
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

A SOLVER FORQBFS IN

NEGATION NORMAL FORM

Uwe Egly Martina Seidl Stefan Woltran

INFSYS RESEARCHREPORT1843-08-03

MARCH 2008

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-08-03, MARCH 2008

A SOLVER FORQBFS IN NEGATION NORMAL FORM

Uwe Egly1 and Martina Seidl2 and Stefan Woltran3

Abstract. Various problems in artificial intelligence can be solved bytranslating them into a quan-
tified boolean formula (QBF) and evaluating the resulting encoding. In this approach, a QBF solver
is used as a black box in a rapid implementation of a more general reasoning system. Most of the
current solvers for QBFs require formulas in prenex conjunctive normal form as input, which makes
a further translation necessary, since the encodings are usually not in a specific normal form. This
additional step increases the number of variables in the formula or disrupts the formula’s structure.
Moreover, the most important part of this transformation, prenexing, is not deterministic. In this
paper, we focus on an alternative way to process QBFs withoutthese drawbacks and describe a
solver,qpro, which is able to handle arbitrary formulas. To this end, we extend algorithms for QBFs
to the non-normal form case and compareqpro with the leading normal form provers on several
problems from the area of artificial intelligence. We prove properties of the algorithms generalized
to non-clausal form by using a novel approach based on a sequent-style formulation of the calculus.

1Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11, A-1040
Vienna, Austria. Email: uwe@kr.tuwien.ac.at

2Institute of Software Technology and Interactive Systems,Business Informatics Group, TU Vienna, Favoriten-
straße 9-11, A-1040 Vienna, Austria. Email: seidl@big.tuwien.ac.at

3Institute of Information Systems, Database and AI Group, TUVienna, Favoritenstraße 9-11, A-1040 Vienna,
Austria. Email: woltran@dbai.tuwien.ac.at

Acknowledgements: This work was supported by the Austrian Science Fund (FWF) under grant P18019,
the Austrian Academic Exchange Service (ÖAD) under grant Amadée 2/2006, and by the Austrian Federal
Ministry of Transport, Innovation and Technology BMVIT andthe Austrian Research Promotion Agency
FFG under grant FIT-IT-810806.

Copyright c© 2008 by the authors

Contents

1 Introduction 1
1.1 Translations to Normal Form—Advantages and Pitfalls 1
1.2 Towards a Practical Efficient Non-Normal Form QBF Solver. 2
1.3 Related Work 3
1.4 Organization 4

2 Background 4

3 Generalizing Unit and Pure Literal Detection 8

4 A Sequent Calculus for QBFs 10
4.1 The Basic Decision Procedure 10
4.2 Dependency-Directed Backtracking 12
4.3 Simplifications 13

5 The Implementation of the Solverqpro 19
5.1 A Generalization of the DPLL Procedure 19
5.2 The Implementation ofsimplify . 19
5.3 Dependency-Directed Backtracking 20

5.3.1 Dependency-Directed Backtracking by Labeling 23
5.3.2 Dependency-Directed Backtracking by Relevance Sets. 25
5.3.3 Pure and Unit Literal Elimination in Dependency-Directed Backtracking 27

6 Experimental Evaluation 29
6.1 Description of the Benchmarks 29

6.1.1 Modal Logic K .. . 29
6.1.2 Nested Counterfactuals 30
6.1.3 Answer-Set Correspondence 30

6.2 Internal Comparisons 30
6.2.1 Modal Logic K .. . 31
6.2.2 Nested Counterfactuals 31

6.3 Comparison with State-of-the-Art Systems 32
6.3.1 Modal Logic K .. . 33
6.3.2 Nested Counterfactuals 33
6.3.3 Answer-Set Correspondence 34

6.4 Discussion 35

7 Conclusion 36

I

1 Introduction

Formal frameworks are often suitable for the representation of application problems (like planning, schedul-
ing, formal verification, etc.) which can then be solved by automated reasoning tools. Many such problems
can be encoded efficiently using quantified boolean formulas(QBFs), which are an extension of classical
propositional formulas, permitting existential and universal quantifications over propositional atoms. In
practice, QBFs have been proven to be a useful framework for the rapid implementation of reasoning tasks
from these areas (see, e.g., [2, 7, 13, 25, 26, 30, 33, 37]), mainly because there has been made a significant
progress in the development of QBF solvers within the last years (cf., e.g., [28, 31] for an overview and
evaluation of state-of-the-art systems).

Almost all of these solvers, however, expect the input formula to be inprenex conjunctive normal form
(PCNF), requiring all quantifiers to be in front of a purely propositional formula, which has to be in conjunc-
tive normal form (CNF). Of course, this restriction facilitates the handling of the formula because certain
assumptions about the structure can be made. But the encodings of real world problems barely result in for-
mulas obeying such a normal form, hence an extra transformation is required. This transformation usually
is performed in two steps, namelyprenexingand afterwards transforming the resulting purely propositional
matrix into CNF. The main drawbacks of this transformation procedure are:

• The prenexing operation isnot deterministic.

• The translation into CNF results in an increase of the formula size as well as in an increase of the
number of variables in the formula.

• The structure of the formula may be disrupted and scopes of quantifiers are artificially extended.

To avoid this preliminary transformation step (together with its occurring problems) in reasoning systems
of the aforementioned kind, a QBF solver which allows for theprocessing of arbitrary QBFs (or with only
weak restrictions on the syntax) is needed. In this paper, wepresent such a prover,qpro, which works
on formulas innegation normal form(NNF). Such formulas are characterized by the property thatnegation
occurs in front of atoms only, but the usage of quantifiers, conjunction, and respectively, disjunction remains
unrestricted. The basic procedure ofqpro is a generalizedvariant of the DPLL algorithm with enhanced
dependency-directed backtracking (DDB) techniques. While the extension of the basic DPLL procedure to
QBFs in NNF is rather straightforward, the interplay of simplification, and respectively, DDB techniques
turns out to be technically involving. We thus investigate these aspects also in an abstract, proof-theoretic
manner. Compared to other QBF systems for arbitrary formulas (for instance, those based on binary decision
diagrams) the space requirements forqpro are modest, sinceqpro runs in polynomial space (wrt the length
of the input formula).

1.1 Translations to Normal Form—Advantages and Pitfalls

As pointed out, the motivation to circumvent the restriction to formulas in PCNF and to work with QBFs
in NNF instead, is the problem to generate “good” normal forms. In contrast to, for instance, first-order
logic, the main problem here is the handling of quantifiers atthe places where they occur. In the following
we explain some aspects of normalization for different logics and discuss why QBFs are problematic in this
aspect.

It is well known how a propositional (or first-order formula)can be translated into a (un)satisfiability-
equivalent CNF, such that the structural information is retained by new atoms [36, 10, 9]. Together with their

1

definition, such new atoms can mimic the effect of the analytic cut rule in full calculi like Gentzen systems
resulting in drastically shorter proofs [4, 11]. Moreover,as experiments showed [14, 32], such structure-
preserving translations are not only beneficial from a theoretical point of view, but can also speed-up auto-
mated theorem provers for practical problems. In the last few years, similar results have been obtained for
the case of prenex QBFs and an optimized handling of the newlyintroduced atoms has been proposed in [1].

But the problem to construct a prenex form of a QBF is still present. In particular, the prenexing trans-
formation cannot be carried out deterministically and the chosen normalization strategy crucially influences
the runtimes (also depending on the concrete solver used), see e.g., [15, 44]. In fact, this phenomenon mir-
rors a similar observation from classical theorem proving in first-order logic, where classes of formulas exist
for which different quantifier shifting strategies (resulting in different prenex forms) yield a non-elementary
difference of proof size (and search space size) [5, 12]. Clearly, the impact of the prenex forms is less dras-
tic for QBFs because of the simpler underlying logic, but there are indications that prenexing impacts the
runtime of highly optimized state-of-the-art solvers [24].

However, there is a certain difference between first-order logic and the language of QBFs in the treat-
ment of quantifiers while prenexing a formula. In first-orderlogic, skolemizationcan be used to encode
the properties of (usually) existential quantifiers by Skolem functions. In a nutshell, skolemization gets rid
of existential quantifiers “in place”. The introduced Skolem functions encode two properties of quantifier
rules in full first-order calculi: (i) the eigenvariable condition and (ii) non-permutabilities between quantifier
rules. Condition (i) is satisfied by the requirement to introduce a globally new function symbol, and Condi-
tion (ii) is handled by the occur check in the unification algorithm. Due to the weaker syntax of QBFs, the
introduction of Skolem functions is not possible and therefore this conceptually simple tool is not (directly)
applicable in the context of QBFs.1

1.2 Towards a Practical Efficient Non-Normal Form QBF Solver

As already pointed out, in order to provide a solver for QBFs which saves us from the step of prenexing we
propose as input formatnegation normal form. In fact, negation normal form is a good candidate because
of several reasons.

• The negation normal form of an arbitrary QBF is unique.

• The translation of a QBF into its negation normal form is easyand runs in linear time.

• The structure of the formula is essentially retained.

• The quantifiers stay “in place”.

• Contrary to the use of arbitrary QBFs, polarity considerations are restricted to atoms, which avoids
numerous technical difficulties. This holds for formal details, but even more for implementation
issues.

However, the price that we have to pay for a decision procedure not based on PCNFs is the necessity to
generalize its optimization mechanisms to the broader class of QBFs in NNF in order to obtain an efficient
implementation of the DPLL algorithm. Indeed, our goal is toprovide a solver which is comparably efficient
on PCNFs but, in general, better on non-prenex formulas compared to the combination of a transformation
to normal form and the application of a PCNF solver.

1There is one solver,sKizzo [6], which introduces Skolem functions in an intermediate step.

2

The basic techniques we shall consider in a generalized manner for our solver are the following. First,
we need a mechanism to recognize special kinds of literals inorder to significantly simplify the currently
processed formulas. Two such methods are well known. The concept of aunit literal amounts to identify
clauses with a single literal. Similarly, it is desirable tofind an atom that occurs only positively or only nega-
tively in the formula (apure literal). In both cases, we can immediately force the “correct” assignment to the
corresponding atom. Both detections are very easy for CNFs,and moreover, the respective manipulation of
the formula can be handled efficiently using suitable data structures. For QBFs in NNF, a general detection
of unit-like literals is more involved. In fact, we shall distinguish two forms of unit literals, calledglobal
andlocal. The detection of pure literals remains rather simple by thefact that we deal with QBFs in NNF.
However, the simplification of formulas is a bit more complicated than for QBFs in PCNF. As a benefit, one
can make use of further techniques which are not possible in QBF solvers which require the input formula
to be in PCNF. We mention here the concept ofminiscopingwhich tries to reduce the scope of quantifiers
(i.e., by shifting quantifiers further into the formula) which in turn may allow further simplifications.

Another technique we want to exploit is the realization of (different forms of) dependency-directed
backtracking (DDB). The basic idea is to avoid unnecessary evaluations by identifying whether an atom
contributes to a current evaluation of the formula. Again, the generalization from PCNF to NNF provides
some technical difficulties (especially in connection withthe simplification techniques mentioned before),
but there are also advantages compared to PCNF solvers. In particular, we are able to apply DDB techniques
to falseand true subproblems.

1.3 Related Work

Most state-of-the-art QBF solvers process only formulas inPCNF, thus they require an additional transfor-
mation step when the formula is not available in the requiredformat. As discussed above, the transformation
to the PCNF version of a formula comes usually with certain undesirable side effects like the increasing of
the number of variables.

An analysis of the prenexing operation and its disadvantages has been performed in [15, 44]. In order
to avoid the discovered disadvantages, certain restrictions of the PCNF have be leveraged to find a trade-
off to reuse the knowledge and experience gained in PCNF solving and to overcome the restrictions of the
normal form transformation. [24], for instance, abandon the separation between quantifier prefix and and
propositional matrix to minimize the scope of the quantifiers and report that this technique allows for more
efficient solving of certain QBFs. In other words, the input basically remains in PCNF but now it comes
together with information on quantifier dependencies. Alsoin [6], a speed-up gained by the reconstruction
of the quantifier tree is reported. The concept of miniscoping is implicitly also performed in expansion-
based systems likequantor [8] to avoid unnecessary duplications of certain formula parts. However, all
these techniques still have the disadvantage that an arbitrary input has to be transformed into PCNF or a
PCNF-like format (see [24]) first.

To abstain from the CNF structure has also been proposed in BDD-based approaches (see, e.g., [20]), and
for the solver QuBos [3] which eliminates one type of variables by expansion and numerous optimizations
(including miniscoping), and then passes the resulting formula to a SAT solver. However, both approaches
require exponential space in the worst case.

The impact of allowing a CNF structure combined with a DNF (disjunctive normal form structure) is
explored in [42, 38] where the formulas consist of a CNF part and a DNF part. This is a very natural way to
include learned clauses and their dual part but nevertheless the formula structure is very restricted and the
problematic normal form transformations cannot be circumvented.

3

1.4 Organization

The outline of the paper is as follows: Section 2 introduces necessary definitions and notations. In Sec-
tion 3, we present generalizations of elimination rules forunit and pure literals. We consider the formal
underpinnings of our solver in Section 4, where we follow a proof-theoretical approach by using the means
of a sequent calculus. Afterwards, we present our systemqpro, which implements the decision procedure.
In Section 6, we first discuss the impact of enabling/disabling the previously discussed optimization tech-
niques. Then we compare our solver with state-of-the-art provers on benchmarks including problems from
the area of AI, viz. counterfactual reasoning [21, 17] and correspondence checking [18, 34] in answer-set
programming [19], as well as known benchmarks from the area of modal logic [35]. Finally, we discuss the
obtained results and give further pointers to related and future work in Section 7.

