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Abstract. We present a novel approach to adaptive multi-agent programming, which is based on
an integration of the agent programming language GTGolog with adaptive dynamic programming
techniques. GTGolog combines explicit agent programming in Golog with multi-agent planning in
stochastic games. A drawback of this framework, however, is that the transition probabilities and
immediate rewards of the domain must be known in advance and then cannot change anymore. But
such data is often not available in advance and may also change over time. The adaptive gener-
alization of GTGolog in this paper is directed towards letting the agents themselves explore and
adapt these data, which is more useful for realistic applications. We present an algorithm for learn-
ing policies and show that it converges and produces optimal policies. This multi-agent learning
algorithm includes as a special case a single-agent learning algorithm for DTGolog. We use high-
level programs for generating both abstract states and optimal policies, which benefits from the deep
integration between action theory and high-level programs in the Golog framework.
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1 Introduction

During the recent decade, the development of controllers for autonomous agents in real-world environments
has become increasingly important in AI. In particular, there has been a significant research progress in
the field of mobile robotics on the aspects of flexibility, autonomy, and human interaction. Several very
successful real-world projects have shown in particular the feasibility of autonomous vehicles [7], office
and museum tour-guide robots [4, 30], as well as robotic assistants for elderly people [26]. Furthermore,
robotic vacuum cleaners (see especially http://www.irobot.com) and entertainment robots [40] in the form
of toys and pets are already available on the market as successful consumer products. Rodney A. Brooks
[3] summarizes “The weight of progress in so many forms of robots for unstructured environments leads to
the conclusion that robots will be common in people’s lives by the middle of the century if not significantly
earlier”.

One of the most crucial problems that we have to face in the development of controllers for autonomous
agents in real-world environments is uncertainty, both about the initial situation of the agent’s world and
about the results of the actions taken by the agent. One way of designing such controllers is the programming
approach, where a control program is specified through a language based on high-level actions as primitives.
Another way is the planning approach, where goals or reward functions are specified and the agent is given
a planning ability to achieve a goal or to maximize a reward function.

Towards combining the advantages of both ways of designing controllers, seminal works by Boutilier,
Reiter, Soutchanski, and Thrun [36] and Soutchanski [37] present a generalization of Golog [22, 34], called
DTGolog, where agent programming in Golog relative to stochastic action theories in the situation calculus
[34] is combined with decision-theoretic planning in Markov decision process (MDPs) [33]. DTGolog
allows for partially specifying a control program in a high-level language as well as for optimally filling in
missing details through decision-theoretic planning (that is, the program may contain points with multiple
possible actions, which are then replaced by a single optimal one). It can thus be seen as a decision-
theoretic extension to Golog, where choices left to the agent are made by maximizing expected utility. From
a different perspective, it can also be seen as a formalism that gives advice to a decision-theoretic planner,
since it naturally constrains the search space.

A limitation of DTGolog, however, is that it is designed only for the single-agent framework. That is,
the model of the world essentially consists of a single agent that we control by a DTGolog program and the
environment summarized in “nature”. But there are many applications where we encounter multiple agents,
which may compete against each other, or which may also cooperate with each other. For example, in robotic
soccer, we have two competing teams of agents, where each team consists of cooperating agents. Here, the
optimal actions of one agent generally depend on the actions of all the other (adversary and friend) agents.
That is, the agents can reason about and adapt to each other, but “nature” cannot do so. In particular, there is
a bidirected dependence between the actions of two different agents, which generally makes it inappropriate
to model adversaries and friends of the agent that we control simply as a part of “nature”.

In [10, 11], we overcome this limitation of DTGolog by presenting the multi-agent programming lan-
guage GTGolog, which integrates explicit agent programming in Golog with game-theoretic multi-agent
planning in stochastic games [29]. GTGolog allows for partially specifying a high-level control program
(for a system of two competing agents or two competing teams of agents) in a high-level language as well
as for optimally filling in missing details through game-theoretic multi-agent planning.

The main idea behind GTGolog can be roughly described as follows for the case of two competing
agents. Suppose we want to control an agent and that, to this end, we write or we are already given a DT-
Golog program that specifies the agent’s behavior in a partial way. If the agent acts alone in an environment,

http://www.irobot.com
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then the DTGolog interpreter from [36] replaces all action choices of our agent in the DTGolog program
by some actions that are guaranteed to be optimal. However, if our agent acts in an environment with an
adversary, then the actions produced by the DTGolog interpreter are in general no longer optimal, since the
optimal actions of our agent generally depend on the actions of its adversary, and conversely the actions of
the adversary also generally depend on the actions of our agent. Hence, we have to enrich the DTGolog
program for our agent by all the possible action moves of its adversary. Every such enriched DTGolog pro-
gram is a GTGolog program. How do we then define the notion of optimality for the possible actions of our
agent? We do this by defining the notion of a Nash equilibrium for GTGolog programs (and thus also for
the above DTGolog programs enriched by the actions of the adversary). Every Nash equilibrium consists
of a Nash policy for our agent and a Nash policy for its adversary. Since we assume that the rewards of our
agent and of its adversary are zero-sum, we then obtain the important result that our agent always behaves
optimally when following such a Nash policy, and this even when the adversary follows a Nash policy of
another Nash equilibrium or no Nash policy at all (in the latter case, our agent can do no worse than its Nash
policy guarantees).

Example 1 (Logistics Domain) Consider an agent a operating in a logistics domain with the goal of bring-
ing to its base as many objects as it can while competing with an adversary o with the same objective. At
each step, the two agents may either remain stationary, or move towards one location (for example, p1, p2,
or p3), or pick up or drop one object. Assume the two agents a and o can reach the position p1 and compete
for picking up the object obj in that position, or try to go somewhere else, for example, other two reachable
positions p2 or p3. The possible choices of the agent a can then, for example, be specified by the following
DTGolog procedure:

proc getObject
move(p1) |move(p2) |move(p3);
pickUp |move(p1) |move(p2) |move(p3)
end.

Without adversary, the DTGolog interpreter determines one optimal action for each of the two action
choices. In the presence of an adversary, however, the actions filled in by the DTGolog interpreter are in
general no longer optimal. The GTGolog interpreter can be used for filling in optimal actions in DTGolog
programs for agents with adversaries: We first enrich the DTGolog program by all the possible actions of
the adversary. As a result, we obtain a GTGolog program, which looks as follows for the above procedure:

proc getObject
choice(a : move(p1) |move(p2) |move(p3) ‖

choice(o : pickUp |move(p1) |move(p2) |move(p3) | drop) ;
choice(a : pickUp |move(p1) |move(p2) |move(p3) ‖

choice(o : pickUp |move(p1) |move(p2) |move(p3) | drop)
end.

The GTGolog interpreter then specifies a Nash equilibrium for such programs. Each Nash equilibrium
consists of a Nash policy for the agent a and a Nash policy for its adversary o . The former specifies an
optimal way of filling in missing actions in the original DTGolog program.

In addition to being a language for programming agents in multi-agent systems, GTGolog can also be
considered as a new language for relational specifications of games: The background theory defines the
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basic structure of a game, and any action choice contained in a GTGolog program defines the points where
the agents can make one move each. In this case, rather than looking from the perspective of one agent that
we program, we adopt an objective view on all the agents (as usual in game theory).

Example 2 (Logistics Domain cont’d) The following GTGolog program encodes the complete moves of
the logistics domain.

proc game
while¬gameOver do
choice(a : pickUp |move(p1) |move(p2) |move(p3) | drop) ‖

choice(o : pickUp |move(p1) |move(p2) |move(p3) | drop)
end.

Informally, while the game is not over (that is, there is at least one object to be brought to the base), the two
agents concurrently choose and execute one of the possible actions.

However, a drawback of GTGolog (and also of DTGolog) is that the transition probabilities and im-
mediate rewards of the domain must be known in advance and then cannot change anymore. However,
such pieces of data often cannot be provided in advance in the model of the agents and often also change
over time. It would thus be more useful for realistic applications to make the agents themselves capable of
estimating and exploring the data of the domain and eventually adapting their model thereof.

This is the main motivating idea behind this paper. We present a novel approach to adaptive multi-agent
programming, which is an integration of GTGolog with reinforcement learning as in [23]. We use high-
level programs for generating both abstract states and policies over these abstract states. The generation
of abstract states exploits the structured encoding of the domain in a basic action theory, along with the
high-level control knowledge in a Golog program. A learning process then incrementally adapts the model
to the execution context and instantiates the partially specified behavior.

To our knowledge, this is the first adaptive approach to Golog interpreting. Differently from classical
Golog, here the interpreter generates not only complex sequences of actions, but also an abstract state space
for each machine state. Similarly to [2, 19], we rely on the situation calculus machinery for state abstraction,
but in our system the state generation is driven by the program structure. Here, we can take advantage from
the deep integration between the action theory and programs provided by Golog: deploying the Golog
semantics and the domain theory, we can produce a tailored state abstraction for each program state. In
this way, we can extend the scope of programmable learning techniques [5, 31, 6, 1, 24] to a logic-based
agent [22, 34, 38] and multi-agent [8] programming framework: the choice points of partially specified
programs are associated with a set of state formulas and are instantiated through reinforcement learning and
dynamic programming constrained by the program structure.

The main contributions of this paper can be summarized as follows.

• We present the adaptive multi-agent programming language AGTGolog, which integrates the agent
programming language GTGolog with adaptive dynamic programming techniques. We define the syn-
tax of AGTGolog programs and their underlying first-order domain theories in the situation calculus.
To our knowledge, this is the first work where high-level agent programming relative to logic-based
action theories is combined with adaptive dynamic programming techniques.

• We then define a state partition for each machine state consisting of an AGTGolog program and a finite
horizon. Furthermore, we present an algorithm for learning optimal policies in AGTGolog programs,
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which uses these state partitions. This learning algorithm for optimal policies in AGTGolog programs
includes as a special case a learning algorithm for optimal policies in DTGolog programs.

• We show that the policy and the expected utility computed by the learning algorithm converge with
probability 1 against the policy and the utility, respectively, computed by the GTGolog interpreter
(for fixed and explicitly given immediate rewards and transition probabilities). This also implies the
optimality of the learned policies.

The rest of this paper is organized as follows. In Section 2, we recall the basic concepts of the situation
calculus, concurrent actions, regression, Golog, DTGolog, matrix games, stochastic games, and Q-learning.
Section 3 defines the domain theory and the syntax of AGTGolog programs. In Sections 4 and 5, we describe
the generation of state partitions and the algorithm for learning optimal policies in AGTGolog programs
relative to finite horizons, respectively. Section 6 illustrates the learning algorithm along an example, and
Section 7 provides convergence and optimality results for the learning algorithm. Section 8 summarizes the
main results and gives an outlook on future research. Note that detailed proofs of all results in the body of
this paper are given in Appendix A.

2 Preliminaries

In this section, we first recall the basic concepts of the situation calculus, concurrent actions in the situation
calculus, regression in the situation calculus, and the agent programming languages Golog and DTGolog.
We then recall the basics of matrix games, stochastic games, and reinforcement learning.

2.1 The Situation Calculus

The situation calculus [25, 34] is a second-order language for representing dynamically changing worlds. Its
main ingredients are actions, situations, and fluents. An action is a first-order term of the form a(u1, . . . , un),
where the function symbol a is its name and the ui’s are its arguments. All changes to the world are the
result of actions. A situation is a first-order term encoding a sequence of actions. It is either a constant
symbol or of the form do(a, s), where do is a distinguished binary function symbol, a is an action, and s is a
situation. The constant symbol S0 is the initial situation and represents the empty sequence, while do(a, s)
encodes the sequence obtained from executing a after the sequence of s. We write Poss(a, s), where Poss
is a distinguished binary predicate symbol, to denote that the action a is possible to execute in the situation
s. A (relational) fluent1 represents a world or agent property that may change when executing an action. It
is a predicate symbol whose rightmost argument is a situation. A situation calculus formula is uniform in
a situation s iff (i) it does not mention the predicates Poss and @ (which denotes the proper subsequence
relationship on situations), (ii) it does not quantify over situation variables, (iii) it does not mention equality
on situations, and (iv) every situation in the situation argument of a fluent coincides with s (cf. [34]).

Example 3 The action moveTo(r, x, y) may stand for moving the agent r to the position (x, y), while the
situation do(moveTo(r, 1, 2), do(moveTo(r, 3, 4),S0)) stands for executing moveTo(r, 1, 2) after execut-
ing moveTo(r, 3, 4) in the initial situation S0. The (relational) fluent at(r, x, y, s) may express that the
agent r is at the position (x, y) in the situation s.

