INFSYS RR 1843-08-02 5

of CQs qi(~X), 1 ≤ i ≤ m, whose distinguished variables are ~X.

We will omit ~X if it is clear from the context. Intuitively, a CQ q(~X) is a conjunction Q1(~X1)∧
· · · ∧ Qn(~Xn) of concept and role expressions, which is true for a ground substitution σ of the
variables in ~X by individuals and data values ~Xσ (a so called answer), if in each model of the
DL-KB the conjunction is satisfiable. A UCQ q(~X) is true for σ, whenever some qi(~X) is true for
σ. More formally, the semantics of CQ and UCQs is as follows.

Definition 2.4. For any CQ q(~X) = { ~X | Q1(~X1), . . . , Qn(~Xn)}, let

φq(~X) = ∃~Y
n
∧

i=1

Qi(~Xi), (3)

where ~Y are the variables not in ~X, and for any UCQ q(~X) =
∨m

i=1
qi(~X), let

φq(~X) =

m
∨

i=1

φqi
(~X). (4)

Then, for any (U)CQ q(~X), the set of answers of q(~X) on L is the set of tuples

ans(q(~X), L) = {~c ∈ (I ∪∆D)|
~X| | L |= φq(~c)}. (5)

Here φq(~c) is short for φq(~Xσ) such that ~Xσ = ~c for some ground substitution σ, and existential
quantifiers in φq(~c) are evaluated as usual in first-order logic.2

Example 2.5. Regarding Ex. 1.2, cq1(X, Y) = {X, Y | parent(X, Z), parent(Y, Z), hates(X, Y)}
and cq2(X, Y) = {X, Y | father(X, Y), father(Y, Z)} are CQs with output X, Y , and ucq(X, Y) =
cq1(X, Y) ∨ cq2(X, Y) is a UCQ. Since L |= φcq1

(Cain,Abel), the tuple (Cain,Abel) is an an-
swer of cq1(X, Y) on L. In fact, ans(cq1(X, Y), L) = {(Cain,Abel), (Romulus,Remus)}, while
ans(cq2(X, Y), L) = ∅, as in L we know nothing about grandfathers. Further, ans(ucq(X, Y), L) =
ans(cq1(X, Y), L).

3 CQ Programs

After having recalled Description Logics, we now define rules on top of DL knowledge bases. To
this end, we introduce cq-programs, which generalize nonmonotonic dl-programs [10, 11] with dis-
junction in the head and allow for conjunctive and unions of conjunctive queries over DL knowledge
bases. The former extension (disjunctive heads) had also been cursory introduced in [8], but was
not further analyzed there. The latter extension is completely novel.

As in [8, 10], we assume besides a vocabulary Ψ of a DL-KB, a function-free first-order vocabu-
lary Φ of nonempty finite sets C and P of constant resp. predicate symbols, and a set X of variables.
It is assumed that C ⊆ I∪∆D holds, which serves to ensure that all objects in the rules (represented
by constants) are known as individuals in the DL knowledge base; typically, C = I ∪∆D holds.3

2Typing of variables wrt. I and ∆D is here implicit: syntactically malformed ground atoms evaluate to false.
3This assumption may be varied, by allowing the rules to see only a subset of the individuals in the DL-KB, and/or

allowing constants in the rules not occurring in the DL-KB; this can be modeled with the current convention. We
omit further discussion here, and similar for access to equality in the DL-KB, which can be modeled like role access;
see [7].

6 INFSYS RR 1843-08-02

3.1 Syntax

Informally, a cq-program consists of a DL-KB L and a generalized disjunctive program P , which
may involve queries to L. Roughly, such a query may ask whether a specific description logic axiom,
a conjunction or a union of conjunctions of DL axioms is entailed by L or not.

As usual, a classical literal (or literal), l, is an atom a or a negated atom ¬a.

Definition 3.1. A dl-atom α is in form DL[λ; q](~X), where λ = S1 op1 p1, . . . , Sm opm pm (m ≥ 0)
is a list of expressions Si opi pi called input list, each Si is either a concept or a role, opi ∈ {⊎, −∪, −∩},
pi is a predicate symbol matching the arity of Si, and q is either

• a (U)CQ with output variables ~X (in this case, α is called a (u)cq-atom), or

• q(~X) is a dl-query as in [10] (in this case, α is called an ordinary dl-atom), i.e.,

1. a concept inclusion axiom F or its negation ¬F , or

2. of form C(t) or ¬C(t), where C is a concept, and t is a term, or

3. of form R(t1, t2) or ¬R(t1, t2), where R is a role, and t1 and t2 are terms. Note here
that ~X is void in 1), ~X = t in 2), and ~X = (t1, t2) in 3).

Each pi is an input predicate symbol; intuitively, opi = ⊎ increases Si by the extension of pi, while
opi = −∪ increases ¬Si; opi = −∩ constrains Si to pi.

Example 3.2. In Ex. 1.1, DL[parent](X, Z), DL[parent](Y, Z), and DL[hates](X, Y) are ordinary
dl-atoms, while in Ex. 1.2, DL[parent(X, Z), parent(Y, Z), hates(X, Y)](X, Y) is a cq-atom with out-
put X, Y . The cq-atom DL[parent ⊎ p; parent(X, Y), parent(Y, Z)](X, Z) with output X, Z extends
L by adding the extension of p to the role parent, and then joins parent with itself.

Definition 3.3. A cq-rule r is of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn, (6)

where every ai is a literal and every bj is either a literal or a dl-atom. We define H(r) = {a1, . . . , ak}
and B(r) = B+(r) ∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. If B(r) = ∅
and H(r) 6= ∅, then r is a fact. If H(r) = ∅ and B(r) 6= ∅, then r is a constraint, and if |H(r)| ≤ 1
then r is non-disjunctive.

A cq-program KB = (L, P) consists of a DL-KB L and a finite set of cq-rules P . It is non-
disjunctive, if each r ∈ P is non-disjunctive, and positive, if B−(r) = ∅ for all r ∈ P and −∩ does
not occur in P .

Example 3.4. In Examples 1.1 and 1.2, P and P ′ contain single rules which are positive, and
thus (L, P) and (L, P ′) are both non-disjunctive positive cq-programs.

Example 3.5. Let KB = (L, P), where L is the well-known wine ontology4 and P is the program
shown in Figure 1. Informally, rule r1 in P selects a maximal region in which both red and white
wine grow, and the next three rules make sure that exactly one such region is picked, by enforcing
that no more than two regions are chosen (r2) and that at least one is chosen (rules r3 and r4).

4http://www.w3.org/TR/owl-guide/wine.rdf

http://www.w3.org/TR/owl-guide/wine.rdf

INFSYS RR 1843-08-02 7

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W), DL[RedWine](R), (r1)

DL[locatedIn](W, L), DL[locatedIn](R, L),

not DL
[

locatedIn(L, L′)
]

(L).

← visit(X), visit(Y), X 6= Y. (r2)

some visit ← visit(X). (r3)

← not some visit . (r4)

delicate region(W)← visit(L), delicate(W), DL[locatedIn](W, L). (r5)

delicate(W)← DL[hasFlavor](W,wine:Delicate). (r6)

Figure 1: Delicate wine region program

The last two rules r5 and r6 single out all the sub-regions of the selected region producing some
delicate wine, i.e., if a wine has a delicate flavor which is specified by individual wine:Delicate.

Note that the program P exclusively uses instance retrieval queries—with one exception in the
first rule: the weakly negated dl-atom is a conjunctive query with only one query atom, since we
have to remove the non-distinguished variable L′ from the output to keep the rule safe. The program
will be used throughout the paper for demonstrating our rewriting methods.

3.2 Semantics

Let KB = (L, P) be a cq-program. The Herbrand base of P , denoted HBP , is the set of all
ground literals with a standard predicate symbol that occurs in P and constant symbols in C.
An interpretation I relative to P is a consistent subset of HBP . The grounding of P , denoted
ground(P), is the set of all ground instances of rules in P (with respect to C); here, in or-
dinary dl-atoms the output variables are replaced by constants and in (u)cq-atoms the distin-
guished variables in q(~X) are replaced by constants, and the output list ~X is replaced by the
empty list; e.g., DL[parent](X, Y) is instantiated, for the substitution X 7→ Cain, Y 7→ Adam
to DL[parent](Cain,Adam) and DL[parent(X, Z), parent(Y, Z)](X, Y) is instantiated for the same
substitution to DL[parent(Cain, Z), parent(Z,Adam)]().

We first define satisfaction of atoms with respect to an interpretation.

Definition 3.6. Let I be an interpretation of P . Then

• an ordinary ground atom l ∈ HBP is satisfied by I, or I is a model of l under L, denoted
I |=L l, iff l ∈ I;

• a ground ordinary dl-atom a = DL[λ; Q](~c) is satisfied by I under L, denoted I |=L a, if
L ∪ λ(I) |= Q(~c), where λ(I) =

⋃m
i=1

Ai and

– Ai(I) = {Si(~e) | pi(~e) ∈ I}, for opi = ⊎;

– Ai(I) = {¬Si(~e) | pi(~e) ∈ I}, for opi = −∪;

8 INFSYS RR 1843-08-02

– Ai(I) = {¬Si(~e) | pi(~e) ∈ I does not hold}, for opi = −∩;5

• a ground instance a(~c) of a (u)cq-atom a(~X) = DL[λ; q](~X), is satisfied by I under L, denoted
I |=L a(~c), if ~c ∈ ans(q(~X), L ∪ λ(I)).

We next define satisfaction of rules and models of a cq-programs.

Definition 3.7. Let r be a ground cq-rule. We define (i) I |=L H(r) iff there is some a ∈ H(r)
such that I |=L a, (ii) I |=L B(r) iff I |=L a for all a ∈ B+(r) and I 6|=L a for all a ∈ B−(r),
and (iii) I |=L r iff I |=L H(r) whenever I |=L B(r). We say that I is a model of a cq-program
KB = (L, P), or I satisfies KB, denoted I |= KB, iff I |=L r for all r ∈ ground(P). A cq-program
KB is satisfiable, if it has some model, and is unsatisfiable otherwise.

The Gelfond-Lifschitz transform of program P without dl-atoms relative to an interpretation
I ⊆ HBP , denoted P I , is the positive program obtained from ground(P) by (i) deleting every rule
r with B−(r)∩I 6= ∅, and (ii) deleting the negative body from every remaining rule. I is an answer
set of P if it is a minimal model of P I .

We remark that any ordinary dl-atom DL[λ; q](~X), where q is a role or a concept, can be easily
cast to an equivalent cq-atom DL[λ; q′](~X ′), where q′ is a CQ; for example, DL[parent](X, Z) can
be cast to DL[parent(X, Z)](X, Z), and DL[hates](Cain, Z) to DL[hates(Cain, Z)](Z).

3.3 Minimal-model semantics for positive cq-programs

We first consider positive cq-programs. Like for ordinary positive programs, every non-disjunctive
positive cq-program that is satisfiable has a single minimal model, which naturally characterizes
its semantics.

Lemma 3.8. Let KB = (L, P) be a non-disjunctive positive cq-program. If the interpretations
I1, I2 ⊆ HBP are models of KB, then I1 ∩ I2 is also a model of KB.

The proof of this lemma, which is analogous to the proof for normal positive dl-programs [7], is
provided in the appendix. As an immediate corollary of this result, every satisfiable non-disjunctive
positive cq-program KB has a unique minimal model, denoted MKB , which is contained in every
model of KB .

Corollary 3.9. Let KB = (L, P) be a non-disjunctive positive cq-program. If KB is satisfiable,
then there is a unique model I ⊆ HBP of KB s.t. I ⊆ J for all models J ⊆ HBP of KB.