2 Background

We introduce the languageLP of QBFs as an extension of the language of propositional logic. The alphabet
of LP consists of parentheses, the truth constants⊤ and⊥, a countable set of variablesP, the unary con-
nective¬ (negation), the binary connectives∨ (disjunction) and∧ (conjunction), and the quantifier symbols
∀ (universal) and∃ (existential). A literal is a variable or a negated variable.

We define the language ofquantified propositional logicover a setP of variables as the smallest set,
LP , satisfying the conditions:

1. If x ∈ P ∪ {⊤,⊥}, thenx ∈ LP and¬x ∈ LP ;

2. if φ,ψ ∈ LP , then(φ ◦ ψ) ∈ LP , where◦ ∈ {∨,∧};

3. if φ ∈ LP andx ∈ P, then(Qxφ) ∈ LP , whereQ ∈ {∀,∃}.

Any element ofLP is called aquantified boolean formula(QBF). If no ambiguities arise, we omit parenthe-
ses when convenient. Note that we allow negation only in front of a variable or a truth constant. Formulas
which obey this restriction are usually referred to be innegation normal form(NNF). However, the NNF
of any arbitrary QBF, i.e., formulas where negations may occur anywhere in the formula, can be obtained
by iteratively applying DeMorgan’s laws and the removal of double negation. Since this transformation
can be done deterministically and since the increase of the formula size is negligible, we only consider the
restricted languageLP . Unless stated otherwise, we assume that the occurrence of aquantifier is unique for
any QBF. Hence, for eachx ∈ P, there is at most one occurrence ofQx allowed in a QBF. Again, this is not
a serious restriction, since any QBF can be brought into thisform by a suitable variable renaming.

Thescopeof a quantifierQx in a QBFφ is defined to beψ, whereQxψ is the subformula corresponding
to the occurrence ofQx in φ. An occurrence of a variablex is calledfree in a QBFφ if it is not located
within the scope of the quantifierQx in φ. By free(φ) we denote the set of variables occurring free inφ. A
QBF φ is closedif there are no free variables inφ. A variablex is called existential (resp. universal) inφ
if it is located inφ within the scope of a quantifier∃x (resp.∀x). Variables which are either existential or
universal inφ are also said to beboundin φ. We use, for a variablex, x = ¬x and¬x = x. For a literall
of the formx or ¬x, the functionvar(l) returns the variablex. Furthermore, the functionpol(φ, x) returns
the polarity of a propositional variablex in a QBFφ. Possible values ofpol(φ, x) arepos, neg, both, and
none. Finally, given a QBFφ, a variablex ∈ P, andy ∈ P ∪ {⊤,⊥}, we denote byφ[x/y] the result of
substituting each occurrence ofx φ by y.

4

The propositional skeletonpsk(φ) of a QBFφ provides a corresponding quantifier-free formula ofφ
and is recursively defined as follows:

psk(φ) =











φ φ ∈ {x,¬x | x ∈ P} ∪ {⊤,⊥}

psk(ψ1) ◦ psk(ψ2) if φ = ψ1 ◦ ψ2, ◦ ∈ {∨,∧}

psk(ψ) if φ = Qx ψ, Q ∈ {∃,∀}

To define the semantics of QBFs, we introduce an evaluation function υS with respect to a setS of
literals assigning the truth value for free variables. We sometimes omit the subscriptS, if it is clear from the
context. In particular, this can be done for any closed QBF, on which we shall focus later. However, since
we also deal with open (mostly quantifier-free, i.e., propositional) formulas, we define the semantics in such
a general way. In what follows we useS ⊎ {l} as a shorthand for(S \ {l̄}) ∪ {l}, wherel is a literal.

Definition 1 (Evaluation Function) Let φ be a QBF and letS be a set of literals such that for eachx ∈
free(φ), eitherx ∈ S or ¬x ∈ S. Theevaluation functionυS : LP → {1, 0} is given as follows:

1. υS(⊤) = υS(¬⊥) = 1 andυS(⊥) = υS(¬⊤) = 0

2. υS(l) =

{

1 if l ∈ S

0 if l̄ ∈ S

3. υS(φ1 ∨ φ2) =

{

1 if υS(φ1) = 1 or υS(φ2) = 1

0 otherwise

4. υS(φ1 ∧ φ2) =

{

1 if υS(φ1) = 1 andυS(φ2) = 1

0 otherwise

5. υS(∀xφ′) =

{

1 if υS′(φ′) = 1, for all S ′ ∈ {S ⊎ {x}, S ⊎ {¬x}}

0 otherwise

6. υS(∃xφ′) =

{

1 if υS′(φ′) = 1, for someS ′ ∈ {S ⊎ {x}, S ⊎ {¬x}}

0 otherwise

Basically, this definition amounts to both closed QBFs and QBFs with free variables. For closed QBFs,
we can give an alternative syntactic-driven top-down characterization, which uses (1), (3), and (4) from
above (recall that for closed QBFs, there is no need to refer to an assignmentS), together with

• υ(∀x φ) =

{

1 if υ(φ[x/⊤]) = 1 andυ(φ[x/⊥]) = 1

0 otherwise

• υ(∃x φ) =

{

1 if υ(φ[x/⊤]) = 1 or υ(φ[x/⊥]) = 1

0 otherwise

This characterization calls for more direct handles to treat truth constants. To this end, one can consider
some basic simplifications obtained from the following equivalence-preserving transformations:

(S1) ¬⊤ ⇒ ⊥; ¬⊥ ⇒ ⊤;

5

x1

y1

⊥

x2

⊥

y2

⊥

1
⊥

y2

⊤

0
⊥

1
⊤

y1

⊤

x2

⊥

y2

⊥

1
⊥

y2

⊤

0
⊥

1
⊤

Figure 1: The branching tree of the example QBFφ.

(S2) ⊤∧ φ⇒ φ; ⊥ ∧ φ⇒ ⊥; φ ∧ ⊤ ⇒ φ; φ ∧ ⊥ ⇒ ⊥;

(S3) ⊤∨ φ⇒ ⊤; ⊥ ∨ φ⇒ φ; φ ∨ ⊤ ⇒ ⊤; φ ∨ ⊥ ⇒ φ;

(S4) (Qxφ) ⇒ φ whereQ ∈ {∀,∃}, x does not occur inφ;

Definition 2 A formula is calledcleansedif none of the simplifications (S1) – (S4) is applicable.

The sequence of the variable assignments when evaluating a closed QBFφ can be illustrated by a
branching tree. The nodes contain thebranching variablesand the two subtrees of a nodex correspond
to the subproblems, wherex is replaced by⊥ or ⊤, as indicated by the labels of the arcs. Moreover, we
usually assume that after each such step the resulting formula is additionally brought into its cleansed form.
The leaves contain the resulting truth values. Hence, each branch amounts to a truth assignment for the
(quantified) variables and the leaf indicates the truth value of psk(φ) under this assignment.

We sometimes omit branches: Ifx is existentially (resp., universally) quantified and the first subproblem
evaluates to true (resp., false), then the second subproblem can faithfully be omitted.

Example 1 The branching tree of the true formula

φ = ∀x1∃y1

(

∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (x1 ∧ y1)
)

is shown in Fig. 1, and is read as follows:

1. First, the variablex1 is replaced by⊥ and cleansed via the simplifications (S2) and (S3). This yields
the formula

φ′ = ∃y1

(

∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2))
)

.

2. The variabley1 is set to an arbitrary truth value; the value⊥ has been chosen in Fig. 1. Alternatively,
the quantification∃y1 can be removed due to (S4) because all occurrences ofy1 have been eliminated
in Step (1).

3. Then we set the variablex2 to ⊥ and we obtain as a cleansed formula∃y2(¬y2).

4. If we replacey2 by⊥, the formula evaluates to1. Asy2 is an existential variable, it is not necessary
to consider the dual assignment fory2.

5. Sincex2 is universally quantified, we also have to consider the second subproblem wherex2 is set to
⊤. Now,∃y2y2 is obtained after cleansing.

6. Wheny2 is set to⊥, the formula evaluates to0, otherwise the formula evaluates to1.

6

∃x

∀y1

∃z1

∀u1

∃v1

∀y2

∃z2

∃y3

∀z3

Figure 2: A quantifier dependency tree.

7. So whenx1 is replaced by⊥, the resulting subproblem evaluates to true. Therefore thesecond branch,
wherex1 is set to⊤, has to be considered as well, sincex1 is universally quantified. This part of the
evaluation works accordingly.

The reader may already have observed that at some point the traversal of the right-hand side branch is
performed exactly in the same manner as for the left-hand side. We shall make use of such situations later
for advanced backtracking techniques.

Finally, we introduce prenex normal forms for QBFs. To this end, we define the following concept:
Consider a QBFφ of the form∃x1 . . . ∃xnψ whereψ itself is not of the form∃yψ′. Then, we writeφ also
as∃Xψ, whereX = {x1, . . . , xn}. ForX = ∅, ∃Xψ amounts toψ. Accordingly, this concept is defined
for ∀. In other words, we will abbreviate maximal sequences of quantifiersQx1 . . .Qxn of the same type in
a QBF byQX. For matters of presentation, we occasionally writeQx1 . . .Qxn also asQx1 . . . xn.

Definition 3 A QBFφ is given inprenex normal form (PNF)if φ is of the form

Q1X1 . . .QmXm ψ,

whereQi ∈ {∀,∃} andψ is purely propositional. Moreover, ifψ is given in conjunctive normal form,φ is
said to be inprenex conjunctive normal form (PCNF).

QBFs in PNF are prototypical problems for complexity classes in thepolynomial hierarchy. In fact,
the evaluation problem of QBFs∃X1∀X2 . . .QiXiφ is ΣP

i -complete, and the evaluation problem of QBFs
∀X1∃X2 . . .QiXiφ is ΠP

i -complete.
Any QBF can be translated into an equivalent QBF in PNF, but there are several ways to do this. The

concept of differentprenexing strategiesis discussed in [15, 44]. We give here only some intuition.
First, thedependenciesbetween the quantifiers in a QBF are given by common occurrences on paths in

the formula tree. We say that a QBF hasdepthm, if the sequences of depending quantifiers provide at most
m−1 alternations. The quantifier dependencies are illustratedin thequantifier dependency tree. To avoid a
formal definition, we illustrate the basic ideas by an example.

Example 2 Consider the QBF

ψ = ∃x
(

(∀y1 ∃z1 ∀u1 ∃v1 ψ1) ∧ (∀y2 ∃z2 ψ2) ∧ (∃y3 ∀z3 ψ3)
)

,

where theψi’s are propositional formulas. Then,∀y1 depends on∃x, ∃z1 depends on∀y1 as well as on∃x,
∀y2 depends on∃x, etc.; but, e.g.,∃z2 does not depend on∀y1. Observe thatψ has depth 5 as witnessed by
the sequence∃x∀y1∃z1∀u1∃v1. The quantifier dependency tree of the formula is shown in Fig. 2. The aim

7

of prenexing is to“linearize” quantifier dependencies (which in fact form a partial order)without increasing
the depth of the QBF, i.e., without increasing the number of quantifier alternations.2

We consider here four differentprenexing strategies, namely “↑”, “ ↓”, “ ∃↓∀↑”, and “ ∃↑∀↓”. Hereby,
“ ↑” (resp., “ ↓”) denotes that any quantifier is placed as outermost (resp.,innermost) as possible in the
prefix. “∃↓∀↑” and “ ∃↑∀↓” follow the same concept but now the handling is depending onthe particular
quantifier, i.e., whether it concerns an existential or a universal one. Thus, for our example formulaψ, we
derive different PNFs ofψ having the same depth:

↑ : ∃xy3 ∀y1y2z3 ∃z1z2 ∀u1 ∃v1 (ψ1 ∧ ψ2 ∧ ψ3);

∃↑∀↓ : ∃xy3 ∀y1y2 ∃z1z2 ∀u1z3 ∃v1 (ψ1 ∧ ψ2 ∧ ψ3);

∃↓∀↑ : ∃x ∀y1y2 ∃z1y3 ∀u1z3 ∃v1z2 (ψ1 ∧ ψ2 ∧ ψ3);

↓ : ∃x ∀y1 ∃z1y3 ∀u1y2z3 ∃v1z2 (ψ1 ∧ ψ2 ∧ ψ3).

Most of the currently available systems require their inputto be in prenex conjunctive normal form, i.e.,
the input formulas are prenex forms and the quantifier matrixis a conjunction of disjunctions of literals.
These disjunction of literals are often calledclauses. If the input format is such a PCNF, then two steps are
necessary to evaluate a formula: (i) the transformation to the normal form and (ii) the actual solving. Hence,
if an arbitrary QBF has to be solved, one particular transformation into PCNF has to be chosen by the user.
This choice may crucially influence the running time. For a thorough analysis of this problem and further
prenexing strategies, see [44]. Note that if we only requirea transformation into QBFs in NNF, this problem
does not arise.

Remark.In the following, we consider closed QBFs only (unless stated otherwise).

3 Generalizing Unit and Pure Literal Detection

We already have introduced some very basic equivalence-preserving transformations (S1)–(S4) for QBFs
which can be used to simplify the processed QBF and thus to decrease the search space. We recall that such
transformations can indeed be applied also within a QBF. Next, we introduce three further simplifications
which, in combination with (S1)–(S4), are even more crucialto increase the efficiency of solvers.

In fact, most PCNF DPLL-based QBF solvers implement two special equivalence-preserving optimiza-
tion techniques: the elimination ofpureandunit literals. If one of those rules is applicable on a variable,
the variable can immediately be assigned, even if this variable does not appear in the outermost quantifier
block.

The concept of a pure literal naturally generalizes to QBFs in NNF: A literal l is calledpure in a QBFφ
if its complementl does not occur inφ.

