| NF S Y S
RESEARCH

R EPORT

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

A SOLVER FORQBFs IN
NEGATION NORMAL FORM

Uwe Egly Martina Seidl Stefan Woltran

INFSYS RESEARCHREPORT1843-08-03
MARCH 2008

Institut fur Informationssysteme
AB Wissensbasierte Systeme

Technische Universitat Wien

FavoritenstrassfRe 9-11

A-1040 Wien, Austria I
Tel: +43-1-58801-18405 I

Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at W | E N

www.kr.tuwien.ac.at

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-08-03, M\RCH 2008

A SOLVER FORQBFS IN NEGATION NORMAL FORM

Uwe Egly* and Martina Seidland Stefan Woltrah

Abstract. Various problems in artificial intelligence can be solvedfanslating them into a quan-
tified boolean formula (QBF) and evaluating the resultingagting. In this approach, a QBF solver
is used as a black box in a rapid implementation of a more génesisoning system. Most of the
current solvers for QBFs require formulas in prenex conjracmormal form as input, which makes
a further translation necessary, since the encodings aalysot in a specific normal form. This
additional step increases the number of variables in thadta or disrupts the formula’s structure.
Moreover, the most important part of this transformatiorengxing, is not deterministic. In this
paper, we focus on an alternative way to process QBFs wittimste drawbacks and describe a
solver,qpro, which is able to handle arbitrary formulas. To this end, wtered algorithms for QBFs
to the non-normal form case and compapeo with the leading normal form provers on several
problems from the area of artificial intelligence. We proveperties of the algorithms generalized
to non-clausal form by using a novel approach based on a segtyde formulation of the calculus.

Linstitute of Information Systems, Knowledge-Based Syst&roup, TU Vienna, Favoritenstrale 9-11, A-1040
Vienna, Austria. Email: uwe@kr.tuwien.ac.at

?Institute of Software Technology and Interactive SysteBissiness Informatics Group, TU Vienna, Favoriten-
stralle 9-11, A-1040 Vienna, Austria. Email: seidl@bigiamac.at

SInstitute of Information Systems, Database and Al Group,Viehna, FavoritenstraRe 9-11, A-1040 Vienna,
Austria. Email: woltran@dbai.tuwien.ac.at

Acknowledgements This work was supported by the Austrian Science Fund (FWigleu grant P18019,
the Austrian Academic Exchange Servi€AD) under grant Amadée 2/2006, and by the Austrian Federal
Ministry of Transport, Innovation and Technology BMVIT atlte Austrian Research Promotion Agency
FFG under grant FIT-IT-810806.

Copyright(© 2008 by the authors

Contents

1 Introduction

1.1 Translations to Normal Form—Advantages and Pitfalls.....
1.2 Towards a Practical Efficient Non-Normal FormQBF Solver
1.3 RelatedWork e e
1.4 Organization e e e

2 Background

3 Generalizing Unit and Pure Literal Detection

4 A Sequent Calculus for QBFs
4.1 The Basic Decision Procedure e
4.2 Dependency-Directed Backtrackingo oo
4.3 Simplifications e e e e

5 The Implementation of the Solvergpro
5.1 A Generalization of the DPLL Procedure 0. ...
5.2 The Implementation cfimplify
5.3 Dependency-Directed Backtracking
5.3.1 Dependency-Directed Backtracking by Labeling e
5.3.2 Dependency-Directed Backtracking by Relevance Sets
5.3.3 Pure and Unit Literal Elimination in Dependency-Btel Backtracking

6 Experimental Evaluation
6.1 Description ofthe Benchmarks e
6.1.1 ModalLogicK e e
6.1.2 Nested Counterfactuals
6.1.3 Answer-Set Correspondence e
6.2 Internal ComparisSons e e e e e e
6.2.1 ModalLogicK e e
6.2.2 Nested Counterfactuals
6.3 Comparison with State-of-the-Art Systems
6.3.1 ModalLogicK e e
6.3.2 Nested Counterfactuals
6.3.3 Answer-Set Correspondence e

6.4 Discussion

7 Conclusion

10
10
12
13

19
19
19
20
23
25
27

29
29
29
30
30
30
31
31
32
33
33
34
35

36

1 Introduction

Formal frameworks are often suitable for the representaif@pplication problems (like planning, schedul-
ing, formal verification, etc.) which can then be solved btomated reasoning tools. Many such problems
can be encoded efficiently using quantified boolean form{(fldFs), which are an extension of classical
propositional formulas, permitting existential and umga quantifications over propositional atoms. In
practice, QBFs have been proven to be a useful frameworké&orapid implementation of reasoning tasks
from these areas (see, e.g., [2, 7, 13, 25, 26, 30, 33, 37ipyizecause there has been made a significant
progress in the development of QBF solvers within the lasryéct., e.g., [28, 31] for an overview and
evaluation of state-of-the-art systems).

Almost all of these solvers, however, expect the input fdenta be inprenex conjunctive normal form
(PCNF), requiring all quantifiers to be in front of a purelppositional formula, which has to be in conjunc-
tive normal form (CNF). Of course, this restriction faailiés the handling of the formula because certain
assumptions about the structure can be made. But the egsoafineal world problems barely result in for-
mulas obeying such a normal form, hence an extra transf@mis required. This transformation usually
is performed in two steps, namgbyenexingand afterwards transforming the resulting purely propmsa
matrix into CNF. The main drawbacks of this transformationcedure are:

e The prenexing operation it deterministic.

e The translation into CNF results in an increase of the foasite as well as in an increase of the
number of variables in the formula.

e The structure of the formula may be disrupted and scopesanftifiers are artificially extended.

To avoid this preliminary transformation step (togethethiitis occurring problems) in reasoning systems
of the aforementioned kind, a QBF solver which allows for pinecessing of arbitrary QBFs (or with only
weak restrictions on the syntax) is needed. In this paperpmgsent such a provegpro, which works
on formulas imegation normal fornrfNNF). Such formulas are characterized by the propertyrtegation
occurs in front of atoms only, but the usage of quantifierajuaction, and respectively, disjunction remains
unrestricted. The basic procedureqpfo is a generalizedvariant of the DPLL algorithm with enhanced
dependency-directed backtracking (DDB) techniques. 8\hié extension of the basic DPLL procedure to
QBFs in NNF is rather straightforward, the interplay of slifigation, and respectively, DDB techniques
turns out to be technically involving. We thus investigdiede aspects also in an abstract, proof-theoretic
manner. Compared to other QBF systems for arbitrary foren{ita instance, those based on binary decision
diagrams) the space requirementsdpro are modest, sincgpro runs in polynomial space (wrt the length
of the input formula).

1.1 Translations to Normal Form—Advantages and Pitfalls

As pointed out, the motivation to circumvent the restrigtio formulas in PCNF and to work with QBFs
in NNF instead, is the problem to generate “good” normal farrim contrast to, for instance, first-order
logic, the main problem here is the handling of quantifierhatplaces where they occur. In the following
we explain some aspects of normalization for differentdegind discuss why QBFs are problematic in this
aspect.

It is well known how a propositional (or first-order formuledn be translated into a (un)satisfiability-
equivalent CNF, such that the structural information iairetd by new atoms [36, 10, 9]. Together with their

1

definition, such new atoms can mimic the effect of the analstit rule in full calculi like Gentzen systems

resulting in drastically shorter proofs [4, 11]. Moreovas, experiments showed [14, 32], such structure-
preserving translations are not only beneficial from a thgcal point of view, but can also speed-up auto-
mated theorem provers for practical problems. In the lagtyfears, similar results have been obtained for
the case of prenex QBFs and an optimized handling of the nietvtyduced atoms has been proposed in [1].

But the problem to construct a prenex form of a QBF is stillsprd. In particular, the prenexing trans-
formation cannot be carried out deterministically and thesen normalization strategy crucially influences
the runtimes (also depending on the concrete solver useglkg.g., [15, 44]. In fact, this phenomenon mir-
rors a similar observation from classical theorem provinfiyst-order logic where classes of formulas exist
for which different quantifier shifting strategies (regudf in different prenex forms) yield a non-elementary
difference of proof size (and search space size) [5, 12JaGlethe impact of the prenex forms is less dras-
tic for QBFs because of the simpler underlying logic, butré¢hare indications that prenexing impacts the
runtime of highly optimized state-of-the-art solvers [24]

However, there is a certain difference between first-ordgicland the language of QBFs in the treat-
ment of quantifiers while prenexing a formula. In first-ordlagic, skolemizationcan be used to encode
the properties of (usually) existential quantifiers by ®kolfunctions. In a nutshell, skolemization gets rid
of existential quantifiers “in place”. The introduced Skoléunctions encode two properties of quantifier
rules in full first-order calculi: (i) the eigenvariable atition and (ii) non-permutabilities between quantifier
rules. Condition (i) is satisfied by the requirement to idtroe a globally new function symbol, and Condi-
tion (ii) is handled by the occur check in the unification aition. Due to the weaker syntax of QBFs, the
introduction of Skolem functions is not possible and therethis conceptually simple tool is not (directly)
applicable in the context of QBPs.

1.2 Towards a Practical Efficient Non-Normal Form QBF Solver

As already pointed out, in order to provide a solver for QBscl saves us from the step of prenexing we
propose as input formattegation normal formIn fact, negation normal form is a good candidate because
of several reasons.

e The negation normal form of an arbitrary QBF is unique.

The translation of a QBF into its negation normal form is easg runs in linear time.

The structure of the formula is essentially retained.

The quantifiers stay “in place”.

Contrary to the use of arbitrary QBFs, polarity considerai are restricted to atoms, which avoids
numerous technical difficulties. This holds for formal dstabut even more for implementation
issues.

However, the price that we have to pay for a decision proeedat based on PCNFs is the necessity to
generalize its optimization mechanisms to the broades d&a®QBFs in NNF in order to obtain an efficient
implementation of the DPLL algorithm. Indeed, our goal iptovide a solver which is comparably efficient
on PCNFs but, in general, better on non-prenex formulas eosgpto the combination of a transformation
to normal form and the application of a PCNF solver.

There is one solvesKizzo [6], which introduces Skolem functions in an intermedid&ps

2

The basic techniques we shall consider in a generalized endanour solver are the following. First,
we need a mechanism to recognize special kinds of literadsdar to significantly simplify the currently
processed formulas. Two such methods are well known. Theepbrof aunit literal amounts to identify
clauses with a single literal. Similarly, it is desirabldital an atom that occurs only positively or only nega-
tively in the formula (goure literal). In both cases, we can immediately force the “correct’gassient to the
corresponding atom. Both detections are very easy for Caltésmoreover, the respective manipulation of
the formula can be handled efficiently using suitable datacgsires. For QBFs in NNF, a general detection
of unit-like literals is more involved. In fact, we shall digyuish two forms of unit literals, calleglobal
andlocal. The detection of pure literals remains rather simple byfaélcethat we deal with QBFs in NNF.
However, the simplification of formulas is a bit more comatad than for QBFs in PCNF. As a benefit, one
can make use of further techniques which are not possibleBiR §plvers which require the input formula
to be in PCNF. We mention here the conceptmhiscopingwhich tries to reduce the scope of quantifiers
(i.e., by shifting quantifiers further into the formula) whiin turn may allow further simplifications.

Another technique we want to exploit is the realization affédent forms of) dependency-directed
backtracking (DDB). The basic idea is to avoid unnecessaajuations by identifying whether an atom
contributes to a current evaluation of the formula. Agaie generalization from PCNF to NNF provides
some technical difficulties (especially in connection wilie simplification techniques mentioned before),
but there are also advantages compared to PCNF solverstticutsr, we are able to apply DDB techniques
to falseandtrue subproblems.

1.3 Related Work

Most state-of-the-art QBF solvers process only formulaB@NF, thus they require an additional transfor-
mation step when the formula is not available in the requioeahat. As discussed above, the transformation
to the PCNF version of a formula comes usually with certaidasirable side effects like the increasing of
the number of variables.

An analysis of the prenexing operation and its disadvastégs been performed in [15, 44]. In order
to avoid the discovered disadvantages, certain restngtod the PCNF have be leveraged to find a trade-
off to reuse the knowledge and experience gained in PCNRngpand to overcome the restrictions of the
normal form transformation. [24], for instance, abandom $kparation between quantifier prefix and and
propositional matrix to minimize the scope of the quantifiand report that this technique allows for more
efficient solving of certain QBFs. In other words, the inpasically remains in PCNF but now it comes
together with information on quantifier dependencies. Afs[], a speed-up gained by the reconstruction
of the quantifier tree is reported. The concept of miniscgpmimplicitly also performed in expansion-
based systems likguantor [8] to avoid unnecessary duplications of certain formulaggpaHowever, all
these techniques still have the disadvantage that anasbitiput has to be transformed into PCNF or a
PCNF-like format (see [24]) first.

