| NF S Y S
RESEARCH

REPORT

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

A SOUND AND COMPLETEALGORITHM FOR
SIMPLE CONCEPTUALLOGIC PROGRAMS

Cristina Feier Stijn Heymans

INFSYS RESEARCHREPORT184-08-10.
OcTOBER 2008

Institut fir Informationssysteme
AB Wissensbasierte Systeme

Technische Universitat Wien

Favoritenstrass3e 9-11

A-1040 Wien, Austria I
Tel: +43-1-58801-18405 I

Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at W | E N

www.kr.tuwien.ac.at

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT184-08-10., @TOBER 2008

A SOUND AND COMPLETE ALGORITHM FOR SIMPLE CONCEPTUAL
LoGgic PROGRAMS

Cristina Feiet and Stijn Heymarts

Abstract. Open Answer Set Programming (OASP) is a knowledge repraseniparadigm that al-
lows for a tight integration of Logic Programming rules anelldription Logic ontologies. Although
several decidable fragments of OASP exist, no reasoningepioes for such expressive fragments
were identified so far. We provide an algorithm that checkisfiability in NEXPTIME for the frag-
ment ofEXPTIME-completesimple conceptual logic programs

Linstitute of Information Systems, Knowledge-Based Syst&@roup, Vienna University of Technology,
Favoritenstrafle 9-11, A-1040 Vienna, Austria. E-mailef@kr.tuwien.ac.at.

2Institute of Information Systems, Knowledge-Based Syst&@roup, Vienna University of Technology,
FavoritenstraRe 9-11, A-1040 Vienna, Austria. E-mail:rheps@kr.tuwien.ac.at.

Acknowledgements This work is partially supported by the Austrian Scienced&(FWF) under the projects
Distributed Open Answer Set Programming (FWF P20Z0@Reasoning in Hybrid Knowledge Bases (FWF
P20840)

This Report is an extended version of a paper that appeatée jproceedings of the ICLP08 Workshop on
Applications of Logic Programming on the (Semantic) Web Web Services (ALPSWS 2008), December
2008.

Copyright(© 2008 by the authors

Contents

=

N

Introduction
Preliminaries
Simple Conceptual Logic Programs

An Algorithm for Simple Conceptual Logic Programs

4.1 ExpansionRules e
4.1.1 (i) Expand unary positive. e e
4.1.2 (ii) Choose a unary predicate.
4.1.3 (iii) Expand unary negative.
4.1.4 (iv) Expand binary positive.
415 (v) Expand binary negative. e
4.1.6 (vi) Choose a binary predicate

4.2 Applicability Rules e e
4.2.1 (vii) Saturation
4.2.2 (viii) Blocking
423 (iX)Caching e e

4.3 Termination, Soundness, and Completion

4.4 Complexity Results

Related Work

Conclusions and Outlook

1 Introduction

Integrating Description Logics (DLs) with rules for the Samtic Web has received considerable attention
over the past years with approaches sucbescription Logic Program§9], DL-safe rule§16], DL+log
[17], dl-programg[5], and Open Answer Set Programming (OASP) [12]. OASP caewattractive features
from both the DL and the Logic Programming (LP) world: an opgemain semantics from the DL side
allows for stating generic knowledge, without mention diiat constants, and a rule-based syntax from the
LP side supports nonmonotonic reasoningnagation as failure

Decidable fragments for OASP satisfiability checking, lik@nceptual Logic Programid.1] or g-hybrid
knowledge bas€d.0], were identified by syntactically restricting OASP.€Be fragments are still expres-
sive enough for integrating rule- and ontology-based kedgé. However there are no effective reasoning
procedures for any of these decidable fragments of OASPrstnfthis paper, we take a first step in mend-
ing this by providing a sound and complete algorithm forssgtbility checking in a particular fragment of
Conceptual Logic Programs.

The major contributions of the paper can be summarized ksl

e We identify a fragment of Conceptual Logic Programs (Col.Ba)ledsimple CoLPsthat disallow
for inverse predicates, inequality, and have some rdsinigtconcerning the dependencies between
different predicate symbols which appear in rules, congaoeCoLPs, but are expressive enough
to simulate the DLALCH. We show that satisfiability checking w.r.t. simple CoLP&ieTIME-
complete (i.e., it has the same complexity as CoLPs).

e We define a nondeterministic algorithm for deciding satislig, inspired by tableaux-based methods
from DLs, that constructs a finite representation of an opexwar set. We show that this algorithm
is terminating, sound, complete, and runsiEXPTIME.

The algorithm is non-trivial from two perspectives: botle tminimal model semantics of OASP, com-
pared to the model semantics of DLs, as well as the open damsaimmption, compared to the closed domain
assumption of ASP, pose specific challenges in construetifigite representation that corresponds to an
open answer set.

2 Preliminaries

We recall the open answer set semantics from [Cnstants, b, ¢, . . ., variablesz, y, . . ., termss, t, . . .,
andatomsp(ty, . .., t,) are defined as usual. lkeral is an atonp(ty, . . ., t,,) or anegated atomot p(ty, ..., t,).
For a seta of literals or (possibly negated) predicates! = {/ | I € «,l an atom or a predicajeand
a” = {l | not |l € a,l an atom or a predicaje For a setX of atoms,not X = {notl |l € X}. For
a set of (possibly negated) predicateswe will often write a(x) for {a(z) | a € a} anda(z,y) for
{a(z,y) |a € a}.

A programis a countable set of rules < 3, wherea andg are finite sets of literals. The setis the
headof the rule and represents a disjunction, whilés called thebodyand represents a conjunction. If

a = (), the rule is called aonstraint Free rulesare rules;(z1, . .., x,) V not q(x1, ..., z,) « for variables
x1,...,2T,; they enable a choice for the inclusion of atoms. We call dipeteq freein a program if there
isafreeruley(xy,...,xz,) V not q(x1,...,x,) < inthe program. Atoms, literals, rules, and programs that

do not contain variables aground For a rule or a progranX, let cts(X) be the constants i, vars(X)
its variables, anghreds(X) its predicates withupreds(X') the binary antpreds(X) the binary predicates.

1

A universeU for a programP is a non-empty countable superset of the constant2: ints(P) C U. We
call Py the ground program obtained fromby substituting every variable iR by every possible constant
in U. Let Bp (Lp) be the set of atoms (literals) that can be formed from a gtquogrampP.

An interpretation] of a groundP is any subset oBp. We write I = p(t1,...,t,) if p(t1,...,tn) € 1
and! E not p(ty,...,tn) if I = p(t1,...,t,). Forasetof ground literalX, I = X if I |= [for every
[€ X. Aground ruler : a «— g is satisfiedw.r.t. I, denoted! = r, if I = [for somel € « whenever
I = 3. A ground constraint— /3 is satisfied w.r.t.J if I [~ . For a ground progran® without not, an
interpretation/ of P is amodelof P if I satisfies every rule i?; it is ananswer sebf P if it is a subset
minimal model of P. For ground program® containingnot, the GL-reduct[6] w.r.t. I is defined asP’,
whereP! containsa « 3T for a « gin P, I = not 3~ andI |= a~. I is ananswer sebf a groundP
if Iis an answer set aP’.

