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Abstract. Expressive Description Logics (DLs) have been advocated asformalisms for modeling
the domain of interest in various application areas. An important requirement there is the ability
to answer complex queries beyond instance retrieval, taking into account constraints expressed in
a knowledge base. We consider this task for positive existential path queries (which generalize
conjunctive queries and unions thereof), whose atoms are regular expressions over the roles (and
concepts) of a knowledge base in the expressive DLALCQIbreg . Using techniques based on two-
way tree-automata, we first provide an elegant characterization of TBox and ABox reasoning, which
gives us also a tight EXPTIME bound. We then prove decidability (more precisely, a 2EXPTIME up-
per bound) of query answering, thus significantly pushing the decidability frontier, both with respect
to the query language and the considered DL. We also show thatquery answering is EXPSPACE-hard
already in rather restricted settings.
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1 Introduction

Description Logics (DLs) [1] are a well-established branchof logics for knowledge representation and rea-
soning, and the premier logic-based formalism for modelingconcepts (i.e., classes of objects) and roles (i.e.,
binary relationships between classes). They have gained increasing attention in different areas including the
Semantic Web, data and information integration, peer-to-peer data management, and ontology-based data
access. In particular, some of the standard Web ontologies from the OWL family are based on DLs [13].

While in DLs, traditionally reasoning tasks had been studied which deal with taxonomic issues like clas-
sification and instance checking, the widening range of applications has led in the recent years to extensive
studies of answering queries over DL knowledge bases which require, beyond simple instance retrieval,
to join pieces of information in finding the answer. Specifically, conjunctive querieshave been studied in
several papers, cf. [2, 11, 12, 16, 17, 21, 22]. As shown therein, answering (classes of) conjunctive queries
is decidable for several DLs, including also expressive ones. Recently, the authors of [11] proved this for
all conjunctive queries overSHIQ knowledge bases, while Hustadtet al. [16, 17] showed this earlier for
conjunctive queries without transitive roles and Ortizet al. [22] for unions of such queries.1

At present, (unions of) conjunctive queries overSHIQ knowledge bases is among the most expressive
decidable settings. In this paper, we push the frontier and establish decidability of query answering for
the yet more expressive class ofpositive (existential) two-way regular path queries(in short, P2RPQs)
over the expressive DLALCQIbreg , which is close toSHIQ. P2RPQs are queries inductively built using
conjunction and disjunction, from atoms that are regular expressions over direct and inverse roles (and allow
for testing of concepts). They not only subsume conjunctivequeries and unions of conjunctive queries, but
also unions of conjunctive regular path queries [6].

More specifically, we make the following contributions.

• Different from previous works, which rely on resolution-based transformations to disjunctive datalog
or on tableaux-based algorithms, we use automata techniques for query answering in expressive DLs. While
the application of automata techniques in DLs is not novel, cf.[4, 25], previous work was concerned with
deciding satisfiability of a knowledge base consisting of a TBox only. Here we address the much more
involved task of query answering over a knowledge base, which has data in an ABox; incorporating the
query is non-obvious.

• The technique we apply is simpler and clearer than the existing ones based on tableaux and resolution.
Indeed, it is computational in nature, and directly works onthe models of the knowledge base. In this way,
we are also able to obtain more general results, which seems more difficult using the other approaches.

• As a first result, we present an automata-based algorithm forchecking the satisfiability of a knowledge
base (consisting of both TBox and ABox) in EXPTIME. This is worst-case optimal.

• Our main result then shows that answering positive existential queries overALCQIbreg knowledge
bases is feasible in 2EXPTIME. By a reduction ofRIQ and toALCQIbreg , a similar result follows for
SHIQ andRIQ, and can easily be extended toSRIQ. This compares well to the N3EXPTIME bound
for union of conjunctive queries by Ortizet al. [22], and the 2EXPTIME bounds for (classes of) conjunctive
queries that emerge from [11, 16]. On the other hand, we establish an EXPSPACE lower bound for positive
existential queries.

Our results indicate that automata-techniques have high potential for advancing the decidability frontier
of query answering over expressive DLs, and are a useful toolfor analyzing its complexity.

1Note that the technique in [3] for unions of conjunctive regular path queries is actually incomplete.
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2 Preliminaries

2.1 Query Answering inALCQIbreg

We consider the DLALCQIbreg , whose concepts and roles obey the following syntax:

C,C ′ −→ A | ¬C | C ⊓ C ′ | C ⊔ C ′ | ∀R.C | ∃R.C | > n Q.C | 6 n Q.C

Q,Q′ −→ P | P− | Q ∩ Q′ | Q ∪ Q′ | Q \ Q′

R,R′ −→ Q | R ∪ R′ | R ◦ R′ | R∗ | id(C)

whereA denotes anatomic concept, P anatomic role, C an arbitraryconcept, andR an arbitraryrole. We
useQ to denotebasic roles, which are those roles which may occur in number restrictions. W.l.o.g., we
assume that “\” is applied only to atomic roles and their inverses.

An ALCQIbregknowledge base(KB) is a pairK = 〈A,T 〉 whereA (theABox) is a set ofassertionsof
the formA(a), P (a, b), anda 6= b, with A an atomic concept,P an atomic role, anda, b individuals; andT
(theTBox) is a set ofconcept inclusion axiomsC ⊑ C ′ for arbitrary conceptsC andC ′. W.l.o.g. we assume
that all concepts occurring inA also occur inT . We denote byCK the set of atomic concepts occurring in
K, byRK the set of atomic roles occurring inK and their inverses, and byJK the individuals inK. If clear
from the context, we may omit the indexK.

The semantics is the standard one.Knowledge base satisfiabilityis the task of determining whether
there exists an interpretation that satisfies all assertions inA and all the axioms inT . We do not implement
the unique name assumption(UNA), i.e., two individualsa andb may be interpreted as the same domain
element.2

Definition 2.1 [P2RPQs] Apositive 2-way regular path query(P2RPQ) over a KBK is a formula∃~x.ϕ(~x),
whereϕ(~x) is built using∧ and∨ from atoms of the formC(z) andR(z, z′), with z, z′ variables from~x or
individuals,C an arbitrary concept,R an arbitrary role, and where all atomic concepts and roles inϕ occur
in K.

Note that P2RPQs naturally generalize conjunctive regularpath queries [6] and unions thereof.

Example 2.2 Consider the queryq over a genealogy KBK:

∃x, y, z. parent ∗·parent−
∗
(x, y) ∧ parent−(x, z) ∧ parent−(y, z) ∧ male(x) ∧ ¬male(y) ∧

(¬deity(x) ∨ ¬deity(y))

Informally, q is true if there are relativesx andy that have a common child,z, and if not both of them are
deities.

Let q be a P2RPQ, and letVI(q) denote the set of variables and individuals inq. Given an interpretation
I, let π : VI(q) → ∆I be a total function such thatπ(a) = aI for each individuala. We writeI, π |= C(z)
if π(z) ∈ CI , andI, π |= R(z, z′) if (π(z), π(z′)) ∈ RI . Let γ be the Boolean expression obtained fromϕ

by replacing each atomα in ϕ with true, if I, π |= α, and withfalseotherwise. We say thatπ is amatch
for I andq, denotedI, π |= q, if γ evaluates totrue. We say thatI satisfiesq, writtenI |= q, if there is a
matchπ for I andq. A KB K entailsq, denotedK |= q, if I |= q for each modelI of K.

2The UNA can be easily simulated using assertions of the forma 6= b.
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Query entailmentconsists in verifying, given a KBK and a P2RPQq, whetherK |= q. Note that,
w.l.o.g., we consider here query entailment for Boolean queries, i.e., queries without free variables, since
query answering for non-Boolean queries is polynomially reducible to query entailment.3

2.2 Automata on Infinite Trees.

Infinite trees are represented as prefix-closed sets of wordsoverIN (the set of positive integers). Formally, an
infinite treeis a set of wordsT ⊆ IN∗, such that ifx·c ∈ T , wherex ∈ IN∗ andc ∈ IN, then alsox ∈ T . The
elements ofT are callednodes, the empty wordε is its root. For everyx ∈ T , the nodesx·c, with c ∈ IN,
are thesuccessorsof x. If x is a successor ofy, theny is a predecessorof x andx andy areneighbors.
By convention,x·0 = x, and(x·i)·−1 = x. Thebranching degreed(x) of a nodex is the number of its
successors. Ifd(x) ≤ k for each nodex of T , thenT hasbranching degreek. An infinite pathP of T is a
prefix-closed setP ⊆ T where for everyi ≥ 0 there exists a unique nodex ∈ P with |x| = i. A labeled tree
over an alphabetΣ is a pair(T, V ), whereT is a tree andV : T → Σ maps each node ofT to an element of
Σ.

Alternating automata on infinite trees are a generalizationof nondeterministic automata on infinite trees,
introduced in [19]. They allow for an elegant reduction of decision problems for temporal and program
logics [9].

LetB(I) be the set of positive Boolean formulas built inductively from true, false, and atoms from a set
I applying∧ and∨. A setJ ⊆ I satisfiesa formulaϕ ∈ B(I), if assigningtrue to the atoms inJ andfalse
to those inI \ J makesϕ true. A two-way alternating tree automaton(2ATA) running over infinite trees
with branching degreek, is a tupleA = 〈Σ, Q, δ, q0, F 〉, whereΣ is the input alphabet;Q is a finite set of
states;δ : Q × Σ → B([k] × Q), where[k] = {−1, 0, 1, . . . , k}, is the transition function;q0 ∈ Q is the
initial state; andF specifies the acceptance condition.

The transition functionδ maps a stateq ∈ Q and an input letterσ ∈ Σ to a positive Boolean formula
ϕ. over atoms[k] × Q. Intuitively, if δ(q, σ) = ϕ, then each atom(c, q′) in ϕ corresponds to a new
copy of the automaton going in the direction given byc and starting in stateq′. E.g., letk = 2 and
δ(q1, σ) = (1, q2) ∧ (1, q3) ∨ (−1, q1) ∧ (0, q3). If A is in the stateq1 and reads the nodex labeled with
σ, it proceeds by sending off either two copies, in the statesq2 andq3 respectively, to the first successor of
x (i.e.,x·1), or one copy in the stateq1 to the predecessor ofx (i.e.,x·−1) and one copy in the stateq3 to x

itself (i.e.,x·0).
2ATAs generalize standard nondeterministic automata on infinite trees in two ways. First, in (standard)

one-way automata input trees are always navigated in a strictly top-down manner, moving always to the
successors of the current node. In contrast, in two-way automata transitions can be defined that move up
on the input tree to the predecessor of the current node, or that stay at the current position. Comparing
with the above definition, the transition function of a one way automaton is of the formδ : Q × Σ →
B({1, . . . , k} × Q), i.e., the directions−1 and0 are not allowed. The second difference isalternation,
which generalizes non-determinism. While in alternating automata the transition function can have any
positive Boolean formula inB([k] ×Q) on the right hand side, the transition function of a nondeterministic
automaton only allows for disjunctions of the formd0, · · · , dn, where eachdi is in turn a conjunction of pairs
(i, q) containing exactly one such pair for eachi ∈ [k]. We denoteone-way non-deterministic automataby
1NTA.

3Here we refer to the decision problem associated to query answering, i.e., to decide whether a given tuple is in the answerof
the query.



4 INFSYS RR 1843-08-05

Informally, a run of a 2ATAA over a labeled tree(T, V ) is a labeled tree(Tr, r) in which each noden is
labeled by an elementr(n) = (x, q) ∈ T ×Q and describes a copy ofA that is in the stateq and reads the
nodex of T ; the labels of adjacent nodes must satisfy the transition function ofA. Formally, arun (Tr, r)
is aT×Q-labeled tree satisfying:

1. ε ∈ Tr andr(ε) = (ε, q0).