To abstain from the CNF structure has also been proposed +Béed approaches (see, e.g., [20]), and
for the solver QuBos [3] which eliminates one type of varabby expansion and numerous optimizations
(including miniscoping), and then passes the resultinmida to a SAT solver. However, both approaches
require exponential space in the worst case.

The impact of allowing a CNF structure combined with a DNFsjictive normal form structure) is
explored in [42, 38] where the formulas consist of a CNF pad @ DNF part. This is a very natural way to
include learned clauses and their dual part but neverthéhesformula structure is very restricted and the
problematic normal form transformations cannot be circemted.

1.4 Organization

The outline of the paper is as follows: Section 2 introducesessary definitions and notations. In Sec-
tion 3, we present generalizations of elimination rulesunoit and pure literals. We consider the formal
underpinnings of our solver in Section 4, where we follow agbitheoretical approach by using the means
of a sequent calculus. Afterwards, we present our sysii@im which implements the decision procedure.
In Section 6, we first discuss the impact of enabling/disapthe previously discussed optimization tech-
niques. Then we compare our solver with state-of-the-ar¢gns on benchmarks including problems from
the area of Al, viz. counterfactual reasoning [21, 17] andaespondence checking [18, 34] in answer-set
programming [19], as well as known benchmarks from the af@aodlal logic [35]. Finally, we discuss the
obtained results and give further pointers to related ahdduvork in Section 7.

2 Background

We introduce the languag&p of QBFs as an extension of the language of propositionatlofhe alphabet
of Lp consists of parentheses, the truth constantnd L, a countable set of variablé®, the unary con-
nective— (negation), the binary connectivegdisjunction) and\ (conjunction), and the quantifier symbols
v (universal) andi (existential). A literal is a variable or a negated variable

We define the language gluantified propositional logiover a setP of variables as the smallest set,
Lp, satisfying the conditions:

1. Ifz e PU{T, L}, thenx € Lp and—x € Lp;
2. if ¢, € Lp,then(¢ o)) € Lp, whereo € {V,A};
3. if ¢ € Lp andz € P, then(Qz ¢) € Lp, whereQ € {V,3}.

Any element ofLp is called aguantified boolean formuléQBF). If no ambiguities arise, we omit parenthe-
ses when convenient. Note that we allow negation only intfofma variable or a truth constant. Formulas
which obey this restriction are usually referred to benagation normal fornr{iNNF). However, the NNF
of any arbitrary QBF, i.e., formulas where negations mayoetywhere in the formula, can be obtained
by iteratively applying DeMorgan’s laws and the removal olidle negation. Since this transformation
can be done deterministically and since the increase ofofmeuia size is negligible, we only consider the
restricted languag€p. Unless stated otherwise, we assume that the occurrenaguaingifier is unique for
any QBF. Hence, for each e P, there is at most one occurrence(@f allowed in a QBF. Again, this is not
a serious restriction, since any QBF can be brought intoftinie by a suitable variable renaming.
Thescopeof a quantifierQxz in a QBF¢ is defined to be), whereQx v is the subformula corresponding
to the occurrence dx in ¢. An occurrence of a variable is calledfreein a QBF ¢ if it is not located
within the scope of the quantifi&@zx in ¢. By free(¢) we denote the set of variables occurring fregimA
QBF ¢ is closedif there are no free variables in A variablez is called existential (resp. universal) dn
if it is located in¢ within the scope of a quantifietz (resp.Vx). Variables which are either existential or
universal ing are also said to bboundin ¢. We use, for a variable, T = -« and=z = x. For a literall
of the formz or —z, the functionvar(l) returns the variable. Furthermore, the functiopol(¢, z) returns
the polarity of a propositional variablein a QBF ¢. Possible values gfol(¢,) arepos, neg, bothand
none Finally, given a QBRp, a variabler € P, andy € P U {T, L}, we denote bys[z/y| the result of
substituting each occurrence ot by y.

The propositional skeletompsk(¢) of a QBF ¢ provides a corresponding quantifier-free formulagof
and is recursively defined as follows:

o ¢pe{r,~x|zePU{T, L}
psk(¢) = § psk(t1) o psk(ve) if ¢ =11 01hy, 0 € {V,A}
psk(1)) if ¢ =Qz 1, Qe {3,V}

To define the semantics of QBFs, we introduce an evaluatioatiin vs with respect to a sef of
literals assigning the truth value for free variables. Wastimes omit the subscrigh, if it is clear from the
context. In particular, this can be done for any closed QBFRyhich we shall focus later. However, since
we also deal with open (mostly quantifier-free, i.e., prafomsal) formulas, we define the semantics in such
a general way. In what follows we usew {1} as a shorthand faiS \ {I}) U {I}, wherel is a literal.

Definition 1 (Evaluation Function) Let ¢ be a QBF and letS be a set of literals such that for eaehe
free(¢), eitherz € S or ~z € S. Theevaluation functiorvs : £Lp — {1,0} is given as follows:

1. US(T) = US(—|_L) =1 andvg(L) = US(—\T) =0

1 ifles
2 US(Z):{O ifles

1 ifvs(d1) =1orvs(pz) =1
0 otherwise

3. U5(¢1 V (232) = {

1 ifvs(¢1) = 1andvs(¢2) =1
0 otherwise

4. U5(¢1 A (232) = {

—_

5. vg(Vze') = if vg/(¢') = 1, forall S' € {Sw {z}, Sw {~z}}
e 0 otherwise

otherwise
Basically, this definition amounts to both closed QBFs and-Qith free variables. For closed QBFs,

we can give an alternative syntactic-driven top-down attar&zation, which uses (1), (3), and (4) from
above (recall that for closed QBFs, there is no need to refantassignmenrf), together with

. oz g) = {1 f 0(6a/T)) = 1 ando(ofo/L]) = 1
0 otherwise

. o3 6) = {1 f o(6fz/T]) = Lor o(ofe/L]) = 1
0 otherwise

This characterization calls for more direct handles tottiresth constants. To this end, one can consider
some basic simplifications obtained from the following eglénce-preserving transformations:

S -T=1;, -L=T,;

L~
Y1 Y1

L L
€2 x2
L/ \T L/ \T
Y2 Y2 Y2 Y2
1 1/ \NT 1 4 N T
1 0 1 1 0 1

Figure 1: The branching tree of the example QRF

(S2) TAd=¢; LAop=1;, oANT=¢;, OoNL=>1;
S3) Tve=T; 1LVo=¢;, oVT=T; oV.L=0¢;
(S4) (Qz¢) = ¢ whereQ € {V, 3}, = does not occur ir;

Definition 2 A formula is calledcleansedf none of the simplifications (S1) — (S4) is applicable.

The sequence of the variable assignments when evaluatihgsadcQBF¢ can be illustrated by a
branching tree The nodes contain thieranching variablesand the two subtrees of a nodecorrespond
to the subproblems, whereis replaced byl or T, as indicated by the labels of the arcs. Moreover, we
usually assume that after each such step the resulting faimadditionally brought into its cleansed form.
The leaves contain the resulting truth values. Hence, eeatich amounts to a truth assignment for the
(quantified) variables and the leaf indicates the truthevalipsk(¢) under this assignment.

We sometimes omit branches:dis existentially (resp., universally) quantified and thetfaubproblem
evaluates to true (resp., false), then the second subpnatde faithfully be omitted.

Example 1 The branching tree of the true formula

¢ = Y13y (VeaTya((z2 V —y2) A (m2 V y2)) V (@1 Ayr))
is shown in Fig. 1, and is read as follows:

1. First, the variabler is replaced byl and cleansed via the simplifications (S2) and (S3). Thislyiel
the formula

¢ = Ty (YeoTya((22 V —y2) A (ma2 V 112))).

2. The variabley; is set to an arbitrary truth value; the value has been chosen in Fig. 1. Alternatively,
the quantificatiordy; can be removed due to (S4) because all occurrencgs ltdve been eliminated
in Step (1).

3. Then we set the variable, to | and we obtain as a cleansed formdlge (—ys).

4. If we replacey; by L, the formula evaluates tb. Asy- is an existential variable, it is not necessary
to consider the dual assignment fgy.

5. Sincezr, is universally quantified, we also have to consider the sgcoproblem where, is set to
T. Now, dysy- is obtained after cleansing.

6. Whenys is set toL, the formula evaluates @, otherwise the formula evaluates to

6

dx
/ | \

Vi Vo Jys

| | |
321 322 VZg

|
Vul

|
E|U1

Figure 2: A quantifier dependency tree.

7. Sowhen; is replaced byl , the resulting subproblem evaluates to true. Therefors#wend branch,
wherex; is set toT, has to be considered as well, sincgis universally quantified. This part of the
evaluation works accordingly.

The reader may already have observed that at some point éversal of the right-hand side branch is
performed exactly in the same manner as for the left-hanel 8k shall make use of such situations later
for advanced backtracking techniques.

Finally, we introduce prenex normal forms for QBFs. To thiglewe define the following concept:
Consider a QBR of the form3z; ... 3x,2) where itself is not of the form3y+’. Then, we writep also
as3Xy, whereX = {z1,...,2,}. ForX = (), 3X¢ amounts ta). Accordingly, this concept is defined
for V. In other words, we will abbreviate maximal sequences ohtjfiars Qx; . . . Qz,, of the same type in
a QBF byQX. For matters of presentation, we occasionally w@te . .. Qz,, also aXQz; ... z,.

Definition 3 A QBF ¢ is given inprenex normal form (PNFj ¢ is of the form

Qle o Qme 7/),

whereQ; € {V,3} and is purely propositional. Moreover, if is given in conjunctive normal forng is
said to be inprenex conjunctive normal form (PCNF)

QBFs in PNF are prototypical problems for complexity classethepolynomial hierarchy In fact,
the evaluation problem of QBFESX VX, ... Q; X;¢ is Zf’—complete, and the evaluation problem of QBFs
VX13X, ... Qi X;¢ is TP -complete.

Any QBF can be translated into an equivalent QBF in PNF, betetfare several ways to do this. The
concept of differenprenexing strategies discussed in [15, 44]. We give here only some intuition.

First, thedependenciebetween the quantifiers in a QBF are given by common occugeeoo paths in
the formula tree. We say that a QBF rdepthm, if the sequences of depending quantifiers provide at most
m—1 alternations. The quantifier dependencies are illustriatélae quantifier dependency tre@o avoid a
formal definition, we illustrate the basic ideas by an exanpl

Example 2 Consider the QBF

¥ = 3a((Yyr 21 Vur Fur) A (Yya Fza9h2) A (JysVz3ehs)),

where they;’s are propositional formulas. Thely; depends oAlx, 3z; depends oivy; as well as ordz,
Yo depends oAlx, etc.; but, e.g.7z> does not depend ory;. Observe that) has depth 5 as witnessed by
the sequencexzVy,dz1Vu,Jvy. The quantifier dependency tree of the formula is shown inZid he aim

7

of prenexing is tdlinearize” quantifier dependencies (which in fact form a partial ordeithout increasing
the depth of the QBF, i.e., without increasing the numbewaintjfier alternations.

We consider here four differeprenexing strategiemamely “”, “ |7, * 3|V1”, and “ 31V]". Hereby,
“1” (resp., “|”) denotes that any quantifier is placed as outermost (resmermost) as possible in the
prefix. “3|V7" and “ 31V|” follow the same concept but now the handling is dependinghenparticular
quantifier, i.e., whether it concerns an existential or avensal one. Thus, for our example formutawe
derive different PNFs af having the same depth:

I

T ¢ Jzys Vyiyezs 2120 Yuy Jug (Y1 A Y2 A U3)
Y1 A by A P3);

)

)

(

(

(Y1 A b2 A 3
Lo 3z Yy 3z1ys Yuryezs Jvize (Y1 A ha A 43).

ElT\V/l . nyg Vylyg E|Z122 Vulzg E|’U1

ELL\V/T ;o dx Vylyg Elz1y3 Vulzg E|’U122 N

I

Most of the currently available systems require their intpute in prenex conjunctive normal form, i.e.,
the input formulas are prenex forms and the quantifier madrix conjunction of disjunctions of literals.
These disjunction of literals are often callelduses If the input format is such a PCNF, then two steps are
necessary to evaluate a formula: (i) the transformatioh@ambrmal form and (ii) the actual solving. Hence,
if an arbitrary QBF has to be solved, one particular tramsédion into PCNF has to be chosen by the user.
This choice may crucially influence the running time. Fora@rttugh analysis of this problem and further
prenexing strategies, see [44]. Note that if we only reqaitransformation into QBFs in NNF, this problem
does not arise.