1Note that we here do not consider fluents in the form of functions, called functional fluents [34].
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In the situation calculus, a dynamic domain is represented by a basic action theory AT = (Σ,Duna ,DS0 ,
Dssa ,Dap), where:

• Σ is the set of (domain-independent) foundational axioms for situations [34].

• Duna is the set of unique names axioms for actions, which encode that different actions are interpreted
differently. That is, actions with different names have a different meaning, and actions with the same
name but different arguments have a different meaning.

• DS0 is a set of first-order formulas that are uniform in S0, which describe the initial state of the domain
(represented by S0).

• Dssa is the set of successor state axioms [34]. For each fluent F (~x, s), it contains an axiom of the form
F (~x, do(a, s))≡ΦF (~x, a, s), where ΦF (~x, a, s) is a formula that is uniform in s with free variables
among ~x, a, s. These axioms specify the truth of the fluent F in the successor situation do(a, s) in
terms of the current situation s, and are a solution to the frame problem (for deterministic actions).
More concretely, every successor state axiom is generally of the form

F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ (F (~x, s) ∧ ¬γ−F (~x, a, s)) ,

where γ+
F (~x, a, s) (resp., γ−F (~x, a, s)) is a formula describing all the conditions under which perform-

ing the action a in the situation s results in the fluent F becoming true (resp., false) in the successor
situation do(a, s).

• Dap is the set of action precondition axioms. For each action a, it contains an axiom of the form
Poss(a(~x), s) ≡ Π(~x, s), where Π is a formula that is uniform in s with free variables among ~x, s.
This axiom characterizes the preconditions of the action a.

Example 4 The formula at(r, 1, 2, S0) ∧ at(r′, 3, 4, S0) in DS0 may express that the agents r and r′ are
initially at the positions (1, 2) and (3, 4), respectively.

The successor state axiom

at(r, x, y, do(a, s)) ≡ a=moveTo(r, x, y)∨
(at(r, x, y, s) ∧ ¬∃x′, y′ ((x′ 6=x ∨ y′ 6= y) ∧ a=moveTo(r, x′, y′)))

in Dssa may express that the agent r is at the position (x, y) in the situation do(a, s) iff either r moves
to (x, y) in the situation s, or r is already at the position (x, y) and does not move away in s. This successor
state axiom can be constructed from the formulas γ+

at(~x, a, s) and γ−at(~x, a, s), which describe all the condi-
tions under which performing a in s lead at to become true resp. false in do(a, s), and which are given by
a=moveTo(r, x, y) resp. ∃x′, y′ ((x′ 6=x ∨ y′ 6= y) ∧ a=moveTo(r, x′, y′)).

The action precondition axiom Poss(moveTo(r, x, y), s) ≡ ¬∃r′ at(r′, x, y, s) inDap may express that
it is possible to move the agent r to the position (x, y) in the situation s iff no agent r′ is at (x, y) in s (note
that this also includes that the agent r is not at (x, y) in s).

2.2 Concurrent Actions in the Situation Calculus

We use a concurrent version of the situation calculus, which is an extension of the above standard situation
calculus by concurrent actions [34, 32]. A concurrent action c is a set of standard actions, which are concur-
rently executed when c is executed. A situation is then a sequence of concurrent actions do(cm, . . . , do(c0,
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S0)), which encodes the execution of the sequence of concurrent actions c0, . . . , cm in the situation S0,
where every execution of ci means that all the simple actions a in ci are executed at the same time. To
encode concurrent actions, some slight modifications to standard basic action theories are necessary.

In particular, the successor state axioms in Dssa are now defined relative to concurrent actions. Every
successor state axiom is now generally of the form

F (~x, do(c, s)) ≡ γ+
F (~x, c, s) ∨ (F (~x, s) ∧ ¬γ−F (~x, c, s)) ,

where γ+
F (~x, c, s) (resp., γ−F (~x, c, s)) is a formula describing all the conditions under which performing

the concurrent action c in the situation s results in the fluent F becoming true (resp., false) in the successor
situation do(c, s). Such formulas γ+

F (~x, c, s) and γ−F (~x, c, s) can be constructed by unifying the positive and
negative effects of all the standard actions a∈ c and removing eventual collisions of positive and negative
effects.

Example 5 The successor state axiom

at(r, x, y, do(a, s)) ≡ a=moveTo(r, x, y)∨
(at(r, x, y, s) ∧ ¬∃x′, y′ ((x′ 6=x ∨ y′ 6= y) ∧ a=moveTo(r, x′, y′)))

in Dssa in the standard situation calculus is replaced by the successor state axiom

at(r, x, y, do(c, s)) ≡ moveTo(r, x, y)∈ c ∨
(at(r, x, y, s) ∧ ¬∃x′, y′ ((x′ 6=x ∨ y′ 6= y) ∧moveTo(r, x′, y′)∈ c))

in Dssa in the situation calculus with concurrent actions.

Moreover, the action preconditions inDap are extended by further axioms expressing (i) that a singleton
concurrent action c= {a} is executable if its standard action a is executable, (ii) that if a concurrent action
is executable, then it is nonempty and all its standard actions are executable, and (iii) preconditions for
concurrent actions. Note that precondition axioms for standard actions are in general not sufficient, since
two standard actions may each be executable, but their concurrent execution may not be permitted. This
precondition interaction problem [34] (see also [32]) requires some domain-dependent extra precondition
axioms.

2.3 Regression in the Situation Calculus

We next recall the important concept of regression of formulas through actions [34]. Intuitively, the regres-
sion of a formula φ through an action a, denoted Regr(φ), is a formula φ′ that holds before executing the
action a, given that φ holds after executing a. More formally, the regression of φ whose situations are all of
the form do(a, s) is defined inductively using the successor state axioms F (~x, do(a, s)) ≡ ΦF (~x, a, s) as
follows:

Regr(F (~x, do(a, s))) = ΦF (~x, a, s) ,
Regr(¬φ) = ¬Regr(φ) ,
Regr(φ1 ∧φ2) = Regr(φ1) ∧ Regr(φ2) ,
Regr(∃xφ) = ∃x (Regr(φ)) .

Example 6 The regression of the formula at(r, x, y, do(a, s)) through the action a=move- To(r, x, y) is
simply the true formula>. Intuitively, at(r, x, y, do(a, s)) always holds after executing a=moveTo(r, x, y)
in s, independently of what holds in s.



INFSYS RR 1843-08-07 7

2.4 Golog

Golog [22, 34] is an agent programming language that is based on the situation calculus. It allows for con-
structing complex actions (also called programs) from (standard or concurrent) primitive actions that are
defined in a basic action theory AT , where standard (and not-so-standard) Algol-like control constructs can
be used. More precisely, programs p in Golog have one of the following forms (where c is a (standard or
concurrent) primitive action, φ is a condition (which is obtained from a situation calculus formula that is uni-
form in s by suppressing the situation argument), p, p1, p2, . . . , pn are programs, P1, . . . , Pn are procedure
names, and x, ~x1, . . . , ~xn are arguments):

1. Primitive action: c. Do c.

2. Test action: φ?. Test the truth of φ in the current situation.

3. Sequence: [p1; p2]. Do p1 followed by p2.

4. Nondeterministic choice of two programs: (p1 | p2). Do either p1 or p2.

5. Nondeterministic choice of program argument: πx (p(x)). Do any p(x).

6. Nondeterministic iteration: p?. Do p zero or more times.

7. Conditional: if φ then p1 else p2. If φ is true in the current situation, then do p1 else p2.

8. While-loop: while φ do p. While φ is true in the current situation, do p.

9. Procedures: proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p.

Example 7 The small Golog program

while ¬at(r, 1, 2) do πx, y (moveTo(r, x, y))

may stand for “while the agent r is not at the position (1, 2), move r to a nondeterministically chosen
position (x, y)”.

Golog has a declarative formal semantics, which is defined in the situation calculus. Given a Golog
program p, its execution is represented by a situation calculus formula Do(p, s, s′), which encodes that the
situation s′ can be reached by executing the program p in the situation s. That is, Do represents a macro
expansion to a situation calculus formula. For example, the semantics of the sequence is defined through

Do([p1; p2], s, s′)
def
= ∃s′′(Do(p1, s, s

′′)∧Do(p2, s
′′, s′)) .

For more details on (the core situation calculus and) Golog, we refer especially to [34].

2.5 Decision-Theoretic Golog (DTGolog)

Decision-theoretic Golog (DTGolog) [36, 37] is an extension of Golog that combines high-level agent pro-
gramming in Golog with decision-theoretic planning in Markov decision process (MDPs) [33]. DTGolog
programs have (nearly) the same syntax as standard Golog programs. They are specified relative to a back-
ground action theory and a background optimization theory in the situation calculus. The background action
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theory defines deterministic and stochastic actions. The deterministic actions are defined through the axioms
of a basic action theory in the situation calculus, while the stochastic actions are defined via their determin-
istic action components along with probabilities. The background optimization theory contains in particular
axioms specifying a reward function.

Example 8 The small DTGolog program for a mail delivery robot from [36]

while ∃p (¬attempted(p) ∧ ∃nmailPresent(p, n))
do π[p : people]((¬attempted(p) ∧ ∃nmailPresent(p, n))? ; deliverTo(p))

intuitively chooses people from a finite collection people for mail delivery.

The DTGolog interpreter translates a DTGolog program p into an optimal policy, which is obtained
from p by replacing (i) every nondeterministic choice of two programs, (ii) every nondeterministic choice
of a program argument, and (iii) every nondeterministic iteration by (i) an optimal choice among the two
programs, (ii) an optimal choice of a program argument among the possible ones, and (iii) an optimal number
of iterations, respectively, through maximizing expected utility. This semantics of a DTGolog program p is
specified via a situation calculus formula BestDo(p, s, h, π, v, pr), which encodes that, given a program p,
starting from the situation s, and assuming a horizon h, the optimal policy obtained from p is given by π
and has the expected value v and the success probability pr . For example, for the case of nondeterministic
choice of two programs, BestDo is defined as follows:

BestDo([(p1|p2); p], s, h, π, v, pr)
def
=

∃π1, v1, pr1 (BestDo([p1; p], s, h, π1, v1, pr1)∧
∃π2, v2, pr2 (BestDo([p2; p], s, h, π2, v2, pr2)∧
((〈v1, pr1〉 Â 〈v2, pr2〉 ∧ π = π1 ∧ v = v1 ∧ pr = pr1)∨
(〈v1, pr1〉 4 〈v2, pr2〉 ∧ π = π2 ∧ v = v2 ∧ pr = pr2)))) .

Informally, the optimal policy for [(p1|p2); p] along with its expected value and success probability is given
by the optimal policy among [p1; p] and [p2; p] along with its expected value and success probability. Here,
the binary predicateÂ and its negation 4 compare expected utilities, which are pairs 〈v, pr〉 consisting of an
expected value v and a success probability pr ∈ [0, 1]. More concretely, the preference orderÂ is defined by
〈v1, pr1〉Â 〈v2, pr2〉 iff either (a) pr1> 0 and pr2 = 0, or (b) v1>v2 and pr1 = pr2 = 0, or (c) v1>v2 and
pr1, pr2> 0. Observe that Â actually only distinguishes between zero and positive success probabilities; it
thus treats success probabilities only as success flags. For more details on DTGolog and its semantics, we
refer the reader especially to [36, 37].

Example 9 Consider again the DTGolog program for a mail delivery robot in Example 8. The order in
which the robot delivers mail to people is such that it maximizes expected utility. So, for a person to be
served first, mail delivery to that person must be associated with a high utility in the optimization theory
behind the DTGolog program.

2.6 Matrix Games

Matrix games from classical game theory [41, 27, 28] describe the possible actions of two agents and the
rewards that they receive when they simultaneously execute one action each. Formally, a matrix game G =
(A,O,Ra , Ro) consists of two nonempty finite sets of actionsA andO for two agents a and o , respectively,
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Player O
One Finger Two Fingers

Player E
One Finger (2,−2) (−3, 3)
Two Fingers (−3, 3) (4,−4)

Figure 1: Reward functions (RE , RO) for two-finger Morra.

and two reward functions Ra , Ro : A×O→R for a and o . It is zero-sum iff Ra = −Ro ; we then often
omit Ro and abbreviate Ra by R.

