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Abstract. Incorporating new information into a knowledge base is an important problem which has
been widely considered. In this paper, we study the problem in a formal framework for reasoning
about action and change, in which action domains are described in an action language that has a
transition-based semantics. Going beyond previous works,we consider (i) a richer action language
that allows for non-deterministic, and concurrent actions, as well as the representation of indirect
effects and dependencies between fluents, (ii) more generalupdates than elementary statements,
and, most importantly, (iii) meta-level knowledge, such asobservations, assertions, or general do-
main properties that remain invariant under change, expressed in an action query language. For
this setting, we formalize a notion of update of an action domain description, relative to a generic
preference relation on action domain descriptions that selects most preferred solutions. We study
semantic and computational aspects of this notion, where weestablish basic properties of updates
and a decomposition result that gives rise to a divide and conquer approach to computing solutions
under certain conditions. Furthermore, we study the computational complexity of decision prob-
lems around computing solutions, both for the generic setting and for two particular preference
relations, viz. set-inclusion and weight-based preference. While deciding the existence of solutions
and recognizing solutions are PSPACE-complete problems ingeneral, the problems fall back into
the polynomial hierarchy under restrictions on the meta-level conditions. We finally discuss methods
to compute solutions and approximate solutions (which disregard preference). Our results provide
a semantic and computational basis for developing systems that incorporate new information into
action descriptions in an action language, in the presence of additional conditions at the meta-level.
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1 Introduction

As we live in a world where knowledge and information is in flux, updating knowledge bases is an important
issue that has been widely studied in the area of knowledge representationand reasoning, (see e.g. [61, 11,
18, 56] and references therein). However, the problem is far from trivial and many different methods have
been proposed to incorporate new information, be it affirmative or prohibitive, which are based on different
formal and philosophical underpinnings, cf. [61, 36, 52]. It appears that there is no general purpose method
that would work well in all settings, which is partly due to the fact that an update method is also dependent
to some extent on the application domain.

In particular, in reasoning about actions and change, the dynamicity of theworld is a part of the domain
theory, and requires special attention in update methods. For various approaches to formal action theories,
including the prominent situation calculus, event calculus, and action languages that emerged from the
research on non-monotonic reasoning, the problem of change has been widely studied and different methods
have been proposed (see [58] for background and references,and Section 7.1 for a more detailed discussion).

To give a simple example, consider an agent having the following knowledge, KTV , about a TV with
remote control:

(TV1) If the power is off, pushing the power button on the TV turns the power on.

(TV2) If the power is on, pushing the power button on the TV turns the power off.

(TV3) The TV is on whenever the power is on.

(TV4) The TV is off whenever the power is off.

Now assume that the agent does not know how a remote control works (e.g., she does not know the effect of
pushing the power button on the remote control). Suppose that later she obtains the following information,
KRC , about remote controls:

(RC1) If the power is on and the TV is off, pushing the power button on the remote control turns the TV on.

(RC2) If the TV is on, pushing the power button on the remote control turns the TV off.

The task is now to incorporate this new knowledge into the current knowledge baseKTV . In this partic-
ular case, this seems unproblematic, as upon simply addingKRC toKTV the resulting stock of knowledge
is consistent; in general, however, it might be inconsistent, and a major issueis how to overcome this incon-
sistency.

In order to formally study this problem, we describe domains of actions, like theTV domain above, in
a fragment of the action languageC [27], by “causal laws.” For instance, the direct effect of the action of
pushing the power button on the TV, stated in (TV1) is described by the causal law

causedPowerON after PushPBTV ∧ ¬PowerON , (1)

which expresses that this action, represented byPushPBTV , causes the value of the fluentPowerON to
change from false to true; the indirect effect of this action that is stated in (TV3) is described by the causal
law

causedTvON if PowerON , (2)



2 INFSYS RR 1843-13-08

{PushPBRC}

PowerON

TvON ¬TvON

¬PowerON

{PushPBTV , PushPBRC}

{}

{PushPBTV }

{PushPBTV , PushPBRC}
{PushPBTV }

{}
{PushPBRC}

Figure 1: A transition diagram

which expresses that if the fluentPowerON is caused to be true, then the fluentTvON is caused to be
true as well. Then, if we add the causal laws forKRC to those forKTV , the resulting action description is
consistent according to the semantics of action languageC. (The meaning of an action description can be
represented by a “transition diagram”—a directed graph whose nodes correspond to states and whose edges
correspond to action occurrences; Figure 1 below shows an example.)

As far as action languages, as in [26], are concerned, the update problem was studied to a remarkably
little extent. For the basic action languageA (see [26]), which is far less expressive thanC, the update
problem has been considered, e.g., in [41, 44]. Both works focused on updates that consist of elementary
statements (i.e., essentially facts) over time, and presented specific update methods, focusing on the contents
of the knowledge base.

In the present paper, we address the update problem from a more general perspective. For instance,
action domains are described in a much richer language, and updates are represented in terms of a set of
arbitrary causal laws. Furthermore, meta-level knowledge about the particular domain, such as assertions
obtained from observations (as in [41, 44], simply facts, but possibly also of more complex form such as
transitions), or general properties of the domain (integrity constraints) that might not be expressible in the
formal action language per se, could be taken into account for updating the given action domain description.

For example, for the effective use of the TV system in the above scenario, the following condition is
desired to hold:

(C) Pushing the power button on the remote control is always possible.

If KRC is simply added toKTV , then condition (C) is not satisfied: when the power and the TV are on,
pushing the power button on the remote control is not possible, since (RC2)and (TV3) contradict. The
question is then how the agent can updateKTV by incorporatingKRC relative to (C). Furthermore, as
condition (C) is not expressible in the action languageC, the question is also how to formally represent (C)
and similar meaningful conditions.