Remark.In the following, we consider closed QBFs only (unless statiferwise).

3 Generalizing Unit and Pure Literal Detection

We already have introduced some very basic equivalencepiiag transformations (S1)—(S4) for QBFs
which can be used to simplify the processed QBF and thus teadse the search space. We recall that such
transformations can indeed be applied also within a QBFt,Ne& introduce three further simplifications
which, in combination with (S1)—(S4), are even more crutbahcrease the efficiency of solvers.

In fact, most PCNF DPLL-based QBF solvers implement two ispeguivalence-preserving optimiza-
tion techniques: the elimination glure andunit literals. If one of those rules is applicable on a variable,
the variable can immediately be assigned, even if this bkridoes not appear in the outermost quantifier
block.

The concept of a pure literal naturally generalizes to QBHSNF: A literal [is calledpurein a QBF¢
if its complement does not occur irp.

Theorem 1 (Pure Literal Elimination) Let the literall = x (resp.l = —z) be pure in a closed QBBE.
Then
olz/T] (resp.g[z/L]) if xis existential;

¢ is equivalent to{ . :
¢lz/L] (resp.¢lx/T]) if xis universal.

2However, this is not always possible. In fact, if we have alBap combination of QBFs, one additional alternation has to
be taken into account. As the simplest example considap A IV'¢" with ¢ and ¢’ purely propositional. Then “minimal”
linearizations are of the fordVV3V' (¢ A ¢') or IV'VV (¢ A ¢'). Both options, however, possess an alternation of quanstifie
whereas the original QBF does not.

Proof. We show that is equivalent tap[x/T] under the assumption that all occurrences afe positive

in ¢ and thatx is an existential variable. The other cases are similar. tDuke Equivalence Replacement
Theorem of classical logic, it suffices to prove that the subfila3x ¢’ of ¢ is equivalent tog/[z/T].
(Recall that all occurrences af in ¢ are located in the subformuld). We show that, under the given
restrictions3x ¢ — ¢'[x/T] and¢’[x/T] — Jx ¢ hold.

(1) 3z ¢'[x/x] — Fx ¢'[x/T] is valid due to the Monotonic Replacement Theorem (ife..~ T is a
tautology for ally). The quantifier on the right-hand side of the implication ba omitted by (S4) because
all occurrences af are removed.

(2) By semantics(¢’[x/T] — Jz ¢') is equivalent td¢'[z/T] — (¢'[z/T] V ¢'[z/L])) which is clearly
valid. O

A clause of a QBF in PCNF is calladhit if it contains exactly one existential literal An existential
literal is called unit if it occurs in a unit clause. Then sughiteral can be immediately set {6, and
consequently, the then satisfied clause is removed.

For QBFs in NNF, we consider two cases: (i) a unit literal as@omewhere inside the formula or (ii)
a unit literal occurs in the subformula directly after theaqtifier block which binds the literal’s variable.
Furthermore we apply the rule for disjunction and conjwrtin a dual manner and we obtain the following
theorems:

Theorem 2 (Local Unit Literal Elimination) Let (I o ¢’), witho € {V, A} be a subformula of a closed
QBF ¢ and letl = x (resp.l = —x). Then we can faithfully replacg in ¢ by

¢'[x/T] (resp. by¢'[z/L1]) foro = A;
¢'lx/ L] (resp. byg'[z/T]) foro=v.

Proof. We show the case for a conjunctive subformulag’. The other cases are similar. It is sufficient to
establish that A ¢’ is equivalent ta:A¢'[x/ T]. First, in case: is set to true, we clearly have ¢’)[x/T] =
(x A @'[x/T))[z/T]. In case is set to false(x A ¢')[z/L] is equivalent ta(z A ¢'[z/T])[z/L], since
(x AN¢')[xz/L] = L A¢'[x/L] reduces tal and so doesx A ¢'[x/T])[z/L] = LA (¢/[x/T])[z/L]. O

The combination of the pure and local literal eliminatiom ¢® summarized as a so-called global unit
literal elimination rule, which is defined as follows:

Theorem 3 (Global Unit Literal Elimination) LetQxz(l o ¢') be a subformula of a closed QBfwhere
I = x (resp.l = —x). Then

olx/T) (resp.glz/L]) if 2 is existential ing;

¢ is equivalent to{ L _ .
¢lz/ L] (resp.¢[xz/T]) if xis universal ing.

Proof. Suppose the case of a subformdla(x o ¢') in ¢. The other cases proceed accordingly. Recall
that all occurrences af in ¢ have to be located in the subformda(z o ¢').

If o = Vv, we obtain, by applying local unit literal eliminatiofyx(z Vv ¢'[z/L]) which turnsz to be
pure in¢. By Theorem 1, we can turn the subformula iate(T \ ¢/[z/L]) which is however equivalent to
Jz(T Vv ¢'[z/T]), see (S2).

If o = A, local unit literal elimination yieldslz(z A ¢'[x/T]). Again this turnsz to a pure literal
in ¢. Now, Theorem 1 immediately yields that the desired subfardz(T A ¢'[z/T]) is equivalent to
dz(x A @). O

Example 3 Consider the QBF

Vwﬁmlﬂyl(((mg V —\yl) VAN (—\xg V yl)) V (1‘1 VAN —|y1)).

This QBF can be evaluated as follows:

e The pure variablex; can be replaced byT. After simplifications, we obtain the formula
Vaody1 (((z2 V —y1) A (mz2 Vy1)) V —y1).

e Now,—y is global unit and all occurrences @f can therefore be replaced hy.

e We can delete the quantifi@y; and obtainvas(((ze VL) A (—zoV L))V —L). Afew further basic
simplifications show that the QBF evaluatesito

4 A Sequent Calculus for QBFs

One of the most prominent and successful decision procedaresSAT is the method developed by Davis,
Putnam, Logemann, and Loveland (DPLL for short). The DPLhcpdure has been adapted for QBFs (in
PCNF) and is implemented in most state-of-the art solvers.géheralize DPLL in such a manner that it
can be used for formulas in NNF and allows to omit the tramsédion to prenex conjunctive normal form.

In the literature, DPLL is usually presented in a procedarahner. Because of its close relation to the
semantics of QBFs, elaborations on formal properties ag&eoted. In this work, we present a declarative
validity characterization for QBFs by the means of a sequoaltulus. We call this calculusQBF. The
implementation of this calculus however results in a gdizerd variant of DPLL, which is presented in the
following section. We consider this approach because dtalus to abstract from many control aspects
of the concrete algorithm and to focus on the actual deciprocedure. In particular, this will allow us
to show the correctness of properties, which are centrakefeidency-directed backtracking, in a very
straightforward way.

4.1 The Basic Decision Procedure

We characterize the calcul@QBF for closed QBFs in NNF in terms of the logical rules shown ig.H.
Subsequently, we usadexed QBFsi.e., T, L, and each variable € P carry indices which are (possibly
empty) setgr C P of variables. For the matter of presentation, we shall tiefand manipulate such indices
in a string-like fashion. For an indexed elemep}s, is as expected, i.€,, = Ly, Lo = T4, To = 20,
—T, = Z,. AlsO note that variable symbols in quantifiers will remaiithout an index, and that the same
variable may contain different indices for different oaeunrces.

Our basic calculus uses such indices only to mark truth eotstwith the variable which it has been
replaced, but later when simplifications are added to theutisd, we will make use of indices in a more
involved manner to recognize which of the variables arevegiefor the current proof.

Sequents of the forir ¢ (where¢ is an indexed QBF) are manipulated until no rule applicatin
possible anymore. In inference rules, the sequents abowve ale called theoremisesand the sequent
below is called theonclusion The single formula in the conclusion is called fmncipal formulaof the
inference.

A sequent ¢ is calledvalid if ¢ is valid. Our sequents consist of exactly one formula in NN#ere-
fore, we cannot prove formulas likeVv —z directly in this calculus but onlyx (z vV —x). This restriction
is possible since we deal with closed formulas only.

10

Fo FY Fo F9Y
—ove) Favg) onn
Folre/Low] - - olze/ Toal (—u Folre/Low] lro/Todl
mE P ~See) = Vg "

Figure 3: The logical rules of the calcul&QBF.

A derivationin this calculus is a tree generated by the bottom-up agmitaf the rules. The root
of this tree is called thend-sequent The leaves are sequents which contain only a (possiblytedga
truth constant. Aproofis a derivation whose leaves are labeled with axiodsiomsare sequents of the
formtE T, or —1,. If a formula or a formula part is unsatisfiable, the corresjiog branches result in
non-axiomsi.e. , ink 1L, ork =T,.

An example of a proof in th&QBF calculus is given in Fig. 4; note that this proof is not the kesa
possible. All rules operate on the main connective of theggpal formula but nevertheless the evaluation of
a formula is not completely done deterministically. Whenhage a disjunction or an existential quantifier
as main connective and the first branch does not result inaf,pwe have to try the second branth.

Fol, FT. Fol, FT.
oL, AT, M AT, M
N L ()
+ (—\J_y/\TZ)\/J_x o + (—\J_y/\TZ)\/Tx
F3z((-LyAz)V Ly) (/) F3z((—Ly Az)V Ty) (Ell
F3y3z((—yAz) VL) F3ydz((my Az)V Ty) Ev))
FVaxIy3z((-y A z) V)

Figure 4: A proof for the formul&z3y3z((—y A z) V z).

The soundness dBQBF can be easily proven by showing that the application of a twlgs valid
premise(s) leads to a valid conclusion. Completeness ablestied accordingly the other way round (i.e.
bottom-up) by structural induction showing that a prooftef €nd-sequetit ¢ can be constructed, whenever
the QBF¢ is valid. Proving the termination is established by arguimat the formula in the conclusion of
each rule is more complex then the formula(s) in the premjsdfloreover, in each rule, we have at most
two possible choices for the premise. We do not give the grémfcorrectness and completeness here as
they are standard for sequent calculi.

Theorem 4 The calculusGQBF is sound, complete, and terminating.

3When disproving a formula, it would be necessary to congigersecond branch for the according rules for conjunctiah an
universal quantifier if the first branch is a proof. Howeverwhat follows we omit a discussion on disproving, which can b
considered in a fully dual manner.

11

This simple calculus shall provide the basis for a powerédision procedure. In the rest of the section,
we discuss necessary techniques to prune the search spaéeading proofs) and to make the proofs as
small as possible which is crucial for the practical appiaain a solver.

4.2 Dependency-Directed Backtracking

Consider again the proof in Fig. 4 for the formWa¢ = Vz3y3z((—y A z) V). The rule which is applied
backwards to the end-sequent ¥§ @nd results in two branches. The left branch contains thefgdor
¢[z/L,], whereas the proof af[x/T] is shown on the right side. The two proofs are of the same form
except for the replacement of Furthermore, the variable does not play a role for the completion of the
proof because none of the truth constants in the axioms heee introduced due to the replacement:of
Sox turns out to bdrrelevant for the proof of¢[z/L,]. As a consequence, the replacement dfy T,
would result in a proof anyway, becausg does not appear in any axiom. Consequently, the secondrbranc
of the application of theX)-rule can be faithfully omitted. This technique of the id&oation of irrelevant
variables is known adependency-directed backtracki(igDB).

Dependency-directed backtracking (or synonymously ariping) is an important pruning technigue
for DPLL and known to be crucial for the efficient practicapéipation of DPLL in the PCNF case (see for
example [29, 23]). DDB can also be generalized for non-PGiNfilas. Here it becomes even more pow-
erful because it works for true and false problems duallycdntrast, when dealing with PCNF-formulas, a
distinction has to be made. This is due to the fact that a P@Xfula evaluates to false wheme clause
is unsatisfiable whereas it evaluates to true wirea literalin each clausenakes the whole formula true.

We now introduce the concept of relevant variables for afp&avhich we also call @eason forsS.

Definition 4 Let S be a proof andx(.S) the set of all axioms of. Then thereasonR(.S) of a proof S is
defined as

R(S)={z|xz€ocand F T, € ax(S)or -1, € ax(S)}.

The central observation is now as follows.