2. Lety ∈Tr, with r(y) = (x, q) andδ(q, V (x)) = ϕ. Then there is a (possibly empty) setS = {(c1, q1)
, . . . , (cn, qn)} ⊆ [k] × Q such that:

• S satisfiesϕ and

• for all 1 ≤ i ≤ n, we have thaty·i ∈ Tr, x·ci is defined, andr(y·i) = (x·ci, qi).

In this case, we say thatr(y) = (x, q) evaluates to true in the run(Tr, r).

For a (possibly infinite) pathπ in a run of the automaton, we denote byInf(π) the states ofQ that occur
infinitely often inπ (as second components of node labels). Different kinds of acceptance conditions can be
considered forπ:

1. A Büchiacceptance condition is given by a set of statesF ⊆ Q. The pathπ is accepting ifInf(π)∩F 6=
∅.

2. A parity acceptance condition (of lengthn) is defined by a finite sequence of sets of statesF =
(G1, . . . , Gn) with G1 ⊆ G2 ⊆ · · · ⊆ Gn = Q. The pathπ is accepting if there is aneveni such that
Inf(π) ∩ Gi 6= ∅ andInf(π) ∩ Gi−1 = ∅.

3. A coparityacceptance condition (of lengthn) is defined as a parity one, being the only difference that
π is accepting if there is anodd i such thatInf(π) ∩ Gi 6= ∅ andInf(π) ∩ Gi−1 = ∅.

A run (Tr, r) is accepting, if all its paths are accepting. An automaton with a parity acceptance condition
can be easily converted into one with coparity acceptance that accepts exactly the same input trees, and vice
versa [20]. Furthermore, it is easy to see that aBüchi acceptance condition can be easily converted into
a parity or coparity one. The converse is not true, however: parity/coparity automata are strictly more
expressive than Büchi automata [24].

The nonemptiness problemfor 2ATAs is deciding whether the setL(A) of trees accepted by a given
2ATA A is nonempty. The following result is well-known.

Theorem 2.3 [27]For any 2ATAA (with parity acceptance condition) withn states and an input alphabet
with m elements, nonemptiness ofA is decidable in time single exponential inn and polynomial inm.
Also, there is a one-way nondeterministic Parity tree automaton (1NTA)A1 with O(2n) states and parity
condition of sizeO(n) such thatL(A) = L(A1).

3 Deciding KB satisfiability via automata

For many DLs includingALCQIbreg , the standard reasoning tasks are naturally solvable by tree-automata,
thanks to thetree model propertyof such DLs: every satisfiable TBoxT (or similarly, every satisfiable
conceptC) has a tree-shaped model. In the presence of an ABoxA this property fails, since the assertions
in A may arbitrarily connect the individuals. While a satisfiable ALCQIbreg KB K = 〈A,T 〉 may lack a
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tree-shaped model, it always has a forest-shapedcanonical model, in which each individual is the root of a
tree-shaped model ofT . This property is usually sufficient to adapt algorithms forconcept satisfiability to
decide KB satisfiability. In particular, automata-based algorithms have been adapted using theprecompletion
technique [25], in which after a reasoning step on the ABox, automata are used to verify the existence of a
tree-shaped model rooted at each ABox individual.

Our approach is different. We represent a forest-shaped interpretation as a treeT, and encodeK into an
automatonAK that acceptsT iff T corresponds to a canonical model ofK. To the best of our knowledge,
this is the first algorithm that deals with ABox assertions and individuals directly in the automaton. This
enables us to extend the automata-based algorithm also to query answering (see next section).

First we define the(syntactic) closureof anALCQIbregconcept, which extends the standard Fischer-
Ladner closure forconverse-PDL [10]. Intuitively, it contains all the concepts and roles that may occur
when a concept is decomposed during a run of an automaton on a tree representing a model ofK. Usually
the closure is defined as a set of concepts. We will use a different definition, where the closure is a set of
expressionsthat may contain concepts and basic roles, as well as some additional elements. As we will see,
the automata algorithm treats similarly boolean constructors on concepts and roles. Individual names and
auxiliary labels are handled analogously as the atomic concepts and roles. Putting all these elements into
the closure will simplify the construction of the automata.

Here and in the following, we use≷ to denote either> or 6 and we useQ− to denoteP whenQ = P−.
For a non-atomic basic roleQ, Q− denotes the role obtained fromQ by replacing each atomic or inverse of
atomic role occurring inQ by its inverse. In the rest of this subsection we assume that⊔ and∀ are expressed
by means of⊓ and∃ using¬. (We remind thatC andC ′ stand for arbitrary concepts,P andP ′ for atomic
or inverse of atomic roles,Q andQ′ for basic roles andR andR′ for arbitrary roles).

The closureCl(D) of anALCQIbregconceptD is defined as the smallest set of expressions such that
D ∈ Cl(D) and:

if C ∈ Cl(D) then ¬C ∈ Cl(D) (if C is not of the form¬C ′)
if ¬C ∈ Cl(D) then C ∈ Cl(D)
if C ⊓ C ′ ∈ Cl(D) then C, C ′ ∈ Cl(D)
if ∃R.C ∈ Cl(D) then C ∈ Cl(D)
if ∃(R ∪ R′).C ∈ Cl(D) then ∃R.C, ∃R′.C ∈ Cl(D)
if ∃(R ◦ R′).C ∈ Cl(D) then ∃R.∃R′.C ∈ Cl(D)
if ∃R∗.C ∈ Cl(D) then ∃R.∃R∗.C ∈ Cl(D)
if ∃id(C).C ′ ∈ Cl(D) then C, C ′ ∈ Cl(D)
if ∃Q.C ∈ Cl(D) then Q ∈ Cl(D)
if ≷ n Q.C ∈ Cl(D) then Q, C ∈ Cl(D)
if Q ∩ Q′ ∈ Cl(D) then Q, Q′ ∈ Cl(D)
if Q ∪ Q′ ∈ Cl(D) then Q, Q′ ∈ Cl(D)
if P \ P ′ ∈ Cl(D) then P, P ′ ∈ Cl(D)
if Q ∈ Cl(D) then ¬Q, Q−, ¬Q− ∈ Cl(D)
if Q− ∈ Cl(D) then ¬Q, Q, ¬Q− ∈ Cl(D)

Note that|Cl(D)| is linear in the length ofD. Sometimes we consider conceptsC in negation normal
form, denotednnf (C), in which negations are pushed inside as much as possible, i.e., negation only occurs
in the form¬A for A a concept name. Analogously, in thenegation normal formof a basic roleQ, which
is denotednnf (Q), only atomic or inverse of atomic roles may occur negated. Clearly, any concept or basic
roleE can be transformed into its negation normal form in time linear in the size ofE. We letClnnf (D) =
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{nnf (E) | E ∈ Cl(D)}. For a conceptD and a given setS, we denote the setClnnf (D)∪ {¬s, s | s ∈ S}
by Clnnf (D,S). and call it theS-extended closureof D.

3.1 Representing Canonical Models as Trees

Let C be anALCQIbregconcept and letn be the maximaln occurring in a concept of the form≷ n Q.C ′

in Clnnf (C). Consider an arbitrary interpretationI = (∆I , ·I) for C, and consider the directed graph
whose nodes are the elements of∆I , and where any two nodesa, b ∈ ∆I are connected by an arca→ b iff
〈a, b〉 ∈ P I for someP . ThenI is a tree interpretation if this graph forms a tree. Thebranching degreeof
the tree isn iff every nodea ∈ ∆I has at mostn outgoing arcs. It is well known thatALCQIbreghas the
following tree model property:

Theorem 3.1 [4] Every satisfiableALCQIbregconceptC has a tree-model with branching degreekC =
|Cl(C)| × n.

Consider anALCQIbregknowledge baseK = 〈A,T 〉, and let

CT = ∀(
⋃

R∈RK
R)∗.

⊔

C1⊑C2∈T

(¬C1 ⊔ C2)

By internalization [23],CI
T = ∆I for every interpretationI = (∆I , ·I) that satisfies all the concept

inclusion axioms inT [5]. This implies that, by Theorem 3.1, the existence of a tree-shaped model for the
TBox T can be ensured. The assertions inA may impose arbitrary relations between the individuals, thusK
does not necessarily have tree shaped models. However, it has a slightly weakercanonical modelproperty.

Let I be an interpretation forK and let{o1, . . . , on} ⊆ ∆I be the elements interpreting the individuals
in A. We say thatI is canonical if the associated graph is such that, when all arcs of the formoi → oj with
1 ≤ i ≤ j ≤ n are removed, we obtain a set of trees, each of which is rooted at someoi. The domain of
any such canonical modelI can be represented as a set of trees. LetJ = {a1, . . . , am} be the set of ABox
individuals interpreted inI, and letS = {t1, . . . , tn} be the set of tree-shaped models ofCT in I, each of
which is rooted at the interpretation of someai. The objects interpreting the individuals inJ are denoted
1, . . . , n (note that, since any two individuals may be interpreted as the same object, we have thatn ≤ m).
Each treeti in S is rooted at somei ∈ {1, . . . , n} and has a branching degree ofkCT

. Thus, we can define
canonical models as follows:

Definition 3.2 Let K = 〈T ,A〉 be anALCQIbreg KB and letJ = {a1, . . . , am} be the individuals inA.
An interpretationI = (∆I , ·I) for K is called acanonical interpretationif:

(1) ∆I ⊆ {1, . . . , n}{1, . . . , kCT
}∗ wheren ≤ m and{ε} ∪ ∆I is prefix closed (i.e., it is a tree).

(2) For eachai ∈ J there is exactly onej ∈ ∆I , such thatj ∈ {1, . . . , n} andaIi = j.

(3) If (i·w, j·w′) ∈ P I for some atomic roleP , i, j ∈ {1, . . . , n}, then either (i) w = w′ = ε or (ii ) i = j

andw, w′ are neighbors (in the tree{ε} ∪ ∆I).

The canonical model property ofALCQIbreg is also well known:

Theorem 3.3 Every satisfiableALCQIbregKB K = 〈T ,A〉 has a canonical modelI such thatI is a
canonical interpretation forK, I |= A andaIi ∈ CI

T holds for allai ∈ J .
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We want to decide the satisfiability of a KBK. Due to Theorem 3.3, it is sufficient to decide the existence
of a canonical model forK. In order to do the latter by means of tree automata, we represent a canonical
interpretationI for K as a labeled treeTI . We define an automatonAK that accepts a labeled treeTI iff
TI represents a canonical model ofK, and check this automaton for emptiness.

First, we define the way in which a canonical interpretation is represented as a labeled tree. The domain
of a canonical interpretation is almost a tree; we only need to add a rootε to it and to represent the exten-
sions of the interpretations of individuals, concepts and roles as labels in the tree. This can be done in a
straightforward manner. Roughly, each element ofx ∈ ∆I , which is a node of the tree, is labeled with a set
V (x) that contains the atomic conceptsA such thatx ∈ AI and the basic roles that connect the predecessor
of x to x. Only the rootε and the nodes{1, . . . , n} (which are at the first level of the tree) are treated
differently. The label of each node inx ∈ {1, . . . , n}, apart from the atomic concepts to whichx belongs,
also contains the name of the individuals inJ which it interprets. Furthermore, the label ofx contains no
basic roles. Instead, the relations between level one nodesare stored in the label of the rootε. The rootε
does not represent any object in∆I and is marked with a special symbolr, to identify it as the root, and
symbols of the formPij indicating that the pair of individuals(ai, aj) belongs to the extension of the basic
role P . For simplicity, if m > n, to ensure that the root has exactlym children,m−n dummy children
labeled{d} are added to the rootε.