Theorem 1 (Pure Literal Elimination) Let the literal l = x (resp.l = ¬x) be pure in a closed QBFφ.
Then

φ is equivalent to

{

φ[x/⊤] (resp.φ[x/⊥]) if x is existential;

φ[x/⊥] (resp.φ[x/⊤]) if x is universal.

2However, this is not always possible. In fact, if we have a Boolean combination of QBFs, one additional alternation has to
be taken into account. As the simplest example consider∀V φ ∧ ∃V ′φ′ with φ andφ′ purely propositional. Then “minimal”
linearizations are of the form∀V ∃V ′(φ ∧ φ′) or ∃V ′

∀V (φ ∧ φ′). Both options, however, possess an alternation of quantifiers,
whereas the original QBF does not.

8

Proof. We show thatφ is equivalent toφ[x/⊤] under the assumption that all occurrences ofx are positive
in φ and thatx is an existential variable. The other cases are similar. Dueto the Equivalence Replacement
Theorem of classical logic, it suffices to prove that the subformula ∃xφ′ of φ is equivalent toφ′[x/⊤].
(Recall that all occurrences ofx in φ are located in the subformulaφ′). We show that, under the given
restrictions,∃xφ′ → φ′[x/⊤] andφ′[x/⊤] → ∃xφ′ hold.
(1) ∃xφ′[x/x] → ∃xφ′[x/⊤] is valid due to the Monotonic Replacement Theorem (i.e.,ψ → ⊤ is a
tautology for allψ). The quantifier on the right-hand side of the implication can be omitted by (S4) because
all occurrences ofx are removed.
(2) By semantics,(φ′[x/⊤] → ∃xφ′) is equivalent to(φ′[x/⊤] → (φ′[x/⊤] ∨ φ′[x/⊥])) which is clearly
valid. 2

A clause of a QBF in PCNF is calledunit if it contains exactly one existential literall. An existential
literal is called unit if it occurs in a unit clause. Then sucha literal can be immediately set to⊤, and
consequently, the then satisfied clause is removed.

For QBFs in NNF, we consider two cases: (i) a unit literal occurs somewhere inside the formula or (ii)
a unit literal occurs in the subformula directly after the quantifier block which binds the literal’s variable.
Furthermore we apply the rule for disjunction and conjunction in a dual manner and we obtain the following
theorems:

Theorem 2 (Local Unit Literal Elimination) Let (l ◦ φ′), with ◦ ∈ {∨,∧} be a subformula of a closed
QBFφ and letl = x (resp.l = ¬x). Then we can faithfully replaceφ′ in φ by

φ′[x/⊤] (resp. byφ′[x/⊥]) for ◦ = ∧;

φ′[x/⊥] (resp. byφ′[x/⊤]) for ◦ = ∨.

Proof. We show the case for a conjunctive subformulax∧φ′. The other cases are similar. It is sufficient to
establish thatx∧φ′ is equivalent tox∧φ′[x/⊤]. First, in casex is set to true, we clearly have(x∧φ′)[x/⊤] =
(x ∧ φ′[x/⊤])[x/⊤]. In case,x is set to false,(x ∧ φ′)[x/⊥] is equivalent to(x ∧ φ′[x/⊤])[x/⊥], since
(x ∧ φ′)[x/⊥] = ⊥ ∧ φ′[x/⊥] reduces to⊥ and so does(x ∧ φ′[x/⊤])[x/⊥] = ⊥ ∧ (φ′[x/⊤])[x/⊥]. 2

The combination of the pure and local literal elimination can be summarized as a so-called global unit
literal elimination rule, which is defined as follows:

Theorem 3 (Global Unit Literal Elimination) Let Qx(l ◦ φ′) be a subformula of a closed QBFφ where
l = x (resp.l = ¬x). Then

φ is equivalent to

{

φ[x/⊤] (resp.φ[x/⊥]) if x is existential inφ;

φ[x/⊥] (resp.φ[x/⊤]) if x is universal inφ.

Proof. Suppose the case of a subformula∃x(x ◦ φ′) in φ. The other cases proceed accordingly. Recall
that all occurrences ofx in φ have to be located in the subformula∃x(x ◦ φ′).

If ◦ = ∨, we obtain, by applying local unit literal elimination,∃x(x ∨ φ′[x/⊥]) which turnsx to be
pure inφ. By Theorem 1, we can turn the subformula into∃x(⊤∨ φ′[x/⊥]) which is however equivalent to
∃x(⊤ ∨ φ′[x/⊤]), see (S2).

If ◦ = ∧, local unit literal elimination yields∃x(x ∧ φ′[x/⊤]). Again this turnsx to a pure literal
in φ. Now, Theorem 1 immediately yields that the desired subformula ∃x(⊤ ∧ φ′[x/⊤]) is equivalent to
∃x(x ∧ φ′). 2

9

Example 3 Consider the QBF

∀x2∃x1∃y1(((x2 ∨ ¬y1) ∧ (¬x2 ∨ y1)) ∨ (x1 ∧ ¬y1)).

This QBF can be evaluated as follows:

• The pure variablex1 can be replaced by⊤. After simplifications, we obtain the formula
∀x2∃y1(((x2 ∨ ¬y1) ∧ (¬x2 ∨ y1)) ∨ ¬y1).

• Now,¬y1 is global unit and all occurrences ofy1 can therefore be replaced by⊥.

• We can delete the quantifier∃y1 and obtain∀x2(((x2 ∨¬⊥)∧ (¬x2∨⊥))∨¬⊥). A few further basic
simplifications show that the QBF evaluates to1.

4 A Sequent Calculus for QBFs

One of the most prominent and successful decision procedures for SAT is the method developed by Davis,
Putnam, Logemann, and Loveland (DPLL for short). The DPLL procedure has been adapted for QBFs (in
PCNF) and is implemented in most state-of-the art solvers. We generalize DPLL in such a manner that it
can be used for formulas in NNF and allows to omit the transformation to prenex conjunctive normal form.

In the literature, DPLL is usually presented in a proceduralmanner. Because of its close relation to the
semantics of QBFs, elaborations on formal properties are neglected. In this work, we present a declarative
validity characterization for QBFs by the means of a sequentcalculus. We call this calculusGQBF. The
implementation of this calculus however results in a generalized variant of DPLL, which is presented in the
following section. We consider this approach because it allows us to abstract from many control aspects
of the concrete algorithm and to focus on the actual decisionprocedure. In particular, this will allow us
to show the correctness of properties, which are central to dependency-directed backtracking, in a very
straightforward way.

4.1 The Basic Decision Procedure

We characterize the calculusGQBF for closed QBFs in NNF in terms of the logical rules shown in Fig. 3.
Subsequently, we useindexed QBFs, i.e.,⊤, ⊥, and each variablex ∈ P carry indices which are (possibly
empty) setsσ ⊆ P of variables. For the matter of presentation, we shall referto and manipulate such indices
in a string-like fashion. For an indexed elementsσ, sσ is as expected, i.e.,⊤σ = ⊥σ, ⊥σ = ⊤σ, xσ = ¬xσ,
¬xσ = xσ. Also note that variable symbols in quantifiers will remain without an index, and that the same
variable may contain different indices for different occurrences.

Our basic calculus uses such indices only to mark truth constants with the variable which it has been
replaced, but later when simplifications are added to the calculus, we will make use of indices in a more
involved manner to recognize which of the variables are relevant for the current proof.

Sequents of the form⊢ φ (whereφ is an indexed QBF) are manipulated until no rule applicationis
possible anymore. In inference rules, the sequents above a line are called thepremisesand the sequent
below is called theconclusion. The single formula in the conclusion is called theprincipal formulaof the
inference.

A sequent⊢ φ is calledvalid if φ is valid. Our sequents consist of exactly one formula in NNF.There-
fore, we cannot prove formulas likex ∨ ¬x directly in this calculus but only∃x (x ∨ ¬x). This restriction
is possible since we deal with closed formulas only.

10

⊢ φ

⊢ φ ∨ ψ
(∨′)

⊢ ψ

⊢ φ ∨ ψ
(∨′′)

⊢ φ ⊢ ψ

⊢ φ ∧ ψ
(∧)

⊢ φ[xσ/⊥σx]

⊢ ∃xφ
(∃′)

⊢ φ[xσ/⊤σx]

⊢ ∃xφ
(∃′′)

⊢ φ[xσ/⊥σx] ⊢ φ[xσ/⊤σx]

⊢ ∀xφ
(∀)

Figure 3: The logical rules of the calculusGQBF.

A derivation in this calculus is a tree generated by the bottom-up application of the rules. The root
of this tree is called theend-sequent. The leaves are sequents which contain only a (possibly negated)
truth constant. Aproof is a derivation whose leaves are labeled with axioms.Axiomsare sequents of the
form ⊢ ⊤σ or ⊢ ¬⊥σ. If a formula or a formula part is unsatisfiable, the corresponding branches result in
non-axioms, i.e. , in⊢ ⊥σ or ⊢ ¬⊤σ.

An example of a proof in theGQBF calculus is given in Fig. 4; note that this proof is not the smallest
possible. All rules operate on the main connective of the principal formula but nevertheless the evaluation of
a formula is not completely done deterministically. When wehave a disjunction or an existential quantifier
as main connective and the first branch does not result in a proof, we have to try the second branch.3

⊢ ¬⊥y ⊢ ⊤z

⊢ ¬⊥y ∧ ⊤z
(∧)

⊢ (¬⊥y ∧⊤z) ∨ ⊥x

(∨′)

⊢ ∃z((¬⊥y ∧ z) ∨⊥x)
(∃′′)

⊢ ∃y∃z((¬y ∧ z) ∨⊥x)
(∃′)

⊢ ¬⊥y ⊢ ⊤z

⊢ ¬⊥y ∧ ⊤z
(∧)

⊢ (¬⊥y ∧ ⊤z) ∨ ⊤x

(∨′)

⊢ ∃z((¬⊥y ∧ z) ∨ ⊤x)
(∃′′)

⊢ ∃y∃z((¬y ∧ z) ∨ ⊤x)
(∃′)

⊢ ∀x∃y∃z((¬y ∧ z) ∨ x)
(∀)

Figure 4: A proof for the formula∀x∃y∃z((¬y ∧ z) ∨ x).

The soundness ofGQBF can be easily proven by showing that the application of a ruleto its valid
premise(s) leads to a valid conclusion. Completeness is established accordingly the other way round (i.e.
bottom-up) by structural induction showing that a proof of the end-sequent⊢ φ can be constructed, whenever
the QBFφ is valid. Proving the termination is established by arguingthat the formula in the conclusion of
each rule is more complex then the formula(s) in the premise(s). Moreover, in each rule, we have at most
two possible choices for the premise. We do not give the proofs for correctness and completeness here as
they are standard for sequent calculi.

Theorem 4 The calculusGQBF is sound, complete, and terminating.

3When disproving a formula, it would be necessary to considerthe second branch for the according rules for conjunction and
universal quantifier if the first branch is a proof. However, in what follows we omit a discussion on disproving, which can be
considered in a fully dual manner.

11

This simple calculus shall provide the basis for a powerful decision procedure. In the rest of the section,
we discuss necessary techniques to prune the search space (for finding proofs) and to make the proofs as
small as possible which is crucial for the practical application in a solver.

4.2 Dependency-Directed Backtracking

Consider again the proof in Fig. 4 for the formula∀xφ = ∀x∃y∃z((¬y ∧ z)∨ x). The rule which is applied
backwards to the end-sequent is (∀) and results in two branches. The left branch contains the proof for
φ[x/⊥x], whereas the proof ofφ[x/⊤x] is shown on the right side. The two proofs are of the same form
except for the replacement ofx. Furthermore, the variablex does not play a role for the completion of the
proof because none of the truth constants in the axioms have been introduced due to the replacement ofx.
Sox turns out to beirrelevant for the proof ofφ[x/⊥x]. As a consequence, the replacement ofx by ⊤x

would result in a proof anyway, because⊥x does not appear in any axiom. Consequently, the second branch
of the application of the (∀)-rule can be faithfully omitted. This technique of the identification of irrelevant
variables is known asdependency-directed backtracking(DDB).

Dependency-directed backtracking (or synonymously back-jumping) is an important pruning technique
for DPLL and known to be crucial for the efficient practical application of DPLL in the PCNF case (see for
example [29, 23]). DDB can also be generalized for non-PCNF formulas. Here it becomes even more pow-
erful because it works for true and false problems dually. Incontrast, when dealing with PCNF-formulas, a
distinction has to be made. This is due to the fact that a PCNF-formula evaluates to false whenone clause
is unsatisfiable whereas it evaluates to true whenone literal in each clausemakes the whole formula true.

We now introduce the concept of relevant variables for a proof S, which we also call areason forS.

Definition 4 Let S be a proof andax(S) the set of all axioms ofS. Then thereasonR(S) of a proofS is
defined as

R(S) = {x | x ∈ σ and ⊢ ⊤σ ∈ ax(S) or ⊢ ¬⊥σ ∈ ax(S)}.

The central observation is now as follows.

Theorem 5 LetS be a proof ofφ[x/sx] with s ∈ {⊤,⊥}, andx 6∈ R(S). Then there exists a proofS′ for
φ[x/sx].

Proof. Assume there exists a proof forφ[x/sx], x 6∈ R(S), but there exists no proof forφ[x/sx]. Since
φ[x/sx] andφ[x/sx] are exactly of the same structure besides the replacements of the occurrences of the
variablex, we can obtain a derivation withφ[x/sx] as end-sequent where exactly the same rules as in the
proof ofφ[x/sx] are used. This derivation must contain some non-axioms of the form⊢ ⊥y or⊢ ¬⊤y, since
we assume that there is no proof forφ[x/sx]. However, since the only change we perform compared to the
proof of φ[x/sx] is the exchange of⊤x and⊥x, the only candidate fory is in factx. But thenx 6∈ R(S)
cannot be the case and a contradiction occurs. Thereforeφ[x/sx] also has a proof. 2

This observation allows in particular to “duplicate” the proof ofφ[x/sx]. In other words, in constructing
the proof for a formula∀xφ, it is possible to “omit” the other branch in case we found a proof S for the first
branch withx /∈ R(S).