Example 3.10. The cq-program (L, P) in Ex. 1.1 has the single minimal model {BadChild(Cain)},
while (L, P ′) in Ex. 1.2 has the single minimal model {BadChild(Cain), BadChild(Romulus)}.

On the other hand, if a cq-program contains disjunction, then multiple minimal models of KB
may exist.

5 We note that negative role assertions Si(~e) in λ(I), which are syntactically not allowed in SHIF(D) and
SHOIN (D), can be emulated by using that L′ ∪ {¬R(a, b)} is unsatisfiable iff L′ ∪ {A(a), B(b), ∃R.B ⊑ ¬A} is
unsatisfiable (where A and B are two fresh atomic concepts and L′ is any DL-KB) [20]. Negated datatype role
membership axioms can be removed in a similar way. In OWL 1.1, negative property membership assertions are
allowed [38].

INFSYS RR 1843-08-02 9

Example 3.11. Consider the program in Example 3.5. If we remove “not” from P by replacing
rule r1 with

visit(L) ∨ ¬visit(L)← DL[WhiteWine](W), DL[RedWine](R),

DL[locatedIn](W, L), DL[locatedIn](R, L),

we get a positive cq-program which has nine minimal models. The following minimal models are
abridged versions of these models:

1. {visit(EdnaValleyRegion), . . . },

2. {visit(SonomaRegion), . . . },

3. {visit(NapaRegion), . . . },

4. {visit(NewZealandRegion), . . . },

5. {visit(SouthAustraliaRegion), . . . },

6. {visit(AustralianRegion), . . . },

7. {visit(SantaBarbaraRegion), . . . },

8. {visit(CaliforniaRegion), . . . },

9. {visit(USRegion), . . . }.

3.4 Strong answer-set semantics for cq-programs

We now define the strong answer-set semantics of general cq-programs. It reduces to the minimal
model semantics for positive cq-programs, using a generalized transformation that removes all NAF-
literals and every nonmonotonic dl-atom. A dl-atom is said to be monotonic in the sense given by
the following definition:

Definition 3.12. A ground dl-atom a is monotonic relative to KB = (L, P) iff I |=L a implies I ′ |=L a,
for all I ⊆ I ′ ⊆ HBP , otherwise a is nonmonotonic.

Possibly nonmonotonic dl-atoms are treated similarly as NAF-literals. This is particularly
useful, if we do not know a priori whether some dl-atoms are monotonic, and determining this
might be costly; notice, however, that absence of −∩ in an input list of a dl-atom is a simple
syntactic criterion that implies monotonicity of a dl-atom.

For any cq-program KB = (L, P), we denote by DLP the set of all ground dl-atoms that occur
in ground(P). We assume that KB has an associated set DL+

P ⊆ DLP of ground dl-atoms which
are known to be monotonic, and we denote by DL?

P = DLP \ DL+
P the set of all other ground

dl-atoms. An input literal of a ∈ DLP is a ground literal with an input predicate of a and constant
symbols in Φ.

Definition 3.13. The strong dl-reduct of P relative to L and an interpretation I ⊆ HBP , denoted
sP I

L, is the set of all rules obtained from ground(P) by

(i) deleting every cq-rule r such that either I |=L a for some a ∈ B+(r) ∩ DL?
P , or I |=L l for

some l ∈ B−(r); and

(ii) deleting from each remaining cq-rule r all literals in B−(r) ∪ (B+(r) ∩DL?
P).

10 INFSYS RR 1843-08-02

Notice that (L, sP I
L) has only monotonic dl-atoms and no NAF-literals anymore. Thus, (L, sP I

L)
is a positive cq-program, and by Corollary 3.9, has a minimal model, if it is satisfiable and non-
disjunctive. We thus define the strong answer-set semantics of general cq-programs by reduction
to the minimal model semantics of positive cq-programs as follows.

Definition 3.14. Let KB = (L, P) be a cq-program. A strong answer set of KB is an interpretation
I ⊆ HBP such that I is a minimal model of (L, sP I

L).

Example 3.15. The minimal models shown in Example 3.10 are strong answer sets of the resp.
cq-programs.

The program KB from Ex. 3.5 has the following three answer sets (only the positive facts of the
predicates delicate region and visit, abbreviated by dr resp. v, are listed):

1. {dr(LaneTannerPinotNoir), dr(WhitehallLanePrimavera), v(USRegion), . . . },

2. {dr(MountadamRiesling), v(AustralianRegion), . . . }, and

3. {dr(StonleighSauvignonBlanc), v(NewZealandRegion), . . . }.

The following result shows that the strong answer-set semantics of a cq-program KB = (L, P)
without dl-atoms coincides with the ordinary answer set semantics of P.

Theorem 3.16. Let KB = (L, P) be a cq-program without dl-atoms. Then, I ⊆ HBP is a strong
answer set of KB iff it is an answer set of the ordinary program P .

Proof. Let I ⊆ HBP . Then, P has no dl-atoms implies sP I
L = P I . Hence, I is minimal model of

(L, sP I
L) iff I is a minimal model of P I . Therefore, I is a strong answer set of (L, P) iff I is an

answer set of P .

The next result shows that, as desired, strong answer sets of a cq-program KB are models of
KB , too, and moreover minimal models of KB if all dl-atoms are monotonic (and known as such,
i.e., DL?

P = ∅).

Theorem 3.17. Let KB = (L, P) be a cq-program, and let M be a strong answer set of KB. Then,
(a) M is a model of KB, and (b) M is a minimal model of KB if DLP = DL+

P .

Proof. (a) Let I be a strong answer set of KB . To show that I is also a model of KB , we have to
show that I |=L r for all r ∈ ground(P). Consider any r ∈ ground(P). Suppose that I |=L l for all
l ∈ B+(r) and I 6|=L l for all l ∈ B−(r). Then, the cq-rule r′ that is obtained from r by removing all
the literals in B−(r) ∪ (B+(r) ∩DL?

P) is contained in sP I
L. Since I is a minimal model of (L, sP I

L)
and thus in particular a model of (L, sP I

L), it follows that I is a model of r′. Since I |=L l for all
l ∈ B+(r′) and I 6|=L l for all l ∈ B−(r′) = ∅, it follows that I |=L H(r) = H(r′). This shows that
I |=L r. Hence, I is a model of KB .

(b) By part (a), every strong answer set I of KB is a model of KB . Assume that every dl-atom
of KB is monotonic, that is, DLP = DL+

P . We show now that I is a minimal model of KB . Towards
a contradiction, suppose the contrary, that is, there is a J ⊂ I such that J is a model of KB . Since
J is a model of KB , we obtain that J is a model of (L, sP J

L). Since every dl-atom a ∈ DLP is
monotonic relative to KB , it follows that sP I

L ⊆ sP J
L . Hence, J is also a model of (L, sP I

L). But
this contradicts that I is a minimal model of (L, sP I

L). Therefore, I is a minimal model of KB .

INFSYS RR 1843-08-02 11

Table 1: Complexity of deciding strong answer set existence for different cq-programs (completeness
results); for positive such programs, it is listed in parentheses if different.

program KB = (L, P) L in SHIF(D) L in SHOIN (D)

non-disjunctive dl-program NEXP (EXP) PNEXP(NEXP)

disjunctive dl-program NEXPNP (NEXP) NEXPNP (NEXP)

non-disjunctive cq-program 2-EXP ?

disjunctive cq-program 2-EXP ?

These and many other of the semantic properties of dl-programs are naturally inherited to cq-
programs, like the existence of a unique answer set for non-disjunctive positive programs (if any
answer set exists), or for non-disjunctive programs if not is used in a stratified way.

Furthermore, the strong answer set semantics for cq-programs without −∩ can be equivalently
defined, like for dl-programs without −∩, in terms of answer sets of hex-programs (see [9, 19]). The
latter semantics is based on a characterization of answer sets of ordinary disjunctive logic programs
that uses an alternative reduct [12], and informally states that M is an answer set if M is a minimal
model of the rules in the grounding of the program whose body is satisfied by M . It can be used
to emulate various extensions of normal logic programs besides dl-programs, including programs
with monotone cardinality atoms [22]. By means of this correspondence, one can easily implement
cq-programs without −∩ on top of dlvhex, which is a prototype implementation of hex programs; we
report more about an implementation of cq-programs in Section 7.

The examples in the introduction show that cq-programs are more expressive than dl-programs
in [8, 10]. This can be made also formally more precise by comparing the computational complexity
of cq-programs and ordinary dl-programs, which shows that the former can express more difficult
problems. This will be done in the next section.

4 Computational Complexity

In this section, we address the computational complexity of cq-programs, and complement some
results in [10] with results for disjunctive dl-programs. However, we refrain from giving an extensive
complexity study here as in [10], and confine to consider the problem of deciding the existence of a
strong answer set for a given (finite) cq-program KB = (L, P). Clearly, this problem is decidable if
answering (union of) conjunctive queries over L, augmented with positive and negative assertions,
is decidable. This is the case for many description logics including SHIF(D), while it is currently
unknown whether this is feasible for SHOIN (D), as the decidability of answering conjunctive
queries for this logic is open, cf. [13].

The complexity results are compactly summarized in Table 1, in which the results for non-
disjunctive dl-programs are recalled from [10]. Recall that NEXP are the problems solvable in
non-deterministic exponential time, and that AB is the class of problems solvable in class A with
the help of an oracle for the class B; for further references and background, cf. [4].

Furthermore, we recall that deciding whether an ordinary disjunctive logic program (without

12 INFSYS RR 1843-08-02

dl-atoms) has some answer set is NEXPNP-complete, and is NEXP-complete if the program is
disjunction-free, cf. [4]; the latter result is the correspondent of the seminal result that stable model
semantics of normal logic programs is NP-complete in the propositional case [24]. For SHIF(D),
answering UCQs is 2-EXP-complete, i.e., complete for double exponential time, as follows from the
results of [3] and [21];6 in fact, Lutz has shown that answering CQs is already 2-EXP-hard for the
description logic ALC [21], which is a core of expressive description logics.

The results show that allowing cq-queries significantly increases the expressiveness of programs
over allowing ordinary dl-queries (assuming the widely accepted hypothesis that NEXPNP is strictly
included in 2-EXP). In fact, for SHOIN (D) it is currently not known whether cq-programs are
decidable. Interestingly, for disjunctive dl-programs, the dl-atoms do not add complexity com-
pared to the ordinary case, while for cq-programs the rules do not add complexity, i.e., KB has
the complexity of answering (U)CQs over a DL-KB. This also means that we can transform, in
polynomial time, disjunctive dl-programs to ordinary disjunctive logic programs (thus eliminating
completely the ontology part), and disjunctive cq-programs to answering CQs (thus eliminating all
rules); whether this will be of use in practice remains to be explored in future investigation.

In the case of positive programs, i.e., in absence of −∩ and not , deciding strong answer set
existence for disjunctive dl-programs has the same complexity as for non-disjunctive programs with
a DL-KB from SHOIN (D), which is lower than for arbitrary dl-programs (assuming that NEXP is
properly included in NEXPNP). The reason is that the technique for the latter in [10] immediately
extends to disjunctive programs. The NEXP lower bound is inherited from the NEXP-hardness
of deciding the consistency of positive ordinary disjunctive logic programs with constraints, which
can be easily shown adapting proofs e.g. in [4]. For cq-programs, on the other hand, the restriction
to positive programs does not lower the complexity.

We now establish the results more formally. The following lemma is useful.

