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1 Introduction

Description Logics (DLs) [1] are a well-established bran€ltogics for knowledge representation and rea-
soning, and the premier logic-based formalism for modeatimgcepts (i.e., classes of objects) and roles (i.e.,
binary relationships between classes). They have gaimeedsing attention in different areas including the
Semantic Web, data and information integration, peergermlata management, and ontology-based data
access. In particular, some of the standard Web ontologies the OWL family are based on DLs [13].

While in DLs, traditionally reasoning tasks had been stdiaidich deal with taxonomic issues like clas-
sification and instance checking, the widening range ofiegibns has led in the recent years to extensive
studies of answering queries over DL knowledge bases wlighire, beyond simple instance retrieval,
to join pieces of information in finding the answer. Speclficaconjunctive queriefiave been studied in
several papers, cf. [2, 11, 12, 16, 17, 21, 22]. As shown theamswering (classes of) conjunctive queries
is decidable for several DLs, including also expressivesoriRecently, the authors of [11] proved this for
all conjunctive queries ove$HZ Q knowledge bases, while Hustaeltal. [16, 17] showed this earlier for
conjunctive queries without transitive roles and Oetizal. [22] for unions of such queries.

At present, (unions of) conjunctive queries 087 Q knowledge bases is among the most expressive
decidable settings. In this paper, we push the frontier atabéish decidability of query answering for
the yet more expressive class pdsitive (existential) two-way regular path queri@s short, P2RPQs)
over the expressive DIALC QTb,.,, which is close taSHZ Q. P2RPQs are queries inductively built using
conjunction and disjunction, from atoms that are regul@ressions over direct and inverse roles (and allow
for testing of concepts). They not only subsume conjunaiiveries and unions of conjunctive queries, but
also unions of conjunctive regular path queries [6].

More specifically, we make the following contributions.

e Different from previous works, which rely on resolutionslea transformations to disjunctive datalog
or on tableaux-based algorithms, we use automata tectmfqugquery answering in expressive DLs. While
the application of automata techniques in DLs is not novidl c25], previous work was concerned with
deciding satisfiability of a knowledge base consisting ofBoX only. Here we address the much more
involved task of query answering over a knowledge base, whas data in an ABox; incorporating the
query is non-obvious.

e The technique we apply is simpler and clearer than the egistines based on tableaux and resolution.
Indeed, it is computational in nature, and directly workgtmmmodels of the knowledge base. In this way,
we are also able to obtain more general results, which searesdifficult using the other approaches.

e As a first result, we present an automata-based algorithchirking the satisfiability of a knowledge
base (consisting of both TBox and ABox) irkETIME. This is worst-case optimal.

e Our main result then shows that answering positive existequieries ovetALCQZb,., knowledge
bases is feasible in 282TIME. By a reduction ofRZQ and to ALCQZb,.,, a similar result follows for
SHIQ andRZQ, and can easily be extendedd®7Z Q. This compares well to the N3®TIME bound
for union of conjunctive queries by Ortet al.[22], and the 2KPTIME bounds for (classes of) conjunctive
queries that emerge from [11, 16]. On the other hand, we lestadn ExPSPACE lower bound for positive
existential queries.

Our results indicate that automata-techniques have higgnpal for advancing the decidability frontier
of query answering over expressive DLs, and are a usefufdoalnalyzing its complexity.

INote that the technique in [3] for unions of conjunctive fegypath queries is actually incomplete.
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2 Preliminaries

2.1 Query Answering in ALC QTb,.,

We consider the DLALC Q7b,.,, whose concepts and roles obey the following syntax:

C,C' — A|-C|CnC' | Ccuc | YRC | 3RC |2nQ.C |<nQ.C

Q,Q — PP [QNQ | QUQ | Q\Q
R — Q| RUR | RoR | R* | id(C)

where A denotes amtomic conceptP anatomic role C' an arbitraryconcept and R an arbitraryrole. We
use( to denotebasic roles which are those roles which may occur in number restristiol/.l.0.g., we
assume that\"” is applied only to atomic roles and their inverses.

An ALCQTb,.,knowledge basgKB) is a pairkC = (A, 7T) whereA (the ABoX is a set ofassertionsof
the form A(a), P(a,b), anda # b, with A an atomic concept” an atomic role, and, b individuals and7
(theTBoY is a set ofconcept inclusion axiomS T C” for arbitrary concept§' andC’. W..0.g. we assume
that all concepts occurring id also occur in7. We denote byx the set of atomic concepts occurring in
IC, by R the set of atomic roles occurring ia and their inverses, and i the individuals inkC. If clear
from the context, we may omit the indéx

The semantics is the standard ortenowledge base satisfiabilitg the task of determining whether
there exists an interpretation that satisfies all asseriiopl and all the axioms ir7. We do not implement
the unique name assumptiqi/NA), i.e., two individualse andb may be interpreted as the same domain
element

Definition 2.1 [P2RPQs] Apositive 2-way regular path que(fP2RPQ) over a KK is a formuladz.o(Z),
wherep(Z) is built using/A andV from atoms of the forn€'(z) and R(z, 2’), with z, 2’ variables fromz or
individuals,C' an arbitrary concept an arbitrary role, and where all atomic concepts and rolesaocur
in C.

Note that P2RPQs naturally generalize conjunctive requaétn queries [6] and unions thereof.
Example 2.2 Consider the query over a genealogy KB&:

3w, y, 2. parent*-parent~" (x,y) A parent ~(x, z) A parent ~(y, z) A male(x) A =male(y) A
(—deity(x) V ~deity(y))

Informally, ¢ is true if there are relatives andy that have a common child, and if not both of them are
deities. "

Let ¢ be a P2RPQ, and I&tl(¢) denote the set of variables and individualgirGiven an interpretation
T, letrw : VI(q) — A7 be a total function such that(a) = a? for each individuak. We writeZ, 7 |= C(2)
if 7(z) € C%,andZ, 7 |= R(z,7) if (7(2),7(z")) € R%. Lety be the Boolean expression obtained from
by replacing each atom in ¢ with true, if Z, 7 = «, and withfalse otherwise. We say that is amatch
for 7 andq, denotedZ, = = ¢, if v evaluates tdrue. We say thaf satisfiesy, writtenZ = ¢, if there is a
matchr for Z andq. A KB K entailsg, denotedC = ¢, if Z |= ¢ for each model of K.

2The UNA can be easily simulated using assertions of the foefb.



INFSYS RR 1843-08-05 3

Query entailmentonsists in verifying, given a KB and a P2RP@Q, whetherK = ¢. Note that,
w.l.o.g., we consider here query entailment for Boolearrigagi.e., queries without free variables, since
query answering for non-Boolean queries is polynomialtjugble to query entailmerit.

2.2 Automata on Infinite Trees.

Infinite trees are represented as prefix-closed sets of vewatdN (the set of positive integers). Formally, an
infinite treeis a set of wordg™ C IN*, such that ifv-c € T, wherex € IN* andc € N, then alsar € T'. The
elements ofl” are calledhodes the empty word is itsroot. For everyx € T, the nodes:-¢, with ¢ € IN,
are thesuccessorsf x. If x is a successor af, theny is apredecessoof x andx andy areneighbors
By convention,z-0 = z, and(z-i)-—1 = z. Thebranching degreel(x) of a nodez is the number of its
successors. l(z) < k for each noder of 7', thenT" hasbranching degreé. An infinite pathP of 7" is a
prefix-closed seP C T where for every > 0 there exists a unique nodec P with |z| = i. A labeled tree
over an alphabet is a pair(T, V'), whereT is atree and” : T — X maps each node @f to an element of
3.

Alternating automata on infinite trees are a generalizaifarondeterministic automata on infinite trees,
introduced in [19]. They allow for an elegant reduction otiden problems for temporal and program
logics [9].

Let B(I) be the set of positive Boolean formulas built inductivelyrfrtrue, false, and atoms from a set
I applyingA andv. A setJ C [ satisfiesa formulay € B(I), if assigningtrue to the atoms in/ andfalse
to those in/ \ J makesy true. Atwo-way alternating tree automatq@ATA) running over infinite trees
with branching degree, is a tupleA = (3, Q, , qo, F'), whereX is the input alphabety is a finite set of
statesy) : Q x ¥ — B([k] x Q), where[k] = {—1, 0, 1,...,k}, is the transition functiong, € Q is the
initial state; andr' specifies the acceptance condition.

The transition functiord maps a state € @ and an input lettet € 3 to a positive Boolean formula
. over atomslk] x Q. Intuitively, if 6(q,0) = ¢, then each atonic,q’) in ¢ corresponds to a new
copy of the automaton going in the direction given dwand starting in state’. E.g., letk = 2 and
5(q1,0) = (1,q2) A (1,q3) V (=1,¢1) A (0,¢3). If A is in the statey; and reads the node labeled with
o, it proceeds by sending off either two copies, in the stateend s respectively, to the first successor of
x (i.e.,z-1), or one copy in the statg to the predecessor af(i.e.,z-—1) and one copy in the statg to x
itself (i.e.,z-0).

2ATAs generalize standard nondeterministic automata fomte trees in two ways. First, in (standard)
one-way automata input trees are always navigated in algttop-down manner, moving always to the
successors of the current node. In contrast, in two-waynaati® transitions can be defined that move up
on the input tree to the predecessor of the current node,abrsthy at the current position. Comparing
with the above definition, the transition function of a oneyveaitomaton is of the formd : Q x ¥ —
B({1,...,k} x Q), i.e, the directions-1 and0 are not allowed. The second differencealgernation
which generalizes non-determinism. While in alternatindgoenata the transition function can have any
positive Boolean formula if8([k] x @) on the right hand side, the transition function of a nonaeteistic
automaton only allows for disjunctions of the foriy, - - - | d,,, where each; is in turn a conjunction of pairs
(i, q) containing exactly one such pair for each [k]. We denoteone-way non-deterministic automatg
INTA.

Here we refer to the decision problem associated to quenyexit, i.e., to decide whether a given tuple is in the ansyfier
the query.
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Informally, a run of a 2ATAA over a labeled tre€l’, V) is a labeled tre€T., r) in which each node is
labeled by an elememi{n) = (z,q) € T x @ and describes a copy & that is in the statg and reads the
nodez of T'; the labels of adjacent nodes must satisfy the transitiontfon of A. Formally, arun (7., r)
is aTl x Q-labeled tree satisfying:

1. e e T, andr(e) = (g, q0).

2. Lety e T,, withr(y) = (z,q) andd(q, V(z)) = ¢. Then there is a (possibly empty) set= {(c1,q1)
yovos (Cnyqn)} C k] x @ such that:

e S satisfiesp and
e forall 1 <i <mn,we havethayi € T,, x-¢; is defined, and(y-i) = (z-¢;, ¢;).

In this case, we say thaty) = (z, ¢) evaluates to true in the rufi;., r).

For a (possibly infinite) path in a run of the automaton, we denote llay(7) the states of) that occur
infinitely often inw (as second components of node labels). Different kindsa#@tence conditions can be
considered forr:

1. ABuchiacceptance condition is given by a set of stdteS ). The pathr is accepting ilnf(7)NF #
0.

2. A parity acceptance condition (of length) is defined by a finite sequence of sets of stdfes-
(Gy,...,Gp)WithG; C G2 C --- C G, = Q. The pathr is accepting if there is aeven: such that
|nf(7T) NG; # 0 andlnf(w) NGi_1 = 0.

