
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at
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1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has received considerable attention
over the past years with approaches such asDescription Logic Programs[9], DL-safe rules[16], DL+log

[17], dl-programs[5], and Open Answer Set Programming (OASP) [12]. OASP combines attractive features
from both the DL and the Logic Programming (LP) world: an opendomain semantics from the DL side
allows for stating generic knowledge, without mention of actual constants, and a rule-based syntax from the
LP side supports nonmonotonic reasoning vianegation as failure.

Decidable fragments for OASP satisfiability checking, likeConceptual Logic Programs[11] or g-hybrid
knowledge bases[10], were identified by syntactically restricting OASP. These fragments are still expres-
sive enough for integrating rule- and ontology-based knowledge. However there are no effective reasoning
procedures for any of these decidable fragments of OASP so far. In this paper, we take a first step in mend-
ing this by providing a sound and complete algorithm for satisfiability checking in a particular fragment of
Conceptual Logic Programs.

The major contributions of the paper can be summarized as follows:

• We identify a fragment of Conceptual Logic Programs (CoLPs), calledsimple CoLPs, that disallow
for inverse predicates, inequality, and have some restrictions concerning the dependencies between
different predicate symbols which appear in rules, compared to CoLPs, but are expressive enough
to simulate the DLALCH. We show that satisfiability checking w.r.t. simple CoLPs isEXPTIME-
complete (i.e., it has the same complexity as CoLPs).

• We define a nondeterministic algorithm for deciding satisfiability, inspired by tableaux-based methods
from DLs, that constructs a finite representation of an open answer set. We show that this algorithm
is terminating, sound, complete, and runs inNEXPTIME.

The algorithm is non-trivial from two perspectives: both the minimal model semantics of OASP, com-
pared to the model semantics of DLs, as well as the open domainassumption, compared to the closed domain
assumption of ASP, pose specific challenges in constructinga finite representation that corresponds to an
open answer set.

2 Preliminaries

We recall the open answer set semantics from [12].Constantsa, b, c, . . ., variablesx, y, . . ., termss, t, . . .,
andatomsp(t1, . . . , tn) are defined as usual. Aliteral is an atomp(t1, . . . , tn) or a negated atomnot p(t1, . . . , tn).
For a setα of literals or (possibly negated) predicates,α+ = {l | l ∈ α, l an atom or a predicate} and
α− = {l | not l ∈ α, l an atom or a predicate}. For a setX of atoms,not X = {not l | l ∈ X}. For
a set of (possibly negated) predicatesα, we will often write α(x) for {a(x) | a ∈ α} and α(x, y) for
{a(x, y) | a ∈ α}.

A program is a countable set of rulesα ← β, whereα andβ are finite sets of literals. The setα is the
headof the rule and represents a disjunction, whileβ is called thebodyand represents a conjunction. If
α = ∅, the rule is called aconstraint. Free rulesare rulesq(x1, . . . , xn) ∨ not q(x1, . . . , xn)← for variables
x1, . . . , xn; they enable a choice for the inclusion of atoms. We call a predicateq free in a program if there
is a free ruleq(x1, . . . , xn) ∨ not q(x1, . . . , xn)← in the program. Atoms, literals, rules, and programs that
do not contain variables areground. For a rule or a programX, let cts(X) be the constants inX, vars(X)
its variables, andpreds(X) its predicates withupreds(X) the binary andbpreds(X) the binary predicates.
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A universeU for a programP is a non-empty countable superset of the constants inP : cts(P ) ⊆ U . We
call PU the ground program obtained fromP by substituting every variable inP by every possible constant
in U . LetBP (LP ) be the set of atoms (literals) that can be formed from a ground programP .

An interpretationI of a groundP is any subset ofBP . We writeI |= p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I
andI |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). For a set of ground literalsX, I |= X if I |= l for every
l ∈ X. A ground ruler : α ← β is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α whenever
I |= β. A ground constraint← β is satisfied w.r.t.I if I 6|= β. For a ground programP without not , an
interpretationI of P is amodelof P if I satisfies every rule inP ; it is ananswer setof P if it is a subset
minimal model ofP . For ground programsP containingnot , theGL-reduct[6] w.r.t. I is defined asP I ,
whereP I containsα+ ← β+ for α← β in P , I |= not β− andI |= α−. I is ananswer setof a groundP
if I is an answer set ofP I .

In the following, a program is assumed to be a finite set of rules; infinite programs only appear as
byproducts of grounding a finite program with an infinite universe. Anopen interpretationof a programP
is a pair(U,M) whereU is a universe forP andM is an interpretation ofPU . An open answer setof P is
an open interpretation(U,M) of P with M an answer set ofPU . An n-ary predicatep in P is satisfiableif
there is an open answer set(U,M) of P and a(x1, . . . , xn) ∈ Un such thatp(x1, . . . , xn) ∈M .

We introduce some notations for trees as in [19]. For anx ∈ N∗
0, i.e., a finite sequence of natural

numbers (excluding0), we denote the concatenation of a numberc ∈ N0 to x asx · c, or, abbreviated, as
xc. Formally, a(finite) treeT is a (finite) subset ofN∗

0 such that ifx · c ∈ T for x ∈ N∗
0 andc ∈ N0, then

x ∈ T . Elements ofT are callednodesand the empty wordε is theroot of T . For a nodex ∈ T we call
succT (x) = {x ·c ∈ T | c ∈ N0}, successorsof x. Thearity of a tree is the maximum amount of successors
any node has in the tree. The setAT = {(x, y) | x, y ∈ T,∃c ∈ N0 : y = x · c} denotes the set of edges
of a treeT . We define a partial order≤ on a treeT such that forx, y ∈ T , x ≤ y iff x is a prefix ofy.
As usual,x < y if x ≤ y andy 6≤ x. A (finite) pathP in a treeT is a prefix-closed subset ofT such that
∀x 6= y ∈ P : |x| 6= |y|. A branchB in a treeT is a maximal path (there is no path which contains it) which
contains the root ofT .