Lemma 4.1. Let KB = (L, P) be a cq-program, let I be an interpretation for KB, and let a =
DL[λ; Q](~c) be a ground dl-atom. Then, deciding whether I |=L a is feasible (i) in co-NEXP, if L
is from SHOIN (D) and a is not a (u)cq-atom, (ii) in EXP, if a is from SHOIN (D) and not a
(u)cq-atom. and (iii) in 2-EXP if L is from SHIF(D).

Proof. Given I, we need to compute λ(I), which can be done in polynomial time, and then test
L ∪ λ(I) |= Q(~c). Obviously, adding all unnegated assertions and negative concept assertions
to L is straightforward, and the negative role assertions and datatype role memberships can be
emulated, using e.g. the technique in Footnote 5, in polynomial time in a DL-KB L′ such that
L ∪ λ(I) |= Q(~c) iff L′ |= Q(~c), where L′ is in SHIF(D) (resp., SHOIN (D)) if L is in SHIF(D)
(resp., SHOIN (D)). Thus (iii) follows by the results of [3]. Items (i) and (ii) have been established
implicitly in [10].

Theorem 4.2. Given a vocabulary Φ and a cq-program KB = (L, P), deciding whether KB has a
strong answer set, has depending on the structure of L and P the complexity as stated in Table 1.

Proof. The results for non-disjunctive dl-programs were shown in [10]. Consider next disjunctive dl-
programs. The NEXPNP upper bound for the case where L is from SHOIN (D) is easily derived
from Lemma 4.1: there are polynomially many ground dl-atoms a that occur in the grounding

6We always assume proper datatypes, such that they do not increase the complexity of query answering in the
underlying DL SHIF resp. SHOIN .

INFSYS RR 1843-08-02 13

ground(P) of P . For each such a = DL[λ; Q](~c), there exist at most single exponential many
different update lists λ(I) for different I; if λ = S1 op1 p1, . . . , Sm opm pm and there are n constant
symbols in Φ, the number of updates is bounded by (2n2

)m = 2mn2

, each of size bounded by mn2.
As a consequence, all possible updates L∪λ(I) can be computed in single exponential time, and all
possible queries answers L∪λ(I) |= Q(~c) can be computed in single exponential time with the help
of an NP oracle (by exponentially inflating L with dummy tautologies, the complexity of deciding
L ∪ λ(I) |= Q(~c) drops from co-NEXP to co-NP). Once we have a database of all query results
L∪λ(I) |= Q(~c), evaluating ground dl-atoms a with respect to an interpretation I is cheap (a table
lookup), and deciding the existence of some strong answer set M of (L, P) can be done similarly
as for an ordinary disjunctive logic program with an adapted algorithm: guess M , compute sPM

L ,
and check whether M satisfies sPM

L and, using an NP oracle, whether there is no M ′ ⊂ M that
satisfies sPM

L . Overall, this is feasible in non-deterministic exponential time using an NP oracle,
which shows that the problem is in NEXPNP. The NEXPNP-hardness is inherited from ordinary
disjunctive logic programs [4].

In presence of (u)cq-atoms, 2-EXP is clearly a lower bound for the complexity of the problem,
even for simple positive non-disjunctive cq-programs, since by the result of [21] evaluating a single
ground dl-atom is 2-EXP-hard. On the other hand, 2-EXP is also an upper bound: as for dl-
programs, a table of all (possibly exponentially many) relevant ground cq-atoms a, with all possible
update lists (again, exponentially many for a) and corresponding query results L∪λ(I) |= Q(~c) can
be computed, such that deciding strong answer set existence for (L, P) can be done similarly as
for ordinary disjunctive logic programs. Computing this table is feasible in 2-EXP, and the second
step then is feasible in NEXPNP, thus in 2-EXP. Overall, this yields a 2-EXP upper bound.

Finally, it remains to prove the entries for positive disjunctive dl-programs. Here, the same
characterization for the existence of a strong answer set as in the non-disjunctive case from [10]
can be exploited, whose proof is analogous: KB = (L, P) has a strong answer set iff there exists
an interpretation I and a subset S ⊆ {a ∈ DLP | I 6|=L a} such that the ordinary positive program
PI,S , which is obtained from ground(P) by deleting each rule that contains a dl-atom a ∈ S and all
remaining dl-atoms, has a model J such that J ⊆ I. Such an I and S can be guessed and verified
in exponential time, which proves membership in NEXP.

5 Rewriting Rules

In this section, we turn to equivalence preserving rewritings of (u)cq-atoms, which can be exploited
for program optimization.

As shown in Ex. 1.3, in cq-programs we might have different possibilities for defining the same
query. Indeed, the rules r and r′ there are equivalent over any knowledge base L. However, the
evaluation of r′ might be implemented by performing the join between parent and hates on the DL
side in a single call to a DL-reasoner, while r can be evaluated performing the join on the logic
program side, over the results of two calls to the DL-reasoner. In general, making more calls is
more costly, and thus r′ may be preferable from a computational point of view. Moreover, the size
of the result transferred by the single call in this rule r′ is smaller than the results of the two calls.

Towards exploiting such rewriting, we present some transformation rules for replacing a rule
or a set of rules in a cq-program with another rule or set of rules, while preserving the semantics
of the program (see Table 2). By means of (repeated) rule application, we can transform the
program into another, equivalent program, which we consider in the next section. Indeed, a

14 INFSYS RR 1843-08-02

rewriting module is conceivable, which rewrites a given cq-program (L, P) into a refined, equivalent
cq-program (L, P ′), which can be evaluated more efficiently. Recall that as for rule application,
any ordinary dl-atom DL[λ; Q](~t), where ~t is a non-empty list of terms, is equivalent to the cq-
atom DL[λ; Q(~t)](~X), where ~X = vars(~t). Throughout this and the next section, we disregard
for simplicity explicit consideration of datatypes; the results should be adjusted, without major
problems, to accommodate them.

In the rewriting rules, the input lists λ1 and λ2 are assumed to be semantically equivalent
(denoted λ1

.
= λ2), that is, λ1(I) = λ2(I), for every Herbrand interpretation I. This means that λ1

and λ2 modify the same concepts and roles with the same predicates in the same way; this can be
easily recognized (in fact, in linear time). More liberal but more expensive notions of equivalence,
taking L and/or P into account, might be considered.

Query Pushing (A) By this rule, cq-atoms DL[λ1; cq1](~Y1) and DL[λ2; cq2](~Y2) in the body of a
rule (A1) can be merged. In rule (A2), cq′1 and cq′2 are constructed by renaming variables in cq1

and cq2 as follows. Let ~Z1 and ~Z2 be the non-distinguished (i.e., existential) variables of cq1 and
cq2, respectively. Rename each X ∈ ~Z1 occurring in cq2 and each X ∈ ~Z2 occurring in cq1 to a fresh
variable. Then cq′1 ∪ cq′2 is the CQ given by all the atoms in both CQs.

Example 5.1. The rule

a← DL[R1(X, Y), R2(Y, Z)](X), DL[R3(X, Y)](X, Y)

is equivalent to the rule

a← DL[R1(X, Y ′), R2(Y
′, Z), R3(X, Y)](X, Y).

Query Pushing can be similarly done when cq1 and cq2 are UCQs; here, we simply distribute
the subqueries and form a single UCQ.

Variable Elimination (B) Suppose an output variable X of a cq-atom in a rule r of form (B1a)
or (B1b) occurs also in an atom X = t. Assume that t is different from X and that, in case of form
(B1a) the underlying DL-KB is under Unique Name Assumption (UNA) whenever t is an output
variable. Then, we can eliminate X from r as follows. Standardize the non-output variables of
cq-atoms apart from the other variables in r, and replace uniformly X with t in cq, B, and H; let
cqX/t, BX/t, and HX/t denote the respective results. Remove X from the output ~Y and, if t is a
variable Z, add Z to them; the resulting rule r′, in (B2) is then equivalent to the rule r1 in (B1a)
or to the rule r2 in (B1b). By repeated application of this rule, we may eliminate multiple output
variables of a cq-atom. Note that variables X in equalities X = t not occurring in any output list
can always be eliminated by simple replacement.

Example 5.2. The rules

r : a(X, Y)← DL[R(X, Z), C(Y), X = Y](X, Y), b(Y)

and

r′ : a(Y, Y)← DL[R(Y, Z), C(Y)](Y), b(Y)

have the same outcome on every DL-KB L. Here, r′ should be preferred due to the lower arity of
its cq-atom. Similarly, the rule

a(X, Y)← DL[R(X, Z), C(Y), Y = c](X, Y), b(Y)

INFSYS RR 1843-08-02 15

Table 2: Equivalences (H = a1∨ · · · ∨ ak; B = b1, . . . , bm, not bm+1, . . . , not bn)

Query Pushing

r : H ← DL[λ1; cq1](~Y1), DL[λ2; cq2](~Y2), B. (A1)

r′ : H ← DL
[

λ1; cq
′
1 ∪ cq′2

]

(~Y1 ∪ ~Y2), B. (A2)

where λ1
.
= λ2.

Variable Elimination

r1 : H ← DL[λ1; cq ∪ {X = t}](~Y), B. (B1a)

r2 : H ← DL[λ1; cq](~Y), X = t, B. (B1b)

r′ : HX/t ←DL
[

λ2; cqX/t

]

(~Y \ {X} ∪ ω(t)), BX/t. (B2)

where λ1
.
= λ2, X ∈ ~Y , ·X/t denotes replacement of variable X by t, and ω(t) = {Z} if t is a

variable Z and ω(t) = ∅ otherwise.

Inequality Pushing

r : H ← DL[λ1; cq](~Y), X 6= t, B. (C1)

r′ : H ← DL[λ2; cq ∪ {X 6= t}](~Y), B. (C2)

where λ1
.
= λ2 and X ∈ ~Y . If t is a variable, then also t ∈ ~Y .

Fact Pushing

P̄ =
{

f(~c1), f(~c2), . . . , f(~cl), H ←DL[λ1; ucq](~Y), f(~Y ′), B.
}

(D1)

P̄ ′ =
{

f(~c1), f(~c2), . . . , f(~cl), H ←DL[λ2; ucq′](~Y), B.
}

(D2)

where λ1
.
= λ2, ~cj are ground, ~Y ′ ⊆ ~Y , ucq =

∨r
i=1

cqi, and ucq′ =
∨r

i=1

(

∨l
j=1

cqi ∪ { ~Y ′ = ~cj}
)

.

Let H, H ′, Hi be heads, B, B′, Bi be bodies, and r be a rule of form H ← a(~Y), B.

Unfolding

P̄ = {r} ∪ {H ′ ∨ a(~Y ′)← B′.} (E1)

P̄ ′ = P̄ ∪ {H ′θ ∨Hθ ← B′θ, Bθ.} (E2)

where θ is the most general unifier (mgu) of a(~Y) and a(~Y ′) (thus a(~Y θ) = a(~Y ′θ)).

Complete Unfolding

P = Q ∪ {r} ∪ { ri : Hi ∨ a(~Yi)←Bi.} (F1)

P ′ = (P \ {r}) ∪ { r′i : Hiθi ∨Hθi ←Biθi, Bθi.} (F2)

where 1 ≤ i ≤ l, Q has no rules of form r, ri, no a(~Z) ∈ Hi is unifiable with a(~Y), and θi is
the mgu of a(~Y) and a(~Yi) (thus a(~Y θi) = a(~Yiθi)).

16 INFSYS RR 1843-08-02

can be simplified to the rule

a(X, c)← DL[R(X, Z), C(c)](X), b(c).

Inequality Pushing (C) If the DL-engine is used under the UNA and supports inequalities in
the query language, we can easily rewrite rules with inequality (6=) in the body by pushing it to
the cq-query. A rule of form (C1) can be replaced by (C2).

Example 5.3. Consider the rule

big(M)←DL[Wine](W1), DL[Wine](W2), W1 6= W2,
DL[hasMaker](W1, M), DL[hasMaker](W2, M).