In the following, a program is assumed to be a finite set ofstulefinite programs only appear as
byproducts of grounding a finite program with an infinite wmse. Anopen interpretatiorof a programpP
is a pair(U, M) whereU is a universe fol? and M is an interpretation of;;. An open answer seif P is
an open interpretatioft/, M) of P with M an answer set aP;;. An n-ary predicate in P is satisfiableif
there is an open answer géf, M) of P and a(x1,...,xz,) € U™ such thap(z1,...,x,) € M.

We introduce some notations for trees as in [19]. Forraa N, i.e., a finite sequence of natural
numbers (excluding), we denote the concatenation of a number N, to x asx - ¢, or, abbreviated, as
xc. Formally, a(finite) treeT" is a (finite) subset oNj such that ifz - ¢ € T for z € Nj andc € Ny, then
x € T. Elements ofl" are callednodesand the empty word is theroot of T". For a noder € T we call
sucer(z) ={z-c € T | c € Ny}, successorsf z. Thearity of a tree is the maximum amount of successors
any node has in the tree. The set = {(z,y) | z,y € T,3c € Ny : y = = - ¢} denotes the set of edges
of a treeT. We define a partial orde< on a treel” such that forr,y € T, x < y iff = is a prefix ofy.
As usual,z < yif z < yandy £ z. A (finite) path P in a treeT is a prefix-closed subset @f such that
Vx #y € P:|x| # |y|. AbranchB in a treeT is a maximal path (there is no path which contains it) which
contains the root df".

A labeled treds a pair(T,t) whereT is a tree and : T — X is a labeling function; sometimes we will
identify the treg(T, ¢) with ¢. We denote thsubtreeof T" atz by T'[z], i.e.,T[z] = {y € T | z < y}. For
labeled trees : T — 3, the subtree of atx € T ist[x] : T[x] — X such that[z](y) = t(y) fory € T[z].
Foratreet : T'— X, atrees : S — X, and a symbob € 3, we denote witht -, s, the treet with the
subtrees starting with the first node on every path with lab@h case such a node exists) replacedsby
Consider the trees andt depicted in Figure 1. The tree resulted by the applicatioh-fs is depicted in
Figure 2.

t: ///jiéi\\\\ s: /fisi\
1{b} 2{a} Hd} 2{e}

TN |
11{c} 12{a} 21{a}

Figure 1: Two labeled treeg:ands

Figure 2: The new tree. -, s

For programs containing only unary and binary predicatemkies sense to definérae model property
for a programP containing only unary and binary predicates, if a unary jpadp € preds(P) is satisfiable
w.r.t. P thenp is tree satisfiable w.r.t?, wherep is tree satisfiablev.r.t. P if there exists

e an open answer sét/, M) of P such thatU is a tree of bounded arity, and
e alabeling functiort : U — 2r4s(P) sych that

— p € t(e) andt(e) does not contain binary predicates, and
— z-ie€U,i>0,iffthere is somef(z,z - i) € M, and
— fory e U, q € upreds(P), f € bpreds(P),
x q(y) € Miff ¢ € t(y), and
x fle,y) e Miff y=xz-iNf€t(y)
Thelabel £(z) of anodez € U is L(z) = {q | q € t(2),q € upreds(P)}. We call such gU, M) atree

modelfor p w.r.t. P. Note that binary predicates are maintained in the labefdés: a binary predicaté
in the label ofz - ¢ indicates a connectiofi(x, = - 7).

3 Simple Conceptual Logic Programs

In[11], we definedConceptual Logic Programs (CoLR <) syntactical fragment of logic programs for which
satisfiability checking under the open answer set semaistidscidable. We restrict this fragment by dis-
allowing the occurrence of inequalities and inverse piaéig, and by restricting the dependencies between

predicate symbols which appear in the program. The reguftegment is called irSimple Conceptual
Logic Programs

Definition 3.1 A simple conceptual logic program (simple ColiPya program with only unary and binary
predicates, without constants, and such that any ruldreearule aunary rule

a(:v) <—ﬁ(l‘), (’Vm(xaym)aém(ym))lgmgk (1)
where for allm, ;. # 0, or abinary rule

f(z,y) < B(z),v(2,9),4(y) 2
3

with v £ ().

Furthermore, letD(P) be themarked predicate dependency grapha programP as defined above,
where D(P) has as vertices the predicates frdand as arcs tuple®, ¢), where there is either a rule
(1) or arule (2) with a head predicateand a positive body predicatg we call an ardp, ¢) marked ifq
is a predicate i, or § for rules (1), respectively rules (2)P is a simple CoLP iff its marked predicate
dependency grapb(P) does not contain any cycle with a marked edge.

Intuitively, the free rules allow for a free introduction afoms (in a first-order way) in answer sets,
unary rules consist of a root atoajz) that is motivated by a syntactically tree-shaped body, andrp
rules motivate & (z,y) for az and its ‘successory by a body that only considers literals involvingand
y. The restriction concerning the marked dependency graplbedranslated in the following terms: there
is no path from &(z) to ap(y) in the literal dependency graph 6f;, wherep is a unary predicate fron?,

U is an arbitrary universe, angdandy are two distinct elements froii.

Simple CoLPs can simulate constrairts3(z), (Ym (2, ym), 6m (Ym)) <, <.» Where for allm, 5., # 0,
i.e., constraints have a body that has the same form as a Bawmary rule. Indeed, such constraints
— body can be replaced by simple CoLP rules of the fatonstr(z) < not constr(x), body, for a new
predicateconstr.

As simple CoLPs are CoLPs and the latter have the tree modpépy [11], simple CoLPs have the
tree model property as well.

Proposition 3.2 Simple CoLPs have the tree model property.

For CoLPs this tree model property was important to enswakahree automaton [19] could be con-
structed that accepts tree models in order to show decityabihe presented algorithm for simple CoLPs
relies as well heavily on this tree model property.

As satisfiability checking of CoLPs BxpTIME-complete [11], checking satisfiability of simple CoLPs
iS IN EXPTIME.

In[11], it was shown that CoLPs are expressive enough tolatesatisfiability checking w.r.t t6 HZ Q
knowledge bases, whe®HZ Q is the Description Logic (DL) extendingl£LC with transitive roles &),
support for role hierarchiesH), inverse roles®), and qualified number restriction®). For an overview
of DLs, we refer the reader to [1].