In the case that the formula is unsatisfiable, this method works dually. Then the pruning is done on
existential variables, i.e., if the first problem does not have a proof and the corresponding variable does not

12

occur in any of the non-axioms (which must be explicitly stated now), then the examination of the second
problem can be omitted.

4.3 Simplifications

We now show that our main result on dependency-directed backtracking also holds if numerous simplifica-
tions are considered in this calculus. These simplifications are crucial to prune the search space in order to
speed-up our proposed procedure.

Our strategy here is as follows. We add to the logical rules ofthe calculus (which operate on the main
connective of the principal formula) simplification rules (which operate inside such a formula). We then
show certain permutation properties between logical rulesand simplification rules. Under a permutation we
understand that “shifting up” simplification rules does notseverely modify the proof unless simplifications
are “absorbed” by standard rules. We are then able to compileaway simplifications when we iteratively
treat the simplifications in such a way that we start with the upper most (i.e., such that there is no further
simplification rule between the axioms and its application). The resulting proof without simplifications can
be longer than the original proof, but its reason is not increased.

For the simplification rules, we use the following notation

⊢ φ(ψ′)

⊢ φ(ψ)
(s) Cond

which states that a subformulaψ is replaced by the logically equivalent formulaψ′ in the premise, and Cond
states an additional condition when this rule is allowed to be applied.

Moreover, we writeφσ to denote the formula which results fromφ by appendingσ to each indexπ of
both variables and truth constants inφ. For instance, if⊤π occurs inφ then this occurrence is rewritten to
⊤πσ in φσ.

We next formulate the simplifications (S1)–(S4) as well as local unit, global unit, and pure as such rules
in Fig. 5. However, we omit some symmetric cases. Note that the so extended calculus remains correct,
complete, and terminating.

As already discussed above, we permute simplifications towards the axioms until they disappear or we
can replace them by a small proof without simplifications. Eventually, we obtain a (possibly longer) proof
without simplifications. Moreover, the reason for this resulting proof is a subset of the original one.

The basic tool to “bubble-up” simplifications is the permutation of adjacent inferences4 We consider
permutation schemata(Rs, Rl) whereRs is one of the simplification rules andRl is one of the logical rules.

Definition 5 A simplification ruleRs is permutable overa logical ruleRl (towards the axioms), if, for all
applicationsrs of Rs of the form

⊢ φ(ψ′)

⊢ φ(ψ)
(s) Cond

and all applicationsrl of Rl such that the principal formula ofrs is closed,rl occurs immediately above
rs, and such thatψ′ is not the consequent formula ofrl, it holds that there is a proof of the consequent of
rs from the premises ofrl in which zero or more applications ofRs occur above application ofRl and no
other rules are applied.

4This is a common technique; see [27, 41].

13

⊢ φ(⊥σ)

⊢ φ(¬⊤σ)
(S1a)

⊢ φ(⊤σ)

⊢ φ(¬⊥σ)
(S1b)

⊢ φ(ψσ)

⊢ φ(⊤σ ∧ ψ)
(S2a)

⊢ φ(⊥σ)

⊢ φ(⊥σ ∧ ψ)
(S2b)

⊢ φ(⊤σ)

⊢ φ(⊤σ ∨ ψ)
(S3a)

⊢ φ(ψ)

⊢ φ(⊥σ ∨ ψ)
(S3b)

⊢ φ(ψ)

⊢ φ(Qxψ)
(S4) no occurrences ofxσ in ψ

⊢ φ(xσ ∧ ψ[xσ′/⊤σσ′x])

⊢ φ(xσ ∧ ψ)
(LU1a)

⊢ φ(¬xσ ∧ ψ[xσ′/⊥σσ′x])

⊢ φ(¬xσ ∧ ψ)
(LU1b)

⊢ φ(xσ ∨ ψ[xσ′/⊥σσ′x])

⊢ φ(xσ ∨ ψ)
(LU2a)

⊢ φ(¬xσ ∨ ψ[xσ′/⊤σσ′x])

⊢ φ(¬xσ ∨ ψ)
(LU2b)

⊢ φ((xσ ◦ ψ)[xσ′/⊤σ′x])

⊢ φ(∃x(xσ ◦ ψ))
(GU1a)

⊢ φ((¬xσ ◦ ψ)[xσ′/⊥σ′x])

⊢ φ(∃x(¬xσ ◦ ψ))
(GU1b)

⊢ φ((xσ ◦ ψ)[xσ′/⊥σ′x])

⊢ φ(∀x(xσ ◦ ψ))
(GU2a)

⊢ φ((¬xσ ◦ ψ)[xσ′/⊤σ′x])

⊢ φ(∀x(¬xσ ◦ ψ))
(GU2b)

⊢ φ(ψ[xσ/⊤σx])

⊢ φ(∃xψ)
(P1a) no occurrence of¬xσ′ in ψ

⊢ φ(ψ[xσ/⊥σx])

⊢ φ(∃xψ)
(P1b) no occurrence ofxσ′ in ψ

⊢ φ(ψ[xσ/⊥σx])

⊢ φ(∀xψ)
(P2a) no occurrence of¬xσ′ in ψ

⊢ φ(ψ[xσ/⊤σx])

⊢ φ(∀xσψ)
(P2b) no occurrence ofxσ′ in ψ

Figure 5: The simplification rules of the calculusGQBF.

14

Lemma 1 Any simplification rule is permutable over a logical rule (towards the axioms), except in the
cases, where the simplification rule is of type local unit (LU) on variablex and the logical rule is a quantifier
rule on the same variablex.

Proof. In the following, we first consider the cases of valid permutations, where we denote the simplifica-
tion rule by (s). Recall that, in all these rules, the original subformulaψ to be replaced and the replacement
ψ′ are logically equivalent. The permutation schemata are as follows (we omit∨′′ and∃′′).

Caserl = (∨′). Letψ occur in both disjuncts. Then we have:

⊢ φ1(ψ
′)

⊢ φ1(ψ
′) ∨ φ2(ψ

′)
(∨′)

⊢ φ1(ψ) ∨ φ2(ψ)
(s)

=⇒

⊢ φ1(ψ
′)

⊢ φ1(ψ)
(s)

⊢ φ1(ψ) ∨ φ2(ψ)
(∨′)

If ψ occurs inφ1 only, then the above figures can be adapted easily by replacing φ2(ψ) by φ2. If ψ occurs
only in φ2, then (s) is superfluous in the original proof; it can be safely omitted.

Caserl = (∧). We show the case whereψ occurs in both conjuncts. If it occurs only in one, then apply
(s) only in the corresponding branch.

⊢ φ1(ψ
′) ⊢ φ2(ψ

′)

⊢ φ1(ψ
′) ∧ φ2(ψ

′)
(∧)

⊢ φ1(ψ) ∧ φ2(ψ)
(s)

=⇒
⊢ φ1(ψ

′)

⊢ φ1(ψ)
(s)

⊢ φ2(ψ
′)

⊢ φ2(ψ)
(s)

⊢ φ1(ψ) ∧ φ2(ψ)
(∧)

Caserl = (∃′). The simplification (s) is not (L*) with variablex.

⊢ φ(ψ′)[xσ/⊥σx]

⊢ ∃xφ(ψ′)
(∃′)

⊢ ∃xφ(ψ)
(s)

=⇒

⊢ φ(ψ′)[xσ/⊥σx]

⊢ φ(ψ)[xσ/⊥σx]
(s)

⊢ ∃xφ(ψ)
(∃′)

Caserl = (∀). The simplification (s) is not (L*) with variablex. Let φt(ψ) (t ∈ {⊤,⊥}) denote
φ(ψ)[xσ/tσx]. We show the case whereψ occurs in both substitution instances. If it occurs only in one,
then apply (s) only in the corresponding branch.

⊢ φ⊥(ψ′) ⊢ φ⊤(ψ′)

⊢ ∀xφ(ψ′)
(∀)

⊢ ∀xφ(ψ)
(s)

=⇒
⊢ φ⊥(ψ′)

⊢ φ⊥(ψ)
(s)

⊢ φ⊤(ψ′)

⊢ φ⊤(ψ)
(s)

⊢ ∀xφ(ψ)
(∀)

For a non-permutable case, consider the following situation

R : ⊢ φ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])[xσ/⊥σx]

⊢ ∃xφ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])

(∃′)

⊢ ∃xφ(xσ ∧ ψ)
(LU1a)

=⇒
?

⊢ φ(xσ ∧ ψ)[xσ/⊥σx]

⊢ ∃xφ(xσ ∧ ψ)
(∃′)

where the ? indicates that it is impossible to apply (LU1a) insuch a way thatR is obtained. 2

Lemma 2 LetS be a proof forφ with simplifications. Then there exists a proofS′ for φ without simplifica-
tions andR(S′) ⊆ R(S).

15

Proof. Consider an arbitrary branch inS with a top-most simplification rule (s). If no such branch exists,
S does not contain any simplification andS′ = S. Otherwise, permute this (s) into all branches towards the
axioms until no permutation is possible. Then we have the following cases.

Case 1: (s) is applied to an axiom. This is the case for (S1b) withψ = ¬⊥σ andψ′ = ⊤σ. Then (s) can
simply be omitted without influencingR(·).

Case 2: (s) has been permuted below an axiom. Then the indicated inner formulaµ of (s) is the sequent
formula and the simplifications can be replaced by a proof ofµwithout simplifications. If (s) is (S2a), (S3a),
(S3b), (S4), then we replace (s) by (∧), (∨′), (∨′′), or a corresponding quantifier rule. In the first, third and
fourth case,ψ has to be instantiated either to⊤ or to ¬⊥. If we compare the reasons for corresponding
inference figures, we see that they are the same.

The inference rules (P1a) or (P1b) can also occur directly below an axiom if φ(∃xψ) = ∃xx or
φ(∃xψ) = ∃x¬x. In this case, (P1a) and (P1b) are replaced by (∃′′) and (∃′) and corresponding infer-
ence figures have the same reason. Observe that (S1a), (S2b),(P2a), (P2b) do not occur here, because they
cannot occur directly below axioms. The same is true for (L*)and (G*).

Case 3: The logical rule above (s) has a subformula occurrence of the inner formula of (s) as its principal
formula. This implies that the inner formula of (s) occurs asthe sequent formula, but, contrary to Case 2,
the upper sequent is not an axiom. Observe that the inner formula cannot be a sequent formula for all rules
(L*), because all sequent formulas are closed. Moreover, (S1a) cannot occur here, becauseS is a proof.
Additionally, (S1b) and (S3a) are not relevant for this case, because their premise would be an axiom. For
the other simplifications (S*) and (P1*), the handling is similar to Case 2. Let us have a look at (P2a), which
is replaced by(∀).

α
⊢ ψ[xσ/⊥σx]

⊢ ∀xσψ
(P2a)

=⇒ α
⊢ ψ[xσ/⊥σx]

β
⊢ ψ[xσ/⊤σx]

⊢ ∀xσψ
(∀)

Recall thatα is simplification-free, because the current (s) is the topmost in the branch. The question is
whether we can constructβ in such a way thatR(β) ⊆ R(α) holds. This is possible, becausexσ is replaced
by ⊥σx and¬x does not occur inψ by the condition in (P2a). Consequently, the introduced⊥σx cannot
occur in any axiom inα. Hence, when we takeα and change the substitution forxσ to ⊤σx, the resulting
tree is also a proof and the newly introduced⊤σx do not occur in axioms. The argumentation works dually
for (P2b). For the case of (GU1a), (GU1b), we can replace themby (∃′′), (∃′). Let us have a look at (GU2a),
which is replaced by(∀). (The case for (GU2b) is symmetric.) We assume that¬x occurs inψ, since
otherwise (GU2a) can be replaced by (P2a) and the solution for the latter can be applied.

α
⊢ (xσ ◦ ψ)[xσ

′/⊥σ
′
x]

⊢ ∀x(xσ ◦ ψ)
(GU2a)

=⇒ α
⊢ (xσ ◦ ψ)[xσ

′/⊥σ
′
x]

β
⊢ (xσ ◦ ψ)[xσ

′/⊤σ
′
x]

⊢ ∀x(xσ ◦ ψ)
(∀)

The connective◦ has to be∨, because otherwise the premise of (GU2a) is not provable. Ifx is not relevant
for the proofα, we can modifyα and getβ with R(α) = R(β). If x is relevant inα (i.e. , ¬⊥σx is an
axiom), thenR(α) contains at leastσx and the proofβ consists of (∨′) resulting in the axiom⊢ ⊤σx.

Case 4: The permutation is blocked because of one of the non-permutable cases involving (L*). Let us
consider the case (LU1a,∃′). (The case (LU1b,∃′′) is symmetric.)

16

α
⊢ φ(xσ ∧ ψ[xσ

′/⊤σσ
′
x])[xσ/⊥σx]

⊢ ∃xφ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])

(∃′)

⊢ ∃xφ(xσ ∧ ψ)
(LU1a)

=⇒
β

⊢ φ(xσ ∧ ψ)[xσ/⊥σx]

⊢ ∃xφ(xσ ∧ ψ)
(∃′′)

Observe thatα is simplification-free and that a substitution instance of⊥σx ∧ ψ[xσ′/⊤σσ′x] does not occur
as a sequent formula inα, because it is unprovable andα is a proof. Consequently, we can replace (LU1a)
and (∃′) by (∃′′) and obtainR(β) ⊆ R(α).