Definition 3.4 Let K = 〈A,T 〉 be anALCQIbreg knowledge base and letJ = {a1, . . . , am} be the set
of individuals occurring inA. Let I be a canonical interpretation forK in which the individuals inJ are
interpreted as{1, . . . , n}. Thetree representation ofI is the labeled treeTI = (T, V ) defined as follows:

• T = {ε} ∪ ∆I ∪ {n + 1, . . . ,m}.

• V (ε) = {r} ∪ {Pij | ai, aj ∈ J and〈aIi , aIj 〉 ∈ P I},

• for each1 ≤ i ≤ n, V (i) = {aj ∈ J | aIj = i} ∪ {A ∈ CK | aIj ∈ AI andaIj = i},

• for eachn + 1 ≤ i ≤ m, V (i) = {d},

• and for all other nodesi·x of T , V (i·x) = {A ∈ CK | i·x ∈ AI} ∪ {P ∈ RK | (i·w, i·x) ∈
P I wherex = w·j for somej, 1 ≤ j ≤ kCT

}

Note that the branching degree ofTI is bounded by|J | at the root and bykCT
at all other levels, so the

tree has branching degreemax(kCT
, |J |).

3.2 Constructing the Automaton

We now construct fromK a 2ATA AK that accepts a given treeT iff it is the tree representationTI of
some canonical modelI of K. A similar construction for deciding concept satisfiability in ALCQIbregwas
presented by Calvaneseet al. [4]. We adapt and expand that construction to handle the ABoxalso.

The automatonAK = (ΣK, SK, δ, s0, FK) is defined as follows.

• The alphabet isΣK = 2CK∪RK∪J∪{r}∪{d}∪PI , wherePI = {Pij | ai, aj ∈ J andP ∈ RK};

According to Definition 3.4, the node labels are sets of atomic concepts, basic roles, and individuals
in J , plus the auxiliary symbolsr andd and the symbols of the formPij in PI , which may occur in
the root’s label.
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• The set of states isSK = {s0, s1} ∪ Clext ∪ Snum ∪ SA role ∪ SA quant ∪ SA num wheres0 is the
initial state,s1 is an additional state, andClext = Clnnf (CT ,J ∪{r, d}) is the(J ∪{r, d})-extended
closure ofCT .

EachE ∈ Clext is a state inSK, and these are the ‘basic’ states ofAK. Intuitively, when the automaton
AK moves to a stateE ∈ Clext and visits a nodex of the tree, it must check thatE holds inx. To
this aim, the expressions inClext are inductively decomposed and the tree is navigated accordingly.
For some particular concepts (e.g. number restrictions andexistential and universal involving ABox
individuals), we need additional special states, namely the ones in the setsSnum , SA role , SA quant

andSA num . These are defined and briefly explained below.

Snum = {〈> n Q.C, i, j〉 | > n Q.C ∈ Clnnf (CT ), 0 ≤ i ≤ kCT
+1, 0 ≤ j ≤ n} ∪

{〈6 n Q.C, i, j〉 | 6 n Q.C ∈ Clnnf (CT ), 0 ≤ i ≤ kCT
+1, 0 ≤ j ≤ n+1}

The states in the setSnum are used for checking whether the number restrictions are satisfied. Roghly,
in one such state,i stores how many successors of the current node have been navigated, andj how
many of them are reached throughQ and labeled withC.

SA role = {Qij | ai, aj ∈ J andQ a basic role inClnnf (CT )}

The automaton moves to a state of the formQij when it needs to to verify whether ABox individuals
ai andaj are related by a roleQ.

SA quant = {〈j,∃Q.C〉 | ∃Q.C ∈ Clnnf (CT ), Q a basic role,1 ≤ j ≤ |J |} ∪

{〈j,∀Q.C〉 | ∀Q.C ∈ Clnnf (CT ), Q a basic role,1 ≤ j ≤ |J |}

These special states allow to automaton to check whether concepts of the form∃Q.C and∀Q.C are
satisfied by some ABox individualaj.

SA num = {〈m,> n Q.C, i, j〉 | > n Q.C ∈ Clnnf (CT ), 1 ≤ m, i ≤ |J |, 0 ≤ j ≤ n} ∪

{〈m,6 n Q.C, i, j〉 | 6 n Q.C ∈ Clnnf (CT ), 1 ≤ m, i ≤ |J |; 0 ≤ j ≤ n+1}

The states inSA num are used to verify the satisfaction of the number restrictions by the ABox indi-
viduals. Similarly as above,i stores how many successors of the individualam have been navigated,
andj how many of them are reached throughQ and labeled withC.

• FK = {∀R∗.C | ∀R∗.C ∈ Clnnf (CT )} is a Büchi acceptance condition.

Observe that concepts of the form∃R∗.C are not final states. This is sufficient to guarantee that such
concepts are satisfied in all accepting runs of the automaton[4].

• The transition functionδ : SK × ΣK → B([k] × SK), wherek = max(kCT
, |J |), is defined as

follows:

1. First of all, the automaton will verify that the root contains r, that the level one nodes properly rep-
resent the individuals in the ABox, that all ABox assertionsare satisfied, and that every non-dummy
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node at level one is the root of a tree representing a model ofCT . Thus, for eachσ in σ ∈ ΣK with
r ∈ σ andσ ∩ {CK ∪RK} = ∅ we define a transition from the initial states0

δ(s0, σ) = B1 ∧ · · · ∧ B8

where:

B1 =
∧

1≤i≤|J |((
∨

1≤j≤|J |(i, aj) ∧ (i,¬d)) ∨ (i, d))

B2 =
∧

1≤i≤|J |

∨

1≤j≤|J |(j, ai)

B3 =
∧

1≤i<j≤|J |(
∧

1≤k≤|J |(i,¬ak) ∨ (j,¬ak))

B4 =
∧

1≤i≤|J |((i,¬r) ∧ (i, s1))

B5 =
∧

ai 6=aj∈A
(
∧

1≤k≤|J |(k,¬ai) ∨ (k,¬aj))

B6 =
∧

A(aj)∈A
(
∨

1≤i≤|J |(i, aj) ∧ (i, A))

B7 =
∧

P (ai,aj)∈A
(0, P ij)

B8 =
∧

1≤i≤|J |((i,nnf (CT )) ∨ (i, d))

• B1 ensures that each level one node stands for some individualak, in which case the label
containsak and does not containd, or it is a dummy child labeledd.

• B2 verifies that the label identifying each individualak occurs in some level one node.

• B3 verifies that a label identifying an individual does not occur in two different level one nodes.

• B4 checks that on each level one node the label does not containr, and also moves on each level
one node to the states1. Froms1 it then further checks thatr and eachai ∈ J do not appear at
any node below level one in the whole tree. This is accomplished by the following transitions,
one for eachσ ∈ ΣK:

δ(s1, σ) =
∧

1≤i≤kCT

((i,¬r) ∧ (
∧

1≤j≤|J |(i,¬aj)) ∧ (i, s1))

• B5 checks, for each inequality assertionai 6= aj in A, that the labelsai, aj do not occur in the
label of the same level one node.

• B6 ensures that the assertions of the formA(ai) in A are satisfied, by verifying, for each such
assertion, that every node labeledai is an instance ofA.

• B7 verifies that each assertions of the formP (ai, aj) is satisfied, by going to the statePij.

• Finally, B8 checks that every non-dummy node at level one is the root of a tree representing a
model of the conceptCT .

Note that conditionsB1–B4 do not depend on the actual ABox assertions. Among these,B1–B3

ensure that the level one nodes properly represent the individuals inJ . Instead, conditionsB5–
B7 guarantee that all ABox assertions are satisfied, while condition B8 guarantees that the TBox
assertions are satisfied.
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2. Now we define transitions that inductively decompose concepts and roles, and move to appropriate
states of the automaton and nodes of the tree. Note that the transitions involving∀R∗.C and∃R∗.C
are slightly different from the others. Instead of decomposing the concept, they treat∀R∗.C as the
equivalent conceptC ⊓ ∀R.∀R∗.C, and∃R∗.C asC ⊔ ∃R.∃R∗.C.

For each concept or basic role inClnnf (CT ) and eachσ ∈ ΣK there are transitions:

δ(C ⊓ C ′, σ) = (0, C) ∧ (0, C ′)
δ(C ⊔ C ′, σ) = (0, C) ∨ (0, C ′)

δ(∀(R ∪ R′).C, σ) = (0,∀R.C) ∧ (0,∀R′.C)
δ(∀(R ◦ R′).C, σ) = (0,∀R.∀R′.C)

δ(∀R∗.C, σ) = (0, C) ∧ (0,∀R.∀R∗.C)
δ(∀id(C).C ′, σ) = (0,nnf (¬C)) ∨ (0, C ′)

δ(∃(R ∪ R′).C, σ) = (0,∃R.C) ∨ (0,∃R′.C)
δ(∃(R ◦ R′).C, σ) = (0,∃R.∃R′.C)

δ(∃R∗.C, σ) = (0, C) ∨ (0,∃R.∃R∗.C)
δ(∃id(C).C ′, σ) = (0, C) ∧ (0, C ′)

δ(Q ∩ Q′, σ) = (0, Q) ∧ (0, Q′)
δ(Q ∪ Q′, σ) = (0, Q) ∨ (0, Q′)
δ(Q \ Q′, σ) = (0, Q) ∧ (0,¬Q′)

Additionally, for each basic role inClnnf (CT ), eachσ ∈ ΣK and eachi, j ∈ J there are transitions:

δ(Q ∩ Q′ij, σ) = (0, Qij) ∧ (0, Q′ij)
δ(Q ∪ Q′ij, σ) = (0, Qij) ∨ (0, Q′ij)
δ(Q \ Q′ij, σ) = (0, Qij) ∧ (0,¬Q′ij)

Remember that inQ \ Q′, the rolesQ andQ′ are either atomic or inverse of atomic, and hence¬Q′

(resp.¬Q′ij) is indeed a state of the automaton.

3. To verify that a concept of the form∀Q.C or ∃Q.C is satisfied by a nodex, (whereQ is a basic role),
all the nodes that reach or are reachable fromx must be navigated. We need different transitions (i)
for a nodex at level one, and (ii ) for a nodex at any other level. In case (ii ), the predecessor and the
successors ofx are navigated as usual. In case (i), the transitions must consider the other individual
nodes that are connected tox via some role, which is recorded in the root label. Therefore, the
transitions must send suitable copies of the automaton to navigate the successors, and send a copy of
the automaton up to the root, moving to the special states inSA quant . Thus, we define the following
transitions, for each concept of the form∃Q.C or ∀Q.C in Clnnf (CT ) and eachσ ∈ ΣK.

First, if σ ∩ (J ∪ {d}) = ∅ (i.e., case (ii ) above), we define:

δ(∃Q.C, σ) = ((0, Q−) ∧ (−1, C)) ∨
∨

1≤i≤kCT

((i,Q) ∧ (i, C))

δ(∀Q.C, σ) = ((0,nnf (¬Q−)) ∨ (−1, C)) ∧
∧

1≤i≤kCT

((i,nnf (¬Q)) ∨ (i, C))

Otherwise, ifσ ∩ (J ∪ {d}) 6= ∅ (case (i) above), we have transitions:
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δ(∃Q.C, σ) =
∨

aj∈σ(−1, 〈j,∃Q.C〉) ∨
∨

1≤i≤kCT

((i,Q) ∧ (i, C))

δ(∀Q.C, σ) =
∧

aj∈σ(−1, 〈j,∀Q.C〉) ∧
∧

1≤i≤kCT

((i,nnf (¬Q)) ∨ (i, C))

For eachσ ∈ ΣK, and each〈j,∃Q.C〉 or 〈j,∀Q.C〉 in SA quant , there is a transition

δ(〈j,∃Q.C〉, σ) =
∨

1≤i≤|J |

(
∨

1≤k≤|J |

((0, Qjk) ∧ (i, ak) ∧ (i, C)))

δ(〈j,∀Q.C〉, σ) =
∧

1≤i≤|J |

(
∧

1≤k≤|J |

((0,nnf (¬Qjk)) ∨ (i,¬ak) ∨ (i, C)))

4. For number restrictions, the transitions are slightly more involved since we need to encode a counter
into the automaton. Intuitively, a state〈≷ n Q.C, i, j〉, for ≷∈ {>,6}, is used to check whether a
qualified number restriction≷ nQC is satisfied in a nodex by counting the number of nodes reached
from x throughQ in which C holds. More precisely, when the automaton is in a state of theform
≷ nQC and visiting a nodex, it will change to the state〈≷ n Q.C, 0, 0〉. Then it will suitably navigate
the neighbours of the node, using the first counter to keep track of those that have already been visited,
and the second one to account for those that are reachable through the relationQ and which are an
instance ofC. Thus the automaton will be in a state〈≷ n Q.C, i, j〉 if among the firsti−1 neighbours
of x there arej nodes reached fromi·x throughQ in whichC holds.

