
I N F S Y S

Research

R e p o r t

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

Institut für Informationssysteme

Abteilung Wissensbasierte Systeme

Efficiently querying RDF(S)
ontologies with Answer Set

Programming

Giovambattista Ianni Alessandra Martello
Claudio Panetta Giorgio Terracina

INFSYS Research Report RR-1843-08-06

August 2nd, 2008

INFSYS Research Report

INFSYS Research Report RR-1843-08-06, August 2nd, 2008

Efficiently querying RDF(S) ontologies with

Answer Set Programming

Giovambattista Ianni1,2 Alessandra Martello2

Claudio Panetta2 Giorgio Terracina2

Abstract. Ontologies are pervading many areas of knowledge representation and
management. To date, most research efforts have been spent on the development of
sufficiently expressive languages for the representation and querying of ontologies;
however, querying efficiency has received attention only recently, especially for on-
tologies referring to large amounts of data. In fact, it is still uncertain how reasoning
tasks will scale when applied on massive amounts of data. This work is a first step
toward this setting: it first shows that RDF(S) ontologies can be expressed, without
loss of semantics, into Answer Set Programming (ASP). Then, based on a previous
result showing that the SPARQL query language (a candidate W3C recommenda-
tion for RDF(S) ontologies) can be mapped to a rule-based language, it shows that
efficient querying of big ontologies can be accomplished with a database oriented
extension of the well known ASP system DLV, which we recently developed. Re-
sults reported in the paper show that our proposed framework is promising for the
improvement of both scalability and expressiveness of available RDF(S) storage and
query systems.

1Institut für Informationssysteme 184/3, Technische Universität Wien, Favoritenstraße 9-11,
A-1040 Vienna, Austria.

2Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy.

Acknowledgements: The work of the first author has been supported under FWF
projects P20841 (Modular HEX-Programs), P17212 (Answer Set Programming for the Se-
mantic Web), and MIUR (Italian Research Ministry) Interlink II04CG8AGG. We gratefully
acknowledge Axel Polleres (DERI-Galway) for his insightful comments and for providing a
prototypical version of the SPARQL-Datalog translator.

To appear on Journal of Logic and Computation, Oxford University Press, Oxford, UK.
doi:10.1093/logcom/exn043

Copyright c© 2008 by the authors

2 INFSYS RR RR-1843-08-06

1 Introduction
The Semantic Web [6, 16] is an extension of the current Web by standards and technologies
that helps machines understand the information on the Web. In this context, machines
should be enabled to support richer discovery, data integration, navigation, and automation
of tasks. Roughly speaking, the main ideas underlying the Semantic Web are oriented to
(i) add a machine-readable meaning to Web pages and Web resources (annotations), (ii)
use ontologies for a precise definition of shared terms in Web resources, (iii) make use
of Knowledge Representation and Reasoning technology for automated reasoning on Web
resources, and (iv) apply cooperative agent technology for processing the information on the
Web. The development of the Semantic Web proceeds in layers of Web technologies and
standards, where every layer is built on top of lower layers.

Research work is continuously ongoing on the three consecutive RDF(S) (Resource De-
scription Framework (Schema)), Ontology and Rule layers (listed from bottom to top). The
RDF(S) layer was initially conceived as a basic framework for defining resources available on
the Web and their connections. RDF (Rich Description Framework), refers to a logical for-
mat of information, which is based on an encoding of data as a labeled graph (or equivalently,
a ternary relation, commonly called RDF graph). RDF data can be interpreted under plain
RDF semantics or under RDFS semantics1. In the aforementioned layered vision, RDF(S)
should have little or no semantics, focusing only on the logical format of information.

The Ontology layer should be built on top of RDF(S) and should provide the necessary
infrastructure for describing knowledge about resources. An ontology can be written using
one of the three official variants of the Web Ontology Language (hereafter OWL) [25], cur-
rently accepted as a W3C Standard Recommendation. An OWL knowledge base is written
in RDF format, where some of the keywords of the language are enriched with additional
meaning.

Having machine readable annotations coupled with Web resources enables a variety of
applications. As a traditional example, consider flight, train, coach and metro carriers, and
hotels offering their services on the Web. They might, for instance, export timetables and
room availabilities in standard RDF/OWL format. An automated Web service could thus
easily compose data coming from different carriers and hotels, and after performing neces-
sary reasoning tasks (for instance, aligning arrival/departure times and room availabilities,
combining “train trips” with “flight trips” once it is inferred they are specialized subclasses
of “trips”), it can propose overall itinerary solutions to end users. While services offering
partial solutions to this task (and similar ones) exist, it is currently hard to achieve this goal
in its entirety, due to the lack of structure in Web information.

OWL is based on description logics [5]. Description logics has a long tradition as a family
of formalisms for describing concept terminologies and can feature rich expressiveness, like
some prominent description logics, such as SHOIN (D) (which is the theoretical basis of the
variant OWL-DL of OWL). The payload of this expressiveness is, unfortunately, the high
computational cost associated with many of the reasoning tasks commonly performed over

1Throughout the paper we refer to RDF(S) for denoting the whole framework, no matter of the chosen
semantics. Whenever necessary, we explicitly refer to RDF and/or RDFS.

INFSYS RR RR-1843-08-06 3

an ontology. Nonetheless, a variety of Web applications require highly scalable processing of
data, more than expressiveness. This puts the focus back to the lower RDF(S) data layer.
In this context, RDF(S) should play the role of a lightweight ontology language. In fact,
RDF(S) has few and simple descriptive capabilities (mainly, the possibility of describing and
reasoning over monotonic taxonomies of objects and properties). One can thus expect from
RDF(S) query systems the ability of querying very large datasets with excellent performance,
yet allowing limited reasoning capabilities on the same data. In fact, as soon as the RDF(S)
format for data was settled, and much earlier than when RDF(S) ontologies became growingly
available2, research has focused on how RDF(S) can be fruitfully stored, exchanged and
queried3.

As a candidate W3C recommendation [31], the SPARQL language is reaching consensus
as query language of election for RDF(S) data. In this scenario, an RDF(S) storage facility
(commonly called triplestore) plays the role of a database. However, an important differ-
ence with respect to traditional relational databases, is that a triplestore (also) represents
information not explicitly stored, and which can be obtained by logical inference. Allowed
logical inference is specified in terms of entailment rules. Different kinds of entailment rules
can be exploited, namely normative (i.e. coming from the RDF(S) semantics specifications
[29]), some subset of the normative ones (such as the so-called ρDF fragment of RDF(S)
introduced in [28]) or user defined entailment rules.

Figure 1(a) shows the generic architecture of most current triplestore querying systems.
In particular, the triplestore acts as a database and the query engine (possibly a SPARQL-
enabled one4) manipulates this data. Most of the current query engines (with the notable
exception of ARQ [2]) adopt a pre-materialization approach, where entailment rules are pre-
computed and the initial triplestore is enriched with their consequences before carrying out
any querying activity.

Unfortunately, triplestores based on the pre-materialization approach outlined above have
some drawbacks:

• Inferred information is available only after the often long lasting pre-materialization step.
Pre-materialization is unpractical if massive amounts of data are involved in the inferencing
process; in fact, inferred information is usually much bigger in size than the original one.
As an example, if only the ρDF fragment of RDFS is considered, this growth has been
empirically estimated (in, e.g., [32]) as more than twice the original size of the dataset.
Actually, a materialized dataset can be cubically larger in theory [27]. If the full normative
RDF(S) semantics is considered, then the set of inferred triples is infinite and cannot be
materialized at all.

•Entailment rules are “statically” programmed by coupling a parametric reasoner (designed
“ad-hoc”) with the original triplestore code. This prevents the possibility to dynamically

2Several datasets are nowadays available in RDF format, such as DBLP [12] and Wikipedia [4]. Also, it
is possible to convert legacy data into RDF by means of ad-hoc services [7].

3The reader may find in [30] a good starting point to the vast applicative and academic research currently
under development for RDF.

4E.g. [2, 1] and [33]. The reader may refer to [34] for a thorough survey.

4 INFSYS RR RR-1843-08-06

Figure 1: (a) State-of-the-art architectures for querying RDF(S) triplestores. (b) Our pro-
posal.

prototype new inference rules, and to activate/de-activate inference rules depending on the
given application. For instance, one might want to restrict RDF(S) inference only to the
known ρDF fragment, or to enlarge inference with other (normative or not) entailment rules
such as the D-entailment rules introduced in [29].

•The basic reasoning machinery of RDF(S) prescribes a heavy usage of transitive closure
(recursive) constructs. Roughly speaking, given a class taxonomy, an individual belonging
to a leaf class must be inferred to be member of all the ancestor classes, up to the root class.
This prevents a straightforward implementation of RDF(S) over RDBMSs, since RDBMSs
usually feature very primitive, and inefficient, implementations of recursion in their native
query languages.