Here, we want to know all wineries producing at least two different wines. We can rewrite above
rule, by Query and Inequality Pushing, to the rule

big(M)← DL

[

Wine(W1),Wine(W2), W1 6= W2,
hasMaker(W1, M), hasMaker(W2, M)

]

(M, W1, W2).

A similar rule works for a ucq-atom DL[λ; ucq](~Y) in place of DL[λ; cq](~Y). In that case, we
have to add {X 6= t} to each cqi in ucq =

∨m
i=1

cqi.

Fact Pushing (D) Suppose we have a program with “selection predicates,” i.e., facts which serve
to select a specific property in a rule. We can push such facts into a ucq-atom and remove the
selection atom from the rule body.

Example 5.4. Consider the program P , where we only want to know the children of joe and jill:

P =

{

f(joe). f(jill).
fchild(Y)← DL[isFatherOf](X, Y), f(X).

}

We may rewrite the program to a more compact one with the help of ucq-atoms:

f(joe). f(jill).

fchild(Y)← DL

{

isFatherOf (X, Y), X = joe
}

∨

{

isFatherOf (X, Y), X = jill
}

(X, Y).

Such a rewriting makes sense in situations were isFatherOf has many values and thus would
lead to query, while uselessly, for all known father-child relationships.

The program P̄ in (D1) can be rewritten to P̄ ′ in (D2). In general, a cq-program P such that
P̄ ⊆ P and f does not occur in heads of rules in P \ P̄ can be rewritten to (P \ P̄) ∪ P̄ ′.

Unfolding (E) and Complete Unfolding (F) Unfolding rules is a standard method for partial
evaluation of ordinary disjunctive logic programs under answer set semantics, cf. [36]. It can be
also applied in the context of cq-programs, with no special adaptation. After folding rules with
(u)cq-atoms in their body into other rules, subsequent Query Pushing might be applied. In this
way, inference propagation can be shortcut.

INFSYS RR 1843-08-02 17

The following results state that the above rewritings preserve equivalence. Let P ≡L Q denote
that (L, P) and (L, Q) have the same answer sets.

Theorem 5.5. Let r and r′ be rules of form (Θ1) and (Θ2), respectively, Θ ∈ {A, B, C}. Let (L, P)
be a cq-program with r ∈ P . Then, P ≡L (P \ {r}) ∪ {r′}.

Theorem 5.6. Let P̄ and P̄ ′ be rule sets of form (Θ1) and (Θ2), respectively, Θ ∈ {D, E}. Let
(L, P) be a cq-program such that P̄ ⊆ P . Then, P̄ ≡L P̄ ′ and P ≡L (P \ P̄) ∪ P̄ ′.

Theorem 5.7. Let P and P ′ be rule sets of form (F1) and (F2). Then, P ≡L P ′.

In the remainder of this section, we formally prove these results, where we first consider Theo-
rem 5.5, and then Theorems 5.6 and 5.7 in Section 5.2.

5.1 Proof of Theorem 5.5

We first state some useful Lemmas, whose proofs are provided in the appendix.

Lemma 5.8. Let a = DL[λ1; cq1](~Y1) and b = DL[λ2; cq2](~Y2) be two cq-atoms such that λ1
.
= λ2,

and θ be a ground substitution over domain ~Y1 ∪ ~Y2. Then, I |=L aθ and I |=L bθ iff I |=L

DL[λ1; (cq
′
1 ∪ cq′2)θ]().

Lemma 5.9. Let a = DL[λ1; cq ∪ {X = t}](~Y) and b = DL[λ2; cqX/t](~Y \ {X} ∪ ω(t)) be cq-atoms

such that λ1
.
= λ2, and θ be a ground substitution over domain ~Y . The following statements hold:

(1) If t ∈ ~Y and L is under UNA, then I |=L aθ iff I |=L bθ.

(2) If t /∈ ~Y , then I |=L aθ iff I |=L bθ.

Lemma 5.10. Let a = DL[λ1; cq](~Y) and b = DL[λ2; cq ∪ {X 6= t}](~Y) be cq-atoms such that
λ1

.
= λ2, X ∈ ~Y , and θ be a ground substitution over a domain ~Y . Then, for L being under UNA,

I |=L aθ and I |=L (X 6= t)θ iff I |=L bθ.

In the following, let ρ be a rule of form r1, r2 (i.e., of form (B1a) resp. (B1b)), or r (i.e., (A1)
resp. (C1)). Let r′ be a rule of form (A2), (B2), and (C2), resp. Then, let P ′ = (P \ {ρ}) ∪ {r′},
where ρ and r′ are equivalent rules according to the rewriting rules (A), (B), or (C). We will show
now that I is a (strong) answer set of (L, P) iff I is a (strong) answer set of (L, P ′).

Proof for (A), (B), and (C). We first show for positive cq-programs (L, P), I is a minimal model
of (L, P) iff I is a minimal model of (L, P ′).

(⇒) Suppose I is a minimal model of (L, P). Towards a contradiction, assume I is not a model
of (L, P ′). Thus, for a ground substitution θ, there is a ground version of r′ in ground(P ′), r′θ,
such that I 6|=L H(r′θ) and I |=L B(r′θ). Since I |=L P , in particular ρθ ∈ ground(P), we get that
(i) I |=L B(ρθ) and I |=L H(ρθ), or (ii) I 6|=L B(ρθ). In case of (i), we get a contradiction for
I 6|=L H(r′θ), since I |=L H(ρθ) and H(ρθ) = H(r′θ), hence I is a model of (L, P ′). Now for case
(ii), we have that I 6|=L B(ρθ), hence a literal of B(ρθ) is false in I. If a ∈ B(ρθ) is false in I, then
a ∈ B(r′θ) is false in I by Lemma 5.8 or 5.10 (resp. 5.9) for ρ of form r (resp. r1 or r2), which is a
contradiction for I |=L B(r′θ). Again, I is a model of (L, P ′).

Now assume that J ⊂ I is a minimal model of (L, P ′), therefore J is not a model of (L, P).
For a ground substitution θ, there is a ground version of ρθ in ground(P) such that J 6|=L H(ρθ)

18 INFSYS RR 1843-08-02

and J |=L B(ρθ). Since J |=L r′θ for a ground r′θ ∈ ground(P ′), we obtain the following cases.
If J |=L B(r′θ) and J |=L H(r′θ), we derive a contradiction, since H(ρθ) = H(r′θ). Otherwise,
if J 6|=L B(r′θ), we derive a contradiction at J |=L B(ρθ), since Lemma 5.8, 5.9, and 5.10 applies
here as well. Consequently, I is a minimal model of (L, P ′).

(⇐) Let I be a minimal model of (L, P ′). We assume now that I is not a model of (L, P). Thus,
for a ground substitution θ, there is a ground version of ρ in ground(P), ρθ, such that I 6|=L H(ρθ)
and I |=L B(ρθ). By (⇒), we derive a contradiction, hence I is a model of (L, P).

To show that I is also a minimal model of (L, P), assume the contrary, there is a J ⊂ I such
that J is a minimal model of (L, P). This entails that J is not a model for P ′. Again, using (⇒)
and Lemma 5.8, 5.9, or 5.10, we conclude that J cannot be a minimal model of (L, P), hence I is
a minimal model of (L, P).

Now we establish the proof for rewriting rules (A), (B), and (C) in Section 5.

Let I be a strong answer set of (L, P). Since sP I
L and sP ′I

L are positive cq-programs, we show
now that I is a minimal model of sP I

L iff I is a minimal model of sP ′I
L . To this end, consider a

ground rule of form ρ ∈ P with ρθ ∈ ground(P), where θ is a ground substitution. We distinguish
the cases:

(i) ρθ /∈ sP I
L: this implies that I 6|=L a for a ∈ B+(ρθ) ∩ DL?

P , or I |=L l for l ∈ B−(ρθ). We
conclude that r′θ /∈ sP ′I

L , since whenever b ∈ B+(ρθ) ∩ DL?
P is used in the process of the

rewriting, and I does not satisfy b, and by the actual Lemma 5.8, 5.9, or 5.10, I does not
satisfy b′ ∈ B+(r′θ) ∩DL?

P ′ either, where b′ is the outcome of the resp. rewriting rule. Thus,
sP I

L = sP ′I
L , which implies I is a minimal model of sP I

L iff I is a minimal model of sP ′I
L .

(ii) ρθ ∈ sP I
L: then, I |=L a for all a ∈ B+(ρθ) ∩DL?

P , and I 6|=L l for all l ∈ B−(ρθ). Therefore,
by applying the actual Lemma 5.8, 5.9, or 5.10, r′θ ∈ sP ′I

L . Hence, I |=L ρθ iff I |=L r′θ, so I
is a minimal model of sP I

L iff I is a minimal model of sP ′I
L .

Therefore, (L, P) has the same answer sets as (L, P ′).

5.2 Proof of Theorem 5.6 and 5.7

We split the proofs for Theorem 5.6 and 5.7 in two parts, the first part considers rewriting rule
(D) of Theorem 5.6, while the second part deals with rewriting rules (E) and (F) of Theorem 5.6
and 5.7, respectively. We will show for each part of the proof that I is a strong answer set of (L, P)
iff I is a strong answer set of (L, P ′). Again, we first state some useful lemmas, proven in the
appendix.

Lemma 5.11. Let r and r′ be positive cq-rules of form

r : H ← DL

[

λ1;
r

∨

i=1

cqi

]

(~Y), f(~Y ′), B

and

r′ : H ← DL

λ2;
r

∨

i=1

l
∨

j=1

cqi ∪
{

~Y ′ = ~cj

}

(~Y), B,

INFSYS RR 1843-08-02 19

respectively, where λ1
.
= λ2 and ~Y ′ ⊆ ~Y , let θ be a ground substitution over a domain ~Y , and let I

be a Herbrand interpretation such that f(~cj) ∈ I for 1 ≤ j ≤ l are all the literals with predicate f
in I. Then, I |=L rθ if and only if I |=L r′θ.

The next lemma is a generalization of a similar lemma in [36] for ordinary positive disjunctive
logic programs to cq-programs.

Lemma 5.12. Let (L, P) be a positive cq-program and I a minimal model of (L, P). Then, an
atom a is in I iff there is a ground rule a∨H ← B from P such that I \ {a} |= B and I \ {a} 6|= H.

Proof for (D). For positive cq-programs (L, P̄) and (L, P̄ ′) (where P̄ ′ = (P̄ \{r})∪{r′}) the minimal
models coincide; this follows from Lemma 5.11 and the fact that for every minimal model I of (L, P̄)
resp. (L, P̄ ′), it holds that f(~c) ∈ I iff ~c = ~cj for some j ∈ {1, . . . , l}.

Now let (L, P) and (L, P ′) be positive cq-programs, where P̄ ⊆ P and P ′ = (P \ P̄) ∪ P̄ ′ such
that f does not occur in the heads of P \ P̄ . Since P ′ is logically equivalent to P , we obtain that
the minimal models of (L, P) and (L, P ′) coincide.

For the general case, (L, P̄) and (L, P̄ ′) are cq-programs without restriction, we show now that
sP̄ I

L = (sP̄ I
L)′, where (sP̄ I

L)′ is obtained from applying rewriting rule (D) to the ground program
(L, sP̄ I

L).
Let I be a strong answer set of (L, P̄). I is a minimal model of the positive cq-program (L, sP̄ I

L).
As shown above, I is a minimal model of (L, sP̄ I

L) iff I is a minimal model of (L, (sP̄ I
L)′). Consider

r ∈ P̄ , for a ground substitution θ of r; we obtain the case distinction:

(i) I 6|=L B−(rθ) and I |=L B+(rθ) ∩DL?