The behavior of the agents in a matrix game is expressed through the notions of pure and mixed strate-
gies. Pure strategies specify a single action that an agent should execute, while mixed strategies specify
a set of possible actions to be executed, where every action in this set is associated with the probability
with which it should be executed. Formally, a pure (resp., mixed) strategy specifies which action an agent
should execute (resp., which actions an agent should execute with which probability). If the agents a and o
play the pure strategies a∈A and o∈O, respectively, then they receive the rewards Ra(a, o) and Ro(a, o),
respectively. Let PD(A) (resp., PD(O)) denote the set of all probability functions over A (resp., O), that
is, the set of all mappings µ from A (resp., O) to [0, 1] such that

∑
a∈A µ(a) = 1 (resp.,

∑
o∈O µ(o) = 1). If

the agents a and o play the mixed strategies µa∈ PD(A) and µo ∈PD(O), respectively, then the expected
reward to agent k∈{a ,o} is Rk(µa , µo) =E[Rk(a, o)|µa , µo ] =

∑
a∈A, o∈O µa(a) · µo(o) ·Rk(a, o).

Towards optimal behavior of the agents in a matrix game, we are especially interested in pairs of mixed
strategies (µa , µo), called Nash equilibria, where no agent has the incentive to deviate from its half of the
pair, once the other agent plays the other half: (µa , µo) is a Nash equilibrium (or Nash pair) for G iff
(i) Ra(µ′a , µo) 6Ra(µa , µo) for any mixed µ′a , and (ii) Ro(µa , µ

′
o) 6Ro(µa , µo) for any mixed µ′o . Ev-

ery two-player matrix game G has at least one Nash pair among its mixed (but not necessarily pure) strategy
pairs, and many have multiple Nash pairs. The Nash pairs can be computed by linear complementary pro-
gramming and linear programming in the general and the zero-sum case, respectively. A Nash selection
function f associates with each matrix game G a unique Nash equilibrium f(G) = (fa(G), fo(G)); the
reward to k∈{a ,o} under f(G) is then denoted by vk

f (G).
In the zero-sum case, if (µa , µo) and (µ′a , µ

′
o) are two Nash equilibria ofG, thenRa(µa , µo) =Ra(µ′a ,

µ′o), and also (µa , µ
′
o) and (µ′a , µo) are Nash equilibria of G. That is, the expected reward to the agents

is the same under any Nash equilibrium, and Nash equilibria can be freely “mixed” to form new Nash
equilibria. The strategies of agent a in Nash equilibria are the optimal solutions of the following linear
program:

max v subject to∑
a∈A µ(a) ·Ra(a, o) > v for all o∈O,∑
a∈A µ(a) = 1, and

µ(a) > 0 for all a∈A.

Furthermore, the expected reward to agent a under a Nash equilibrium is the optimal value of the above
linear program.

Example 10 (Two-Finger Morra) In the zero-sum matrix game two-finger Morra [35], two players E
and O simultaneously show one or two fingers. Let f be the total number of fingers shown. If f is odd,
then O gets f dollars from E, and if f is even, then E gets f dollars from O (see Fig. 1). A pure strategy
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for player E (or O) is to show two fingers, while a mixed strategy for player E (or O) is to show one finger
with the probability 7/12 and two fingers with the probability 5/12. The mixed strategy profile where each
player shows one finger with the probability 7/12 and two fingers with the probability 5/12 is a Nash pair.

2.7 Stochastic Games

Stochastic games [29], or also called Markov games [39, 23], generalize both matrix games [41] and (fully
observable) Markov decision processes (MDPs) [33].

A (two-player) stochastic game consists of a set of states S, a matrix game for every state s∈S (with
common sets of actions for each agent), and a transition function that associates with every state s∈S and
joint action of the agents a probability distribution on future states s′ ∈S. Formally, a (two-player) stochastic
game G= (S,A,O, P,Ra , Ro) consists of a finite nonempty set of states S, two finite nonempty sets of
actionsA andO for two agents a and o , respectively, a transition function P : S×A×O → PD(S) (which
associates with every triple (s, a, o)∈S × A × O a probability function P (s, a, o)( · ) over S, abbreviated
as P ( · |s, a, o) or P ( · |s, (a, o))), and two reward functions Ra , Ro : S × A × O → R for a and o . It is
zero-sum iff Ra=−Ro ; we then often omit Ro and abbreviate Ra by R.

Assuming a finite horizonH > 0, a pure (resp., mixed) time-dependent policy associates with every state
s∈S and number of steps to go h∈{0, . . . ,H} a pure (resp., mixed) matrix-game strategy. A pure (resp.,
mixed) policy profile π= (πa , πo) consists of a pure (resp., mixed) policy πk for each agent k∈{a ,o}. The
H-step value to agent k∈{a ,o} under a start state s ∈ S and the pure policy profile π= (πa , πo), denoted
Gk(H, s, π), is defined by:

Gk(H, s, π) =

{
Rk(s, π(s,H)) if H = 0;
Rk(s, π(s,H)) +

∑
s′∈SP (s′|s, π(s,H)) ·Gk(H−1, s′, π) if H > 0.

The expectedH-step value to agent k∈{a ,o} under a start state s and the mixed policy profile π= (πa , πo),
denoted Gk(H, s, π), is defined by:

Gk(H, s, π) =

{
E[Rk(s, a) |π(s,H)] if H = 0;
E[Rk(s, a) +

∑
s′∈S P (s′|s, a) ·Gk(H−1, s′, π) |π(s,H)] if H > 0.

Finite-horizon Nash equilibria for stochastic games are then defined as follows. A mixed policy profile
π= (πa , πo) is a (H-step) Nash equilibrium (or (H-step) Nash pair) of G iff for every agent k∈{a ,o}
and every start state s∈S, it holds that Gk(H, s, πCπ′k) 6 Gk(H, s, π) for every mixed policy π′k, where
πCπ′k is obtained from π by replacing πk by π′k. Every stochastic gameG has at least one Nash pair among
its mixed (but not necessarily pure) policy profiles, and it may have exponentially many Nash pairs.

Nash pairs forG can be computed by finite-horizon value iteration from local Nash pairs of matrix games
as follows [20]. We assume an arbitrary Nash selection function f for matrix games G= (A,O,Ra , Ro).
For every state s∈S and every number of steps to go h∈{0, . . . ,H}, the matrix game G[s, h] = (A,O,
Qa [s, h], Qo [s, h]) is defined by:

Qk[s, h](a) =

{
Rk(s, a) if h= 0;
Rk(s, a) +

∑
s′∈S P (s′|s, a) · vi

f (G[s′, h−1]) if h> 0,

for every joint action a∈A=×i∈IAi and every agent k∈{a ,o}. For every agent k∈{a ,o}, let the mixed
policy πk be defined by πk(s, h) = fk(G[s, h]) for every s∈S and h∈{0, . . . , H}. Then, π= (πa , πo) is
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a H-step Nash pair of G, and it holds Gk(H, s, π) = vk
f (G[s,H]) for every agent k∈{a ,o} and every state

s∈S.
In the zero-sum case, by induction on h∈{0, . . . , H}, it is easy to see that, for every s∈S and

h∈{0, . . . ,H}, the normal form game G[s, h] is also zero-sum. Moreover, all Nash pairs that are com-
puted by the above finite-horizon value iteration produce the same expected H-step value, and they can be
freely “mixed” to form new Nash pairs.

2.8 Learning Optimal Policies

Q-learning [42, 43] is a reinforcement learning technique, which allows to solve an MDP without a model
(that is, transition and reward functions) and can be used online. The value Q(s, a) is the expected dis-
counted sum of future payoffs obtained by executing a from the state s and following an optimal policy.
After being initialized to arbitrary numbers, the Q-values are estimated through the agent’s experience. For
each execution of an action a leading from the state s to the (observed) state s′, the agent receives a reward r
(from the environment), and the Q-value update is

Q(s, a) := (1−α) ·Q(s, a) + α · (r+ γ ·max
a′∈A

Q(s′, a′)) ,

where γ ∈ (0, 1) (resp., α∈ [0, 1)) is the discount factor (resp., learning rate). This algorithm converges to
the correct Q-values with probability 1 assuming that every action is executed in every state infinitely many
times, and that α is decayed appropriately. Convergence also holds in the non-discounting case (γ= 1) in
the presence of reward-free absorbing states, which are eventually reached from any non-absorbing state
with positive probability.

Littman [23] extends Q-learning to learning an optimal mixed policy in a zero-sum two-player stochastic
game. Here, the Q-value update is

Q(s, a, o) := (1−α) ·Q(s, a, o) + α · (r+ γ · max
µ∈PD(A)

min
o′∈O

∑
a′∈A

Q(s′, a′, o′) · µ(a′)) ,

where the “maxmin”-term is the expected reward of a Nash pair for a zero-sum matrix game.

3 Adaptive GTGolog (AGTGolog)

In this section, we first define the domain theory behind the agent programming language Adaptive GTGolog
(AGTGolog) and then the syntax of AGTGolog.

3.1 Domain Theory of AGTGolog

A domain theory DT = (AT ,ST ,OT ) of AGTGolog consists of a basic action theory AT , a stochastic
theory ST , and an optimization theory OT , as defined below.

We first give some preliminaries. We assume two zero-sum competing agents a and o (called agent and
opponent, respectively, where the former is under our control, while the latter is not). The set of primitive
actions is partitioned into the sets of primitive actions A and O of agents a and o , respectively. A two-agent
action is any concurrent action c over A∪O such that |c∩A|6 1 and |c∩O|6 1. We often write a, o, and
a‖o to abbreviate {a} ⊆ A, {o} ⊆ O, and {a, o} ⊆ A ∪O, respectively.
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Example 11 The concurrent actions {moveTo(a , 1, 2)}⊆A and {moveTo(o, 2, 3)}⊆O are single-agent
actions of a and o , respectively, and thus also two-agent actions, while the concurrent action {moveTo(a , 1,
2),moveTo(o, 2, 3)} ⊆ A ∪O is only a two-agent action, but not a single-agent action of a or o .

A state formula over “~x, s” is a formula φ(~x, s) in which all predicate symbols are fluents, and the only
free variables are the non-situation variables ~x and the situation variable s. A state partition over “~x, s” is a
nonempty set of state formulas P (~x, s) = {φi(~x, s) | i∈{1, . . . ,m}} such that (i) ∀~x, s (φi(~x, s)⇒¬φj(~x,
s)) is valid for all i, j ∈{1, . . . ,m} with j > i, (ii) ∀~x, s (

∨m
i=1 φi(~x, s)) is valid, and (iii) every ∃~x, s (φi(~x,

s)) is satisfiable. For state partitions P1 and P2, we define their product by

P1⊗P2 = {ψ1 ∧ψ2 |ψ1 ∈P1, ψ2 ∈P2, ψ1 ∧ψ2 6=⊥} .

We often omit the arguments of a state formula when they are clear from the context.
We next define the stochastic theory. As usual [36, 18, 2], every stochastic action a is expressed by a

finite number of deterministic actions n1, . . . , nk. When the stochastic action a is executed in the situation
s, then “nature” chooses and executes with a certain probability exactly one of its deterministic actions ni

with i∈{1, . . . , k}.

Example 12 The stochastic action moveS (ag , x, y) of moving the agent ag to the position (x, y) in the
situation s may have the effect that ag moves to (x, y) with the probability p and that ag moves to (x, y+ 1)
with the probability 1 − p, which is realized by making “nature” choose and execute exactly one of the
two deterministic actions moveTo(ag , x, y) and moveTo(ag , x, y+ 1) with the probabilities p and 1 − p,
respectively.

We use the predicate stochastic to connect the stochastic action a in the situation s to the deterministic
actions n1, . . . , nk, that is, stochastic(a, s, ni) is true for all i∈{1, . . . , k}. We also specify a state partition
P a,n

pr (~x, s) = {φa,n
j (~x, s) | j ∈{1, . . . ,m}} to group together situations s with common p such that “nature”

chooses n in s with probability p, denoted prob(a(~x), n(~x), s) = p :2

∃p1, . . . , pm (p1 + · · ·+ pm = 1 ∧
∧m

j=1(φ
a,n
j (~x, s)⇔ prob(a(~x), n(~x), s) = pj)) .

A stochastic action s is indirectly represented by providing a successor state axiom for each associated
nature choice n; see also Example 14. Thus, AT is extended to a probabilistic setting in a minimal way.
We assume that the domain is fully observable. For this reason, we introduce observability axioms, which
disambiguate the state of the world after executing a stochastic action. This condition is represented by the
predicate condStAct(c, s, n), where c is a stochastic action, s is a situation, n is a deterministic component
of c, and condStAct(c, s, n) is true iff executing c in s has resulted in actually executing n. Similar axioms
are introduced to observe which actions the two agents have chosen.

Example 13 After executing c=moveS (ag , x, y) in the situation s, we test the predicates at(ag , x, y, do(c,
s)) and at(ag , x, y+ 1, do(c, s)) to check which of the two deterministic actions (that is, either moveTo(ag ,
x, y) or moveTo(ag , x, y+ 1)) was actually executed. The predicate condStAct(c, s, n) for the stochastic
action c=moveS (ag , x, y) is defined by:

condStAct(c, s, {moveTo(ag , x, y)}) def
= at(ag , x, y, do(c, s)) ,

condStAct(c, s, {moveTo(ag , x, y+1)}) def
= at(ag , x, y+1, do(c, s)) .