A labeled treeis a pair(T, t) whereT is a tree andt : T → Σ is a labeling function; sometimes we will
identify the tree(T, t) with t. We denote thesubtreeof T at x by T [x], i.e.,T [x] = {y ∈ T | x ≤ y}. For
labeled treest : T → Σ, the subtree oft atx ∈ T is t[x] : T [x]→ Σ such thatt[x](y) = t(y) for y ∈ T [x].
For a treet : T → Σ, a trees : S → Σ, and a symbola ∈ Σ, we denote witht ·a s, the treet with the
subtrees starting with the first node on every path with labela (in case such a node exists) replaced bys.
Consider the treess andt depicted in Figure 1. The tree resulted by the application oft ·a s is depicted in
Figure 2.

t: ǫ{b}

1{b}

11{c} 12{a}

2{a}

21{a}

s: ǫ{c}

1{d} 2{e}

Figure 1: Two labeled trees:t ands
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t ·a s: ǫ{b}

1{b}

11{c} ǫ{c}

1{d} 2{e}

ǫ{c}

1{d} 2{e}

Figure 2: The new tree:t ·a s

For programs containing only unary and binary predicates itmakes sense to define atree model property:
for a programP containing only unary and binary predicates, if a unary predicatep ∈ preds(P ) is satisfiable
w.r.t. P thenp is tree satisfiable w.r.t.P , wherep is tree satisfiablew.r.t. P if there exists

• an open answer set(U,M) of P such thatU is a tree of bounded arity, and

• a labeling functiont : U → 2preds(P ) such that

– p ∈ t(ε) andt(ε) does not contain binary predicates, and

– z · i ∈ U , i > 0, iff there is somef(z, z · i) ∈M , and

– for y ∈ U , q ∈ upreds(P ), f ∈ bpreds(P ),

∗ q(y) ∈M iff q ∈ t(y), and

∗ f(x, y) ∈M iff y = x · i ∧ f ∈ t(y)

The labelL(z) of a nodez ∈ U is L(z) = {q | q ∈ t(z), q ∈ upreds(P )}. We call such a(U,M) a tree
modelfor p w.r.t. P . Note that binary predicates are maintained in the labels ofnodes: a binary predicatef
in the label ofx · i indicates a connectionf(x, x · i).

3 Simple Conceptual Logic Programs

In [11], we definedConceptual Logic Programs (CoLPs), a syntactical fragment of logic programs for which
satisfiability checking under the open answer set semanticsis decidable. We restrict this fragment by dis-
allowing the occurrence of inequalities and inverse predicates, and by restricting the dependencies between
predicate symbols which appear in the program. The resulting fragment is called inSimple Conceptual
Logic Programs.

Definition 3.1 A simple conceptual logic program (simple CoLP)is a program with only unary and binary
predicates, without constants, and such that any rule is afree rule, aunary rule

a(x )← β(x ),
(

γm(x , ym ), δm (ym)
)

1≤m≤k
(1)

where for allm, γ+
m 6= ∅, or abinary rule

f (x , y)← β(x ), γ(x , y), δ(y) (2)
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with γ+ 6= ∅.
Furthermore, letD(P ) be themarked predicate dependency graphof a programP as defined above,

whereD(P ) has as vertices the predicates fromP and as arcs tuples(p, q), where there is either a rule
(1) or a rule (2) with a head predicatep and a positive body predicateq; we call an arc(p, q) marked ifq
is a predicate inδm or δ for rules (1), respectively rules (2).P is a simple CoLP iff its marked predicate
dependency graphD(P ) does not contain any cycle with a marked edge.

Intuitively, the free rules allow for a free introduction ofatoms (in a first-order way) in answer sets,
unary rules consist of a root atoma(x) that is motivated by a syntactically tree-shaped body, and binary
rules motivate af(x, y) for a x and its ‘successor’y by a body that only considers literals involvingx and
y. The restriction concerning the marked dependency graph can be translated in the following terms: there
is no path from ap(x) to ap(y) in the literal dependency graph ofPU , wherep is a unary predicate fromP ,
U is an arbitrary universe, andx andy are two distinct elements fromU .

Simple CoLPs can simulate constraints← β(x),
(

γm(x, ym), δm(ym)
)

1≤m≤k
, where for allm, γ+

m 6= ∅,
i.e., constraints have a body that has the same form as a body of a unary rule. Indeed, such constraints
← body can be replaced by simple CoLP rules of the formconstr(x ) ← not constr(x ), body , for a new

predicateconstr .
As simple CoLPs are CoLPs and the latter have the tree model property [11], simple CoLPs have the

tree model property as well.

Proposition 3.2 Simple CoLPs have the tree model property.

For CoLPs this tree model property was important to ensure that a tree automaton [19] could be con-
structed that accepts tree models in order to show decidability. The presented algorithm for simple CoLPs
relies as well heavily on this tree model property.

As satisfiability checking of CoLPs isEXPTIME-complete [11], checking satisfiability of simple CoLPs
is in EXPTIME.

In [11], it was shown that CoLPs are expressive enough to simulate satisfiability checking w.r.t toSHIQ
knowledge bases, whereSHIQ is the Description Logic (DL) extendingALC with transitive roles (S),
support for role hierarchies (H), inverse roles (I), and qualified number restrictions (Q). For an overview
of DLs, we refer the reader to [1].

Using a restriction of this simulation, one can show that satisfiability checking ofALCH concepts (i.e.,
SHIQ without inverse roles and quantified number restrictions) w.r.t. aALCH TBox can be reduced to
satisfiability checking of a unary predicate w.r.t. a simpleCoLP. Intuitively, simple CoLPs cannot handle
inverse roles (as they do not allow for inverse predicates) neither can they handle number restrictions (as
they do not allow for inequality) or transitive roles (due tothe fact that they do not allow for positive literals
in the successor part of a rule). As satisfiability checking of ALC concepts w.r.t. anALC TBox (note
thatALC is a fragment ofALCH) is EXPTIME-complete ([1, Chapter 3]), we haveEXPTIME-hardness for
simple CoLPs as well.

Proposition 3.3 Satisfiability checking w.r.t. simple CoLPs isEXPTIME-complete.

4 An Algorithm for Simple Conceptual Logic Programs

In this section, we define a sound, complete, and terminatingalgorithm for satisfiability checking w.r.t.
simple CoLPs.
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For every non-free predicateq and a simple CoLPP , let Pq be the rules ofP that haveq as a head
predicate. For a predicatep, ±p denotesp or not p, whereby multiple occurrences of±p in the same
context will refer to the same symbol (eitherp or not p). The negation of±p (in a given context) is∓p, that
is,∓p = not p if ±p = p and∓p = p if ±p = not p.

For a unary ruler of the form (1), we definedegree(r) = |{m | γm 6= ∅}|. For every non-free rule
r : α ← β ∈ P , we assume that there exists an injective functionir : β → {0, . . . , |β|} which defines
a total order over the literals inβ and an inverse functionlr : {0, . . . , |β|} → β which returns the literal
with the given index inβ. For a ruler which has body variablesx, y1, . . . , yk we introduce a function
varsetr : {x, y1, . . . , yk, (x, y1), . . . , (x, yk)} → 2{0,...,|β|} which for every variable or pair of variables
which appears in at least one literal in a rule returns the setof indices of the literals formed with the corre-
sponding variable(s).