In this paper, we propose and experiment with a new architecture for querying triple-
stores, based on Answer Set Programming (ASP), which overcomes all the drawbacks out-
lined above and improves both efficiency and expressiveness of current state-of-the-art sys-
tems.

The proposed architecture is shown in Figure 1(b). The user is allowed to express queries
in both SPARQL and Datalog5. A SPARQL query is first translated into Datalog by a
corresponding module, which implements the approach proposed in [26], whereas a Datalog
query is passed unchanged to the next module. Entailment rules are expected to be expressed
in ASP, and different sets of entailment rules can be “attached” to the triplestore. As
an example, in Figure 1(b) three sets are shown, namely full normative RDFS, ρDF and
user-defined entailment rules. The user can choose on the fly, at query time, which set

5As it will be clear in the following, Datalog is more expressive than SPARQL.

INFSYS RR RR-1843-08-06 5

of entailment rules must be applied on the triplestore, and/or design his own. Note that,
rather than materializing the whole output of the application of entailment rules, the rules
are used as an inference mechanism for properly answering the specific input query at hand.
The query engine is then implemented by means of a database oriented version of an ASP
evaluator, which can both access and modify data in the triplestore.

In order to let ASP provide the abovementioned benefits, theoretical and practical issues
must be solved:

1. A faithful translation of the whole normative RDF(S) into ASP has not been attempted
yet, due to some important semantic differences between the two languages. As an example,
RDF(S) has the capability to deal with unnamed individuals, using so called blank nodes. A
blank node can be seen as a limited form of existential quantification. ASP semantics is usu-
ally derived from function-free Datalog, and has no direct possibility to deal with unnamed
individuals (objects whose existence is known but whose identity cannot be reconduced to a
known constant symbol) in a context where unique name assumption is not assumed. One
of the main contributions of this paper is the translation of RDF(S) (especially of its entail-
ment rules) into a suitable extension of ASP we recently proposed, and the proof that this
translation is faithful.

2. Another key issue in the proposed architecture is whether it could be possible to achieve
an efficient interaction of the ASP engine with the database. In fact, it is well known that
current (extended) Datalog-based systems present important limitations when the amount
of data to reason about is large: (i) reasoning is generally carried out in main-memory and,
hence, the quantity of data that can be handled simultaneously is limited; (ii) the interaction
with external (and independent) DBMSs is not trivial and, in several cases, not allowed at
all, but in order to effectively share and elaborate large ontologies these must be handled
with some database technology; (iii) the efficiency of present datalog evaluators is still not
sufficient for their utilization in complex reasoning tasks involving large amounts of data.

As far as the second issue is concerned, we recently proposed a new database-oriented
extension of the well known Answer Set Programming system DLV, named DLVDB [35],
which presents the features of a Deductive Database System (DDS) and can do all the
reasoning tasks directly in mass-memory; DLVDB does not have, in principle, any practical
limitation in the dimension of input data, is capable of exploiting optimization techniques
both from the DBMS field (e.g. join ordering techniques [17]) and from the DDS theory (e.g.
magic sets [24]), and can easily interact (via ODBC) with external DBMSs. DLVDB turned
out to be particularly effective for reasoning about massive data sets (see benchmark results
presented in [35]) and supports a rich query and reasoning language including stratified
recursion, true negation, negation as failure, and all built-in and aggregate functions already
introduced in DLV [15].

Summarizing, the contributions of the paper are:

•A faithful translation of RDF(S) entailment rules into Answer Set Programming extended
with external predicates (ASPEX) is developed. Proofs of equivalence and computability of

6 INFSYS RR RR-1843-08-06

the translation are also given. The translation can be fully implemented in an Answer Set
Programming system.

•RDF(S) semantics can now be taken into account without the necessity of pre-materializing
inferrable data.

•The set of entailment rules to be adopted for the inference can be dynamically chosen at
query time.

•Recursive constructs (both for querying and inferencing) are natively supported by ASP
and, thus, directly available to both the internal engine and the end user wishing to design
sophisticated queries (if Datalog is exploited as query language).

•Management of massive amounts of data is effectively handled by the mass-memory based
evaluation of our DLVDB query engine.

•The proposed architecture has been implemented and tested to compare both expressive-
ness and efficiency of our ASP-based approach with state-of-the-art triplestore querying
systems, giving very encouraging results.

Related Work. To the best of our knowledge, this is the first attempt to provide a com-
plete translation of all the normative RDF(S) semantics into declarative logic programming.
The work is similar in spirit to [8], where it is shown how RDF, RDFS and ERDFS can be
ported to F-Logic (and, to a large extent, to Datalog), and thus implemented in a standard
reasoner. The above work does not address explicitly the problem of treating the infinite
set of axiomatic triples of RDFS in a finite context. Also, in [28] a deductive calculus is
presented which is sound and complete for the ρDF fragment of the language, and paves the
way to its implementation in a deductive system.

It is worth pointing out also that current important efforts in the Semantic Web commu-
nity aim at integrating Ontologies with Rules under stable model semantics (e.g. [13, 14, 23]).
In this context, the abovementioned works highlight that the possibility of exploiting a
Datalog-like language to express (or integrate) ontologies with a query/rule language pro-
vides important benefits. A work explicitly addressing RDF and proposing the idea of
extending RDF graphs with negation and stable models is [3].

The paper is organized as follows. In the next Section we briefly introduce some back-
ground knowledge. Then, in Section 3, we formally introduce the mapping between RDFS
and ASPEX . In Section 4 we provide some implementation details of the proposed archi-
tecture and discuss experimental results. Finally, in Section 5 we draw some conclusions.

2 Background
In this section we provide some background knowledge needed to introduce our approach.
In particular, we first recall basic notions on Answer Set Programming with extensions to
support external function calls, then we briefly introduce RDF(S).

INFSYS RR RR-1843-08-06 7

2.1 Answer Set Programming with External Predicates
As reference language for the internal querying engine, we adopt Answer Set Programming
extended with external predicates (hereafter ASPEX). Informally, an external predicate
models knowledge that is external to a given logic program, and whose extension might
be infinite. The usage of external predicates is crucial for modeling some aspects of the
normative RDF(S) that require to deal with infinite sets and/or that are difficult to be
encoded using plain ASP. The reader is referred to [10] for a complete reference on Answer
Set Programming extended with external predicates. An ASPEX program P is a finite set
of rules of the form

α1 ∨ · · · ∨ αk :– β1, . . . , βn, not βn+1, . . . , not βm. (1)

where m, k ≥ 0, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary or external)
atoms. An external atom predicate name is conventionally preceded by “#”. Rules with
k = 0 and m > 0 are called constraints, whereas rules such that k = 1 and m = 0 are called
facts.

Atoms and external atoms have the usual structure p(t1, . . . , tn) where p is the predicate
name and t1, . . . , tn are either variables or constants ranging over a (possibly) infinite set
C. Elements of C are supposed to be strings, i.e. they are a subset of Σ∗ for a given finite
vocabulary Σ.

The Herbrand base HBC(P) is the possibly infinite set of ground atoms, whose predicate
name appears in P , that can be constructed using symbols appearing in C. An interpretation
I for P is a pair 〈S, F 〉 where:

• S ⊆ HBC(P) is a set of ordinary atoms; we say that I (or by small abuse of notation, S)
is a model of an ordinary atom a ∈ HBC(P) if a ∈ S.

• F is a mapping which associates every external predicate name #e with a decidable n-ary
function (which we call oracle) F (#e); it assigns each tuple (x1, . . . , xn) to either 0 or 1,
where n is the fixed arity of #e, and xi ∈ C. I (or, by small abuse of notation, F) is a model
of a ground external atom a = #e(x1, . . . , xn) if F (#e)(x1, . . . , xn) = 1.

An interpretation I is an answer set for a program P if it coincides with a minimal model of
P I , where P I is the traditional Gelfond-Lifshitz reduct of grnd(P). grnd(P) is the ground
version of P constructed using constant symbols from C [18]. Let ans(P) be the set of answer
sets of P . Given a ground atom a, we say that P |= a (P cautiously models a), if for each
A ∈ ans(P), then a ∈ A.

An example of external atom could be #concat(X,Y, Z), which has an oracle such that
this atom is true whenever Z is the concatenation of the strings X and Y .

Note that, given that C is not assumed to be finite, in principle HBC(P), grnd(P), as
well as interpretations and answer sets are not finite.

However a large class of ASPEX programs is proven to have finite answer sets, namely vi-
restricted (value invention-restricted) programs, whose definition is given in [10]. Intuitively,
external predicates may be associated with functions having an unknown (and possibly

8 INFSYS RR RR-1843-08-06

infinite) co-domain. A vi-restricted program is such that new values brought in the logic
program by means of external predicates do not propagate through recursion; this avoids
the existence of answer sets of infinite size.