P̄
: In this case, rθ ∈ sP̄ I

L, therefore r′θ ∈ (sP̄ I
L)′. Since

r′ ∈ P̄ ′ and (i) hold, we conclude that r′ ∈ sP̄ ′I
L.

(ii) for some l ∈ B−(rθ), I |=L l, or for some a ∈ B+(rθ) ∩ DL?

P̄
, I |=L a hold: In this case,

rθ /∈ sP̄ I
L, therefore r′θ /∈ (sP̄ I

L)′. Since r′ ∈ P̄ ′ and (ii) hold, we conclude that r′ /∈ sP̄ ′I
L.

Thus, sP̄ ′I
L = (sP̄ I

L)′, that is, the reduct of the rewritten rules P̄ ′ is equal to the rewritten rules

of the reduct of P̄ , hence I is a minimal model of (L, (sP̄ I
L)′) iff I is a minimal model of (L, sP̄ ′I

L).
Therefore, I is a strong answer set of (L, P̄) iff I is a strong answer set of (L, P̄ ′).

Now we are ready to finish the proof and show coincidence of strong answer sets for unrestricted
(L, P) and (L, P ′), where P̄ ⊆ P and P ′ = (P \ P̄)∪ P̄ ′ such that f does not occur in the heads of
P \ P̄ . Since P ′ is logically equivalent to P , we obtain that the strong answer sets of (L, P) and
(L, P ′) are in one-to-one correspondence.

Proof for (E) and (F). We first show that for positive cq-programs (L, P̄) and (L, P̄ ′), the minimal
models coincide.

To this end, let P̄ consists of the positive cq-rules

r : H ← a(~Y), B

and

r1 : H ′ ∨ a(~Y ′)← B′,

20 INFSYS RR 1843-08-02

where B = b1, . . . , bm, B′ = b′1, . . . , b
′
n, H = a1 ∨ · · · ∨ ak, H ′ = a′1 ∨ · · · a

′
l, and DLP̄ = DL+

P̄
, such

that for an mgu θ of a(~Y) and a(~Y ′), a(~Y θ) = a(~Y ′θ). And let P̄ ′ be consists of all the rules in P̄
and the positive cq-rule

r′1 : H ′θ ∨Hθ ← B′θ, Bθ.

Due to the unfolding rule (E), P̄ ′ = P̄ ∪ {r′1}, which is logically equivalent to P̄ , hence (L, P̄) and
(L, P̄ ′) have the same minimal models and thus P̄ ≡L P̄ ′. Similarly, when P̄ ⊆ P for an arbitrary
positive set of cq-rules P and P ′ = P ∪ {r′1}, I is a minimal model of P iff I is a minimal model of
P ′.

Now we show that in case of Complete Unfolding (F), the positive cq-program (L, P) has the
same minimal models as the positive cq-program (L, P ′).

Let r be as above, Q be a set of positive cq-rules such that no rules of form r and ri appear in
it, where ri is a cq-rule of form

ri : Hi ∨ a(~Yi)← Bi (1 ≤ i ≤ l),

such that each Hi either does not contain a literal of form a(~Z), or no a(~Z) ∈ Hi is unifiable with
a(~Y); and P be the set of cq-rules Q∪{r}∪{ri | 1 ≤ i ≤ l}, while P ′ = (P \{r})∪{r′i : Hiθi∨Hθi ←

Biθi, Bθi (1 ≤ i ≤ l)} for mgu s θi such that a(~Y) and a(~Yi) unify.
(⇒) Assume I is a minimal model of (L, P). Since I satisfies ground versions of r and all

ground ri, we obtain that I satisfies all of the corresponding ground versions of r′i. Thus, we get
that I is a model of (L, P ′). Towards a contradiction, assume that J is a minimal model of (L, P ′),
such that J ⊂ I. J is not a model of (L, P) and a ground r must occur unsatisfied in ground(P),
thus for a ground substitution η of r, J 6|=L rη, which implies J |=L B(rη) and J 6|=L H(rη). By
J |=L B(rη), it follows that J |=L a(~Y η). By Lemma 5.12, we get for a ground r′σ of a rule r′ ∈ P ′,
i.e., either r′iσ or riσ, where σ is a ground substitution, a(~Y η) ∈ H(r′σ). Since r′σ = r′ση, we get

a(~Y η) = a(~Y ση), and hence a(~Y ση) ∈ H(r′ση). From J |=L B(rη) and J 6|=L H(rη), we conclude
J |=L B(rση) and J 6|=L H(rση). We distinguish the cases:

(i) r′ = r′i: Assume that r′ση is a ground instance of r′i and a(~Y ση) ∈ H(r′iση). The mgu θi of

a(~Y) and a(~Yi) implies ση = θiρ for some ρ. Since a(~Y θi) = a(~Yiθi), we get a(~Y ση) = a(~Yiση).
Since a(~Y) does not occur unifiable in Hi of ri, a(~Yiση) /∈ Hiση. Thus, a(~Yiση) must be one
of Hθση. J |=L a(~Y ση) implies J |=L Hθση, but this contradicts J 6|=L H(rση). Therefore,
I is also a minimal model of (L, P ′).

(ii) r′ = ri: Now suppose r′ση is a ground instance of ri with a(~Y ση) = a(~Yiση). Applying
Lemma 5.12, from a(~Y ση) ∈ J , we conclude J \ {a(~Y ση)} |=L B(riση) and J \ {a(~Y ση)} 6|=L

Hiση. Since a(~Y ση) /∈ B(riση), we get J |=L B(riση). Since a(~Y) does not occur unifiable
in Hi of ri, we obtain a(~Y ση) /∈ Hiση and also J 6|=L Hiση. J |=L B(rση) and J 6|=L H(rση)
now implies that J 6|=L r′iση. Since a(~Y ση) = a(~Yiση) and a(~Y θi) = a(~Yiθi), we get ση = θiρ
for some ρ, thus r′iση is a ground instance of r′i ∈ P ′. Hence, r′iρ ∈ ground(P ′) is not satisfied,
which contradicts the assumption, that J is a model of (L, P ′). Therefore, I is a minimal
model of (L, P ′).

(⇐) Let I be a minimal model of (L, P ′). Assuming that I is not a model of (L, P), then
I 6|=L rη for a ground substitution η. This implies I 6|=L H(rη) and I |=L B(rη), which in turn

INFSYS RR 1843-08-02 21

guarantees that I |=L a(~Y η). By Lemma 5.12, we obtain for a ground version r′σ of a rule r′ ∈ P̄ ′,
i.e., either r′iσ or riσ, where σ is a ground substitution, a(~Y η) ∈ H(r′σ). We will now apply a
similar proof to the (⇒) direction and get the desired contradictions. Thus, I is a model of (L, P).
Now we show that I is in fact a minimal model. To this end, assume that there is a minimal model
J ⊂ I of (L, P). Proceeding as in (⇒), J is also a minimal model of (L, P ′), which contradicts our
assumption that I is a minimal model of (L, P ′), hence I is also a minimal model of (L, P).

Now we turn our attention to the general case, that is, (L, P) and (L, P ′) are cq-programs
without restrictions. We show that sP ′I

L = (sP I
L)′, where (sP I

L)′ is the complete unfolded positive
cq-program of the reduct of (L, P).

Let I be a strong answer set of (L, P). I is a minimal model of (L, sP I
L), which is a positive

program. Hence, by our first part of the proof, I is a minimal model of (L, sP I
L) iff I is a minimal

model of (L, (sP I
L)′). Let us consider r, ri ∈ P . We have an mgu θi for a(~Y θi) = a(~Yiθi), and for

a ground substitution η, a(~Y η) = a′(~Yiη). This implies that η = θiρ for some substitution ρ. We
now distinguish the cases:

(i) I 6|=L B−(rη), I 6|=L B−(riη), I |=L B+(rη) ∩ DL?
P , and I |=L B+(riη) ∩ DL?

P : Here,
rη, riη ∈ sP I

L. By our unfolding rule, we get that r′iη ∈ (sP I
L)′. Since r′i ∈ P̄ ′, η = θiρ, and (i)

hold, we conclude r′iη is in sP ′I
L .

(ii) for some l ∈ B−(rη) ∪ B−(riη), I |=L l, or for some a ∈ (B+(rη) ∪ B+(riη)) ∩DL?
P , I |=L a

hold: In this case, some of rη and riη is not in sP I
L. Therefore, r′iη is not in (sP I

L)′. Since
r′i ∈ P ′, η = θiρ, and (ii) hold, we conclude r′iη is not in sP ′I

L either.

Thus, sP ′I
L = (sP I

L)′, i.e., the reduct of the complete unfolded program P ′ and the complete unfolded
reduct of P coincide. This implies I is a minimal model of (L, (sP I

L)′) iff I is a minimal model of
(L, sP ′I

L). Therefore, I is a strong answer set of (L, P ′).

6 Rewriting Algorithms

Based on the results above, we describe algorithms which combine rewriting rules into a single
module for optimizing cq-programs. The optimization process takes several steps. In each step, a
special rewriting algorithm works on the result handed over by the preceding step. Note that, in
general, some of the rewriting rules might eliminate some predicate name from a given program.
This might not be desired if such predicate names play the role of output predicates. Indeed, usually
a program P contains auxiliary rules conceived for importing knowledge from an ontology, or to
compute intermediate results, while important information, from the user’s point of view, is carried
by output predicates. We introduce thus a set F of filter predicates which are explicitly preserved
from possible elimination.

The first step performs unfolding, taking in account the content of F . That is, only literals
with a predicate from F are kept.

Algorithm 1 uses the function factpush(P) for Fact Pushing. This function tries to turn a
program P into a more efficient one by merging rules according to the Fact Pushing (D) equivalence
in Section 5. The algorithm also combines filtering and unfolding (see equivalences (E) and (F))
using unfold(a, rH , rB), which takes two rules rH and rB and returns the unfolding of rB with rH

w.r.t. a literal a. Note that do unfold(a, rH , rB, P) is a generic function for deciding whether the
unfolding of a rule rH in rB w.r.t. a given program P and a literal a can be done (or is worth being

22 INFSYS RR 1843-08-02

Algorithm 1: merge(P, F): Merge cq-rules in program P w.r.t. F

Input: Program P , Filter F = {p1, . . . , pn}
Result: Unfolded program P
repeat1

P l = P = factpush(P)2

C = {a, a′ | ∃ r, r′ ∈ P : a′ ∈ H(r′), a ∈ B+(r), and a′ unifiable with a}3

if C 6= ∅ then4

choose a ∈ C5

P ′ = ∅6

RH = {r ∈ P | a unifies with a′ ∈ H(r)}7

RB = {r ∈ P | a unifies with a′ ∈ B+(r)}8

stop unfold = true9

forall rB ∈ RB do10

forall rH ∈ RH do11

if do unfold(a, rH , rB, P) then12

stop unfold = false13

add rH and unfold(a, rH , rB) to P ′
14

if | {b ∈ H(rH) such that b unifies with a} | > 1 then add rB to P ′
15

else16

add rH and rB to P ′
17

end18

end19

end20

P = P ′ ∪ (P \ (RB ∪RH))21

end22

until P l = P or stop unfold is true23

return filter(P, F)24

done); this decision may be taken, e.g., using a cost model (as we will see later in this section).
do unfold may also use, e.g., an internal counter for the numbers of iterations or rule unfoldings,
and return false if a threshold is exceeded. Also complete unfolding cannot take place if more than
one atom in the head of rB can unify with a. The function filter(P, F) eliminates rules which have
no influence on the filtered output. Such rules are those of form H ← B where H is nonempty and
has no predicate from F and no literal a unifiable either (i) with some literal in the body of a rule
from P , or (ii) with some literal in a disjunctive rule head in P , or (iii) with the opposite of some
literal in a rule head in P .