Motivated by these questions, we consider a generic framework for incorporating new causal laws into
an existing action description, that takes meta-level knowledge into account.Our main contributions can be
summarized as follows:

(1) We introduce a formal notion of anaction update problem, which is, given action descriptionsD and
I, and a setC of conditions, to determine a (possibly new) action descriptionD′ which incorporatesI into
D. WhileD andI are in (a canonical subset of)C, we describe conditions like (C) by “queries” in anaction
query language, similar to the one in [26]. For instance, the condition (C) above can be described in this
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language by the query
ALWAYS executable{PushPBRC}. (3)

In a more fine-grained treatment,D is split into an unmodifiable part,Du, and a modifiable part,Dm,
while C is split into obligatory conditions,Co, (which must hold under all circumstances) and preference
conditions,Cp, (which ideally should hold, but might be violated).

A solution to an action update problem is then defined in terms of an action descriptionD′ that consists ofI
and statements fromD such thatCo is satisfied; as, in general, different candidatesD′ are possible, we use
a (strict)preference relation⊏C over action descriptions1 in order to discriminate amongst alternatives and
to single out a most preferable candidateD′ as the result. Here the subscriptC indicates that the preference
relation is possibly dependent on the setC of conditions. Such a preference relation can be defined in
different ways, in terms of syntactic conditions (e.g., the set of causal laws in an action description), or
semantic conditions (e.g., number of conditions fulfilled by an action description).

(2) We investigate semantic properties of action updates, and establish some basic properties regarding
solution preference, and special forms of updates, which serve as tests for the suitability of the notions
proposed. We furthermore determine conditions under which computing a solution to an action update
problem can be structurally decomposed, such that a divide-and-conquer approach becomes feasible. In
particular, this is possible if the action description and the conditions can be split into disjoint parts that
interfere in a benign way, and if the preference ordering can be gracefully decomposed along this split.

(3) We study the computational complexity of the action update problem, where we consider the generic
setting (making some assumptions about the cost of deciding whether the conditionsC are satisfied by an
action descriptionD, denotedD |= C, and whetherD ⊏C D′ holds givenD andD′), as well as some
natural instances. Among the latter are those where the preference relation ⊏C is ordinary set-inclusion
and where it is weight-based relative to satisfied conditions. Under the assumption that testingD |= C
andD ⊏C D′ is feasible in polynomial space, deciding the existence of some solution to an action update
problem turns out to bePSPACE-complete in general, and also verifying a given solution candidate has this
complexity. However, the complexity of both problems falls back into the polynomialhierarchy, if deciding
D |= C andD ⊏C D′ is located there, and is located at most one level higher up there; we recallhere
that deciding the consistency of an action description inC is intractable in general (andNP-complete for
the canonical fragment of our concern). Given that the testD |= C andD ⊏C D′ is polynomial, deciding
solution existence isNP-complete and thus not harder than the consistency problem, and recognizing a
given solution is only mildly harder.

(4) Finally, we discuss methods for computing solutions and “near-solutions”which approximate them,
by disregarding solution preference. As for solutions, we focus on set-inclusion and one particular weight-
based comparison, as preference relations⊏C , which use an oracle for near-solutions. For near-solutions,
we present a method that reduces the problem into reasoning over an action description that is constructed
from the problem input; here, answering action queries can be exploited totest given candidates.

Our results go significantly beyond previous results in the literature (see Section 7.1), and provide a
semantic and computational basis for developing systems that incorporate new information into action de-
scriptions in an action language, in the presence of further conditions thatcan be formally expressed at

1That is,⊏C is irreflexive and transitive.
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the meta-level, and thus cleanly be separated from the action description at the object level. Our generic
framework can be instantiated to different settings, which reflect different intuitions or criteria for solution
preference. It thus provides a flexible tool for modeling action update. As a byproduct of our research,
we also obtain decomposition results of action descriptions that emerge from special cases of action update
instances, which are interesting in their own right.

The rest of this paper is structured as follows. In the next section, we provide preliminaries about
transition diagrams, action languages, and actions queries as needed forthe problem setting. After that,
we define in Section 3 the update problem in a generic framework and brieflyintroduce a syntactic and
a semantic instance of it. In Section 4, we study some semantic properties of updates, including possible
decompositions. After that, we turn to computational issues. In Section 5, we characterize the computational
complexity of problems around updates, and in Section 6 we provide algorithmsfor computing updates.
After a discussion of related work and further aspects of the problem in Section 7, we conclude with a
summary and issues for further research.

2 Preliminaries

2.1 Transition Diagrams

We start with a(propositional) action signaturethat consists of a setF of fluent names, and a setA of action
names. Anaction is a truth-valued function onA, denoted by the set of action names that are mapped tot.

A (propositional) transition diagramof an action signatureL = 〈F,A〉 consists of a setS of states, a
functionV : F×S → {f, t}, and a subsetR ⊆ S× 2A×S of transitions. We say thatV (P, s) is thevalue
of P in s. The statess′ such that〈s,A, s′〉 ∈ R are the possibleresults of the executionof the actionA in
the states. We say thatA is executablein s, if at least one such states′ exists.

A transition diagram can be thought of as a labeled directed graph. Everystates is represented by a
vertex labeled with the functionP 7→ V (P, s) from fluent names to truth values. Every triple〈s,A, s′〉 ∈ R
is represented by an edge leading froms to s′ and labeledA. An example of a transition diagram is shown
in Figure 1.