Using a restriction of this simulation, one can show thas8ability checking of ALCH concepts (i.e.,
SHIQ without inverse roles and quantified number restrictions)twa ALCH TBox can be reduced to
satisfiability checking of a unary predicate w.r.t. a sim@leLP. Intuitively, simple CoLPs cannot handle
inverse roles (as they do not allow for inverse predicatethar can they handle number restrictions (as
they do not allow for inequality) or transitive roles (duethe fact that they do not allow for positive literals
in the successor part of a rule). As satisfiability checkifgd®C concepts w.rt. amdLC TBox (hote
that ALC is a fragment ofALCH) is EXPTIME-complete ([1, Chapter 3]), we haexPTIME-hardness for
simple CoLPs as well.

Proposition 3.3 Satisfiability checking w.r.t. simple CoLPsdEgPTIME-complete.

4 An Algorithm for Simple Conceptual Logic Programs

In this section, we define a sound, complete, and terminatiggrithm for satisfiability checking w.r.t.
simple CoLPs.

For every non-free predicatgand a simple CoLR, let P, be the rules ofP that haveq as a head
predicate. For a predicafg +p denotesp or not p, whereby multiple occurrences afp in the same
context will refer to the same symbol (eitheor not p). The negation oftp (in a given context) isFp, that
is, Fp = not pif +p = pandFp = pif £p = not p.

For a unary rule- of the form (1), we definelegree(r) = |{m | v # 0}|. For every non-free rule
r: a <« (3 € P, we assume that there exists an injective function 8 — {0,...,|3|} which defines
a total order over the literals ifi and an inverse functiof). : {0,...,|3|} — [which returns the literal
with the given index in3. For a ruler which has body variables, y1, ..., y, we introduce a function
varset, @ {z,y1, ..., Ye, (€, 91), ..., (x,yr)} — 210181} which for every variable or pair of variables
which appears in at least one literal in a rule returns thefsietdices of the literals formed with the corre-
sponding variable(s).

The basic data structure for our algorithm isanpletion structure

Definition 4.1 [completion structure] Acompletion structure for a simple CoLP is a tuple(T', G, cT,

ST, RL, SG, NJy, NJg). T'is a tree which together with the labeling functioos, st, rRL, sG, NJy, and
NJg, IS used to represent/construct a tentative tree modeh(ities of the tree are elements of the universe
w.r.t. which the model is constructedy = (V. E) is a directed graph with nodés C Bp, and edges

E C Bp, x Bp, Which is used to keep track of dependencies between elerktits constructed model,
V being the model itself). Below the signature and the rolesfrh labeling function is given:

e Thecontentfunctionct : T'U Ap — 2preds(P)Unot (preds(P)) maps a node of the tree to a set of
(possibly negated) unary predicates and an edge of thedraeset of (possibly negated) binary
predicates such thatr(x) € upreds(P) U not(upreds(P)) if x € T, andct(x) € bpreds(P) U
not(bpreds(P)) if x € Ar. Every positive appearance of a predicate symhinlthe content of some
node/arce of T indicates thap(x) is part of the tentative model representediby

e The statusfunction st : {(z,+q) | £¢ € cr(x),xr € T U Ar} — {exp,unexp} attaches to
every (possibly negated) predicate which appears in theenbof a node/edge a status value which
indicates whether the predicate has already been expandedtinode/edge. As it will be indicated
later, the completion structure is evolved such that thegree of any (possibly negated) predicate
symbol in the content of some node/arc is justified, so it isessary to keep track which predicate
symbols have already been justified in every node/afk. of

e Therule functionrL : {(z,q) | z € T U Ar,q € cT(z)} — P associates with every node/edgef
T and every positive predicatec cT(x) a rule which hag as a head predicateL(z, ¢) € F,.

e Thesegmentunctionsc : {(z,q,r) | z € T, not ¢ € c¢1(z),r € P,} — Nindicates which part of
justifies havingnot ¢ in cT(x).

e Thenegative justification for unary predicatésnctionnyy : {(x,q,r) | x € T, not q € cT(x),1 €
P,} — 2¥<Tindicates by means of tuplés,) € N x T which literall,.(n) from r is used to justify
not g in cT(z)inanodez € T, or edge(z, z) € Arp.

e Thenegative justification for binary predicatésnctionNy;, : {(z,¢,7) | z € Ar,not g € ct(z),r €
P,} — N gives the index of the literal fromthat is used to justify.ot ¢ € cT(x).

An initial completion structurdor checking the satisfiability of a unary predicatev.r.t. a simple CoLP
P is a completion structure with' = {¢}, V = {p(¢)}, E = 0, andct(e) = {p}, ST(¢,p) = unexp, and
the other labeling functions are undefined for every input.

5

We clarify the definition of a completion structure by meahamexample. Consider the simple CoLP

P:
T restore(X) «— crash(X),y(X,Y), backSucc(Y)
o backSucc(X) <« not crash(X),y(X, Y), not backFail(Y)
Ty backFail(X) <« not backSucc(X)
ry : yesterday(X, Y) V not yesterday(X,Y) <«
5 crash(X) V not crash(X)

Note that while there is a marked arcin P), (restore, backSucc), there is no cycle which contains
it, so P is indeed a simple CoLP. Aimitial completion structurdor checking the satisfiability of the unary
predicaterestore w.r.t. P is depicted in Figure 3.

CT(e)
|

ST(e)

€ {;:estore“”” 3

Figure 3: Initial completion structure

Intuitively, we created the root of our tree model which @m$ the predicate whose satisfiability is
tested;restore and set the state for this predicate w.r.t. the current nothe unexpanded.

At this stage the grapty’ consists of the single nodestore(e) and naturally, no arcs.

In the following, we will show how to expand an initial compten structure to prove the satisfiability
of a unary predicatg w.r.t. a simple CoLPP, how to determine when no more expansion is neetkxtk-
ing), and under what circumstanceslashoccurs. In particularexpansion rulesvill evolve a completion
structure starting with an initial completion structure &hecking satisfiability op w.r.t. P to a complete
clash-free structure that corresponds to a finite repragentof an open answer set in cases satisfiable
w.r.t. P. Applicability rulesstate the necessary conditions such that those expanssscan be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion streovhenever in the process of justifying a
literal [in the current model a new literatp(z) has to be considered (either as making part of the model,
in case the literal is an atom, or as not making part of the madease the literal is a negated atom). This
means that-p has to be inserted in the contentzagh case it is not already there and marked as unexpanded,
and in casetp(z) is an atom, it has to be ensured that it is a nod€ iand in casé is also an atom, a new
arc froml to £p(z) should be created to capture the dependencies betweendtetements of the model.
More formally:

e if £p ¢ CcT(2), thencTt(z) = cT(2) U {£p} andsT(z, £p) = unexp,
o if tp =pand+p(z) ¢ V,thenV =V U {£p(x)},

6

e if [€ Bp, and+p = p, thenE = E U {(l, £p(2))}.

As a shorthand, we denote this sequence of operationgdasge (I, +p, z); more generalupdate(l, 3, z)
for a set of (possibly negated) predicateglenotes’ + a € (3, update(l, +a, z).
In the following, letz € T'and(x,y) € Ar be the node, respectively edge, under consideration.

4.1.1 (i) Expand unary positive.