The basic data structure for our algorithm is acompletion structure.

Definition 4.1 [completion structure] Acompletion structure for a simple CoLPP is a tuple〈T, G, ct,
st, rl, sg, nju, njb〉. T is a tree which together with the labeling functionsct, st, rl, sg, nju, and
njb, is used to represent/construct a tentative tree model (thenodes of the tree are elements of the universe
w.r.t. which the model is constructed).G = 〈V,E〉 is a directed graph with nodesV ⊆ BPT

and edges
E ⊆ BPT

× BPT
which is used to keep track of dependencies between elementsof the constructed model,

V being the model itself). Below the signature and the role foreach labeling function is given:

• The contentfunction ct : T ∪ AT → 2preds(P )∪not (preds(P )) maps a node of the tree to a set of
(possibly negated) unary predicates and an edge of the tree to a set of (possibly negated) binary
predicates such thatct(x) ∈ upreds(P ) ∪ not(upreds(P )) if x ∈ T , andct(x) ∈ bpreds(P ) ∪
not(bpreds(P )) if x ∈ AT . Every positive appearance of a predicate symbolp in the content of some
node/arcx of T indicates thatp(x) is part of the tentative model represented byT .

• The statusfunction st : {(x,±q) | ±q ∈ ct(x), x ∈ T ∪ AT } → {exp, unexp} attaches to
every (possibly negated) predicate which appears in the content of a node/edgex a status value which
indicates whether the predicate has already been expanded in that node/edge. As it will be indicated
later, the completion structure is evolved such that the presence of any (possibly negated) predicate
symbol in the content of some node/arc is justified, so it is necessary to keep track which predicate
symbols have already been justified in every node/arc ofT .

• Therule functionrl : {(x, q) | x ∈ T ∪AT , q ∈ ct(x)} → P associates with every node/edgex of
T and every positive predicateq ∈ ct(x) a rule which hasq as a head predicate:rl(x, q) ∈ Pq.

• Thesegmentfunctionsg : {(x, q, r) | x ∈ T,not q ∈ ct(x), r ∈ Pq} → N indicates which part ofr
justifies havingnot q in ct(x).

• Thenegative justification for unary predicatesfunctionnju : {(x, q, r) | x ∈ T,not q ∈ ct(x), r ∈
Pq} → 2N×T indicates by means of tuples(n, z) ∈ N×T which literallr(n) from r is used to justify
not q in ct(x) in a nodez ∈ T , or edge(x, z) ∈ AT .

• Thenegative justification for binary predicatesfunctionnjb : {(x, q, r) | x ∈ AT ,not q ∈ ct(x), r ∈
Pq} → N gives the index of the literal fromr that is used to justifynot q ∈ ct(x).

An initial completion structurefor checking the satisfiability of a unary predicatep w.r.t. a simple CoLP
P is a completion structure withT = {ε}, V = {p(ε)}, E = ∅, andct(ε) = {p}, st(ε, p) = unexp, and
the other labeling functions are undefined for every input.
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We clarify the definition of a completion structure by means of an example. Consider the simple CoLP
P :

r1 : restore(X ) ← crash(X ), y(X ,Y ), backSucc(Y )
r2 : backSucc(X ) ← not crash(X ), y(X ,Y ),not backFail(Y )
r3 : backFail(X ) ← not backSucc(X )
r4 : yesterday(X ,Y ) ∨ not yesterday(X ,Y ) ←
r5 : crash(X ) ∨ not crash(X ) ←

Note that while there is a marked arc inD(P ), (restore, backSucc), there is no cycle which contains
it, soP is indeed a simple CoLP. Aninitial completion structurefor checking the satisfiability of the unary
predicaterestore w.r.t. P is depicted in Figure 3.

ST (ε)

CT (ε)

ε {restoreunexp}

Figure 3: Initial completion structure

Intuitively, we created the root of our tree model which contains the predicate whose satisfiability is
tested,restore and set the state for this predicate w.r.t. the current node to be unexpanded.

At this stage the graphG consists of the single noderestore(ε) and naturally, no arcs.
In the following, we will show how to expand an initial completion structure to prove the satisfiability

of a unary predicatep w.r.t. a simple CoLPP , how to determine when no more expansion is needed (block-
ing), and under what circumstances aclashoccurs. In particular,expansion ruleswill evolve a completion
structure starting with an initial completion structure for checking satisfiability ofp w.r.t. P to a complete
clash-free structure that corresponds to a finite representation of an open answer set in casep is satisfiable
w.r.t. P . Applicability rulesstate the necessary conditions such that those expansion rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion structure whenever in the process of justifying a
literal l in the current model a new literal±p(z) has to be considered (either as making part of the model,
in case the literal is an atom, or as not making part of the model, in case the literal is a negated atom). This
means that±p has to be inserted in the content ofz in case it is not already there and marked as unexpanded,
and in case±p(z) is an atom, it has to be ensured that it is a node inG and in casel is also an atom, a new
arc froml to±p(z) should be created to capture the dependencies between the two elements of the model.
More formally:

• if ±p /∈ ct(z), thenct(z) = ct(z) ∪ {±p} andst(z,±p) = unexp,

• if ±p = p and±p(z) /∈ V , thenV = V ∪ {±p(x)},

6



• if l ∈ BPT
and±p = p, thenE = E ∪ {(l,±p(z))}.

As a shorthand, we denote this sequence of operations asupdate(l,±p, z); more general,update(l, β, z)
for a set of (possibly negated) predicatesβ, denotes∀ ± a ∈ β, update(l,±a, z).

In the following, letx ∈ T and(x, y) ∈ AT be the node, respectively edge, under consideration.

4.1.1 (i) Expand unary positive.

For a unary positive predicate (non-free)p ∈ ct(x) such thatst(x, p) = unexp,

• nondeterministically choose a ruler ∈ Pp of the form (1) that will motivate this predicate: set
rl(x, p) = r,

• for theβ in the body of thisr, update(p(x), β, x),

• for eachm, 1 ≤ m ≤ k, nondeterministically choose ay ∈ succT (x) or let y = x · s, wheres ∈ N∗
0

s.t. x · s /∈ succT (x) already. In the latter case, addy as a new successor ofx in T : T = T ∪ {y}.
Next,update(p(x), γm, (x, y)) andupdate(p(x), δm, y).