2.2 RDF and RDFS

RDF (without S), has per se a very basic semantics, which has been extended to RDFS.
The syntactic format of RDF and RDFS is equivalent, although the latter gives semantics to
some special keywords. In this paper we will use the notation RDF(S) for generally referring
to RDF with or without its extended semantics called RDFS (short for RDF-Schema). The
semantics of RDF(S) is outlined below, following the normative specification given in [29].
An RDF tripleset (or graph) is a set of triples (s, p, o) ∈ (I ∪B ∪L)× I × (I ∪B ∪L) where
I, B and L are pairwise disjoint sets of IRIs (Internationalized Resource Identifiers), blank
nodes, and literals, respectively6. s is called the subject, p the predicate and o the object of
the triple, respectively. As commonly done in the literature (see, e.g. [28]), we enlarge our
focus to graphs where literals are allowed to appear also in the subject position within a
triple. We occasionally denote a blank node b ∈ B as starting with prefix “ ”, such as b.

The meaning of RDF(S) graphs is given in terms of first order interpretations without the
unique name assumption. For instance, the triple (b,hasName,GB), can be seen as the first
order sentence ∃B hasName(B,GB), that is, “there exists an object in the domain of dis-
course having name GB”. The first order semantics of RDF(S) is difficult to be implemented
in practice without a concrete proof theory. Thus, the official specification of RDF(S) states
equivalence theorems between the first order semantics and the notion of graph entailment.
In the following we directly define RDF(S) semantics in terms of graph entailment, referring
to the two notions of simple entailment and RDFS entailment7.

Intuitively, graph entailment is built on the notion of subgraph isomorphism, that is, it
amounts to finding a function mapping a graph to another. This mapping function must
have the following characteristics.

A mapping µ is a function mapping elements from I ∪B ∪L to elements in the same set,
subject to the restriction that an element i ∈ I ∪L must be such that µ(i) = i. We indicate
as µ(G) the set of triples {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}.

Note that elements of B (blank nodes), are used to model existential quantification and
can be mapped to any element, while elements of I and L preserve their identity through
the mappings.

Given two graphs G1 and G2, we say that G1 |= G2 (G1 simply entails G2) if there is a
mapping µ such that µ(G2) is a subgraph of G1. In general, deciding this kind of entailment
is NP-complete [29] with respect to the combined sizes of G1 and G2, while it has been
observed that entailment is polynomial in the size of G1 [9].

The above notion is used as a tool for formalizing query languages for RDF, as follows.
One can see G1 as the data to be queried, and G2 as a query pattern that should be matched

6In practice, I, B and L are strings of a given vocabulary and are subject to syntactic rules.
7[29] includes also the notion of RDF-entailment and D-entailment.

INFSYS RR RR-1843-08-06 9

GB
Axel

Person

rdf:type rdf:type

knows

(GB, knows, Axel)

(GB, rdf:type, Person)

(Axel, rdf:type, Person)

Figure 2: The example graph G′
1 and its corresponding set of triples.

to G1. Rules establishing matching criteria can be those of simple entailment (which basically
consist in checking subgraph isomorphism between G1 and G2) or more complex ones.

For instance, the graph G′
2 = {(GB,knows, b)}, where b is a blank node, is entailed by

the graph in Figure 2 (a matching mapping is obtained by associating b to Axel). Notably,
blank nodes in G′

2 are seen as variables to be matched, not differently from variables in an
SQL-like query language as actually SPARQL is. Note that query answering and entailment
are strictly related: the set of matching mappings constitutes the possible answers to the
pattern query, while entailment is decided by the existence of at least one of such mappings.

For instance, the possible answers to the pattern graph G′′
2 = (b1, rdf:type, b2) with

respect to the graph G′
1 in Figure 2, are the two mappings µ′ and µ′′ where µ′(b1) = GB,

µ′(b2) = Person, and µ′′(b1) = Axel, µ′′(b2) = Person. Both µ′ and µ′′ testify that G′
1

entails G′′
2.

Simple entailment is not directly used as a notion for defining semantics for RDF graphs.
In fact, the two notions of RDF-entailment and RDFS-entailment, are originally defined by
means of first order logic. However, the RDFS-entailment Lemma (sec. 7.3 of [29]) brings
back RDFS-entailment of two graphs G1 and G2 to simple entailment between a graph R(G1)
and G2. The graph R(G1) is the closure of G1, which is built (i) by applying, until saturation,
so called RDF and RDFS entailment rules, and (ii) by adding normative axiomatic triples
to G1. RDF and RDFS entailment rules are reported in Figure 4 (the reader is referred to
[29], sec. 7.3, for all details). Axiomatic triples are composed of a small finite set (which is
tabulated in [29]) and an infinite portion, as we explicitly show in Figure 3.

∀i ∈ N,
(rdf: i, rdf:type, rdfs:ContainerMembershipProperty),
(rdf: i, rdfs:domain, rdfs:Resource),
(rdf: i, rdfs:range, rdfs:Resource)

Figure 3: The infinite portion of RDFS axiomatic triples A.

We can classify normative RDFS semantics as follows:

•Taxonomy rules. Such rules regard the keywords rdfs:subClassOf and rdfs:subPropertyOf.
Two separate taxonomies can be defined in an RDFS graph: a taxonomy of classes (a class
c is a set of individuals C such that (i, rdf:type, c) holds for each i ∈ C), and a taxonomy of
properties (a property p is a binary relation P , where each couple (s, o) ∈ P is encoded by

10 INFSYS RR RR-1843-08-06

the triple (s,p,o)). rdfs:subClassOf and rdfs:subPropertyOf are the special keywords to be
used for defining such taxonomies. The semantic properties of these keywords are enforced
by entailment rules such as rdfs5,7,9 and 11 (see Figure 4), which implement a simple (and
monotonic) inheritance inference mechanism. For instance, if a graph G contains the triple
(person,rdfs:subClassOf,animal) and the triple (g,rdf:type,person) then the closure R(G)
must contain (g,rdf:type,animal) as prescribed by entailment rule rdfs9.

•Typing rules. The second category of entailment rules strictly regard properties: the
rdfs:range and rdfs:domain keywords allow the declaration of the class type of s and o for a
given couple (s, o) when (s,p,o) holds (rules rdfs2 and 3 as well as irdfs2 and 3), while
rules rdf2a,2b, rdfs1a and 1b assess literal values8.
For instance, from (g,hasFather,c) and (hasFather,rdfs:domain,person) it can be inferred
(c,rdf:type,person), by means of rule rdfs2. Note that the application of typing rules
(and of the RDFS entailment rules in general) cannot lead to contradiction. This has two
important consequences: first, range and domain specifications are not seen as integrity
constraints, as it is usually assumed in the database field. Second, a triple graph cannot,
usually, contain contradictory information. In fact, inconsistency is triggered only if a graph
contains some ill-formed literal (or XMLLiteral) (e.g. a constant symbol l ∈ L of type
rdfs:Literal or rdf:XMLLiteral, which does not comply with syntactic prescriptions for this
type of objects). In such a case, a graph G is assumed to be inconsistent (rules rdf2b and
rdfs1b), and it is normatively prescribed that R(G) must coincide with the set of all the
possible triples.

•Axiomatic triples. These triples hold “a priori” in the closure of any graph, and give special
behavior to some other keywords of the language. For instance, the triple (rdfs:subClassOf,
rdfs:domain, rdfs:Class) enforces the domain of the property rdfs:subClassOf to be rdfs:Class.
In particular, axiomatic triples contain an infinite subset (shown in Figure 3) which we call
A. This set of triples regards special keywords used for denoting collections of objects (Con-
tainers) such as Bags (the rdf:Bag keyword) and Lists (the rdf:Seq keyword). For denoting
the i-th element of a container, the property rdf: i is used. These keywords have no special
meaning associated besides the axiomatic group of triples (rdf: i, rdf:type, rdfs:cmp), (rdf: i,
rdfs:domain, rdfs:Resource), (rdf: i, rdfs:range, rdfs:Resource), where rdfs:cmp represents a
shortcut for rdfs:ContainerMembershipProperty. The set A enforces that the i-th element of
a container is of type resource and that each rdf: i is a Container Membership Property. A
is of infinite size, and thus requires some care when introduced in an actual implementation
of an RDF(S) query system.

Finally, we say that a graph G1 rdfs-entails a graph G2 (G1 |=s G2) if the RDFS closure
R(G1) of G1 entails G2. In practice, this means that if one wants to use G2 for querying
information about G1 (which is expected to correspond to a large set of triples) under RDFS
entailment, G2 is actually matched to R(G1), which contains also inferred knowledge.

8irdfs2 and 3 do not appear in the normative RDFS document, but were noted to be necessary for
preserving the RDFS entailment Lemma validity in [22]. “I” stands for “integrative”.