For a unary positive predicate (non-free ct(z) such thasT(x,p) = unexp,

e nondeterministically choose a rute ¢ P, of the form (1) that will motivate this predicate: set
RL(z,p) =T,

e for the 3 in the body of this-, update(p(z), 3, z),

e for eachm,1 < m < k, nondeterministically chooseiac succr(x) or lety = x - s, wheres € Nj
s.t.z - s ¢ sucer(z) already. In the latter case, agdas a new successor ofin 7: T' = T' U {y}.

Next, update(p(x), Ym, (x,y)) andupdate(p(x), Om,y)-
e setsT(z,p) = exp.

In our example, the initial completion structure containsuaexpanded unary predicaiestore. The
result of applying the rule above to this predicate is degidh Figure 4.

e {restore;;"—=crash""**"}

{yesterday*™=*?}

1 {backSucc"*P}

Figure 4: Expansion of a unary positive predicate symbol

The figure indicates that rule, the only rule which definesestore, has been used to expand the
predicate. The local part of the rule;ash, has been injected in the content of the local nadg;00) and
a new successdrwas created in which the part of the rule correspondegii@s injected. The transition
between the root and its successor is done by the binarygatedesterday which is injected in the content
of the arc(e, 1). Also the new injected predicates together with their gpoading tree node form literals
which are new vertices i&@. An arc is created fromestore(c) to each of these new literals.

4.1.2 (ii) Choose a unary predicate.

There is anr € T for which none ofta € cT(z) can be expanded with rules (i) and (iii), and for all
(z,y) € Ar, none oft f € cT(z,y) can be expanded with rules (iv-v) (we decided to place theslvafore
the other rules mentioned here, for the sake of the exampincity), and there is @ € upreds(P) such

7

thatp ¢ ct(z) andnot p ¢ ct(x). Then, add to ct(z) with sT(z, p) = unexp or addnot p to cT(x)
with sT(x, not p) = unexp.

This rule says that in case there is a nader which all the predicate symbols in its content and in the
contents of its outgoing arcs were expanded and there dnenstry predicate symbols which do not appear
in the content of the current node, one has to pick such a yredicate symbagb and to inject eithep or
notp in ¢Tz. This is needed for consistency reasons: it is not enoughdafijustification for the predicate
we want to prove that is satisfiable, but one has to show atgdtls justification makes part from an actual
model, which is done by actually constructing such a modelnstier the completion structure described
in Figure 4. We observe that the conditions described inrtiiesare fulfilled for the root of the tree We
pick backSucc as a new unary predicate symbol which does not appear(n) and injectnot backSucc
in cT(roo). This process is described in Figure 5.

e {restore, ;" ——=crash""*"? not backSucc" P}

{yesterday""=r}

1 {backSucc* P}

Figure 5: Choose a unary predicate

4.1.3 (iii) Expand unary negative.

For a unary negative predicate (non-free) p € cT(z) and either

1. st(x, not p) = unexp, then for every rule- € P, of the form (1) nondeterministically choose a
segmentn,0 < m < k: sG(x,p,r) = m.

e If m =0, choose ata € 3, andupdate(not p(x), Fa,z), Niy(z,p,r) = {(i,(*a(X)),z)}.

o If m > 0, for everyy € succr(z), (f) choose ata, € vy U oy, and setNJy(z,p,r) =
{(ip(£ay(X,Y0)),y) | £ay € v }U{(ir(£ay(Ym)),y) | £ay € 65 }. Next,update(not p(z), Fay, (z,y))
if £a, € v, and
update(not p(x), Fay,y) if £a, € dy,.

After every rule has been processedssdtr, not p) = exp.

2. sT(z,not p) = exp and for somer € P,, sG(x,p,r) # 0, andNJy(z,p,7) = S with |S| <
|succer(x)l, i.e., not p has already been expanded, but for some ruiedid not receive a local
justification (atr), and meanwhile new successorsedfave been introduced. Thus, one has to justify
not p in the new successors as well.

For everyr € P, of the form (1) such thatG(z,p,r) = m # 0 and for everyy € succr(x) which
has not been yet considered previously, repeat the opesatid}) as above.

8

In general, justifying a negative unary literabt ¢ € cT(z) (or in other words, the absence gfr) in
the constructed model) implies that every rule which definlkas to be refuted (otherwigewould have to
be present); thus, at least one body literal from every milg,i has to be refuted. A certain rutlec F,
can either be locally refuted (via a literal which can be fedwsingz and someta € cT(z)) or it has to
be refuted in every successorafin the latter case, i: has more than one successor, it can be shown that
the same segment of the rule has to be refuted in all the ssmsesvhereby a segment of a rule is one of
{B, (vm U 0m)1<m<k } for unary rules(1).

After picking a segment to refute a negative unary predjcateneed means to indicate which literal in
the segment, per successor, can be used to justify thisivegatary predicate. This can be per successor
a different literal from the segment such that,(x, ¢,) is a set of tuplegn, z) wherez is the particular
successor (of itself in case the negative unary predicate can be justi@iedlly) andrn the position of the
literal in the ruler.

The expansion of such a unary negative literal might be dorseveral steps: in case the literal is not
locally justified for some rule which defines it, new successaight be introduced for the current node
after the first expansion of the negative literal, and thiea iteral has to be justified in these new successors
as well. This case is treated in the second part of the expangie.

Consider the completion structure described in Figure 5.08sjble way to expandot backSucc(e)
is depicted in Figure 6. In this case the absencéaof Succ(c) from the answer set is justified locally
w.r.t. the only rule which definesackSucc, which isry. This means thadc (e, backSuce,r2) = 0 and
NJy(e, backSuce, o) = {1,e} (there is only one literal in the local part of: crash).

e {restore; ;" —=crash™“"? <——not backSucc{(!, ; | 5}

{yesterday =P}

1 {backSucc" P}

Figure 6: Expansion of a unary negative predicate symbol

We also present an example which demonstrates in an iuitay the need to refute the same seg-
ment in all successors of a node in case the refutation of ayumegative literal in the current node
w.r.t. a certain rule is not done locally. Consider a progrBmvhich contains the rule; : a(X) <
(X, Y),0(Y),9(X,Z),b(Z) and a completion structure f@. Assume the current nodes z already
has three successats 1, x - 2 andz - 3, and the predicate to be expanded (justified)ds a (Figure 4.1.3).

The only rule which has to be considered (its body has to heeef isr;: this cannot be done locally
as the rule has no local part. Thus, the body of the rule has tefated in every successor. Figure 8 depicts
a situation where the body of the rule has been refuted inr@cioway: literals containing the variablé,
thus making part from the first segment of the rule, have bhesan to be refuted in every successor. There
is no way to ground- such that all of its body literals are satisfied by choosingadses forY” and Z one
of x1, a9, O xs3.