The following theorem states that Algorithm 1 works correct. Let, for finite sets of cq-rules
P, Q, a DL-KB L, and a set of predicates F denote P ≡F

L Q that (L, P) and (L, Q) have the same
strong answer sets w.r.t. F , i.e., if M is a strong answer set of (L, P), then (L, Q) has a strong
answer set N such that M \ {p(~c) | p /∈ F} = N \ {p(~c) | p /∈ F} and vice versa.

Theorem 6.1. For a cq-program (L, P) and filter F , P ≡F
L merge(P, F).

Proof. Algorithm 1 first copies P to P l and applies Fact Pushing to P . Now suppose that we
cannot do the Unfolding part of the algorithm, i.e., C = ∅ and only the Fact Pushing step takes

INFSYS RR 1843-08-02 23

Algorithm 2: RuleOptimizer(P): Optimize the bodies of all cq-rules in P

foreach r ∈ P such that B+(r) 6= ∅ do1

choose b ∈ B+(r)2

B+(r) = BodyOptimizer(b, B+(r) \ {b}, ∅, ∅)3

forall a = DL[λ; cq](~Y) in B+(r) s.t. X = t in cq or B+(r) do4

if X /∈ ~Y then5

r = H(r)← DL
[

λ; cqX/t

]

(~Y), B+(r) \ {a},not B−(r)6

else7

r = H(r)X/t ← DL
[

λ; cqX/t

]

(~Y \ {X} ∪ ω(t)),

(B+(r) \ {a})X/t,not B−(r)X/t8

end9

end10

end11

return P12

Algorithm 3: BodyOptimizer(o, B, C, O): Push queries in body B w.r.t. o

Input: atom o, body B, carry C, and optimized body O
Result: pushed optimized body B
if B 6= ∅ then1

choose b ∈ B2

if do push(o, b) then3

o = push(o, b)4

else5

C = C ∪ {b}6

end7

if |B| > 1 then8

return BodyOptimizer(o, B \ {b}, C, O)9

else if |C| 6= ∅ then10

choose c ∈ C11

return BodyOptimizer(c, C \ {c}, ∅, O ∪ {o})12

end13

end14

return O ∪ {o}15

part in the optimization process. merge(P) eventually halts, since we cannot push any facts in
P , therefore P = P l. By part (D) of Theorem 5.6, Fact Pushing preserves the answer sets, hence
P ≡F

L merge(P, F).
Now assume that we unfold some rules in P , i.e., C 6= ∅. Some rules in P have a common atom

a ∈ C in the head and in the positive body, while a does not occur in the negative part of any rule
in P . These a can be unfolded using the Unfolding rule (E). Algorithm 1 then proceeds by possibly
unfolding all the rules rH ∈ RH and rB ∈ RB by means of unfold(a, rH , rB), i.e., folding rH into rB

w.r.t. a. Since pred(H(r)) ∩ P 6= ∅, we always add r to P ′. Thus, either unfold(a, rH , rB) ∪ {rH}

24 INFSYS RR 1843-08-02

or {rH , rB} are contained in P ′, depending on the outcome of do unfold . Eventually, after all the
unfolding had been carried out for a particular a ∈ C, we replace P by P ′ ∪ (P \ (RB ∪ RH)),
which amounts to replacing P by (P \ P̄) ∪ P̄ ′ for all possible P̄ and P̄ ′, which are defined as in
Theorem 5.6. Therefore, by part (E) of Theorem 5.6, one unfolding step for an a ∈ C preserves the
answer sets, hence after all other atoms of C had been unfolded, we still have the same answer sets
as the program we started the unfolding procedure with. Ultimately, for this case, the unfolding
procedure halts, since in each round of merge(P, F)’s main-loop, we check whether P equals P l,
the program P from which we started an optimization round, which indicates that no Unfolding
or Fact Pushing could take place. Thus, at the end of the main loop, P ≡L Q holds. The final
call of filter(P, F) removes rules which may lead only to the inclusion of atoms p(~c) in the strong
answer sets where p /∈ F , and p(~c) can not interfere with other rules by the conditions (i)–(iii).
Thus, P ≡F

L Q holds.

After the unfolding process, we can use Algorithm 2 for optimizing all the different kinds of
queries in P . Here, inside of the subroutine BodyOptimizer() (Algorithm 3), we utilize push(o, b),
which takes any combination of two dl-atoms and generates an optimized (u)cq-atom according
to the rewriting rules (A) and (C). Similar to do unfold in Algorithm 1, do push(o, b) is a generic
function for checking the applicability of the rewriting rules (A) and (C), i.e., it checks for compat-
ibility of the input lists of the atoms o and b and decides whether pushing of o and b should be
done. The last part in this algorithm eliminates variables in the output of dl-atoms according to
Variable Elimination (B).

Theorem 6.2. For every cq-program (L, P), P ≡L RuleOptimizer(P).

Proof. We show now that AS(P) = AS(RuleOptimizer(P)). Since RuleOptimizer(P) takes each
r ∈ P and tries to optimize it, we have to check that each round of the main-loop preserves the
answer sets.

For each r with B+(r) = ∅, it is clear that no pushing can be performed, hence the answer sets
remain the same.

For a rule r with dl-atoms in the positive body, i.e., with an arbitrary b ∈ B+(r), I |=L B+(r)
iff I |=L BodyOptimizer(b, B+(r) \ {b}, ∅, ∅). Since the whole optimization procedure boils down
to repetitive pushing of atoms via push(o, b), we only have to check that o and b in contrast to
push(o, b) have the same answers over an arbitrary DL-KB L. We obtain that in a rule r with
o, b in B+(r), we get a rule r′ by replacing o, b in r with its optimized form push(o, b). Thus, by
Theorem 5.5, we immediately get that AS(P) = AS((P \ {r}) ∪ {r′}).

The second loop in RuleOptimizer(P) implements Variable Elimination by carefully taking each
dl-atom in every rule of P into account, which has an atom X = t in its CQ or in the rule body.
Again, by Theorem 5.5, each replacement in the rules preserves the answer sets.

Example 6.3. Let us reconsider the region program on the wine ontology in Ex. 3.5. Using the
optimization methods for cq-programs we obtain from P an equivalent program P ′, where the rule
r1 in P is replaced by

visit(L) ∨ ¬visit(L)← DL

[

WhiteWine(W1),RedWine(W2),
locatedIn(W1, L), locatedIn(W2, L)

]

(W1, W2, L),

not DL[locatedIn(L, L′)](L),

INFSYS RR 1843-08-02 25

and rule r5 in P is replaced by

delicate region(W)← visit(L), DL

[

hasFlavor(W,wine:Delicate),
locatedIn(W, L)

]

(W, L).

The dl-queries in the first rule were pushed into a single CQ. Furthermore, the rule defining delicate
was folded into the last rule, and subsequently Query Pushing was applied to it.

Regarding the computational cost of the rewriting algorithms, Algorithm 1 runs, in general, in
exponential time in the size of the program P , due to unfolding of the rules in all possible ways.
Fact pushing and filtering are cheap pre- and post-processing steps, respectively, and mgu’s can be
computed in linear time; unfold(a, rH , rB) runs in linear time as well. Using do unfold(a, rH , rB, P),
we can control the unfolding operations; if we only allow unfolding of rB from the initial program
P , we get all unfolded rules in one step from P . More generally, if rB must have been unfolded
from P in constantly many steps, Algorithm 1 can be implemented to run in polynomial time.

Algorithm 2 is linear in the size of P modulo BodyOptimizer(). Algorithm 3 is quadratic in the
size of the supplied body atoms B in the worst case (due to recursive calls on the carry atoms),
but is linear if we always push atoms, i.e., do push(o, b) always returns true; for small rules (size
bounded by a constant), the cost is also small.

Cost Based Query Pushing The functions do unfold and do push in Alg. 1 and 3 determine
whether we can benefit from unfolding or query pushing. Given the input parameters, they should
know whether doing the operation leads to a “better” program in terms of evaluation time, size of
the program, arity of (u)cq-atoms, data transmission time, etc.

In the database area, cost estimations are based on a cost model, which usually contains infor-
mation about the size of a database and its relations, an estimate of the selectivity of joins and
selections, the cost of the data transfer, etc. In our setting, similar knowledge can be used to
determine the cost for pushed queries.

Another useful strategy is to exploit knowledge about presence of functional properties in L. A
property R is functional, if for all individuals x, y1, y2 it holds that R(x, y1) ∧ R(x, y2) → y1 = y2,
i.e., x is a key in R.

Example 6.4. The fact that every person has only one mother may be stated by the functional
property hasMother, expressed by the axiom person ⊔ ¬person ⊑ ≤ 1.hasMother. The following
rule retrieves all mothers of men:

r : a(Y)← DL[hasMother](X, Y), DL[Man](X).

After application of Query Pushing, we obtain the rule

r′ : a(Y)← DL[hasMother(X, Y),Man(X)](X, Y).

In r we get two answers with size |hasMother | + |Man|, while in r′ we retrieve at most |Man|
many tuples. Pushing would be even more effective if the concept was very selective, e.g., if we had
Nobel Laureate instead of Man.

7 Implementation and Experiments

In this section, we provide experimental results for the rule transformations and the performance
gain obtained by applying the various optimization techniques. We have tested the rule trans-

26 INFSYS RR 1843-08-02

Table 3: Some test queries

vicodi program: (Fact Pushing)

Pv =

{

c(vicodi:Economics), c(vicodi:Social),
v(X)← DL[hasCategory](X, Y), c(Y)

}

semintec query: (Query Pushing)

Ps2
=

{

s2(X, Y, Z)← DL[Man](X), DL[isCreditCard](Y, X), DL[Gold](Y),
DL[livesIn](X, Z), DL[Region](Z)

}

semintec costs: (Query Pushing, Functional Property)

Pl = {l(X, Y)← DL[hasLoan](X, Y), DL[Finished](Y)}

hasLoan is an inverse functional property and |hasLoan| = 682(n + 1), |Finished | = 234(n + 1),
where n is obtained from the ontology instance semintec n.

lubm faculty: (Query Pushing, Inequality Pushing, Variable Elimination)

Pf =

f(X, Y)← DL[Faculty](X), DL[Faculty](Y), D1 = D2, U1 6= U2,
DL[doctoralDegreeFrom](X, U1), DL[worksFor](X, D1),
DL[doctoralDegreeFrom](Y, U2), DL[worksFor](Y, D2).

formations using the prototype implementation of the DL-plugin for dlvhex,7 a logic programming
engine featuring higher-order syntax and external atoms (see [9, 37]), which uses RACER 1.9 as
DL-reasoner (cf. [15]). To our knowledge, this is currently the only implemented system for such
a coupling of nonmonotonic logic programs and Description Logics.

In [19], a partial equivalence between strong answer set semantics and hex semantics has been
given, which is the foundation for our prototype implementation. More specifically, every cq-
program without −∩ in its dl-atom input lists can be translated into a hex-program with the same
answer set (modulo auxiliary atoms), i.e., only monotonic dl-atoms are supported.

The DL-plugin supports all forms of dl-atoms, including (U)CQs, by rewriting them to corre-
sponding external atoms (and additional auxiliary rules) in a hex-program. Due to the nature
of RACER’s (U)CQ implementation—only named individuals are under consideration—our pro-
totype is also limited to this restricted form of (U)CQs. Regarding optimization, the DL-plugin
features a module for caching of dl-queries, pushing of DL external atoms, and a minimalistic form
for unfolding rules in a hex-program.