2Note that we specify only partitions of state formulas that group together situations with common transition probabilities, but
not the transition probabilities themselves.
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o
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Figure 2: Logistics Domain.

As for the optimization theory, for every two-agent action α, we specify a state partition Pα
rw(~x, s) =

{φα
k (~x, s) | k∈{1, . . . , q}} to group together situations s with common r such that α(~x) and s assign the

reward r to a , denoted reward(α(~x), s) = r :3

∃r1, . . . , rq (
∧q

k=1(φ
α
k (~x, s)⇔ reward(α(~x), s) = rk)) .

Example 14 (Logistics Domain cont’d) Consider the following scenario in a multi-agent logistics domain.
We have an undirected graph of n locations connected bym edges (see Fig. 2). There are two agents, denoted
a and o , which occupy one location each and move along the edges. The two agents can move one step
to one of the directly connected locations, or remain stationary. Each agent can also pick up one object,
and drop it at its base. Each action of the two agents can fail, resulting in a stationary move. Any carried
object drops when the two agents collide. After each step, a and o receive (from the environment) the
(zero-sum) rewards ra − ro and ro − ra , respectively, where rag , ag ∈{a ,o}, is −1, 2, and 10 when ag
moves to a new location or remains stationary, ag picks up a new object, and ag brings an object to its base,
respectively.

The domain theory DT = (AT ,ST ,OT ) for the above logistics domain is defined as follows. As for
the basic action theory AT , we assume the deterministic actions move(ag , x) (the agent ag moves to the
location x), pickUp(ag , obj ) (the agent ag picks up the object obj ), drop(ag , obj ) (the agent ag drops the
object obj ), and nop (no action), as well as the relational fluents at(q, x, s) (the agent or object q is at
the location x in the situation s), onFloor(obj , x, s) (the object obj is on the floor at the location x in the
situation s), and holds(ag , obj , s) (the agent ag holds the object obj in the situation s), which are defined

3Note that we specify only partitions of state formulas that group together situations with common rewards, but not the rewards
themselves.
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through the following successor state axioms:

at(ag , x, do(c, s)) ≡ at(ag , x, s) ∧ ¬∃y (move(ag , y) ∈ c) ∨move(ag , x) ∈ c ;
onFloor(obj , x, do(c, s)) ≡ (onFloor(obj , x, s) ∧ ¬∃ag (pickUp(ag , obj ) ∈ c)∨
∃ag ((drop(ag , obj ) ∈ c ∨ collision(c, s)) ∧ at(ag , x, s) ∧ holds(ag , obj , s))) ;

holds(ag , obj , do(c, s)) ≡ holds(ag , obj , s) ∧ drop(ag , obj ) 6∈ c ∧ ¬collision(c, s)∨
pickUp(ag , obj ) ∈ c .

Here, collision(c, s) encodes that the concurrent action c causes a collision between the two agents a and
o in the situation s :

collision(c, s)
def
= ∃x (move(a , x) ∈ c ∧move(o, x) ∈ c) .

The deterministic actions move(ag , x), pickUp(ag , obj ), drop(ag , obj ), and nop(ag) are associated with
precondition axioms as follows:

Poss(move(ag , x), s) ≡ ∃y (at(ag , y, s) ∧ connects(y, x)) ;
Poss(pickUp(ag , obj ), s) ≡ ∃y (at(ag , y, s) ∧ onFloor(obj , y, s)) ∧ ¬∃x holds(ag , x, s) ;
Poss(drop(ag , obj ), s) ≡ holds(ag , obj , s) ;
Poss(nop(ag), s) ≡ > .

Furthermore, we assume the following additional precondition axiom, which encodes that two agents cannot
pick up the same object at the same time (where ag 6= ag ′):

Poss({pickUp(ag , obj ), pickUp(ag ′, obj ′)}, s) ≡
∃x, x′ (at(ag , x, s) ∧ at(ag ′, x′, s) ∧ x 6= x′ ∧ obj 6= obj ′) .

As for the stochastic theory ST , we assume the stochastic actions moveS (ag ,m) (the agent ag moves to
one of the possible locations m), pickUpS (ag , obj ) (the agent ag picks up the object obj ), dropS (ag , obj )
(the agent ag drops the object obj ), which may succeed or fail. We assume the state partition P a,n

pr = {>}
for each pair consisting of a stochastic action a and one of its deterministic components n:

∃p (p> 0 ∧ prob(moveS (ag , d),move(ag , d), s) = p∧
prob(moveS (ag , d),nop(ag), s) = 1− p) ;

∃p (p> 0 ∧ prob(pickUpS (ag , obj ), pickUp(ag , obj ), s) = p∧
prob(pickUpS (ag , obj ),nop(ag), s) = 1− p) ;

∃p (p> 0 ∧ prob(dropS (ag , obj ), drop(ag , obj ), s) = p∧
prob(dropS (ag , obj ),nop(ag), s) = 1− p) ;

∃p (prob(a‖o, a′‖o′, s) = p ≡
∃p1, p2 (prob(a, a′, s) = p1 ∧ prob(o, o′, s) = p2 ∧ p = p1 · p2)) .

As for the optimization theory OT , we define the reward function reward as follows:

reward(a, s) = r ≡
∃ra , ro (rewAg(a , a, s) = ra ∧ rewAg(o, a, s) = ro ∧ r= ra − ro) ;

∃r1, . . . , rm (
∧m

j=1(φ
ag,a
j (s) ⇔ rewAg(ag , a, s) = rj)) .

Here, the state partitions P ag,a
rw (s) = {φag,a

j (s) | j ∈{1, . . . ,m}} for the agent ag and the different actions
a∈{moveS (ag , x), pickUpS (ag , obj ), dropS (ag , obj )} are as follows:
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• If a = moveS (ag , x), then P ag,a
rw (s) = {>}. Informally, for each context, a moving action does not

affect the immediate reward. Hence, we do not distinguish between different states, and we get the
trivial partition defined by the true formula.

• If a = pickUpS (ag , obj ), then P ag,a
rw (s) = {¬h∧ato,¬h∧¬ato, h}, where h = ∃x(holds(ag , x, s))

(the agent ag holds an object) and ato = ∃y, obj (at(ag , y, s) ∧ on- Floor(obj , y, s)) (the agent ag
is close to an object). Informally, the immediate reward depends on whether

– ag holds no object but is close to an object (¬h ∧ ato),

– ag holds no object and is also far from an object (¬h ∧ ¬ato), or

– ag holds an object (h).

• If a = dropS (ag , obj ), then P ag,a
rw (s) = {h ∧ atb, h ∧ ¬atb,¬h}, where h is as above and atb =

atBase(ag , s) = ∃y (at(ag , y, s) ∧ base(ag , y)) (the agent ag is at its base). Informally, the imme-
diate reward depends on whether

– ag holds an object and is at its base (h ∧ atb),

– ag holds an object and is not at its base (h ∧ ¬atb), or

– ag holds no object (¬h).

3.2 Syntax of AGTGolog

In the sequel, let DT be a domain theory. AGTGolog has the same syntax as standard GTGolog, which
is defined by induction as follows. A program p in AGTGolog has one of the following forms (where α
is a two-agent action or the empty action nop (which is always executable and does not change the state
of the world), φ is a condition, p, p1, p2 are programs without procedure declarations, P1, . . . , Pn are pro-
cedure names, x, ~x1, . . . , ~xn are arguments, and a1, . . . , an and o1, . . . , om are actions of agents a and o ,
respectively, and τ = {τ1, τ2, . . . , τn} is a finite nonempty set of ground terms):

1. Deterministic or stochastic action: α.
Do α.

2. Nondeterministic action choice of agent a: choice(a : a1| · · · |an).
Do an optimal action (for agent a) among a1, . . . , an.

3. Nondeterministic action choice of agent o: choice(o : o1| · · · |om).
Do an optimal action (for agent o) among o1, . . . , om.

4. Nondeterministic joint action choice: choice(a : a1|· · ·|an) ‖ choice(o : o1|· · ·|om).
Do every action ai‖oj with an optimal probability µa(ai) · µo(oj).

5. Test action: φ?.
Test the truth of φ in the current situation.

6. Sequence: [p1; p2].
Do p1 followed by p2.

7. Nondeterministic choice of two programs: (p1 | p2).
Do an optimal program among p1 and p2.
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8. Nondeterministic choice of program argument: π[x : τ ](p(x)).
Do an optimal program p(x) with x∈ τ .

9. Nondeterministic iteration: p?.
Do p optimally zero or more times.

10. Conditional: if φ then p1 else p2.
If φ is true in the current situation, then do p1 else do p2.

11. While-loop: while φ do p.
While φ is true in the current situation, do p.

12. Procedures: proc P1(~x1) p1 end ; . . .; proc Pn(~xn) pn end ; p.
The procedures named P1, . . . , Pn, respectively, are declared and can be used in p.

Hence, compared to Golog, we now also have two-agent actions (instead of only primitive or concurrent
actions) and stochastic actions (instead of only deterministic actions). Moreover, we now additionally have
three different kinds of nondeterministic action choices for the two agents in (2)–(4), where one or both of
the two agents can choose among a finite set of single-agent actions. The two-agent actions and the choice
operators in (3) and (4) are also new compared to DTGolog. The formal semantics of (2)–(4) is defined
in such a way that an optimal action is chosen for each of the two agents. Similarly, an optimal program
is chosen in (7)–(9). If there are several optimal action or program choices, then we additionally assume a
total order on these choices and take the preferred choice according to this order (for example, choose the
leftmost optimal action in (2)–(4) and the leftmost optimal program in (7)). As usual, the sequence operator
“;” is associative (for example, [[p1; p2]; p3] and [p1; [p2; p3]] mean the same), and “p1; p2”, “if φ then p1”,
and “πx (p(x))” often abbreviate “[p1; p2]”, “if φ then p1 else nop”, and π[x : τ ](p(x)), respectively, when
there is no danger of confusion.

Example 15 (Logistics Domain cont’d) We define some AGTGolog programs relative to the domain the-
ory DT = (AT ,ST ,OT ) of Example 14. The main task of the agent a (and the opponent o) is to take one
object and drop it at the base. This can be described by the following AGTGolog procedure:

proc task(a ,o)
getObject(a ,o) ; carryToBase(a ,o)
end.

Here, getObject(a ,o) is an AGTGolog procedure for searching and picking up an object, while carryTo-
Base(a ,o) describes a partially specified behavior where the agent a (competing with o) is trying to move
to its base in order to drop an object:

proc getObject(a ,o)
π[y : loc](π[x : obj ](moveS (a , y) ; ?(onFloor(x, y)) ; pickProc(a ,o, x)))
end.

proc carryToBase(a ,o)
π[y : loc](moveS (a , y) ; if atBase(a) then π[x : obj ](dropS (a , x))

else carryToBase(a ,o))
end.
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Here, loc (resp., obj ) is the set of possible locations (resp., objects). The subsequent procedure pickProc(a ,
o, x) encodes that if the two agents a and o are at the same location, then they have to compete in order to
pick up an object, otherwise the agent a can directly use the primitive action pickUpS (a , x):

proc pickProc(a ,o, x)
if atSameLocation(a ,o) then tryToPickUp(a ,o, x)

else pickUpS (a , x)
end.

Here, the joint choices of the two agents a and o when they are at the same location are specified by the
following procedure tryToPickUp(a ,o, x) (which will be instantiated by a mixed policy):

proc tryToPickUp(a ,o, x)
choice(a : pickUpS (a , x) |nop(a)) ‖

choice(o : pickUpS (o, x) |nop(o))
end.

Note that in the case of a concurrent attempt of picking up the same object, by the concurrent precondition
axiom, at least one of the two agents is forced to fail.

4 State Partition Generation

In this section, we define joint state partitions for AGTGolog programs relative to finite horizons. Informally,
during the learning of action rewards and transition probabilities for an AGTGolog program p, we randomly
choose an initial state of the environment and start the execution of the program p, during which we receive
action rewards and make nature choose the outcome of probabilistic transitions. Hence, the initially chosen
state of the environment should fix in advance appropriate elements of the state partitions for the action
rewards and the transition probabilities. Furthermore, whenever the program p arrives at a point with several
action or program alternatives, the initially chosen state of the environment should allow for choosing any
of these alternatives. That is, we have to construct a joint state partition from all state partitions of action
rewards and transition probabilities, considering also all action and program alternatives, in the program p
within a finite horizon.