On the other hand, Figure 9 depicts a situation where the bbithe rule has been refuted in an incorrect
way: the literals chosen to be refuted make part from diffesegments of the rule. In the absence of other

9

x{nota,...}

x1{...} x2{...} x3{...}

Figure 7: Expanding unary negative: example 2

x{not a, ...}

x1{notb,...} x2{...} x3{...}

Figure 8: Expanding unary negative: OK

10

constraints, a situation like the one described in FigureatOsubsequently appear, in whigfx) is actually

justified as the body of the grounded ruler) — f(z,x3),b(z3), g(x, z2),b(z2) is satisfied in the current
model.

x{not a, ...}

x1{...} x2{...} x3{...}

Figure 9: Expanding unary negative: NOT OK (1)

X {not a, ...}

{not f,..} {not g.f...}

{not f,g,.

x1{...} x2{d, ...} x3{c, ...}

Figure 10: Expanding unary negative: NOT OK (2)

4.1.4 (iv) Expand binary positive.

For a binary positive predicate symbol (non-freein cT(x,y) such thatst((z,y),p) = unexp: non-
deterministically choose a rule € P, of the form (2) that motivatep by settingrL((z,y),p) = r,
andupdate(p(z,y), 3, x), update(p(z,y), v, (x,y)), andupdate(p(z,y), 6,y). Finally, setsT((z,y),p) =

exp.
4.1.5 (v) Expand binary negative.

For a binary negative predicate symbol (non-freej) p in cT(x,y) such thasT((x,y), not p) = unexp,
nondeterministically choose for every rule= P, of the form (2) ans from varset, (X), varset,(X,Y") or
varset,(Y) and letNig((z,y),p,r) = s.

o If s € varset(X) and+ta(X) = lit,(s), update(not p(z,y), Fa,),
o If s cvarset(X,Y)and+f(X,Y) = lit,(s), update(not p(x,y), Ff, (z,y)),
o If s € varset(Y)and+a(Y) = lit,(s), update(not p(x,y), Fa,y)).

11

Finally, setst((z,y), not p) = exp.
Note that a binary rule is always local in the sense that arpilitaral + f (x, y) can always be justified
using component from, y, and/or(x, y).

4.1.6 (vi) Choose a binary predicate.

There is an: € T for which none ofta € c¢T(x) can be expanded with rules (i-ii), and for &ll, y) € Ap
none oftf € ct(z,y) can be expanded with rules (iii-iv), and there igray) € A7 and ap € bpreds(P)
such thatp ¢ cT(x,y) A not p ¢ cT(z,y). Then, addp to cT(x,y) with sT((x,y),p) = unexp or add
not pto cT(x,y) with sT((z,y), not p) = unexp.

The intuition for this rule is similar with the intuition faxpansion rule (ii).

4.2 Applicability Rules

A second set of rules is not updating the completion strectunder consideration, but restricts the use of
the expansion rules:

4.2.1 (vii) Saturation

We will call a nodex € T saturatedif

e for all p € upreds(P) we havep € cT(x) or not p € ¢T(x) and none ofta € cT(x) can be
expanded according to the rules (i-iii) ,

e forall (z,y) € Arandp € bpreds(P), p € cT(x,y) or not p € cT(z,y) and none oft f € cT(x,y)
can be expanded according to the rules (iii-vi).

We impose that no expansions can be performed on a nodelfrontil its predecessor is saturated.

4.2.2 (viii) Blocking
We call a noder € T blockedif
e its predecessor is saturated, and
e there is an ancestorof z, y < x, such thatr(xz) C cT(y).

The rule says that if there is an ancestor node whose comelates the content of the current node,
the current node can be blocked: intuitively, one can shat pinovided that the content of the ancestor
is justified, the content of the current node can also befigdtin a similar way (this is possible due to
the fact that every positive literal formed with the ancestode is justified in a finite number of steps as a
consequence of the restriction on the marked dependenpi gfa simple CoLP; for more details consult
the soundness proof). We c&l}, =) a blocking pairand say thay blocksz; we will also refer tox as a
blocked node and tg as the blocking node for a blocking pai, z). We impose that no expansions (i-vi)
can be performed on a blocked node frém

12

4.2.3 (ix) Caching

We call a noder € T cachedif

e its predecessor is saturated,

e there is a nodg which is not an ancestor of, y < z, such thatr(z) C cT(y).

We impose that no expansions can be performed on a cachedrood@'. Intuitively, = is not further
expanded, as one can reuse the (cached) justification idren dealing withz. We call (y, z) a caching
pair and say thay cachesz; we will also refer tox as a cached node and gaas the caching node for a
caching pair(y, x).

4.3 Termination, Soundness, and Completion

We call a completion structureontradictory if for somex € T anda € upreds(P), {a, not a} C cT(x)
or for some(x,y) € Ap andf € bpreds(P), {f, not f} C cT(z,y). A complete completion structufer
a simple CoLPP and ap € upreds(P), is a completion structure that results from applying theagsion
rules to the initial completion structure fprand P, taking into account the applicability rules, such that no
expansion rules can be further applied. Furthermore, a senpompletion structur€’s = (T, G, T, ST,
RL, SG, NJy, NJ) is clash-freeif (1) CS is not contradictory, (2)" does not contain cyclic nodes, and (3)
G does not contain positive cycles.

We show that an initial completion structure for a unary prettp and a simple CoLHP can always
be expanded to a complete completion structteer(inatior), that, if p is satisfiable w.r.t. P, there is a
clash-free complete completion structusmiindness and, finally, that, if there is a clash-free complete
completion structurey is satisfiable w.r.tP (completenegs

Proposition 4.2 (termination) Let P be a simple CoLP ang € upreds(P). Then, one can construct a
finite complete completion structure by a finite number ofliapfions of the expansion rules to the initial
completion structure fop w.r.t. P, taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion steuttyira finite number of
applications of the expansion rules, taking into accouatdpplicability rules. Clearly, if one has a finite
completion structure that is not complete, a finite applicabf expansion rules would complete it unless
successors are introduced. However, one cannot introcficeteély many successors: every path in the
tree will eventually contain two nodes which fulfill the bldeg condition, such that no expansion rules
can be applied to successor nodes of the blocked node in itheFpathermore, the arity of the tree in the
completion structure is bound by the predicate®iand the degrees of the rules. O

Proposition 4.3 (soundness) et P be a simple CoLP ang € upreds(P). If there exists a clash-free
complete completion structure fprw.r.t. P, thenp is satisfiable w.r.t.P.

Proof.
From a clash-free complete completion structure, we witistuct an open interpretation, and show
that this interpretation is an open answer sePdhat satisfies.

13

1. Construction of open interpretationn order to construct the possibly infinite universe andgbssi-
bly infinite interpretation induced by a clash-free complebmpletion structure, we introduce some
new notation. Leblocked (T') be the set of blocking pairs froffi and cached (T') the set of caching
pairs fromT'. Also, given a set of symbols, define a labeling functiom on 7" (and implicitly a
labeled tree): t : T — X which assigns to every node ¥fa symbol fromX in such a way that no
symbol is associated to more than one node. With (¢..;) we denote the extended tree which will
constitute the actual universe for our constructed ineggpion.