• setst(x, p) = exp.

In our example, the initial completion structure contains an unexpanded unary predicate,restore. The
result of applying the rule above to this predicate is depicted in Figure 4.

1 {backSuccunexp}

{yesterdayunexp}

ǫ {restoreexp
r1 crashunexp}

Figure 4: Expansion of a unary positive predicate symbol

The figure indicates that ruler1, the only rule which definesrestore, has been used to expand the
predicate. The local part of the rule,crash, has been injected in the content of the local node,ct(roo) and
a new successor1 was created in which the part of the rule corresponded toy was injected. The transition
between the root and its successor is done by the binary predicateyesterday which is injected in the content
of the arc(ε, 1). Also the new injected predicates together with their corresponding tree node form literals
which are new vertices inG. An arc is created fromrestore(ε) to each of these new literals.

4.1.2 (ii) Choose a unary predicate.

There is anx ∈ T for which none of±a ∈ ct(x) can be expanded with rules (i) and (iii), and for all
(x, y) ∈ AT , none of±f ∈ ct(x, y) can be expanded with rules (iv-v) (we decided to place this rule before
the other rules mentioned here, for the sake of the example continuity), and there is ap ∈ upreds(P ) such

7



thatp /∈ ct(x) andnot p /∈ ct(x). Then, addp to ct(x) with st(x, p) = unexp or addnot p to ct(x)
with st(x,not p) = unexp.

This rule says that in case there is a nodex for which all the predicate symbols in its content and in the
contents of its outgoing arcs were expanded and there are still unary predicate symbols which do not appear
in the content of the current node, one has to pick such a unarypredicate symbolp and to inject eitherp or
notp in ctx. This is needed for consistency reasons: it is not enough to find a justification for the predicate
we want to prove that is satisfiable, but one has to show also that this justification makes part from an actual
model, which is done by actually constructing such a model. Consider the completion structure described
in Figure 4. We observe that the conditions described in thisrule are fulfilled for the root of the treeε. We
pick backSucc as a new unary predicate symbol which does not appear inct(ε) and injectnot backSucc
in ct(roo). This process is described in Figure 5.

1 {backSuccunexp}

{yesterdayunexp}

ǫ {restoreexp
r1 crashunexp

not backSuccunexp}

Figure 5: Choose a unary predicate

4.1.3 (iii) Expand unary negative.

For a unary negative predicate (non-free)not p ∈ ct(x) and either

1. st(x,not p) = unexp, then for every ruler ∈ Pp of the form (1) nondeterministically choose a
segmentm, 0 ≤ m ≤ k: sg(x, p, r) = m.

• If m = 0, choose a±a ∈ β, andupdate(not p(x),∓a, x), nju(x, p, r) = {(ir(±a(X)), x)}.

• If m > 0, for everyy ∈ succT (x), (†) choose a±ay ∈ γm ∪ δm, and setnju(x, p, r) =
{(ir(±ay(X,Ym)), y) | ±ay ∈ γm}∪{(ir(±ay(Ym)), y) | ±ay ∈ δm}. Next,update(not p(x),∓ay, (x, y))
if ±ay ∈ γm, and
update(not p(x), ∓ay, y) if ±ay ∈ δm.

After every rule has been processed setst(x,not p) = exp.

2. st(x,not p) = exp and for somer ∈ Pp, sg(x, p, r) 6= 0, andnju(x, p, r) = S with |S| <
|succT (x)|, i.e., not p has already been expanded, but for some ruler it did not receive a local
justification (atx), and meanwhile new successors ofx have been introduced. Thus, one has to justify
not p in the new successors as well.

For everyr ∈ Pp of the form (1) such thatsg(x, p, r) = m 6= 0 and for everyy ∈ succT (x) which
has not been yet considered previously, repeat the operations in (†) as above.
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In general, justifying a negative unary literalnot q ∈ ct(x) (or in other words, the absence ofq(x) in
the constructed model) implies that every rule which definesq has to be refuted (otherwiseq would have to
be present); thus, at least one body literal from every rule in Pq has to be refuted. A certain ruler ∈ Pq

can either be locally refuted (via a literal which can be formed usingx and some±a ∈ ct(x)) or it has to
be refuted in every successor ofx. In the latter case, ifx has more than one successor, it can be shown that
the same segment of the rule has to be refuted in all the successors, whereby a segment of a rule is one of
{β, (γm ∪ δm)1≤m≤k} for unary rules(1).

After picking a segment to refute a negative unary predicate, we need means to indicate which literal in
the segment, per successor, can be used to justify this negative unary predicate. This can be per successor
a different literal from the segment such thatnju(x, q, r) is a set of tuples(n, z) wherez is the particular
successor (orx itself in case the negative unary predicate can be justified locally) andn the position of the
literal in the ruler.

The expansion of such a unary negative literal might be done in several steps: in case the literal is not
locally justified for some rule which defines it, new successors might be introduced for the current node
after the first expansion of the negative literal, and then, the literal has to be justified in these new successors
as well. This case is treated in the second part of the expansion rule.

Consider the completion structure described in Figure 5. A possible way to expandnot backSucc(ε)
is depicted in Figure 6. In this case the absence ofbackSucc(ε) from the answer set is justified locally
w.r.t. the only rule which definesbackSucc, which isr2. This means thatsg(ε, backSucc, r2) = 0 and
nju(ε, backSucc, r2) = {1, ε} (there is only one literal in the local part ofr2: crash).

1 {backSuccunexp}

{yesterdayunexp}

ǫ {restoreexp
r1 crashunexp

not backSucc
exp

{(r2,0,1,0)}}

Figure 6: Expansion of a unary negative predicate symbol

We also present an example which demonstrates in an intuitive way the need to refute the same seg-
ment in all successors of a node in case the refutation of a unary negative literal in the current node
w.r.t. a certain rule is not done locally. Consider a programP which contains the ruler1 : a(X ) ←
f (X ,Y ), b(Y ), g(X ,Z ), b(Z ) and a completion structure forP . Assume the current node isx, x already
has three successorsx · 1, x · 2 andx · 3, and the predicate to be expanded (justified) isnot a (Figure 4.1.3).

The only rule which has to be considered (its body has to be refuted) isr1: this cannot be done locally
as the rule has no local part. Thus, the body of the rule has to be refuted in every successor. Figure 8 depicts
a situation where the body of the rule has been refuted in a correct way: literals containing the variableY ,
thus making part from the first segment of the rule, have been chosen to be refuted in every successor. There
is no way to groundr1 such that all of its body literals are satisfied by choosing asvalues forY andZ one
of x1, x2, or x3.