More formally, a machine state (p, h) consists of an AGTGolog program p and a horizon h> 0. A ma-
chine state (p, h) precedes another machine state (p′, h′), denoted (p, h) B (p′, h′), iff p′ is a possible
remaining of p after running p for h−h′ steps. A joint state (φ, p, h) consists of a state formula φ and a ma-
chine state (p, h). Informally, a machine state represents the executive state of the agent, while a joint state
represents both the state of the environment and the executive state of the agent. Every machine state (p, h)
is now associated with a state partition, denoted SF (p, h) = {φ1(~x, s), . . . , φm(~x, s)}, which is defined by
induction on the structure of AGTGolog programs as follows:

1. Null program or zero horizon:

SF (nil , h) = SF (p, 0) = {>} .

At the program or horizon end, the state partition is given by {>}. Indeed, when the program or the
horizon ends, then no more choices are needed, and therefore we have a unique context representing
the end of the program.
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2. Deterministic first program action:

SF (a; p′, h) = ((P a
rw(~x, s)⊗ {Regr(φ(~x, do(a, s))∧Poss(a, s) |

φ(~x, s)∈SF (p′, h− 1)})∪{¬Poss(a, s)}) \ {⊥} .

Here, the state partition for a; p′ with horizon h is obtained as the product of the reward partition
P a

rw(~x, s), the state partition SF (p′, h− 1) of the next machine state (p′, h− 1), and the executability
partition {¬Poss(a, s), Poss(a, s)}.

3. Stochastic first program action (nature choice):

SF (a; p′, h) =
⊗k

i=1(SF (ni; p′, h)⊗ P a,ni
pr (~x, s)),

where n1, . . . , nk are the deterministic components of a. That is, the partition for a; p′ in h, where a is
stochastic, is the product of the state partitions SF (ni; p′, h) relative to the deterministic components
ni of a combined with the partitions P a,ni

pr .

4. Nondeterministic first program action (choice of agent k):

SF (choice(k : a1| · · · |an); p′, h) =
⊗n

i=1 SF (ai; p′, h) ,

where a1, . . . , an are two-agent actions. That is, the state partition for a single choice of actions is the
product of the state partitions for the possible choices.

5. Nondeterministic joint action choice:

SF (choice(a : a1| · · · |an) ‖
choice(o : o1| · · · |om); p′, h) =

⊗n,m
i=1,j=1 SF (ai‖oj ; p′, h) ,

where a1, . . . , an and o1, . . . , om are the possible choices for a and o respectively. The associated
state partition is obtained from the partitions generated by the possible concurrent executions ai‖oj .

6. Test action:

SF (φ?; p′, h) = ({φ} ⊗ SF (p′, h))∪{¬φ} .

The partition for (φ?; p′, h) is obtained by composing the partition {φ,¬φ} induced by the test φ?
with the state partition for (p′, h).

7. Nondeterministic choice of two programs:

SF ((p1 | p2); p′, h) = SF (p1; p′, h)⊗ SF (p2; p′, h) .

The state partition for a nondeterministic choice of two programs is obtained as the product of the
state partitions associated with the possible programs.

8. Nondeterministic choice of program argument:

SF (π[x : {τ1, . . . , τn}](p(x)); p′, h) = {φ1(τ1) ∧ · · · ∧ φn(τn) |φ1(x), . . . , φn(x) ∈
SF (p(x : {τ1, . . . , τn}); p′, h)} \ {⊥} .

The state partition for a nondeterministic choice of program argument is obtained as the product of the
state partitions associated with the possible program instantiations. Here, SF (p(x : {τ1, . . . , τn}); p′, h)
denotes a state partition that is parameterized via the variable x, which may take on any value from
{τ1, . . . , τn}.
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9. Nondeterministic iteration:

SF (p?; p′, h) = SF (p; p?; p′, h)⊗ SF (p′, h) .

This case is reduced to procedures and nondeterministic choice of two programs.

10. Conditional:

SF (if ψ then p1 else p2; p′, h)
= ({ψ} ⊗ SF (p1; p′, h))∪ ({¬ψ} ⊗ SF (p2; p′, h)) .

The state partition for “if ψ then p1 else p2; p′, h” is obtained by composing the partition {ψ,¬ψ}
with the state partitions for “p1; p′, h” and “p2; p′, h”.

11. While-loop:

SF (while ψ do p; p′, h)
= ({ψ} ⊗ SF (p; while ψ do p; p′, h))∪ ({¬ψ} ⊗ SF (p′, h)) .

The state partition for “while ψ do p; p′, h” is obtained by composing the partition {ψ, ¬ψ} with the
state partitions for “p; while ψ do p; p′, h” and “p′, h”.

12. Procedures:

SF (proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p, h)
= SF (p〈proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end〉; p′, h) ;

SF (Pi(~xi); p′〈d〉, h) = SF (pd(Pi(~xi)); p′, h) .

We consider the cases of (1) handling procedure declarations and (2) handling procedure calls. To
this end, we slightly extend the first argument of SF by a store for procedure declarations, which
can be safely ignored in all the other above cases. Here, pd(Pi(~xi)) denotes the code from d for the
procedure call Pi(~xi).

Example 16 (Logistics Domain cont’d) Some joint states are (φ1, p, h) and (φ2, p, h), where (p, h) is the
machine state consisting of the AGTGolog program move(a , x) ‖ move(o, y) ; nil and the horizon h= 1,
and φ1 and φ2 are given as follows:

φ1 = ∃k (onFloor(k, x, s)) ∧ ∃l (onFloor(l, y, s))∧
∃z (at(a , z, s) ∧ connects(z, x)) ∧ ∃w (at(o, w, s) ∧ connects(w, y)) ;

φ2 = ¬∃k (onFloor(k, x, s)) ∧ ∃l (onFloor(l, y, s))∧
∃z (at(a , z, s) ∧ connects(z, x)) ∧ ∃w (at(o, w, s) ∧ connects(w, y)) .

As for the worst-case number of state formulas in the generated state partitions, it is not difficult to
verify that the worst-case cardinality of SF (p, h) is in O((mn)ah

), where (i) n is the maximal number of
state formulas in the input probability and the input reward partitions; (ii) a is the maximum among (ii.a)
the maximal number of actions of an agent in nondeterministic (single or joint) action choices in p, (ii.b) the
maximal number of choices of nature after stochastic actions in p, and (ii.c) the nondeterministic branching
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factor of p, which is the maximal number of alternative program choices (via nondeterministic choices of
two programs, nondeterministic choices of program arguments, and nondeterministic iterations) at any step
within h; and (iii) m is the conditional branching factor of p, which is the maximal number of branchings
via conditionals and while-loops of p at any step within h. Although this worst-case number seems to be
quite large, observe that many of the generated state formulas will be the false formula, especially when
the input state partitions are logically very similar. Furthermore, an upper bound for the number of state
formulas in state partitions is also the size of the state space. Finally, in many applications in practice, one
can assume that the horizon is very small and bounded by a constant, and that it is not necessary to explore
the whole state space in the learning algorithm.

5 Learning Optimal Policies

We now show how to learn optimal policies for AGTGolog programs relative to finite horizons. Intuitively,
given an AGTGolog program p and a horizon h> 0, an h-step policy π for p relative to a domain theory DT
is obtained from the h-horizon part of p by replacing every single-agent choice by a single action, and every
multi-agent choice by a collection of probability distributions, one over the actions of each agent. Note
that the learning algorithm also implicitly learns the transition probabilities and rewards. Note also that the
convergence and optimality of the learning algorithm is proved in Section 7.

We first describe the overall learning algorithm. We then define selection functions and describe the
updating step of the learning algorithm. We finally sketch how success probabilities / flags can be added and
describe a (very) preliminary implementation.

5.1 Learning Algorithm

The main learning algorithm is Learn in Algorithm 1. The algorithm takes as input an AGTGolog program
p and a finite horizon h> 0 (note that h is the maximal number of steps to go, that is, the maximal number
of actions to be executed). It generates as output an optimal h′-step policy π(σ) along with its expected
utility v(σ), for each joint state σ= (φ, p′, h′) such that φ∈SF (p′, h′) and (p, h) B (p′, h′).

We use a hierarchical version of Q-learning. In line 1, we initialize the learning rate α to 1, which
decays at each learning cycle according to decay . In lines 2 and 3, we also initialize to 0 the variables v(σ)
representing the current expected utilities. At each cycle, the current state φ∈SF (p, h) is evaluated (that is,
the agent evaluates which of the state formulas describes the current state of the world). Then, from the joint
state σ= (φ, p, h), the procedure Update(φ, p, h) (see Section 5.3) executes the program p with horizon
h, and updates and refines the expected utilities v(σ) and the policies π(σ). At the end of the execution
of Update , if the learning rate is greater than a suitable threshold ε, then the current state φ is evaluated,
and a new learning cycle starts. At the end of the algorithm Learn , for suitable decay and ε, each possible
execution of (p, h) from each φ is performed often enough to obtain convergence. That is, the agent executes
the program (p, h) several times refining its pairs of expected utilities v(σ) and its policies π(σ) until they
do not change anymore.

5.2 Selection Functions

In the updating step, we use selection functions for minimal arguments in minimizations, maximal argu-
ments in maximizations, and Nash equilibria of zero-sum matrix games of the form G= (I, (Ai)i∈I , R),
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Algorithm 1 Learn(p, h)
Require: AGTGolog program p and a finite horizon h> 0.
Ensure: optimal h′-step policy π(σ) and its expected utility v(σ), for each σ= (φ, p′, h′) such that

φ∈SF (p′, h′) and (p, h) B (p′, h′).
1: α := 1;
2: for each σ= (φ, p′, h′) such that φ∈SF (p′, h′) and (p, h) B (p′, h′)
3: do v(σ) := 0;
4: repeat
5: estimate φ∈SF (p, h);
6: Update(φ, p, h);
7: α := α · decay
8: until α<ε;
9: return (v(φ, p′, h′), π(φ, p′, h′))φ∈SF (p′,h′), (p,h)B(p′,h′).

where I = {a ,o} and Aa = {a1, . . . , am} (resp., Ao = {o1, . . . , on}) is a nonempty set of single-agent ac-
tions of agent a (resp., o).

As for selecting minimal (resp., maximal) arguments in minimizations (resp., maximizations), we define
prefArgmin(r1, . . . , rn) (resp., prefArgmax (r1, . . . , rn)), where n> 1, as the unique index l∈{1, . . . , n}
such that (i) rl is a minimal (resp., maximal) element among r1, . . . , rn and (ii) the index l is minimal with
(i). Intuitively, arguments with lower index are preferred to arguments with higher index. But we use slightly
modified versions of these functions, which additionally take into account numerical imprecision due to
convergence with probability 1: We define ε-prefArgmin(r1, . . . , rn) (resp., ε-prefArgmax (r1, . . . , rn)),
where n> 1 and ε> 0, as the unique index l∈{1, . . . , n} such that (i) rl is within the ε-range of a minimal
(resp., maximal) element among r1, . . . , rn and (ii) the index l is minimal with (i). These ε-variants of
prefArgmin and prefArgmax then allow for pushing through the convergence with probability 1 of policies
(see also Proposition 19).

As for selecting Nash pairs of zero-sum matrix games G= (I, (Ai)i∈I , R), where I = {a ,o} and
Aa = {a1, . . . , am} (resp., Ao = {o1, . . . , on}) as above, the Nash selection function prefNash selects the
Nash pair µpref = (µpref

a , µpref
o ) of G such that for every other Nash pair µ= (µa , µo) of G there exist some

k∈{1, . . . ,m} and l∈{1, . . . , n} such that:

• µpref
a (ai) =µa(ai) for all i∈{1, . . . , k − 1},

• µpref
a (ak)>µa(ak),

• µpref
o (oj) = µo(oj) for all j ∈{1, . . . , l − 1}, and

• µpref
o (ol)>µo(ol).

Intuitively, actions with lower index are given a higher probability than arguments with higher index. We
compute prefNash(G) by linear programming. More concretely, let v be the expected reward to agent a un-
der a Nash pair of G. Then, prefNash(G) is the pair of mixed strategies µpref = (µpref

a , µpref
o )∈PD(Aa)×

PD(Ao) such that:

• µpref
a (ai), for every i∈{1, . . . ,m}, is the maximum of µa(ai) subject to
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∑m
i=1 µa(ai) ·R(ai, oj) > v for all j ∈{1, . . . , n},∑m
i=1 µa(ai) = 1,

µa(ai) > 0 for all i∈{1, . . . ,m}, and

µa(al) =µpref
a (al) for every l∈{1, . . . , i− 1};

• µpref
o (oj), for every j ∈{1, . . . , n}, is the maximum of µo(oj) subject to∑n

j=1 µo(oj) ·R(ai, oj) 6 v for all i∈{1, . . . ,m},∑n
j=1 µo(oj) = 1,

µo(oj) > 0 for all j ∈{1, . . . , n}, and

µo(ol) =µpref
o (ol) for every l∈{1, . . . , j − 1}.