We continue with the case (LU2a,∃′′). (The case (LU2b,∃′) is symmetric.)

α
⊢ φ(xσ ∨ ψ[xσ

′/⊥σσ
′
x])[xσ/⊤σx]

⊢ ∃xφ(xσ ∨ ψ[xσ
′/⊥σσ

′
x])

(∃′′)

⊢ ∃xφ(xσ ∨ ψ)
(LU2a)

=⇒
β

⊢ φ(xσ ∨ ψ)[xσ/⊤σx]

⊢ ∃xφ(xσ ∨ ψ)
(∃′)

Again,α is simplification-free. If a substitution instance of⊤σx∨ψ[xσ′/⊥σσ′x] occurs as a sequent formula
in α, then we have two possibilities. If we take the axiom⊢ ⊤σx in α, then we take it also inβ. If we take
the instance ofψ in α, then⊥σσ′x can occur in an axiom or not (the index set may even be larger).If it
occurs in an axiom, we can safely take⊤σx in β because this axiom has a smaller index set. If⊥σσ′x does
not occur in any axiom, we can safely replace it by⊤σx. In all the cases,R(β) ⊆ R(α) holds.

We continue with the case (LU1a,∀). (The case (LU1b,∀) is symmetric.)

α1

⊢ φ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])[xσ/⊥σx]

α2

⊢ φ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])[xσ/⊤σx]

⊢ ∀xφ(xσ ∧ ψ[xσ
′/⊤σσ

′
x])

(∀)

⊢ ∀xφ(xσ ∧ ψ)
(LU1a)

=⇒

β1

⊢ φ(xσ ∧ ψ)[xσ/⊥σx]
β2

⊢ φ(xσ ∧ ψ)[xσ/⊤σx]

⊢ ∀xφ(xσ ∧ ψ)
(∀)

Observe thatα1 is simplification-free and that a substitution instance of⊥σx ∧ψ[xσ′/⊤σσ′x] does not occur
as a sequent formula inα1, because it is unprovable andα1 is a proof. Then we can safely modifyα1 to
getβ1. Moreover, we can safely modifyα2 to getβ2 because the index set of the indicated verum inβ2 is
included in the index sets indicated inα2. We obtainR(β1) ⊆ R(α1) andR(β2) ⊆ R(α2).

Finally, we consider the case (LU2a,∀). (The case (LU2b,∀) is symmetric.)

α1

⊢ φ(xσ ∨ ψ[xσ
′/⊥σσ

′
x])[xσ/⊥σx]

α2

⊢ φ(xσ ∨ ψ[xσ
′/⊥σσ

′
x])[xσ/⊤σx]

⊢ ∀xφ(xσ ∨ ψ[xσ
′/⊥σσ

′
x])

(∀)

⊢ ∀xφ(xσ ∨ ψ)
(LU2a)

=⇒

β1

⊢ φ(xσ ∨ ψ)[xσ/⊥σx]
β2

⊢ φ(xσ ∨ ψ)[xσ/⊤σx]

⊢ ∀xφ(xσ ∨ ψ)
(∀)

Again,α1 is simplification-free. The proofα1 can safely be transformed toβ1 because the indicated truth
constants are identical and the index set becomes smaller. For α2, the argumentation is similar to the case
(LU2a,∃′′). Therefore, we obtainR(β1) ⊆ R(α1) andR(β2) ⊆ R(α2).

17

For all the other cases involving (L*) and existential quantifier rules, the simplification can safely deleted
without increasing the reason. 2

With Lemma 2, we immediately get the following result makinguse of Theorem 5.

Theorem 6 LetS be a proof with simplifications ofφ[x/sx] with s ∈ {⊤,⊥} andx 6∈ R(S). Then there
exists a proofS′ for φ[x/sx].

Note that this result provides the theoretical basis of dependency-directed backtracking in the sense that
the search of a proof forφ[x/sx] can be faithfully omitted in case we found a proofS for φ[x/sx] with x
not being a reason forS. In particular, this effect can be exploited in searching a proof for a QBF∀xφ, as
the following example illustrates.

Example 4 Assume we want to prove the QBF

∀x∃y∃z∃p∀q
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (x ∧ ¬y))) ∨ (¬x ∧ q) ∨ (x ∧ ¬q)
)

.

The proof is shown in Fig. 6. We obtain only one single axiom, namely⊢ ⊤yp. So the reason are the
variablesy andp, but not the variablex. Therefore, it is not necessary to consider the second branch of the
low-most application of the(∀)-rule.

Furthermore observe that it is in general not unique which simplification rule should be applied. Instead
of the pure rule (P1a), we could also have applied the unit rule. Since we have already a complete calculus
without the simplification rules, it is even possible to completely omit those rules. For example, we could
have applied the(∧)-rule instead of the last (S2a)-rule. Then we would have obtained the two axioms⊢ ⊤y

and⊢ ⊤p. Nevertheless the reason remains the same.

⊢ ⊤yp

⊢ ⊤y ∧ ⊤p
(S2a)

⊢ ∃p
(

⊤y ∧ p
) (GU1a)

⊢ ∃p
(

⊤y ∧ ⊤y ∧ p
) (S2a)

⊢ ∃z∃p
(

⊤y ∧ ⊤y ∧ p
) (S4)

⊢ ∃z∃p
(

(¬p ∨ ⊤y) ∧ (⊤y ∨ ¬z) ∧ p
) 2 × (S3a)

⊢ ∃y∃z∃p
(

(¬p ∨ y) ∧ (y ∨ ¬z) ∧ p
) (P1a)

⊢ ∃y∃z∃p
(

(¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ ⊥x)
) (S3b)

⊢ ∃y∃z∃p
(

(¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (⊥x ∧ ¬y))
) (S2b)

⊢ ∃y∃z∃p
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (⊥x ∧ ¬y))) ∨ (¬⊥x ∧⊥q)
) (S2b), (S3b)

⊢ ∃y∃z∃p∀q
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (⊥x ∧ ¬y))) ∨ (¬⊥x ∧ q)
) (P2a)

⊢ ∃y∃z∃p∀q
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (⊥x ∧ ¬y))) ∨ (¬⊥x ∧ q) ∨⊥x

) (S3b)

⊢ ∃y∃z∃p∀q
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (⊥x ∧ ¬y))) ∨ (¬⊥x ∧ q) ∨ (⊥x ∧ ¬q)
) (S2b)

⊢ ∀x∃y∃z∃p∀q
(

((¬p ∨ y) ∧ (y ∨ ¬z) ∧ (p ∨ (x ∧ ¬y))) ∨ (¬x ∧ q) ∨ (x ∧ ¬q)
) (∀)

Figure 6: Proof ofφ with simplifications.

18

5 The Implementation of the Solverqpro

In the last section, we have introduced all building blocks necessary to create an efficient solver for for-
mulas in NNF in a formal manner. The basic decision procedurecan be realized by a simple search-based
backtracking algorithm which works in polynomial space with respect to the size of the input formula. In
the implementation, we simply apply the rules of the previously introduced calculus for a systematic proof
search. In the following, we use a procedural C-like language for the pseudo-code. First of all, we start
with the basic decision procedure including the optimizations achieved by the simplification rules. Then we
improve this decision procedure by including dependency-directed backtracking. In combination with the
backtracking algorithm, this technique is harder to realize than explained in the description of the sequent
calculus because we cannot keep the whole proof in the memoryand simply read off the reasons from the
axioms. Furthermore we even distinguish between two different implementation variants of DDB in the
solverqpro.

5.1 A Generalization of the DPLL Procedure

In Fig. 7, we present a simplified version of the basic algorithm used in our solverqpro. In each call of that
procedure, which we refer to assplit , we first apply a further function,simplify , in order to reduce
the formula size by simplifications along the lines of the rules in Fig. 5. Then a logical rule ofGQBF (see
Fig. 3) is applied according to the main connective of the resulting formula. This is different to the previously
introduced sequent calculus where simplifications can be performed at any stage of the proof or it can even
be completely omitted. But the main difference to the calculus is the way the formula is processed. Now the
search strategy is explicitly stated and if a branch does notresult in a proof, then a backtracking mechanism
leads to the investigation of alternative paths. Indeed, itis not the goal to construct a proof but only to obtain
the evaluation result. This is, of course, crucial when implementing a solver which works with polynomial
space requirements (with respect to the length of the input).

In contrast to the calculus where the way how a proof is found is of minor interest, we are now con-
cerned with figuring out a search strategy which yields the truth value of QBFs. The proceduresplit is
straightforward but we have to face three sources of indeterminism within theswitch statement: when
simplify returns a QBF of the formφ1 ◦ φ2, we have to select (i) which subformula to evaluate first; this
part differs from PCNF solvers where such a decision is not necessary. If a formulaQXφ (Q ∈ {∀,∃})
with a quantifier as a main connective is returned, then thereis a certain freedom of choice concerning the
variable selection. It is (ii) possible to choose any variable from the first quantifier block without changing
the evaluation result. The last indeterminism (iii) concerns the choice of the variable assignment which is
considered first during splitting. To keep the pseudo-code as simple as possible, we avoid such considera-
tions and process the formula “from left to right”. In practical implementations, selection heuristics can be
incorporated in order to improve the algorithm accordingly.

5.2 The Implementation ofsimplify

The functionsimplify , shown in Fig. 8, is applied to the QBFφ recursively, until we reach a fix point
with respect to the simplifications in order to reduce the formula size. Sincesimplify also triggers the
application of the unit and pure rules, a concrete order of the simplifications has to be chosen. The order is
as follows:

19

BOOLEAN split(φ) {
/ * In: closed QBF φ in NNF * /
/ * Out: {1, 0} * /

φ′ = simplify(φ);

switch(φ′)
case ⊤ : return 1;
case ⊥ : return 0;

case (φ1 ∨ φ2) : return (split(φ1) ‖ split(φ2));
case (φ1 ∧ φ2) : return (split(φ1) && split(φ2));

case ∃xψ : return (split(ψ[x/⊥]) ‖ split(ψ[x/⊤]));
case ∀xψ : return (split(ψ[x/⊥]) && split(ψ[x/⊤]));

}

Figure 7: The basic algorithm.

• For a formulaψ1 ◦ ψ2, it is first checked whetherψ1 or ψ2 is a literal to apply the local unit rule,
otherwise we apply simplifications to each of the two subformulas.

• Similarly, in case of a formulaQxψ, it is first checked whetherψ is either of the forml ◦ψ (the global
unit rule is then applied) orx occurs in a single polarity inψ (the pure literal rule is then applied);
otherwise the algorithm proceeds by simplifying the formulaψ.

The subprocedures ofsimplify , namelylunit , gunit , andpure are depicted in Fig. 9. In ad-
dition, these procedures make use of auxiliary functionspol(φ, x) andvar(l) as defined in Section 2. In
particular, we usepol(l, var(l)) to determine whether a literal is positive or negative.

5.3 Dependency-Directed Backtracking

Dependency-directed backtracking in the sequence calculus was straightforward. When a quantifier rule
is applied and when the first subproblem has been solved, thenthe second subproblem can be omitted, if
the corresponding variable is not included in a reason. Depending on whether the subproblem evaluates to
true or false, we mean by a reason either the set of variables occurring in the index sets of the axioms (see
Definition 4), or the set of variables occurring in the index sets ofall non-axioms.

The practical realization of DDB is not that easy because, when we use the algorithm above, we do
not get a complete proof for a subproblem due to depth first search. Such a search regime is necessary to
get a procedure which runs in polynomial space. One possibility to circumvent the problem is to collect
the variables which are responsible for the evaluation result for one concrete assignmentS in relevance
sets. Roughly speaking, this amounts to the indexing of truth constants like in the quantifier rules in Fig. 3.
Instead of the composition of indices (like in the simplification rules in Fig. 5), we evaluate the propositional
skeleton of the input QBF with respect toS. During the search we can thus assemble these relevance sets
to the reasons. If a branching variable is not included in thereason, then it is not necessary to consider the
second subproblem.

20

QBF simplify(φ) {
/ * In: closed QBF φ in NNF * /
/ * Out: simplified QBF equivalent to φ * /

φ′ = φ;

switch(φ) {

/ * local unit * /
case (l ◦ ψ) : if (var(l) ∈ ψ) then φ′ = simplify(lunit(ψ, l, ◦));

case (ψ1 ∧ ψ2) : φ′ = (simplify(ψ1) ∧ simplify(ψ2));
case (ψ1 ∨ ψ2) : φ′ = (simplify(ψ1) ∨ simplify(ψ2));

/ * global unit * /
case (Qx(l ◦ ψ)) : if (x==var(l)) then

φ′ = simplify(gunit(l ◦ ψ, l,Q));

/ * pure literal * /
case (Qxψ) : if (pol(ψ, x) != both) then

ψ = pure(ψ,Q, x);

ψ′ = simplify(ψ);
if x ∈ free(ψ′) then φ′ = Qxψ′;
else φ′ = ψ′;

}

if (φ′ != φ) then φ′ = simplify (φ′);

switch(φ’) {

case (¬⊤) : return(⊥); case (¬⊥) : return(⊤);
case (⊥∧ ψ) : return(⊥); case (⊤ ∨ ψ) : return(⊤);
case (⊤∧ ψ) : return(ψ); case (⊥ ∨ ψ) : return(ψ);
otherwise : return(φ′);

}
}

Figure 8: The functionsimplify .