For each concept of the form≷ n Q.C in Clnnf (CT ) and eachσ ∈ ΣK there is a transition:

δ(≷ n Q.C, σ) = (0, 〈≷ n Q.C, 0, 0〉)

Once the counters are set to0 by the above transition, the automaton starts navigating the successors
of the node, which are at mostkCT

. This is done with a set of transitions of the following form:

δ(〈≷ n Q.C, i, j〉, σ) = (((i+1,nnf (¬Q)) ∨ (i+1,nnf (¬C))) ∧ (0, 〈≷ n Q.C, i+1, j〉)) ∨

((i+1, Q) ∧ (i+1, C) ∧ (0, 〈≷ n Q.C, i+1, j+1〉))

for all states inSnum , with the counters ranging over the following values:

• 0 ≤ i < kCT

i stores how many successors have been counted, and checks the(i + 1)-th

• if ≷ is >, then0 ≤ j < n

We stop counting if we reachn, as we already know the at-least restriction is satisfied

• Otherwise, if≷ is 6, then0 ≤ j ≤ n

We can stop counting if we reachn + 1, as we know that the at-least restrictions is not satisfied.
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After counting the successors of a node, we have to distinguish between the level one nodes and
the remaining ‘ordinary’ nodes. In the latter case the automaton simply moves up and takes the
predecessor of the node into account.

Thus, ifσ ∩ (J ∪ {d}) = ∅, we define:

δ(〈≷ n Q.C, kCT
, j〉, σ) = (((0,nnf (¬Q−)) ∨ (−1,nnf (¬C))) ∧ (0, 〈≷ n Q.C, kCT

+1, j〉)) ∨
((0, Q−) ∧ (−1, C) ∧ (0, 〈≷ n Q.C, kCT

+1, j+1〉))

with j as above, i.e.,0 ≤ j < n if ≷ is >, and0 ≤ j ≤ n otherwise.

For the level one nodes, the automaton moves up to the root andto a state inSA num . Note that the
first counter is restarted in order to start navigating the level one nodes, while the second counter
still stores the number of elements that has been accounted for so far. From this state, the automaton
counts how many level one nodes represent an individual which is related tox by the roleQ and is an
instance ofC.

If σ ∩ (J ∪ {d}) 6= ∅:

δ(〈≷ n Q.C, kCT
, j〉, σ) =

∧

ai∈σ(−1, 〈i,≷ nQ.C, 0, j〉)

and, for all states inSA num , we define:

δ(〈m,≷ nQ.C, i, j〉, σ) = ((
∧

1≤k≤|J |((i,¬ak) ∨ (0,nnf (¬Qmk))) ∨ (i,¬C)) ∧

(0, 〈m,≷ nQ.C, i + 1, j〉)) ∨
((

∨

1≤k≤|J |((i, ak) ∧ (0, Qmk)) ∧ (i, C)) ∧

(0, 〈m,≷ nQ.C, i + 1, j + 1〉))

with 1 ≤ m, i ≤ |J |, if ≷ is >, then0 ≤ j < n, and if≷ is 6, then0 ≤ j ≤ n.

Once all the necessary nodes have been navigated the (un)satisfiaction of the number restrictions can
be established:

δ(〈> n Q.C, i, n〉, σ) = true, for 0 ≤ i ≤ kCT
+1

δ(〈> n Q.C, kCT
+1, j〉, σ) = false, for 0 ≤ j ≤ n−1

δ(〈6 n Q.C, i, n+1〉, σ) = false, for 0 ≤ i ≤ kCT
+1

δ(〈6 n Q.C, kCT
+1, j〉, σ) = true, for 0 ≤ j ≤ n

δ(〈m,> n Q.C, i, n〉, σ) = true, for 1 ≤ i ≤ |J |
δ(〈m,> n Q.C, |J | + 1, j〉, σ) = false, for 0 ≤ j ≤ n−1

δ(〈m,6 n Q.C, i, n + 1〉, σ) = false, for 1 ≤ i ≤ |J |+1
δ(〈m,6 n Q.C, |J |+1, j〉, σ) = true, for 0 ≤ j ≤ n.

5. Concepts and roles are recursively decomposed as explained above. When reaching the atomic level,
it is checked whether the node labelσ contains the corresponding atomic symbol. Thus, for each
σ ∈ ΣK, and eachs ∈ CK ∪RK ∪ J ∪ {d} there are transitions:

δ(s, σ) =

{

true, if s ∈ σ

false, if s 6∈ σ
and δ(¬s, σ) =

{

true, if s 6∈ σ

false, if s ∈ σ



INFSYS RR 1843-08-05 13

6. Finally, further transitions verify whether ABox individuals are connected via some atomic or inverse
of atomic role by checking the label of the root. For eachσ ∈ ΣK andPij ∈ SA role with P ∈ RK

there is a transition:

δ(Pij, σ) =

{

true, if (Pij ∈ σ) or (P−ji ∈ σ)

false, otherwise

Roughly, a run ofAK on an infinite treeT starts in the root, checks that the ABox is properly represented
and moves to each node representing some individual in orderto check thatCT holds there (item 1 above).
To this end,nnf (CT ) is recursively decomposed while appropriately navigatingthe tree (items 2, 3 and 4)
until AK arrives at atomic elements, which are checked locally (items 5 and 6).

3.3 Soundness and Completeness

Satisfiability of anALCQIbreg KB K can be decided by testing the automatonAK for emptiness, since
there is a direct correspondence between canonical tree models of K and the labeled trees accepted by
AK. Indeed, a labeled treeT = (T, V ) over the alphabetΣK can represent an interpretationIT for K.
Furthermore, ifT = (T, V ) is accepted byAK, then it represents a canonical model ofK.

We use the notion of aquasi-interpretation(∆I , ·I), which is very similar to an interpretation. The only
difference is that in a quasi-interpretation,aIi is a subset of∆I for any individualai, instead of a single
element of∆I . Canonical quasi-interpretationsare defined similarly to canonical interpretations, only that
instead of item 2 in Definition 3.2, they satisfy thataIi ⊆ {1, . . . , n} for eachai ∈ J .

Now we define the quasi-interpretationIT represented by a treeT. Informally, its domain∆IT is given
by the nodesx in T with ai ∈ V (x) for some individualai, and the nodes inT that are reachable from any
suchx through the roles. The extensions of individuals, conceptsand roles are determined by the labels of
the nodes inT.

Definition 3.5 A labeled treeT = (T, V ) over the alphabetΣK is called aquasi-interpretation treeif:

• the branching degree is|J | at the first level andkCT
at all the other levels,

• r ∈ V (ε) anr 6∈ V (x) for everyx 6= ε,

• for every level one node1 ≤ x ≤ |J |, ({d} ∪ J ) ∩ V (x) 6= ∅ and{d, ai} 6⊆ V (x) for eachai ∈ J ,

• ({d} ∪ J ) ∩ V (x·j) = ∅ for everyx 6= ε, j > 0.

W.l.o.g. we assume that for any pairx, y of level one nodesx, y ∈ {1, . . . , |J |}, if ai ∈ V (x) for some
ai ∈ J andd ∈ V (y), thenx < y.

Let T = (T, V ) be a quasi-interpretation tree. For each atomic roleP , we define:

R1
P = {(x, xi) | P ∈ V (xi)} ∪ {(xi, x) | P− ∈ V (xi)}

R2
P = {(i, j) | Pij ∈ V (ε)} ∪ {(j, i) | P−ij ∈ V (ε)}

Intuitively, R1
P contains all the pairs of nodes(x, y) that are in the extension of the atomic roleP , where at

least one ofx andy is not a level one node.R2
P contains all the pairs of level one nodes that are related by

the roleP . Together,R1
P andR2

P determine the extension of the atomic roleP .
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We also define the setI of the nodes inT that interpret some individual inJ :

I = { x | x ∈ {1, . . . , |J |}, ai ∈ V (x) for someai ∈ J }

Note thatI is actually a set of the form{1, . . . , n} for somen ≤ |J |. To define the domain of∆IT ,
we consider the nodes inI and those that are in a subtree starting at some element ofI and are reachable
though a sequence of roles fromK, i.e., the nodes that comprise the tree-shaped models ofCT rooted at
each element ofI. For eachi ∈ I, the set of all such nodes can be constructed as follows:

Di = { x′ | (i, x′) ∈ (
⋃

P∈RK

(R1
P ∪R1

P
−
))∗ }

Clearly, the setDi is a tree overi·{1, . . . , kCT
} whose root isi.

Definition 3.6 Given a quasi-interpretation treeT, the quasi-interpretationIT for K is defined as follows:

∆IT = I ∪
⋃

i∈I
Di

a
IT

i = I ∩ { x | ai ∈ V (x) }, for eachai ∈ J
AIT = ∆IT ∩ { x | A ∈ V (x) }, for each atomic conceptA
P IT = (∆IT × ∆IT) ∩RP , for each atomic roleP , whereRP = R1

P ∪R2
P .

Note that, by definition, the interpertationIT represented by a quasi-interpretation tree satisfies items1
and 3 in Definition 3.2, and it also satisfiesaIi ⊆ {1, . . . , n} for all individuals. Therefore,IT is a canonical
quasi-interpretation.

Proposition 3.7 LetT be a labeled tree accepted byAK. ThenIT is a model ofK.

Proof. Let T = (T, V ) be a labeled tree accepted byAK. ThenIT is a canonical quasi-interpretation.
Furthermore, note that the transition function ofAK (item 1,B1 to B3) is defined in such a way that each
ai ∈ J occurs in the label of exactly one level one node in any tree accepted byAK. Since only such nodes
can occur inaIT

i for anai ∈ J , a
IT

i is a singleton. ThusIT is a canonical interpretation forK.
To see thatIT is a model ofK, we have to show that (i) IT |= A and that (ii ) for eachai ∈ J ,

aIT

i ∈ CIT

T is a model ofK.
First we prove (i). Note that item 1 in the transition function ofAK, together with items 5 and 6 (which

ensure that(δ(x,E) = true iff E ∈ V (x) for any nodex and element of the node labelsE), ensure that in
every treeT accepted byAK the following hold:

• If ai 6= aj ∈ A, then there is no nodek ∈ {1, . . . , n} in T such that{ai, aj} ⊆ V (k) (by B5).

• If A(ai) ∈ A, then there is some nodek ∈ {1, . . . , n} in T such that{ai, A} ⊆ V (k) (by B6).

• for eachP (ai, aj) ∈ A, Pij ∈ V (ε) (by B7).