3. Acoparityacceptance condition (of length) is defined as a parity one, being the only difference that
7 is accepting if there is andd: such thainf(7) N G; # 0 andInf(7) N G;—1 = 0.

Arun (T,,r)isacceptingif all its paths are accepting. An automaton with a parityegtance condition
can be easily converted into one with coparity acceptarateatttepts exactly the same input trees, and vice
versa [20]. Furthermore, it is easy to see th@ighi acceptance condition can be easily converted into
a parity or coparity one. The converse is not true, howevaeritygcoparity automata are strictly more
expressive than Bichi automata [24].

The nonemptiness problefior 2ATAs is deciding whether the sél(A) of trees accepted by a given
2ATA A is nonempty. The following result is well-known.

Theorem 2.3 [27]For any 2ATAA (with parity acceptance condition) witlh states and an input alphabet
with m elements, nonemptiness Afis decidable in time single exponential inand polynomial inm.
Also, there is a one-way nondeterministic Parity tree awttum (INTA)A; with O(2") states and parity
condition of size)(n) such thatC(A) = L(A;).

3 Deciding KB satisfiability via automata

For many DLs includingd£C Q7b,.,, the standard reasoning tasks are naturally solvable byatieomata,
thanks to theree model propertyof such DLs: every satisfiable TBdK (or similarly, every satisfiable
conceptC) has a tree-shaped model. In the presence of an ABtxXs property fails, since the assertions
in A may arbitrarily connect the individuals. While a satisf@llLC QZb,., KB K = (A, 7T) may lack a
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tree-shaped model, it always has a forest-shajg@nical modelin which each individual is the root of a
tree-shaped model &. This property is usually sufficient to adapt algorithms doncept satisfiability to
decide KB satisfiability. In particular, automata-basegbethms have been adapted usingpghecompletion
technique [25], in which after a reasoning step on the ABokgmata are used to verify the existence of a
tree-shaped model rooted at each ABox individual.

Our approach is different. We represent a forest-shapedpirgtation as a tré€, and encodéC into an
automatonA i that acceptdl iff T corresponds to a canonical modelfof To the best of our knowledge,
this is the first algorithm that deals with ABox assertionsl ardividuals directly in the automaton. This
enables us to extend the automata-based algorithm als@tg gnswering (see next section).

First we define th€syntactic) closuref an ALC Q7b,.,concept, which extends the standard Fischer-
Ladner closure foconverserDdL [10]. Intuitively, it contains all the concepts and rolesitttmay occur
when a concept is decomposed during a run of an automatonree eepresenting a model & Usually
the closure is defined as a set of concepts. We will use a @liftetefinition, where the closure is a set of
expressionshat may contain concepts and basic roles, as well as sonit@adtielements. As we will see,
the automata algorithm treats similarly boolean constnscon concepts and roles. Individual names and
auxiliary labels are handled analogously as the atomicaqscand roles. Putting all these elements into
the closure will simplify the construction of the automata.

Here and in the following, we use to denote eithek or < and we us&)~ to denoteP when() = P~.

For a non-atomic basic rol@, )~ denotes the role obtained froghby replacing each atomic or inverse of
atomic role occurring i) by its inverse. In the rest of this subsection we assume tlaatdV are expressed
by means of1 and3 using—. (We remind that” andC’ stand for arbitrary concept$, and P’ for atomic
or inverse of atomic role) and@’ for basic roles andz and i’ for arbitrary roles).

The closureCl(D) of an ALC QZb,.,conceptD is defined as the smallest set of expressions such that
D e CI(D) and:

if Ce Cl(D) then —C € CI(D) (if C is not of the form-C")
if —-C e Cl(D) then C € CI(D)

if Cnc’ e Cl(D) then C, C’ € CI(D)

if 3R.C € CI(D) then C € CI(D)

if J(RUR').C € CI(D) then 3R.C,3R.C e CI(D)
if 3(RoR).C e ClI(D) then IRAR.C € CI(D)

if JR*.C € CI(D) then JR.3IR*.C € CI(D)

if 3Jid(C).C" e ClI(D)  then C, C’ e CI(D)

if 3Q.C € Cl(D) then @ € CI(D)

if =Z2nQ.C € Cl(D) then @, C € CI(D)

if QNQ € Cl(D) then @, Q' € CI(D)

if QUQ € Cl(D) then Q, Q' € CI(D)

if P\ P e€ClD) then P, P’ € CI(D)

if Qe Cl(D) then —-Q, Q~, ~Q~ € CI(D)
if Q € Cl(D) then -Q, Q, -Q~ € CI(D)

Note that|CI(D)| is linear in the length ofD. Sometimes we consider conceptsn negation normal
form, denotednnf (C'), in which negations are pushed inside as much as possilenégation only occurs
in the form—A for A a concept name. Analogously, in thegation normal fornof a basic role?, which
is denotednnf (@), only atomic or inverse of atomic roles may occur negatedafly, any concept or basic
role E can be transformed into its negation normal form in timedirie the size of=. We let C1™ (D) =
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{nnf(E) | E € CI(D)}. For a concepD and a given se§, we denote the set!™ (D) U {-s, s | s € S}
by 1™/ (D, S). and call it theS-extended closuref D.

3.1 Representing Canonical Models as Trees

Let C be anALCQTZb,.,concept and leh be the maximah occurring in a concept of the for@ n Q.C’

in CI"™(C)). Consider an arbitrary interpretatioh = (AZ,.7) for C, and consider the directed graph
whose nodes are the elements\of, and where any two nodesb € A’ are connected by an asc— b iff
{a,b) € PT for someP. ThenZ is a tree interpretation if this graph forms a tree. Bhenching degreef
the tree is iff every nodea € AZ has at mosh outgoing arcs. It is well known thad £C QZb,.,has the
following tree model property

Theorem 3.1 [4] Every satisfiable ALC QTb,.,conceptC has a tree-model with branching degrég =
|CL(C)] x n.

Consider anAdLC QZb,.,knowledge bas& = (A, 7T), and let

Cr =V(Uger, )" |_| (=C1 U Cy)
C1EC2eT

By internalization [23],CZ = A7 for every interpretatiorZ = (AZ,.Z) that satisfies all the concept
inclusion axioms irZ” [5]. This implies that, by Theorem 3.1, the existence of a-skaped model for the
TBox 7 can be ensured. The assertionsdlimay impose arbitrary relations between the individualss 1o
does not necessarily have tree shaped models. Howeves, at $laghtly weakecanonical modeproperty.
LetZ be an interpretation fofC and let{oy, ..., 0,} C A be the elements interpreting the individuals
in A. We say thafl is canonical if the associated graph is such that, when @l @rthe formo; — o; with
1 < i < j < nare removed, we obtain a set of trees, each of which is rodtednaeo;. The domain of
any such canonical modélcan be represented as a set of trees.Let {a4,...,a,,} be the set of ABox
individuals interpreted ifT, and letS = {¢4,...,t,} be the set of tree-shaped modelg4f in Z, each of
which is rooted at the interpretation of somge The objects interpreting the individuals ih are denoted
1,...,n (note that, since any two individuals may be interpretechassame object, we have that< m).
Each treg; in S is rooted at someé € {1,...,n} and has a branching degreekef,. Thus, we can define
canonical models as follows:

Definition 3.2 Let K = (7, .A) be anALCQZb,., KB and let7 = {ai,...,a,} be the individuals inA.
An interpretatiorZ = (AZ,.T) for K is called acanonical interpretatiorif:

(1) AT C{1,...,n}{1,... ko, }* wheren < m and{c} U A” is prefix closed (i.e., itis a tree).
(2) Foreachy; € J there is exactly ong € A%, such thay € {1,...,n} anda? = j.

(3) If (i-w, j-w') € P for some atomic role?, i,j € {1,...,n}, then eitherij w = w’ = c or (i) i = j
andw, w’ are neighbors (in the trefg} U A7),

The canonical model property ofLCQTb,., is also well known:

Theorem 3.3 Every satisfiableALCQ7b,.,KB K = (T, .A) has a canonical model such thatZ is a
canonical interpretation fokC, Z = A anda? € CZ holds for alla; € J.
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We want to decide the satisfiability of a KBB. Due to Theorem 3.3, it is sufficient to decide the existence
of a canonical model fok. In order to do the latter by means of tree automata, we reptescanonical
interpretationZ for KC as a labeled tre®'z. We define an automatofi that accepts a labeled trag; iff
Tz represents a canonical modeltf and check this automaton for emptiness.

First, we define the way in which a canonical interpretat®represented as a labeled tree. The domain
of a canonical interpretation is almost a tree; we only neealdd a root to it and to represent the exten-
sions of the interpretations of individuals, concepts avlds as labels in the tree. This can be done in a
straightforward manner. Roughly, each element af AZ, which is a node of the tree, is labeled with a set
V (z) that contains the atomic conceptssuch thatr € A7 and the basic roles that connect the predecessor
of z to . Only the roote and the nodeg1,...,n} (which are at the first level of the tree) are treated
differently. The label of each node in€ {1,...,n}, apart from the atomic concepts to whictbelongs,
also contains the name of the individualsinwhich it interprets. Furthermore, the label:otontains no
basic roles. Instead, the relations between level one rm@estored in the label of the roet The roote
does not represent any objectA and is marked with a special symbglto identify it as the root, and
symbols of the formPi; indicating that the pair of individual§:;, a;) belongs to the extension of the basic
role P. For simplicity, if m > n, to ensure that the root has exacthychildren, m —n dummy children
labeled{d} are added to the roet

Definition 3.4 Let L = (A, 7) be anALCQZb,., knowledge base and Ief = {a1,...,a} be the set
of individuals occurring ind. LetZ be a canonical interpretation f& in which the individuals in7 are
interpreted ag1,...,n}. Thetree representation df is the labeled tre@';z = (7', V') defined as follows:

e T={clUuATU{n+1,...,m}.

o V(e)={rtU{Pij|aia; € jand(a%,a%) € P71y,

foreachl <i<n, V(i) ={a; € J |al =i} U{A € Cx | a] € A* anda} =i},

foreachn +1 < i <m, V(i) = {d},

and for all other nodesx of T, V(i-x) = {A € Cc | iz € AL} U{P € Rx | (i-w,i-z) €
PT wherex = w-j for somej, 1 < j < k¢, }

Note that the branching degree®f; is bounded by.7| at the root and by, at all other levels, so the
tree has branching degreenx (k¢ , |7 |).

3.2 Constructing the Automaton

We now construct fromiC a 2ATA A that accepts a given treéE iff it is the tree representatio’'; of
some canonical moddl of K. A similar construction for deciding concept satisfialgiin ALC QZb,.,was
presented by Calvanestal. [4]. We adapt and expand that construction to handle the Adax

The automatoA x = (Xk, Sk, 0, so, Fic) is defined as follows.

e The alphabet i& = 20xVReVINIAALUPT \wherePT = {Pij | a;,a; € J andP € Ri};

According to Definition 3.4, the node labels are sets of atarnncepts, basic roles, and individuals
in 7, plus the auxiliary symbols andd and the symbols of the for?i;j in PI, which may occur in
the root’s label.