Theorem 5 Let S be a proof ofp[z/s,] withs € {T, L}, andz ¢ R(S). Then there exists a prodf for

Proof. Assume there exists a proof fofz/s,], « ¢ R(S), but there exists no proof faf[x/5;]. Since
¢lz/s.] and [z /s,] are exactly of the same structure besides the replacemetite occurrences of the
variablez, we can obtain a derivation with[z/5,| as end-sequent where exactly the same rules as in the
proof of ¢[z/s,] are used. This derivation must contain some non-axiomsedbitmi- L, or- =T, since

we assume that there is no proof firz /5,]. However, since the only change we perform compared to the
proof of ¢[x/s,] is the exchange of , and_L,, the only candidate fog is in factz. But thenz ¢ R(S)
cannot be the case and a contradiction occurs. Theréfers,] also has a proof. O

This observation allows in particular to “duplicate” thepf of ¢[x/s.]. In other words, in constructing
the proof for a formuld’z¢, it is possible to “omit” the other branch in case we found@opiS for the first
branch withz ¢ R(S).

In the case that the formula is unsatisfiable, this methodksvdually. Then the pruning is done on
existential variables, i.e., if the first problem does nateéha proof and the corresponding variable does not

12

occur in any of the non-axioms (which must be explicitly eathhow), then the examination of the second
problem can be omitted.

4.3 Simplifications

We now show that our main result on dependency-directedtizadling also holds if numerous simplifica-
tions are considered in this calculus. These simplificatiare crucial to prune the search space in order to
speed-up our proposed procedure.

Our strategy here is as follows. We add to the logical rulethefcalculus (which operate on the main
connective of the principal formula) simplification ruleshich operate inside such a formula). We then
show certain permutation properties between logical rabessimplification rules. Under a permutation we
understand that “shifting up” simplification rules does seterely modify the proof unless simplifications
are “absorbed” by standard rules. We are then able to corapiley simplifications when we iteratively
treat the simplifications in such a way that we start with thpar most (i.e., such that there is no further
simplification rule between the axioms and its applicatidif)e resulting proof without simplifications can
be longer than the original proof, but its reason is not iasegl.

For the simplification rules, we use the following notation

- oY)
= o(v)

which states that a subformulais replaced by the logically equivalent formulain the premise, and Cond
states an additional condition when this rule is alloweda@pplied.

Moreover, we writep, to denote the formula which results frofmby appendings to each indexr of
both variables and truth constantsdin For instance, ifT ;. occurs ing then this occurrence is rewritten to
Tro IN Og.

We next formulate the simplifications (S1)—(S4) as well asalanit, global unit, and pure as such rules
in Fig. 5. However, we omit some symmetric cases. Note thatthextended calculus remains correct,
complete, and terminating.

As already discussed above, we permute simplificationsrttsmiie axioms until they disappear or we
can replace them by a small proof without simplificationsetually, we obtain a (possibly longer) proof
without simplifications. Moreover, the reason for this téag proof is a subset of the original one.

The basic tool to “bubble-up” simplifications is the perntista of adjacent inferenc&sVe consider
permutation schematd,, R;) whereR; is one of the simplification rules ang} is one of the logical rules.

(s)Cond

Definition 5 A simplification ruleR, is permutable ovea logical rule R; (towards the axioms if, for all
applicationsr, of R, of the form
= o)
= oY)

and all applicationsr; of R; such that the principal formula of; is closed,r; occurs immediately above
rs, and such that)’ is not the consequent formula qf it holds that there is a proof of the consequent of
rs from the premises of; in which zero or more applications @t; occur above application oR; and no
other rules are applied.

(s)Cond

“This is a common technique; see [27, 41].

13

Fo(ls) Fo(To)
Fo(-To) O FaL,)

o

i e e

ol V bl o) gy £ 0te Y Vi Tar)
S
el e
- ‘ﬁﬂg ; ;)“]) (P1a) no occurrence efz,. in v

Fo(W[rs/ Loa]) |
- 6(320) (P1b) no occurrence af, in 1

" ¢|E¢q£9(c§;‘;)”]) (P2a) no occurrence 6fz, in 1

F oW/ Toul)
Fo(Vasy)

(S1b)

(S2b)

(S3b)

(S4) no occurrences af; in ¢

(LU1b)

(LU2b)

(GU1b)

(GU2b)

(P2b) no occurrence af,: in 1

Figure 5: The simplification rules of the calculG®BF.

14

Lemma 1 Any simplification rule is permutable over a logical rule tards the axioms), except in the
cases, where the simplification rule is of type local unitYiod variablez and the logical rule is a quantifier
rule on the same variable.

Proof. In the following, we first consider the cases of valid perrtiates, where we denote the simplifica-
tion rule by (s). Recall that, in all these rules, the origjgebformulay to be replaced and the replacement
1)’ are logically equivalent. The permutation schemata arelsis (we omitv” and3”).

Caser; = (V). Let occur in both disjuncts. Then we have:

-y (3 -
V) e i @)
Eo1(¥) V ga(¥) Fo1() V 2 ()

If 4» occurs ing, only, then the above figures can be adapted easily by reglagify)) by ¢,. If 1) occurs
only in ¢9, then (s) is superfluous in the original proof; it can be sadehitted.

Caser; = (A). We show the case wheteoccurs in both conjuncts. If it occurs only in one, then apply
(s) only in the corresponding branch.

o) F oa(w) : :

/ s (/\) F¢1(1ZJ) FQbQ(w)
FaWh a0 O = o O Tawm ©
F (%) 1 62(9) Cow)

Caser; = (). The simplification (s) is not (L*) with variable.

F oY) [xe/ Lozl) F (V) [2o/ Lox] (s)
F 3ze(y’) s) = Fé(Y)[2o/ Los])
F 3o (y) F 3¢ ()

Caser; = (V). The simplification (s) is not (L*) with variable:. Let ¢'(¢) (t € {T,L}) denote
o(V)[xs/tsz]). We show the case whetg occurs in both substitution instances. If it occurs only ireo
then apply (s) only in the corresponding branch.

Fot@) FoT() - Ll o
- (V) ¢~ (¥') ol (Y)

I = T ® ot ©

R CD) V2o(®) (V)

For a non-permutable case, consider the following sitnatio

R: F ¢(xa' A w[xa’/Taa’m])[xa/J-am] (3,) 7
- 309w Nl [Towsl) oy = Fo(@o AD)To/ Loa]
F 3zg(ze A1) (LU1a) F3rg(z, AY)

where the ? indicates that it is impossible to apply (LUl&uoh a way thaR is obtained. O

)

Lemma 2 Let.S be a proof forg with simplifications. Then there exists a pradffor ¢ without simplifica-
tions andR(S”) C R(S).

15

Proof. Consider an arbitrary branch mwith a top-most simplification rule (s). If no such branchstsj
S does not contain any simplification asd = S. Otherwise, permute this (s) into all branches towards the
axioms until no permutation is possible. Then we have tHevidhg cases.

Case 1: (s) is applied to an axiom. This is the case for (Si)wi= -1, andy’ = T,. Then (s) can
simply be omitted without influencinB(-).

Case 2: (s) has been permuted below an axiom. Then the ieditater formula. of (s) is the sequent
formula and the simplifications can be replaced by a progfwithout simplifications. If (s) is (S2a), (S3a),
(S3b), (S4), then we replace (s) by)((V'), (V”), or a corresponding quantifier rule. In the first, third and
fourth casey has to be instantiated either 1o or to —L. If we compare the reasons for corresponding
inference figures, we see that they are the same.

The inference rules (P1a) or (P1b) can also occur directlpwb@n axiom if ¢(3xv)) = Jzx or
¢(Fzy) = Jz—z. In this case, (P1la) and (P1b) are replaced By énd @) and corresponding infer-
ence figures have the same reason. Observe that (S1a), (824), (P2b) do not occur here, because they
cannot occur directly below axioms. The same is true for @rigl (G*).

Case 3: The logical rule above (s) has a subformula occlereinibe inner formula of (s) as its principal
formula. This implies that the inner formula of (s) occurslas sequent formula, but, contrary to Case 2,
the upper sequent is not an axiom. Observe that the inneufaroannot be a sequent formula for all rules
(L*), because all sequent formulas are closed. Moreovera)$annot occur here, becauSas a proof.
Additionally, (S1b) and (S3a) are not relevant for this ¢cdmeause their premise would be an axiom. For
the other simplifications (S*) and (P1*), the handling is k&mto Case 2. Let us have a look at (P2a), which
is replaced byV).

o 3
- Ylo/ Los] = e/ Loa] F s/ Tod]
Vo (P2d) FVza0 (v)

Recall thata is simplification-free, because the current (s) is the togtnio the branch. The question is
whether we can construgtin such a way thaR(3) C R(«) holds. This is possible, becausg is replaced
by 1., and—z does not occur in) by the condition in (P2a). Consequently, the introduded cannot
occur in any axiom ire. Hence, when we take and change the substitution foy, to T,,., the resulting
tree is also a proof and the newly introducégl, do not occur in axioms. The argumentation works dually
for (P2b). For the case of (GU1la), (GU1b), we can replace thne@”), (3'). Let us have a look at (GU2a),
which is replaced byV). (The case for (GU2b) is symmetric.) We assume thatoccurs iny, since
otherwise (GU2a) can be replaced by (P2a) and the solutidthdédatter can be applied.

« « ﬁ
F (2o 0 Y)[wor [Lora] = + (o 0V)[xor [Lorz] F (25 0V)[26 /T o]
= Va(z, 0 9) (cU2a) FVz(z, 0 1)))

The connective has to bev, because otherwise the premise of (GU2a) is not provableislhot relevant
for the proofa, we can modifya and gets with R(a) = R(f3). If x is relevant ina (i.e. , =L, is an
axiom), therR(«/) contains at leastx and the proof3 consists of (') resulting in the axiont T,,.

Case 4: The permutation is blocked because of one of the aontpable cases involving (L*). Let us
consider the case (LU1a)). (The case (LU1b3") is symmetric.)

16

F Lo Lo/ A oo'z|)| Lo ox ﬁ
¢£ ng Zi[g /\/w—Exg//]—?—[ga/i]i)] F = Fo(ze A)T/ Log] @
oo ng) LU A

Observe thatv is simplification-free and that a substitution instanceLgf A ¥[z,// T ;4,.] dO€s not occur
as a sequent formula im, because it is unprovable andis a proof. Consequently, we can replace (LUla)
and @) by (3”) and obtairR(5) C R(«).

We continue with the case (LU2&)). (The case (LU2by') is symmetric.)

F oz, Lo’ i oo'z|)| Lo ox ﬁ
oo oty ool () =y v e/ T)
- S, v 0) (LU2a) F 3zd(ze V1Y)

Again, « is simplification-free. If a substitution instance ©f,. V¢[z,/ / L,,,] OCCUrs as a sequent formula
in «, then we have two possibilities. If we take the axibn ... in «, then we take it also ifg. If we take
the instance of) in «, then_L ., can occur in an axiom or not (the index set may even be lardeif).
occurs in an axiom, we can safely take,. in 5 because this axiom has a smaller index set. J§.,, does
not occur in any axiom, we can safely replace ithy,. In all the casesR(3) C R(«) holds.
We continue with the case (LU14). (The case (LU1by) is symmetric.)
o1 (%)
F ¢(xd A ¢[Ia//Taa/z])[Ia/J—am] F ¢(Ia A w[xd’/—l—aa/m])['rd/—l—am]
FVedp(xe ANb[Te /T oorz])
FVep(xz, A1)

B B2
F Qb(xa A w)[xa/lar] F ¢(Ia A d))[xg/—rgz]

FVog(ze AY)

Observe thaty; is simplification-free and that a substitution instance gf A [z, /T ,./.] does not occur
as a sequent formula i, because it is unprovable and is a proof. Then we can safely modify, to
get ;. Moreover, we can safely modify, to get3, because the index set of the indicated verunisiris
included in the index sets indicatedda. We obtainR(3;) C R(a;) andR(f2) C R(az).

Finally, we consider the case (LU24), (The case (LU2by) is symmetric.)

(V) —

(LU1a)

(V)

H ¢(«Ta V w[ma’/ioo’w])[rfo/lom] + (b(xo \ w[xa’/iUU’I])[xU/TUI]
[V,T(b(wg \Y w[xa’/J—UU’w])
EVrd(zs Vo)

B B2
F ¢(Ia \ w)[%/laz] F ¢’($a v U})[Ia/—l—ar]

FVzo(z, V)
Again, oy is simplification-free. The proaf; can safely be transformed fy because the indicated truth

constants are identical and the index set becomes smatlety;f-the argumentation is similar to the case
(LU2a3"). Therefore, we obtaiR(/1) C R(a1) andR(f2) C R(ag).

(V) =

(LU2a)

()

17

For all the other cases involving (L*) and existential qui@ert rules, the simplification can safely deleted
without increasing the reason. O

With Lemma 2, we immediately get the following result makirsge of Theorem 5.