21

(QBF) lunit(ψ, l, ◦) {
/ * In: QBF ψ, literal l, connective ◦ * /
/ * Out: QBF of the form l ◦ ψ′

* /

if (◦ == ∧) then {
if (pol(l, var(l)) == pos) then return (l ∧ ψ[l/⊤]);
else return (l ∧ ψ[l/⊥]);

}
if (pol(l, var(l)) == pos) then return (l ∨ ψ[l/⊥]);
else return (l ∨ ψ[l/⊤]});

}

(QBF) gunit(ψ, l,Q) {
/ * In: QBF ψ, literal l, quantifier Q * /
/ * Out: QBF ψ with var(l) substituted by a truth constant * /

if (Q == ∀) then {
if (pol(l, var(l)) == pos) then return (ψ[l/⊥]);
else return (ψ[l/⊤]);

}
if (pol(l, var(l)) == pos) then return (ψ[l/⊤]);
else return (ψ[l/⊥]);

}

(QBF) pure(ψ,Q, x) {
/ * In: QBF ψ, quantifier Q, variable x * /
/ * Out: QBF ψ with var(l) substituted by a truth constant * /

if (Q == ∀) then {
if (pol(ψ, x) == pos) then return (ψ[x/⊥]);
else return (ψ[x/⊤]);

}
if (pol(ψ, x) == pos) then return (ψ[x/⊤]);
else return (ψ[x/⊥]);

}

Figure 9: Auxiliary functionslunit , gunit , andpure .

Definition 6 (Set of Relevant Variables)Let φ be a QBF andS a set of literals. We define the set of
relevant variablesRVφ(S) of S with respect toφ asRφ

S
(psk(φ)), whereRφ

S
(ψ) is defined as follows:

22

1. If υS(psk(φ)) = 1 then

Rφ
S
(ψ) =























{var(l)} if ψ = l andvar(l) is universal inφ;

Rφ
S
(ψi) if ψ = ψ1 ∨ ψ2, υS(ψi) = 1 for somei ∈ {1, 2};

Rφ
S
(ψ1) ∪ Rφ

S
(ψ2) if ψ = ψ1 ∧ ψ2;

{} otherwise.

2. If υS(psk(φ)) = 0 then

Rφ
S
(ψ) =























{var(l)} if ψ = l andvar(l) is existential inφ;

Rφ
S
(ψi) if ψ = ψ1 ∧ ψ2, υS(ψi) = 0 for somei ∈ {1, 2};

Rφ
S
(ψ1) ∪ Rφ

S
(ψ2) if ψ = ψ1 ∨ ψ2;

{} otherwise.

In the definition above, we do not consider simplifications involving unit and pure literal elimination.
To incorporate them, it is necessary to check whether a variable x which is included in the set of relevant
variables has been assigned a truth value due to one of those rules. If this is the case, all variables which
are responsible thatx becomes unit or pure have to be included too. Note that the setof relevant variables
is not necessarily unique. In the computation ofRφ

S
(ψ) with υS(psk(φ)) = 1, the case forψ = psk(φ)

andψ = ψ1 ∨ ψ2 where bothψ1 andψ2 evaluate to true underS results in a choice that has to be made.
In fact it would not be incorrect to include the relevant variables of both formulas, but later we will need
the set of relevant variables to construct reasons to decidewhether we must consider the second subproblem
of a certain variable. The smaller the reason is, the better,because a variable missing in this set indicates
that the second problem can be omitted. Observe that we also distinguish between variables of different
quantification: if we calculate the set of relevant variables for a true subproblem, we only collect universally
quantified variables, otherwise we only collect existentially quantified variables. This is because we skip
the second branch in the semantic tree of a universally quantified variable only if the subproblem has been
evaluated to true—otherwise we would omit the second problem anyway.

In contrast to the sequent calculus where we collect the variables included in the reason during the search,
we calculate here the necessary set only if we have proven a subproblem for a certain variable assignment.
This has the advantage that we obtain only the variables which are included in the reason at the end and
that we do not collect variables which are later thrown away due to some optimizations or because they
occur in a branch which turns out to be useless for the proof. In what follows, we present two versions of
dependency-directed backtracking quite similar to the algorithms implemented in the solversemprop [29].
The first one, DDB bylabeling, is a weaker version but with less implementational overhead, whereas the
second one, DDB byrelevance sets, has higher potential in decreasing the search space. We show how to
integrate them to our core proceduresplit .

5.3.1 Dependency-Directed Backtracking by Labeling

In Fig. 10, we present our algorithm extended bydependency-directed backtracking by labeling. The proce-
dure now contains two additional parameters, a setS of literals and a QBFΦ. The former keeps track of the
current assignment and will be used to compute the set of relevant variables. The latter stands for the origi-
nal input QBF and remains unchanged, whereas the first parameter φ is local to the procedure representing

23

BOOLEAN split(φ, S, Φ) {
/ * In: closed QBF φ in NNF, set S of literals, the input QBF Φ * /
/ * Out: {1, 0} * /

φ′ = simplify (φ);

switch(φ′)
case ⊤ : for all x ∈ RVΦ(S) setRelevant(x);

return 1;
case ⊥ : for all x ∈ RVΦ(S) setRelevant(x);

return 0;

case (φ1 ∨ φ2) : return (split(φ1,S, Φ) ‖ split(φ2,S, Φ));
case (φ1 ∧ φ2) : return (split(φ1,S,Φ) && split(φ2,S,Φ));

case ∃xψ : setIrrelevant(x)
if ((split(ψ[x/⊥],S ∪ {¬x},Φ) == 0) {

if isIrrelevant(x) return 0;
else return split(ψ[x/⊤],S ∪ {x},Φ);

}
return 1;

case ∀xψ : setIrrelevant(x)
if ((split(ψ[x/⊥],S ∪ {¬x},Φ) == 1) {

if isIrrelevant(x) return 1;
else return split(ψ[x/⊤],S ∪ {x},Φ);

}
return 0;

}

Figure 10: Proceduresplit enhanced by DDB by labeling.

the currently processed formula, i.e., the result of simplifications, variable substitutions, etc. To evaluate a
QBFΦ, split is initially called viasplit (Φ, ∅,Φ). The idea is as follows.

1. When branching on a variablex, we markx as irrelevant usingsetIrrelevant(x).

2. If a leaf of the branching tree is reached, the setRVΦ(S) of relevant variables (see Definition 6) is
determined with respect to the currently used assignmentS of variables. Moreover, each variable
x ∈ RVΦ(S) is now marked as relevant bysetRelevant(x); other variables remain irrelevant.

3. If backtracking returns to a variablex, it is checked whetherx actually has been set to relevant or
not. If x is still irrelevant, the second subproblem can be omitted and one can immediately continue
to backtrack.

We illustrate the algorithm on a concrete formula.

24

Example 5 Letφ be the formula from Example 1, i.e.,

φ = ∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (x1 ∧ y1)).

The branching tree ofφ has been shown in Fig. 1. Observe that the same subtree occurson the left-hand
side and on the right-hand side belowx1. The algorithm performs as follows (to keep the example simple,
we omit unit and pure literal detection). To start we callsplit (φ, ∅, φ).

1. Since we omit the unit and pure rules, initially no simplification has to be performed. We branch on
the variablex1 and start withφ′[x1/⊥] (φ′ denotesφ without ∀x1). Sincex1 is set to⊥, we put
¬x1 into S. We callsplit (φ′[x1/⊥], {¬x1}, φ). By replacingx1 by ⊥ in φ′, we get the formula
∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2))) after simplification.

2. The quantification∃y1 can be removed becausey1 does not occur in the scope of∃y1 in φ′ anymore.
This removal is performed by the functionsimplify . We thus do not includey1 in the setS of
literals.

3. Next we branch on the variablex2, set it to⊥, and include¬x2 in the setS. The simplification
function after callingsplit with the according arguments returns∃y2(¬y2).

4. If we replacey2 by⊥, a final call ofsplit simplifies the formula to⊤ and thus we compute the set
of relevant variables,RVφ(S) with S = {¬x1,¬x2,¬y2}. Sincepsk(φ) = ((x2 ∨ ¬y2) ∧ (¬x2 ∨
y2)) ∨ (x1 ∧ y1), it can be checked that the only universal variable relevantfor makingpsk(φ) true
underS is x2.

5. Sincex2 is universally quantified and labeled relevant, we also haveto consider the subproblem
where the variablex2 is replaced by⊤. We thus have to call nowsplit (∃y2((⊤ ∨ ¬y2) ∧ (¬⊤ ∨
y2)), {¬x1, x2}, φ) and after simplifications and the final replacement ofy2 by⊥, the formula evalu-
ates to0.

6. But settingy2 to⊤ yields1. Again, the set of relevant variables with respect to the current assignment
{¬x1, x2, y2} in this branch consists only ofx2.

7. Asx1 is universal and the solution of the first subproblem is true,we usually should also consider
the second subproblem when we backtrack. But now DDB comes into play and sincex1 was never
included in the reasons forφ′[x1/⊥], it is not necessary to consider the subproblem, wherex1 is set
to ⊤.

5.3.2 Dependency-Directed Backtracking by Relevance Sets

As already pointed out, the smaller the set of variables labeled as relevant the better it is for the solving
process. If a variable is irrelevant then the second subproblem can be skipped under any circumstances. But
consider the following case: we branch on an existentially quantified variablex and the first subproblem
evaluates to false. Asx is labeled as relevant, we have to consider the second subproblem too. Assume that
also the second subproblem evaluates to false butx is not relevant for the solution of the second subproblem.
However,x remains labeled and thereforex remains relevant for the problem whereQx is handled. If we
had considered the second subproblem first, the situation would have been different: (1) the other problem
could have been omitted, (2) the set of the variables labeledas relevant would have been smaller.

25

z

x1

⊥

y1

⊥

1
⊤

y1

⊤

x2

⊥

y2

⊥

1
⊥

y2

⊤

0
⊥

1
⊤

...
⊤

Figure 11: The branching tree of∀z∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (¬x1 ∧ ¬y1 ∧ ¬z)).

To obtain (1), it is too late, we made the “wrong” choice when deciding which subproblem to consider
first. But we can get at least the smaller variable set like in (2). We collect the relevant variables of the
subproblems in different sets, make some case distinctionsaccording to the branching variable, and construct
the current reason accordingly. In the sequent calculus, weare not faced with this problem because this
optimization involves only the processing order of the branches. Since we have the whole proof in the
sequent calculus, we can also distinguish between the two different sets because of the different available
branches.

The following examples illustrates the algorithm.

Example 6 Letφ be the formula

∀z∀x1∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ (¬x1 ∧ ¬y1 ∧ ¬z)).

The branching tree ofφ is shown in Fig. 11. Again we omit unit and pure literal elimination to keep the
example simple.

1. We start withsplit (φ, ∅, φ). Applying simplifications has no effect.

2. We branch on the variablez and start withsplit (φ′[z/⊥], {¬z}, φ), whereφ′ denotesφ without∀z.
We get∀x1∃y1(∀x2∃y2((x2∨¬y2)∧ (¬x2∨y2))∨ (¬x1∧¬y1)) after the application ofsimplify .

3. We continue by branching on the variablex1 and set x1 to ⊥. We obtain the formula
∃y1(∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ ¬y1) after the according call ofsplit and the simpli-
fications.

4. Then we branch on the variabley1 and set y1 to ⊥. As usual, we call the function
split (∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) ∨ ¬⊥, {¬z,¬x1,¬y1}, φ). After the simplifications, the
formula evaluates to1. The set of relevant variables includes only the universal ones,z andx1, be-
cause they occur in the subformula of the uppermost disjunction which makespsk(φ) true under the
current assignment{¬z,¬x1,¬y1} .

5. Asx1 is universal inφ and marked relevant, we have also to consider the subproblemwherex1 is set to
⊤. The variabley1 is handled as in step (2) of Example 1. So, we get∀x2∃y2((x2∨¬y2)∧(¬x2∨y2))
after some simplifications.

6. We continue with branching onx2 and set it to⊥ which results in∃y2¬y2 after the call
split (∃y2((⊥ ∨ ¬y2) ∧ (¬⊥ ∨ y2)), {¬z, x1,¬x2}, φ) andsimplify .

26

7. If we replacey2 by⊥, the formula evaluates to1 in the next step. The only variable included in the
set of relevant variables isx2 because together with the existential variabley2, it is responsible that
φ evaluates to1 under this specific variable assignment.

8. Sincex2 is universally quantified and included in the current reason, we have also to consider the
second subproblem of∀x2∃y2((x2 ∨ ¬y2) ∧ (¬x2 ∨ y2)) where the variablex2 is replaced by⊤.
Simplification yields∃y2y2.

9. Settingy2 to ⊥ results in0, but settingy2 to ⊤ yields1 after callingsplit andsimplify . Again,
the only variable included in the set of relevant variables isx2.

10. When we return tox1 during backtracking, we notice thatx1 is not relevant in the second subprob-
lem where the variable has been replaced by⊤. That was bad luck—if we had chosen the second
subproblem as the first one to consider instead, we could haveomitted settingx1 to ⊥ when using
DDB by labeling. In DDB by relevance sets, such cases are recognized. Here the current reason
is only the reason of the subproblem wherex1 is set to⊤. DDB by labeling could not have made
this distinction and the current reason would be the union ofthe reason of the first subproblem and
the reason of the second subproblem. For DDB by relevance sets, the reason is now a smaller one:
for example, the variablez is now not included in the current reason and it is not necessary to call
split (φ′[z/⊤], {z}, φ).

The pseudo-code of the implementation ofsplit incorporating DDB by relevance sets is shown in
Fig. 12. Again we collect the current assignment to calculate the relevance set from the original input QBF.
The main difference to DDB by labeling is that we now directlycalculate the current reason and return it in
order to be able to minimize its size.

5.3.3 Pure and Unit Literal Elimination in Dependency-Directed Backtracking

To illustrate some of the difficulties when combining different pruning techniques, let us consider the fol-
lowing example.