INFSYS RR 1843-08-05

e The set of states iSx. = {s0, 51} U Clegt U Snum U Sa_rote U SA_quant U S A_num Wheresg is the
initial state,s; is an additional state, an@l .., = CI"™ (Cr, J U{r,d}) is the(J U {r, d})-extended
closure ofCy.

EachFE € Cl.,; Is a state irb, and these are the ‘basic’ statesAg. Intuitively, when the automaton
A moves to a stat& ¢ Cl.,; and visits a node: of the tree, it must check thdt holds inz. To
this aim, the expressions ifil.,; are inductively decomposed and the tree is navigated aogyd
For some particular concepts (e.g. number restrictionsearsdential and universal involving ABox
individuals), we need additional special states, namedyadifies in the setS,, ., S 4 roier SA_quant
andS 4 n.m. These are defined and briefly explained below.

Spum = {(=nQ.C,i,7) | >nQ.Cc CI"™ (Cr), 0<i<kc,+1,0<j<n}U
{(€nQ.Ci,j) | <nQ.C e Cl™ (Cr), 0<i<kc,+1,0<j<ntl}

The states in the sét,,.,,, are used for checking whether the number restrictions aisdfied. Roghly,
in one such state, stores how many successors of the current node have beeyateal;i and how
many of them are reached throu@hand labeled withC'.

Sarole = {Qij | ai,a; € J andQ a basic role inCI™ (Cr)}

The automaton moves to a state of the fapiy when it needs to to verify whether ABox individuals
a; anda; are related by a rol€.

SAquant = {(7,3Q.C) | 3Q.C € CI"™ (Cr), Qabasicrole] < j <|J|}U
{(j,¥Q.C) | ¥Q.C € CI"™ (Cr), Q abasicrole]l < j < |7}

These special states allow to automaton to check whetheeptsof the formrdQ.C' andvVQ.C' are
satisfied by some ABox individuad;.

SAnum = {(m,>2nQ.Cii,5) | >nQ.Cec Cl™ (Cr), 1<m,i<|J|, 0<j<n}uU
{(m,<nQ.C,i,5) | <nQ.Ce Cl"™ (Cr), 1<m,i<|T;0<j<n+1}

The states it 4_,.m are used to verify the satisfaction of the number restmstiby the ABox indi-
viduals. Similarly as abové,stores how many successors of the individuglhave been navigated,
and; how many of them are reached throughand labeled withC'.

e F = {VR*.C'| YR*.C € CI"™ (Cr)} is a Biichi acceptance condition.
Observe that concepts of the foei*.C' are not final states. This is sufficient to guarantee that such
concepts are satisfied in all accepting runs of the autonjdjon

e The transition functiory : Sk x Xx — B([k] x Sk), wherek = max(kc,,|J|), is defined as
follows:

1. First of all, the automaton will verify that the root coimsr, that the level one nodes properly rep-
resent the individuals in the ABox, that all ABox assertiams satisfied, and that every non-dummy
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node at level one is the root of a tree representing a modeofThus, for eacly in o € ¥ with
r € o ando N {Cx U Rk} = () we define a transition from the initial statg

d(sp,0) = By AN--- A\ Bg

where;:

B = Ni<i<j7/((Vi<j<1(Ea5) A (6, 2d)) V (i, d))

B2 = Nici<iz) Vigj<ig1Us @)

Bs = Ni<ici<1g1(Ni<i<) (6 —aw) V (5, —ak))

By = Ni<i<7)((, =) A (3, 51))

Bs = /\ai;éajeA(/\lngLﬂ(k» —ai) V (k, —ay))

Bs = A agayyeaVi<iciz( (i, a5) A (i, A))

B7 = Ap(a;,a,)ea(0, Pij)

Bg = /\1§z§|j|((i> nnf(CT)) V (i, d))

e B ensures that each level one node stands for some indiviguah which case the label
containsa;, and does not contaid, or it is a dummy child labeled.

e B, verifies that the label identifying each individual occurs in some level one node.

e B3 verifies that a label identifying an individual does not acicutwo different level one nodes.

e B, checks that on each level one node the label does not contaiml also moves on each level
one node to the statg. Froms; it then further checks thatand eachu; € 7 do not appear at
any node below level one in the whole tree. This is accomgtidby the following transitions,
one for eaclr € Yg:

6(s1,0) = /\1§igkCT((i> ) A Ai1<j<17/(i; maz)) A (i, 51))

e Bj checks, for each inequality assertion# a; in A, that the labels:;, a; do not occur in the
label of the same level one node.

e Bg ensures that the assertions of the fofifu;) in A are satisfied, by verifying, for each such
assertion, that every node labeleds an instance ofi.

e By verifies that each assertions of the foff(u;, a;) is satisfied, by going to the stafei;.

e Finally, Bs checks that every non-dummy node at level one is the root fearepresenting a
model of the concepf's.

Note that conditionsB;—B, do not depend on the actual ABox assertions. Among thBseB3
ensure that the level one nodes properly represent theidndig in 7. Instead, conditiond3s—
B; guarantee that all ABox assertions are satisfied, while iiondBs guarantees that the TBox
assertions are satisfied.
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2. Now we define transitions that inductively decompose eptxand roles, and move to appropriate
states of the automaton and nodes of the tree. Note thatahgttons involvingv R*.C' and3R*.C’
are slightly different from the others. Instead of deconipgshe concept, they trestR*.C' as the
equivalent concept’ NYR.YR*.C, anddR*.C' asC U3JR.AR*.C.

For each concept or basic role @™ (Cr) and eachr € ¥ there are transitions:

5(CNC,0)=(0,C) A (0,C")
s(CUC,o)=(0,C) v (0,C")
S(V(RUR').C,o) = (0,YR.C) A (0,YR'.C)
S(V(Ro R').C,o) = (0,YRYR.C)
S(VR*.C,o)=(0,C) A (0,YRNR*.C)
5(Vid(C).C", o) = (0, nnf (~C)) V (0,C")
SA(RUR').C,o)=(0,3R.C) V (0,3R.C)
5(3(Ro R').C,0) = (0,3R.3IR.C)
S(3R*.C,o)=(0,C) Vv (0,3R.IR*.C)
§(3id(C).C",0)=(0,0) A (0,C")
5QNQ.0)=(0,Q) A (0,Q)
(QUE,o)=(0,Q) Vv (0,Q")
5Q\ Qo) =(0.Q) A (0,-Q)

Additionally, for each basic role ig1" (C7), eachs € L and each, j € J there are transitions:

(QNQ'j0) = (0,Qif) A (0,Q"z))
(QUQijo) = (0,Qij) Vv (0,Q")
6(Q\Q'ij,o) = (0,Qij) A (0,2Q"ij)

Remember that i) \ @', the roles@ and@’ are either atomic or inverse of atomic, and hencg
(resp.—Q’ij) is indeed a state of the automaton.

3. To verify that a concept of the fori).C or 3Q.C is satisfied by a node, (where( is a basic role),
all the nodes that reach or are reachable fromust be navigated. We need different transitiafs (
for a nodex at level one, andii) for a nodex at any other level. In casé), the predecessor and the
successors of are navigated as usual. In cagg the transitions must consider the other individual
nodes that are connected itovia some role, which is recorded in the root label. Therefthe
transitions must send suitable copies of the automatonvigaia the successors, and send a copy of
the automaton up to the root, moving to the special statésiif,q.:. Thus, we define the following
transitions, for each concept of the fof®.C or VQ.C in CI"™ (Cr) and eachr € Y.

First, if o N (J U {d}) = 0 (i.e., casei() above), we define:

§(3Q.C.o) = ((0,Q7) A (-1,C)) vV \/1§igk07((i7Q) A (i, C))
6(vQ.C,o) = ((0,nnf(=Q7))V (=1,C)) A Algigch((ia nnf (—Q)) V (i, C))

Otherwise, ifo N (J U {d}) # 0 (case () above), we have transitions:
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5(EIQC> J) = \/a]Ecr(_lv <]7 EIQC>) v v1§i§ch((iv Q) N (iv C))

5(VQC> J) = /\ajea(_lv <]7 VQC» A
Ni<icke, (G nnf (=Q)) V (i, C))

For eachr € Y, and eachj, 3Q.C) or (5, VQ.C) in S 4_guant, there is a transition
5((]7 EIQC>7 U) = \/ ( \/ ((07 Q]k’) A (iv ak) A (iv C)))
1<i<|T| 1<k<|T|

5((]7 VQC>7 U) = /\ ( /\ ((07 nnf(_'Q]k)) v (iv _'ak) v (’L.> C)))

1<i<|J| 1<k<|T|

4. For number restrictions, the transitions are slightlyrenavolved since we need to encode a counter
into the automaton. Intuitively, a statee n Q.C, i, j), for 2€ {>, <}, is used to check whether a
qualified number restrictiogs nQQC' is satisfied in a node by counting the number of nodes reached
from = through@ in which C' holds. More precisely, when the automaton is in a state ofdima
= n@QC and visiting a node, it will change to the staté= n Q.C, 0, 0). Then it will suitably navigate
the neighbours of the node, using the first counter to keeg tiethose that have already been visited,
and the second one to account for those that are reachablegththe relatior) and which are an
instance of”. Thus the automaton will be in a stafe n Q).C, i, j) if among the first — 1 neighbours
of x there arej nodes reached froma through@ in which C' holds.

For each concept of the forga n Q.C'in CI"™ (C7) and eachr € X there is a transition:

5(=nQ.Co) = (0,(=nQ.C,0,0))

Once the counters are setdy the above transition, the automaton starts navigatiagticcessors
of the node, which are at mokt.,.. This is done with a set of transitions of the following form:

(2 nQ.Ci,j),0) = (41 nnf(=Q)) V (i+1, nnf (=C))) A (0,(2 n Q.C,i+1, j))) V
((i+1,Q) A (i+1,C) A (0, (2 nQ.C,i+1,j+1)))

for all states inS,,,,,, with the counters ranging over the following values:
e 01 < kCT
i stores how many successors have been counted, and che¢ks-tigth
o if Zis>,then0<j<n
We stop counting if we reach, as we already know the at-least restriction is satisfied
e Otherwise, ifzis <, then0 < j <n
We can stop counting if we reaeh+ 1, as we know that the at-least restrictions is not satisfied.
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After counting the successors of a node, we have to disshghetween the level one nodes and
the remaining ‘ordinary’ nodes. In the latter case the aatom simply moves up and takes the
predecessor of the node into account.

Thus, ifo N (J U {d}) = 0, we define:

6((2 nQ.C kor,j),0) = (((0,nnf (-Q7)) V (=1, nnf (=C))) A (0, (2 nQ.C, kor+1,5))) V
((0,Q7) A (=L C)A(0,(2 nQ.C. ko +1,j+1)))

with j as above, i.e) < j < nif Zis >, and0 < j < n otherwise.

For the level one nodes, the automaton moves up to the rodivaadtate inS 4 ... Note that the
first counter is restarted in order to start navigating thvell®ene nodes, while the second counter
still stores the number of elements that has been accountesd far. From this state, the automaton
counts how many level one nodes represent an individualhwkitelated tac by the role and is an
instance ofC.