In caseblocked(T) = () andcached(T) = 0, terr = t. Otherwise, repeat the following an infinite
number of times: for everyr, y) € blocked(T') dot -, t[y] (every blocked node in a blocking pair
will be replaced with the subtree #rstarting at the blocking node) and for evény y) € cached(T')
dot -, tly] (every node for which a previous justification can be useceaced with the tree
providing that justification). Note that a new node with tlaeng label as the blocked node is created
every time the transformatioh-(, t[y] is applied for a paifz,y) € blocked(T'), so at the next
iteration this node will be subject to the transformationgd &o on. The resulting labeled tree will
bet..;. Figure 11 depicts a complete clash-free completion whahablocking pair and a caching
pair (the dotted arrow indicates the connection betweerdlbbed node and the caching node, while
the dashed arrow indicates the connection between theddautde and the blocking node) together
with the extended tree obtained as a result of applicaticgheobperations described above.

e{a} e{a}
1{b} 2{ck. 1{b} 2{c}
11{d} 21{e} 22{\f} 11{d} 21{b} 22{c}
211{d} 221{b} 22g{,c\}\
2211d}

Figure 11: A complete clash-free completion structure wititked and cached nodes and its corresponding
extended tree

We observe thatx € T,,;,3ly € T : t(x) = t(y), i.e., for every node in the constructed tree exactly
one node in the original tree exists that has the same laleettenote sucl for x asz, and similarly

a literall denoted with each argument € T, replaced by its corresponding Given the wayT",,;
was constructed (by concatenation of subtrees ffQneitherz = 7 orz € 7', with T" C T,,; being

a version of a subtree &f in T.,, T'[z], wherez is a blocking node ir¥’, andz € T[z]. Being a

14

version of each other, implies that and7’[z] have the same tree structure and values for the labeling
functions. Ase € 7', 7 € T[z], andt(z) = (), one could say that is the counterpart of in 7", so

one can define the values of the labeling functionsifbased on the values of the labeling functions
of Z. Thus, for everyr € T,,;, we define:

e cT(x) = CT(T),
e Vp € cT(z) : RL(x,p) = RL(T, p), and
e Vnot p € cT(x),r € Py, :SG(z,p,r) = SG(T,p,T).

Also note that forr andz: |succ(z)| = |succ(T)|, andz - ¢ € succ(zx) iff T - ¢ € suce(T). Thus, we
can definexny; andnyy, for nodes inl.;:

e V(z,x-c) € Ar,,,,not p € cT(x,x - ¢) : NJg((x,x - ¢),p,r) = NJs((Z,T - ¢),p,7), and
e Vnotp € cr(z),r € Py : Niy(z,p,7) ={(z-¢,3) | (z,2-¢) € Ar,,,, (T-¢,s) € NIy(T, p,7)}.

By Gewt = (Veut, Eest) We denote the graph with nod®s,, = {p(z) | € Tenr UAT,,,,p € CT(2)},
and edgesic,s = {(p(z),q(z)) | € Tew, (p(Z),q(T)) € E} U {(p(z),q(z -¢)) | z,2-c €
Tewt? (p(f), q(ﬂ)) € E} U {(p(x), q(x7x ! C)) ‘ T,T-CE Tewt? (p(f),q(f,m)) € E} U {(p(ac,ac :
c)yq(z,x-¢)) | z,x-c € Teyt, (p(T,T-¢),q(T,T-¢)) € E} U{(p(z,x-¢),q(x-¢)) | z,x-c €
Text, (p(T,T-¢),q(x-¢)) € E}U{(p(x,z-¢c),q(x)) | x,2 - € Tew, (p(T,T-¢),q(T)) € E}.

Define the open interpretatiofi/, M) then as(T.,:, Vest), 1.€., the universe is the constructed tree
T..+ and the interpretation corresponds to the nodés.jn

2. M is a model ofP}Y'. All free rules are trivially satisfied.

Take a ground unary rule? : a(z) < 87 (), U, <per Ym (@, Ym)s U <imer Om ' (ym) Originating
fromr : a(X) — B(X),U;cmecr Ym(X, Ym), U <mer Om(Yim) with 3= (2) ¢ M and for all
1<m <k v (2,ym) € M andd, ™ (ym) € M. AssumeM = 51 (2) UU;<per Ym T (2, Ym) U
Uy<pmer Om " (ym) (together with the assumptions about the negative parteofute, this amounts
to M | B(z) UUy<pme <k Ym (@ ym) U Uy <mer Om(ym)) @anda(z) ¢ M (the rule is not satisfied).
Thennot a € cT(z), is saturatedsT(z, not a) = exp, and no expansions rules can be further
applied tonot a. This implies that for every rule € rulesp(a), one of the following holds:

e not a is locally justified inr: sc(z,nota,r) = 0 andNJy(z, not a,r) = {(s,x)}, where
s € varset,(X). If £b(X) = lit,(s), Fb was injected in the content af in the process of
expansion by a call tapdate(U, G, not a(x), Fb, z) (see expansion rule (iith) which amounts
to Fb(x) € M. This contradicts with/ |= 5(X), as£b(X) € S.

e not a has beenjustified in all successorsobc(x, not a,r) =t,0 < t < kandNJy(x, not a,r) =
S and|S| = |suce(z, T.p)|. It's easy to see thay, € succ(x, Toy), as3f(z,y;) € y(z,ye) "
and M = ~T(x,y:). Now, given thaty; € succ(x,T,,;) and considering the expansion rule
(i), there must be a tuplé¢s,y;) € S s.t. s € varset.(Y;) or s € varset,(X,Y;). Let
+b(Y;) = lit,(s), if s € varset,(Y;) and+b(X,Y;) = lit,(s) If s € varset,(X,Y;). De-
pending on the caseb(y;) or Fb(x,y;) was injected inct(x) or cT(zx,y:) (again, according

tactually, in case: € Tew andz ¢ T, cT(x) Was not generated per se by application of expansion rulésyds defined as a
replica of the content ofx). But one could see this process of replication as a virtualiegtion of the expansion rules for all the
nodes in the extended tré@e,;

15

to the expansion rule (iii)), that issb(y;) € Veyr Or Fb(z,vy:) € Veye. This contradicts with
M = yi(x, yr) as£b(x, yr) € yi(x,yr) or with M = 6:(y:) asEb(y:) € ve(ye).

The proof for the satisfiability of binary rules is similar.