Example 7 Given the QBF

φ = ∃x∃z∃y((x ∨ y) ∧ ((¬y ∧ z) ∨ (¬y ∧ ¬z))),

φ should be evaluated by a variant ofsplit which implements the removal of truth constants and unit
literals, as well as DDB by labeling. We do not include all pruning techniques in order to keep this example
simple. The algorithm performs as follows.

1. The variablex is replaced by⊥. We obtain∃z∃y(y ∧ ((¬y ∧ z) ∨ (¬y ∧ ¬z))).

2. Now the unit rule can be applied ony andy is replaced by⊤. The formula evaluates to false.

3. In the next step, the relevant variables have to be detected and marked. The right subformula of the
outermost conjunction evaluates to false, soy andz are labeled relevant.

4. Asx is still irrelevant, it is not necessary to consider the second subproblem wherex is set to⊤—the
formula evaluates to false.

27

(BOOLEAN, relset) split(φ, S, Φ) {
/ * In: closed QBF φ in NNF, set S of literals, the input QBF Φ * /
/ * Out: ({1, 0}, reason) * /

φ′ = simplify(φ);

switch(φ′)
case ⊤ : return (1,RVΦ(S));
case ⊥ : return (0,RVΦ(S));

case (φ1 ∨ φ2) : (r1,R1) = split(φ1,S,Φ);
if (r1 == 1) then return (1, R1);
(r2,R2) = split(φ2,S,Φ);
if (r2 == 1) then return (1, R2);
return (0, R1 ∪R2);

case (φ1 ∧ φ2) : (r1,R1) = split(φ1,S,Φ);
if (r1 == 0) then return (0, R1);
(r2,R2) = split(φ2,S,Φ);
if (r2 == 0) then return (0, R2);
return (1, R1 ∪R2);

case ∃xψ : (r1,R1) = (split(ψ[x/⊥],S ∪ {¬x},Φ);
if (r1 == 1) then return (1, R1);
if (x 6∈ R1) then return (0, R1);

(r2,R2) = (split(ψ[x/⊤],S ∪ {x},Φ);
if (r2 == 1) then return (1, R2);
if (x 6∈ R2) then return (0, R2);
return (0, R1 ∪R2);

case ∀xψ : (r1,R1) = (split(ψ[x/⊥],S ∪ {¬x},Φ);
if (r1 == 0) then return (0, R1);
if (x 6∈ R1) then return (1, R1);

(r2,R2) = (split(ψ[x/⊤],S ∪ {x},Φ);
if (r2 == 0) then return (0, R2);
if (x 6∈ R2) then return (1, R2);
return (1, R1 ∪R2);

}

Figure 12: Proceduresplit enhanced by DDB by relevance sets.

Obviously, this result is wrong—if we had setx to ⊤ and y to ⊥ first, the result would have been
different. This is because the variabley has been assigned a truth value by the application of a special rule,

28

namely unit in this case. This rule isnotapplicable at any time, but only if certain preliminaries are satisfied.
To understand why a formula has taken a certain value, i.e., to calculate the set of relevant variables, it is
necessary to include the reasons which allowed the application of such special rules like unit or pure. In the
example above, the variablex is responsible thaty becomes unit, and sox has to be labeled relevant too.
Then we also obtain the correct result.

The solverqpro implements a more involved variant ofsimplify than the one shown in Fig. 8. In
particular, to makesimplify work for DDB in combination with pure and unit literal elimination, the
final version ofsimplify has as result not only the simplified QBFφ′ but also an accordingly changed set
S ′ of literals because pure and unit elimination contribute tothe set of variable assignments.

6 Experimental Evaluation

In the following, we present the experimental evaluation ofour solver. First, we investigate the impact of
enabling/disabling different options ofqpro; afterwards, we compareqpro to four state-of-the-art systems.

All tests were performed on an Intel Xeon 3 GHz with 4 GB of RAM with a timeout set to 100 seconds.
Figures 14–19 depict the outcome of the test runs: they show the percentage of solved formulas on the
ordinate related to the solving time on the abscissa. Observe that the scale of the x-coordinate is logarithmic
whereas the scale of the other axis is linear. Before presenting details, we shortly describe the benchmark
formulas we used.

6.1 Description of the Benchmarks

To test our implementation we have chosen four sets of benchmarks: (i) encodings of the modal logic K;
(ii) encodings of nested counterfactuals; (iii) encodingsof answer-set correspondence tests which are on the
fourth level of the polynomial hierarchy (ASC-4); and (iv) encodings of easier answer-set correspondence
tests which are on the second level of the polynomial hierarchy (ASC-2).5 We use here the non-PCNF
versions of these benchmarks, which are the direct outcome of the encodings. The four types of benchmarks
differ in the complexity of the formula structure as well as in the quantifier depth. The structural differences
of those sets are best illustrated by the quantifier dependencies of the formulas (see Fig. 13).

Modal Logic K Nested Counterfactuals ASC-4 ASC-2

∀

∃

∀

∃

∀

∀ ∃

∃ ∀

∀ ∃ ∃

∀

∃

∀

∃

∀

∃

∃

∀

∃

Figure 13: Quantifier dependencies of the different benchmarks.

6.1.1 Modal Logic K

This set of benchmarks contains instances which were also used in the TANCS’98 comparison of provers for
modal logics. Applying the encoding from [35] yields QBFs with a linear dependency among the quantifiers.

5Prenexed forms of such benchmarks except the last one, i.e.,ASC-2, are frequently used benchmarks and have been included
in QBF solver competitions, see e.g., [31].

29

Hence, the translation to prenex normal form is fully determined (there is just one way to shift the quantifiers
in front of the formula).

This set contains 378 formulas arranged in 18 subsets, with 21 formulas each. Half of the formulas
evaluates to true. Depending on the modal depth of the original formula, the depth of the encodings ranges
from 5 to 133; the number of variables ranges from less than 40to more than 4300. Due to the transformation
into PCNF, the number of variables increases up to more than 12800 in the worst case.

6.1.2 Nested Counterfactuals

The formulas of this benchmark set encode the problem of reasoning over nested counterfactuals. The depth
of the resulting QBFs ranges from four to eight. The quantifier dependency tree for depth four is shown in
Fig. 13. obviously there are different ways to linearize such a QBF (see [15] for the details). For each depth,
we created 50 instances, where the QBFs contain 183, 245, 309, 375, and 443 variables. The transformation
to PCNF increases the number of variables to 464, 600, 786, 934, and have about 60% true and 40% false
instances.

6.1.3 Answer-Set Correspondence

The formulas in this set encode correspondence tests between propositional logic programs under the
answer-set semantics. It is checked whether two programs provide equally projected answer-sets under
any program extension over a specified alphabet, cf. [40].

The first subset comprises 1000 instances (465 are true and 535 are false). Furthermore, for each prob-
lem, we have two different encodings:S andT. The problem of answer-set correspondence isΠP

4
-complete,

and thus all QBFs in this set have depth four. As Fig. 13 indicates there are two different possibilities to
obtain a linear quantifier prefix. The QBFs possess, in case ofS, 200 variables and, in case ofT, 152 vari-
ables. The additional translation into PCNF yields, in caseof S, QBFs over 2851 variables and, in case of
T, QBFs over 2555 variables.

The benchmarks in the second subset rely on an easier subclass of program comparisons [34] which are
complete forΠP

2
. Thus the resulting QBF encodings are here of depth two. The idea of the benchmarks is

to compare a program with itself but having a randomly selected rule dropped. The interesting feature of
this set is that the encoded problem contains a lot of structural information, having duplicated program rules
at several occasions within the encoding. It is thus interesting to see, whether this structural information is
easier exploited byqpro compared to PCNF-solvers, for which this information is notdirectly accessible due
to the preceeding transformation to normal form. We have eight different sets of such program comparisons,
each containing 100 elements. The QBFs possess 127, 151, 175, 199, 223, 247, 271, and 295 variables, the
translation into PCNF yields between 1000 and 1800 variables. In total, one half of the instances evaluates
to true.

6.2 Internal Comparisons

First, we investigate how the enabling/disabling of different simplification rules influences the runtime be-
havior ofqpro. We consider only the encodings of modal logic K and the encodings of the nested counter-
factuals because they reflect the typical behavior of the different variants ofqpro. Recall that the first test set
contains only formulas with a linear quantifier tree, whereas the formulas of the other set have a complicated
structure of quantifier dependencies (and thus are very “different” from being in PCNF).

We ran six different versions ofqpro, namely

30

• qproNone: all possible simplification options disabled;

• qproUP: unit and pure literal detection enabled;

• qproL: DDB by labeling enabled;

• qproS: DDB by relevant sets enabled;

• qproUPL: unit and pure literal detection as well as DDB by labeling enabled; and

• qproUPS: unit and pure literal detection as well as DDB by relevant sets enabled.

In what follows, we briefly summarize our observations.

6.2.1 Modal Logic K

Fig. 14 shows that the more options are enabled, the betterqpro performs:qproUPL andqproUPS show
definitely the best runtime behavior whereasqproUPS is slightly better in average. When disabling unit and
pure, the difference between DDB by labeling and DDB by relevance sets is more obvious. Furthermore,
DDB turns out to be less important here than unit and pure literal detection.

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qproUPS qproUPL

qproUP qproS

qproL qproNone

qproUPS
qproUPL

qproUP
qproS
qproL

qproNone

Figure 14: Different version ofqpro applied to encodings of modal logic K.

6.2.2 Nested Counterfactuals

In Fig. 15, there are two outliers:qproNone andqproS. Without any options enabled,qpro is able to solve
just a few formulas. Much more surprisingly,qproS clearly outperforms all other variants. This phenomenon

31

may have two different origins: On the one hand, the application of the simplifications involves additional
search. For this set, these simplifications seem to result inan overhead rather than in an optimization. On the
other hand, the elimination of unit and pure literals also influences the actual relevant sets in the computation.
Consider the following example: a variabley has become unit because—let us say the existential—variable
x was assigned a truth value during the splitting process. So when the unit rule is applied andy is included
in a reason, thenx must be included too. Therefore, the second subproblem may not be omitted if the first
one resulted in false when returning tox during the backtracking. Otherwise, if the unit rule had notbeen
applied ony and it is assigned a truth value by the ordinary splitting process, then it is possible thatx is not
included in the reason. In this case, the subproblem wherex is set to the dual value can be omitted.

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qproUPS

qproUPL

qproUP

qproS

qproL

qproNone

qproUPS
qproUPL

qproUP
qproS
qproL

qproNone

Figure 15: Different version ofqpro applied to encodings of nested counterfactuals.

6.3 Comparison with State-of-the-Art Systems

Next, we compare the performance of our solverqpro against the established systemsQuBE−BJ (version
v1.2) [23], sKizzo (version v0.8.2) [6],semprop (release 24/02/02) [29], andquantor (version v3.0) [8].
These solvers have been selected because they have shown to be competitive in previous QBF evaluations
and moreover, they have been the most robust ones in previoustest runs, i.e., they did not deliver wrong
results on our benchmarks. Moreover,QuBE−BJ andsemprop implement backtracking techniques, similar
to the ones used inqpro. Finally, sKizzo andquantor try to extract original quantifier dependencies from a
PCNF. Hence the latter solvers may detect similar structural information on the input formula asqpro has
got a priori from the input of the corresponding non-prenex formula.

All solvers exceptqpro require the input to be in PCNF. We thus apply the following test strategy:
Given a benchmark QBFφ, (i) translateφ into NNF and use that formula as input toqpro; (ii) translateφ
into PCNF and provide the outcome as input to the other solvers. The latter translation is performed in two

32

steps, namely the prenexing and the conversion of the resulting purely propositional matrix into CNF by the
application of the structure-preserving transformation to normal form as described in [44].

All solvers are used with their predefined standard options,for qpro we use the variantqproUPS.

6.3.1 Modal Logic K

Many of the formulas of this benchmark set are solved immediately by all solvers. However, for some of
the formulas, none of the solvers delivered a result within the timeout of 100 seconds. For this test set, the
results ofqpro are located in the middle of the field. As the quantifier dependency tree is linear,qpro cannot
gain advantage of the quantifier dependency structure and soit has to deal with formulas almost in prenexed
form. Still, the results show that the more complex data structures (compared to the PCNF solvers) which
qpro has to handle, do not lead to a significant overhead.

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qpro

Semprop

sKizzo

Quantor

QuBE-BJ

qpro
QuBe-BJ

sKizzo
Quantor

Semprop

Figure 16: Encodings of modal logic K.

6.3.2 Nested Counterfactuals

As indicated by Fig. 13, the quantifier dependencies allow for several different translations into PCNF. We
have applied each strategy presented in [15] to the PCNF solvers in previous test runs. To be fair, we show
only the results for the best strategy of each solver.

Our solver clearly outperforms the other solvers, actuallyit is the only solver able to solve all formulas
of the set. This indicates that the more information on quantifier dependencies is lost due to the prenexing
(even if the “right” prenexing strategy is used), the more competitiveqpro turns out to be. With increasing
quantifier depth, the formulas get harder to solve. Onlyqpro can handle the augmenting hardness, whereas

33

the other solvers fail. Consequently, their curves remain quite flat, except forsemprop for which the curve
ascends starting from the 5th second quite steeply.

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qpro

Semprop

sKizzo

Quantor

QuBE-BJ

qpro
QuBe-BJ

sKizzo
Quantor

Semprop

Figure 17: Encodings of nested counterfactuals.

6.3.3 Answer-Set Correspondence

For each formula of the first answer-set correspondence benchmark set (ASC-4), we obtain four different
runtimes when using PCNF solvers. We distinguish between the different encodingsS andT and the two
possible shifting strategies when building a linear quantifier prefix, namely “↑” and “↓” (see Section 2). As
the transformation step to prenex normal form is not necessary for qpro, we have only two different runtimes
here.