INFSYS RR RR-1843-08-06 11

For instance, if we add the triple (Person,rdf:subClassOf,Animal) to G′
1, we have that,

under RDFS semantics, the triple (GB,rdf:type,Animal), belongs to R(G′
1), by rule rdfs9

of Figure 4. This means that, if entailment is interpreted under RDFS semantics, other
mappings, such as µ′′′ such that µ′′′(b1) = rdf:type and µ′′′(b2) = Animal, are a proof for
entailment of G′′

2 by G′
1.

In the following, we assume that I ∪ L ∪ B ⊆ C. That is IRI, literals and blank nodes
appearing in an RDF graph can be freely used as constant symbols in logic programs.

3 From RDF(S) to ASPEX

In order to make the vision depicted in Figure 1(b) concrete, a crucial step has to be carried
out. In fact, one might ask whether it is possible to express the full RDFS entailment
semantics using a language based on stable models. In particular, there are some important
problems to be faced:

•Usage of blank nodes. Usage of anonymous variables might, apparently, require the usage
of a language with existential constructs. Although ASP is not, in general, equipped with
this kind of knowledge representation tool, we show that blank nodes can be transformed
into either anonymous constant symbols or universally quantified variables.

• Inconsistency. Most deductive databases, founded on stratified Datalog, do not allow
modelling of contradiction as first order logic does. A stratified Datalog program has always
a model (possibly empty), whereas RDF graphs might be inconsistent in a first order sense
(i.e. following the ex-falso quodlibet principle). Conversely, this is not a problem under stable
models semantics (rather than stratified Datalog), applied to non-stratified programs under
brave or cautious reasoning. Indeed constraints (which are, under stable model semantics,
particular, non-stratified, programs) allow modelling inconsistency in a similar way as first
order logic does.

•Axiomatic triples. Although modelling the set A of infinite triples might raise practical con-
cerns, we show how these problems can be circumvented by restricting “relevant” axiomatic
triples to a finite subset.

We remark that, when an entailment and/or a query answer has to be computed, a graph
can have two different roles: it can play the role of the dataset to be queried, or that of the
pattern representing the query at hand.

In order to encode in ASP the problem of deciding RDFS entailment between two graphs
G1 and G2, we adopt two translations T1 and T2, and an ASPEX program D, which simulates
RDFS entailment rules. T1 transforms G1 into a corresponding ASPEX program; intuitively,
it transforms each triple t ∈ G1 into a corresponding fact. T1 maps blanks nodes to them-
selves, as it is conceptually done in the Skolemization Lemma of [29]. This transformation
is intended to be applied on graphs which encode a dataset subject to querying, that is, the
current reference ontology. On the other hand, when a graph is seen as the description of a
query pattern, we adopt the second transformation T2.

12 INFSYS RR RR-1843-08-06

Name If G contains: then add to R(G):

rdf1 (u, a, y) (a, rdf:type, rdf:Property)
rdf2a (u, a, l) (l, rdf:type, rdf:XMLLiteral)

where l is a well-typed XML-literal
rdf2b (u, a, l) (I ∪B ∪ L)× I × (I ∪B ∪ L)

where l is a ill-typed XML-literal

rdfs1a (u, a, l) (l, rdf:type, rdfs:Literal)
where l is a plain literal

rdfs1b (u, a, l) (I ∪B ∪ L)× I × (I ∪B ∪ L)
where l is a ill-typed literal

rdfs2 (a, rdfs:domain, x), (u, rdf:type, x)
(u, a, y)

rdfs3 (a, rdfs:range, x), (v, rdf:type, x)
(u, a, v)

irdfs2 (a, rdfs:domain, b), (x, rdf:type, b)
(c,rdfs:subproperty,b), (x, c, y)

irdfs3 (a, rdfs:range, b), (y, rdf:type, b)
(c,rdfs:subproperty,b), (x, c, y)

rdfs4a (u, a, x) (u, rdf:type, rdfs:Resource)
rdfs4b (u, a, v) (v, rdf:type, rdfs:Resource)
rdfs5 (u, rdfs:subPropertyOf, v), (u, rdfs:subPropertyOf, x)

(v, rdfs:subPropertyOf, x)
rdfs6 (u, rdf:type, rdf:Property) (u, rdfs:subPropertyOf, u)
rdfs7 (a, rdfs:subPropertyOf, b), (u, b, y)

(u, a, y)
rdfs8 (u, rdf:type, rdfs:Class) (u, rdfs:subClassOf, rdfs:Resource)
rdfs9 (u, rdfs:subClassOf, x), (v, rdf:type, x)

(v, rdf:type, u)
rdfs10 (u, rdf:type, rdfs:Class) (u, rdfs:subClassOf, u)
rdfs11 (u, rdfs:subClassOf, v), (u, rdfs:subClassOf, x)

(v, rdfs:subClassOf, x)
rdfs12 (u, rdf:type, (u, rdfs:subPropertyOf, rdfs:member)

rdfs:ContainerMembershipProperty)
rdfs13 (u, rdf:type, rdfs:Datatype) (u, rdfs:subClassOf, rdfs:Literal)

Figure 4: The RDF and RDFS Entailment rules for extending a graph G

INFSYS RR RR-1843-08-06 13

rdf1’ t(A,rdf:type,rdf:Property) :– t(U,A,Y).
rdf2a’ t(L,rdf:type,rdfs:XMLLiteral) :– t(U,A,L), #XMLLiteral(L).
rdf2b’ :– t(L,rdf:type,rdfs:XMLLiteral),

not #XMLLiteral(L).

rdfs1a’ t(L, rdf:type, rdfs:Literal) :– t(U,A,L), #Literal(L).
rdfs1b’ :– t(L, rdf:type, rdfs:Literal),

not #Literal(L).
rdfs2’ t(U,rdf:type,X) :– t(A,rdfs:domain,X), t(U,A,V).
rdfs3’ t(V,rdf:type,X) :– t(A,rdfs:range,X), t(U,A,V).
irdfs2’ t(X,rdf:typeB) :– t(A,rdfs:domain,B), t(X,C,Y),

t(C,rdfs:subproperty,B).
irdfs3’ t(Y,rdf:typeB) :– t(A,rdfs:range,B), t(X,C,Y),

t(C,rdfs:subproperty,B).
rdfs4a’ t(U,rdf:type,rdfs:Resource) :– t(U,A,X).
rdfs4b’ t(V,rdf:type,rdfs:Resource) :– t(U,A,V).
rdfs5’ t(U,rdfs:subPropertyOf,X) :– t(U,rdfs:subPropertyOf,V),

t(V,rdfs:subPropertyOf,X).
rdfs6’ t(U,rdfs:subPropertyOf,U) :– t(U,rdf:type,rdf:Property).
rdfs7’ t(U,B,Y) :– t(A,rdfs:subPropertyOf,B),

t(U,A,Y).
rdfs8’ t(U,rdfs:subClassOf, rdfs:Resource) :– t(U,rdf:type, rdfs:Class).
rdfs9’ t(V,rdf:type,X) :– t(U,rdfs:subClassOf,X),

t(V,rdf:type,U).
rdfs10’ t(U,rdfs:subClassof,U) :– t(U,rdf:type,rdfs:Class).
rdfs11’ t(U,rdfs:subClassof,X) :– t(U,rdfs:subClassOf,V),

t(V,rdfs:subClassOf,X).
rdfs12’ t(U,rdfs:subPropertyOf,rdfs:member) :– t(U,rdf:type,rdfs:cmp).
rdfs13’ t(U,rdfs:subClassof,rdfs:Literal) :– t(U,rdf:type,rdfs:Datatype).

symb(X) :– t(X,Y,Z).
symb(Y) :– t(X,Y,Z).
symb(Z) :– t(X,Y,Z).

A’ CMProperty(P) :– symb(P), #concat(“rdf: ”,N,P).
t(X, rdf:type, rdfs:cmp) :– CMProperty(X).

t(X, rdfs:domain, rdfs:Resource) :– CMProperty(X).
t(X, rdfs:range,rdfs:Resource) :– CMProperty(X).

Figure 5: Translation D of entailment rules shown in Figure 4 in ASPEX . #concat is defined as
in Sec. 2, whereas #Literal and #XMLLiteral are defined as follows: F#Literal(X) = 1 (resp.
F#XMLLiteral(X) = 1) iff X is compliant with the syntax allowed for literals (resp. XML Literal
syntax) [29]. rdfs:cmp is a shortcut for rdfs:ContainerMembershipProperty.

14 INFSYS RR RR-1843-08-06

T2 transforms G2 in a conjunction of atoms, whose truth values depend on whether G2

is entailed by G1 or not. T2 maps blank nodes to variables.