Theorem 6 Let S be a proof with simplifications af[z/s,] with s € {T, L} andz ¢ R(S). Then there
exists a proofs’ for ¢[z/3,].

Note that this result provides the theoretical basis of ddpecy-directed backtracking in the sense that
the search of a proof fap[z/s,] can be faithfully omitted in case we found a prd®for ¢[z/s,] with =
not being a reason fa¥. In particular, this effect can be exploited in searching@pfor a QBFvYz¢, as
the following example illustrates.

Example 4 Assume we want to prove the QBF
Va3y323p9g(((~p vV y) Ay V =2) A(pV (z A=) V (mz Ag) V (z A —q)).

The proof is shown in Fig. 6. We obtain only one single axioamely- T,,. So the reason are the
variablesy andp, but not the variabler. Therefore, it is not necessary to consider the second brahthe
low-most application of thév)-rule.

Furthermore observe that itis in general not unique whichgification rule should be applied. Instead
of the pure rule (P1a), we could also have applied the uni.rdince we have already a complete calculus
without the simplification rules, it is even possible to ctatgdy omit those rules. For example, we could
have applied thé/)-rule instead of the last (S2a)-rule. Then we would haveiobththe two axioms T,
and- T,. Nevertheless the reason remains the same.

F Ty
m (S2a)
Y7 P _(GUla)
= EIp(Ty /\p)
(S2a)
- EIp(Ty ANTy /\p)
(S4)
= Elzﬂp(—l—y ANTyA p)
- EIzEIp((ﬂp VTy)A(TyV=az)A p)
F3y323p((-p Vy) Ay V —2) Ap)
= 3y323p((—pVy) Ay V —z) A(pV Ly))
F3y3zIp((p V) Ay V—2) APV (Le A)
= 3y32Tp((~p V) AV —=2) APV (Lo A=) V (mLa A Lg))
F 3y32Tpva((pVy) Ay V =2) A(pV (Le A) V (mLa Aq))
- Y323V ((mp Vy) A (yV —=2) APV (La A=) V (Lo Aq) V Ly)
= 3y323pYq((mp Vy) Ay V =2) AlpV (Le A=)V (mLe Aq) V (Le A—g))
= Va3y323pVe (e Vy) Ay V =2) Alp V (2 A=) V (2 Ag) V (2 A —=q))

2 x (S3a)
(P1a)

(S3b)
(S2b)

(S2b) (S3b)
(P2a)

(S3b)
(S2b)

(V)

Figure 6: Proof ofp with simplifications.

18

5 The Implementation of the Solvergpro

In the last section, we have introduced all building blocksessary to create an efficient solver for for-
mulas in NNF in a formal manner. The basic decision procedarebe realized by a simple search-based
backtracking algorithm which works in polynomial spacehwigéspect to the size of the input formula. In
the implementation, we simply apply the rules of the presipintroduced calculus for a systematic proof
search. In the following, we use a procedural C-like langufny the pseudo-code. First of all, we start
with the basic decision procedure including the optimiadiachieved by the simplification rules. Then we
improve this decision procedure by including dependenmeted backtracking. In combination with the
backtracking algorithm, this technique is harder to reattzan explained in the description of the sequent
calculus because we cannot keep the whole proof in the meamah\simply read off the reasons from the
axioms. Furthermore we even distinguish between two @iffermplementation variants of DDB in the
solvergpro.

5.1 A Generalization of the DPLL Procedure

In Fig. 7, we present a simplified version of the basic alpamitused in our solvegpro. In each call of that
procedure, which we refer to aplit , we first apply a further functiorsimplify , in order to reduce
the formula size by simplifications along the lines of theeslih Fig. 5. Then a logical rule @QBF (see
Fig. 3) is applied according to the main connective of theltegy formula. This is different to the previously
introduced sequent calculus where simplifications can bleqmeed at any stage of the proof or it can even
be completely omitted. But the main difference to the calsus the way the formula is processed. Now the
search strategy is explicitly stated and if a branch doeseasuft in a proof, then a backtracking mechanism
leads to the investigation of alternative paths. Inde&d ribt the goal to construct a proof but only to obtain
the evaluation result. This is, of course, crucial when enpgnting a solver which works with polynomial
space requirements (with respect to the length of the input)

In contrast to the calculus where the way how a proof is fondfiminor interest, we are now con-
cerned with figuring out a search strategy which yields ththtvalue of QBFs. The procedusplit s
straightforward but we have to face three sources of indeiésm within theswitch statement: when
simplify returns a QBF of the form; o ¢o, we have to select (i) which subformula to evaluate firsg thi
part differs from PCNF solvers where such a decision is noesgary. If a formul®QX¢ (Q € {v,3})
with a quantifier as a main connective is returned, then tisemecertain freedom of choice concerning the
variable selection. Itis (ii) possible to choose any vdadom the first quantifier block without changing
the evaluation result. The last indeterminism (iii) comsethe choice of the variable assignment which is
considered first during splitting. To keep the pseudo-cadsiraple as possible, we avoid such considera-
tions and process the formula “from left to right”. In praeti implementations, selection heuristics can be
incorporated in order to improve the algorithm accordingly

5.2 The Implementation ofsimplify

The functionsimplify , shown in Fig. 8, is applied to the QB#recursively, until we reach a fix point
with respect to the simplifications in order to reduce thenfidia size. Sincsimplify also triggers the
application of the unit and pure rules, a concrete order@stmplifications has to be chosen. The order is
as follows:

19

BOOLEAN split(¢) {
[+ In: closed QBF ¢ in NNF =/
[+ Out: {1,0} */

¢ = simplify(9¢);

switch(¢)

case T return 1;

case L . return 0;

case (¢1V¢2) @ return (split(¢1) || split(¢2));

case (¢1 Agg) : return (split(¢1) && split(¢9));

case dxv : return (split(Ylz/L]) || split([z/T)));
case Vi : return (split(Y[x/L]) && split(Y[z/TI));

}

Figure 7: The basic algorithm.

e For a formulay, o o, it is first checked whethey, or ¢ is a literal to apply the local unit rule,
otherwise we apply simplifications to each of the two subidas.

e Similarly, in case of a formul@zx1, it is first checked whethep is either of the formi o ¢ (the global
unit rule is then applied) ot occurs in a single polarity iy (the pure literal rule is then applied);
otherwise the algorithm proceeds by simplifying the forail

The subprocedures simplify , namelylunit , gunit , andpure are depicted in Fig. 9. In ad-
dition, these procedures make use of auxiliary functipak¢, x) andvar(l) as defined in Section 2. In
particular, we us@ol(l,var(l)) to determine whether a literal is positive or negative.

5.3 Dependency-Directed Backtracking

Dependency-directed backtracking in the sequence caleuéis straightforward. When a quantifier rule
is applied and when the first subproblem has been solved,tiigesecond subproblem can be omitted, if
the corresponding variable is not included in a reason. baipg on whether the subproblem evaluates to
true or false, we mean by a reason either the set of variabl@gring in the index sets of the axioms (see
Definition 4), or the set of variables occurring in the indeksfall non-axioms.

The practical realization of DDB is not that easy becauseenwive use the algorithm above, we do
not get a complete proof for a subproblem due to depth first seéBolh a search regime is necessary to
get a procedure which runs in polynomial space. One posgilbd circumvent the problem is to collect
the variables which are responsible for the evaluationltrésuone concrete assignmestin relevance
sets Roughly speaking, this amounts to the indexing of truthstamts like in the quantifier rules in Fig. 3.
Instead of the composition of indices (like in the simplifioa rules in Fig. 5), we evaluate the propositional
skeleton of the input QBF with respect& During the search we can thus assemble these relevance sets
to the reasons. If a branching variable is not included irréiaeson, then it is not necessary to consider the
second subproblem.

20

QBF simplify(¢) {
[+ In: closed QBF

[+ Out:
¢ = ¢,
switch(¢) {

[= local unit * [
case (low))

¢ in NNF «/
simplified QBF equivalent to

¢ *1

if (war(l) €) then

¢ = simplify(lunit(

¥9));
Y9));

)
)
Y);

case (91 Av2) ¢’ = (simplify(1) A simplify(
case (91V 2) ¢’ = (simplify(¢1) Vv simplify(
/ = global unit * [
case (Qz(low)) if (xz==var(l)) then
¢’ = simplify(gunit(Low,1,Q));
/ = pure literal * [
case (Qzv) if (pol(y,z) = both) then
v = pure(¥, Q,x);
¢ = simplify();
if 1z € free(v’) then ¢ = Quy;
else ¢ =/;
}
if (¢ 1= ¢) then ¢ = simplify (¢');
switch(¢) {
case (—T) return(1); case (—1) return(
case (LAY return(1); case (T V) return(
case (T AW) return(P); case (L V) return(
otherwise return(),
}

Figure 8: The functiorsimplify

21

¥, 1,0));

(QBF) lunit(¢,l,0) {
[* In: QBF v, literal [, connective o x/
/* Out: QBF of the form loa) x|

if (o==A) then {

if (pol(l,var(l)) == pos) then return (I A ¥[l/T));
else return (1 A /1))
}
if (pol(l,var(l)) ==pos) then return (1 VvV [l/L]);
else return (1 Vv »[/T]});
}
(QBF) gunit(4,1,Q) {
[+ In: OBF v, literal [, quantifier Q =/
/= Out: QBF ¢ with var(l) substituted by a truth constant * [
if (Q==V) then {
if (pol(l,var(l)) == pos) then return ([l/L]);
else return ([/T));
}
if (pol(l,var(l)) == pos) then return (Y[I/T));
else return (w[l/L]);
}
(QBF) pure(¢,Q.z) {
[* In: QBF ¢, quantifier Q, variable z */
/= Out: QBF ¢ with var(l) substituted by a truth constant */

if (Q==V) then {
if (pol(y,z) ==pos) then return (¢[xz/L]);

else return (Y[z/T));
}
if (pol(¢,z) == pos) then return (¢[z/T]);
else return (¥[z/L));

Figure 9: Auxiliary functiondunit , gunit , andpure .

Definition 6 (Set of Relevant Variables)Let ¢ be a QBF andS a set of literals. We define the set of
relevant variablesRV 4(S) of S with respect tap asR%(psk(¢)), whereR%(¢) is defined as follows:

22

1. Ifus(psk(¢)) = 1 then

{var(l)} if » = [andvar(l) is universal ing;

RS(4) = RS (v1) if 1 =11 V by, vs(1h;) = 1 for somei € {1,2};
RE(11) URG(¥n) i v = 1y Aty
{} otherwise

2. Ifus(psk(¢)) = 0 then

{var(l)} if » = [andvar(l) is existential ing;

R(1) = R (v:) if P =1 A, vs(;) = 0 for somei € {1,2};
RS(41) URG($2) if 4 =ty v uin;
{ otherwise

In the definition above, we do not consider simplificationslaing unit and pure literal elimination.
To incorporate them, it is necessary to check whether ahlariawhich is included in the set of relevant
variables has been assigned a truth value due to one of thiese if this is the case, all variables which
are responsible that becomes unit or pure have to be included too. Note that thefsetevant variables
is not necessarily unique. In the computatiorﬂﬁ‘(w) with vs(psk(¢)) = 1, the case for) = psk(¢)
andy = 1 V ¥ where bothy; and, evaluate to true undef results in a choice that has to be made.
In fact it would not be incorrect to include the relevant abfes of both formulas, but later we will need
the set of relevant variables to construct reasons to dedig¢her we must consider the second subproblem
of a certain variable. The smaller the reason is, the bditmrause a variable missing in this set indicates
that the second problem can be omitted. Observe that we sSogdiish between variables of different
guantification: if we calculate the set of relevant varialiter a true subproblem, we only collect universally
qguantified variables, otherwise we only collect existdiytiqguantified variables. This is because we skip
the second branch in the semantic tree of a universally digahvariable only if the subproblem has been
evaluated to true—otherwise we would omit the second prolalayway.