On the other hand, Figure 9 depicts a situation where the bodyof the rule has been refuted in an incorrect
way: the literals chosen to be refuted make part from different segments of the rule. In the absence of other
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x {not a, . . .}

{...}
{...}

{...}

x1 {. . .} x2 {. . .} x3 {. . .}

Figure 7: Expanding unary negative: example 2

x {not a, . . .}

{...}
{not f,...}

{not f,...}

x1 {not b, . . .} x2 {. . .} x3 {. . .}

Figure 8: Expanding unary negative: OK
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constraints, a situation like the one described in Figure 10can subsequently appear, in whicha(x) is actually
justified as the body of the grounded rulea(x) ← f(x, x3), b(x3), g(x, x2), b(x2) is satisfied in the current
model.

x {not a, . . .}

{not f,...}
{not f,...}

{not g,...}

x1 {. . .} x2 {. . .} x3 {. . .}

Figure 9: Expanding unary negative: NOT OK (1)

x {not a, . . .}

{not f,...}
{not f,g,...}

{not g,f,...}

x1 {. . .} x2 {d, . . .} x3 {c, . . .}

Figure 10: Expanding unary negative: NOT OK (2)

4.1.4 (iv) Expand binary positive.

For a binary positive predicate symbol (non-free)p in ct(x, y) such thatst((x, y), p) = unexp: non-
deterministically choose a ruler ∈ Pp of the form (2) that motivatesp by settingrl((x, y), p) = r,
andupdate(p(x, y), β, x), update(p(x, y), γ, (x, y)), andupdate(p(x, y), δ, y). Finally, setst((x, y), p) =
exp.

4.1.5 (v) Expand binary negative.

For a binary negative predicate symbol (non-free)not p in ct(x, y) such thatst((x, y),not p) = unexp,
nondeterministically choose for every ruler ∈ Pp of the form (2) ans from varsetr(X), varset r(X,Y ) or
varsetr(Y ) and letnjb((x, y), p, r) = s.

• If s ∈ varset(X) and±a(X) = litr(s), update(not p(x, y),∓a, x),

• If s ∈ varset(X,Y ) and±f(X,Y ) = litr(s), update(not p(x, y),∓f, (x, y)),

• If s ∈ varset(Y ) and±a(Y ) = litr(s), update(not p(x, y),∓a, y)).

11



Finally, setst((x, y),not p) = exp.
Note that a binary rule is always local in the sense that a binary literal±f(x, y) can always be justified

using component fromx, y, and/or(x, y).

4.1.6 (vi) Choose a binary predicate.

There is anx ∈ T for which none of±a ∈ ct(x) can be expanded with rules (i-ii), and for all(x, y) ∈ AT

none of±f ∈ ct(x, y) can be expanded with rules (iii-iv), and there is a(x, y) ∈ AT and ap ∈ bpreds(P )
such thatp /∈ ct(x, y) ∧ not p /∈ ct(x, y). Then, addp to ct(x, y) with st((x, y), p) = unexp or add
not p to ct(x, y) with st((x, y),not p) = unexp.

The intuition for this rule is similar with the intuition forexpansion rule (ii).

4.2 Applicability Rules

A second set of rules is not updating the completion structure under consideration, but restricts the use of
the expansion rules:

4.2.1 (vii) Saturation

We will call a nodex ∈ T saturatedif

• for all p ∈ upreds(P ) we havep ∈ ct(x) or not p ∈ ct(x) and none of±a ∈ ct(x) can be
expanded according to the rules (i-iii) ,

• for all (x, y) ∈ AT andp ∈ bpreds(P ), p ∈ ct(x, y) ornot p ∈ ct(x, y) and none of±f ∈ ct(x, y)
can be expanded according to the rules (iii-vi).

We impose that no expansions can be performed on a node fromT until its predecessor is saturated.

4.2.2 (viii) Blocking

We call a nodex ∈ T blockedif

• its predecessor is saturated, and

• there is an ancestory of x, y < x, such thatct(x) ⊂ ct(y).

The rule says that if there is an ancestor node whose content includes the content of the current node,
the current node can be blocked: intuitively, one can show that provided that the content of the ancestor
is justified, the content of the current node can also be justified in a similar way (this is possible due to
the fact that every positive literal formed with the ancestor node is justified in a finite number of steps as a
consequence of the restriction on the marked dependency graph of a simple CoLP; for more details consult
the soundness proof). We call(y, x) a blocking pairand say thaty blocksx; we will also refer tox as a
blocked node and toy as the blocking node for a blocking pair(y, x). We impose that no expansions (i-vi)
can be performed on a blocked node fromT .
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4.2.3 (ix) Caching

We call a nodex ∈ T cachedif

• its predecessor is saturated,

• there is a nodey which is not an ancestor ofx, y < x, such thatct(x) ⊂ ct(y).

We impose that no expansions can be performed on a cached nodefrom T . Intuitively, x is not further
expanded, as one can reuse the (cached) justification fory when dealing withx. We call(y, x) a caching
pair and say thaty cachesx; we will also refer tox as a cached node and toy as the caching node for a
caching pair(y, x).

4.3 Termination, Soundness, and Completion

We call a completion structurecontradictory, if for somex ∈ T anda ∈ upreds(P ), {a,not a} ⊆ ct(x)
or for some(x, y) ∈ AT andf ∈ bpreds(P ), {f,not f} ⊆ ct(x, y). A complete completion structurefor
a simple CoLPP and ap ∈ upreds(P ), is a completion structure that results from applying the expansion
rules to the initial completion structure forp andP , taking into account the applicability rules, such that no
expansion rules can be further applied. Furthermore, a complete completion structureCS = 〈T, G, ct, st,
rl, sg, nju, njb〉 is clash-freeif (1) CS is not contradictory, (2)T does not contain cyclic nodes, and (3)
G does not contain positive cycles.

We show that an initial completion structure for a unary predicatep and a simple CoLPP can always
be expanded to a complete completion structure (termination), that, if p is satisfiable w.r.t.P , there is a
clash-free complete completion structure (soundness), and, finally, that, if there is a clash-free complete
completion structure,p is satisfiable w.r.t.P (completeness).