If o (JU{d}) #0:

(2 nQ.C, k077j>70) = /\aieo(_L <i7 2 nQC707.7>)
and, for all states it$ 4_,,um, We define:

6(<m7 2 ’I’LQC,’L,]>, U) = ((Al§k§|.7|((iv _'ak) v (07 nnf(_'ka’))) v (iv _'C)) N
(0,{m,2 nQ.C,i+1,5))) v
(Vi<r<) 71 (G ar) A (0, Qi) A (i,C)) A

(0,¢

,(m, = nQ.Cyi+ 1,7 + 1))

with 1 < m,i < |J|, if Zis >, then0 < j < n,andif=is <, then0 < j < n.

Once all the necessary nodes have been navigated the {sfigstibn of the number restrictions can
be established:

0((ZnQ.C,i,n),o0) = true, for0 <i <kc,+1
((ZnQ.C kc,+1,j5),0) = false for0<j<n-1
0((€nQ.Cyi,n+1),0) = false for0 <i <kc,+1
(< nQ.C ke, +1,j5),0) = true, foro0<j<n
o((m,>2nQ.C,i,n),o) = true, forl1 <i<|J|
d((m,=2nQ.C,|T|+1,4),0) = false for0 <j<n-1
d((m, < nQ.Cyi,n+1),0) = false forl1 <i<|J[|+1
o((m, < nQ.C,|J|+1,j),0) = true, for0 <j <n.

5. Concepts and roles are recursively decomposed as exglabove. When reaching the atomic level,

it is checked whether the node lakelcontains the corresponding atomic symbol. Thus, for each
o € Y, and each € Cx U Ry U J U {d} there are transitions:

t if t if
5(s,0) = rue, | seo and 5(=s, 0) = rue, | s¢€o
false, ifs¢o false, ifseco
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6. Finally, further transitions verify whether ABox inddtals are connected via some atomic or inverse
of atomic role by checking the label of the root. For each > and Pij € S4 o With P € Ry
there is a transition:

(P, ) — {true, if (Pij € o) or (Pji € o)
false, otherwise
Roughly, a run ofA i on an infinite tre€l starts in the root, checks that the ABox is properly reprieskn
and moves to each node representing some individual in toddreck thaC's holds there (item 1 above).
To this end,nnf (Cr) is recursively decomposed while appropriately navigativggtree (items 2, 3 and 4)
until A arrives at atomic elements, which are checked locally §t&rand 6).

3.3 Soundness and Completeness

Satisfiability of anALCQTb,., KB K can be decided by testing the automathg for emptiness, since
there is a direct correspondence between canonical treelsotllC and the labeled trees accepted by
Ax. Indeed, a labeled treé® = (7, V') over the alphabeE can represent an interpretatid@s- for K.
Furthermore, ifT' = (7, V') is accepted by k., then it represents a canonical modekof

We use the notion of quasi-interpretation A%, -Z), which is very similar to an interpretation. The only
difference is that in a quasi-interpretatiof. is a subset ofA for any individuala;, instead of a single
element ofAZ. Canonical quasi-interpretationare defined similarly to canonical interpretations, ontth
instead of item 2 in Definition 3.2, they satisfy thet C {1,...,n} for eacha; € J.

Now we define the quasi-interpretati@s represented by a tréB. Informally, its domainA’T is given
by the nodes: in T with a; € V(x) for some individuak,;, and the nodes iT" that are reachable from any
suchz through the roles. The extensions of individuals, concaptsroles are determined by the labels of
the nodes irT.

Definition 3.5 A labeled treel’ = (7', V') over the alphabelc is called aquasi-interpretation tred:
e the branching degree || at the first level and:c, at all the other levels,
o rcVie)anr ¢ V(x) foreveryz # ¢,
o for every level one node < z < | 7|, {d} UJ) NV (z) # 0 and{d,a;} Z V(z) for eacha; € J,
o ({d}UuJ)NV(xyj)=0foreveryzx #¢,j > 0.

W.l.o.g. we assume that for any pairy of level one nodes,y € {1,...,|J
a; € J andd € V(y), thenz < y.
Let T = (7, V) be a quasi-interpretation tree. For each atomic fleve define:

}, if a; € V(x) for some

R}; ={(z,xi) | P € V(xi)} U{(xi,x) | P~ € V(xi)}

Rp ={(i,4) | Pij € V(e)} U{(j,7) | PTij € V(e)}

Intuitively, R}, contains all the pairs of nodés, y) that are in the extension of the atomic réewhere at
least one of: andy is not a level one nodé’z% contains all the pairs of level one nodes that are related by
the roleP. Together,;R}, andR?% determine the extension of the atomic réte
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We also define the sé&tof the nodes irll" that interpret some individual if7:
I={z|ze{1,...,|T]|} a; € V(x)forsomea; € J }

Note thatl is actually a set of the fornf1,...,n} for somen < |J|. To define the domain af’T,
we consider the nodes Ihand those that are in a subtree starting at some elemdnarod are reachable
though a sequence of roles froff i.e., the nodes that comprise the tree-shaped mode&ls-aboted at
each element d. For each € I, the set of all such nodes can be constructed as follows:

D;={a'| (i) e ( |J (RPURL))"}
PeRy

Clearly, the seD; is a tree ovei-{1, ..., kc, } whose root is.

Definition 3.6 Given a quasi-interpretation tr&, the quasi-interpretatiofr for £ is defined as follows:

ATt = TUU; Ds

aiIT = In{z|a; €V(x)}, foreacha; €T
Al = Alrn{z|AecV(x)}, foreachatomic concept
PIr = (ATt x ATt)nRp, foreach atomic rol’, whereRp = R} U R2.

Note that, by definition, the interpertatidi- represented by a quasi-interpretation tree satisfies items
and 3 in Definition 3.2, and it also satisfies C {1,...,n} for all individuals. ThereforeZr is a canonical
guasi-interpretation.

Proposition 3.7 Let T be a labeled tree accepted . ThenZy is a model ofk.

Proof. LetT = (T, V) be a labeled tree accepted Ay.. ThenZt is a canonical quasi-interpretation.
Furthermore, note that the transition functionf: (item 1, B; to B3) is defined in such a way that each
a; € J occurs in the label of exactly one level one node in any treeated byA . Since only such nodes
can occur ini/* for ana; € 7, a'™ is a singleton. Thugy is a canonical interpretation fd.

To see thatZt is a model ofKC, we have to show thai)(Ztr A and that () for eacha; € 7,
a;™ € 07" is a model ofk.

First we provei). Note that item 1 in the transition function &fx, together with items 5 and 6 (which
ensure thatd(x, E) = true iff E € V(x) for any noder and element of the node labdtd, ensure that in
every treeT accepted byA ¢ the following hold:

o If a; # aj € A, thenthereisnonodec {1,...,n} in T such that{a;,a;} C V (k) (by Bs).
o If A(a;) € A, then there is some nodec {1,...,n}in T such thafa;, A} C V (k) (by Bg).
e for eachP(ai,aj) € A, Pij € V(e) (by By).

Clearly, by construction dfr, this is enough to ensure that every assertion in the ABoatisfeed and
It E A. In order to provei(), first observe that by item 155) in the definition of the transition function,
if T is accepted by ., then(i, Cr) must evaluate to true for eveiye {1,...,|7|} such that is in AZT.
We will show in the following lemma that this impliese C%T, and thus it is enough to ensure thaj (
holds.
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Lemma 3.8 Let T be a tree accepted b, let (T, ) be an accepting run cA . over T and lety be a
node of7" with r(y) = (z, E), for some node of T, = # ¢, and some& € CI(Cr) a concept, individual,
or basic role. Them(y) = (z, E) evaluates to true in the run iff

e x € EXT whenE is a concept or an individual; and

e (2/,z) € ETT whenF is a role,2’ is the predecessor afin T andz’ # ¢.

The proof of the lemma is a straightforward induction on ttracdure of £. By the definition ofT'z
and the definition of the transition function (item 5) it isvial for atomic £. For complex concepts and
roles, it also follows from the definition of the transitionniction, particularly item 2, which decomposes
them accordingly. Some cases are slightly more involved.cbaocepts involving quantifiers and number
restrictions, the items 3 and 4 must be considered. In bathscthe level one nodes must be treated as
special cases requiring item 6.

Most cases are straightforward. Only concepts of the fefri.C and3R*.C are slightly different.
These are propagated using the equivalent conc¢eépty R.VR*.C' andC U 3R.3IR*.C, respectively. Only
these concepts may generate infinite branches in a run. fresoi@anchR*.C could always be resolved by
choosing the disjunci R.3R*.C' but never the disjunat’. The branch then corresponds to an infinite path
in the tre€T in which R is iterated forever and’ never satisfied. Since the semanticsi&f*.C' means that
C is satisfied after finitely many iterations &f this path cannot be used to satisfi*.C. The acceptance
condition of A i, which requires that each infinite branch contains onlyestaf the formiv R*.C' infinitely
often (and thus eachR*.C will stop occurring at some point on the path) rules out sudimite branches
in accepting runs, ensuring that all concepts of the faii.C' and3R*.C are satisifed. O

Conversely, ifZ is a canonical model df, thenT'z, the tree that represeriigDefinition 3.4) is accepted
by Ag.

Proposition 3.9 LetZ be a canonical model df. ThenA acceptsT';.

Proof. We have to prove thaA . has an accepting run éhz. This is the case, since we definAg:
in such a way that it will always accept a tree if it managesenfy that the tree represents a model of
the knowledge base. The accepting run will startsat,). Since the root of Tz is marked withr and
r N {Cx U Rk} = 0, then a transition of the formi(sg, V(¢)) = By A --- A Bg will be defined. Since
7 is a canonical model of, then for everyn; € 7 there will be exactly ong in Tz such that; € V(j).
Moreover, for everyj, 0 < j < |J|,d € V(j) iff a; € V(j) for everya; € J. This ensures that in the run
there will be suitable successors(ef sg) of the form(j, a;), (4, —a;), (j, d) and(j, ~d) as required by items
By to Bs. Similarly, sinceZr |= A, whenevem; # a; € A, there will be no level one node such that
a; € V(k) anda; € V (k). This ensures that the automaton can navigate to everyisaod move either
to the states; or to the state:;, as required by3s. Also, sinceZ = A(a;) for every assertioi(a;) € A,
the automaton can move to the nadwith a; € V(i) and change to staté in order to satisfyBs. As
7 = P(a;,a;) for every such ABox assertio?ij € V (e) will hold by definition of Tz, and thus the run
can successfully satisfi;. Finally, asZ is a canonical model o€, aiIT € C%T for everya; € J. Thus the
automaton can send suitable copies to every level one fHaued either move to statér if a; € V (j) for
some ABox individual, or move to statkotherwise, ensuring thdis is also satisfied. The rest of the run is
just an inductive decomposition of the concépt, starting at every level one node which interprets some
ABox individual. Since every such individual is indeed astance ofC'7, by Lemma 3.8 we know that the
run concludes successfully adc acceptsI'z.
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O

From Propositions 3.7 and 3.9 and the canonical model propétdLC QZb,.,(Theorem 3.3), we get
the following result:

Theorem 3.10 An ALC QTb,.,KB K is satisfiable iff the set of trees acceptedAy is nonempty.