In contrast to the sequent calculus where we collect thabkes included in the reason during the search,
we calculate here the necessary set only if we have proveb@ahlem for a certain variable assignment.
This has the advantage that we obtain only the variableshadnie included in the reason at the end and
that we do not collect variables which are later thrown awag tb some optimizations or because they
occur in a branch which turns out to be useless for the praoWwHat follows, we present two versions of
dependency-directed backtracking quite similar to theritlgms implemented in the solveemprop [29].
The first one, DDB byabeling, is a weaker version but with less implementational ovethednereas the
second one, DDB byelevance setshas higher potential in decreasing the search space. Welshwe to
integrate them to our core procedwit

5.3.1 Dependency-Directed Backtracking by Labeling

In Fig. 10, we present our algorithm extendeddapendency-directed backtracking by labelifie proce-
dure now contains two additional parameters, aSset literals and a QBR. The former keeps track of the
current assignment and will be used to compute the set ofarelevariables. The latter stands for the origi-
nal input QBF and remains unchanged, whereas the first pteamis local to the procedure representing

23

BOOLEAN split(¢, S, ®) {
[+ In: closed QBF ¢ in NNF, set S of literals, the input QBF O */
[+ Out: {1,0} */

¢ = simplify (¢);

switch(¢)
case T for all x € RVg(S) setRelevant(x)
return 1,
case L ;. for all x € RVg(S) setRelevant(x)
return 0;
case (¢1V¢z) : return (split(61,8, ®) || split(¢2,S, ®));
case (¢1 Apg) : return (split(01,S,P) && split(@2, S, P));
case dxv . setlrrelevant x)
if ((split(Yla/L],SU{-a},®) == 0) {
if islrrelevant(x) return 0;
else return split(Y[x/T],SU{z}, ®);
¥
return 1,
case Vi . setlrrelevant x)
if ((split(Yla/L],SU{-a},®) == 1) {
if islrrelevant(x) return 1;
else return split(Y[x/T],SU{z}, ®);
¥
return 0;
}

Figure 10: Procedursplit enhanced by DDB by labeling.

the currently processed formula, i.e., the result of sifigatiions, variable substitutions, etc. To evaluate a
QBF @, split is initially called viasplit (®, 0, ®). The idea is as follows.

1. When branching on a variahle we markz as irrelevant usingetlrrelevantz).

2. If a leaf of the branching tree is reached, theR¥t (S) of relevant variables (see Definition 6) is
determined with respect to the currently used assignrSeat variables. Moreover, each variable
x € RVg(S) is now marked as relevant IsgtRelevart); other variables remain irrelevant.

3. If backtracking returns to a variable it is checked whether. actually has been set to relevant or
not. If z is still irrelevant, the second subproblem can be omitteti@re can immediately continue
to backtrack.

We illustrate the algorithm on a concrete formula.

24

Example 5 Let ¢ be the formula from Example 1, i.e.,

¢ = Va1Iy1 (Ve Iye((w2 V —y2) A (m22 V y2)) V (21 A yr)).

The branching tree o has been shown in Fig. 1. Observe that the same subtree oooutwe left-hand
side and on the right-hand side belaw. The algorithm performs as follows (to keep the examplelsimp
we omit unit and pure literal detection). To start we cgilit (¢, (), ¢).

1. Since we omit the unit and pure rules, initially no simgdifion has to be performed. We branch on
the variablez; and start with¢'[x1/ 1] (¢’ denotesp withoutVz1). Sincex; is set to L, we put
-z into S. We callsplit (¢'[x1/ L], {—z1},¢). By replacingz; by L in ¢/, we get the formula
Fy1 (Ve Tya((z2 V —y2) A (2 V y2))) after simplification.

2. The quantificatiordy; can be removed becauge does not occur in the scope ©f; in ¢’ anymore.
This removal is performed by the functismplify . We thus do not includg; in the setS of
literals.

3. Next we branch on the variable,, set it to L, and include—zs in the setS. The simplification
function after callingsplit ~ with the according arguments returfig,(—y-).

4. If we replaceys by L, afinal call ofsplit simplifies the formula td” and thus we compute the set
of relevant variablesRV,(S) with S = {—z1, ~x2, ~y2}. Sincepsk(¢) = ((z2 V —y2) A (2 V
y2)) V (z1 A y1), it can be checked that the only universal variable relefanmakingpsk(¢) true
underS is xs.

5. Sincezs is universally quantified and labeled relevant, we also htoveonsider the subproblem
where the variabler; is replaced byT. We thus have to call nogplit (3ya2((T V —y2) A (=T V
y2)),{—x1,x2}, ¢) and after simplifications and the final replacemeny9by L, the formula evalu-
ates to0.

6. But settingy, to T yieldsl. Again, the set of relevant variables with respect to theantrassignment
{—x1,x2,y2} in this branch consists only of.

7. Aszq is universal and the solution of the first subproblem is tnre, usually should also consider
the second subproblem when we backtrack. But now DDB conteglay and sincer; was never
included in the reasons fat'[z1 /L], it is not necessary to consider the subproblem, wheres set
toT.

5.3.2 Dependency-Directed Backtracking by Relevance Sets

As already pointed out, the smaller the set of variablesléabas relevant the better it is for the solving
process. If a variable is irrelevant then the second suligmoban be skipped under any circumstances. But
consider the following case: we branch on an existentialigrgified variabler and the first subproblem
evaluates to false. Asis labeled as relevant, we have to consider the second sulbprdoo. Assume that
also the second subproblem evaluates to false mihot relevant for the solution of the second subproblem.
However,z remains labeled and therefareremains relevant for the problem whede is handled. If we
had considered the second subproblem first, the situatiatodm@mve been different: (1) the other problem
could have been omitted, (2) the set of the variables lalsdeelevant would have been smaller.

25

z

L T
L/ \NT
Y1 Y1
T 1
€2

1/ T

Y2 Y2

11 1/ N\ T

0

Figure 11: The branching tree gV 3y (VroJya((x2 V —y2) A (mz2 V y2)) V (mx1 A =y A —z)).

To obtain (1), it is too late, we made the “wrong” choice wheweiding which subproblem to consider

first.

But we can get at least the smaller variable set like2)n Ve collect the relevant variables of the

subproblems in different sets, make some case distinctioc@ding to the branching variable, and construct
the current reason accordingly. In the sequent calculusareaot faced with this problem because this
optimization involves only the processing order of the btes. Since we have the whole proof in the
sequent calculus, we can also distinguish between the tifeyeatt sets because of the different available
branches.

The following examples illustrates the algorithm.

Example 6 Let¢ be the formula

V2V Iy (Vo Tya (22 V —y2) A (mxa Vy2)) V (mxp A -y A —z)).

The branching tree of is shown in Fig. 11. Again we omit unit and pure literal elimiion to keep the
example simple.

1.
2.

We start wittsplit (¢, 0, ¢). Applying simplifications has no effect.

We branch on the variableand start withsplit ~ (¢'[2/ L], {—z}, ¢), where¢’ denotes) withoutVz.
We getvz Iy (VraIya((x2 V —y2) A (mx2 Vye)) V (—z1 A —y1)) after the application osimplify

We continue by branching on the variablg and setz; to 1. We obtain the formula
Jy1 (VaoTy2((x2 V —y2) A (mx2 V y2)) V —yp) after the according call obplit and the simpli-
fications.

Then we branch on the variablg; and sety; to 1. As usual, we call the function
split (VzoTys((x2 V —y2) A (e V y2)) V =L, {—z,—x1,—y1 },). After the simplifications, the
formula evaluates td. The set of relevant variables includes only the universesgz and x¢, be-
cause they occur in the subformula of the uppermost dispmethich makepsk(¢) true under the
current assignment—z, -z, -y } .

Aszq is universal ing and marked relevant, we have also to consider the subprobiesner, is set to
T. The variabley; is handled as in step (2) of Example 1. So, wevgeBys ((x2V —y2) A (—x2 Vy2))
after some simplifications.

. We continue with branching om, and set it to I which results in3dys,—y, after the call

split (3ya((L V —y2) A (0L Vy2)), {2z, 21,22},) andsimplify

26

7. If we replacey, by L, the formula evaluates tbin the next step. The only variable included in the
set of relevant variables 8, because together with the existential variape it is responsible that
¢ evaluates td under this specific variable assignment.

8. Sincex, is universally quantified and included in the current reasare have also to consider the
second subproblem &fro3ys((x2 V —y2) A (mx2 V y2)) Where the variabler; is replaced byT.
Simplification yieldsiy,ys.

9. Settingys to L results in0, but settingy- to T yields1 after callingsplit andsimplify . Again,
the only variable included in the set of relevant variablesd.

10. When we return ta; during backtracking, we notice that; is not relevant in the second subprob-
lem where the variable has been replaced by That was bad luck—if we had chosen the second
subproblem as the first one to consider instead, we could benited settinges; to L when using
DDB by labeling. In DDB by relevance sets, such cases aregrdzed. Here the current reason
is only the reason of the subproblem whefeis set toT. DDB by labeling could not have made
this distinction and the current reason would be the uniothefreason of the first subproblem and
the reason of the second subproblem. For DDB by relevaneg et reason is now a smaller one:
for example, the variable is now not included in the current reason and it is not necasta call

split (¢'[z/T], {2}, ¢).

The pseudo-code of the implementationsplit incorporating DDB by relevance sets is shown in
Fig. 12. Again we collect the current assignment to caleutlaé relevance set from the original input QBF.
The main difference to DDB by labeling is that we now direaiculate the current reason and return it in
order to be able to minimize its size.

5.3.3 Pure and Unit Literal Elimination in Dependency-Directed Backtracking

To illustrate some of the difficulties when combining difat pruning techniques, let us consider the fol-
lowing example.

Example 7 Given the QBF
¢ = JxIzTy((z Vy) A((my A z) V (my A =2))),

¢ should be evaluated by a variant split which implements the removal of truth constants and unit
literals, as well as DDB by labeling. We do not include all ping techniques in order to keep this example
simple. The algorithm performs as follows.

1. The variabler is replaced byl. We obtairdz3y(y A ((-y A z) V (—y A —2))).
2. Now the unit rule can be applied grandy is replaced byT. The formula evaluates to false.

3. In the next step, the relevant variables have to be detentd marked. The right subformula of the
outermost conjunction evaluates to falseysand = are labeled relevant.

4. Asz is still irrelevant, it is not necessary to consider the setgubproblem where is set toT—the
formula evaluates to false.

27

(BOOLEAN, relset) split(o, S, P) {
[+ In: closed QBF ¢ in NNF, set S of literals, the input QBF O */
[+ Out: ({1,0}, reason) x/

¢ = simplify(¢);

switch(¢)
case T return (1,RVs(S));
case | : return (0,RVs(S));

case (¢1 V) 1 (r,Ri1) = split(¢1,8,9P);
if (r1 == 1) then return (1, R1);
(r2,R2) = split(¢2,S, P);
if (7o == 1) then return (1, Ro);
return (0, R1 URy);

case (¢p1A¢2) 1 (r,R1) = split(¢1,8,9P);
if (1 == 0) then return (0, R1);
(r2,R2) = split(¢2,S, P);
if (7o == 0) then return (0, R2);
return (1, R1 URy);

case dxv o (r,R1) = (split(Ylz/ L], SU{~z}, P);
if (1 == 1) then return (1, R1);
if (& Ry) then return (0, Rq);

(r2,Ro) = (split([z/T],SU{z}, ®);
if (7o == 1) then return (1, Ro);
if (z¢&Rs) then return (0, R2);
return (0, R1 URy);

case Vi (i Ra) = (split(Ylr/ L], SU -z}, @)
if (1 == 0) then return (0, R1);
if (& Ry) then return (1, R1);

(r2,R2) = (split(¢[z/T],SU{z}, D);
if (ro == 0) then return (0, R2);

if (z¢&Rs) then return (1, Ro);
return (1, R URy);

Figure 12: Procedursplit enhanced by DDB by relevance sets.

Obviously, this result is wrong—if we had setto T andy to L first, the result would have been
different. This is because the variahldnas been assigned a truth value by the application of a $pelda

28

namely unit in this case. This rulerni®tapplicable at any time, but only if certain preliminaries aatisfied.
To understand why a formula has taken a certain value, a.&alculate the set of relevant variables, it is
necessary to include the reasons which allowed the applicaf such special rules like unit or pure. In the
example above, the variableis responsible thag becomes unit, and so has to be labeled relevant too.
Then we also obtain the correct result.

The solvergpro implements a more involved variant simplify ~ than the one shown in Fig. 8. In
particular, to makesimplify ~ work for DDB in combination with pure and unit literal elimdtion, the
final version ofsimplify ~ has as result not only the simplified QBFbut also an accordingly changed set
S’ of literals because pure and unit elimination contributéhtoset of variable assignments.

6 Experimental Evaluation

In the following, we present the experimental evaluatiomwf solver. First, we investigate the impact of
enabling/disabling different options qpro; afterwards, we comparkgro to four state-of-the-art systems.

All tests were performed on an Intel Xeon 3 GHz with 4 GB of RAMa timeout set to 100 seconds.
Figures 14-19 depict the outcome of the test runs: they shewpércentage of solved formulas on the
ordinate related to the solving time on the abscissa. Obghat the scale of the x-coordinate is logarithmic
whereas the scale of the other axis is linear. Before priegpdetails, we shortly describe the benchmark
formulas we used.