2.2 Action Description Languages

We consider the prime subset of the action description languageC [27] that consists of two kinds of expres-
sions (calledcausal laws): static lawsof the form

causedL if G, (4)

whereL is a literal (an expression of the formP or¬P , whereP is a fluent name) andG is a propositional
combination of fluent names, anddynamic lawsof the form

causedL if G after H, (5)

whereL andG are as above, andH is a propositional combination of fluent names and action names. In (4)
and (5) the partif G can be dropped ifG is True.

An action descriptionis a set of causal laws. For instance, the knowledge base about a TV system,D,
of the agent in the previous section, can be described by causal laws in Figure 2. An expression of the form

inertial L1, . . . , Lk
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causedPowerON after PushPBTV ∧ ¬PowerON

caused¬PowerON after PushPBTV ∧ PowerON

causedTvON if PowerON

caused¬TvON if ¬PowerON

inertial PowerON ,¬PowerON ,TvON ,¬TvON

Figure 2: An action description forKTV

causedTvON after PushBRC ∧ PowerON ∧ ¬TvON

caused¬TvON after PushBRC ∧ TvON

Figure 3: Causal laws forKRC

stands for the causal laws
causedLi if Li after Li (1 ≤ i ≤ k)

describing that the value of the fluentLi stays the same unless changed by an action.
The meaning of an action description can be represented by a transition diagram. LetD be an action

description with a signatureL = 〈F,A〉. Then the transition diagram〈S, V,R〉 describedbyD, denoted by
T (D), is defined as follows:

(i) S is the set of all interpretationss of F such that, for every static law (4) inD, s satisfiesG ⊃ L,

(ii) V (P, s) = s(P ),

(iii) R is the set of all triples〈s,A, s′〉 such thats′ is the only interpretation ofF which satisfies the headsL
of all

• static laws (4) inD for whichs′ satisfiesG, and

• dynamic laws (5) inD for whichs′ satisfiesG ands ∪A satisfiesH.

The laws included in(iii) above are those that areapplicableto the transition froms tos′ caused by executing
A. For instance, the transition diagram described by the action description for KTV in Figure 2 is presented
in Figure 1. We say that an action description isconsistentif it can be represented by a transition diagram
with nonempty state set.

In the following we suppose that an action descriptionD consists of two parts:Du (unmodifiable
causal laws) andDm (modifiable causal laws). Therefore, we sometimes denote an action description D
asDu ∪Dm.

2.3 Action Queries

To talk about observations of the world, or assertions about the effectsof the execution of actions, we use an
action query language like in [26], consisting of queries described as follows [16].

A basic queryis either(a) astatic queryof the form

holdsF , (6)
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whereF is a fluent formula, or(b) adynamic queryof the form

necessarilyQ after A1; . . . ;An, (7)

whereQ is a basic query and eachAi is an action; or(c) any propositional combination of basic queries. An
existential queryis an expression of the form

SOMETIMES Q, (8)

whereQ is a basic query; auniversal queryis of the form

ALWAYS Q, (9)

whereQ is a basic query. Aqueryq is a propositional combination of existential queries and universal
queries.

As for the semantics, letT = 〈S, V,R〉 be a transition diagram, with a setS of states, a value function
V mapping, at each states, every fluentP to a truth value, and a setR of transitions. Ahistory of T of
lengthn is a sequence

s0, A1, s1, . . . , sn−1, An, sn (10)

where each〈si, Ai+1, si+1〉 (0 ≤ i < n) is in R. We say that a states ∈ S satisfiesa basic queryQ′ of
form (6) (resp. (7)) relative toT (denotedT, s |= Q′), if the interpretationP 7→ V (P, s) satisfiesF (resp.
if, for every historys = s0, A1, s1, . . . , sn−1, An, sn of T of lengthn, basic queryQ is satisfied at statesn).
For other forms of basic queriesQ, satisfactionis defined by the truth tables of propositional logic. IfT is
described by an action descriptionD, then the satisfaction relation betweens and a basic queryQ can be
denoted byD, s |= Q as well.

Note that, for every states and for every fluent formulaF ,

D, s |= holdsF ⇐⇒ D, s |= ¬holds¬F.

For every states, every fluent formulaF , and every action sequenceA1, . . . , An (n ≥ 1), if

D, s |= necessarily(holdsF ) after A1; . . . ;An

then
D, s |= ¬necessarily(¬holdsF ) after A1; . . . ;An.

We say thatD entailsa queryq (denotedD |= q) if one of the following holds:

• q is an existential query (8) andD, s |= Q for some states ∈ S;

• q is a universal query (9) andD, s |= Q for every states ∈ S;

• q = ¬q′ andD 6|= q′;

• q = q1 ∧ q2 andD |= q1 andD |= q2; or

• q = q1 ∨ q2 andD |= q1 orD |= q2.
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For every basic queryQ,

D |= SOMETIMES Q iff D |= ¬ALWAYS ¬Q.

For a setC of queries, we say thatD entailsC (denotedD|=C) if D entailsevery query inC. Consider,
e.g., the action description presented in Figure 2. It does not entail any set of queries containing

ALWAYS necessarily (holds¬TvON ) after {PushPBRC }

because this query is not satisfied at the state{TvON ,PowerON }; but, it entails the queries:

ALWAYS holds PowerON ≡ TvON , (11)

ALWAYS holds PowerON ∧ TvON ⊃
¬necessarily(holdsTvON ) after {PushPBTV }.