3. M is a minimal model of}¥.

Assume there is a modéll’ C M of Q = Py. Then3l; € M : 1y ¢ M'. Take aruler; € Q

of the formi; «— [; with M = (3;; note that such a rule always exists by constructiod/ofind
expansion rules (i) and (iii). 1M’ = (31, thenM’ = [; (as M’ is a model), a contradiction. Thus,
M’} 1 such thatlly € 51 : I ¢ M’'. Continuing with the same line of reasoning, one obtains an
infinite set{l1,l2,...} with (; € M)1<; and(j,l; ¢ M')1<;. We observe thatl;,l;1+1)1<i € Een

by construction off.,; (and ultimately by expansion rules (i) or (iii)), so our asgtion leads to
the existence of a cycle or of a positive path of infinite léngtG.,,. There cannot be any cycle in
G @s the completion structure we deal with is clash-free, setmust be a positive path of infinite
length inG.,;. However the following claim contradicts our assumption:

Claim 4.4 There is no positive path of infinite length @&, .

Assume there is such a positive path of infinite length. Themas the form(p;(z;))1<;, where
(pi € upreds(P) U bpreds(P))1<;. As there is a finite number of predicate symbolgFinit means
that there are two indexgsk € IN*, j # k, such thap; = p;, = p andx; # x;, (otherwise there will
be a cycle inG.,;). In other words there is a path fropfz ;) to p(x) in Gy This contradicts with
the restriction on simple CoLPs concerning their markedlipede dependency graph, so our initial
assumption was false.

The claim is proved, so there is no modeél C M of @ = P}. Thus,M is minimal.

O

Proposition 4.5 (completeness) et P be a simple CoLP angd € upreds(P). If p is satisfiable w.r.t.P,
then there exists a clash-free complete completion streidtu p w.r.t. P.

Proof.

If pis satisfiable w.r.t.P thenp is tree satisfiable w.r.tP (Proposition 3.2), such that there must be a
tree modelU, M) for p w.r.t. P.

We construct a clash-free complete completion structure far.t. P, by guiding the nondeterministic
application of the expansion rules b, M) and taking into account the constraints imposed by the aatur
tion, blocking, caching, and clash rules. The proof is ireghby completeness proofs in Description Logics
for tableaux, for example in [13].

Let (T, G, cT, ST, RL, SG, NJy, NJg) be an initial completion structure forw.r.t. P.

We inductively define a functiom : T"U Ap — U that relates nodes/edges in the completion structure
to nodes in the tree model wheréz, 3y) = 7(y)?, and satisfying the following properties:

{q|qecr(2)} C L(n(2)), forallz€ TU Ar
{q | not g e cr(2)} NL(n(z)) =0, forall ze T U Ar

2Recall that for a tree modgl(z,), f is stored in the label of.

16

Intuitively, the positive content of a node/edge in the catipn structure is contained in the label of the
corresponding tree model node, and the negative contenh@de/edge in the completion structure cannot
occur in the label of the corresponding tree model node.

Claim 4.6 Let CS be a completion structure anda function that satisfies). If an expansion rule is
applicable toCS then the rule can be applied such that the resulting coroplettructureCS” and an
extensiont’ of 7 still satisfies).

We start by settingr(¢) = ¢ (the root of the structure corresponds to the root of the inedel) and
ct(e) = {p}. Itis clear that{) is satisfied. By induction le€’S be a completion structure amda function
that satisfiesi). We consider the expansion rules and the applicabilitysul

1. Expand unary positive As ¢ € c¢1(z), we have, by the induction hypothesis, that L(7(x)).
SinceM is a minimal model there is anc P, of the form (1) and a ground versiot: g(r(x)) «
body € (P,)M such thatM | body. SetrL(q,z) = r and update(q(x), 3,z). Next, for each
Yi(x, z), 1 < m < k from ¢’

o If 2z, = m(x - s) for somex - s already inT', takey, = = - s or if z;, = = - s andzy, is not yet the
image ofr of some node iff’, then addr - s as a new successorofin 7: T'=T U {x - s} and
setn(z-s)=x-s.

) update(q($)77ma(x7yk))-
o update(q(z), 0m, yx),

In other words we removed the nondeterminism fromekpand unary ruleby choosing the rule
and the successors corresponding to the open answ@y.set). One can verify thatf still holds
for .

2. One can deal with the rules (ii-vi) in a similar way, makthg nondeterministic choices in accordance
with (U, M).

3. Saturation No expansion rule can be performed on a node fiiommtil its predecessor is saturated.
This rule is independent of the particular open answer séthwfuides the construction, so it is
applied as usually.

4. Blocking Consider a node < T which is currently expanded. If there is a noglec T such that
y <z, cT(x) C cT(y), we can stop the expansiong@andz form a blocking pair. Naturally,f) still
holds form as we have not modified the content of nodes, but just remavae sinexpanded nodes.
Note that at this point we no longer use the guidanc@bf\/): (U, M) might justify in a different
way the predicates groundedanbut that is not important; we are guaranteed by the sousdessilt
that we have a proof by blocking.

5. Caching Consider a node € T which is currently expanded. If there is a saturated npdel” such
thatx £ y andy £ = andcT(z) C cT(y), we can stop the expansionofasz andy form a caching
pair. Again, ¢) still holds for 7 as we have not modified the content of nodes, but just removed
some unexpanded nodes. And like in the case of blocking, wenger use the guidance 0/, M):

(U, M) might justify in a different way the predicates grounded:jibut that is not important; we are
guaranteed by the soundness result that we have a praetfpreusing the proof foy.

17

Provided that the process of applying the rules above tet@dn starting from a tree-shaped open answer
set(U, M) which satisfiep w.r.t. P, we have constructed a complete completion structure fer.t. P
which is not contradictory (this can easily be seen frajragd the fact thatU, /) is an open answer set).
The obtained completion is also cycle-free as in the origipan answer set no atom is justified circularly.
Even if the open answer s@V, M) is infinite, eventually on every infinite path of the corresgimg tree,
there must be two nodes with equal content; these nodeseamiirgite a blocking situation in the expansion
process described above, so the process does terminatae$onstruction does terminate and its result is
a complete clash-free completion structure.

O

4.4 Complexity Results

Let CS = (T, G, cT, ST, RL, SG, NJy, NJg) be a completion structure andS’ the completion structure
constructed fronC'S by removing from?" all nodesy where(z, y) is some blocked, or caching pair. There
are at mosink such nodes, wherk is bound by the amount of unary predicateg in P and the degrees
of the rulesP, andm is the amount of nodes i6'S’. AssumeCS’ has more thag” nodes, then there must
be two nodes: # y such thatct(x) = cT(y). If x < y ory < z, either(x,y) or (y, x) is a blocked pair,
which contradicts the construction 6fS’. If = £ y andy « z, (z,y) or (y,z) is a caching pair, again a
contradiction. Thus('S’ contains at mos?” nodes, son < 2". SinceCS’ resulted fromCS by removing
at mostmk nodes, the maximum amount of nodesd¥ is (k + 1)2", i.e., exponential in the size d?,
such that the algorithm has to visit a number of nodes thatderential in the size af.

The graphG has as well a number of nodes that is exponential in the size. dbince checking for
cycles in a directed graph can be done in linear time, theridihgo runs inNEXPTIME, a nondeterministic
level higher than the worst-case complexity charactedmaiProposition 3.3).