To additionally take into account numerical imprecision due to convergence with probability 1, as in the
case of prefArgmin and prefArgmax , we also use an ε-variant of prefNash , denoted ε-prefNash , where
ε > 0, which is defined by ε-prefNash(G) = prefNash(G′), where the matrix game G′ is obtained from
G be replacing any collection of rewards that lie within an ε-range of each other by their additive average.
This ε-variant of prefNash allows for pushing through the convergence with probability 1 of policies (see
also Proposition 20).

5.3 Updating Step

The procedure Update(φ, p, h) in Algorithms 2 and 3 implements the execution and update step of a Q-
learning algorithm. Each joint state σ of the program p within the horizon h is associated with a variable
v(σ), which store the current expected utility at σ, and a variable π(σ), which stores the current optimal
policy at σ. The procedure Update(φ, p, h) updates these variables during an execution of the program p
within the horizon h from a state φ∈SF (p, h). It is recursive, following the structure of the program.

Algorithm 2 shows the first part of the procedure Update(φ, p, h). Lines 1–4 encode the basis of the
induction: if the program is empty or the horizon is zero, then we set the expected utility and the policy to
0 and nil , respectively. In lines 5–8, we consider the non-executable cases: if a primitive action a is not
executable in the current state formula (here, ¬Poss(a, φ) abbreviates DT ∪φ |=¬Poss(a, s)) or a test fails
in the current state formula (here, ¬ψ[φ] stands for DT ∪ φ |=¬ψ(s)), then we set the expected utility and
the policy to 0 and stop (which stops the execution), respectively. In lines 9–14, we consider deterministic
actions a (here, Poss(a, φ) is a shortcut for DT ∪ φ |=Poss(a, s)): after executing a, the agent receives
the reward reward from the environment. Then, after executing the rest of the program from the next state
formula (that is, do(a, φ), which is the state formula φ′ ∈SF (p′, h−1) such that Regr(φ′(do(a, s))) =φ(s)
relative to DT ) via Update(do(a, φ), p′, h−1), the variables v(σ) and π(σ) for σ= (φ, a; p′, h) are updated
by adding the received reward to the current expected utility of the next joint state and adding a to the current
policy of the next joint state, respectively. In lines 15–21, we consider stochastic actions a: after executing
the stochastic action a, we observe the deterministic component nq chosen by “nature”, and we update the
expected utilities similarly as in Q-learning, where the current utility is obtained as the sum of the old utility
with factor 1−α and of the updated utility (for the executed component) with factor α. The generated policy
is a conditional plan where each possible execution is considered. Here, φi are the conditions to discriminate
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Algorithm 2 Update(φ, p, h)
Require: state formula φ, AGTGolog program p, and finite horizon h> 0.
Ensure: updates v(σ) and π(σ), where σ = (φ, p, h).

1: if p=nil ∨h= 0 then
2: v(σ) := 0;
3: π(σ) := nil
4: end if;
5: if p= a; p′∧¬Poss(a, φ)∨ p=ψ?; p′∧¬ψ[φ] then
6: v(σ) := 0;
7: π(σ) := stop
8: end if;
9: if p= a; p′ ∧Poss(a, φ) and a is deterministic then

10: execute a and observe reward ;
11: Update(do(a, φ), p′, h−1);
12: v(σ) := v(do(a, φ), p′, h−1) + reward ;
13: π(σ) := a;π(do(a, φ), p′, h−1)
14: end if;
15: if p= a; p′ ∧Poss(a, φ) and a is stochastic then
16: “nature” selects any deterministic action nq of the action a;
17: Update(φ, nq; p′, h);
18: v(σ) := (1− α) · v(σ) + α · v(φ, nq; p′, h);
19: π(σ) := a; if φ1 then π(φ, n1; p′, h) . . .
20: else if φk then π(φ, nk; p′, h)
21: end if;
22: if p= choice(a : a1| · · · |an); p′ then
23: select any q ∈{1, . . . , n} with strategy explore (see below);
24: Update(φ,a :aq; p′, h);
25: v(σ) := maxi∈{1,...,n}v(φ,a :ai; p′, h);
26: k := ε-prefArgmax i∈{1,...,n}v(φ,a :ai; p′, h);
27: π(σ) := a :ak; if φ1 then π(do(a :a1, φ), p′, h− 1) . . .
28: else if φn then π(do(a :an, φ), p′, h− 1)
29: end if;
30: if p= choice(o : o1| · · · |om); p′ then
31: select any q ∈{1, . . . ,m} with strategy explore (see below);
32: Update(φ,o:oq; p′, h);
33: v(σ) := mini∈{1,...,m}v(φ,o:oi; p′, h);
34: k := ε-prefArgmini∈{1,...,m}v(φ,o:oi; p′, h);
35: π(σ) := o:ok; if φ1 then π(do(o:o1, φ), p′, h− 1) . . .
36: else if φm then π(do(o:om, φ), p′, h− 1)
37: end if;
38: if p= choice(a : a1| · · · |an) ‖ choice(o : o1| · · · |om); p′ then
39: select any r∈{1, . . . , n} and s∈{1, . . . ,m} with strategy explore (see below);
40: Update(φ,a :ar‖o:os; p′, h);
41: v(σ) := expected reward under a Nash pair of {ri,j = v(φ,a :ai‖o:oj ; p′, h) | i, j};
42: (µa , µo) := ε-prefNash({ri,j = v(φ,a :ai‖o:oj ; p′, h) | i, j});
43: π(σ) := µa‖µo ; if φ1∧ψ1 then π(do(a :a1‖o:o1, φ), p′, h− 1) . . .
44: else if φn∧ψm then π(do(a :an‖o:om, φ), p′, h− 1)
45: end if;
46: . Update(φ, p, h) is continued in Algorithm 3.
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Algorithm 3 Update(φ, p, h) (cont’d)
47: if p=ψ?; p′ ∧ (φ=ψ ∧φ′) then
48: Update(φ′, p′, h);
49: v(σ) := v(φ′, p′, h);
50: π(σ) := π(φ′, p′, h)
51: end if;
52: if p= (p1 | p2); p′ then
53: select any i∈{1, 2} with strategy explore (see below);
54: Update(φ, pi; p′, h);
55: v(σ) := maxi∈{1,2}v(φ, pi; p′, h);
56: k := ε-prefArgmax i∈{1,2}v(φ, pi; p′, h);
57: π(σ) := π(φ, pk; p′, h)
58: end if;
59: if p=π[x : {τ1, . . . , τn}](p(x)); p′ then
60: select any i∈{1, . . . , n} with strategy explore (see below);
61: v(σ) := maxi∈{1,...,n}v(φ, p(τi); p′, h);
62: k := ε-prefArgmax i∈{1,...,n}v(φ, p(τi); p′, h);
63: π(σ) := π(φ, p(τk); p′, h)
64: end if;
65: if p= p?; p′ then
66: select any p1 = p; p?; p′ or p2 = p′ with strategy explore (see below);
67: Update(φ, pi, h);
68: v(σ) := maxi∈{1,2}v(φ, pi, h);
69: k := ε-prefArgmax i∈{1,2}v(φ, pi, h);
70: π(σ) := π(φ, pk, h)
71: end if;
72: if p= “ if ψ then p1 else p2; p′ ”∧ ((φ=ψ ∧φ′)∨ (φ=¬ψ ∧φ′)) then
73: if φ=ψ ∧φ′ then Update(φ′, p1; p′, h) else Update(φ′, p2; p′, h)
74: end if;
75: if p= “ while ψ do p; p′ ”∧ ((φ=ψ ∧φ′)∨ (φ=¬ψ ∧φ′)) then
76: if φ=ψ ∧φ′ then Update(φ′, p; while ψ do p; p′, h) else Update(φ′, p′, h)
77: end if;
78: if p= “ proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ; p ” then
79: decl := “ proc P1(~x1) p1 end ; . . . ; proc Pn(~xn) pn end ”;
80: Update(φ, p, h)
81: end if;
82: if p=Pi(~xi); p′ then
83: extract the code pdecl(Pi(~xi)) for the procedure call Pi(~xi) from decl ;
84: Update(φ, pdecl(Pi(~xi)); p′, h)
85: end if.
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the executed component (represented by the observability axioms). In lines 22–37, the code deals with the
agent (resp., opponent) choice construct, and encodes how the agent learns an optimal action from the
possible ones. Here, we first select one possible action according to an exploration strategy explore: with
some probability p∈ (0, 1), the agent (resp., opponent) selects randomly, and with the probability 1− p,
the agent (resp., opponent) selects an action according to the current optimal policy π(σ). That is, explore
controls how often the agent (resp., opponent) deviates from the current optimal policy, ensuring a suitable
exploration of the state space. After executing the selected action via Update , the expected utility v(σ)
is updated with the utilities of a maximal (resp., minimal) choice, and π(σ) is updated with a conditional
plan starting with this maximal (resp., minimal) choice. In lines 38–45, we consider the joint action choice
of both agents. We select one action from the possible ones for each agent, using the strategy explore ,
similarly as described above. After executing the procedure Update along the selected joint action, v(σ) is
updated with the expected reward under the pair of mixed strategies µa‖µo specified by ε-prefNash from
the matrix game of the possible joint actions (that is, the current expected utilities of the possible joint
actions). Furthermore, π(σ) is updated with a conditional plan where each possible execution is considered.
Here, φi and ψj are the conditions to discriminate the executed component for the agent and the opponent,
respectively.

Algorithm 3 shows the second part of the procedure Update(φ, p, h). Lines 47–51 define the successful
test execution, that is, if DT ∪ φ |=ψ(s), then after executing the rest of the program (p′, h), we update the
expected utility and the policy with the ones for the program (p′, h) from φ′. Lines 52–58 encode the choice
among two programs: one of the two programs is selected with exploration strategy explore, similarly as
described above. After executing the selected program through Update , the variables v(σ) and π(σ) are
updated considering the maximal among the utilities of the two programs. Finally, in lines 59–82, we
essentially reduce all the remaining constructs to the previous ones.

5.4 Adding Success Probabilities / Flags

To extend the semantics and the learning algorithm of AGTGolog to also account for success probabili-
ties / flags as in DTGolog, expected utilities u= 〈v, pr〉 consisting of an expected value v and a success
probability pr ∈ [0, 1] are represented by the value f(u) = v (resp., f(u) = v+M ) iff pr = 0 (resp., pr > 0),
where M is a sufficiently large number (which is greater than any possible expected value v). It is then not
difficult to verify that u1 ≺ u2 iff f(u1) < f(u2) for all possible utilities u1 and u2. To correctly compute
such expected utilities in AGTGolog, one then has to slightly adapt some computations of expected utilities
in the learning algorithm (in a similar way as in the GTGolog interpreter; see [11]).

5.5 Implementation

We have a (very) preliminary implementation, where the state formula generator is implemented in Eclipse
Prolog, and the learning algorithm is realized in Eclipse Prolog embedded in C++, using the gltk library for
linear programming (for the Nash solver). The learning algorithm uses the Eclipse engine for state formula
evaluation and utility/policy update.

6 Example

We now illustrate the overall system working in the Logistics Domain.
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Machine States State Partitions
(p, 3) SF (p, 3) = ({asl}⊗SF (p1, 3))∪ ({¬asl}⊗SF (p′1, 3))

(p1, 3)
(p′1, 3)

SF (p1, 3) =
⊗

i,j∈{1,2} SF (pi,j , 3)
SF (p′1, 3) = (P a

rw(~x, s)⊗ . . .
(pi,j , 3) SF (pi,j , 3) = . . .

(p2, 2) SF (p2, 2) =
⊗

q∈loc SF (pq, 2)
(p(y), 2) SF (p(y), 2) = ({atby} ⊗ SF (p3, 1)) ∪ ({¬atby} ⊗ SF (p′3, 1))
(p3, 1) SF (p3, 1) = . . .

Figure 3: Machine states and state partitions for the program p= pickProc(a ,o, x); carryToBase(a ,o)
and the horizon h= 3.