Definition 1 The translation T1(G) of an RDF graph G is the set of facts {t(s, p, o) |
(s, p, o) ∈ G}. The translation T2(G) of an RDF graph G is a program containing:

• the rule q = entail ← H. Here, entail is a fresh literal whereas H is the conjunction
of all the atoms in the set {t(h(s), h(p), h(o)) | (s, p, o) ∈ G}, where h is a transformation
function such that h(a) = a if a ∈ I ∪ L, h(a) = Aa otherwise; Aa is a fresh variable
associated with a if a ∈ H.

• the set of facts {symb(u) | u is an element of I ∪ L appearing in G}.

The program D, simulating RDFS entailment rules shown in Figure 4, is given in Figure
5. In particular, for each rule R in Figure 4 there is a counterpart R′ in D (notably, rdf2b’
and rdfs1b’ are constraints rather than rules). The bottommost group of six rules in D
(which we call A’) models a finite portion of the infinite set of triples A shown in Figure 3.
The set of facts of the form symb(u) denotes all the elements explicitly appearing in G1 or
in G2.

Note that A′ derives only a finite portion of the axiomatic triples: the axiomatic triples
regarding a given identifier rdf: i are derived if symb(rdf: i) is true. In such a case the atom
CMProperty(rdf: i) holds by means of the 4th rule of A′, and this makes the head of the last
but three rules of A′ true.

In the following, let P be the ASPEX program P = D ∪ T1(G1) ∪ T2(G2) ∪K, for two
given RDF graphs G1 and G2, where K is the set of facts

{symb(rdf: iu) | u is a blank node appearing in G2 and iu is a distinguished natural number
such that neither G1 nor G2 talk about rdf: iu}.

The meaning of P in terms of its answer sets is given by the following Lemma. Roughly
speaking the Lemma states that the unique answer set of P encodes in the extension of
the predicate t a finite portion of the closure R(G1) of G1. Namely, t contains only those
triples of R(G1) that can be constructed using values belonging to S, where S is the set
of constant symbols explicitly appearing in P . Note that S will contain all the symbols
explicitly appearing in G1 or G2.

Lemma 1 Let S be the set of constant symbols appearing in P . If P is consistent then its
unique model M contains an atom t(s, p, o) iff (s, p, o) ∈ (S × S × S) ∩R(G1).

Proof. (⇒) If P is consistent, then its model M is clearly unique (P is a positive program
except for the two constraints rdf2b’ and rdfs1b’). We focus now on atoms of the form
t(s, p, o) contained in M . Let a be one of such atoms. Observe that, by construction of P , s,
p and o belong to S. By observing the structure of P , we note that (s, p, o) corresponds to a
triple of R(G1) for three possible reasons: either, (i) a corresponds to a fact in T1(G1) (and
thus (s, p, o) ∈ G1 ⊆ R(G1)), or (ii) a is the byproduct of the application of some of the rules

INFSYS RR RR-1843-08-06 15

from rdf1’ to rdfs13’ in D, except rdf2b’ and rdfs1b’ (and thus (s, p, o) ∈ R(G1)), or
(iii) a corresponds to an axiomatic triple modelled by the subprogram A′ of D.

(⇐). Consider a triple a = (s, p, o) ∈ (S × S × S) ∩ R(G1). Clearly, a is either (i) a
triple belonging to G1 (and thus it has a corresponding atom t(s, p, o) ∈ T1(G1)), or, (ii) it
is the byproduct of the application of some RDFS entailment rules, which are in one-to-one
correspondence with rules rdf1’ to rdfs13’ in D, or (iii) it is an axiomatic triple. In the
latter case, the subprogram A′ guarantees that a ∈ (S×S×S)∩R(G1) ⇒ t(s, p, o) ∈ M . 2

The following trivial Lemma, used in the subsequent Theorem 1, shows that if graphs do
not refer explicitly to IRIs of the form rdf: i (which are symbols appearing in the infinite
set of axiomatic triples), then such IRIs are “interchangeable” in the sense explained by the
Lemma, yet preserving RDFS entailment.

Lemma 2 (Interchangeability Lemma) Given an RDF graph G, we say that G talks
about an element e ∈ I ∪L if there exists a triple t ∈ G containing e. Let G1 and G2 be two
RDF graphs for which there is µ such that µ(G2) ⊆ R(G1) (i.e. G1 |=s G2).

For each element e ∈ I ∪ B such that µ(e) = rdf: i (i ∈ N), and such that G1 and G2

do not talk about e, then µ′(G2) ⊆ R(G1), for any µ′ coinciding with µ except that µ′(e) =
rdf: i′ where i′ 6= i and G1 and G2 do not talk about rdf: i′.

Theorem 1 Let G1 and G2 be two RDF graphs. Then G1 |=s G2 iff P |= entail.

Proof. (⇐). Assume that P |= entail. Observe that P is a stratified program not
containing disjunctive rules, thus it may entail entail in two cases: (a) P is inconsistent.
P can have no model only if G1 is inconsistent, i.e. G1 contains some literal which is not
syntactically valid. This makes the body of either constraint rdfs1b’ or rdfs2b’ true (see
Figure 5). Note that an inconsistent graph normatively entails any other graph by definition.
(b) P contains entail in its unique answer set M. This means that the body H of the rule
q = entail ← H has some ground instantiation which is modelled by M . By Lemma 1, it
follows that R(G1) |= G2.

(⇒). Given that G1 |=s G2, then, if G1 is inconsistent, P has no answer sets, thus trivially
entailing the literal entail. If G1 is consistent, there is a mapping µ from G2 to R(G1). It
is possible to show that the single answer set M of P contains entail. For proving this,
we need to show that t(µ(s), µ(p), µ(o)) ∈ M for each (s, p, o) ∈ G2, thus showing that H
has some ground instantiation which is true in M . Consider a = (s, p, o) ∈ G2. Clearly,
given that G1 |=s G2, a is such that (µ(s), µ(p), µ(o)) ∈ R(G1). Let S be the set of symbols
appearing in P as in Lemma 1. Note that, if (µ(s), µ(p), µ(o)) ∈ S ×S ×S, then by Lemma
1 t(µ(s), µ(p), µ(o)) belongs to M .

However, consider the set V = {v appears in G2 | µ(v) 6∈ S}. Note that V might be
nonempty and its cardinality not larger than |K|. In such a case, we cannot directly show
that t(µ(s), µ(p), µ(o)) ∈ M , since µ might map some element of G2 to a value outside S.
Also note that all the elements v ∈ V are such that µ(v) = rdf: i for some i ∈ N, and that
G1 and G2 do not talk about µ(v) (otherwise, it would be that µ(v) ∈ S). By Lemma 2, we

16 INFSYS RR RR-1843-08-06

can replace µ with a mapping µ′ such that: (i) µ′(v) = v′ and v′ = rdf: i′v, for all v ∈ V ,
where i′ (and thus v′) can be arbitrarily chosen; (ii) µ ≡ µ′ elsewhere. We also define µ′

such that its restriction over V is a bijection to the elements of K ′ = {k | symb(k) ∈ K}.
Note that µ′ is a mapping to elements of S and is such that µ′(G2) ⊆ R(G1). By Lemma 1,
t(µ′(s), µ′(p), µ′(o)) belongs to M for any (s, p, o) ∈ G2. 2

Theorem 2 Determining whether P |= entail is decidable.

Proof. Theorem 5 of [10], states that answer sets of a vi-restricted program P ′ can be
computed by computing the answer set of a finite, ground program G′

P , and that G′
P is

computable. P is vi-restricted. Then, entailment of entail can be decided in finite time9.
2

4 Implementation and experiments
By adapting the encoding obtained in the previous section the way is paved to an actual
implementation of an RDF query system based on ASP. In particular, given the graph G1

(the dataset to be queried) and a graph G2 (a query pattern), and considering the program
P = T1(G1) ∪ T2(G2) ∪D:

• query answering is strictly related to entailment: indeed it amounts to finding all the
possibilities to match G2 to G1. In our case, it is enough to modify the rule entail ← H
in T2(G2), by changing entail to an atom answer(X1, . . . , Xn) where variables X1, . . . , Xn

correspond to a subset of choice of blank nodes in G2
10.

•The core of the SPARQL language is a syntactic method for expressing G2 and the variables
exposed in the predicate answer. A basic graph pattern written in SPARQL represents indeed
a query pattern like G2, which is converted to T2(G2). Further, more involved features of
SPARQL can be accommodated in our encoding by changing the transformation T2, as
explained in [26]. The same holds also for query patterns expressed in other non-standard
query languages.

•D can be easily customized to the entailment regime of interest. For instance, if one is
interested in ρDF entailment only, it is sufficient to remove from D all the rules except
rdf1’, rdfs2 and 3’, irdf2’ and 3’, rdfs5’,6’,7’,8’,9’,10’ and 11’.

In the following of this section we first provide some details on our implementation of the
architecture presented in Figure 1(b); then we present the experimental framework we set
up and obtained results.