(12)

In the rest of the paper, an expression of the form

possiblyQ after A1; . . . ;An,

whereQ is a basic query and eachAi is an action, stands for the dynamic query

¬necessarily¬Q after A1; . . . ;An;

an expression of the form
evolvesF0;A1;F1; . . . ;Fn−1;An;Fn, (13)

where eachFi is a fluent formula, and eachAi is an action, stands for

holdsF0 ∧ possibly(holdsF1 ∧ possibly(holdsF2 ∧ ...) after A2) after A1;

and
executableA1; . . . ;An

where eachAi is an action, stands for

possiblyTrue after A1; . . . ;An.

We sometimes dropholds from static queries appearing in dynamic queries.

2.3.1 Examples

To get a better intuition about the capability of the action query language, we give some examples of prop-
erties that can be expressed in it.

• Existence of certain states, transitions, and histories:For instance, we can express the existence of
states where a formulaF holds by means of the query

SOMETIMES holds F.
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Similarly, we can express the existence of a transition from some state where aformulaF holds to
another state where a formulaF ′ holds, by the execution of an actionA:

SOMETIMES holds F ∧ possiblyF ′ after A.

In general, the existence of a history (10) such that, for eachsi of the history, the interpretation
P 7→ V (P, si) satisfies some formulaFi is expressed by the query:

SOMETIMES evolvesF0;A1;F1; . . . ;Fn−1;An;Fn. (14)

For instance, the query

SOMETIMES evolves PowerON ; {PushPBTV };
¬PowerON ; {PushPBTV };PowerON .

(15)

describes the presence of the following history in Fig. 1:

{PowerON ,TvON }, {PushPBTV },
{¬PowerON ,¬TvON }, {PushPBTV }, {PowerON ,TvON }.

(16)

• (Non-)executability of an action:Like in [14], executability of an action sequenceA1, . . . , An (n ≥ 1)
at every state can be described by

ALWAYS executableA1; . . . ;An.

That no action is possible at a state where formulaF holds is expressed by

SOMETIMES holds F ∧
∧

A∈2A
necessarilyFalse after A.

• Mandatory and possible effects of actions:Like in [14], mandatory effects of a sequenceA1, . . . , An

(n ≥ 1) of actions in a given context are described by

ALWAYS holds G ⊃ necessarilyF after A1; . . . ;An;

and possible effects of a sequence of actions in a context by

ALWAYS holds G ⊃ possiblyF after A1; . . . ;An.

In these queries,F describes the effects andG the context.

3 Problem Description

In this section, we provide a formal description of the update problem, and itssolution, as well as a weaker
form of solution, called near-solution.

Informally, we define anAction Description Update (ADU)problem by an action descriptionD =
Du ∪Dm, a setI of causal laws, a setC = Co ∪ Cp of queries, and a preference relation⊏C over action
descriptions. HereDu andDm are the unmodifiable (protected) and the modifiable part ofD, respectively,
andI is the update that has to be incorporated. The queries inCo are “hard (obligatory) constraints” that have
to be satisfied in an acceptable action description, while the queries inCp are “soft (preference) constraints”
that might be accounted for by the preference relation⊏C . In the latter,D ⊏C D′ expresses thatD is less
preferable compared toD′.
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Definition 1 (Action Description Update) Given an action descriptionD = Du ∪Dm, a setI of causal
laws, a setC = Co ∪ Cp of queries, and a preference relation⊏C over action descriptions, all over the
same signatureL, an action descriptionD′ accomplishes an (action description) updateofD by I relative
toC, if

(i) D′ is consistent,

(ii) Du ∪ I ⊆ D
′ ⊆ D ∪ I,

(iii) D′ |= Co,

(iv) there is no consistent action descriptionD′′ such thatDu ∪ I ⊆ D′′ ⊆ D ∪ I, D′′ |= Co, and
D′

⊏C D′′.

Such aD′ is called asolution to the ADU problem(D, I, C,⊏C). If an action descriptionD′ satisfies
(i)–(iii), then we callD′ a near-solutionto the ADU problem(D, I, C,⊏C).

Condition(i) expresses that an action description update, modeling a dynamic domain, such as the TV
system in Section 1, must have a state. According to Condition(ii) , new knowledge about the world and
the invariable part of the existing action description are kept, and the causal laws in the variable part are
considered to be either “correct” or “wrong”, and in the latter case simply disposed.

Condition (iv) imposes semantical constraintsC onD′, which comprise further knowledge about the
action domain gained, e.g., from experience. It is important to note thatC can be modified later for another
action description update (as will be discussed below).

Finally, Condition(iv) picks the most preferred action description among the ones for which Condi-
tions(i)–(iii) are satisfied.

In an ADU problem, the preference relation can be described in various ways. For instance, it can be
defined in terms of syntactic conditions, like simple set inclusion. If we define⊏C to be⊂, then an action
descriptionD is less preferable than an action descriptionD′ if D ⊂ D′. Alternatively, the preference
relation⊏C can be defined in terms of semantic conditions. For instance, once a weight isassigned to each
action description with respect to some semantic measure (e.g., the number of queries inCp entailed by
the description) by a functionweight , we can take⊏C to be an operator<weight comparing the weights
of the action descriptions; then an action descriptionD is less preferable than an action descriptionD′ if
D <weightD

′.
In the literature, two kinds of changes that incorporate new information into aknowledge base have

been identified, viz. revision (which adds more precise knowledge aboutthe domain) and update (which is
a change of the world per se) [60], which should be governed by different sets of postulates in axiomatic ap-
proaches like the AGM theory [1] and the KM theory [36]. Our notion of ADU has more of a revision flavor,
but we do not govern it with AGM or KM postulates, as the formalism is non-monotonic; see Section 7.2
for more discussion. However, the conditionsC can be adjusted if the nature of the changeI is known. In
case of a revision,C should reasonably contain all conditions corresponding to observationsmade about the
domain, while other conditions may be kept or dropped; on the other hand, ifI is a change of the world per
se, then conditions corresponding to observations might be dropped.