Proposition 4.2 (termination) Let P be a simple CoLP andp ∈ upreds(P ). Then, one can construct a
finite complete completion structure by a finite number of applications of the expansion rules to the initial
completion structure forp w.r.t. P , taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion structure by a finite number of
applications of the expansion rules, taking into account the applicability rules. Clearly, if one has a finite
completion structure that is not complete, a finite application of expansion rules would complete it unless
successors are introduced. However, one cannot introduce infinitely many successors: every path in the
tree will eventually contain two nodes which fulfill the blocking condition, such that no expansion rules
can be applied to successor nodes of the blocked node in the pair. Furthermore, the arity of the tree in the
completion structure is bound by the predicates inP and the degrees of the rules.

Proposition 4.3 (soundness)Let P be a simple CoLP andp ∈ upreds(P ). If there exists a clash-free
complete completion structure forp w.r.t. P , thenp is satisfiable w.r.t.P .

Proof.
From a clash-free complete completion structure, we will construct an open interpretation, and show

that this interpretation is an open answer set ofP that satisfiesp.
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1. Construction of open interpretation. In order to construct the possibly infinite universe and thepossi-
bly infinite interpretation induced by a clash-free complete completion structure, we introduce some
new notation. Letblocked(T ) be the set of blocking pairs fromT andcached(T ) the set of caching
pairs fromT . Also, given a set of symbolsΣ, define a labeling functiont on T (and implicitly a
labeled treet): t : T → Σ which assigns to every node ofT a symbol fromΣ in such a way that no
symbol is associated to more than one node. WithText (text ) we denote the extended tree which will
constitute the actual universe for our constructed interpretation.

In caseblocked(T ) = ∅ andcached(T ) = ∅, text = t. Otherwise, repeat the following an infinite
number of times: for every(x, y) ∈ blocked(T ) do t ·t(x) t[y] (every blocked node in a blocking pair
will be replaced with the subtree int starting at the blocking node) and for every(x, y) ∈ cached(T )
do t ·t(x) t[y] (every node for which a previous justification can be used is replaced with the tree
providing that justification). Note that a new node with the same label as the blocked node is created
every time the transformationt ·t(x) t[y] is applied for a pair(x, y) ∈ blocked(T ), so at the next
iteration this node will be subject to the transformation, and so on. The resulting labeled tree will
betext . Figure 11 depicts a complete clash-free completion which has a blocking pair and a caching
pair (the dotted arrow indicates the connection between thecached node and the caching node, while
the dashed arrow indicates the connection between the blocked node and the blocking node) together
with the extended tree obtained as a result of application ofthe operations described above.

ε{a} ε{a}

1{b} 2{c} 1{b} 2{c}

11{d} 21{e} 22{f} 11{d} 21{b} 22{c}

211{d} 221{b} 222{c}

2211{d}

Figure 11: A complete clash-free completion structure withblocked and cached nodes and its corresponding
extended tree

We observe that∀x ∈ Text ,∃!y ∈ T : t(x) = t(y), i.e., for every node in the constructed tree exactly
one node in the original tree exists that has the same label; we denote suchy for x asx, and similarly
a literal l denotesl with each argumentx ∈ Text replaced by its correspondingx. Given the wayText

was constructed (by concatenation of subtrees fromT ), eitherx = x or x ∈ T ′, with T ′ ⊂ Text being
a version of a subtree ofT in Text , T [z], wherez is a blocking node inT , andx ∈ T [z]. Being a
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version of each other, implies thatT ′ andT [z] have the same tree structure and values for the labeling
functions. Asx ∈ T ′, x ∈ T [z], andt(x) = t(x), one could say thatx is the counterpart ofx in T ′, so
one can define the values of the labeling functions forx based on the values of the labeling functions
of x. Thus, for everyx ∈ Text , we define:

• ct(x) = ct(x),

• ∀p ∈ ct(x) : rl(x, p) = rl(x, p), and

• ∀not p ∈ ct(x), r ∈ Pp : sg(x, p, r) = sg(x, p, r).

Also note that forx andx: |succ(x)| = |succ(x)|, andx · c ∈ succ(x) iff x · c ∈ succ(x). Thus, we
can definenjb andnju for nodes inText :

• ∀(x, x · c) ∈ AText
,not p ∈ ct(x, x · c) : njb((x, x · c), p, r) = njb((x, x · c), p, r), and

• ∀not p ∈ ct(x), r ∈ Pp : nju(x, p, r) = {(x ·c, s) | (x, x ·c) ∈ AText
, (x ·c, s) ∈ nju(x, p, r)}.

By Gext = 〈Vext , Eext 〉we denote the graph with nodesVext = {p(x) | x ∈ Text ∪AText
, p ∈ ct(x)},

and edgesEext = {(p(x), q(x)) | x ∈ Text , (p(x), q(x)) ∈ E} ∪ {(p(x), q(x · c)) | x, x · c ∈
Text , (p(x), q(x · c)) ∈ E}∪ {(p(x), q(x, x · c)) | x, x · c ∈ Text , (p(x), q(x, x · c)) ∈ E}∪ {(p(x, x ·
c), q(x, x · c)) | x, x · c ∈ Text , (p(x, x · c), q(x, x · c)) ∈ E} ∪ {(p(x, x · c), q(x · c)) | x, x · c ∈
Text , (p(x, x · c), q(x · c)) ∈ E} ∪ {(p(x, x · c), q(x)) | x, x · c ∈ Text , (p(x, x · c), q(x)) ∈ E}.

Define the open interpretation(U,M) then as(Text , Vext), i.e., the universe is the constructed tree
Text and the interpretation corresponds to the nodes inVext .

2. M is a model ofPM
U . All free rules are trivially satisfied.

Take a ground unary rule:r′ : a(x )← β+(x ),
⋃

1≤m≤k γm
+(x , ym ),

⋃

1≤m≤k δm
+(ym) originating

from r : a(X ) ← β(X ),
⋃

1≤m<≤k γm(X ,Ym),
⋃

1≤m≤k δm(Ym) with β−(x) * M and for all
1 ≤ m ≤ k, γm

−(x, ym) * M andδm
−(ym) * M . AssumeM |= β+(x) ∪

⋃

1≤m≤k γm
+(x, ym) ∪

⋃

1≤m≤k δm
+(ym) (together with the assumptions about the negative part of the rule, this amounts

to M |= β(x) ∪
⋃

1≤m<≤k γm(x, ym) ∪
⋃

1≤m≤k δm(ym)) anda(x) /∈ M (the rule is not satisfied).
Thennot a ∈ ct(x), x is saturated,st(x,not a) = exp, and no expansions rules can be further
applied tonot a. This implies that for every ruler ∈ rulesP (a), one of the following holds:

• not a is locally justified inr: sg(x, nota, r) = 0 and nju(x,not a, r) = {(s, x)}, where
s ∈ varsetr(X). If ±b(X) = litr(s), ∓b was injected in the content ofx in the process of
expansion by a call toupdate(U,G,not a(x),∓b, x) (see expansion rule (iii))1, which amounts
to∓b(x) ∈M . This contradicts withM |= β(X), as±b(X) ∈ β.