Clearly, by construction ofIT, this is enough to ensure that every assertion in the ABox is satisfied and
IT |= A. In order to prove (ii ), first observe that by item 1 (B8) in the definition of the transition function,
if T is accepted byAK, then(i, CT ) must evaluate to true for everyi ∈ {1, . . . , |J |} such thati is in ∆IT .
We will show in the following lemma that this impliesi ∈ CIT

T , and thus it is enough to ensure that (ii )
holds.
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Lemma 3.8 Let T be a tree accepted byAK, let (T, r) be an accepting run ofAK overT and lety be a
node ofT with r(y) = (x,E), for some nodex of T, x 6= ε, and someE ∈ Cl(CT ) a concept, individual,
or basic role. Thenr(y) = (x,E) evaluates to true in the run iff

• x ∈ EIT whenE is a concept or an individual; and

• 〈x′, x〉 ∈ EIT whenE is a role,x′ is the predecessor ofx in T andx′ 6= ε.

The proof of the lemma is a straightforward induction on the structure ofE. By the definition ofTI

and the definition of the transition function (item 5) it is trivial for atomic E. For complex concepts and
roles, it also follows from the definition of the transition function, particularly item 2, which decomposes
them accordingly. Some cases are slightly more involved. For concepts involving quantifiers and number
restrictions, the items 3 and 4 must be considered. In both cases the level one nodes must be treated as
special cases requiring item 6.

Most cases are straightforward. Only concepts of the form∀R∗.C and∃R∗.C are slightly different.
These are propagated using the equivalent conceptsC ⊓ ∀R.∀R∗.C andC ⊔ ∃R.∃R∗.C, respectively. Only
these concepts may generate infinite branches in a run. In such a branch,∃R∗.C could always be resolved by
choosing the disjunct∃R.∃R∗.C but never the disjunctC. The branch then corresponds to an infinite path
in the treeT in whichR is iterated forever andC never satisfied. Since the semantics of∃R∗.C means that
C is satisfied after finitely many iterations ofR, this path cannot be used to satisfy∃R∗.C. The acceptance
condition ofAK, which requires that each infinite branch contains only states of the form∀R∗.C infinitely
often (and thus each∃R∗.C will stop occurring at some point on the path) rules out such infinite branches
in accepting runs, ensuring that all concepts of the form∀R∗.C and∃R∗.C are satisifed.

Conversely, ifI is a canonical model ofK, thenTI , the tree that representsI (Definition 3.4) is accepted
by AK.

Proposition 3.9 LetI be a canonical model ofK. ThenAK acceptsTI .

Proof. We have to prove thatAK has an accepting run onTI . This is the case, since we definedAK

in such a way that it will always accept a tree if it manages to verify that the tree represents a model of
the knowledge base. The accepting run will start at(ε, s0). Since the rootε of TI is marked withr and
r ∩ {CK ∪ RK} = ∅, then a transition of the formδ(s0, V (ε)) = B1 ∧ · · · ∧ B8 will be defined. Since
I is a canonical model ofK, then for everyai ∈ J there will be exactly onej in TI such thatai ∈ V (j).
Moreover, for everyj, 0 ≤ j ≤ |J |, d ∈ V (j) iff ai 6∈ V (j) for everyai ∈ J . This ensures that in the run
there will be suitable successors of(ε, s0) of the form(j, ai), (j,¬ai), (j, d) and(j,¬d) as required by items
B1 to B3. Similarly, sinceIT |= A, wheneverai 6= aj ∈ A, there will be no level one nodek such that
ai ∈ V (k) andaj ∈ V (k). This ensures that the automaton can navigate to every suchk and move either
to the stateai or to the stateaj , as required byB5. Also, sinceI |= A(aj) for every assertionA(aj) ∈ A,
the automaton can move to the nodei with aj ∈ V (i) and change to stateA in order to satisfyB6. As
I |= P (ai, aj) for every such ABox assertion,Pij ∈ V (ε) will hold by definition ofTI , and thus the run
can successfully satisfyB7. Finally, asI is a canonical model ofK, a

IT

i ∈ C
IT

T for everyai ∈ J . Thus the
automaton can send suitable copies to every level one nodej, and either move to stateCT if ai ∈ V (j) for
some ABox individual, or move to stated otherwise, ensuring thatB8 is also satisfied. The rest of the run is
just an inductive decomposition of the conceptCT , starting at every level one node which interprets some
ABox individual. Since every such individual is indeed an instance ofCT , by Lemma 3.8 we know that the
run concludes successfully andAK acceptsTI .



16 INFSYS RR 1843-08-05

From Propositions 3.7 and 3.9 and the canonical model property of ALCQIbreg (Theorem 3.3), we get
the following result:

Theorem 3.10 AnALCQIbregKBK is satisfiable iff the set of trees accepted byAK is nonempty.

3.4 Complexity

Recall thatCK andRK represent respectively the atomic concepts inK and the atomic roles inK together
with their inverses;J represents the ABox individuals inK; n represents the maximaln occurring in a
concept of the form≷ n Q.C in Clnnf (CT ), andkCT

= |Clnnf (CT )| × n. Clearly, all of|CK|, |RK| and
|J | are linear in the size ofK, and so is|Cl(CT )|. Moreover, assuming that the numbers in the number
restrictions are encoded in unary,n is linear andkCT

quadratic in the size ofK. Under this assumptions, we
obtain:

• The sizeΣK is bounded by2O(M), whereM = |CK| + |RK| + |J | + |PI | and|PI | = |RK| × |J |2,
so we have thatΣK is single exponential in the size ofK.

• The number of states inSK is polynomial in the size ofK.
More specifically,|SK| = |Cl(CT ,J , d)| + |Snum | + |SA role |+ |SA quant | + |SA num | + 1, and we
have the following bounds:

|Snum | ≤ |Cl(CT )|2 × n
2

|SA role | ≤ |Cl(CT )| × |J |2

|SA quant | ≤ |Cl(CT )| × |J |
|SA num | ≤ |Cl(CT )| × |J |2 × n

So the cardinalitySK is bounded byO(L2), whereL = |Cl(CT )| + |J | + n.

• Any Büchi conditionF can be converted into a parity one of length3 by takingG1 = ∅, G2 = F ,
G3 = Q (see 2.2). Thus the automatonAK has a parity acceptance condition of constant size.

Thus, by Theorems 2.3 and 3.10, we get an optimal upper bound for KB satisfiability.

Corollary 3.11 For ALCQIbreg , KB satisfiability is decidable inEXPTIME.

This is worst-case optimal, since a matching lower bound holds already for much weaker DLs [1].

4 Query answering via automata

We address now the problem of entailment of P2RPQs inALCQIbregKBs. Consider a (Boolean) P2RPQ
q over a KBK. We first show that, in order to check whetherK |= q, it is sufficient to restrict attention
to canonical models. This can be proven in the same way as Theorems 3.1 and 3.3. Indeed, an arbitrary
counterexample model for entailment can be transformed into a canonical model by unraveling and collaps-
ing/eliminating nodes. Since the query does not contain negative information, there will still be no match
for the unraveled model and the query.
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Lemma 4.1 K 6|= q if and only if there is a canonical modelI ofK such thatI 6|= q.

This result allows us to exploit tree-automata based techniques also for query entailment. Specifically,
we build an automaton that accepts exactly the set of canonical models of the knowledge base where there
is no match for the query. Once this automaton has been constructed, we can decide the entailment of the
query by checking for emptiness the language it accepts.

Roughly, this automaton is obtained by intersecting two automata: one that accepts the canonical models
of the knowledge baseK (i.e.,AK as constructed in the previous section) and another one thataccepts the
set of trees, labeled with the same alphabet and that have same branching degree as the models ofK, where
there is no match forq. The latter will be constructed in this section.

To this aim, we first construct an automaton that accepts the trees where there is a match forq. We will
see later how it can be transformed into an automaton that accepts the tree where there isno matchfor q.
We consider trees over the alphabetΣK extended with additional atomic concepts, one for each variable
in q, and we enforce each of these new concepts to be satisfied in a single node of the tree. The intuition
behind the use of such trees is that, since the existentiallyquantified “variables” appear explicitly in the tree,
a 2ATA Aq can easily check the existence of a match for (the interpretation corresponding to) the tree and
q. We show now how to construct such a 2ATA.

4.1 Constructing the Automaton

Let q = ∃~x.ϕ(~x) be a P2RPQ overK, let atoms(q) be the set of atoms appearing inq, and letX =
{x1, . . . , xℓ} be the set of variables in~x. We denote byCq andRq the set of atomic concepts and the set of
atomic and inverse of atomic roles that occur inq. Recall thatJ denotes the individuals inK. Note that in
the following, we will consider both the variables in the setX and the individuals inJ as atomic concepts,
which can be used to build complex roles, like the elements ofCq. Let U = (

⋃

P∈Rq
(P ∪P−))∗. We define

for each atomα ∈ atoms(q) a conceptCα:

Cα =

{

∃U .(C ⊓ z), if α = C(z)

∃U .(z ⊓ ∃R.z′), if α = R(z, z′)

wherez, z′ ∈ J ∪ X .
We define the 2ATAAq = (Σq, Sq, δ, s0, Fq) as follows.

• Σq = ΣK ∪ 2X ; i.e., nodes are labeled with elements ofΣK possibly extended with elements ofX .
Recall that the individual names inJ were already inΣK, thus we don’t need to extend our alphabet
with them.

• Sq is defined similarly as forAK, except that we use the closure of the atomsCα instead of the closure
of CT . More specifically, letC =

⋃

α∈atoms(q) Clnnf (Cα,J ∪ X ∪ {r, d}).

Recall that we need to consider trees with the same branchingdegree as those accepted byAK, which
is given by|J | at level one and bykCT

at all other levels.

The set of statesSq is defined as follows:

Sq = {s0, s1} ∪ C ∪ SX ∪ Sq,num ∪ Sq,A role ∪ Sq,A quant ∪ Sq,A num

with:
SX = {X+

i ,X−
i | 1 ≤ i ≤ |X |}
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Sq,num = {〈> n Q.C, i, j〉 | > n Q.C ∈ C, 0 ≤ i ≤ kCT
+1, 0 ≤ j ≤ n} ∪

{〈6 n Q.C, i, j〉 | 6 n Q.C ∈ C, 0 ≤ i ≤ kCT
+1, 0 ≤ j ≤ n+1}

Sq,A role = {Qij | ai, aj ∈ J andQ a basic role inC}

Sq,A quant = {〈j,∃Q.C〉 | ∃Q.C ∈ C, Q a basic role,1 ≤ j ≤ |J |} ∪
{〈j,∀Q.C〉 | ∀Q.C ∈ C, Q a basic role,1 ≤ j ≤ |J |}

Sq,A num = {〈m,> n Q.C, i, j〉 | > n Q.C ∈ C, 1 ≤ m, i ≤ |J |, 0 ≤ j ≤ n} ∪
{〈m,6 n Q.C, i, j〉 | 6 n Q.C ∈ C, 1 ≤ m, i ≤ |J |, 0 ≤ j ≤ n+1}

• Fq = FC ∪ FX , where

– FC is defined as forAK, but using the closure of the conceptsCα, i.e.,FC = {∀R∗.C | ∀R∗.C ∈
C};

– FX = {X−
i | 1 ≤ i ≤ |X |}, and ensures that each atomic conceptx ∈ X actually occurs in

the tree, as will be clear from the following.