Note that such an increase in complexity is expected. Fanpla although satisfiability checking in
SHZQ is EXPTIME-complete, practical algorithms run aNEXPTIME [18]. Thanks to caching, however,
we only have an increase KEXPTIME.

5 Related Work

Description Logic Program§9] represent the common subset of OWL-DL ontologies anchHagic pro-
grams (programs without negation as failure or disjungti@xs such, reasoning can be reduced to normal
LP reasoning.

In [16], a clever translation of’HZ Q(D) (SHZQ with data types) combined witbL-safe rules(a
rule is DL-safe if each variable in the rule appears in a ndraliom, where a DL-atom is an atom with
the predicate corresponding to a DL-concept or DL-role)isjudctive Datalog is provided. The translation
relies on a translation to clauses and subsequently applgohniques from basic superposition theory.

Reasoning iMDL+log [17] does not use a translation to other approaches, butededirspecific algo-
rithm based on a partial grounding of the program and a testistainment of conjunctive queries over the
DL knowledge bases. Note that [17] hastandard names assumptias well as ainique names assump-
tion - all interpretations are over some fixed, countably infidibenain, different constants are interpreted
as different elements in that domain, and constants aregri@one correspondence with that domain.

dl-programs[5] have a more loosely coupled take on integrating DL knolgke bases and logic pro-
grams by allowing the program to query the DL knowledge basiéevas well having the possibility to send

18

(controlled) input to the DL knowledge base. Reasoning rtedoa a stable model computation of the logic
program, interwoven with queries that are oracles to the &xt. p

Description Logic Rules[14] are defined as decidable fragmef SWRL. The rules have a tree-like
structure similar to the structure of simple CoLPs rulesp&wling on the underlying DL, one can distin-
guish betweed ROZ Q rules (these do not actually exte8&R OZ Q, they are just syntactic sugar on top of
the language) L1 rules, DLP rules, and ELP rules [15]. The latter can be seen as an eateasboth
ELTT rules andD L P rules, hence their name.

The algorithm presented in Section 4 can be seen as a preciditiiconstructs a tableau (as is common
in most DL reasoning procedures), representing the pgssifinite open answer set by a finite struc-
ture. There are several DL-based approaches which adophianatistyle semantics. Among this are
autoepistemic[4], default[2] and circumscriptive exiens of DL[3][8]. The first two extensions are re-
stricted to reasoning with explicitly named individualslyprwhile [8] allows for defeats to be based on
the existence of unknown individuals. A tableau-based otkfor reasoning with the DIALCO in the
circumscriptive case has been introduced in [7]. A speaidgoence clash condition is introduced there to
distinguish between minimal and non-minimal models whibased on constructing a new classical DL
knowledge base and checking its satisfiability. It would fteriesting to explore the connections between
our algorithm and the algorithm described there.

6 Conclusions and Outlook

We identified a decidable class of programs, simple CoLR$ paovided a nondeterministic algorithm for
checking satisfiability under the open answer set semathi@&suns iNNEXPTIME.

The presented algorithm is the first step in reasoning undepan answer set semantics. We intend
to extend the algorithm such that it can handle the wholenfiexg of CoLPs, as well as the presence of
constants. The latter would enable combined reasoningthétDL SHOZ O (closely related to OWL-DL)
and expressive rules.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, anB. PPatel-Schneider, editorsThe De-
scription Logic Handbook: Theory, Implementation, and Wgapions Cambridge University Press,
2003.

[2] F. Baader and B. Hollunder. Embedding defaults into teotogical representation systems. of
Automated Reasoning4(2):149-180, 1995.

[3] P. Bonatti, C. Lutz, and F. Wolter. Expressive non-mamit description logics based on circum-
scription. InProc. of 10th Int. Conf. on Principles of Knowledge Repr. &&hsoning (KR'06)pages
400-410, 2006.

[4] F. M. Donini, D. Nardia, and R.Rosati. Description logjiof minimal knowledge and negation as
failure. ACM Transactions on Comput. Logi®(2):177-225, 2002.

[5] T. Eiter, G. lanni, T. Lukasiewicz, R. Schindlauer, and Fémpits. Combining answer set program-
ming with description logics for the semantic wertificial Intelligence 172(12-13):1495-1539,
2008.

19

[6] M. Gelfond and V. Lifschitz. The Stable Model Semantics Logic Programming. IrProc. of
ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988.

[7] S. Grimm and P. Hitzler. Reasoning in circumscriptid&€CO. Technical report, FZI at University of
Karlsruhe, Germany, September 2007.

[8] S. Grimm and P. Hitzler. Defeasible inference with circriptive OWL ontologies. IWorkshop on
Advancing Reasoning on the Web: Scalability and Commogs2088.

[9] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Destidp logic programs: combining logic
programs with description logic. IRroc. of the World Wide Web Conpages 48-57. ACM, 2003.

[10] S. Heymans, J. de Bruijn, L. Predoiu, C. Feier, and D. MuMenborgh. Guarded hybrid knowledge
bases.Theory and Practice of Logic Programming(3):411-429, 2008.

[11] S.Heymans, D. V. Nieuwenborgh, and D. Vermeir. Congalibgic programsAnnals of Mathematics
and Avrtificial Intelligence (Special Issue on Answer SeigPamming) 47(1-2):103-137, June 2006.

[12] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Opennansset programming with guarded
programs.ACM Transactions on Computational Logic (TOC8§4), October 2008.

[13] U. S. I. Horrocks and S. Tobies. Practical reasoningefquressive description logics. Proceed-
ings 6th International Conference on Logic for Programmanyd Automated Reasoning (LPAR’99)
volume LNAI 1705, pages 161-180. Springer Verlag, 1999.

[14] M. Krotzsch, S. Rudolph, and P. Hitzler. Descriptiagic rules. InProc. 18th European Conf. on
Artificial Intelligence(ECAI-08) pages 80-84. I0S Press, 2008.

[15] M. Krotzsch, S. Rudolph, and P. Hitzler. ELP: Trac&blles for OWL 2. InProc. 7th Int. Semantic
Web Conf. (ISWC-082008.

[16] B. Motik, U. Sattler, and R. Studer. Query answering @WL-DL with rules. Journal of Web
Semantics: Science, Services and Agents on the World Whije3{i#41-60, July 2005.

[17] R. Rosati. DL+log: Tight integration of descriptiongics and disjunctive datalog. Froc. of the Int.
Conf. on Principles of Knowledge Representation and ReagdiKR), pages 68-78, 2006.

[18] S. Tobies.Complexity Results and Practical Algorithms for Logics movledge RepresentatioRhD
thesis, LUFG Theoretical Computer Science, RWTH-Aachamn@ny, 2001.

[19] M. Y. Vardi. Reasoning about the past with two-way auéban InProc. 25th Int. Colloquium on
Automata, Languages and Programmipages 628—641. Springer-Verlag, 1998.

20