Regarding our experimental evaluation, the tests were done on a P4 3GHz PC with 1GB RAM
under Linux 2.6. As an ontology benchmark, we used the testsuite described in [27]. The exper-
iments covered particular query rewritings and version of the region program (Ex. 3.5) with the
optimizations applied. We report only part of the results, which are shown in Fig. 2. Missing
entries mean memory exhaustion during evaluation.

In most of the tested programs, the performance boost using the aforementioned optimization
techniques was substantial. Due to the size of the respective ontologies, in some cases the DL-
engines failed to evaluate the original dl-queries, while the optimized programs did terminate with
the correct result.

In detail, for the region program, we used the ontologies wine 0 through wine 9. As can be

7both available at http://www.kr.tuwien.ac.at/research/dlvhex/

http://www.kr.tuwien.ac.at/research/dlvhex/

INFSYS RR 1843-08-02 27

Figure 2: Evaluation time for the examples.

 1

 10

 100

 1000

 10000

9876543210

ev
al

ua
tio

n
tim

e
/ s

ec
s

region program (Full Program Optimization)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 0

 10

 20

 30

 40

 50

 60

 70

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

vicodi program (Fact Pushing)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

 10

 100

 1000

43210

ev
al

ua
tio

n
tim

e
/ s

ec
s

semintec queries (Query Pushing)

semintec: unoptimized
semintec: optimized

semintec cost: unoptimized
semintec cost: optimized

 0

 50

 100

 150

 200

 250

 300

151413121110987654321

ev
al

ua
tio

n
tim

e
/ s

ec
s

LUBM Faculty, University 1 Dept. 1-n
 (Query & Inequality Pushing, Variable Elimination)

P: overall time
P: Racer time

P’: overall time
P’: Racer time

seen from the top-left graph in Fig. 2, there is a significant speedup, and in case of wine 9 only the
optimized program could be evaluated. Most of the computation time was spent by RACER. We
note that the result of the join in the first rule had only size linear in the number of top regions L;
a higher performance gain may be expected for ontologies with larger joins.

The vicodi test series revealed the power of Fact Pushing (see the top-right graph in Fig. 2).
While the unoptimized vicodi program (Table 3) could be evaluated only with ontologies vicodi 0
and vicodi 1, all ontologies vicodi 0 up to vicodi 4 could be handled with the optimized program.

The semintec tests dealt with Query Pushing for single rules. The rule in Ps2
is from one

of the benchmark queries in [27], while Pl tests the performance increase when pushing a query
to a functional property (see Table 3). In both cases, we performed the tests on the ontologies
semintec 0 up to semintec 4. As shown in Fig. 2 (bottom-left graph) the evaluation speedup
was significant. We could complete the evaluations of Ps2

on all semintec ontologies only with the
optimization. The performance gain for Pl is in line with the constant join selectivity.

In the lubm test setup, we used the LUBM Data Generator8 to create the Department ontologies
for University 1. We then created 15 ontologies out of this setup, where each ontology lubm n has
Department 1 up to Department n in the ABox. The test query Pf (Fig. 2, bottom-right graph)
showed a drastic performance improvement.

8http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

28 INFSYS RR 1843-08-02

8 Conclusion

In this paper, we have presented cq-programs, which generalize dl-programs in [10] with disjunctive
rule heads (which had been cursory considered in [8]) and the possibility to pose also conjunctive
queries (CQs) and unions of conjunctive queries (UCQs) against a Description Logic (DL) knowl-
edge base. These programs are more expressive than dl-programs, as they allow to access unnamed
individuals in the DL-knowledge base, and also offer higher problem solving capacity as a host
language in terms of computational complexity. Furthermore, the framework can be easily adapted
to other Description Logics besides the ones considered here, and has the nice feature of retaining
decidability as long as answering CQs or UCQs, respectively (after possible enrichment of the DL
knowledge base), is decidable.

A number of other approaches for combining rules and ontologies have been proposed; we refer
to [1, 5, 8, 32, 33] for surveys and comparisons, as well as for discussions of general issues that
arise with this problem. Roughly, the various approaches can be divided into three groups: (i)
approaches fostering a loose coupling between rules and ontologies, in which the parts are kept
separate but are connected via well-defined reasoning interfaces; (ii) approaches pursing a tight
integration, in which the vocabulary of the rules and the ontology parts are kept separately but
a common model-based is semantics is defined; and (iii) approaches fostering a full integration, in
which a common vocabulary is used though rules and ontology axioms may be handled differently.

Rosati’s well-known DL+log formalism [34, 33], which belongs to the second class, and the
more expressive hybrid MKNF knowledge bases [25, 26] and Quantified Equilibrium Logic (QEL)
[6], which belong to the third group, are closest in spirit to dl- and cq-programs, as they support
nonmonotonic negation and use constructions from nonmonotonic logics. However, it seems that
the expressiveness of all these formalisms is different from dl- and cq-programs, as far as embed-
dings are concerned. It is reported in [25] that dl-programs (and hence also cq-programs) can not
be captured using MKNF rules. In turn, the semantics of DL+log-programs inherently involves
deciding containment of CQs in UCQs, which seems to be not expressible in cq-programs in gen-
eral. No detailed comparison between QEL and dl-programs is made in [6], but like for DL+log
and hybrid MKNF, intuitively embeddings between QEL and cq-programs are not straightforward.
The reason is that cq-programs can combine hypothetical inferences under different (yet not in-
dependent) assumptions in a non-trivial way, which seems more difficult to achieve in the QEL
framework. On the other hand, QEL allows for an easy extension of the language, for instance to
accommodate nested expressions in which rule and ontology predicates occur at varying levels; a
similar extension for cq-programs is not obvious. A detailed study of the expressive relationships
between cq-programs and other formalisms remains for future work.

We remark, however, that as concerns particular reasoning tasks, cq-programs and dl-programs
are as expressive as DL+log and hybrid MKNF, relative to Description Logics of choice. It was
reported in [34] that the satisfiability problem of DL+log bases is Σp

2-complete for the Description
Logic DL-Lite under data complexity, i.e., the knowledge base is fixed except that assertions in
the DL knowledge base, which must of form A(~c) for atomic roles and concepts A, and facts in
the program part may change. In DL-Lite, answering CQs and UCQs is polynomial under data
complexity; it is not difficult to establish, by adapting the arguments in Lemma 4.1 and Theorem 4.2
that dl- and cq-programs are Σp

2-complete under data complexity for DL-Lite (we recall that, under
data complexity, deciding the existence of an answer set for an ordinary function-free disjunctive
logic program is Σp

2-complete, cf. [4]).

INFSYS RR 1843-08-02 29

In [25, 26], the data complexity of entailment from hybrid MKNF knowledge bases has been
studied for a range of DLs and syntactic fragments of the rules part. It was shown that, for DL-Lite,
entailment of a ground atom (prefixed with a modal operator) is Πp

2-complete for DL-Lite under
data complexity, as well as for generic DLs in which the inference of ground atoms is in co-NP under
data complexity. This can be similarly established for dl- and cq-programs, as long as the data
complexity of (U)CQ answering is co-NP-complete (after possible enrichment of the DL knowledge
base with negative assertions); for SHIF and SHIQ, this follows from the results in [13].

Apart from increasing the expressiveness of dl-programs, we have also shown that CQs and
UCQs can be fruitfully used for program optimization and rewriting. By pushing CQs to the
highly optimized DL-reasoner, significant speedups can be gained, and in some cases evaluation
is only feasible in that way. The results are promising and suggest that this path of optimization
should be further explored. To this end, refined strategies implementing the tests do unfold and
do push are desirable, as well as further rewriting rules. In particular, an elaborated cost model
for query answering would be interesting. However, given the continuing improvements on DL-
reasoners, such a model had to be revised more frequently and thus developing a particular model
at this point seems less attractive.

Another interesting issue is to interface other DL-reasoners than RACER that host CQs, e.g.,
KAON2 or Pellet. In particular, interfacing with an engine for answering arbitrary CQs or UCQs
on highly expressive DLs would be intriguing; respective algorithms are currently crafted, and
prototype implementations are expected to be available in the near future. On the other hand,
also an investigation of cq-programs for Description Logics with limited expressiveness, such that
answering CQs and/or UCQs is tractable, or even rewritable to first-order expressions, is of interest.
Under suitable syntactic restrictions, this facilitates the compilation of cq-programs to fragments of
nonmonotonic logics programs that can be evaluated efficiently. Finally, a study of the expressibility
of cq-programs, in terms of defining multi-valued functions as in [23], is on the agenda of future
work.

A Proofs of Lemmas

A.1 Proof of Lemma 3.8

Suppose that I1, I2 ⊆ HBP are models of KB , that is, Ii |=L r for every r ∈ ground(P) and
i ∈ {1, 2}. We show that I = I1∩ I2 is also a model of KB , that is, I |=L r for every r ∈ ground(P).
Consider any r ∈ ground(P), and assume that I |=L l for all l ∈ B+(r) = B(r). That is, I |=L l for
all classical literals l ∈ B(r) and I |=L a for all cq-atoms a ∈ B(r). Hence, Ii |=L l for all classical
literals l ∈ B(r), for every i ∈ {1, 2}. Furthermore, since every cq-atom in ground(P) is monotonic
relative to KB , it holds that Ii |=L a for all dl-atoms a ∈ B(r), for every i ∈ {1, 2}. Since I1 and
I2 are models of KB , it follows that Ii |=L H(r), for every i ∈ {1, 2}, and thus I |=L H(r). This
shows that I |=L r. Hence, I is a model of KB .

A.2 Proof of Lemma 5.8

(⇒) Suppose I |=L aθ and I |=L bθ. Therefore both L ∪ λ1(I) |= φcq1
(~Y1θ) and L ∪ λ2(I) |=

φcq2
(~Y2θ) hold. Thus, L ∪ λ1(I) |= φcq′

1
(~Y1θ) ∧ φcq′

2
(~Y2θ) because of λ1

.
= λ2, and this implies that

L ∪ λ1(I) |= φcq′
1
∪cq′

2
((~Y1 ∪ ~Y2)θ), because for the rewritten non-distinguished variables ~Y ′

1 ∪
~Y ′
2 of

30 INFSYS RR 1843-08-02

cq′1(
~Y1θ)∪cq′2(

~Y2θ), it holds that ~Y ′
1∩

~Y ′
2 = ∅ due to the variable renaming used during the rewriting.

Consequently, I |=L DL[λ1; (cq
′
1 ∪ cq′2)θ]().

(⇐) Let I |=L DL[λ1; (cq
′
1 ∪ cq′2)θ](), hence L ∪ λ1(I) |= φcq′

1
∪cq′

2
((~Y1 ∪ ~Y2)θ) implies that both

L∪λ1(I) |= φcq1
(~Y1θ) and L∪λ1(I) |= φcq2

(~Y2θ) hold. From λ1
.
= λ2, we conclude that L∪λ2(I) |=

φcq2
(~Y2θ), hence I |=L aθ and I |=L bθ.

For the case were we have UCQs ucq1 =
∨r1

i=1
cq1,i and ucq2 =

∨r2

i=1
cq2,i in place of cq1 and

cq2, respectively, the proof is straightforward. We just use
∨r1

i=1

(

∨r2

j=1
cq′1,i ∪ cq′2,j

)

instead of

cq′1 ∪ cq′2.

A.3 Proof of Lemma 5.9

(1) (⇒) Suppose I |=L aθ. (X = t)θ and UNA in L implies that Xθ and tθ denote the same
individual symbol. Hence, cq(~Y θ) = cqX/t(~Y \ {X}∪ω(t))θ (even if X or t do not occur in the
query atoms in cq) and λ1

.
= λ2 implies I |=L b.