9P is an ordinary program, except for the fourth rule of A′, containing possible value invention. Intuitively,
P is a “safe” rule, in the sense that all the variables in its head appear also in a positive predicate in its
body. This prevents actual value invention. For space reasons, we cannot include here details about vi-
restrictedness. The interested reader is referred to [10].

10As a simple Corollary of Theorem 1, we note that under RDFS entailment, the predicate answer encodes
a finite subset F of all the possible answers Ans. If Ans is finite, then F = Ans.

INFSYS RR RR-1843-08-06 17

4.1 Implementation issues

In order to implement the architecture we proposed in Figure 1(b) only two software com-
ponents are needed: the SPARQL to Datalog translator module and the ASP Query Engine

module.

Translation from SPARQL to Datalog is carried out by a module independently developed
at DERI-Galway, and whose behavior is described in [26].

The ASP Query Engine is implemented by an improved version of the DLVDB system
we recently developed, and which we briefly describe next. DLVDB is an extension of the
well known ASP system DLV [19] designed both to handle input and output data dis-
tributed on several databases, and to allow the evaluation of logic programs directly on the
databases. It combines the expressive power of DLV with the efficient data management
features of DBMSs [17]. DLVDB captures a wide fragment of the ASPEX language out-
lined in Section 2.1. The detailed description of DLVDB is out of the scope of the present
paper; here we briefly outline the main peculiarities which, coupled with the results pre-
sented in the previous section, make it a suitable ASP-based ontology querying engine. The
interested reader can find a complete description of DLVDB and its functionalities in [35];
moreover, the system, along with documentation and examples, are available for download
at http://www.mat.unical.it/terracina/dlvdb.

Generally speaking, DLVDB allows for two kinds of execution: (i) direct database execu-
tion, which evaluates logic programs directly on the database, with a very limited usage of
main-memory but with some limitations on the expressiveness of the queries, and (ii) main-
memory execution, which loads input data from different (possibly distributed) databases
and executes the logic program directly in main-memory. In both cases, interoperation with
databases is provided by ODBC connections; these allow, in a quite simple way, the handling
of data residing on various databases over the network.

For the purposes of this paper, it is particularly relevant the application of DLVDB in
the direct database execution modality for the querying of large ontologies. In fact, usually,
the user has his data stored in (possibly distributed) triplestores and wants to carry out
some reasoning on them; however the amount of this data can be such that the evaluation
of the query cannot be carried out in main-memory. Then, it must be evaluated directly in
mass-memory. These characteristics perfectly fit the capabilities of DLVDB, provided that
RDF(S) triplestores and inference rules are specified as described in Section 3. Moreover,
DLVDB turned out to be particularly efficient for reasoning about massive data sets (see
benchmark results presented in [35]) and supports a sufficiently rich reasoning language for
querying ontologies.

Three main features characterize the DLVDB system in the direct database execution
modality: (i) its ability to evaluate logic programs directly and completely on databases
with a very limited usage of main-memory resources, (ii) its capability to map program
predicates to (possibly complex and distributed) database views, and (iii) the possibility to
easily specify which data is to be considered as input or as output for the program. In the
application context considered in this paper, these characteristics allow the user to have a
wide flexibility in querying available ontologies.

18 INFSYS RR RR-1843-08-06

In order to exploit DLVDB as an RDF(S) query engine, we tailored it to the peculiarities
of the specific application context. In particular, we observed that the standard represen-
tation format of triplestores is a single, almost static, big table composed of three columns.
Then, queries over the triplestore mostly consist of several joins involving the same table. As
a consequence, we improved DLVDB so as to automatically create both views and indexes
over the underlying triplestore to improve querying performance.

4.2 Benchmark framework and results
In this section, we present the results of our experiments aiming at comparing the perfor-
mance of DLVDB with several state-of-the-art triplestores. The main goal of our experiments
was to evaluate both the scalability and the query language expressiveness of the tested sys-
tems. All tests have been carried out on a Pentium 4 machine with a 3.00 GHz CPU, 1.5
Gbytes of RAM, and 500GB of mass memory, under Windows XP SP2 Operating System.

4.2.1 Compared Systems

In our tests we compared DLVDB with three state-of-the-art triplestores, namely: Sesame
[33], ARQ [2], and Mulgara [1]. The first two systems allow both in-memory and RDBMS
storage and, consequently, we tested them on both execution modalities. In the following,
we refer the in-memory version of Sesame (resp. ARQ) as Sesame-Mem (resp. ARQ-Mem)
and the RDBMS version as Sesame-DB (resp. ARQ-DB). RDBMS versions of all systems
(including DLVDB) have been tested with Microsoft SQL Server 2005 as underlying database.
As it will be clear in the following, we also tested a version of Sesame which works on files;
we refer this version of Sesame as Sesame-File. For each system we used the latest available
stable release at the time of writing. We next briefly describe them.
Sesame is an open source Java framework with support for storage and querying of RDF(S)
data. It provides developers with a flexible access API and several query languages; however,
its native language (which is the one adopted in our tests) is SeRQL – Sesame RDF Query
Language. Actually, the current official release of Sesame does not support the SPARQL
language yet. Some of the query language’s most important features are: (i) expressive
path expression syntax that match specific paths through an RDF graph, (ii) RDF Schema
support, (iii) string matching. Furthermore, it allows simplified forms of reasoning on RDF
and RDFS. In particular, inferences are performed by pre-materializing the closure R(G) of
the input triplestore G.

The latest official release is version 1.2.7. However, during the preparation of this
manuscript, version 2.0 of Sesame became available as Release Candidate and, in order
to guarantee fairness in the comparison, we considered also this version in our tests. In
fact, version 2.0 supports the SPARQL Query Language and features an improved infer-
encing support, but does not support RDBMS management yet, allowing only files. In the
following, we indicate Sesame 1.2.7 as Sesame1 and Sesame 2.0 as Sesame2.
ARQ is a query engine for Jena (a framework for building Semantic Web applications, which
is distributed at http://jena.sourceforge.net) that supports the SPARQL Query lan-
guage. ARQ includes a rule-based inference engine and performs non materialized inference.
As for Sesame, ARQ can be executed with data loaded both in-memory and on an RDBMS.

INFSYS RR RR-1843-08-06 19

We executed SPARQL queries from Java code on the latest available version of ARQ (2.1)
using the Jena’s API in both execution modalities11.

Mulgara is a database system specifically conceived for the storage and retrieval of RDF(S)
(note that it is not a standard relational DBMS). Mulgara is an Open Source active fork
of the Kowari project12. The adopted query language is iTQL (Interactive Tucana Query
Language), a simple SQL-like query language for querying and updating Mulgara databases.
A compatibility support with SPARQL is declared, yet not implemented. The Mulgara
Store offers native RDF(S) support, multiple databases per server, and full text search
functionalities. The system has been tested using its internal storage data structures (XA
Triplestore). The latest release available for Mulgara is mulgara-1.1.1.

4.2.2 Benchmark Data Set

In order to provide an objective and comprehensive set of tests we adopted two different
data sets: one coming from real data, that is, the DBLP database [21] and one coming from
synthetic information, i.e. the LUBM benchmark suite [20].

DBLP is a real database containing a large number of bibliographic descriptions on major
computer science journals and proceedings; the DBLP server indexes more than half a million
articles and features several thousand links to home pages of computer scientists. Recently,
an OWL ontology has been developed for DBLP data. A corresponding RDF snapshot has
been downloaded at the Web address http://sw.deri.org/∼aharth/2004/07/dblp/. The
main classes represented in this ontology are Author, Citation, Document, and Publisher,
where a Document can be one of: Article, Book, Collection, Inproceedings, Mastersthesis,
Phdthesis, Proceedings, Series, WWW. In order to test the scalability of the various systems
we considered several subsets of the entire database, each containing an increasing number
of statements and constructed in such a way that the greater sets strictly contain the smaller
ones. Generated data sets contain from 70000 to 2 million RDF triples.

The Lehigh University Benchmark (LUBM) has been specifically developed to facilitate
the evaluation of Semantic Web triplestores in a standard and systematic way. In fact,
the benchmark is intended to evaluate the performance of those triplestores with respect to
extensional queries over large data sets that commit to a single realistic ontology. It consists
of a university domain ontology with customizable and repeatable synthetic data. The
LUBM ontology schema and its data generation tool are quite complex and their description
is out of the scope of this paper. We used the Univ-Bench ontology that describes (among
others) universities, departments, students, professors and relationships among them. The
interested reader can find all information in [20]. Data generation is carried out by the
Univ-Bench data generator tool (UBA) whose main generation parameter is the number of
universities to consider. Also in this case, we generated several data sets, each containing
an increasing number of statements and constructed in such a way that the greater sets
strictly contain the smaller ones. Generated data sets are named as: lubm-5, corresponding
to 5 universities and about 640000 RDF triples, lubm-10 (10 universities, about 1 million

11Distributed at https://jena.svn.sourceforge.net/svnroot/jena/ARQ/
12http://www.kowari.org/

20 INFSYS RR RR-1843-08-06

triples), lubm-15 (15 universities, about 2 million triples), lubm-30 (30 universities, about
4 million triples), lubm-45 (45 universities, about 6 million triples).