Example 17 (Logistics Domain cont’d) Consider again the domain theory DT = (AT ,ST , OT ) for the
Logistics Domain of Example 14 and the AGTGolog procedures of Example 15. Let the AGTGolog program
p be given by

p = pickProc(a ,o, x); carryToBase(a ,o) ,

and assume the horizon h= 3. Recall that a policy for p within h is obtained from p by replacing every
single-agent choice in pwithin h by a single action, and every multi-agent choice in pwithin h by a collection
of probability distributions, one over the actions of each agent. Learning an optimal policy now works as
follows. First, we generate the state partition SF (p′, h′) for every machine state (p′, h′) of p within h, that
is, for every machine state (p′, h′) such that (p, h) B (p′, h′). Then, we use Algorithm Learn for p and h to
learn an optimal policy π(σ) for each joint state σ= (φ, p′, h′) such that φ∈SF (p′, h′) and (p, h) B (p′, h′):
we run several times p within h for φ∈SF (p, h) until the expected utility v and the policy π stabilize for
each joint state σ= (φ, p′, h′, ) such that φ∈SF (p′, h′) and (p, h) B (p′, h′).

Machine States. Given the program p, we consider the following machine states:

(p, 3) with p= pickProc(a ,o, x); carryToBase(a ,o) ,
(p1, 3) with p1 = tryToPickUp(a ,o, x); carryToBase(a ,o) ,
(pi,j , 3) with pi,j = ai‖oj ; carryToBase(a ,o) ,
(p′1, 3) with p′1 = pickUpS (a , x); carryToBase(a ,o) ,
(p2, 2) with p2 = carryToBase(a ,o) ,
(p(y), 2) with p(y) =moveS (a , y); if atBase(a) then p3 else p2 ,
(p3, 1) with p3 =π[x : obj]dropS (a , x) .

These are in the following relations:

(p, 3) B (p1, 3) B (pi,j , 3) B (p2, 2) B (pq, 2) B (p3, 1) ,
(p, 3) B (p′1, 3) B (p2, 2) B (pq, 2) B (p3, 1) .

State Partitions and Policies. We now consider the state partitions and policies associated with the above
machine states.
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• (p, 3): The state partition for the machine state (p, 3) is given as follows:

SF (p, 3) = ({asl}⊗SF (p1, 3))∪ ({¬asl}⊗SF (p′1, 3)) ,

with asl = atSameLocation(a ,o). In the learning algorithm, we then associate with every joint state
(φ, p, 3), where φ= asl∧φ′ ∈SF (p, 3) (resp., φ=¬asl∧φ′ ∈SF (p, 3)), the policy π(φ′, p1, 3) (resp.,
π(φ′, p′1, 3)), distinguishing the two different cases of the agents being (resp., not being) at the same
location.

• (p1, 3): In the machine state (p1, 3), we reduce p1 = tryToPickUp(a ,o, x); carryTo- Base(a ,o) to
the program:

choice(a : a1 | a2) ‖ choice(o : o1 | o2); p2 ,

where a1 = pickUpS (a , x), a2 =nop(a), o1 = pickUpS (o, x), o2 =nop(o), and p2 = carryTo-
Base(a ,o). Informally, we have a joint action choice of both agents, where the agents have to learn
a mixed policy over their two possible actions (to pick up an object or to wait) against each other. We
thus obtain the four program choices pi,j = ai‖oj ; p2, where i, j ∈{1, 2}, and the state partition for
p1 and h= 3 is given by:

SF (p1, 3) =
⊗

i,j∈{1,2}

SF (pi,j , 3) .

In the learning algorithm, for each state formula φ∈SF (p1, 3), we have the associated expected
utility vi,j and one policy πi,j for each program choice pi,j with i, j ∈{1, 2} and the horizon 3. We
then determine a Nash pair

(µa , µo) = (a1, a2 7→ p, 1−p ; o1, o2 7→ q, 1−q)

via the Nash selection function ε-prefNash for the following matrix game:

Agent o
o1; p2 o2; p2

Agent a
a1; p2 (v1,1,−v1,1) (v1,2,−v1,2)
a2; p2 (v2,1,−v2,1) (v2,2,−v2,2)

The expected utility for p1 and h= 3 is finally given by the expected value of {vi,j |i, j ∈ {1, 2}}
under the Nash pair (µa , µo), and the corresponding policy is given by:

π(φ, p1, 3) = µa‖µo ; ifα1 ∧ ω1 thenπ(do(a1‖o1, φ), p2, 2) . . .
else ifα2 ∧ ω2 thenπ(do(a2‖o2, φ), p2, 2) ,

where the αi ∧ ωj’s are the conditions in Algorithm 3 used to discriminate the executed joint actions,
that is, αi (resp., ωj) is true iff ai (resp., oj) is the executed action among {ai | i∈{1, 2}} (resp.,
{oj | j ∈{1, 2}}), e.g., for a1 = pickUpS (a , x), the condition is α1 = holding(a , x). For example,
for the state formula:

φ1 =¬asl ∧ ato ∧ atbq1∧ · · · ∧ atbqm∧ ¬ha ∧ ho ∈ SF (p1, 3),
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where asl , ato, hag , and atbq stand for the following formulas:

asl = atSameLocation(a ,o), ato =∃y, obj (at(a , y, s) ∧ onFloor(obj , y, s)),
hag =∃x (holds(ag , x, s)), atbq =Regr(atBase(a , do(moveS (a , q), s))),

and q1, . . . , qm are possible locations (see below), the algorithm produces the policy

π(φ1, p1, 3) = [µa : a1, a2 7→ 1, 0] ‖ [µo : o1, o2 7→ 0, 1] ;
ifα1 ∧ ω1 thenπ(do(a1‖o1, φ1), p2, 2) . . .
else ifα2 ∧ ω2 thenπ(do(a2‖o2, φ1), p2, 2) .

Informally, the joint action pickUpS (a , x) ‖nop(o) is selected with probability 1. In contrast, for
the state formula:

φ2 = asl ∧ ato ∧ atbq1∧ · · · ∧ atbqm∧ ¬ha ∧ ¬ho ∈ SF (p1, 3),

the learning algorithm produces the following policy:

π(φ2, p1, 3) = [µa : a1, a2 7→ 0, 1] ‖ [µo : o1, o2 7→ 0, 1] ;
ifα1 ∧ ω1 thenπ(do(a1‖o1, φ2), p2, 2) . . .
else ifα2 ∧ ω2 thenπ(do(a2‖o2, φ2), p2, 2) .

Informally, the joint action nop(a) ‖nop(o) is selected with probability 1.

• (p′1, 3): In the machine state (p′1, 3), we have the case of a deterministic first program action a, where
a= pickUpS (a , x). So, the state partition for (p′1, 3) is of the form

SF (p′1, 3) = (P a
rw(~x, s)⊗ {Regr(φ(~x, do(a, s))∧Poss(a, s) |
φ(~x, s)∈SF (p2, 2)})∪{¬Poss(a, s)} \ {⊥} .

Depending on the state formula φ∈SF (p′1, 3), either Poss(a, φ) or ¬Poss(a, φ) holds, that is, the
action a is either executable or not. In the first case, the policy for the joint state (φ, p′1, 3) is given
by a;π(do(a, φ), p2, 2), while in the second case, a is not executable, and therefore the policy for the
joint state (φ, p′1, 3) is given by stop.

• (p2, 2): In the machine state (p2, 2), we reduce p2 = carryToBase(a ,o) to the nondeterministic
program choices

p(y) =moveS (a , y); if atBase(a) then p3 else p′3,

where y ranges over the possible locations in loc = {q1, . . . , qm}. So, the state partition for the ma-
chine state (p2, 2) is

SF (p2, 2) =
⊗
q∈loc

SF (p(y), 2) ,
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Figure 4: Average total reward gained by the program p= pickProc(a ,o, x); carryToBase(a ,o) with
the horizons h= 3 (blue) and h= 2 (red) after x iterations in a Logistics Domain with six nodes. We
considered the generated policies obtained after 100, 500, 1000, 2000, 5000, 10000, 15000, and 20000
iterations (horizontal axis), collecting the average total reward (vertical axis) after 100 runs for each case.

where the state partitions for the machine states (p(y), 2) are

SF (p(y), 2) = ({atby} ⊗ SF (p3, 1)) ∪ ({¬atby} ⊗ SF (p′3, 1))

and atby =Regr(atBase(a , do(moveS (a , y), s))). For each state formula φ∈SF (p2, 2), the policy
for the joint state (φ, p2, 2) is then defined as the policy for (φ, p(y), 2) of an optimal program choice
p(y).

Experimental Results. We have run the learning algorithm on the above program p:

p = pickProc(a ,o, x); carryToBase(a ,o) ,

considering the horizons h= 2 and h= 3 in a logistics domain with six locations. In this setting, we have
considered two randomly positioned objects and two base locations, one for each agent. At each iteration
of the algorithm Update , a new intial state is randomly created by generating a new graph and the initial
positions of the agent, the opponent, the two objects, and the two bases. The simulation environment was set
as follows: the success of picking up an object and dropping it to a base was associated with the probability
0.9 and the rewards 4 and 20, respectively; the execution attempt of a non-executable action is penalized
with −3; instead, the execution of the action moveS had a cost of −1. Figure 4 illustrates the average
total reward gained by the agent a that executes p against the opponent o , considering n iterations of the
algorithm Update . Here, the generated policy is evaluated at different stages of the learning algorithm: after
n iterations of the algorithm Update , we executed the current policy and considered the average total reward
collected in 100 runs.

7 Convergence Result

In this section, we show that the learning algorithm Learn converges with probability 1 on every AGTGolog
program p and horizon h> 0. For this result, we assume that (i) every subprogram of p within h is executed
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infinitely many times in every state formula φ∈SF (p, h), and that (ii) the learning rate α is decayed appro-
priately. The main convergence result is obtained by induction on the structure of AGTGolog programs. It
is based on several preparative results, which informally show that convergence with probability 1 can be
pushed through the updating step, the selections of maximal and minimal arguments within an ε-range and
the selections of Nash pairs within an ε-range in the learning algorithm.

The first preparative result informally shows that convergence with probability 1 can be pushed through
the updating step for stochastic actions in Learn .

Proposition 18 Let αn, n∈{1, 2, . . .}, be a sequence of real numbers such that 0 6αn< 1,
∑∞

n=1 αn =∞,
and

∑∞
n=1 α

2
n<∞. Let k> 1, and let ξn, n∈{1, 2, . . .}, be a sequence of random variables with the possi-

ble outcomes an,1, . . . , an,k along with the outcome probabilities p1, . . . , pk (p1+· · ·+pk = 1), respectively.
Suppose that every sequence an,i, i∈{1, . . . , k}, converges with probability 1 against ai. Let the sequence
xn, n∈{1, 2, . . .}, be defined by xn+1 = (1− αn) · xn + αn · ξn for all n∈{1, 2, . . .}. Then, xn converges
with probability 1 against

∑k
i=1 pi · ai.

The second preparative result informally shows that convergence with probability 1 can be pushed
through the maximizations and the selections of maximal arguments within an ε-range for single-agent
choice constructs in Learn . A similar result holds for the minimizations and selections of minimal argu-
ments within an ε-range in Learn .

Proposition 19 Let the sequences an,i, i∈{1, . . . , k}, converge with probability 1 against ai. Then, (a)
the sequence bn = max(an,1, . . . , an,k) converges with probability 1 against b = max(a1, . . . , ak); and (b)
if additionally ε> 0 is sufficiently small, then ε-prefArgmax (an,1, . . . , an,k) converges with probability 1
against prefArgmax (a1, . . . , ak).

The third preparative result informally shows that convergence with probability 1 can be pushed through
the computations of expected rewards of Nash pairs and the selections of Nash pairs within an ε-range for
joint action choice constructs in Learn .

Proposition 20 Let the sequences an,i,j , where i∈{1, . . . , k} and j ∈{1, . . . , l}, converge with probabil-
ity 1 against ai,j . Then, (a) the expected reward vn of the matrix game an = (an,i,j)i,j under a Nash pair
converges with probability 1 against the expected reward v of the matrix game a= (ai,j)i,j under a Nash
pair; and (b) if additionally ε> 0 is sufficiently small, then ε-prefNash(an) converges with probability 1
against prefNash(a).