3.1 Examples

The following is an example of an ADU problem with the syntax-based preference relation above.
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{PushPBRC}

PowerON

TvON ¬TvON

¬PowerON

{PushPBTV , PushPBRC}

{}

{PushPBTV }

{PushPBTV , PushPBRC}
{PushPBTV }

{}

Figure 4: Transition diagram described byD∪ I of Ex. 1.

Example 1 Let D be the action description forKTV in Figure 2, withDm containing the third and the
fourth causal laws (i.e.,Dm = {causedTvON if PowerON , caused¬TvON if ¬PowerON }, and letI
be the set of the causal laws forKRC in Figure 3. LetC = Co contain the besides the query (3) also the
queries (12) and

ALWAYS executable{PushPBTV }, (17)

and take (strict) set-inclusion (⊂) as the preference relation⊏C . The transition diagram described byD∪I is
shown in Figure 4. Here we can see that, at the state where bothPowerON andTvON are mapped tot, the
actionPushPBRC is not executable. Therefore,D ∪ I is not a solution to the ADU problem(D, I, C,⊏C).
In fact, a solution is obtained by dropping the static law (2) fromD ∪ I. 2

For an instance of a semantic definition of⊏C , consider the following setting based on weights that are
assigned to queries onC (i.e., weighted queriesin [16]). We define the weight of an action descriptionD
relative to a setC of queries, and a weight functionf : C → R mapping each query inC to a real number
by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the weightsof queries encodes to what
extent the setC of given preferable queries is satisfied. (Note thatf can easily express a threshold function
as well.) With this definition, the more the highly preferred queries are satisfied, the more preferred the
action description is.

Example 2 Reconsider our previous example whereCp consists of the query (12) with weight 1. Suppose
that the preference relation⊏C is defined in terms of a weight function on queries (i.e.,⊏C=<weightq ).
Then, the action descriptionsD′ = (D ∪ I) \ {causedTvON if PowerON } andD′′ = Du ∪ I satisfyCo

and thus are near-solutions. However,D′′ does not satisfyCp, which impliesweightq(D
′′) = 0, whereas

weightq(D
′) = 1, and henceD′′

⊏C D′.

For further details on comparing action description by means of weighted queries and other semantic
preferences, we refer the reader to [16].

In the rest of the paper, we will study ADU problems at an abstract level, leaving the preference relation
undefined. For some problems, we will provide more concrete results by instantiating the preference
relation: we will take⊏C as⊂ (andCp = ∅, thusC = Co) for an instance of a syntax-based relation, and
we consider⊏C =<weightq as a representative of the semantic-based approaches.
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4 Properties of Updates

In this section, we study some basic properties of solutions to an ADU problem.To this end, we first
introduce a subsumption relation between action descriptions, and then showthat solutions to an ADU
problem fulfill some desired properties regarding special updates, provided that the preference relation⊑C

obeys some natural conditions. We then consider the structure of solutionsand near-solutions, and establish
a disjoint factorization result that allows for decomposing an ADU into smaller parts.

4.1 Basic Update Properties

We define subsumption of causal laws by an action description as follows.

Definition 2 (Subsumption) LetD be an action description over a signatureL = 〈F,A〉. Then,

• a static law (4) overL is subsumedbyD, if for every states in T (D), the interpretation ofF describ-
ing s satisfiesG ⊃ L;

• a dynamic law (5) overL is subsumedbyD, if for every transition〈s,A, s′〉 in T (D), the following
holds: if the interpretation ofF ∪ A describings andA satisfiesH, then the interpretation ofF
describings′ satisfiesG ⊃ L.

A setS of causal laws issubsumedby an action descriptionD, if every law inS is subsumed byD.

Furthermore, we build on the properties of a preference relation⊏C introduced next.
In the following, for an action descriptionD and a setC of queries, let us denote byCD the set{c ∈

C | D |= c}.

Definition 3 Given a set of queriesC over a signatureL = 〈F,A〉, a preference relation⊏C over aL is
called

• monotone with respect toC, if for any two action descriptionsD andD′ in L, CD′ ⊆ CD implies
D 6⊏C D′, andstrongly monotone with respect toC, if additionallyCD′ ⊂ CD impliesD′

⊏C D;

• monotone with respect toL, if for any two action descriptionsD andD′ in L, D′ ⊆ D implies
D 6⊏C D′, andstrongly monotone with respect toL, if additionallyD′ ⊂ D impliesD′

⊏C D;

• non-minimizing with respect toL, if for any action descriptionD in L,D |= C impliesD 6⊏C D′ for
all D′ ⊆ D, andstrongly non-minimizing with respect toL, if additionallyD |= C impliesD′

⊏C D
for all D′ ⊂ D.

We say that⊏C is monotone, if it is either monotone with respect toC or monotone with respect toL
(or both).