6.1 Description of the Benchmarks

To test our implementation we have chosen four sets of beadtsn (i) encodings of the modal logic K;

(i) encodings of nested counterfactuals; (iii) encodinfanswer-set correspondence tests which are on the
fourth level of the polynomial hierarchy (ASC-4); and (iwamdings of easier answer-set correspondence
tests which are on the second level of the polynomial hiesa(@SC-2)°> We use here the non-PCNF
versions of these benchmarks, which are the direct outcdmhe @ncodings. The four types of benchmarks
differ in the complexity of the formula structure as well aghe quantifier depth. The structural differences
of those sets are best illustrated by the quantifier depeienf the formulas (see Fig. 13).

Modal Logic K Nested Counterfactuals ASC-4 ASC-2

Y /Y\ /V\ Y
3 W 3 3 3 3 3
I /I\ I
W H/V\V W
| | |
3 W 3 3 3

Figure 13: Quantifier dependencies of the different bencksna

6.1.1 Modal Logic K

This set of benchmarks contains instances which were aésbinghe TANCS’98 comparison of provers for
modal logics. Applying the encoding from [35] yields QBFdlwna linear dependency among the quantifiers.

SPrenexed forms of such benchmarks except the last oneA$€;2, are frequently used benchmarks and have been irtlude
in QBF solver competitions, see e.g., [31].

29

Hence, the translation to prenex normal form is fully deiead (there is just one way to shift the quantifiers
in front of the formula).

This set contains 378 formulas arranged in 18 subsets, ditfoi2nulas each. Half of the formulas
evaluates to true. Depending on the modal depth of the alifimmula, the depth of the encodings ranges
from 5 to 133; the number of variables ranges from less than #tbre than 4300. Due to the transformation
into PCNF, the number of variables increases up to more tB8a0dLin the worst case.

6.1.2 Nested Counterfactuals

The formulas of this benchmark set encode the problem obreag over nested counterfactuals. The depth
of the resulting QBFs ranges from four to eight. The quamtdispendency tree for depth four is shown in
Fig. 13. obviously there are different ways to linearizelsa®BF (see [15] for the details). For each depth,
we created 50 instances, where the QBFs contain 183, 24533B9and 443 variables. The transformation
to PCNF increases the number of variables to 464, 600, 785,&8®1 have about 60% true and 40% false
instances.

6.1.3 Answer-Set Correspondence

The formulas in this set encode correspondence tests hetprepositional logic programs under the
answer-set semantics. It is checked whether two programsder equally projected answer-sets under
any program extension over a specified alphabet, cf. [40].

The first subset comprises 1000 instances (465 are true &dré3alse). Furthermore, for each prob-
lem, we have two different encodingSandT. The problem of answer-set correspondendéliscomplete,
and thus all QBFs in this set have depth four. As Fig. 13 indicghere are two different possibilities to
obtain a linear quantifier prefix. The QBFs possess, in caSe 200 variables and, in case ©f 152 vari-
ables. The additional translation into PCNF yields, in aais®, QBFs over 2851 variables and, in case of
T, QBFs over 2555 variables.

The benchmarks in the second subset rely on an easier ssib€laogram comparisons [34] which are
complete forll¥'. Thus the resulting QBF encodings are here of depth two. dée of the benchmarks is
to compare a program with itself but having a randomly selbctile dropped. The interesting feature of
this set is that the encoded problem contains a lot of stralctuformation, having duplicated program rules
at several occasions within the encoding. It is thus interggo see, whether this structural information is
easier exploited bgpro compared to PCNF-solvers, for which this information isdiotctly accessible due
to the preceeding transformation to normal form. We havbtaliferent sets of such program comparisons,
each containing 100 elements. The QBFs possess 127, 151199,/3223, 247, 271, and 295 variables, the
translation into PCNF yields between 1000 and 1800 varsabtetotal, one half of the instances evaluates
to true.

6.2 Internal Comparisons

First, we investigate how the enabling/disabling of digfer simplification rules influences the runtime be-
havior ofgpro. We consider only the encodings of modal logic K and the eimgrzdof the nested counter-
factuals because they reflect the typical behavior of tHergifit variants ofpro. Recall that the first test set
contains only formulas with a linear quantifier tree, wherthee formulas of the other set have a complicated
structure of quantifier dependencies (and thus are verfetdiiit” from being in PCNF).

We ran six different versions @fpro, namely

30

e gproNone: all possible simplification options disabled;

e gproUP: unit and pure literal detection enabled;

e gproL: DDB by labeling enabled;

e gproS: DDB by relevant sets enabled;

e gproUPL: unit and pure literal detection as well as DDB by labelingtged; and
e gproUPS: unit and pure literal detection as well as DDB by relevams smabled.

In what follows, we briefly summarize our observations.

6.2.1 Modal Logic K

Fig. 14 shows that the more options are enabled, the bgiterperforms: qproUPL and qproUPS show
definitely the best runtime behavior whereg@soUPS is slightly better in average. When disabling unit and
pure, the difference between DDB by labeling and DDB by @fee sets is more obvious. Furthermore,
DDB turns out to be less important here than unit and purealitetection.

100

gprouPS ——
gproUPL ====-
gprouP
qprosS -
gproL -
gproNone -:---:--
80 gproUPS gproUPL

percentage of solved formulas

20

1 10 100
seconds

Figure 14: Different version afpro applied to encodings of modal logic K.

6.2.2 Nested Counterfactuals

In Fig. 15, there are two outliergjproNone andqproS. Without any options enabledpro is able to solve
just a few formulas. Much more surprisingbproS clearly outperforms all other variants. This phenomenon

31

may have two different origins: On the one hand, the apjtinadf the simplifications involves additional
search. For this set, these simplifications seem to resait overhead rather than in an optimization. On the
other hand, the elimination of unit and pure literals aldlugnces the actual relevant sets in the computation.
Consider the following example: a variahldhas become unit because—let us say the existential—variabl
x was assigned a truth value during the splitting process. [8mwhe unit rule is applied angis included

in a reason, them must be included too. Therefore, the second subproblem mwialyenomitted if the first
one resulted in false when returningaaluring the backtracking. Otherwise, if the unit rule had been
applied ony and it is assigned a truth value by the ordinary splittingcpss, then it is possible thatis not
included in the reason. In this case, the subproblem wh&eet to the dual value can be omitted.

100 e

percentage of solved formulas

20 |

gprouPS ——

qproUPL
gprouP
qproS
gproL .
gproNone ===+ S et

gproNone

seconds

Figure 15: Different version adpro applied to encodings of nested counterfactuals.

6.3 Comparison with State-of-the-Art Systems

Next, we compare the performance of our solygro against the established syste@sBE—BJ (version
v1.2) [23], sKizzo (version v0.8.2) [6]semprop (release 24/02/02) [29], anghantor (version v3.0) [8].
These solvers have been selected because they have showedmpetitive in previous QBF evaluations
and moreover, they have been the most robust ones in pres@stisuns, i.e., they did not deliver wrong
results on our benchmarks. Moreov@yBE—BJ andsemprop implement backtracking techniques, similar
to the ones used igpro. Finally, sKizzo andquantor try to extract original quantifier dependencies from a
PCNF. Hence the latter solvers may detect similar structafarmation on the input formula agpro has
gota priori from the input of the corresponding non-prenex formula.

All solvers exceptgpro require the input to be in PCNF. We thus apply the followingt tetrategy:
Given a benchmark QBB, (i) translatep into NNF and use that formula as inputdgro; (ii) translate¢
into PCNF and provide the outcome as input to the other smIvigte latter translation is performed in two

32

steps, namely the prenexing and the conversion of the mgguiltirely propositional matrix into CNF by the
application of the structure-preserving transformatmndrmal form as described in [44].
All solvers are used with their predefined standard optitorsypro we use the variargproUPS.

6.3.1 Modal Logic K

Many of the formulas of this benchmark set are solved imnieljidy all solvers. However, for some of
the formulas, none of the solvers delivered a result withenttmeout of 100 seconds. For this test set, the
results ofqpro are located in the middle of the field. As the quantifier depewyl tree is lineakpro cannot
gain advantage of the quantifier dependency structure antias to deal with formulas almost in prenexed
form. Still, the results show that the more complex datacstines (compared to the PCNF solvers) which
gpro has to handle, do not lead to a significant overhead.

100

Semprop\

percentage of solved formulas

20 |

Quantor
Semprop

seconds

Figure 16: Encodings of modal logic K.

6.3.2 Nested Counterfactuals

As indicated by Fig. 13, the quantifier dependencies allavséveral different translations into PCNF. We
have applied each strategy presented in [15] to the PCNIEmsoIn previous test runs. To be fair, we show
only the results for the best strategy of each solver.

Our solver clearly outperforms the other solvers, actuéaily the only solver able to solve all formulas
of the set. This indicates that the more information on gliendependencies is lost due to the prenexing
(even if the “right” prenexing strategy is used), the mormpetitive gpro turns out to be. With increasing
guantifier depth, the formulas get harder to solve. @mphp can handle the augmenting hardness, whereas

33

the other solvers fail. Consequently, their curves remaitedflat, except fosemprop for which the curve
ascends starting from the 5th second quite steeply.

100

80

60

40

percentage of solved formulas

20

Quantor gpro

Semprop

1 10 100
seconds

Figure 17: Encodings of nested counterfactuals.

6.3.3 Answer-Set Correspondence

For each formula of the first answer-set correspondencehbman® set (ASC-4), we obtain four different
runtimes when using PCNF solvers. We distinguish betweerdiffierent encoding$ and T and the two
possible shifting strategies when building a linear quemntprefix, namely 1” and “|” (see Section 2). As
the transformation step to prenex normal form is not necg$saqpro, we have only two different runtimes
here.

The results of all possible combinations are presented 6y [iere, we show only the worst (upper
picture in Fig. 18) and the best case (lower picture in Fig.f@Ball solvers. In fact, encoding is always
better thart and it is preferable to usg ™. In fact, the upper diagram illustrates the runtimes focading
S together with strategy]” (for the PCNF solvers), whereas the lower diagram depidisgether with ".
The curves otjpro differ only slightly, which is an indicator thajpro is less dependent on the particular
encodings in contrast to the PCNF solvers. Fig. 18 also dstraias clearly the importance of choosing
a suitable prenexing strategy; indeed, all the PCNF solskosv problematic performance with thg""
strategy but are much faster with thg ‘strategy.

In the second subset (ASC-2), we have QBFs of depth 2, thue theonly one prenex form. The
results for different solvers are summarized in Fig. 19. Amall solversgpro performs most competitive
although, in this case, it cannot gain advantage of the gierdependencies. Nevertheless the non-CNF
structure seemingly supporgro’s solving method and explains the good results. The forgpes’s curve
illustrates very clearly the structured nature of this jeois and increasing difficulty of the benchmarks

34

100 : 100 T
gpro —+— O
QuBe-BJ ---x-—-- o .
sKizzo ---*--- < et
Semprop --®-- / -
80 | R 80 s ‘i R
3 3 ¢ !
E E P
3 £ x o
k)) .
- 60 E - 60 ! ¥ 4
9 %)‘<
= 2 o
S A 2 KX
S ¥ bS] AL
[} * [} x 7 i
o 40 T oon o 40 y
g x4 E X
g X m 3 X
[} * om [} X
o * u o -)
20 R 20 u E
k-3 u gpro —+—
X ; o QuBe-BJ -~
X i p sKizzo ---%---
LK X i - Semprop —--®-—
0 L I 0 %
1 10 100 10 100
seconds seconds

Figure 18: Encodings of answer-set correspondence chlie¢kiBC-4).

with the increasing number of variables. Most formulas of wariable number are almost equally hard to
solve, so we can observe the steep ascegpio’s curve in Fig. 19.

100

percentage of solved formulas

o Quantor =-=-----
Semprop s

.........

1 10 100
seconds

Figure 19: Encodings of answer-set correspondence chlie¢kiBC-2).