4.2.3 Tested Queries

As previously pointed out, the expressiveness of the query language varies for each tested
system. In order to compare both scalability and expressiveness, we exploited queries of
increasing complexity, ranging from simple selections to queries requiring different forms of
inferences over the data. Due to space constraints we cannot show here the encodings of
all the tested queries for all the tested systems. The interested reader can find them in the
Appendix available at http://www.mat.unical.it/terracina/dlvdb/JLC/Appendix.pdf.

Queries on DBLP We ran the following five queries over DBLP:

– Q1: Select the names of the Authors and the URI of the corresponding Articles they are
author of.
– Q2: Select the names of the Authors which published at least one Article in year 2000.
– Q3: Select the names of the Authors which are creators of at least one document (i.e.
either an Article, or a Book, or a Collection, etc.).
– Q4: For each author in the database, select the corresponding name and count the number
of Articles he published.
– Q5: Given a pair of Authors A1 and A2, compute the “collaborative distance” between
them; the collaborative distance can be computed as the minimum length of a path connect-
ing A1 and A2 in a graph where Authors are the nodes of this graph and an edge between
Ai and Aj indicates that Ai co-authored at least one document with Aj.

Here, queries Q1 and Q2 are simple selections; Q3 requires a simple form of inference; in fact
articles, books, etc. must be abstracted into documents. Query Q4 requires the capability
to aggregate data. Finally, Q5 requires to perform a transitive closure over the underlying
data and, consequently, the corresponding query must be recursive.

It is worth observing that queries Q1, Q2, and Q3 can be executed by all the evaluated
systems. As for Q3, we exploited the Krule engine for Mulgara, the inferencing repository in
Sesame and the inferencing Reasoner in ARQ. Note that Mulgara and Sesame-DB materialize
the possible inferenced data just during the loading of the RDF dataset in the database;
however, in our tests, we measured only the query answering times. Query Q4 cannot
be evaluated by Sesame because the SeRQL query language does not support aggregate
operators. Finally, query Q5 can be evaluated only by DLVDB, because it is the only system
allowing for recursive queries.

Queries on LUBM The LUBM benchmark provides 14 test queries. Many of them are
slight variants of one another. Most of the queries basically select subsets of the input
data and require, in some cases, basic inference processes (e.g. class-subclass inferences).
Few of them are intended to verify the presence of certain reasoning capabilities (peculiar

INFSYS RR RR-1843-08-06 21

of OWL ontologies rather than RDFS) in the tested systems; in fact, they require the
management of transitive properties. However, some important querying capabilities, such
as data aggregation and recursion, are not addressed by the queries in the LUBM benchmark.
As a consequence we designed also other queries over the LUBM data set to test these higher
expressive features provided by DLVDB and some other systems.

Queries taken from the LUBM benchmark are listed below (in parentheses, we give the
official query number as given by LUBM):

•Q6 (LUBM Query1): Select Graduate Students attending a given Course. It is assumed
that no hierarchy information or inference exists or is required (that is, no RDFS entailment
is required).

•Q7 (LUBM Query2): Select the Graduate Students X, Universities Y and Departments Z
such that X graduated in Y and is a member of Z, and Z is a sub-organization of Y . Note
that this query involves three classes and three properties; moreover, there is a triangular
pattern of relationships between the objects involved.

•Q8 (LUBM Query3): Select the Publications of a given Assistant Professor. Here Publica-
tion has a wide hierarchy of subclasses, subject to RDFS entailment.

•Q9 (LUBM Query4): Select the Professors working for a specific Department, showing
their names, telephone numbers and email addresses. This query covers multiple properties
of the single class Professor, having many subclasses, and requires a long join pattern.

•Q10 (LUBM Query5): Select the Persons which are member of a specific Department; this
query assumes a subClassOf relationship between Person and its subclasses and a subProp-
ertyOf relationship between memberOf and its subproperties.

•Q11 (LUBM Query6): Select all instances of the class Student, considering also its sub-
classes Graduate Student and Undergraduate Student.

•Q12: (LUBM Query7): Select the Students taking some Course held by a specific Associate
Professor.

•Q13: (LUBM Query8): Select the Students having an email address, which are member of
a Department that is a sub-organization of a given University.

•Q14 (LUBM Query9): Select the Students attending some Course held by a teacher who is
also their advisor. This query involves the highest number of classes and properties in the
query set; moreover, there is a triangular pattern of relationships.

•Q15 (LUBM Query14): Select all the Undergraduate Students. This query is very simple,
yet characterized by a large input and a low selectivity.13

Additional queries that we have tested, not included in the LUBM benchmark, are listed
below.

13A more exhaustive description of these queries can be found at http://swat.cse.
lehigh.edu/projects/lubm/query.htm.

22 INFSYS RR RR-1843-08-06

System/Query Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

DLVDB Y Y Y Y Y Y Y Y Y Y Y Y
Mulgara Y Y Y Y Y
Sesame1-Mem Y Y Y Y Y Y Y Y Y Y
Sesame1-DB Y Y Y Y Y
Sesame2-Mem Y Y Y Y Y Y Y Y Y Y
Sesame2-File Y Y Y Y Y Y Y Y Y Y
ARQ-Mem Y Y Y Y Y Y
ARQ-DB

Table 1: Summary of the systems capable of computing the results for the data sets in
LUBM queries, under the specified constraints. Y=Yes, blank=No.

•Q16: For each Author in the database count the number of Papers she/he published. This
query requires the capability to aggregate data.

•Q17: Given a pair of authors A1 and A2, compute the “collaborative distance” between
them (see query Q5 for the definition of collaborative distance). This query requires the
capability to express recursion.

4.2.4 Results and Discussion

Results on DBLP Figure 6 shows the results we have obtained for the DBLP queries.
In the figure, the chart of a system is absent whenever it is not able to solve the query due
to some system’s fault or if its response time is (except for Q5) greater than 3600 seconds
(1 hour). Moreover, if a system’s query language is not sufficiently expressive to answer a
certain query, it is not included in the graph. From the analysis of the figure, we can draw
the following observations.

DLVDB shows always the best performance for all the queries, yet it is characterized
by the highest language expressiveness. Mulgara and ARQ have, after DLVDB, the more
expressive query language; however, Mulgara is not able to complete the computation of
Q3 and Q4 already after 220000 triples and is not able to express Q5, whereas ARQ always
shows higher time responses than both DLVDB and Mulgara, except for Q4 where it performs
sensibly better than Mulgara. Sesame turns out to be competitive in version Sesame2-File,
especially for the biggest data sets in Q1 and Q3, but scores the worst performance among
all the systems for all queries in version Sesame1-DB. As far as Sesame is concerned, it is
particularly interesting to observe the very different behaviour of its various versions; in
particular, as for Sesame1 the in-memory version works much better than its DB version;
vice versa, the file version of Sesame2 performs much better than its in-memory version. In
any case, Q4 and Q5 could not be tested with Sesame due to lack of language expressiveness.

Results on LUBM Figures 7 and 8 show the results we have obtained for the LUBM
queries. In the figure, the chart of a system is absent whenever it is not able to solve the
query due to some system’s fault, or if its response time is (except for Q17) greater than 3600
seconds (1 hour). The maximum allowed size for pre-materialized inference has been set to
4Gb (note that the greatest considered triple set occupied 1Gb in the database). Finally, if

INFSYS RR RR-1843-08-06 23

Q1 Q2

Q3 Q4

Q5

Figure 6: Results for queries Q1 - Q5

a system’s query language is not sufficiently expressive to answer a certain query, it is not
included in the graph.

Table 1 summarizes the observed capability of each system to complete the computation
of query results over all the considered data sets, under the limitations specified above.

From the analysis of Figures 7 and 8 and of Table 1, we can draw the following observa-
tions. DLVDB is the only system capable of completing the computation of all the queries
under the time and space constraints specified previously. Only Sesame is competitive with
DLVDB on this aspect; on the other hand, queries Q16 and Q17 cannot be computed by this
system due to lack of language expressiveness.