3.4 Complexity

Recall thatCx andRx represent respectively the atomic concept&iand the atomic roles ifC together
with their inverses;7 represents the ABox individuals i§; n represents the maximal occurring in a
concept of the forne n Q.C'in CI" (C7), andkc, = |CI™ (C7)| x n. Clearly, all of|Cx|, |Ri| and

| 7| are linear in the size of, and so is/CI(C'r)|. Moreover, assuming that the numbers in the number
restrictions are encoded in unatyijs linear andkc,, quadratic in the size of. Under this assumptions, we
obtain:

e The sizeX is bounded bpC™M), whereM = |Ci| + |Rx| + | J| + |PI| and|PI| = |Rx| x |T|?,
so we have thak is single exponential in the size &f.

e The number of states ific is polynomial in the size of..
More specifically,|Sk| = |Cl(Cr, T, d)| + |Snum| + |Sa_role| + |SA_quant| + |S A num| + 1, and we
have the following bounds:

|Snum| < \CZ(CT)P X n?

|S.A_role| < |CZ(CT)| X |t7|2

[SA quant] < |CUCT)| % |T|
|Samum| < [CU(CT)] % ’\7’2 X n

So the cardinalitySx is bounded by)(L?), whereL = |CI(Cr)| + |J| + n.

e Any Biichi conditionF' can be converted into a parity one of lengthy takingG, = 0, Gy = F,
G3 = @ (see 2.2). Thus the automatén: has a parity acceptance condition of constant size.

Thus, by Theorems 2.3 and 3.10, we get an optimal upper bauri¢H satisfiability.
Corollary 3.11 For ALCQ7Zb,.,, KB satisfiability is decidable iEXPTIME.

This is worst-case optimal, since a matching lower boundsalready for much weaker DLs [1].

4 Query answering via automata

We address now the problem of entailment of P2RPQ4 4 Q7b,.,KBs. Consider a (Boolean) P2RPQ
g over a KBK. We first show that, in order to check whethérl= ¢, it is sufficient to restrict attention
to canonical models. This can be proven in the same way asd@ined3.1 and 3.3. Indeed, an arbitrary
counterexample model for entailment can be transformedamtanonical model by unraveling and collaps-
ing/eliminating nodes. Since the query does not contairatieginformation, there will still be no match
for the unraveled model and the query.
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Lemma 4.1 K }~ ¢ if and only if there is a canonical modélof /C such thatZ £~ q.

This result allows us to exploit tree-automata based teclas also for query entailment. Specifically,
we build an automaton that accepts exactly the set of caalomiodels of the knowledge base where there
is no match for the query. Once this automaton has been cotest; we can decide the entailment of the
qguery by checking for emptiness the language it accepts.

Roughly, this automaton is obtained by intersecting twoimatta: one that accepts the canonical models
of the knowledge bask (i.e., Ax as constructed in the previous section) and another onatcapts the
set of trees, labeled with the same alphabet and that hawe ls@nching degree as the model&pfwhere
there is no match fog. The latter will be constructed in this section.

To this aim, we first construct an automaton that acceptsdes twhere there is a match tprwe will
see later how it can be transformed into an automaton thapésthe tree where therens matchfor q.

We consider trees over the alphabat extended with additional atomic concepts, one for eachalibei
in ¢, and we enforce each of these new concepts to be satisfiedrigla sode of the tree. The intuition
behind the use of such trees is that, since the existentjalytified “variables” appear explicitly in the tree,
a 2ATA A, can easily check the existence of a match for (the interfwetaorresponding to) the tree and
g. We show now how to construct such a 2ATA.

4.1 Constructing the Automaton

Let ¢ = 37.0(Z) be a P2RPQ ovek’, let atoms(q) be the set of atoms appearing gnand letx =
{x1,...,z,} be the set of variables ifi. We denote by, andR, the set of atomic concepts and the set of
atomic and inverse of atomic roles that occugirRecall that7 denotes the individuals ikX. Note that in
the following, we will consider both the variables in the &&and the individuals i/ as atomic concepts,
which can be used to build complex roles, like the elemeng§ ofetU = (Upcg,(PUP™))". We define
for each atomy € atoms(q) a concepCl,:

o - AU.(CNz), if o =0C(z)
“ 13U.(zN3R.2), ifa=R(z7)

wherez, 2z’ € JU X.
We define the 2ATAA , = (34, Sy, 9, s0, F;;) as follows.

o X, =gV 2% i.e., nodes are labeled with elementssif possibly extended with elements &f.
Recall that the individual names jfi were already i, thus we don'’t need to extend our alphabet
with them.

e S, is defined similarly as foA x, except that we use the closure of the at@psnstead of the closure
of Cr. More specifically, 1€C = ¢ 4toms () Cl"™ (Co, T U X U {r,d}).

Recall that we need to consider trees with the same brandeigigee as those acceptedAy:, which
is given by|.7| at level one and by, at all other levels.

The set of state§, is defined as follows:
Sq = {307 31} uCu SX U Sq,num U Sq,.A_role U Sq,.A_quant U Sq,.A_num

with:
Sy = {X;" X7 [ 1<i<|x]}
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Sgum = {(ZnQ.C,i,j) |2nQLC€e€C,0<i<ke,+1, 0<j<n}pU
{(<nQ.Ci,j) | <nQ.CeC,0<i<ke,+1, 0<j<ntl}
Sy Aroe = {Qij | ai,a; € J andQ a basic role irC}
Sq.Aquant = {(4,3Q.C) | 3Q.C € C, Qabasicrole]l <j <|J|} U
{(,¥Q.C) | ¥Q.C € C, Qabasicrolel < j < |7}

Sgdmum = {{m,2nQ.Cii,5) [>2nQ.CeC,1<m,i<|J], 0<j<n}U
{{m,<nQ.C,i,5) |<nQ.CeC,1<m,i<|J|,0<j<n+l}

e F, = Fc U Fy, where
— Fcisdefined as foA k., but using the closure of the concepts, i.e.,Fc = {VR*.C' | VR*.C €
C}
- Fx ={X; | 1 << |X|}, and ensures that each atomic concejgt X" actually occurs in
the tree, as will be clear from the following.

e The transitions from the initial state are defined for allelslar containing the symbat (identifying
the root node) aé(sg, o) = B, A B1 A B A B3 A By A\ By, where:

— B, is obtained fromp(Z) by replacing each atom with (0, C,) (and by considering\ andVv
as the analogous connectives in a 2ATA transition);

— Bi, By, By, B3, and B4 are as forAg, and ensure again that the level one nodes properly
represent the individuals iy, and thatr and eachs; € J do not appear at any node below
level one in the whole tree. For the latter, an additionakstawith an appropriate transition is
defined, exactly as foA i;

— Finally, By checks that each atomic concept X appears exactly once in the tree, i.e.,

By = A (V GXHA A GXD)

1<i<|X| 1<5<|T| 1<4’<|T1, §'#j

with the following additional transitions defined for eathks i < |X| and eacly € X:

§(X; o) = ((0,2;) A Ni<jcke, (3 X))V
((0, ~zi) A \/1§j§kCT((j> XA Ni<jr<iz), 37205 X))
6(X; o) = (0,7z;) A /\1§j§kCT (, X))

WhenA, is in a stateC,, in the root node (the only node labele) it does not “decompose”,, as usual.
Instead, it checks that the concépt is satisfied in a node at level one representing some ABoyithaal.
This is done by the following transitions, for eaete atoms(q) ando containingr:

§(Co,0) = Vlgigm((ia Ca) A V1§j§|j\(i>aj))

A, contains transitions analogous to those\gf to check that the various concejdts are satisfied. These
transitions are:

e For each concept or basic role@ eacho € ¥, and eachi, j € J there are transitions like the ones
given in item 2 forA x, which inductively decompose concepts and roles.
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e There are transitions like the ones in 3 and 4 for eaehX, and for each concept of the fora@).C,
3Q.C or =2 nQ.C in C respectively. The transitions are suitably defined fortalles inS; 4 _quant.
Sq,num andSq,A_num-

e Atomic transitions similar to those defined in items 5 and & also defined foA,, but for each
o € Xy, foreachs € C,UR, UJ U{d} U X and for eachPij € S, A rote With P € R,,.

The automaton we have defined accepts trees similar to the amwepted byA i, except that these
are over the extended alphali&f, i.e., the node labels may contain query variables. We seetsees as a
representation of a canonical quasi-interpretation eddeno interpret each query variable as a concept. Ifin
the canonical quasi-interpretation each elemerit of 7 is interpreted as a singleton set, then we can easily
establish a correspondence between the extended quergiretation and a standard quasi-interpretation for
K where there is @andidate matctior the query. l.e. by mapping each query variable/indigidio the
single individual in the extension of its interpretatiorg wbtain a potential match fat

Definition 4.2 An extended quasi-interpretation trég a labeled tre& = (7, V") over the alphabet,
such that the labeled trée = (7", V') over X obtained fromT” by restricting the labeling functiol’” to
Yk Is a quasi-interpretation tree. duasi-interpretation tree with a candidate matehan extended quasi-
interpretation tred” = (7, V') that additionally satisfies that there is exactly eane 7" with z € V'(w)
for eachz € 7 U X. In this caseyw is calledthe candidate match for in T".

For a quasi-interpretation tree with a candidate mdiclhe canonical quasi-interpretati@r- represented
by T is defined as in Definition 3.5, by considering each X as a new atomic concept. We denoteray
the function7 U X — ATt defined asrr(r) = w, wherez € J U X andw is the candidate match far
in T.

The following lemma states that the concepts of the fofrcorrectly capture the semantics of the query
atoms. Indeed, the satisfaction of the cona@ptin a canonical quasi-interpretation ensures the entaiimen
of a.

Lemma 4.3 Let T be a quasi-interpretation tree with a candidate mafthand letZ+ be the canonical
quasi-interpretation represented @Y. LetU = (UPGRq(P U P7))* andC, as above. Ley be a 2PRPQ
and leta be an atom iry. Then the following are equivalent:

1. ZT,T&'T l: (%
2. there arew,w’ € AT withw € a]™ for some individuak; such that(w,w’) € UZT, and addition-
ally:

o w € It N CTT if ais of the formC(z), and
o w' € It N (IR.Z)IT if ais of the formR(z, 2').

3. there is some € AZT such thatw € (C,)*T andw € afT for some individuak;.

Proof. We only have to verify that 1 and 2 are equivalent, as the atgice of 2 and 3 follows trivially
from the semantics of,. AssumeZr, mr = a. Supposex = C(z). Then we have thatr(z) € CZT.
Letw’ = 7p(z). Sincew’ € zIT by construction ofZr, thenw’ € 2T N C*T holds. Analogously, if
a = R(z,2') we have(rr(z), mr(2')) € R'T. As7r(2') € (¢/)*T, it follows thatrr(z) € (IR.2')*T.