• The transitions from the initial state are defined for all labelsσ containing the symbolr (identifying
the root node) asδ(s0, σ) = Bϕ ∧ B1 ∧ B2 ∧ B3 ∧ B4 ∧ BX , where:

– Bϕ is obtained fromϕ(~x) by replacing each atomα with (0, Cα) (and by considering∧ and∨
as the analogous connectives in a 2ATA transition);

– B1, B2, B2, B3, andB4 are as forAK, and ensure again that the level one nodes properly
represent the individuals inJ , and thatr and eachai ∈ J do not appear at any node below
level one in the whole tree. For the latter, an additional state s1 with an appropriate transition is
defined, exactly as forAK;

– Finally, BX checks that each atomic conceptx ∈ X appears exactly once in the tree, i.e.,

BX =
∧

1≤i≤|X |

(
∨

1≤j≤|J |

((j,X+
i ) ∧

∧

1≤j′≤|J |, j′ 6=j

(j′,X−
i )))

with the following additional transitions defined for each1 ≤ i ≤ |X | and eachσ ∈ Σq:

δ(X+
i , σ) = ((0, xi) ∧

∧

1≤j≤kCT

(j,X−
i )) ∨

((0,¬xi) ∧
∨

1≤j≤kCT

((j,X+
i ) ∧

∧

1≤j′≤|J |, j′ 6=j(j
′,X−

i )))

δ(X−
i , σ) = (0,¬xi) ∧

∧

1≤j≤kCT

(j,X−
i )

WhenAq is in a stateCα in the root node (the only node labeledr), it does not “decompose”Cα as usual.
Instead, it checks that the conceptCα is satisfied in a node at level one representing some ABox individual.
This is done by the following transitions, for eachα∈ atoms(q) andσ containingr:

δ(Cα, σ) =
∨

1≤i≤|J |((i, Cα) ∧
∨

1≤j≤|J |(i, aj))

Aq contains transitions analogous to those ofAK to check that the various conceptsCα are satisfied. These
transitions are:

• For each concept or basic role inC, eachσ ∈ Σq and eachi, j ∈ J there are transitions like the ones
given in item 2 forAK, which inductively decompose concepts and roles.
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• There are transitions like the ones in 3 and 4 for eachσ ∈ Σq and for each concept of the form∃Q.C,
∃Q.C or ≷ n Q.C in C respectively. The transitions are suitably defined for all states inSq,A quant ,
Sq,num andSq,A num .

• Atomic transitions similar to those defined in items 5 and 6 are also defined forAq, but for each
σ ∈ Σq, for eachs ∈ Cq ∪Rq ∪ J ∪ {d} ∪ X and for eachPij ∈ Sq,A role with P ∈ Rq.

The automaton we have defined accepts trees similar to the ones accepted byAK, except that these
are over the extended alphabetΣq, i.e., the node labels may contain query variables. We see such trees as a
representation of a canonical quasi-interpretation extended to interpret each query variable as a concept. If in
the canonical quasi-interpretation each element ofX ∪J is interpreted as a singleton set, then we can easily
establish a correspondence between the extended quasi-interpretation and a standard quasi-interpretation for
K where there is acandidate matchfor the query. I.e. by mapping each query variable/individual to the
single individual in the extension of its interpretation, we obtain a potential match forq.

Definition 4.2 An extended quasi-interpretation treeis a labeled treeT′ = (T, V ′) over the alphabetΣq

such that the labeled treeT = (T ′, V ) overΣK obtained fromT
′ by restricting the labeling functionV ′ to

ΣK is a quasi-interpretation tree. Aquasi-interpretation tree with a candidate matchis an extended quasi-
interpretation treeT′ = (T, V ′) that additionally satisfies that there is exactly onew ∈ T with x ∈ V ′(w)
for eachx ∈ J ∪ X . In this case,w is calledthe candidate match forx in T

′.
For a quasi-interpretation tree with a candidate matchT, the canonical quasi-interpretationIT represented
by T is defined as in Definition 3.5, by considering eachx ∈ X as a new atomic concept. We denote byπT

the functionJ ∪ X → ∆IT defined asπT(x) = w, wherex ∈ J ∪ X andw is the candidate match forx
in T.

The following lemma states that the concepts of the formCα correctly capture the semantics of the query
atoms. Indeed, the satisfaction of the conceptCα in a canonical quasi-interpretation ensures the entailment
of α.

Lemma 4.3 Let T be a quasi-interpretation tree with a candidate matchT, and letIT be the canonical
quasi-interpretation represented byT. LetU = (

⋃

P∈Rq
(P ∪ P−))∗ andCα as above. Letq be a 2PRPQ

and letα be an atom inq. Then the following are equivalent:

1. IT, πT |= α

2. there arew,w′ ∈ ∆IT with w ∈ a
IT

i for some individualai such that(w,w′) ∈ UIT , and addition-
ally:

• w′ ∈ zIT ∩ CIT if α is of the formC(z), and

• w′ ∈ zIT ∩ (∃R.z′)IT if α is of the formR(z, z′).

3. there is somew ∈ ∆IT such thatw ∈ (Cα)IT andw ∈ a
IT

i for some individualai.

Proof. We only have to verify that 1 and 2 are equivalent, as the equivalence of 2 and 3 follows trivially
from the semantics ofCα. AssumeIT, πT |= α. Supposeα = C(z). Then we have thatπT(z) ∈ CIT.
Let w′ = πT(z). Sincew′ ∈ zIT by construction ofIT, thenw′ ∈ zIT ∩ CIT holds. Analogously, if
α = R(z, z′) we have(πT(z), πT(z′)) ∈ RIT. As πT(z′) ∈ (z′)IT , it follows thatπT(z) ∈ (∃R.z′)IT .
By settingw′ = πT(z) we getw′ ∈ zIT ∩ (∃R.z′)IT as desired. In both cases, it is only left to prove the
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existence of a suitablew. By construction ofIT, w′ ∈ I or w′ ∈ Dj for somej ∈ I. In the former case, we
can takew = w′. In the latter, ifw′ ∈ Dj, thenw = j. In both cases,w ∈ aIT

i holds for someai. Finally,
(w,w′) ∈ UIT clearly follows from the definition ofU and ofIT. The proof of the other direction is also
straightforward. Ifw ∈ a

IT

i for someai, thenw ∈ I. If (w,w′) ∈ UIT then eitherw = w′ ∈ I or w′ ∈ Dj

for somej. In both cases,w,w′ ∈ ∆IT . If w′ ∈ zIT ∩ CIT, thenπT(z) = w′ andIT, πT |= C(z). If
w′ ∈ zIT ∩ (∃R.z′)IT , thenπT(z) = w′ and(πT(z), πT(z′)) ∈ RIT follow, so IT, πT |= R(z, z′) as
desired.

The following lemma can be proved in exactly the same way as Lemma 3.8. It will be useful for proving
that the automatonAq accepts exactly the set of quasi-interpretation trees where there is a match forq.

Lemma 4.4 Let T be a tree accepted byAq, let (T, r) be an accepting run ofAq overT and lety be a
node ofT with r(y) = (x,E), for some nodex of T, x 6= ε, and someE ∈ C a concept, a basic role, an
individual inJ or a variable inX . Thenr(y) = (x,E) evaluates to true in the run iff

• x ∈ EIT whenE is a concept, an individual or a variable;

• 〈x′, x〉 ∈ EIT whenE is a role,x′ is the predecessor ofx in T andx′ 6= ε.

Proposition 4.5 LetT be a quasi-interpretation tree. IfAq acceptsT, thenT has a candidate match and
IT, πT |= q.

Proof. Consider any extended quasi-interpretation treeT accepted byAq and let(Tr, r) be a successful
run ofAq onT. IT is an extended quasi-interpretation tree by definition. Moreover,r(ε) = (0, Fm ∧ Fv)
must evaluate to true(Tr, r), and thusFv will ensure thatT is a quasi-interpretation tree with a candidate
match. It is only left to verify thatIT, πT |= q. The satisfaction ofFm ensures the existence of suitable
query atomsα1, . . . , αm such that (i) if IT, πT |= αj for everyj, thenIT, πT |= q; and (ii ) for eachαj

there are nodesy, y′ in Tr and some level one nodew in T such thatr(y) = (w,Cαj
) andr(y′) = (w, ai)

evaluate to true true in the run. From (ii ) and Lemma 4.4, it follows that for each suchCαj
there is some

w ∈ ∆IT such thatw ∈ (Cαj
)IT andw ∈ a

IT

i for some individualai. ThusIT, πT |= αj by lemma 4.3,
andIT, πT |= q by (i) above.

Proposition 4.6 Let T be a quasi-interpretation tree with a candidate match such that IT, πT |= q. Then
Aq acceptsT.

Proof. We have to verify thatAK has a accepting run(Tr, r) on T. Due to the construction ofAq,
this can be done in a straightforward way. The accepting run will start at (ε, s0). Since the rootε of T

is marked withr, then a transition of the formδ(s0, V (ε)) = Fm ∧ Fv will be defined. SinceT is a
quasi-interpretation tree with a candidate match, there will be exactly onew ∈ T with x ∈ V ′(w) for each
x ∈ J ∪ X . Moreover, for eachx ∈ J , w will be level one node. This ensures the satisfaction ofFv.

As for Fm, sinceIT, πT |= q, there must be atomsα1, . . . , αm such thatIT, πT |= αj for every
1 ≤ j ≤ m, which imply the entailment ofq and thus the satisfaction ofFm. By Lemma4.3, for each
suchαj , there is somew ∈ ∆IT such thatw ∈ (Cα)IT and w ∈ a

IT

i for some individualai, Thus,
there will be some nodex of T such that the run of the automaton continues by moving nodesy, y′ of Tr

with r(y) = (x, ai) andr(y′) = (x,Cα). By Lemma 3.8, we know that they evaluate to true and the run
concludes successfully, thusAq acceptsT.
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4.2 Deciding Query Entailment

Let K be anALCQIbreg KB andq a P2RPQ overK. Roughly, the procedure to decide query entailment
works as follows. The automatonAq accepts a tree over the extended alphabetΣq if it represents a canon-
ical quasi-interpretation forK where there is a match forq. We project out the query variables from the
automatonAq to obtain an automaton that accepts the same trees, but restricted to the alphabetΣK. The
new automaton accepts exactly the set of canonical quasi-interpretations forK where there is a match for
q, no matter where the match is. The next step is to complement the automaton, so that it accepts exactly
the canonical quasi-interpretations where there is no match for q. Finally, we intersect this automaton with
the automatonAK to obtain an automatonAK6|=q which accepts the trees that represent a canonical model
of K where there is no match forq. We know, by Lemma 4.1, thatK 6|= q iff there is some such model.
So we have thatK 6|= q iff the language accepted byAK6|=q is not empty, and query entailment can be de-
cided by testing the automatonAK6|=q for emptiness. Now we will discuss these steps in detail, andanalyze
the computational complexity of each of them. We will denoteby ||K|| and ||q|| the sizes (of the strings
representing)K andq respectively.

1. First consider the automatonAq. Note that both|C| = |
⋃

α∈atoms(q) Clnnf (Cα,J , d)| and|X | are

linear in ||q||. SinceΣq = ΣK ∪ 2X , we have that|Σq| = 2O(M+|X |) whereO(M) = O((|CK| +
|RK| + |J |)2), as in Section 3.4. Thus|Σq| is single exponential in||q|| + ||K||. Analogously as
for SK, we have that the cardinalitySq is bounded byO(N2), for N = |C| + |J | + n (recall thatn
represents the maximal number occurring in the number restrictions ofK), so |Sq| is polynomial in
||K|| + ||q||. The parity acceptance condition ofAq is of constant length.

2. We convertAq into an equivalent 1NTAA1
q. By Theorem 2.3, the number of states ofA

1
q is 2O(N2),

so it is single exponential in||K|| + ||q||. The parity acceptance condition ofA
1
q remains constant.

3. We project out variables fromA1
q obtaining a 1NTAA2

q . Projecting out symbols on one-way automata
is trivial. We want to simply remove from the input trees the symbols that represent the query variables
in X , so that we obtain an automaton that runs over the alphabetΣK and accepts a tree iff it is the
restriction to this alphabet of a tree accepted byA

1
q. Recall that, sinceA1

q is a 1NTA, the transitions
are of the formδ(q, σ) = t wheret is a disjunction of conjuncts of the form(1, q1)∧. . .∧(kCT

, qkCT
),

with σ ∈ Σq andq, q1, . . . , qkCT
states ofA1

q .