• not a has been justified in all successors ofx: sg(x,not a, r) = t, 0 < t ≤ k andnju(x,not a, r) =
S and|S| = |succ(x, Text)|. It’s easy to see thatyt ∈ succ(x, Text), as∃f(x, yt) ∈ γ(x, yt)

+

andM |= γ+(x, yt). Now, given thatyt ∈ succ(x, Text) and considering the expansion rule
(ii), there must be a tuple(s, yt) ∈ S s.t. s ∈ varsetr(Yt) or s ∈ varsetr(X,Yt). Let
±b(Yt) = litr(s), if s ∈ varsetr(Yt) and±b(X,Yt) = litr(s) If s ∈ varsetr(X,Yt). De-
pending on the case∓b(yt) or ∓b(x, yt) was injected inct(x) or ct(x, yt) (again, according

1actually, in casex ∈ Text andx 6∈ T , ct(x) was not generated per se by application of expansion rules, but was defined as a
replica of the content of(x). But one could see this process of replication as a virtual application of the expansion rules for all the
nodes in the extended treeText
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to the expansion rule (iii)), that is∓b(yt) ∈ Vext or ∓b(x, yt) ∈ Vext. This contradicts with
M |= γt(x, yt) as±b(x, yt) ∈ γt(x, yt) or with M |= δt(yt) as±b(yt) ∈ γt(yt).

The proof for the satisfiability of binary rules is similar.

3. M is a minimal model ofPM
U .

Assume there is a modelM ′ ⊂ M of Q = PM
U . Then∃l1 ∈M : l1 /∈ M ′. Take a ruler1 ∈ Q

of the form l1 ← β1 with M |= β1; note that such a rule always exists by construction ofM and
expansion rules (i) and (iii). IfM ′ |= β1, thenM ′ |= l1 (asM ′ is a model), a contradiction. Thus,
M ′ 6|= β1 such that∃l2 ∈ β1 : l2 /∈ M ′. Continuing with the same line of reasoning, one obtains an
infinite set{l1, l2, . . .} with (li ∈ M)1≤i and(j, li /∈ M ′)1≤i. We observe that(li, li+1)1≤i ∈ Eext

by construction ofEext (and ultimately by expansion rules (i) or (iii)), so our assumption leads to
the existence of a cycle or of a positive path of infinite length in Gext . There cannot be any cycle in
Gext as the completion structure we deal with is clash-free, so there must be a positive path of infinite
length inGext . However the following claim contradicts our assumption:

Claim 4.4 There is no positive path of infinite length inGext .

Assume there is such a positive path of infinite length. Then it has the form(pi(xi))1≤i, where
(pi ∈ upreds(P ) ∪ bpreds(P ))1≤i. As there is a finite number of predicate symbols inP , it means
that there are two indexesj, k ∈ N

∗, j 6= k, such thatpj = pk = p andxj 6= xk (otherwise there will
be a cycle inGext ). In other words there is a path fromp(xj) to p(xk) in Gext . This contradicts with
the restriction on simple CoLPs concerning their marked predicate dependency graph, so our initial
assumption was false.

The claim is proved, so there is no modelM ′ ⊂M of Q = PM
U . Thus,M is minimal.

Proposition 4.5 (completeness)Let P be a simple CoLP andp ∈ upreds(P ). If p is satisfiable w.r.t.P ,
then there exists a clash-free complete completion structure for p w.r.t. P .

Proof.
If p is satisfiable w.r.t.P thenp is tree satisfiable w.r.t.P (Proposition 3.2), such that there must be a

tree model(U,M) for p w.r.t. P .
We construct a clash-free complete completion structure for p w.r.t. P , by guiding the nondeterministic

application of the expansion rules by(U,M) and taking into account the constraints imposed by the satura-
tion, blocking, caching, and clash rules. The proof is inspired by completeness proofs in Description Logics
for tableaux, for example in [13].

Let 〈T, G, ct, st, rl, sg, nju, njb〉 be an initial completion structure forp w.r.t. P .
We inductively define a functionπ : T ∪ AT → U that relates nodes/edges in the completion structure

to nodes in the tree model whereπ(x, y) = π(y)2, and satisfying the following properties:

‡

{

{q | q ∈ ct(z)} ⊆ L(π(z)), for all z ∈ T ∪AT

{q | not q ∈ ct(z)} ∩ L(π(z)) = ∅, for all z ∈ T ∪AT

2Recall that for a tree modelf(x, y), f is stored in the label ofy.
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Intuitively, the positive content of a node/edge in the completion structure is contained in the label of the
corresponding tree model node, and the negative content of anode/edge in the completion structure cannot
occur in the label of the corresponding tree model node.

Claim 4.6 Let CS be a completion structure andπ a function that satisfies (‡). If an expansion rule is
applicable toCS then the rule can be applied such that the resulting completion structureCS ′ and an
extensionπ′ of π still satisfies (‡).

We start by settingπ(ε) = ε (the root of the structure corresponds to the root of the treemodel) and
ct(ε) = {p}. It is clear that (‡) is satisfied. By induction letCS be a completion structure andπ a function
that satisfies (‡). We consider the expansion rules and the applicability rules:

1. Expand unary positive. As q ∈ ct(x), we have, by the induction hypothesis, thatq ∈ L(π(x)).
SinceM is a minimal model there is anr ∈ Pq of the form (1) and a ground versionr′ : q(π(x)) ←
body ∈ (Pq)

M
U such thatM |= body . Setrl(q, x) = r andupdate(q(x), β, x). Next, for each

γk(x, zk), 1 ≤ m ≤ k from r′

• If zk = π(x · s) for somex · s already inT , takeyk = x · s or if zk = x · s andzk is not yet the
image ofπ of some node inT , then addx · s as a new successor ofx in T : T = T ∪ {x · s} and
setπ(x · s) = x · s.

• update(q(x), γm, (x, yk)),

• update(q(x), δm, yk),

In other words we removed the nondeterminism from theexpand unary rule, by choosing the ruler
and the successors corresponding to the open answer set(U,M). One can verify that (‡) still holds
for π.