(⇐) Now suppose I |=L bθ. Since X does not appear in b, we replace occurrences of t in
cqX/t(~Y \ {X} ∪ ω(t)) to X such that cq(~Y) is obtained. Moreover, setting Xθ to tθ implies
(X = t)θ. Therefore, I |=L aθ.

(2) The proof is essentially the same as (1). Here, we do not need UNA for replacing X by t, since
t is not in the domain of θ. X = t assures then that both terms denote the same individual in
the universe. See also Lemma 6.1 in [29].

A.4 Proof of Lemma 5.10

(⇒) Suppose I |=L aθ and I |=L (X 6= t)θ. We derive that Xθ and tθ are syntactically different.
Hence, cq(~Y θ) ∪ {X 6= t}θ holds in L ∪ λ2(I) by λ1

.
= λ2, therefore I |=L bθ.

(⇐) Now we assume that I |=L bθ. Since L∪λ2(I) satisfies cq(~Y θ) and {X 6= t}θ, we conclude that
L ∪ λ1(I) |=L cq(~Y θ) and hence I |=L aθ and I |=L (X 6= t)θ.

A.5 Proof of Lemma 5.11

(⇒) Assume I |=L f(~cj) for 1 ≤ j ≤ l and I |=L rθ hold. By I |=L rθ, either (i) I |=L H(rθ) and
I |=L B+(rθ) or (ii) I 6|=L B+(rθ).

(i) I |=L B+(rθ) implies I |=L f(~Y ′θ). Since I |=L f(~cj) for 1 ≤ j ≤ l, we obtain that f(~Y ′θ) =

f(~c) for a ~c ∈ {~c1, . . . , ~cl}. Thus, the disjunction over cqiθ ∪ { ~Y ′θ = ~cj} for 1 ≤ j ≤ l must

hold for some ~cj = ~c. By λ1
.
= λ2, we obtain L ∪ λ2(I) |=

∨r
i=1

(

∨l
j=1

cqiθ ∪
{

~Y ′θ = ~cj

})

,

therefore I satisfies

DL

λ2;
r

∨

i=1

l
∨

j=1

cqiθ ∪
{

~Y ′θ = ~cj

}

()

under L, and I |=L r′θ.

INFSYS RR 1843-08-02 31

(ii) We obtain another two cases. First, I 6|=L Bθ implies I 6|= B+(r′θ), hence I |=L r′θ. Secondly,
some of f(~Y ′θ) and DL[λ1;

∨r
i=1

cqiθ]() are not satisfied under L. By λ1
.
= λ2, this implies that

I does not satisfy DL
[

λ2;
∨r

i=1

(

∨l
j=1

cqiθ ∪
{

~Y ′θ = ~cj

})]

() under L either, thus I |=L r′θ.

(⇐) Assume I |=L r′θ. Either I |=L H(r′θ) and I |=L B+(r′θ), or I 6|=L B+(r′θ). Similar to the
(⇒) direction, we obtain now that I |=L rθ.

A.6 Proof of Lemma 5.12

(⇒) Suppose for some atom a in I, there is no ground rule a∨H ← B from P such that I\{a} |=L B
and I\{a} 6|=L H. Then, for each ground rule r of the form a∨H ← B, I\{a} 6|=L B or I\{a} |=L H;
hence it holds that I \{a} |=L B implies I \{a} |=L H. In this case, I \{a} satisfies each rule r and
becomes a model of (L, P), which contradicts the assumption that I is a minimal model. Hence
the result follows.

(⇐) Assume that a is not in I. Then I \ {a} = I, and for a ground rule a ∨H ← B in P , I |=L B
and I 6|=L H imply a ∈ I, which is a contradiction.

References

[1] Grigoris Antoniou, Carlos Viegas Damásio, Benjamin Grosof, Ian Horrocks, Michael Kifer, Jan
Maluszynski, and Peter F. Patel-Schneider. Combining rules and ontologies: A survey. Tech.
Rep. IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, Feb. 2005.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[3] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries in
expressive description logics: An automata-theoretic approach. In AAAI, pages 391–396. AAAI
Press, 2007.

[4] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

[5] Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On representational issues
about combinations of classical theories with nonmonotonic rules. In Proceedings KSEM-2006,
volume 4092 of LNCS/LNAI, pages 1–22. Springer, 2006.

[6] Jos de Bruijn, David Pearce, Axel Polleres, and Agust́ın Valverde. Quantified equilibrium logic
and hybrid rules. In Proceedings First International Conference on Web Reasoning and Rule
Systems (RR2007), Innsbruck, 2007, volume 4524 of LNCS, pages 58–72. Springer, 2007.

[7] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining Answer Set Programming with Description Logics for the Semantic Web.
Technical Report INFSYS RR-1843-07-04, Institut für Informationssysteme, TU Wien, March
2007.

32 INFSYS RR 1843-08-02

[8] Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman Schindlauer, and Hans Tompits.
Reasoning with rules and ontologies. In Pedro Barahona, François Bry, Enrico Franconi, Nicola
Henze, and Ulrike Sattler, editors, Reasoning Web, Second International Summer School 2006,
Lissabon, Portugal, September 25-29, 2006, Tutorial Lectures, number 4126 in LNCS, pages
93–127. Springer, 2006.

[9] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming. In
Proceedings IJCAI-2005, pages 90–96. Professional Book Center, 2005.

[10] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining
Answer Set Programming with Description Logics for the Semantic Web. In Didier Dubois,
Christopher Welty, and Mary-Anne Williams, editors, Proceedings Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2004), June 2-5, Whistler,
British Columbia, Canada, pages 141–151. Morgan Kaufmann, 2004.

[11] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Well-founded
semantics for description logic programs in the Semantic Web. In Proceedings RuleML-2004,
volume 3323 of LNCS, pages 81–97. Springer, 2004.

[12] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In Proceedings JELIA-2004, volume 3229 of LNCS/LNAI, pages 200–212.
Springer, 2004.

[13] B. Glimm, C. Lutz, I. Horrocks, and U. Sattler. Conjunctive query answering for the description
logic SHIQ. Journal of Artificial Intelligence Research, 31:157–204, 2008.

[14] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query answering for
the description logic SHIQ. In M. Veloso, editor, Proc. 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007), pages 399–404. AAAI Press/IJCAI, 2007.

[15] V. Haarslev and R. Möller. RACER system description. In Proceedings IJCAR-2001, volume
2083 of LNCS/LNAI, pages 701–705. Springer, 2001.

[16] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfia-
bility. In Proc. ISWC-2003, volume 2870 of LNCS, pages 17–29. Springer, 2003.

[17] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In
Proceedings LPAR-1999, volume 1705 of LNCS/LNAI, pages 161–180. Springer, 1999.

[18] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to
OWL: The making of a Web ontology language. J. Web Sem., 1(1):7–26, 2003.

[19] Thomas Krennwallner. Integration of Conjunctive Queries over Description Logics into HEX-
Programs. Master’s thesis, Vienna University of Technology, Karlsplatz 13, A-1040 Wien,
October 2007.

[20] Thomas Lukasiewicz. A novel combination of answer set programming with description logics
for the Semantic Web. In Proceedings ESWC-2007, volume 4519 of LNCS, pages 384–398.
Springer, 2007.

INFSYS RR 1843-08-02 33

[21] Carsten Lutz. Inverse roles make conjunctive queries hard. In Proceedings of the 2007 Inter-
national Workshop on Description Logics (DL2007), Bressanone, 2007, number 250 in CEUR
Workshop Proceedings, http://ceur-ws.org/, pages 100–111, 2007.

[22] V. Marek, I. Niemelä, and M. Truszczyśki. Logic programs with monotone cardinality atoms.
In Proceedings LPNMR-2004, volume 2923 of LNCS, pages 154–166, 2004.

[23] W. Marek and J. Remmel. On the expressibility of stable logic programming. Theory and
Practice of Logic Programming, 3(4-5):551–567, 2003.

[24] W. Marek and M. Truszczyński. Autoepistemic Logic. Journal of the ACM, 38(3):588–619,
1991.

[25] Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can OWL and logic program-
ming live together happily ever after? In Proceedings ISWC-2006, volume 4273 of LNCS,
pages 501–514. Springer, 2006.

[26] Boris Motik and Riccardo Rosati. A faithful integration of description logics with logic pro-
gramming. In M. Veloso, editor, Proceedings 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), pages 477–482. AAAI Press/IJCAI, 2007.

[27] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying large
description logic aboxes. In Miki Hermann and Andrei Voronkov, editors, LPAR, volume 4246
of Lecture Notes in Computer Science, pages 227–241. Springer, 2006.

[28] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with rules. J.
Web Sem., 3(1):41–60, 2005.

[29] Andreas Nonnengart and Christoph Weidenbach. Computing Small Clause Normal Forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 6,
pages 335–367. Elsevier Science, 2001.

[30] Magdalena Ortiz de la Fuente, Diego Calvanese, and Thomas Eiter. Data Complexity of
Answering Unions of Conjunctive Queries in SHIQ. In B. Parsi, U. Sattler, and D. Toman,
editors, Proceedings of the 2006 International Workshop on Description Logics (DL2006), The
Lake District of the UK, May 30-June 1, 2006, number 189 in CEUR Workshop Proceedings,
pages 62–73, 2006. Online http://CEUR-WS.org/Vol-189.

[31] Magdalena Ortiz de la Fuente, Diego Calvanese, Thomas Eiter, and Enrico Franconi. Charac-
terizing data complexity for conjunctive query answering in expressive description logics. In
Proceedings AAAI-2006. AAAI Press, 2006.

[32] J. Z. Pan, E. Franconi, S. Tessaris, G. Stamou, V. Tzouvaras, L. Serafini, I. Horrocks, and
B. Glimm. Specification of coordination of rule and ontology languages. Project Deliverable
D2.5.1, KnowledgeWeb NoE, June 2004.

[33] Riccardo Rosati. Integrating ontologies and rules: Semantic and computational issues. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler, editors,
Reasoning Web, volume 4126 of LNCS, pages 128–151. Springer, 2006.

http://ceur-ws.org/
http://CEUR-WS.org/Vol-189

34 INFSYS RR 1843-08-02

[34] Riccardo Rosati. DL+log : Tight integration of description logics and disjunctive datalog.
In Proceedings 10th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2006), pages 68–78. AAAI Press, 2006.

[35] Riccardo Rosati. The limits of querying ontologies. In Proc. ICDT 2007, volume 4353 of LNCS,
pages 164–178. Springer, 2007.

[36] Chiaki Sakama and Hirohisa Seki. Partial deduction in disjunctive logic programming. Journal
of Logic Programming, 32(3):229–245, 1997.

[37] Roman Schindlauer. Answer-Set Programming for the Semantic Web. PhD thesis, Vienna
University of Technology, Austria, December 2006.

[38] W3C. OWL 1.1 Web ontology language overview, 2006. Available at
http://www.w3.org/Submission/owl11-overview/.

http://www.w3.org/Submission/owl11-overview/

	Introduction
	Description Logics
	(Unions of) Conjunctive Queries

	CQ Programs
	Syntax
	Semantics
	Minimal-model semantics for positive cq-programs
	Strong answer-set semantics for cq-programs

	Computational Complexity
	Rewriting Rules
	Proof of Theorem 5.5
	Proof of Theorem 5.6 and 5.7

	Rewriting Algorithms
	Implementation and Experiments
	Conclusion
	Proofs of Lemmas
	Proof of Lemma 3.8
	Proof of Lemma 5.8
	Proof of Lemma 5.9
	Proof of Lemma 5.10
	Proof of Lemma 5.11
	Proof of Lemma 5.12