We project out the variables inX from A
1
q as follows. For each variablex ∈ X , we consider each

σ ∈ Σq and each stateq of A1
q. There are two possibilities:

• If x 6∈ σ and there is a transitionδ(q, σ) = t, this transition remains unchanged.

• If x ∈ σ and there is a transitionδ(q, σ) = t, then letσ′ = σ \ {x}. If there is some transition
δ(q, σ′) = t′ in A

1
q , then we replace it by the new transitionδ(q, σ′) = t′ ∨ t. Otherwise, if no

transition of the formδ(q, σ′) exists, we add a new transitionδ(q, σ′) = t. In both cases, the
transitionδ(q, σ) = t is removed.

After this steps have been followed for everyx ∈ X , we have a new automatonA2
q such that:

(i) the alphabet ofA2
q is ΣK, and thus not larger than the alphabetΣq of A1

q;
(ii ) A

2
q has (at most) as many states asA

1
q and an accepting condition of (at most) the same length;

(iii ) A
2
q accepts a treeT iff T is the restriction toΣK of a treeT′ accepted byA1

q .
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Concerning (ii ), note that the projection of variables as defined above doesnot modify the state set
of the automaton. It can be the case that, when projecting away the variables, all the occurrences of
some stateq of A1

q are eliminated from the transition function. If this happens then the stateq can be
safely eliminated from the state set and the acceptance condition of A2

q .

Importantly, we know that an extended quasi-interpretation treeT′ is accepted byAq iff IT′ , πT′ |= q.
SinceAq andA

1
q accept exactly the same trees, this also holds forA

1
q . I.e. A

1
q acceptsT′ iff there is

a match forq in IT′, where the match for each query variablex is given by the only elementπT′(x)
of IT′ such thatπT′(x) ∈ xI

T′ . Let T be the restriction ofT′ to ΣK. By construction, we know
that A2

q acceptsT iff A
1
q acceptsT′, thusA

2
q acceptsT iff IT′ , πT′ |= q. Clearly, a match for

q in an extended quasi-interpretationI ′ is also a match forq in the quasi-interpretationI obtained
by restricting it to the concepts inK (which are the only concepts that may occur in the query) and
mapping each variablex to the only individualo in I with o ∈ xI . Moreover, any matchπ for q in
a quasi-interpretationI is also a match in the extended quasi-interpretationI ′ obtained by adding a
new conceptx for each query variable and settingxI′

= π(x). Therefore, we have that a treeT is
accepted byA2

q iff there is a match forIT andq.

4. We complementA2
q , obtaining a 1NTAA¬q. Let n be the number of states andm − 1 the length

of the parity condition ofA2
q . By [20], A

2
q can be transformed into an equivalent oneA

2′
q with a

coparity condition of lengthm. Following [20], we can construct an automatonA
′
¬q that accepts the

complement language of that ofA
2′
q , i.e.,A′

¬q accepts a treeT overΣK iff A
2′
q does not acceptT.

The number of states ofA′
¬q is no bigger than2O(mn log n), so it is single exponential inm and in

n. Recall thatn is bounded by2O(N2) and isN linear in ||K|| + ||q||. Sincem is bounded by a
constant, the number of states ofA

′
¬q is double exponential in||K||+ ||q||. The automatonA′

¬q has a
coparity acceptance condition whose length is bounded byO(mn log n), so it is single exponential in
||K||+ ||q||.4 Finally, we convert the coparity condition ofA

′
¬q into a parity one again, to obtainA¬q

(the length of the parity condition remains single exponential). SinceA
2
q accepts the trees in which

there is a match forq, we have that a treeT is accepted byA¬q iff there is no match forIT andq.

5. We convertAK to a 1NTAA
1
K. By Theorem 2.3, the number of states ofA

1
K is 2O(n) and the length

of its parity condition isO(m), wheren andm are the number of states and the length of the parity
condition ofAK respectively. From Section 3.4, we know thatn is bounded byO(L2), whereL is
linear in||K||, whilem is a constant. So we have that the number of states ofA

1
K is single exponential

in ||K|| and it has a parity acceptance condition of constant length.

6. Finally, we construct a 1NTAAK6|=q that accepts the intersection of the languages accepted byA
1
K

andA¬q, i.e., that accepts exactly the set of trees that represent acanonical model ofK in which
there is no match forq. Since a treeT is accepted byAK iff IT is a canonical model ofK, while
it is accepted byA¬q iff there is no match forIT andq, every tree accepted byAK6|=q represents a
counterexample toK |= q. On the other hand, if a treeT is not accepted byAK6|=q, then either it is
not accepted byAK, in which caseIT is not a model ofK, or it is not accepted byA¬q, in which
case it is accepted byA2

q, i.e., there is a match forIT andq. Hence the tree does not represent a
counterexample toK |= q.

4Similar bounds can be obtained using the construction in [18], defined for the more generalStreettautomata whose acceptance
condition is a relaxation of the coparity one.
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Let n1 andn2, m1 andm2 denote the number of states ofA
1
K and ofA¬q, and the length of the parity

conditions ofA1
K andA¬q respectively. By the results in [8], the automatonAK6|=q has2m1m2n1n2

states, and a parity condition of lengthO(m1 + m2). ForN andL as above (items 1 and 5), we have
the following bounds :n1 is single exponential inL, n2 is double exponential inN , m2 is single
exponential inN andm1 a constant. Thus the size ofAK6|=q is is double exponential inN and is
single exponential inL, and the length of its parity condition is single exponential in N . Since both
N andL are linear in||K|| + ||q||, AK6|=q has double exponential size and single exponential parity
condition in||K|| + ||q||.

Let T′ be an extended quasi-interpretation tree and letT be the quasi-interpretation obtained by restrict-
ing T

′ to ΣK. Summing up, we have the following:

• Aq acceptsT′ iff IT′ , πT′ |= q.

• A
1
q acceptsT′ iff IT′, πT′ |= q.

• A
2
q acceptsT iff there is a match forIT andq.

• A¬q acceptsT iff there is no match forIT andq.

• A
1
K acceptsT iff T is a canonical model ofK.

• AK6|=q acceptsT iff T is a canonical model ofK and there is no match forIT andq.

As a consequence, we get:

Lemma 4.7 There exists a canonical counterexample toK |= q iff the set of trees accepted byAK6|=q is not
empty.

By Lemma 4.1, we get the following result.

Theorem 4.8 For everyALCQIbregknowledge baseK and P2RPQ queryq, we have thatK |= q iff the set
of trees accepted byAK6|=q is not empty.

Moreover, by Theorem 2.3, since the number of states ofAK6|=q is double exponential bound and the
length of its parity condition linear in the sum of the sizes of K andq, we get:

Theorem 4.9 K |= q is decidable in double exponential time in the size ofq and the number of atomic
concepts, roles, and individuals inK.

4.3 Data complexity

A brief remark on the contribution ofK to overall complexity of the algorithm is in place. Most of the
existing query answering algorithms in expressive DLs are double exponential in||K||+ ||q||, but just single
exponential in||K||. This is not the case of our algorithm, however. The definition of P2RPQs allows for
arbitrary concepts in query atoms. It is a common practice torestrict the queries and allow only atomic
concepts instead. If we impose this restriction (even if we allow for arbitrary roles) then the automaton
Aq does not have to deal with number restrictions, since they donot occur in the conceptsCα representing
the query atoms. As a result its set of states would be simpler(Sq = {s0} ∪ C ∪ Sq,A role ∪ Sq,A quant )
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andN would depend only on||q|| and |J |. This means that ifJ is bounded, then the size and length of
parity condition ofAK6|=q are single exponential and constant in||K|| respectively, resulting in a decision
procedure which is single exponential in||K||. In the general case the number of states and size of parity
condition ofAq are already double and single exponential in|J |. This implies that our decision procedure
requires time double exponential in the size of the size of the ABox, i.e., it has doubly exponential data
complexity. Although the data complexity of query answering in ALCQIbreghas not been studied so far,
we conjecture that this is not optimal. In fact, for the related description logicSHIQ, a much lowerCONP
lower bound for data complexity is known [11]. It is not clearwhether the automatonAq could be designed
in such a way that it size would not depend on||K|| at all in order to obtain an exponentially better data
complexity upper bound.

5 Query entailment with complex role inclusion axioms

The description logicRIQ, proposed in [15], extends the well knownSHIQ with role inclusion axioms
of the formR·S ⊑ T , whereR, S andT are roles. ARIQ knowledge base, like anALCQIbregone,
comprises a TBox and and ABox, but additionally it has anRBox, which is a set of role inclusion axioms.
The TBox and ABox are defined as inALCQIbreg , except for the fact that only atomic or inverse of atomic
roles are allowed (i.e., the only rule defining roles isR −→ P | P−). In the rule defining concepts,Q
stands for asimple role, and only such roles are allowed to occur in the number restrictions. The definition
of simple rolesfor RIQ is slightly more involved than forALCQIbreg , we refer to [15] for details. In order
to preserve decidability of reasoning, everyRIQ RBox must satisfy a condition calledregularity, which
avoids cyclic dependencies between roles. Very roughly, ifa role hierarchyR is regular, then for every role
R there is a regular expressionρR such that, for every chain of rolesS0· . . . ·SN , it holds thatS0· . . . ·SN is
in the language denoted byρR iff (S0· . . . ·SN )I ⊆ RI in very modelI of R. Since all implications between
chains of roles can be captured by a set of regular expressions, it is not surprising that query entailment in
RIQ can be reduced to query entailment inALCQIbreg .

In this section we show that the algorithm we have presented is also a decision procedure for answering
P2RPQs inRIQ, and thus inSHIQ. Following [15], for a regular role hierarchyR and a (possible inverse)
roleR occurring inR, ρR represents the regular expression denoting exactly the chains of roles which imply
R, as discussed above. We also denote byexp(R) the set of expressions of the formρR ⊑ R for eachR

occurring inR. The following result will be useful:

Lemma 5.1 [Lemma 1 in [15]] An interpretationI is a model of a regular RBoxR iff I is a model of
exp(R).

SinceR itself is in the language ofρR, we easily obtain the following corollary:

Corollary 5.2 Let I be a model of a regular RBoxR. ThenRI = (ρR)I . Furthermore, letC be aRIQ
concept, and letC ′ be theALCQIbregconcept obtained by replacing every occurrence inC of each roleR
by the regular expressionρR. ThenCI = (C ′)I .

This allows for a natural reduction of aRIQ TBox into anALCQIbregone. Since only atomic concepts
and roles are allowed in ABoxes, we can not use this simple procedure to translateA. Instead, we have to
explicitly add to the ABox all relations between individuals that are implied by the RBox.
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Definition 5.3 Let K = 〈A,T ,R〉 be aRIQ knowledge base such thatR is regular. We denote by
K′ = 〈A′,T ′〉 theALCQIbregKB obtained fromK as follows:

1. The ABoxA′ is the smallest set of assertions closed under the followingrules:

(i) A ⊆ A′;

(ii) if R1(a, b) ∈ A′ andR1 ⊑ R2 ∈ R, thenR2(a, b) ∈ A′; and

(iii) if R1(a, b) ∈ A′, R2(b, c) ∈ A′ andR1·R2 ⊑ R3 ∈ R, thenR3(a, c) ∈ A′;

wherea, b, c are any individuals fromA andR1, R2, R3 are any roles occurring inR.

2. The TBoxT ′ is obtained fromT by replacing every concept inclusion axiomC ⊑ D by C ′ ⊑ D′,
whereC ′ andD′ are the concepts obtained by replacing every occurrence of each roleR by the regular
expressionρR in C andD respectively.

Lemma 5.4 If I |= K thenI |= K′.