Monotonicity is an intuitive potential requirement one might have on a preference relation: monotonicity
with respect toC encodes the semantically motivated preference of satisfying preferable queries as much
as possible, whereas monotonicity with respect toL expresses a more syntactic view of retaining as many
causal laws as possible. This is reflected in our representative preference relations. Notice that⊂ is strongly
monotone with respect toL (but not necessarily with respect toC), whereas<weightq is monotone with
respect toC if, for instance, all weights are nonnegative (but not necessarily with respect toL).
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Obviously, any monotone preference relation is also non-minimizing with respect toL, and strong mono-
tonicity with respect toL implies that⊏C is also strongly non-minimizing with respect toL. Intuitively,
a non-minimizing preference relation with respect toL ensures that syntactically smaller (with respect to
subset inclusion) action descriptions cannot prevent an action description that satisfies all queries from being
a solution, while the respective strong property explicitly excludes syntactically smaller action descriptions
as solutions in this case (note that the additional condition implies the condition of non-minimizing, and
could serve as a definition alone). This intuition motivates basic properties ofsolutions to an ADU problem
as follows.

Proposition 1 (Subsumption) Let (D, I, C,⊏C) be an ADU problem, such that⊏C is non-minimizing
with respect toL, D is consistent andD |= C. If D subsumesI, thenD ∪ I is a solution to(D, I, C,⊏C).
Moreover if⊏C is strongly non-minimizing with respect toL, thenD ∪ I is the unique solution.

Proof. LetD = Du ∪Dm and letT (D) = 〈S, V,R〉. SinceD ∪ I = Du ∪ I ∪Dm trivially satisfies(ii) of
our definition of update accomplishment, it remains to show:(i) D ∪ I is consistent,(iii) D ∪ I |= Co, and
(iv) Du ∪ I ⊆ D

′ ⊆ D ∪ I andD′ |= Co impliesD ∪ I 6⊏C D′.
Let T (D ∪ I) = 〈S′, V ′, R′〉. In the following we prove thatT (D ∪ I) = T (D).

S′ = S: SinceD ⊆ D ∪ I, we getS′ ⊆ S. Furthermore,D subsumesI and, hence, everys ∈ S satisfies
G ⊃ L for all static laws of form (4) inI, i.e.,S ⊆ S′.
V ′ = V : Follows fromS′ = S and our labeling convention for states.
R′ = R: Let 〈s,A, s′〉 be acandidatefor a transition relation,R, of an action description,D, if (a) s′

satisfies the headsL of all static laws of form (4) inD, for whichs′ satisfiesG, and(b) s′ satisfies the heads
L of all dynamic laws of form (5) inD, for which s′ satisfiesG ands ∪ A satisfiesH. Furthermore, let
s′ be adetermined successorof s w.r.t. A, if the set of heads of all laws applicable to〈s,A, s′〉 uniquely
determiness′, i.e., it contains (at least) one fluent literal for every fluent inF. Then,〈s,A, s′〉 ∈ R iff it is a
candidate forR ands′ is a determined successor ofs with respect toA. SinceD ⊆ D ∪ I, every candidate
〈s,A, s′〉 for R′ is a candidate forR. Moreover, thatD subsumesI implies that every candidate〈s,A, s′〉
for R is a candidate forR′ as well. As〈s,A, s′〉 is neither inR nor inR′, if s′ is not a determined successor
of s with respect toA it follows thatR′ = R.

Given thatD is consistent and thatD |= C, T (D ∪ I) = T (D) proves(i) and (iii) . As for (iv),
D |= C andT ′ = T impliesD ∪ I |= C. Since⊏C is non-minimizing with respect toL, it follows for
all Du ∪ I ⊆ D′ ⊆ D ∪ I, thatD ∪ I 6⊏C D′, which proves(iv). Therefore,D ∪ I is a solution to
(D, I, C,⊏C). Moreover, if⊏C is strongly non-minimizing with respect toL, thenD′

⊏C D ∪ I holds for
all Du ∪ I ⊆ D

′ ⊆ D ∪ I. This implies thatD ∪ I is the unique solution to(D, I, C,⊏C) in this case. 2

From this result, we obtain the following corollaries telling us that the solution to anADU is as we
would expect in some extremal cases, that correspond to cases that were considered for nonmonotonic logic
programming updates [4, 18].

Corollary 1 (Void Update) Let (D, ∅, C,⊏C) be an ADU problem. If⊏C is non-minimizing with respect
toL,D is consistent, andD |= C, thenD is a solution to(D, ∅, C, ⊏C). If ⊏C is strongly non-minimizing
with respect toL, thenD is the unique solution.

Corollary 2 (Idempotence) Let (D,D,C,⊏C) be an ADU problem, such that⊏C is non-minimizing with
respect toL,D is consistent, andD |= C, thenD is the unique solution to(D,D,C,⊏C).
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Let us call a causal lawtautological, if it is subsumed by every action descriptionD. Informally, such
a causal law has no logical content, and updating with it should not lead to any change. In fact we have the
following property.

Corollary 3 (Addition of Tautologies) Let(D, I, C,⊏C) be an ADU problem, such that⊏C is non-minimi-
zing with respect toL,D is consistent, andD |= C. If I consists of tautological causal laws, thenD ∪ I is
a solution to(D, I, C,⊏C). If ⊏C is strongly non-minimizing with respect toL, thenD ∪ I is the unique
solution.

Notice that a similar property fails for logic programming updates as in [4, 18].

Example 3 Consider an action descriptionD that has the following causal laws:

inertial LightON ,¬LightON , (18)

causedLightON after SwitchLight ∧ ¬LightON , (19)

caused¬LightON after SwitchLight ∧ LightON . (20)

SinceD is consistent and⊂ is strongly non-minimizing, we can state for any setC of queries, such that
D |= C: D is the unique solution to(D, ∅, C,⊂) (void update), as well as to(D,D,C,⊂) (idempotence),
and to(D,D′, C,⊂) for any tautological action descriptionD′ (addition of tautologies).