By settinguw’ = 7r(z) we getw’ € 22T N (IR.2/)’T as desired. In both cases, it is only left to prove the
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existence of a suitable. By construction ofZr, w' € T orw’ € D; for somej € I. In the former case, we
can takew = w'. In the latter, ifw’ € Dj, thenw = j. In both casesy € a.™ holds for somes;. Finally,
(w,w") € UT clearly follows from the definition of/ and ofZy. The proof of the other direction is also
straightforward. Ifw € o™ for somea;, thenw € L. If (w,w') € UZT then eithers = w’ € Torw' € D
for somej. In both casesw,w’ € AT, If w' € 2Pt N C*r, thennr(z) = w' andZy, 7 = C(2). If
w € It N (FR.Z)IT, thennp(z) = w' and (rp(2), 71 (2')) € RIT follow, soZr, 7t = R(z,7') as
desired. O

The following lemma can be proved in exactly the same way asha 3.8. It will be useful for proving
that the automatoA , accepts exactly the set of quasi-interpretation treesevin@re is a match fay.

Lemma 4.4 Let T be a tree accepted hi,, let (T',r) be an accepting run al, over T and lety be a
node ofT" with r(y) = (z, E), for some node: of T, z # ¢, and some’ € C a concept, a basic role, an
individual in 7 or a variable inX. Thenr(y) = (z, E') evaluates to true in the run iff

e = ¢ E*T whenE is a concept, an individual or a variable;

e (z/,x) € ETT whenFE is a role,z’ is the predecessor ofin T andx’ # ¢.

Proposition 4.5 Let T be a quasi-interpretation tree. &, acceptsT, thenT has a candidate match and
Ir,7T = Qq.

Proof. Consider any extended quasi-interpretation ¥esccepted byA , and let(7., ) be a successful
run of A, onT. Zy is an extended quasi-interpretation tree by definition. édwer,r(¢) = (0, F, A F)
must evaluate to tru€l’,., r), and thusF,, will ensure thatT is a quasi-interpretation tree with a candidate
match. It is only left to verify thafr, 71 = ¢. The satisfaction of,, ensures the existence of suitable
query atomsyy, ..., a,, such thati) if Zr, 7t = «; for everyj, thenZy, mr = ¢; and (i) for eacho;
there are nodeg, ' in 7, and some level one nodein T such that-(y) = (w, C,;) andr(y') = (w, a;)
evaluate to true true in the run. From)(@nd Lemma 4.4, it follows that for each su€ly; there is some

w € AT such thatw € (C,. )T andw € afT for some individuak;. ThusZr, 7t |= a; by lemma 4.3,

J

andZr, mr = q by (i) above. O

Proposition 4.6 Let T be a quasi-interpretation tree with a candidate match suat Ir, 7 | ¢. Then
A, acceptsT.

Proof. We have to verify thatAx has a accepting rufi;.,~) on T. Due to the construction oA,
this can be done in a straightforward way. The accepting rilinstart at (¢, s¢). Since the root of T
is marked withr, then a transition of the form(so, V(¢)) = F,, A F, will be defined. Sincel is a
quasi-interpretation tree with a candidate match, thetidbeiexactly onew € T with x € V’(w) for each
z € J UX. Moreover, for eaclr € 7, w will be level one node. This ensures the satisfactioft,of

As for F,,, sinceZr,mt = ¢, there must be atoms,...,a,, such thatZr,mr = «; for every
1 < j < m, which imply the entailment of and thus the satisfaction df,,. By Lemma4.3, for each
sucha;, there is somev € AT such thatw € (C,)T andw € aiIT for some individuala;, Thus,
there will be some node of T such that the run of the automaton continues by moving ngdgsof 7.
with r(y) = (z,a;) andr(y’) = (z,C,). By Lemma 3.8, we know that they evaluate to true and the run
concludes successfully, thus, acceptsT'. O
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4.2 Deciding Query Entailment

Let K be anALCQOZb,, KB andq a P2RPQ oveil. Roughly, the procedure to decide query entailment
works as follows. The automatol, accepts a tree over the extended alphabgif it represents a canon-
ical quasi-interpretation fokC where there is a match fgr. We project out the query variables from the
automatonA,, to obtain an automaton that accepts the same trees, buttesstio the alphabelx. The
new automaton accepts exactly the set of canonical quaspnetations fofC where there is a match for
¢, N0 matter where the match is. The next step is to complerhersadtomaton, so that it accepts exactly
the canonical quasi-interpretations where there is nolmfaicg. Finally, we intersect this automaton with
the automatom ¢ to obtain an automatoA .., which accepts the trees that represent a canonical model
of K where there is no match far We know, by Lemma 4.1, thdf [~ ¢ iff there is some such model.
So we have thakl |~ q iff the language accepted by .., is not empty, and query entailment can be de-
cided by testing the automata¥y., for emptiness. Now we will discuss these steps in detail cavadyze
the computational complexity of each of them. We will denloye] ||| and||q|| the sizes (of the strings
representing)C andgq respectively.

1. First consider the automatak,. Note that bothC| = |U,earoms(q) CI™ (C,, J,d)| and|X| are
linear in||q||. SinceX, = Tk U 2%, we have thats,| = 20M+I*) whereO(M) = O((|Cx| +
Ric| +|J1)?), as in Section 3.4. Thu&,| is single exponential if¢|| + ||K||. Analogously as
for Si., we have that the cardinality, is bounded byO(N?), for N = |C| + | 7| + n (recall thatn
represents the maximal number occurring in the numberigtistrs of ), so|.S,| is polynomial in
||| + ||¢]|. The parity acceptance condition Af, is of constant length.

2. We convertA, into an equivalent INTAAL. By Theorem 2.3, the number of statesAof is 20(N?)
so itis single exponential ifC|| + ||¢||. The parity acceptance condition Af; remains constant.

3. We project out variables from; obtaining a 1NTAA§. Projecting out symbols on one-way automata
is trivial. We want to simply remove from the input trees tienbols that represent the query variables
in X, so that we obtain an automaton that runs over the alphapeind accepts a tree iff it is the
restriction to this alphabet of a tree acceptedpt;y Recall that, since&}l is a INTA, the transitions
are of the form¥(g, o) = t wheret is a disjunction of conjuncts of the fora, g1 ) A. .. A (ke , Gke., )

with o € ¥ andq, g1, . ., i, States ofAl.

We project out the variables ir from A; as follows. For each variable € X', we consider each
o € X, and each statgof A}. There are two possibilities:

e If 2 ¢ o and there is a transitiof(¢, o) = ¢, this transition remains unchanged.

e If 2 € 0 and there is a transitiod(q, ) = ¢, then leto’ = o \ {«}. If there is some transition
d(q,0') =t'in Aé, then we replace it by the new transitiofy, o’) = ' v t. Otherwise, if no
transition of the formi(q, o’) exists, we add a new transitidiig, o’) = ¢. In both cases, the
transitiond(q, o) = t is removed.

After this steps have been followed for evarye X', we have a new automatohg such that:

(i) the alphabet oAg is ¥x, and thus not larger than the alphabgtof Al;

(i) Ag has (at most) as many statesm§and an accepting condition of (at most) the same length;
(iir) Ag accepts a tred iff T is the restriction ta of a treeT’ accepted b)Aé.
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Concerning if), note that the projection of variables as defined above doemodify the state set
of the automaton. It can be the case that, when projectinyg &veavariables, all the occurrences of
some state of A; are eliminated from the transition function. If this happdinen the state can be
safely eliminated from the state set and the acceptancatmmdf Az.

Importantly, we know that an extended quasi-interpretetiieeT” is accepted b, iff Zp/, 7 |= g.
SinceA, and A accept exactly the same trees, this also holds\fprl.e. Al acceptsI” iff there is
a match forg in Z1., where the match for each query variablé given by the only elementy/ (x)
of Zy such thatry(z) € z¥t'. Let T be the restriction ofl” to ¥x.. By construction, we know
that A2 acceptsT iff A} acceptsT’, thus A2 acceptsT iff Zy/, 7 |= ¢. Clearly, a match for
g in an extended quasi-interpretati@h is also a match fog in the quasi-interpretatio obtained
by restricting it to the concepts iK (which are the only concepts that may occur in the query) and
mapping each variable to the only individualo in Z with o € 2. Moreover, any match for ¢ in
a quasi-interpretatiof is also a match in the extended quasi-interpretafibnbtained by adding a
new concept: for each query variable and setting’ = m(x). Therefore, we have that a tr@is
accepted byxg iff there is a match foZ+ andg.

. We complement2, obtaining a INTAA_,. Letn be the number of states amd — 1 the length

of the parity condition otA?I. By [20], Ag can be transformed into an equivalent oﬂé’ with a
coparity condition of lengthn. Following [20], we can construct an automatdn,, that accepts the
complement language of that &2, i.e., AL accepts a tre@l’ over X iff Ag' does not accefr.
The number of states ok’ is no bigger thare®(mnlem) so it is single exponential im and in

n. Recall thatn is bounded by2C(V*) and is N linear in||K|| + ||q||. Sincem is bounded by a
constant, the number of statesAf,, is double exponential ifjC|| + ||¢||. The automatorA”, has a
coparity acceptance condition whose length is bounde@ (byn log n), so it is single exponential in
||KI| + ||g||.* Finally, we convert the coparity condition &f” into a parity one again, to obtaifi,
(the length of the parity condition remains single expo'raadz)ntSinceAg accepts the trees in which
there is a match fog, we have that a tre® is accepted by -, iff there is no match fofZr andg.

. We convertA i to a INTAA L. By Theorem 2.3, the number of statesAof. is 20 and the length

of its parity condition isO(m), wheren andm are the number of states and the length of the parity
condition of A respectively. From Section 3.4, we know thats bounded byO(L?), whereL is
linear in||K||, while m is a constant. So we have that the number of statés;ois single exponential

in ||[XC|| and it has a parity acceptance condition of constant length.

. Finally, we construct a INTA 1., that accepts the intersection of the languages accepteki}@y

and A, i.e., that accepts exactly the set of trees that represeahanical model ofC in which
there is no match fog. Since a tre€l is accepted byA c iff Zr is a canonical model of’, while

it is accepted byA, iff there is no match foZr andgq, every tree accepted b, represents a
counterexample t& = q. On the other hand, if a tre€ is not accepted by ., then either it is
not accepted by, in which caseZr is not a model ofC, or it is not accepted by -, in which
case it is accepted bz;&g i.e., there is a match fdfr andgq. Hence the tree does not represent a
counterexample t& = q.

“Similar bounds can be obtained using the construction ih HiSined for the more generatreettautomata whose acceptance

condition is a relaxation of the coparity one.
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Letny andnsg, my andmsy denote the number of states@}‘C and ofA ,;, and the length of the parity
conditions ofA}C and A, respectively. By the results in [8], the automatAR., has2™™2n; ny
states, and a parity condition of length{m, + my). For N and L as above (items 1 and 5), we have
the following bounds :n; is single exponential i, nsy is double exponential iV, ms is single
exponential inN andm; a constant. Thus the size @i, is is double exponential itV and is
single exponential i, and the length of its parity condition is single expondntia/NV. Since both

N and L are linear in[|K|| + |[q||, Ak, has double exponential size and single exponential parity
condition in||K|| + ||¢]|-

Let T’ be an extended quasi-interpretation tree an@'lbe the quasi-interpretation obtained by restrict-
ing T' to Xx. Summing up, we have the following:

o A, acceptsl” iff Zp, mp = q.

A} acceptsI' iff Ty, mp = q.

AZ acceptsT iff there is a match fofr andy.

A, acceptsT iff there is no match foZr andg.

A} acceptsT iff T is a canonical model of.
o A, acceptsT iff T is a canonical model o€ and there is no match fdrr andg.