Proof. Assume thatI |= K. ClearlyI satisfies all the assertions inA. The satisfaction of the assertions
added toA′ when closing the ABox as defined above is directly implied by the fact thatI |= R. So we have
thatI |= A′. SinceI |= R, by Corollary 5.2, we haveCI = (C ′)I andDI = (D′)I . As I |= T , thenI
satisfies everyC ′ ⊑ D′ in T ′ and thusI |= T ′.

The converse of Lemma 5.4 holds in a slightly weaker version.Indeed, not every model ofK′ is neces-
sarily a model ofK, since the models ofK′ need not be closed under the RBox. However, the models ofK′

andK may only differ in the interpretation of some ‘implied’ roles, and if we add the missing implied roles
to a model ofK′, we obtain a model ofK.

Definition 5.5 Let K = 〈A,T ,R〉 be aRIQ knowledge base such thatR is regular. LetK′ be an
ALCQIbregKB obtained fromK as in Definition 5.3 and letI be a model ofK′. Theextension ofI to
R, denotedIR, is defined as follows:

• ∆IR

= ∆I ,

• for every atomic conceptA, (A)I
R

= (A)I ,

• for every atomic roleP occurring inR, if (x, y) ∈ (ρP )I or (y, x) ∈ (ρP−)I then(x, y) ∈ (P )I
R

.

Lemma 5.6 If I |= K′, thenIR |= K.

Proof. If I |= K′, thenI |= A′, and sinceA ⊆ A′, thenI |= A. Every ABox assertion that is true in
I is also true inIR, since the latter only extends the former by possibly addingtuples to the interpretation
of roles. Therefore,IR |= A. By the last item in Definition 5.5,IR |= exp(R), and thus by Lemma 5.1,
IR |= R. By the second item in the definition, and since(ρR)I = (R)I

R

holds for every roleR, it is easy
to verify that(C ′)I = (C)I

R

for every conceptC occurring inT . ThusI |= T ′ implies thatIR |= T

In virtue of Lemmas 5.4 and 5.6, we can reduce the task of checking satisfiability of aRIQ knowl-
edge baseK, to checking satisfiability of theALCQIbregoneK′, and therefore we can decide it using the
automata algorithm described in Section 3. We also provide amethod to decide entailment of 2PRPQs. To
this aim, we will also rewrite a queryq overK into a queryq′ overK′, in such a way that query entailment
is preserved.
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Definition 5.7 Let q be a P2RPQ over aRIQ knowledge baseK such that the RBox is regular. We denote
by q′ the P2RPQ overK ′ that results from substituting every occurrence of each roleR by ρR in q.

Note that the resulting query may contain regular expression even when the original one does not, i.e.,
our technique reduces positive (resp. conjunctive) queries overRIQ to positive (resp. conjunctive) regular
path queries overALCQIbreg .

Proposition 5.8 LetK be aRIQ knowledge base with a regular RBox and letq a 2PRPQ overK. LetK′

be theALCQIbregKB obtained fromK as described in Definition 5.3 and letq′ be the query overK ′ as in
Definition 5.7. ThenK |= q iff K′ |= q′.

Proof. First we will prove the following:
Claim A: If I |= q′ andI |= R, thenI |= q.
Let α be any atom ofq′. If α is a concept atom of the formC ′(x), then the corresponding atom inq
will be C(x). SinceI |= R, by Corollary 5.2, we haveCI = (C ′)I . Analogously, ifα is a role atom
ρR(x, y), obtained by substitutingR by ρR, then there is a corresponding atomR(x, y) in q, and we know
thatRI = (ρR)I . Thus, any matchπ for q′ in I is also a match forq.
Claim B: If IR |= q, thenI |= q′.
The proof is similar. Take any atomα of q. If α is a concept atom of the formC(x), then the corresponding
atom inq will be C ′(x). By definition ofIRm we know that(C ′)I = (C)I

R

holds. If α is a role atom
R(x, y), then there is a corresponding atomρR(x, y) in q. Again, (ρR)I = (R)I

R

holds for every roleR.
Thus, any matchπ for q in IR is also a match forq in I.

The proof of the proposition is now trivial. AssumeK |= q. Take any modelI of K′. ThenIR |= K
by Lemma 5.6, thusIR |= q and by Claim B above, thenI |= q′. For the other direction, assumeK′ |= q′

and consider an arbitraryI such thatI |= K. By Lemma 5.4 we know thatI |= K′. ThereforeI |= q′, and
sinceI |= R, thenI |= q.

As a result, the decision procedure given here can be used to answer 2PRPQs overRIQ knowledge
bases. Concerning the complexity of the algorithm, all steps are clearly polynomial in the size ofA, T and
exp(R). However, the size ofexp(R) can be exponential in the size ofR. It is also well known that for an
specific kind of hierarchies, calledsimple role hierarchiesin [15], this blowup can be avoided. As a result,
we get the following:

Theorem 5.9 LetK be aRIQ knowledge base with a regular RBox and letq be a 2PRPQ overK. K |= q is
decidable in double exponential time in the combined size ofq, CK, J andexp(R); and in triple exponential
time in the combined size ofq, CK, J andRK. Furthermore, if the RBox inK is simple, thenK |= q is
decidable in double exponential time in the combined size ofq, CK, J andRK.

5.1 Extending the algorithm toSRIQ

In [14] the logicRIQ was extended toSRIQ. This logic has gained increasing attention recently, since
it is closely related to the logicSROIQ underlying OWL 1.1., the most recent standard for Web Ontology
Languages. Apart from the standard role inclusion axioms, aSRIQ RBox may explicitely state other
properties of roles, like transitivity, (ir)reflexivity, disjointness, etc. Some of this additions are just syntactic
sugar, while others slightly increase the expressivity of the logic and make it more suitable for ontology
engineering, while requiring only minor adaptations of thereasoning techniques.
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Indeed, most of the role assertions of aSRIQ knowledge base can be expressed inRIQ extended
with concepts of the form∃Self.R, whose extension is the set of individualsx such that the pair(x, x) is
in the extension of the roleR. These concepts can not be directly expressed in the logicALCQIbreg , but
the automata algorithm we have presented can be easily extended to handle them. Roughly, when a nodex

is related byR to itself, a new label is added to the node representing thisR-loop. The automata can then
navigate the tree as usual and use these labels to verify the satisfaction of the∃Self.R concepts.

The role disjointnessassertions ofSRIQ are not expressible inRIQ (even extended with∃Self.R
concepts), but they can be easily simulated inALCQIbregdue to the presence of Boolean role constructors;
e.g., we can add, for each assertion expressing the disjointness of two rolesR andS, a TBox axiom of the
form ∀R∩S.⊥ (note that such assertions inSRIQ are restricted to simple roles). Finally,SRIQ supports
negative role assertions, which we did not consider, but they can be easily incorporated by using suitable
labels at the root and adapting the transition from the initial state that checks that the ABox assertions are
satisfied. With these simple adaptations, our technique also provides a 2EXPTIME procedure for deciding
decidability ofSRIQ knowledge bases, and a 3EXPTIME procedure for the entailment of P2RPQs over
them.

6 EXPSPACE-Hardness of Query Answering

In this section, we provide the following lower bound on answering P2RPQs overALCQIbreg KBs.

Theorem 6.1 Given a P2RPQq and a ALCQIbreg knowledge baseK, deciding whetherK |= q is
EXPSPACE-hard.

The proof is by a reduction from tiling problems, inspired bya similar reduction to query containment
over semi-structured data [6].

A tiling problem consists of a finite set∆ of tile types, two binary relationsH andV over∆, represent-
ing horizontal and vertical adjacency relations, respectively, and two distinguished tile typestS , tF ∈ ∆.
Deciding whether for a given a numbern in unary, a region of the integer plane of size2n×k, for somek,
can be tiled consistently withH andV , such that the left bottom tile of the region has typetS and the right
upper tile has typetF , can be shown to be EXPSPACE-complete [26].

We construct anALC KB K and a queryq such thatK |= q iff there is no correct tiling, as follows. A
tiling is spanned row by row by a sequence of objects. Each object represents one tile and is connected by a
specific role to the next tile. For the connections, we use thefollowing two roles:

• N connecting tiles within the same row;

• L connecting the last tile of rowi to the first of rowi+1.

The properties (i.e., the atomic concepts) attached to an object are then bits B1, . . . , Bn of a counter
for its address within the row, and its type. For that, we use pairwise disjoint conceptsD1, . . . ,Dk, where
∆ = {t1, . . . , tk}.

We encode inK the following two conditions:

1. The first ensures that the counters progress correctly. Itconsists ofO(n) standard axioms involving
B1, . . . , Bn andN , which encode a counter bit by bit. Further axioms ensure that, if at least one of
the bits is 0, there is anN successor but noL successor, and reset the counter:

¬B1 ⊔ · · · ⊔ ¬Bn ⊑ ∃N .⊤⊓ ∀L.⊥
B1 ⊓ · · · ⊓ Bn ⊑ ∃L.(¬B1 ⊓ · · · ⊓ ¬Bn) ⊓ ∀N .⊥
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2. The second ensures that there are no errors w.r.t. the horizontal adjacency relationH: For each tile
typeDi,

Di ⊑
⊔

(Di,Dj)∈H(∀N .Dj ⊓ ∀L.Dj).

The queryq checks the failure of the vertical adjacencyV on the candidate tilings given by the models
of K. It asks whether two objects exist at distance2n (i.e., representing vertically adjacent tiles) with an
error according toV . That the objects are exactly2n steps apart is achieved by ensuring that they have the
samen bits and are connected by a (possibly void) sequence ofN -steps, followed by oneL-step, and by a
(possibly void) sequence ofN -steps. We have

q = ∃x, y.Vert ∧ Err ∧ G1 ∧ · · · ∧ Gn, where

Vert = (N∗ ◦ L ◦ N∗)(x, y),

Err =
∨

(Di,Dj) 6∈V (Di(x) ∧ Dj(y)),

Gi = (Bi(x) ∧ Bi(y)) ∨ (¬Bi(x) ∧ ¬Bi(y)), for 1 ≤ i ≤ n.

The complete KBK entailsq iff there is no correct tiling. Note that onlyVert uses a regular expression. If
we have transitive roles and role hierarchies, we can replace it in q by

Vert ′ = (Nt(x, z1) ∧ L(z1, z2) ∧ Nt(z2, y)) ∨
(Nt(x, z1) ∧ L(z1, y)) ∨ (L(x, z2) ∧ Nt(z2, y))

whereNt is a transitive super-role ofN , andz1 andz2 are existentially quantified variables. This shows that
answering positive (existential) queries without regularexpressions over KBs inALC plus transitive roles
and role hierarchies, and hence inSHIQ, is EXPSPACE-hard.

Finally, using an encoding closer to [6] where each tile is a block of n + 1 objects, and the bits and tile
types are encoded by roles, one can show that conjunctive regular path queries over KBs which only use
existential roles and disjunction are EXPSPACE-hard.

7 Conclusion

In this paper, we have substantially pushed the frontier of decidable query answering over expressive DLs,
which is an active area of research driven by the growing interest to deploy DLs to various application
areas related to AI. As we have shown, the rich class of positive (existential) two-way regular path queries
(P2RPQs) is decidable onALCQIbreg KBs by means of automata-techniques; on the other hand, query
answering has an EXPSPACE-lower bound already in settings where one ofK andQ is rather plain.

Several tasks remain for future investigation. The precisecomplexity of answering P2RPQs remains
open, even though the gap between the EXPSPACE lower bound and the 2EXPTIME upper bound is relatively
small. Similarly, the class of positive existential queries without regular expressions overSHIQ KBs
remains to be further analyzed, in particular whether the EXPSPACE bound is tight. Finally, it would be
interesting to see how far automata-based techniques similar as in this paper can be utilized to push the
decidability frontier of query answering in expressive DLs, both on the side of the query and the knowledge
base.
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