6.4 Discussion

The chosen benchmarks provide an increasing complexitigin structure, and therefore, an increasing
disruption of the structure during the normal form transfation can be expected. In particular, for the

35

encodings of modal logic K and ASC-2, we just can investiglageeffect of applying the transformation of
one shifting strategy, since the prefix is already deterthing the encoding. The ASC-4 problems allow
to analyze the effect of prenexing if there is only a smalligéan from a linear quantifier dependency. In
what follows, we briefly discuss three main observationsfour experiments.

e The more information of the formula structure is lost duehie transformation to normal form, the more
competitiveqpro turns out to be. Fig. 17 illustrates this effect for benchoafarmulas with complex quanti-
fier dependencies. Although we compapeo here against the PCNF solvers together with thestsuited
strategyqpro significantly outperforms all other solvers.

e Fig. 19 indicates that not only the prenexing causes a lostrdtural information which improves the
solving process but also the transformation to CNF has & grgzact on the runtime. Sqpro can also
outperform the other solvers if structural information ¢ only obtained from quantifier dependencies but
symmetries in the general structure of the formula are ptgsehich gets blurred in the transformation of
the propositional matrix to CNF).

e Fig. 18 presents results for two different encodings (ngirBednd T) of the same problem where one is
an explicit but rather simple optimization of the other. $&eesults indicate thapro is less depending on
the chosen encoding, whereas the performance of PCNF sdaliflars much more. A similar observation
in a different context is observed in [39]. In faghro performs better on the unoptimized encoding, in the
case the “wrong” prenexing strategy”‘is used for the PCNF solvers.

Overall, these results are a further justification that agi@mation to normal form may have crucial
impacts on the performance.

7 Conclusion

We presented a new QBF solvepro, which significantly differs from previous approaches yyability

to process QBFs in negation normal form (NNF) instead of QBHFsrenex conjunctive prenex normal
(PCNF). We generalized the DPLL procedure to handle suchddBRNNF and we discussed implemented
performance-improving techniques like different formsdependency-directed backtracking. The system
together with the benchmarks used in this paper can be faund a

http://www.big.tuwien.ac.at/staff/seidl/gpro

The motivation for the development gbro was as follows: In practical applications, QBF solvers can b
used as a black box in reasoning systems to solve problemsnsiig from a diversity of formalisms. Such
problems are encoded as QBFs but natural encodings do ectlgiresult in any normal form. However,
since most solvers only accept the input to be in such acesdrformat like PCNF, an additional translation
to normal form is often required. As we have shown in our expents, using the solverpro, and thus
avoiding the additional translation into PCNF, often ré&sui much better performance.

Other standard optimization techniques found in PCNF ssllike learning (see, e.g., [22, 43, 42])
have not been included yet tpro but this extension of the solver is subject of ongoing workirtker-
more, the currently implemented selection heuristics &tables and subformulas, are very basic and more
sophisticated approaches have to be considered in futute wo

36

There are a few further solvers, nameélyiBoS [3], boole®, andzqsat [20] in the literature, which
also allow arbitrary QBFs as input, but rely on differenthieicues. QuBoS simplifies the QBF and then
constructs an equivalent propositional formula which igleated by SAT solvers, wherebsole is based
on binary decision diagrams (BDDs). Thus both need expaiapace in the worst case. We have included
boole in our pre-tests, but it was not competitive at the benchmafe also neglecteQuBoS, because we
encountered some problems on certain formulas. Finalbat implements DPLL using zero-compressed
BDDs. The comparison tegsat is subject to future work; as well, a detailed comparisonwfapproach
with the one suggested in [24] to exte@dBE is on our agenda.

References

[1] C. Ansbtegui, C. Gomes, and B. Selman. The Achilles’ IHEeQBF. In Proceedings of the 20th
National Conference on Atrtificial Intelligence and the 1#thovative Applications of Artificial Intel-
ligence Conference (AAAI/IAAI 20QFages 275-281. AAAI Press / MIT Press, 2005.

[2] O. Arieli and M. Denecker. Reducing Preferential Pareistent Reasoning to Classical Entailment.
Journal of Logic and Computatioi3(4):557-580, 2003.

[3] A. Ayariand D. Basin. QUBOS: Deciding Quantified Booldawgic Using Propositional Satisfiability
Solvers. InProceedings of the 4th International Conference on Formathdds in Computer-Aided
Design (FMCAD 2002)volume 2517 o£. NCS pages 187-201. Springer, 2002.

[4] M. Baaz, C. Fermiiller, and A. Leitsch. A Non-Element&peed Up in Proof Length by Structural
Clause Form Transformation. Froceedings of the 9th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 1994)ages 213-219. IEEE Computer Society Press, 1994.

[5] M. Baaz and A. Leitsch. On Skolemization and Proof Comitye Fundamenta Informatica®0:353—
379, 1994.

[6] M. Benedetti. sKizzo: A Suite to Evaluate and Certify QB Proceedings of the 21th International
Conference on Automated Deduction (CADE 2006)Jume 3632 o£ NCS pages 369-376. Springer,
2005.

[7] P. Besnard, T. Schaub, H. Tompits, and S. Woltran. Remtesy Paraconsistent Reasoning via Quan-
tified Propositional Logic. Innconsistency Toleranggolume 3300 of NCS pages 84—118. Springer,
2005.

[8] A. Biere. Resolve and Expand. Proceedings of the 7th International Conference on Theowy a
Applications of Satisfiability Testing (SAT 2004dlume 3542 oLLNCS Springer, 2005.

[9] T. Boy de la Tour. An Optimality Result for Clause Form fgéation. Journal of Symbolic Computa-
tion, 14(4):283-302, 1992.

[10] E. Eder.Relative Complexities of First-Order Calculirtificial Intelligence. Vieweg Verlag, 1992.

[11] U. Egly. On Different Structure-preserving Trangbais to Normal Form.Journal of Symbolic Com-
putation 22:121-142, 1996.

Shttp://www.cs.cmu.edu/ ~modelcheck/bdd.html

37

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

U. Egly. Quantifiers and the System KE: Some Surprisimgus. InProceedings of the 12th In-
ternational Workshop on Computer Science Logic (CSL 1988)me 1584 oL NCS pages 90-104.
Springer, 1999.

U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving ¥ahced Reasoning Tasks Using Quantified
Boolean Formulas. IRroceedings of the 17th National Conference on Artificialliigence and the
12th Innovative Applications of Artificial Intelligence @ference (AAAI/IAAI 200Qpages 417-422.
AAAI Press / MIT Press, 2000.

U. Egly and T. Rath. On the Practical Value of Differen¢fibitional Translations to Normal Form.
In Proceedings of the 13th International Conference on Auteth®eduction (CADE 1996yolume
1104 of LNCS pages 403-417. Springer, 1996.

U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda.o@paring Different Prenexing Strategies
for Quantified Boolean Formulas. FProceedings of the 6th International Conference on Theor a
Applications of Satisfiability Testing (SAT 2008blume 2919 ofLNCS pages 214-228. Springer,
2004.

U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nmenex Form. IrProceedings of the 17th
European Conference on Artificial Intelligence (ECAI 2QQ&ges 477-481. IOS Press, 2006.

T. Eiter and G. Gottlob. The Complexity of Nested Coufatetuals and Ilterated Knowledge Base
Revisions.Journal of Computer and System Sciené&s%3):497-512, 1996.

T. Eiter, H. Tompits, and S. Woltran. On Solution Copesdences in Answer Set Programming. In
Proceedings of the 19th International Joint Conference difigial Intelligence (IJCAI 2005)pages
97-102. Professional Book Center, 2005.

M. Gelfond and N. Leone. Logic Programming and KnowledRepresentation - The A-Prolog Per-
spective.Atrtificial Intelligence 138(1-2):3-38, 2002.

M. GhasemZadeh, V. Klotz, and C. Meinel. Embedding Memation to the Semantic Tree Search for
Deciding QBFs. IrProceedings of the 17th Australian Joint Conference orfigidl Intelligence (Al
2004) volume 3339 of.NCS pages 681-693. Springer, 2004.

M. Ginsberg. Counterfactual#rtificial Intelligence 30:35-79, 1986.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Leagnfor Quantified Boolean Logic Satisfiability.
In Proceedings of the 17th National Conference on Artificidelligence and the 14th Innovative
Applications of Artificial Intelligence Conference (AAAIAI 2002) pages 649-654. AAAI Press,
2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjing for Quantified Boolean Logic satisfia-
bility. Artificial Intelligence 145:99-120, 2003.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Qué&ati Structure in Search Based Procedures for
QBFs. InProceedings of the Conference on Design, Automation andimf&urope (DATE 2006)
pages 812-817. European Design and Automation Associ2046.

38

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

T. Jussila and A. Biere. Compressing BMC Encodings WJfBF. Electronic Notes in Theoretical
Computer Sciencel74(3):45-56, 2007.

J. Katz, Z. Hanna, and N. Dershowitz. Space-Efficienuted Model Checking. IRroceedings
of the Conference on Design, Automation and Test in Eurogel ED2005) pages 686—687. IEEE
Computer Society, 2005.

S. C. Kleene. Permutability of Inferences in Gentzebaculi LK and LJ. Memoirs of the AMS
10:1-26, 1952.

D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella.eTdecond QBF Solvers Comparative Eval-
uation. InProceedings of the 7th International Conference on Theaty/Applications of Satisfiability
Testing (SAT 2004), Revised Selected Papotlame 3542 of NCS pages 376—392. Springer, 2005.

R. Letz. Lemma and Model Caching in Decision ProceddoesQuantified Boolean Formulas. In
Proceedings of the International Conference on AutomatedsBning with Analytic Tableaux and
Related Methods (TABLEAUX 2002blume 2381 oL NCS pages 160-175. Springer, 2002.

A. Ling, D. Singh, and S. D. Brown. FPGA Logic Synthesisitfy Quantified Boolean Satisfiability.
In Proceedings of the 8th International Conference on TheatyApplications of Satisfiability Testing
(SAT 2005)volume 3569 o NCS pages 444—450. Springer, 2005.

M. Narizzano, L. Pulina, and A. Tacchella. Report of Tdrd QBF Solvers EvaluationJournal of
Satisfiability, Boolean Modeling and Computati@1145-164, 2006.

A. Nonnengart, G. Rock, and C. Weidenbach. On Geneya&@imall Clause Normal Forms. Pro-
ceedings of the 15th International Conference on AutomBteduction (CADE 1998)\olume 1421
of LNCS pages 397-411. Springer, 1998.

J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. ccT: AolTtor Checking Advanced Correspon-
dence Problems in Answer-Set ProgrammingPtaceedings of the 15th International Conference on
Computing (CIC 2006)pages 3—-10. IEEE Computer Society Press, 2006.

E. Oikarinen and T. Janhunen. Verifying the Equivaen€Logic Programs in the Disjunctive Case. In
Proceedings of the 7th International Conference on LogaglPamming and Nonmonotonic Reasoning
(LPNMR 2004)volume 2923 o NCS pages 180-193. Springer, 2004.

G. Pan and M. Vardi. Optimizing a BDD-Based Modal SolvarProceedings of the 20th International
Conference on Automated Deduction (CADE 2008Jume 2741 ofLNCS pages 75-89. Springer,
2003.

D. Plaisted and S. Greenbaum. A Structure Preserviaggel Form Translationlournal of Symbolic
Computation 2(3):293-304, 1986.

J. Rintanen. Constructing Conditional Plans by a TaeoProver.Journal of Artificial Intelligence
Research10:323-352, 1999.

A. Sabharwal, C. Anstegui, C. P. Gomes, J. W. Hart, an&&man. QBF Modeling: Exploiting
Player Symmetry for Simplicity and Efficiency. Rroceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2006lume 4121 oL NCS pages 382—395.
Springer, 2006.

39

[39] H. Samulowitz, J. Davies, and F. Bacchus. PreprocgsQBF. InProceedings of the 12th Interna-

[40]

[41]

[42]

[43]

[44]

tional Conference on Principles and Practice of Constré&mgramming (CP 2006Volume 4204 of
LNCS pages 514-529. Springer, 2006.

H. Tompits and S. Woltran. Towards Implementations&dvanced Equivalence Checking in Answer-
Set Programming. IRroceedings of the 21st International Conference on LogigRamming (ICLP
2005) volume 3668 of. NCS pages 189-203. Springer, 2005.

A. S. Troelstra and H. Schwichtenbei@asic Proof Theoryvolume 43 ofCambridge Tracts in Theo-
retical Computer ScienceCambridge University Press, 1996.

L. Zhang. Solving QBF by Combining Conjunctive and Disftive Normal Forms. IfProceedings
of the 21st National Conference on Atrtificial Intelligencedathe 18th Innovative Applications of
Artificial Intelligence Conference (AAAI/IAAI 200AAAI Press, 2006.

L. Zhang and S. Malik. Towards a Symmetric Treatment afisSaction and Conflicts in Quantified
Boolean Formula Evaluation. IRroceedings of the 8th International Conference on Prilesi@and

Practice of Constraint Programming (CP 2002)olume 2470 ofLNCS pages 200-215. Springer,
2002.

M. Zolda. Comparing Different Prenexing Strategies @uantified Boolean Formulas. Master’s
thesis, Technische Universitat Wien, Institut fir Infationssysteme, 2004.

40