The results of all possible combinations are presented in [16]; here, we show only the worst (upper
picture in Fig. 18) and the best case (lower picture in Fig. 18) for all solvers. In fact, encodingT is always
better thanS and it is preferable to use “↓”. In fact, the upper diagram illustrates the runtimes for encoding
S together with strategy “↑” (for the PCNF solvers), whereas the lower diagram depictsT together with “↓”.
The curves ofqpro differ only slightly, which is an indicator thatqpro is less dependent on the particular
encodings in contrast to the PCNF solvers. Fig. 18 also demonstrates clearly the importance of choosing
a suitable prenexing strategy; indeed, all the PCNF solversshow problematic performance with the “↑”
strategy but are much faster with the “↓” strategy.

In the second subset (ASC-2), we have QBFs of depth 2, thus there is only one prenex form. The
results for different solvers are summarized in Fig. 19. Among all solvers,qpro performs most competitive
although, in this case, it cannot gain advantage of the quantifier dependencies. Nevertheless the non-CNF
structure seemingly supportsqpro’s solving method and explains the good results. The form ofqpro’s curve
illustrates very clearly the structured nature of this problems and increasing difficulty of the benchmarks

34

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qpro
QuBe-BJ

sKizzo
Semprop

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qpro
QuBe-BJ

sKizzo
Semprop

Figure 18: Encodings of answer-set correspondence checking (ASC-4).

with the increasing number of variables. Most formulas of one variable number are almost equally hard to
solve, so we can observe the steep ascent inqpro’s curve in Fig. 19.

0

20

40

60

80

100

 1 10 100

pe
rc

en
ta

ge
 o

f s
ol

ve
d

fo
rm

ul
as

seconds

qpro

Semprop sKizzo

Quantor

QuBE-BJ

qpro
QuBe-BJ

sKizzo
Quantor

Semprop

Figure 19: Encodings of answer-set correspondence checking (ASC-2).

6.4 Discussion

The chosen benchmarks provide an increasing complexity in their structure, and therefore, an increasing
disruption of the structure during the normal form transformation can be expected. In particular, for the

35

encodings of modal logic K and ASC-2, we just can investigatethe effect of applying the transformation of
one shifting strategy, since the prefix is already determined by the encoding. The ASC-4 problems allow
to analyze the effect of prenexing if there is only a small deviation from a linear quantifier dependency. In
what follows, we briefly discuss three main observations from our experiments.

• The more information of the formula structure is lost due to the transformation to normal form, the more
competitiveqpro turns out to be. Fig. 17 illustrates this effect for benchmark formulas with complex quanti-
fier dependencies. Although we compareqpro here against the PCNF solvers together with theirbestsuited
strategy,qpro significantly outperforms all other solvers.

• Fig. 19 indicates that not only the prenexing causes a loss ofstructural information which improves the
solving process but also the transformation to CNF has a great impact on the runtime. Soqpro can also
outperform the other solvers if structural information is not only obtained from quantifier dependencies but
symmetries in the general structure of the formula are present (which gets blurred in the transformation of
the propositional matrix to CNF).

• Fig. 18 presents results for two different encodings (namely S andT) of the same problem where one is
an explicit but rather simple optimization of the other. These results indicate thatqpro is less depending on
the chosen encoding, whereas the performance of PCNF solvers differs much more. A similar observation
in a different context is observed in [39]. In fact,qpro performs better on the unoptimized encoding, in the
case the “wrong” prenexing strategy “↑” is used for the PCNF solvers.

Overall, these results are a further justification that a transformation to normal form may have crucial
impacts on the performance.

7 Conclusion

We presented a new QBF solver,qpro, which significantly differs from previous approaches by its ability
to process QBFs in negation normal form (NNF) instead of QBFsin prenex conjunctive prenex normal
(PCNF). We generalized the DPLL procedure to handle such QBFs in NNF and we discussed implemented
performance-improving techniques like different forms ofdependency-directed backtracking. The system
together with the benchmarks used in this paper can be found at

http://www.big.tuwien.ac.at/staff/seidl/qpro .

The motivation for the development ofqpro was as follows: In practical applications, QBF solvers can be
used as a black box in reasoning systems to solve problems stemming from a diversity of formalisms. Such
problems are encoded as QBFs but natural encodings do not directly result in any normal form. However,
since most solvers only accept the input to be in such a restricted format like PCNF, an additional translation
to normal form is often required. As we have shown in our experiments, using the solverqpro, and thus
avoiding the additional translation into PCNF, often results in much better performance.

Other standard optimization techniques found in PCNF solvers like learning (see, e.g., [22, 43, 42])
have not been included yet inqpro but this extension of the solver is subject of ongoing work. Further-
more, the currently implemented selection heuristics for variables and subformulas, are very basic and more
sophisticated approaches have to be considered in future work.

36

There are a few further solvers, namelyQuBoS [3], boole6, and zqsat [20] in the literature, which
also allow arbitrary QBFs as input, but rely on different techniques.QuBoS simplifies the QBF and then
constructs an equivalent propositional formula which is evaluated by SAT solvers, whereasboole is based
on binary decision diagrams (BDDs). Thus both need exponential space in the worst case. We have included
boole in our pre-tests, but it was not competitive at the benchmarks. We also neglectedQuBoS, because we
encountered some problems on certain formulas. Finally,zqsat implements DPLL using zero-compressed
BDDs. The comparison tozqsat is subject to future work; as well, a detailed comparison of our approach
with the one suggested in [24] to extendQuBE is on our agenda.

References

[1] C. Ansótegui, C. Gomes, and B. Selman. The Achilles’ Heel of QBF. In Proceedings of the 20th
National Conference on Artificial Intelligence and the 17thInnovative Applications of Artificial Intel-
ligence Conference (AAAI/IAAI 2005), pages 275–281. AAAI Press / MIT Press, 2005.

[2] O. Arieli and M. Denecker. Reducing Preferential Paraconsistent Reasoning to Classical Entailment.
Journal of Logic and Computation, 13(4):557–580, 2003.

[3] A. Ayari and D. Basin. QUBOS: Deciding Quantified BooleanLogic Using Propositional Satisfiability
Solvers. InProceedings of the 4th International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2002), volume 2517 ofLNCS, pages 187–201. Springer, 2002.

[4] M. Baaz, C. Fermüller, and A. Leitsch. A Non-ElementarySpeed Up in Proof Length by Structural
Clause Form Transformation. InProceedings of the 9th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1994), pages 213–219. IEEE Computer Society Press, 1994.

[5] M. Baaz and A. Leitsch. On Skolemization and Proof Complexity. Fundamenta Informaticae, 20:353–
379, 1994.

[6] M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. InProceedings of the 21th International
Conference on Automated Deduction (CADE 2005), volume 3632 ofLNCS, pages 369–376. Springer,
2005.

[7] P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Representing Paraconsistent Reasoning via Quan-
tified Propositional Logic. InInconsistency Tolerance, volume 3300 ofLNCS, pages 84–118. Springer,
2005.

[8] A. Biere. Resolve and Expand. InProceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), volume 3542 ofLNCS. Springer, 2005.

[9] T. Boy de la Tour. An Optimality Result for Clause Form Translation.Journal of Symbolic Computa-
tion, 14(4):283–302, 1992.

[10] E. Eder.Relative Complexities of First-Order Calculi. Artificial Intelligence. Vieweg Verlag, 1992.

[11] U. Egly. On Different Structure-preserving Translations to Normal Form.Journal of Symbolic Com-
putation, 22:121–142, 1996.

6http://www.cs.cmu.edu/ ˜ modelcheck/bdd.html .

37

[12] U. Egly. Quantifiers and the System KE: Some Surprising Results. InProceedings of the 12th In-
ternational Workshop on Computer Science Logic (CSL 1998), volume 1584 ofLNCS, pages 90–104.
Springer, 1999.

[13] U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks Using Quantified
Boolean Formulas. InProceedings of the 17th National Conference on Artificial Intelligence and the
12th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI 2000), pages 417–422.
AAAI Press / MIT Press, 2000.

[14] U. Egly and T. Rath. On the Practical Value of Different Definitional Translations to Normal Form.
In Proceedings of the 13th International Conference on Automated Deduction (CADE 1996), volume
1104 ofLNCS, pages 403–417. Springer, 1996.

[15] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenexing Strategies
for Quantified Boolean Formulas. InProceedings of the 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2003), volume 2919 ofLNCS, pages 214–228. Springer,
2004.

[16] U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. InProceedings of the 17th
European Conference on Artificial Intelligence (ECAI 2006), pages 477–481. IOS Press, 2006.

[17] T. Eiter and G. Gottlob. The Complexity of Nested Counterfactuals and Iterated Knowledge Base
Revisions.Journal of Computer and System Sciences, 53(3):497–512, 1996.

[18] T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer Set Programming. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages
97–102. Professional Book Center, 2005.

[19] M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - The A-Prolog Per-
spective.Artificial Intelligence, 138(1-2):3–38, 2002.

[20] M. GhasemZadeh, V. Klotz, and C. Meinel. Embedding Memoization to the Semantic Tree Search for
Deciding QBFs. InProceedings of the 17th Australian Joint Conference on Artificial Intelligence (AI
2004), volume 3339 ofLNCS, pages 681–693. Springer, 2004.

[21] M. Ginsberg. Counterfactuals.Artificial Intelligence, 30:35–79, 1986.

[22] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean Logic Satisfiability.
In Proceedings of the 17th National Conference on Artificial Intelligence and the 14th Innovative
Applications of Artificial Intelligence Conference (AAAI/IAAI 2002), pages 649–654. AAAI Press,
2002.

[23] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified Boolean Logic satisfia-
bility. Artificial Intelligence, 145:99–120, 2003.

[24] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure in Search Based Procedures for
QBFs. InProceedings of the Conference on Design, Automation and Test in Europe (DATE 2006),
pages 812–817. European Design and Automation Association, 2006.

38

[25] T. Jussila and A. Biere. Compressing BMC Encodings withQBF. Electronic Notes in Theoretical
Computer Science, 174(3):45–56, 2007.

[26] J. Katz, Z. Hanna, and N. Dershowitz. Space-Efficient Bounded Model Checking. InProceedings
of the Conference on Design, Automation and Test in Europe (DATE 2005), pages 686–687. IEEE
Computer Society, 2005.

[27] S. C. Kleene. Permutability of Inferences in Gentzen’sCalculi LK and LJ. Memoirs of the AMS,
10:1–26, 1952.

[28] D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Comparative Eval-
uation. InProceedings of the 7th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2004), Revised Selected Papers, volume 3542 ofLNCS, pages 376–392. Springer, 2005.

[29] R. Letz. Lemma and Model Caching in Decision Proceduresfor Quantified Boolean Formulas. In
Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 2002), volume 2381 ofLNCS, pages 160–175. Springer, 2002.

[30] A. Ling, D. Singh, and S. D. Brown. FPGA Logic Synthesis Using Quantified Boolean Satisfiability.
In Proceedings of the 8th International Conference on Theory and Applications of Satisfiability Testing
(SAT 2005), volume 3569 ofLNCS, pages 444–450. Springer, 2005.

[31] M. Narizzano, L. Pulina, and A. Tacchella. Report of theThird QBF Solvers Evaluation.Journal of
Satisfiability, Boolean Modeling and Computation, 2:145–164, 2006.

[32] A. Nonnengart, G. Rock, and C. Weidenbach. On Generating Small Clause Normal Forms. InPro-
ceedings of the 15th International Conference on AutomatedDeduction (CADE 1998), volume 1421
of LNCS, pages 397–411. Springer, 1998.

[33] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. ccT: A Tool for Checking Advanced Correspon-
dence Problems in Answer-Set Programming. InProceedings of the 15th International Conference on
Computing (CIC 2006), pages 3–10. IEEE Computer Society Press, 2006.

[34] E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunctive Case. In
Proceedings of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2004), volume 2923 ofLNCS, pages 180–193. Springer, 2004.

[35] G. Pan and M. Vardi. Optimizing a BDD-Based Modal Solver. In Proceedings of the 20th International
Conference on Automated Deduction (CADE 2003), volume 2741 ofLNCS, pages 75–89. Springer,
2003.

[36] D. Plaisted and S. Greenbaum. A Structure Preserving Clause Form Translation.Journal of Symbolic
Computation, 2(3):293–304, 1986.

[37] J. Rintanen. Constructing Conditional Plans by a Theorem Prover.Journal of Artificial Intelligence
Research, 10:323–352, 1999.

[38] A. Sabharwal, C. Anstegui, C. P. Gomes, J. W. Hart, and B.Selman. QBF Modeling: Exploiting
Player Symmetry for Simplicity and Efficiency. InProceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2006), volume 4121 ofLNCS, pages 382–395.
Springer, 2006.

39

[39] H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. InProceedings of the 12th Interna-
tional Conference on Principles and Practice of ConstraintProgramming (CP 2006), volume 4204 of
LNCS, pages 514–529. Springer, 2006.

[40] H. Tompits and S. Woltran. Towards Implementations forAdvanced Equivalence Checking in Answer-
Set Programming. InProceedings of the 21st International Conference on Logic Programming (ICLP
2005), volume 3668 ofLNCS, pages 189–203. Springer, 2005.

[41] A. S. Troelstra and H. Schwichtenberg.Basic Proof Theory, volume 43 ofCambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1996.

[42] L. Zhang. Solving QBF by Combining Conjunctive and Disjunctive Normal Forms. InProceedings
of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of
Artificial Intelligence Conference (AAAI/IAAI 2006). AAAI Press, 2006.

[43] L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified
Boolean Formula Evaluation. InProceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), volume 2470 ofLNCS, pages 200–215. Springer,
2002.

[44] M. Zolda. Comparing Different Prenexing Strategies for Quantified Boolean Formulas. Master’s
thesis, Technische Universität Wien, Institut für Informationssysteme, 2004.

40