DLVDB scores also the best performance over all queries, except query Q14 where Sesame
has the best time responses. As far as this aspect is concerned, however, it is worth recalling
that Sesame and Mulgara pre-materialize inferences during loading of data into the reposi-

24 INFSYS RR RR-1843-08-06

Q6 Q7

Q8 Q9

Q10 Q11

Figure 7: Results for queries Q6 - Q11

INFSYS RR RR-1843-08-06 25

Q12 Q13

Q14 Q15

Q16 Q17

Figure 8: Results for queries Q12 - Q17

26 INFSYS RR RR-1843-08-06

tory; as previously pointed out, pre-materialization times are not considered in the graphs,
since this task can be carried out once for each data set14. For the sake of completeness,
however, we show in Table 2 the times (in minutes) required by the various systems for
loading test data in the corresponding repositories; for systems pre-materializing inferences,
we distinguish between the loading of data with and without pre-materialization. From this
table and Table 1 we can also observe that Mulgara is not able to compute inference in a
reasonable time (we stopped it after 14 hours) already for lubm-10; this caused it to be
unable to compute queries Q9-Q14 for data sets lubm-10, lubm-15, lubm-30, lubm-45.

DLV ARQ Sesame1-DB Mulgara Sesame2-File
Triples inference inference inference

lubm-5 5 10 13 45 5 46 3 12
lubm-10 10 21 28 116 14 ** 5 30
lubm-15 15 108 61 221 30 ** 9 50
lubm-30 31 * 102 869 106 ** 19 138
lubm-45 46 * 161 * 196 ** 31 261

Table 2: Loading times (minutes) for each system and data set. Whenever needed we
distinguish between loading with and without inference pre-materialization. *: DB space
exceeded. **: More than 14 hours.

As for the behaviour of the other systems, it is worth noting that for the LUBM data sets
DB versions of the various systems perform generally better than the corresponding main-
memory versions. This behaviour can be explained by considering that LUBM data sets are
quite large and, consequently, they could not fit in main memory, thus causing swapping of
main-memory systems.

In order to further characterize tested systems, we have measured their main-memory
footprint for some queries. Table 3 shows the results obtained for queries Q6, Q9, Q11,
and Q15 run on the dataset lubm-15. Recall that Q9 and Q11 require inference. From
the analysis of this table it clearly emerges that DLVDB is the lightest system in terms
of memory occupation. Moreover, it comes with no surprise that, in general, the systems
requiring the lower amount of main-memory are those implementing a mass-memory based
evaluation; the only exception is made by ARQ-DB in Q9 and Q11 (requiring inference).
This can be explained by considering that ARQ applies inference rules at query time and,
visibly, this task is carried out in main memory. These results, coupled with the execution
times previously analyzed, make DLVDB the system requiring overall less time and space
among the tested ones.

5 Conclusions
In this paper we presented an efficient and reliable ASP-based architecture for querying
RDF(S) ontologies. We have first formally shown how RDF(S) can be mapped (without loss
of semantics) to an Answer Set Programming language. Then, we experimentally proved
that our solution, based on a database oriented implementation of ASP, improves both

14Recall that Q9-Q14 are indeed the LUBM queries requiring inference.

INFSYS RR RR-1843-08-06 27

System/Query Q6 Q9 Q11 Q15

DLVDB 4.88 5.07 5.08 5.03
Mulgara 53.12 - - 74.23
Sesame1-Mem 256.98 318.52 320.11 268.89
Sesame1-DB 23.31 23.64 38.98 37.47
Sesame2-Mem 291.83 368.65 370.73 292.22
Sesame2-File 15.87 16.05 16.00 15.91
ARQ-Mem 309.38 329.92 331.80 312.78
ARQ-DB 17.31 343.14 407.73 154.98

Table 3: Memory footprint (Megabytes) of tested systems for some queries

scalability and expressiveness of several state-of-the-art systems. Currently, RDF data are
stored in our databases with the standard triple format, by collecting all the information in
a single table of triples; this, obviously, worsens performance. The representation of data
in some more structured form (as already some of the tested systems do) could significantly
improve performance. Another promising research line consists in using database integration
techniques in the ontology context such as in [11].

References

[1] T. Adams, G. Noble, P. Gearon, and D. Wood. MULGARA homepage. Available at
http://www.mulgara.org/ (Last accessed on 22 July 2008).

[2] ARQ homepage. Available at http://jena.sourceforge.net/ARQ/ (Last accessed on
22 July 2008).

[3] A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Stable model theory for
extended RDF ontologies. In ISWC, pages 21–36. Springer, Berlin/Heidelberg, 2005.

[4] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. Dbpedia: A
nucleus for a web of open data. In Proceedings of ISWC/ASWC, pages 722–735, 2007.
Springer, Berlin/Heidelberg, 2007.

[5] F. Baader, D. Calvanese, D L.. McGuinness, D. Nardi, and P F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge, 2003.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

[7] C. Bizer. D2r map - a database to RDF mapping language. In WWW (Posters), 2003.

[8] J. de Bruijn and S. Heymans. Logical foundations of (E)RDF(S): Complexity and
reasoning. In Proceedings of ISWC/ASWC, pages 86–99. Springer, Berlin/Heidelberg,
2007.

28 INFSYS RR RR-1843-08-06

[9] J. de Bruijn, E. Franconi, and S. Tessaris. Logical reconstruction of RDF and ontology
languages. In Proceedings of PPSWR, pages 65–71. Springer, Berlin/Heidelberg, 2005.

[10] F. Calimeri , S. Cozza , and G. Ianni. External sources of knowledge and value invention
in logic programming. AMAI, 50(3-4):333–361, 2007.

[11] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati
MASTRO-I: Efficient integration of relational data through DL Ontologies DL work-
shop. In Proceedings of DL workshop, CEUR Electronic Workshop Proceedings, pp.
227234. RWTH Aachen University, Germany, 2007. Available at http://ceur-ws.org/Vol-
250/.

[12] D2r server publishing the DBLP bibliography database. Available at http://www4.

wiwiss.fu-berlin.de/dblp/ (Last accessed on 22 July 2008).

[13] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer
Set Programming with Description Logics for the Semantic Web. . Artificial Intelligence
Journal, 172, 14951539, 2008.

[14] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer Set Programming. In Proceedings
of IJCAI, pp. 9096. Professional Book Center, Denver, CO, USA, 2005.

[15] W. Faber and G. Pfeifer. DLV homepage. Available at http://www.dlvsystem.com/

(Last accessed on 22 July 2008).

[16] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge, MA,
2002.

[17] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Implementation.
Prentice Hall, Upper Saddle River, NJ, 2000.

[18] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
ICLP/SLP, pages 1070–1080, 1988. MIT Press, Cambridge, MA, 1988.

[19] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3) (2006) 499–562.

[20] LUBM homepage. Available at http://swat.cse.lehigh.edu/projects/lubm/ (Last
accessed on 22 July 2008).

[21] M. Ley. Digital bibliography and library project. Available at
http://dblp.uni-trier.de/ (Last accessed on 22 July 2008).

INFSYS RR RR-1843-08-06 29

[22] D. Marin A Formalization of RDF. TR Dept. Computer
Science, Universidad de Chile, TR/DCC-2006-8. Available at
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf (Last accessed on 22
July 2008).

[23] B. Motik and R. Rosati. A faithful integration of description logics with logic program-
ming. In Proceedings of International Joint Conferences on Artificial Intelligence, pages
477–482, 2007. California, USA, 2007.

[24] I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic conditions.
ACM TODS, 21(1):107–155, 1996.

[25] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language semantics
and abstract syntax. W3C recommendation. Available at http://www.w3.org/TR/owl-
semantics/ (Last accessed on 22 July 2008).

[26] A. Polleres. From SPARQL to rules (and back). In Proceedings of WWW, ACM
Press, NewYork, NY, USA, 2007. Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf

[27] A. Polleres. Personal Communication 2007.

[28] S. Muñoz, J. Pérez, and C. Gutiérrez. Minimal deductive systems for RDF. In Pro-
ceedings of ESWC, pp. 5367. Springer, Berlin/Heidelberg, 2007.

[29] RDF semantics. W3C recommendation 10 february 2004. Available at
http://www.w3.org/TR/rdf-mt/ (Last accessed on 22 July 2008).

[30] RDF resource guide. Available at http://planetrdf.com/guide/ (Last accessed on 22
July 2008).

[31] A. Seaborne E. Prud’hommeaux. SPARQL query language for
RDF. W3C candidate recommendation, 14 June 2007. Available at
http://www.w3.org/TR/rdf-sparql-query/ (Last accessed on 22 July 2008).

[32] H. Stuckenschmidt and J. Broekstra. Time - space trade-offs in scaling up rdf schema
reasoning. In Proceedings of WISE Workshops, pp. 172181. Springer, Berlin/Heidelberg,
2005.

[33] SESAME homepage. Available at http://www.openrdf.org/ (Last accessed on 22 July
2008).

[34] SPARQL implementations. Available at http://esw.w3.org/topic/sparql implemen-
tations (Last accessed on 22 July 2002).

30 INFSYS RR RR-1843-08-06

[35] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in
database and logic programming systems. TPLP, 8(2):129–165, 2008. Available on-line
at http://arxiv.org/abs/0704.3157.