As a consequence, we get:

Lemma 4.7 There exists a canonical counterexamplé&l¢= g iff the set of trees accepted By, is not
empty.

By Lemma 4.1, we get the following result.

Theorem 4.8 For every ALC QZb,.,knowledge bas& and P2RPQ query, we have thakC = ¢ iff the set
of trees accepted ¥ i\, is not empty.

Moreover, by Theorem 2.3, since the number of stateA,@ggq is double exponential bound and the
length of its parity condition linear in the sum of the sizéKoandgq, we get:

Theorem 4.9 L | ¢ is decidable in double exponential time in the sizey @ind the number of atomic
concepts, roles, and individuals i@.

4.3 Data complexity

A brief remark on the contribution of to overall complexity of the algorithm is in place. Most okth
existing query answering algorithms in expressive DLs angbte exponential if ||+ ||g||, but just single
exponential in|K||. This is not the case of our algorithm, however. The definittd P2RPQs allows for
arbitrary concepts in query atoms. It is a common practiceestrict the queries and allow only atomic
concepts instead. If we impose this restriction (even if Wewnafor arbitrary roles) then the automaton
A, does not have to deal with number restrictions, since theyodl@ccur in the concepts,, representing
the query atoms. As a result its set of states would be sinflee= {so} U C U Sy 4 role U Sq. A quant)



24 INFSYS RR 1843-08-05

and N would depend only otlg|| and|.7|. This means that iff is bounded, then the size and length of
parity condition ofA ., are single exponential and constant ||| respectively, resulting in a decision
procedure which is single exponential [i)C||. In the general case the number of states and size of parity
condition of A, are already double and single exponential . This implies that our decision procedure
requires time double exponential in the size of the size efABoXx, i.e., it has doubly exponential data
complexity. Although the data complexity of query answerin ALC Q7b,.,has not been studied so far,
we conjecture that this is not optimal. In fact, for the rethtlescription logiSHZ ©, a much loweicONP
lower bound for data complexity is known [11]. Itis not cleenether the automatoA,, could be designed

in such a way that it size would not depend |pfi|| at all in order to obtain an exponentially better data
complexity upper bound.

5 Query entailment with complex role inclusion axioms

The description logidRZ Q, proposed in [15], extends the well know#i{Z © with role inclusion axioms
of the formR-S C T, whereR, S andT" are roles. ARZQ knowledge base, like alLCQTb,.,0ne,
comprises a TBox and and ABox, but additionally it hasRBox which is a set of role inclusion axioms.
The TBox and ABox are defined asi(CQ7b,.,, except for the fact that only atomic or inverse of atomic
roles are allowed (i.e., the only rule defining roledis— P | P~). In the rule defining concepts)
stands for asimple role and only such roles are allowed to occur in the number o#istnis. The definition
of simple roledor RZ Q is slightly more involved than faALC QZb,.,, we refer to [15] for details. In order
to preserve decidability of reasoning, evé®y © RBox must satisfy a condition calleggularity, which
avoids cyclic dependencies between roles. Very roughéyrdle hierarchyR is regular, then for every role
R there is a regular expressipm® such that, for every chain of rolé)- . . . - Sy, it holds thatSy- ... Sy is

in the language denoted by: iff (So-...-Sx)? C R? invery modelZ of R. Since all implications between
chains of roles can be captured by a set of regular expresssias not surprising that query entailment in
RIQ can be reduced to query entailmentAiLC QZb,,.

In this section we show that the algorithm we have presestatso a decision procedure for answering
P2RPQsIMRZQ, and thus inSHZ Q. Following [15], for a regular role hierarcly and a (possible inverse)
role R occurring inR, pr represents the regular expression denoting exactly thescbaroles which imply
R, as discussed above. We also denotestp(R) the set of expressions of the forpg T R for eachR
occurring inR. The following result will be useful:

Lemma5.1 [Lemma 1 in [15]] An interpretationZ is a model of a regular RBoR iff 7 is a model of
exp(R).

SinceR itself is in the language gir, we easily obtain the following corollary:

Corollary 5.2 LetZ be a model of a regular RBdR. ThenR? = (pr)%. Furthermore, letC be aRZQ
concept, and le€” be the ALC QZb,.,concept obtained by replacing every occurrenc€'inf each roleR
by the regular expressiopz. ThenC? = (C7)2.

This allows for a natural reduction ofRZ Q TBox into anALC QZb,.,0one. Since only atomic concepts
and roles are allowed in ABoxes, we can not use this simplegalare to translatel. Instead, we have to
explicitly add to the ABox all relations between individsdhat are implied by the RBox.
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Definition 5.3 Let £ = (A,7,R) be aRZQ knowledge base such th& is regular. We denote by
K'= (A", T') the ALC QTb,.,KB obtained fromk as follows:

1. The ABoxA’ is the smallest set of assertions closed under the followuites:

(i) AC A,
(ii) if Ry(a,b) € A andRy C Ry € R, thenRs(a,b) € A’; and
(iii) if Ry(a,b) € A', Ro(b,c) € A andR;-Ry C R3 € R, thenR3(a,c) € A

wherea, b, ¢ are any individuals frord and Ry, Ry, R3 are any roles occurring iR.

2. The TBox7" is obtained fromI" by replacing every concept inclusion axiacthC D by C' C D/,
whereC’ and D’ are the concepts obtained by replacing every occurrencacbfreleR by the regular
expressiomnpy in C' and D respectively.

Lemma5.4If 7 = KthenZ E K.

Proof. Assume thaf = K. ClearlyZ satisfies all the assertions.ih The satisfaction of the assertions
added tad’ when closing the ABox as defined above is directly impliedi®y/fact thafZ = R. So we have
thatZ |= A’. SinceZ |= R, by Corollary 5.2, we have? = (C")? andD? = (D")%. AsZ |= 7, thenT
satisfies every’ C D' in 7" and thusZ = 7. O

The converse of Lemma 5.4 holds in a slightly weaker verdiotieed, not every model df’ is neces-
sarily a model ofcC, since the models df’ need not be closed under the RBox. However, the modél® of
and/C may only differ in the interpretation of some ‘implied’ releand if we add the missing implied roles
to a model oflC’, we obtain a model of.

Definition 5.5 Let £ = (A,7,R) be aRZQ knowledge base such th& is regular. Letk’ be an
ALCQTb,.,KB obtained fromK as in Definition 5.3 and lef be a model ofC’. The extension ofZ to
R, denotedZ?, is defined as follows:

o ATV = AT,

o for every atomic concept, (4)7" = (A),

e for every atomic roleP occurring inR, if (z,y) € (pp) or (y,z) € (pp-)F then(z,y) € (P)T".
Lemma5.6 If Z = K/, thenZ® = K.

Proof. If T E K', thenZ = A’, and sinced C A’, thenZ = A. Every ABox assertion that is true in
7 is also true inZ, since the latter only extends the former by possibly addlipies to the interpretation
of roles. ThereforeZ® |= A. By the last item in Definition 5.5 = exp(R), and thus by Lemma 5.1,
IR = R. By the second item in the definition, and sir(ge;)Z = (R)Z" holds for every roleR, it is easy
to verify that(C")Z = (C)Z" for every concepC occurring in7. ThusZ = 7" implies thatZ® =7 O

In virtue of Lemmas 5.4 and 5.6, we can reduce the task of ahgdatisfiability of aRZ Q knowl-
edge basé(, to checking satisfiability of thed£LC QZb,.,0oneK’, and therefore we can decide it using the
automata algorithm described in Section 3. We also proviaethod to decide entailment of 2PRPQs. To
this aim, we will also rewrite a query over K into a queryq’ overK’, in such a way that query entailment
is preserved.
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Definition 5.7 Let ¢ be a P2RPQ over RZ Q knowledge bas& such that the RBox is regular. We denote
by ¢’ the P2RPQ ovek” that results from substituting every occurrence of each Roby pr in q.

Note that the resulting query may contain regular expressi@n when the original one does not, i.e.,
our technique reduces positive (resp. conjunctive) qaerierRZQ to positive (resp. conjunctive) regular
path queries oveA LC QLb,,.

Proposition 5.8 Let K be aRZ Q knowledge base with a regular RBox anddet 2PRPQ ovel. Let K’
be the ALC Q7b,.,KB obtained fromiC as described in Definition 5.3 and lgtbe the query oveK’ as in
Definition 5.7. Therlk = ¢ iff K' = ¢/.

Proof. First we will prove the following:
Claim A: If 7 = ¢’ andZ = R, thenZ = q.
Let o be any atom ofy. If « is a concept atom of the forr@’(x), then the corresponding atom in
will be C(z). SinceZ = R, by Corollary 5.2, we haveZ = (C’)%. Analogously, ifa is a role atom
pr(x,y), obtained by substituting by pr, then there is a corresponding atd®z, y) in ¢, and we know
that RZ = (pg)*. Thus, any match for ¢’ in T is also a match fog.
Claim B: If Z® = ¢, thenZ = ¢'.
The proof is similar. Take any atomof ¢. If a is a concept atom of the fordi(z), then the corresponding
atom ing will be C’(z). By definition of Z%m we know that(C’")Z = (C)Z" holds. If« is a role atom
R(z,y), then there is a corresponding atem(z, y) in ¢. Again, (pr)% = (R)X" holds for every roleR.
Thus, any matchr for ¢ in Z% is also a match fog in Z.

The proof of the proposition is now trivial. Assunie = q. Take any modef of K'. ThenZ® = K
by Lemma 5.6, thug”™ |= ¢ and by Claim B above, thefi = ¢. For the other direction, assun@ = ¢
and consider an arbitrafy such thatZ = K. By Lemma 5.4 we know that = K'. ThereforeZ | ¢/, and
sinceZ = R, thenZ = q. O

As a result, the decision procedure given here can be useustoea 2PRPQs oveRZ Q knowledge
bases. Concerning the complexity of the algorithm, allstme clearly polynomial in the size gf, 7 and
exp(R). However, the size ofxp(R) can be exponential in the size &f. It is also well known that for an
specific kind of hierarchies, callesimple role hierarchiesn [15], this blowup can be avoided. As a result,
we get the following:

Theorem 5.9 LetK be aRZ Q knowledge base with a regular RBox anddéte a 2PRPQ ovel. K = qis
decidable in double exponential time in the combined size@®§, J andexp(R); and in triple exponential
time in the combined size of Cx, J and Rx. Furthermore, if the RBox it is simple, therlC | ¢ is
decidable in double exponential time in the combined size ©f, 7 and R .

5.1 Extending the algorithm toSRZQ

In [14] the logicRZ Q was extended t&'RZ Q. This logic has gained increasing attention recently,esinc
it is closely related to the logiSROZ Q underlying OWL 1.1., the most recent standard for Web Ogtplo
Languages. Apart from the standard role inclusion axiom§RZ Q RBox may explicitely state other
properties of roles, like transitivity, (ir)reflexivity,igjointness, etc. Some of this additions are just syntactic
sugar, while others slightly increase the expressivityhef lbgic and make it more suitable for ontology
engineering, while requiring only minor adaptations of teasoning techniques.
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Indeed, most of the role assertions oS&Z Q knowledge base can be expressedihQ extended
with concepts of the formdSelf.R, whose extension is the set of individualsuch that the paifz, x) is
in the extension of the rol&. These concepts can not be directly expressed in the l4giCQ7b,.,, but
the automata algorithm we have presented can be easilydextéa handle them. Roughly, when a nade
is related byR to itself, a new label is added to the node representingRHisop. The automata can then
navigate the tree as usual and use these labels to verifatiséastion of theiSelf. R concepts.