Considering<weightq with nonnegative weights for any queryc ∈ C instead of⊂ as a preference relation
(which is non-minimizing), we can still infer thatD′ is a solution, in general however, it need not be unique.
2

4.2 Disjoint Factorization

We next consider a structural property of solutions and near-solutions, which can be exploited for a syntacti-
cal decomposition of an ADU problem, in a divide-and-conquer manner. Because of the involved semantics
of transitions and causation, in general some prerequisites are needed.

Definition 4 (NOP) We say that an action descriptionD has NOP, if T (D) has either (i) a transition
〈s, ∅, s〉 for some states, or (ii) for every states some transition〈s, ∅, s′〉.

Notice that NOP is a very natural property that often applies, in particular for time-drivendomains,
where passage of time causes〈s, ∅, s〉 by inertia, usually for all statess.

The following lemma is the key for our disjoint factorization result. For any action signatureL= 〈F,A〉,
we denote byLD the part of it which appears in any action descriptionD.

Lemma 1 Let T (Di) = 〈Si, V i, Ri〉 for action descriptionsDi, i = 0, 1, such thatLD0 ∩ LD1 = ∅. Let
T (D0 ∪D1) = 〈S, V,R〉. Then the following hold:

(i) S = S0 × S1;

(ii) If R0 6= ∅ andR1 6= ∅ then, for〈s00, A
0, s01〉 ∈ R

0 and〈s10, A
1, s11〉 ∈ R

1, 〈s00∪ s
1
0, A

0∪A1, s01∪ s
1
1〉 ∈

R;

(iii) for 〈s,A, s′〉 ∈ R, 〈s ∩ LD0 , A ∩ LD0 , s′ ∩ LD0〉 ∈ R0 and〈s ∩ LD1 , A ∩ LD1 , s′ ∩ LD1〉 ∈ R1.
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Proof. (i) is trivial. We prove(ii) and(iii) as follows.
(ii) Suppose thatR0 6= ∅ andR1 6= ∅. Take any〈s00, A

0, s01〉 ∈ R
0 and〈s10, A

1, s11〉 ∈ R
1. We show that

〈s00 ∪ s
1
0, A

0 ∪A1, s01 ∪ s
1
1〉 ∈ R. Suppose this is not the case. Then one of the following two cases holds:

(1) For some dynamic lawd of the form (5) inD0 ∪D1, s00 ∪ s
1
0 ∪A

0 ∪A1 satisfiesH, ands01 ∪ s
1
1 does

not satisfyG ∧ L. W.l.o.g., suppose thatd is inD0. Then, sinceLD0 ∩ LD1 = ∅, s00 ∪ A
0 satisfiesH and

s01 does not satisfyG ∧ L. This implies that〈s00, A
0, s01〉 6∈ R

0, which is a contradiction.
(2) s02∪s

1
2 is another state (different froms01∪s

1
1) that satisfies the heads of all static laws (4) inD0∪D1

for which s00 ∪ s
1
0 satisfiesG, and of every dynamic law (5) inD0 ∪ D1, such that satisfaction ofH by

s00 ∪ s
1
0 ∪ A

0 ∪ A1 implies thats01 ∪ s
1
1 satisfiesG. Then, (since each causal law is inD0 orD1 but not in

both, due toLD0 ∩ LD1 = ∅) it follows that,s02 satisfies the heads of all static laws (4) inD0 for which
s00 satisfiesG, and of every dynamic law (5) inD0, such that satisfaction ofH by s00 ∪ A

0 implies thats01
satisfiesG. This implies that〈s00, A

0, s01〉 6∈ R1. (Symmetrically, the claim holds forD1.) This is again a
contradiction.
(iii) Take any〈s,A, s′〉 ∈ R. W.l.o.g., suppose that〈s ∩ LD0 , A ∩ LD0 , s′ ∩ LD0〉 6∈ R0. Then one of the
following two cases holds:

(1) For some dynamic lawd of the form (5) inD0, s ∩ LD0 ∪ A ∩ LD0 satisfiesH, ands′ ∩ LD0 does
not satisfyG ∧ L. SinceLD0 ∩ LD1 = ∅, s ∪ A satisfiesH ands′ does not satisfyG ∧ L. This implies
〈s,A, s′〉 6∈ R, a contradiction.

(2) s02 is another state that satisfies the heads of all static laws inD0 for which s ∩ LD0 satisfiesG, and
of every dynamic law (5) inD1 such that satisfaction ofH by s ∩ LD0 ∪ A ∩ LD0 implies thats′ ∩ LD0

satisfiesG. Considers′′ = s02 ∪ s
′ ∩ LD1 . Due to(i) above,s′′ ∈ S. Moreover, sinceLD0 ∩ LD1 = ∅, the

following holds:s′′ satisfies the heads of all static laws (4) inD0 ∪D1 for whichs satisfiesG, and of every
dynamic law (5) inD0 ∪D1, such that satisfaction ofH by s ∪ A implies thats′ satisfiesG. This implies
that〈s,A, s′〉 6∈ R, which is a contradiction. 2

Intuitively, this lemma describes how the transition diagram of an action description can be composed,
if the action description consists of two syntactically disjoint parts. It can thusbe exploited to decompose a
given action description into disjoint parts as in our next result. For such adecomposition to be faithful in the
sense that solutions to the respective ADU subproblems can be composed toyield a solution to the original
ADU problem, care has to be taken with respect to two aspects: First, an emptyset of transitions shall not
compromise the approach, and thus has to be avoided, in the presence of dynamic queries (cf. Lemma 1(ii) ).
This can be guaranteed by the NOP property, which will in fact be sufficient for composing near-solutions.
Second, for composing solutions the composed preference relation needs to comply with the preferences of
the subproblems. Stated from the viewpoint of decomposition, the preference relation must be factorizable.