We are now ready to formulate the main convergence result, which says that the expected utility and
policy computed by the learning algorithm Learn on every AGTGolog program p and horizon h> 0 con-
verges with probability 1 against the expected utility and policy, respectively, specified by the GTGolog
interpreter for p and h [11] (where the immediate rewards and transition probabilities of the learning pro-
cess are fixed and explicitly given in the domain theory). Observe that since the GTGolog interpreter for p
relative to h generates an optimal policy, this also means that the policy learned by Learn(p, h) is optimal.
Furthermore, the result implies that in the single-agent case, the expected utility and policy computed by
the learning algorithm converge against the expected utility and policy, respectively, specified by a variant
of the DTGolog interpreter (for fixed and explicitly given immediate rewards and transition probabilities).
That is, the multi-agent learning algorithm for AGTGolog includes as a special case a single-agent learning
algorithm for DTGolog.
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Theorem 21 Let DT = (AT ,ST ,OT ) be a domain theory, p be an AGTGolog program w.r.t. DT , and
h> 0 be a horizon. Let every subprogram of p within h be executed infinitely many times in every φ∈SF (p,
h). Let αn be the learning rate α at the n-th call of Learn(p, h). Let 0 6αn< 1,

∑∞
n=1 αn =∞, and∑∞

n=1 α
2
n<∞. Let ε> 0 be sufficiently small. Let vn(σ) (resp., πn(σ)), for all σ= (φ, p, h) and φ∈SF (p,

h), denote v(σ) (resp., π(σ)) after the n-th call of Learn(p, h). Let v (resp., π) be the expected utility (resp.,
optimal policy) specified by the GTGolog interpreter for p w.r.t. the domain theory DT ′ (obtained from DT
by additionally specifying rewards and transition probabilities) with horizon h at a situation s satisfying φ.
Then, vn (resp., πn) converge with probability 1 against v (resp., π).

8 Conclusion

We have presented a framework for adaptive multi-agent programming, which integrates high-level pro-
gramming in GTGolog with adaptive dynamic programming. It allows the agent to online instantiate a
partially specified behavior playing against an adversary. Differently from the classical Golog approach,
the interpreter generates not only complex sequences of actions (the policy), but also the state abstraction
induced by the program at the different executive states (machine states). In this way, the Golog integration
between action theory and programs allows to naturally combine the advantages of symbolic techniques
[2, 19] with the strength of hierarchical reinforcement learning [31, 6, 1, 24]. This work aims at bridging
the gap between programmable learning and logic-based programming approaches. To our knowledge, this
is the first work exploring this very promising direction.

The main focus of this paper was on AGTGolog as a language for learning against an adversary in
DTGolog programs (where we are initially given a DTGolog program for the agent that we control, which
is then completed to a GTGolog program by filling in all possible actions of the adversary) and for multi-
agent learning in GTGolog programs (where we are initially given a GTGolog program that specifies the
joint behavior of two competing agents). It is important to point out that AGTGolog can be easily extended
to learning in a case between the above two cases, where each of the two competing agents has its own
individual DTGolog program. Here, a joint policy is learned from the cross-product of the two DTGolog
programs, which is possible due to the finite horizon assumption.

Although we have considered only the case of two competing agents, the framework can be easily
extended to two competing teams of cooperative agents, where the agents of the same team all have the
same rewards, and the agents of different teams have zero-sum rewards (which can be done similarly as for
GTGolog; see [11] for further details).

An interesting topic for future research is to explore whether the presented approach can be extended to
the partially observable case (which may be done along the lines of [17]).

Acknowledgments. This work was supported by the Austrian Science Fund under the project P18146-N04
and by the German Research Foundation (DFG) under the Heisenberg Programme. We thank the reviewers
of this paper and its ECAI-2006 poster and KI-2006 abstract for their constructive comments, which helped
to improve this work.

Appendix A: Proofs

Proof of Proposition 18. Observe first that since every sequence an,i, i∈{1, . . . , k}, converges with prob-
ability 1 against ai, the sequence (an,1, . . . , an,k) converges with probability 1 against (a1, . . . , ak). That
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is, for every ε> 0, some nε ∈{1, 2, . . .} exists such that |an,i−ai|< ε
2 , for all i∈{1, . . . , k} and all n>nε,

with probability 1.
Observe then that a standard result in stochastic convergence (e.g., Theorem 2.3.1 of [21]) says that the

sequence xn+1 = (1−αn) ·xn +αn · yn, where (1) 0 6 αn < 1, (2)
∑

∞
n=1 αn =∞, (3)

∑
∞
n=1 α

2
n<∞, and

(4) yn, n∈{1, 2, . . .}, is a sequence of bounded random variables with mean µ, converges with probability
1 against µ. Hence, in particular, the sequence xn+1 = (1− αn) · xn + αn · ξ′n, where ξ′n, n∈{1, 2, . . .}, is
a sequence of random variables with the possible outcomes a1, . . . , ak along with the outcome probabilities
p1, . . . , pk (p1 + · · ·+ pk = 1), respectively, converges with probability 1 against µ =

∑
k
i=1 pi · ai. That is,

for every ε> 0, there exists some n′ε ∈ {1, 2, . . .} such that |xn − µ|< ε
2 , for all n>n′ε, with probability 1.

In summary, we thus obtain the following for all n> max(nε, n
′
ε):

xn+1 = (1− αn) · xn + αn · ξn < (1− αn) · xn + αn · ξ′n + ε
2 < µ+ ε ,

xn+1 = (1− αn) · xn + αn · ξn > (1− αn) · xn + αn · ξ′n − ε
2 > µ− ε ,

both with probability 1. That is, for all n> max(nε, n
′
ε) + 1, it holds |xn− µ| < ε with probability 1. That

is, xn converges with probability 1 against µ =
∑

k
i=1 pi · ai. 2

Proof of Proposition 19. (a) Immediate by the observation that the convergence with probability 1 of
every sequence an,i, i∈{1, . . . , k}, against ai implies the convergence with probability 1 of the sequence
(an,1, . . . , an,k) against (a1, . . . , ak). Informally, then there exists some n0 such that for all n>n0, every
maximal argument of max(an,1, . . . , an,k) corresponds to some maximal argument of max(a1, . . . , ak).
Since any of the former converges with probability 1 against the latter, it thus follows that max(an,1, . . . ,
an,k) converges with probability 1 against max(a1, . . . , ak).

(b) If additionally ε> 0 is sufficiently small, then some n0 exists such that for all n>n0, it holds that
{i∈{1, . . . , k} | an,i ∈ max(an,1, . . . , an,k)+[−ε,+ε]} coincides with {i∈{1, . . . , k} | ai = max(a1, . . . ,
ak)} with probability 1. Hence, ε-prefArgmax (an,1, . . . , an,k) converges with probability 1 against pref -
Argmax (a1, . . . , ak). 2

Proof of Proposition 20. (a) Immediate by the observation that the convergence with probability 1 of every
sequence an,i,j , i∈{1, . . . , k} and j ∈{1, . . . , l}, against ai,j implies the convergence with probability 1
of the sequence (an,i,j)i,j against (ai,j)i,j . Hence, maxπ∈PD({1,...,k}) minj ∈{1,...,l}

∑
i∈{1,...,k} an,i,j · π(i)

converges with probability 1 against maxπ∈PD({1,...,k}) minj ∈{1,...,l}
∑

i∈{1,...,k} ai,j · π(i).

(b) If additionally ε> 0 is sufficiently small, then some n0 exists such that any “slipping” of probabilities
along the expected reward under a Nash pair that is possible for the matrix game a is also possible with
probability 1 for every matrix game an with n>n0. Hence, ε-prefNash(an) converges with probability 1
against prefNash(a). 2

Proof of Theorem 21. We prove the theorem by induction on the structure of AGTGolog programs. We
use the results in Propositions 18, 19, and 20 that convergence with probability 1 can be pushed through the
updating step, the selections of maximal and minimal arguments within an ε-range, and the selections of
Nash pairs within an ε-range, respectively. For a detailed specification of the GTGolog interpreter, we refer
the reader to [11].

Basis: If p is the empty program, or h is the zero horizon, then vn(σ) = 0 and πn(σ) =nil trivially converge
with probability 1 against the results v= 0 and π=nil , respectively, of the GTGolog interpreter for these
two cases. Similarly, if p= a; p′ and¬Poss(a, φ), or p=ψ?; p′ and¬ψ[φ], then vn(σ) = 0 and πn(σ) = stop
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converge with probability 1 against the results v= 0 and π= stop, respectively, of the GTGolog interpreter
for these two cases.

Induction: If p is of the form a; p′ such that (i) Poss(a, φ) and (ii) a is deterministic, then by the in-
duction hypothesis, vn(do(a, φ), p′, h− 1) and πn(do(a, φ), p′, h− 1) converge with probability 1 against
the results v and π, respectively, of the GTGolog interpreter for p′ relative to do(a, sφ) and h− 1. Let
reward = reward(a, sφ) be the reward to agent a when executing a in sφ. Hence,

vn+1(σ) = vn(do(a, φ), p′, h− 1) + reward and
πn+1(σ) = a;πn(do(a, φ), p′, h− 1)

converge with probability 1 against the results v + reward(a, sφ) and a;π, respectively, of the GTGolog
interpreter for a ; p′ relative to sφ and h.

If p= a; p′ such that (i) Poss(a, φ) and (ii) a is stochastic, then by the induction hypothesis, vn(φ, nq ; p′,
h) and πn(φ, nq ; p′, h), q ∈{1, . . . , k}, converge with probability 1 against the results vq and πq, respec-
tively, of the GTGolog interpreter for nq ; p′ relative to sφ and h. Let nature choose each nq, q ∈{1, . . . , k},
with probability prob(a, sφ, nq). By Proposition 18,

vn+1(σ) = (1− α) · vn(σ) + α · vn(φ, nq; p′, h) and
πn+1(σ) = a; if φ1 then πn(φ, n1; p′, h) . . . else if φk then πn(φ, nk; p′, h)

converge with probability 1 against the results∑
k
q=1 vq · prob(a, sφ, nq) and

a ; if φ1 then π1 . . . else if φk then πk ,

respectively, of the GTGolog interpreter for a ; p′ relative to sφ and h.
If p= choice(a : a1| · · · |am); p′, then by the induction hypothesis, vn(φ,a : ai ; p′, h) and πn(φ,a :ai ; p′,

h) converge with probability 1 against the results vi and a :ai ;πi, respectively, of the GTGolog interpreter
for a :ai ; p′ relative to sφ and h. By Proposition 19,

vn+1(σ) = vn(φ,a :ak; p′, h) and
πn+1(σ) = a :ak ; if φ1 then πn(do(a :a1, φ), p′, h−1) . . .

else if φm then πn(do(a :am, φ), p′, h− 1) ,

where k= ε-prefArgmax i∈{1,...,m}vn(φ,a :ai; p′, h), converge with probability 1 against the results

vl and
a :al ; if φ1 then π1 . . . else if φm then πm ,

respectively, where l = prefArgmax i∈{1,...,m}vi, of the GTGolog interpreter for choice(a : a1| · · · |am); p′

relative to sφ and h. The line of argumentation is similar for the cases p= choice(o : o1| · · · |om); p′,
p= (p1 | p2); p′, and p= p?; p′.

If p= choice(a : a1| · · · |al) ‖ choice(o : o1| · · · |om); p′, then by the induction hypothesis, vn(φ,a :ai‖
o:oj ; p′, h) and πn(φ,a :ai‖o:oj ; p′, h), where i∈{1, . . . , l} and j ∈{1, . . . , m}, converge with probability
1 against the results vi,j and a :ai‖o:oj ;πi,j , respectively, of the GTGolog interpreter for a :ai‖o:oj ; p′

relative to sφ and h. So, ε-prefNash(v(φ,a :ai‖ o:oj ; p′, h) | i, j}) converges against prefNash({vi,j | i, j})
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with probability 1. Thus,

vn+1(σ) =
∑

l
i=1

∑
m
j=1 µa(ai) · µo(oj) · vn(φ,a :ai‖o:oj ; p′, h) and

πn+1(σ) = µa‖µo ; if φ1∧ψ1 then πn(do(a :a1‖o:o1, φ), p′, h− 1) . . .
else if φl∧ψm then πn(do(a :al‖o:om, φ), p′, h− 1) ,

where (µa , µo) = ε-prefNash({v(φ,a :ai‖o:oj ; p′, h) | i, j}), converge with probability 1 against the re-
sults ∑

l
i=1

∑
m
j=1 µ

′
a(ai) · µ′o(oj) · vi,j and

µ′a‖µ′o ; if φ1∧ψ1 then π1,1 . . . else if φl∧ψm then πl,m ,

respectively, where (µ′a , µ
′
o) = prefNash({vi,j | i, j}), of the GTGolog interpreter for choice(a : a1| · · · |

al) ‖ choice(o : o1| · · · |om); p′ relative to sφ and h.
If p=ψ?; p′ and φ=ψ ∧φ′, then by the induction hypothesis, vn(φ′, p′, h) and πn(φ′, p′, h) converge

with probability 1 against the results v and π, respectively, of the GTGolog interpreter for p′ relative to sφ′

and h. So, vn+1(σ) = vn(φ, p′, h) and πn+1(σ) = πn(φ, p′, h) trivially converge with probability 1 against
the results v and π, respectively, of the GTGolog interpreter for ψ?; p′ relative to sφ and h.

All the other cases are reduced to one of the former cases. 2
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