The role disjointnessassertions oSRZQ are not expressible iRZQ (even extended witRSelf.R
concepts), but they can be easily simulatedii6iC 97b,.,due to the presence of Boolean role constructors;
e.g., we can add, for each assertion expressing the diggaisitof two rolef? and S, a TBox axiom of the
form VRN S.L (note that such assertions$RZ Q are restricted to simple roles). FinallyRZ Q supports
negative role assertions, which we did not consider, but tda® be easily incorporated by using suitable
labels at the root and adapting the transition from theahgtate that checks that the ABox assertions are
satisfied. With these simple adaptations, our technique@lsvides a 2EPTIME procedure for deciding
decidability of SRZ Q knowledge bases, and a 8&TIME procedure for the entailment of P2RPQs over
them.

6 EXPSPACE-Hardness of Query Answering

In this section, we provide the following lower bound on asswg P2RPQs ovedLC QTb,., KBs.

Theorem 6.1 Given a P2RPQy and a ALCQ7Zb,., knowledge baséC, deciding whetherC = ¢ is
ExpSPACE-hard.

The proof is by a reduction from tiling problems, inspireddgimilar reduction to query containment
over semi-structured data [6].

A tiling problem consists of a finite sé of tile types, two binary relation& andV overA, represent-
ing horizontal and vertical adjacency relations, respebtj and two distinguished tile types,tr € A.
Deciding whether for a given a numberin unary, a region of the integer plane of sZex k, for somek;,
can be tiled consistently withl andV’, such that the left bottom tile of the region has typeand the right
upper tile has typeér, can be shown to beX®SPACE-complete [26].

We construct andLC KB K and a query; such thatC = ¢ iff there is no correct tiling, as follows. A
tiling is spanned row by row by a sequence of objects. Eaclcbbgpresents one tile and is connected by a
specific role to the next tile. For the connections, we usddth@wing two roles:

e N connecting tiles within the same row;

e [ connecting the last tile of rodto the first of rowi+1.

The properties (i.e., the atomic concepts) attached to getioare then bits By, ..., B, of a counter
for its address within the row, and its type. For that, we wusengse disjoint concept®s, ..., Dy, where
A={t1,... tg}

We encode irkC the following two conditions:

1. The first ensures that the counters progress correcttynlists ofO(n) standard axioms involving
By,...,B, and N, which encode a counter bit by bit. Further axioms ensurg ihat least one of
the bits is 0O, there is alV successor but nf successor, and reset the counter:

-BiU---U-B, C AN.TNVL.L
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2. The second ensures that there are no errors w.r.t. theohtal adjacency relatiof/: For each tile
type D;,
Di C U(Di,Dj)eH(VN'Dj HVLD])

The queryg checks the failure of the vertical adjacenicyon the candidate tilings given by the models
of K. It asks whether two objects exist at distarx¢e(i.e., representing vertically adjacent tiles) with an
error according td/. That the objects are exactly steps apart is achieved by ensuring that they have the
samen bits and are connected by a (possibly void) sequencg-sfeps, followed by oné-step, and by a
(possibly void) sequence df-steps. We have

qg=3x,y.Vert NErr NGy A---ANG,, Where
Vert = (N* o Lo N*)(x,y),

Err = V(Di,Dj)QV(Di(x) A Dj(y))7
Gi = (Bi(x) A Bi(y)) V (=B;(x) A —B;(y)), for1 <i <n.

The complete KB entailsg iff there is no correct tiling. Note that onlyert uses a regular expression. If
we have transitive roles and role hierarchies, we can reptac ¢ by

Vert' = (N¢(w, 21) A L(z1,22) A Ny(22,9)) V
(Ni(x,21) A L(21,9)) V (L(x, 22) A Ni(22,y))

whereV, is a transitive super-role d¥, andz; andz, are existentially quantified variables. This shows that
answering positive (existential) queries without reg@apressions over KBs il LC plus transitive roles
and role hierarchies, and henceS#Z Q, is EXPSPACE-hard.

Finally, using an encoding closer to [6] where each tile isomlof n + 1 objects, and the bits and tile
types are encoded by roles, one can show that conjunctivearggath queries over KBs which only use
existential roles and disjunction arexESPACE-hard.

7 Conclusion

In this paper, we have substantially pushed the frontiereofdhble query answering over expressive DLs,
which is an active area of research driven by the growingésteto deploy DLs to various application
areas related to Al. As we have shown, the rich class of pegjéxistential) two-way regular path queries
(P2RPQs) is decidable aALCOZb,., KBs by means of automata-techniques; on the other handy quer
answering has an@PSPACElower bound already in settings where oneband( is rather plain.

Several tasks remain for future investigation. The prec@aplexity of answering P2RPQs remains
open, even though the gap between the&ACE lower bound and the 2BPTIME upper bound is relatively
small. Similarly, the class of positive existential querigithout regular expressions ov8HZ Q KBs
remains to be further analyzed, in particular whether the¥ACE bound is tight. Finally, it would be
interesting to see how far automata-based techniquesasiasl in this paper can be utilized to push the
decidability frontier of query answering in expressive Dhsth on the side of the query and the knowledge
base.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and Patel-Schneider, editor§he Description
Logic Handbook: Theory, Implementation and ApplicatioGambridge University Press, 2003.



INFSYS RR 1843-08-05 29

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, andRBsati. Data complexity of query
answering in description logics. Proceedings of the Tenth International Conference on theciples
of Knowledge Representation and Reasoning (KR 2QD®)6.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On thedddility of query containment under con-
straints. InProceedings of the Seventeenth ACM SIGACT SIGMOD SIGARJoSym on Principles
of Database Systems (PODS'98ages 149-158, 1998.

D. Calvanese, G. De Giacomo, and M. Lenzerini. 2ATAs mBks easy. InProceedings of the 2002
Description Logic Workshop (DL 2002pages 107-118. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-53/ , 2002.

D. Calvanese, G. De Giacomo, M. Lenzerini, and D. NardiaBoning in expressive description logics.
In A. Robinson and A. Voronkov, editorslandbook of Automated Reasonivglume Il, chapter 23,
pages 1581-1634. Elsevier Science Publishers, 2001.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Var@iontainment of conjunctive regular
path queries with inverse. Rroceedings of the Seventh International Conference oRtimeiples of
Knowledge Representation and Reasoning (KR 2(q&i)es 176-185, 2000.

D. Calvanese, T. Eiter, and M. Ortiz. Answering regulattpqueries in expressive description logics:
An automata-theoretic approach. Pmoceedings of the Twentysecond AAAI Conference on Aatifici
Intelligence (AAAI 2007)pages 391-396, 2007.

O. Carton. Chain automatdheoretical Computer Sciencé&61(1-2):191-203, 1996.

E. A. Emerson and C. S. Jutla. Tree automata, mu-calcmasdeterminacy. l®Proceedings of the
Thirtysecond Annual Symposium on the Foundations of Canfuatence (FOCS’91pages 368—-377,
1991.

M. J. Fischer and R. E. Ladner. Propositional dynamigd@f regular programslournal of Computer
and System Sciencek8:194-211, 1979.

B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjuwet query answering for the description
logic SHZ Q. In Proceedings of the Twentieth International Joint Confeezan Artificial Intelligence
(IJCAI 2007) pages 399-404, 2007.

B. Glimm, I. Horrocks, and U. Sattler. Conjunctive quanswering for description logics with transi-
tive roles. In B. Parsia, U. Sattler, and D. Toman, editBreceedings of the 2006 Description Logic
Workshop (DL 2006)volume 189, Windermere, Lake District, United Kingdom, We006.

J. Heflin and J. Hendler. A portrait of the Semantic Wehdgtion. IEEE Intelligent System46(2):54—
59, 2001.

I. Horrocks, O. Kutz, and U. Sattler. The irresistifi&®Z Q. In Proceedings of the Workshop on OWL:
Experiences and Directions (OWLED 2002D05.

I. Horrocks and U. Sattler. Decidability &fHZ Q with complex role inclusion axioms. IRroceed-
ings of the Eighteenth International Joint Conference otifisial Intelligence (IJJCAI 2003)Morgan-
Kaufmann Publishers, 2003.



30

INFSYS RR 1843-08-05

[16] U.Hustadt, B. Motik, and U. Sattler. A decompositiothertor decision procedures by resolution-based

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

calculi. InProceedings of the Eleventh International Conference ayidfor Programming, Artificial
Intelligence and Reasoning (LPAR 200gages 21-35, 2004.

U. Hustadt, B. Motik, and U. Sattler. Data complexity reasoning in very expressive description
logics. InProceedings of the Nineteenth International Joint Confeeson Artificial Intelligence (13-
CAl 2005) pages 466—471, 2005.

N. Klarlund. Progress measures, immediate deterngjreatd a subset construction for tree automata.
Annals of Pure and Applied Logic89(2—3):243—-268, 1994.

D. E. Muller and P. E. Schupp. Alternating automata dimite trees.Theoretical Computer Science
54:267-276, 1987.

D. E. Muller and P. E. Schupp. Simulating alternatingetautomata by nondeterministic automata:
new results and new proofs of the theorems of Rabin, McNaugahd SafraTheoretical Computer
Science141(1-2):69-107, 1995.

M. Ortiz, D. Calvanese, and T. Eiter. Data complexity afiswering unions of conjunctive
queries iNSHZQ. Technical report, Faculty of Computer Science, Free Usitye of Bozen-
Bolzano, Mar. 2006. Available ahttp://www.inf.unibz.it/ ~ calvanese/papers/
orti-calv-eite-TR-2006-03.pdf

M. Ortiz, D. Calvanese, and T. Eiter. Data complexityaoswering unions of conjunctive queries in
SHZQ. In B. Parsia, U. Sattler, and D. Toman, editdPspceedings of the 2006 Description Logic
Workshop (DL 2006)volume 189, Windermere, Lake District, United Kingdom, We006.

K. Schild. A correspondence theory for terminologitadics: Preliminary report. IfProceedings of
the Twelfth International Joint Conference on Atrtificiatétligence (IJCAI'91) pages 466471, 1991.

W. Thomas. Languages, automata, and logicHémdbook of Formal Language Theomolume llI,
pages 389-455. 1997.

S. Tobies Complexity Results and Practical Algorithms for Logics movledge RepresentatioRhD
thesis, LUFG Theoretical Computer Science, RWTH-Aacham@ny, 2001.

P. van Emde Boas. The convenience of tilings. In A. Sceditor, Complexity, Logic, and Recur-
sion Theoryvolume 187 ofLecture Notes in Pure and Applied Mathematipages 331-363. Marcel
Dekker Inc., 1997.

M. Y. Vardi. Reasoning about the past with two-way auédan InProceedings of the Twentyfifth
International Colloquium on Automata, Languages and Pangming (ICALP’98) volume 1443 of
Lecture Notes in Computer Scienpages 628—641. Springer, 1998.