2. One can deal with the rules (ii-vi) in a similar way, makingthe nondeterministic choices in accordance
with (U,M).

3. Saturation. No expansion rule can be performed on a node fromT until its predecessor is saturated.
This rule is independent of the particular open answer set which guides the construction, so it is
applied as usually.

4. Blocking. Consider a nodex ∈ T which is currently expanded. If there is a nodey ∈ T such that
y < x, ct(x) ⊆ ct(y), we can stop the expansion asy andx form a blocking pair. Naturally, (‡) still
holds forπ as we have not modified the content of nodes, but just removed some unexpanded nodes.
Note that at this point we no longer use the guidance of(U,M): (U,M) might justify in a different
way the predicates grounded inx, but that is not important; we are guaranteed by the soundness result
that we have a proof by blocking.

5. Caching. Consider a nodex ∈ T which is currently expanded. If there is a saturated nodey ∈ T such
thatx ≮ y andy ≮ x andct(x) ⊆ ct(y), we can stop the expansion ofx asx andy form a caching
pair. Again, (‡) still holds for π as we have not modified the content of nodes, but just removed
some unexpanded nodes. And like in the case of blocking, we nolonger use the guidance of(U,M):
(U,M) might justify in a different way the predicates grounded inx, but that is not important; we are
guaranteed by the soundness result that we have a proof forx by reusing the proof fory.
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Provided that the process of applying the rules above terminates, starting from a tree-shaped open answer
set(U,M) which satisfiesp w.r.t. P , we have constructed a complete completion structure forp w.r.t. P
which is not contradictory (this can easily be seen from (‡) and the fact that(U,M) is an open answer set).
The obtained completion is also cycle-free as in the original open answer set no atom is justified circularly.
Even if the open answer set(U,M) is infinite, eventually on every infinite path of the corresponding tree,
there must be two nodes with equal content; these nodes will generate a blocking situation in the expansion
process described above, so the process does terminate. So,the construction does terminate and its result is
a complete clash-free completion structure.

4.4 Complexity Results

Let CS = 〈T, G, ct, st, rl, sg, nju, njb〉 be a completion structure andCS ’ the completion structure
constructed fromCS by removing fromT all nodesy where(x, y) is some blocked, or caching pair. There
are at mostmk such nodes, wherek is bound by the amountn of unary predicatesq in P and the degrees
of the rulesPq andm is the amount of nodes inCS ′. AssumeCS ′ has more than2n nodes, then there must
be two nodesx 6= y such thatct(x) = ct(y). If x < y or y < x, either(x, y) or (y, x) is a blocked pair,
which contradicts the construction ofCS ′. If x 6< y andy 6< x, (x, y) or (y, x) is a caching pair, again a
contradiction. Thus,CS ′ contains at most2n nodes, som ≤ 2n. SinceCS ′ resulted fromCS by removing
at mostmk nodes, the maximum amount of nodes inCS is (k + 1)2n, i.e., exponential in the size ofP ,
such that the algorithm has to visit a number of nodes that is exponential in the size ofP .

The graphG has as well a number of nodes that is exponential in the size ofP . Since checking for
cycles in a directed graph can be done in linear time, the algorithm runs inNEXPTIME, a nondeterministic
level higher than the worst-case complexity characterization (Proposition 3.3).

Note that such an increase in complexity is expected. For example, although satisfiability checking in
SHIQ is EXPTIME-complete, practical algorithms run in2-NEXPTIME [18]. Thanks to caching, however,
we only have an increase toNEXPTIME.

5 Related Work

Description Logic Programs[9] represent the common subset of OWL-DL ontologies and Horn logic pro-
grams (programs without negation as failure or disjunction). As such, reasoning can be reduced to normal
LP reasoning.

In [16], a clever translation ofSHIQ(D) (SHIQ with data types) combined withDL-safe rules(a
rule is DL-safe if each variable in the rule appears in a non-DL-atom, where a DL-atom is an atom with
the predicate corresponding to a DL-concept or DL-role) to disjunctive Datalog is provided. The translation
relies on a translation to clauses and subsequently applying techniques from basic superposition theory.

Reasoning inDL+log [17] does not use a translation to other approaches, but defines a specific algo-
rithm based on a partial grounding of the program and a test for containment of conjunctive queries over the
DL knowledge bases. Note that [17] has astandard names assumptionas well as aunique names assump-
tion - all interpretations are over some fixed, countably infinitedomain, different constants are interpreted
as different elements in that domain, and constants are in one-to-one correspondence with that domain.

dl-programs[5] have a more loosely coupled take on integrating DL knowledge bases and logic pro-
grams by allowing the program to query the DL knowledge base while as well having the possibility to send
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(controlled) input to the DL knowledge base. Reasoning is done via a stable model computation of the logic
program, interwoven with queries that are oracles to the DL part.

Description Logic Rules[14] are defined as decidable fragments of SWRL. The rules have a tree-like
structure similar to the structure of simple CoLPs rules. Depending on the underlying DL, one can distin-
guish betweenSROIQ rules (these do not actually extendSROIQ, they are just syntactic sugar on top of
the language),EL++ rules,DLP rules, and ELP rules [15]. The latter can be seen as an extension of both
EL++ rules andDLP rules, hence their name.

The algorithm presented in Section 4 can be seen as a procedure that constructs a tableau (as is common
in most DL reasoning procedures), representing the possibly infinite open answer set by a finite struc-
ture. There are several DL-based approaches which adopt a minimal-style semantics. Among this are
autoepistemic[4], default[2] and circumscriptive extensions of DL[3][8]. The first two extensions are re-
stricted to reasoning with explicitly named individuals only, while [8] allows for defeats to be based on
the existence of unknown individuals. A tableau-based method for reasoning with the DLALCO in the
circumscriptive case has been introduced in [7]. A special preference clash condition is introduced there to
distinguish between minimal and non-minimal models which is based on constructing a new classical DL
knowledge base and checking its satisfiability. It would be interesting to explore the connections between
our algorithm and the algorithm described there.

6 Conclusions and Outlook

We identified a decidable class of programs, simple CoLPs, and provided a nondeterministic algorithm for
checking satisfiability under the open answer set semanticsthat runs inNEXPTIME.

The presented algorithm is the first step in reasoning under an open answer set semantics. We intend
to extend the algorithm such that it can handle the whole fragment of CoLPs, as well as the presence of
constants. The latter would enable combined reasoning withthe DLSHOIQ (closely related to OWL-DL)
and expressive rules.
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