Towards a formal treatment of these ideas, we need further terminology. We call (L0,L1), where
Li = 〈Fi,Ai〉, i = 0, 1, apartitioningof a signatureL= 〈F,A〉, if (F0,F1) and(A0,A1) are partitioning
of F andA, respectively. We first define decompositions of action descriptions andconditions.

Definition 5 (AD/Condition Decomposition) Suppose(L0,L1) is a partitioning of a signatureL= 〈F,A〉,
and letX be either an action description or a set of conditions overL. Then a partitioning(X0, X1) of
X is called adecomposition ofX with respect to(L0,L1), if LXi ⊆Li, for i = 0, 1. Furthermore,X is
decomposable with respect to(L0,L1), if such a decomposition exists.

Based on this, we next define the notion of a near-decomposition of an ADUproblem, which splits the
action description and the conditions in separate parts while disregarding preference.
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Definition 6 (Near-Decomposition) Let (D, I, C,⊏C) be an ADU problem with signatureL, and let(D0,
D1), (I0, I1), and(C0, C1) be decompositions ofD, I, andC, respectively, with respect to a partitioning
(L0,L1) ofL. Then,((D0, I0, C0), (D1, I1, C1)) is anear-decompositionof (D, I, C,⊏C) with respect to
(L0,L1).

The following theorem now formally shows that the near-solutions of an ADUproblem can be obtained
from those of a near-decomposition, provided that some ramifying conditions hold. We say that a queryc
occurspositively(resp. negatively) in a setC of queries, ifc occurs in the scope of an even (resp. odd)
number of negations in a query inC.

Theorem 1 (Disjointness)Given an ADU problem(D, I, C,⊏C) with signatureL, let ( (D0, I0, C0) ,
(D1, I1, C1)) be a near-decomposition with respect to a partitioning(L0,L1) of L, and let⊑Ci

be an
arbitrary preference ordering for action descriptions overLi, i = 0, 1. Then the following holds:

(i) Let Xi be a near-solution to(Di, Ii, Ci,⊏Ci) such thatXi has NOP if some dynamic query occurs
negatively inC1−i, for i = 0, 1. ThenX0 ∪X1 is a near-solution to(D, I, C,⊏C).

(ii) Let X be a near-solution to(D, I, C,⊏C), and let(X0, X1) be any partitioning ofX with respect to
(L0,L1) such thatXi ⊆ Di andXi has NOP if some dynamic query occurs positively inC1−i, for
i = 0, 1. Then,Xi is a near-solution to(Di, Ii, Ci,⊏Ci), for i = 0, 1.

Proof. Let T (X0 ∪X1) = 〈S, V,R〉 and letT (Xi) = 〈Si, V i, Ri〉. We first show for any static queryc,
thatX0 ∪ X1, s |= c if c ∈ Ci, Xi, si |= c, ands ∩ Li = si. Since for each fluent literalL in c, si |= L
implies s |= L, and sincec ∈ LCi ⊆ Li (i.e., c contains only fluent literals fromLi), the claim follows.
Conversely, for any static queryc, it holds thatXi, si |= c if c ∈ Ci, X0 ∪ X1, s |= c, andsi = s ∩ Li.
Again due to the fact that every fluent literalL in c is fromLi, we conclude thats |= L implies si |= L,
which proves the claim. Therefore, we conclude for any static queryc ∈ LCi ⊆ Li that there exists a state
s ∈ S such thatX0 ∪ X1, s |= c iff there exists a statesi ∈ Si such thatXi, si |= c. Moreover by the
structure ofS (cf. Lemma 1(i)), X0 ∪X1, s |= c for all s ∈ S iff Xi, si |= c for all si ∈ Si. Hence, ifC
just contains static queries, thenX0 ∪X1 entailsC iff X0 entailsC0 andX1 entailsC1.

We next consider dynamic queriesc that are either of the formnecessarilyQ after A1; . . . ;An or
¬necessarilyQ after A1; . . . ;An and show the following: (1)X0 ∪ X1, s |= c if c ∈ Ci, Xi, si |= c,
s ∩ Li = si, andX1−i has NOP ifc is negative, orQ contains a negative dynamic query; (2)Xi, si |= c if
c ∈ Ci, X0 ∪X1, s |= c, si = s ∩ Li,andX1−i has NOP ifc is positive, orQ contains a positive dynamic
query. We proceed by induction on the nesting depthk of the query.

Base Case (k = 0): (1) Let c be positive and towards a contradiction consider a states ∈ S, such that
s∩Li = si and there exists a historyh = s,A1, s1, . . . , sn−1, An, sn, such thatsn 6|= Q. By Lemma 1(iii) ,
every transition of the historyhi = si, A1, s1∩L

i, . . . , sn−1∩L
i, An, sn∩L

i is inRi. Furthermore,sn 6|= Q
impliessn ∩ L

i 6|= Q becausec ∈ Xi andQ contains only static queries. Contradiction. Ifc is negative,
then there exists a historyhi = si, A1, s

i
1, . . . , s

i
n−1, An, s

i
n such thatsi

n 6|= Q. SinceX1−i has NOP, there
exists a sequence ofn+ 1 states, such thath1−i = s1−i, ∅, s1−i

1 , . . . , s1−i
n−1, ∅, s

1−i
n is a history ofX1−i. By

Lemma 1(ii) , h = si ∪ s1−i, A1, . . . , An, s
i
n ∪ s

1−i
n is a history ofX0 ∪X1. Furthermore,si

n 6|= Q implies
si
n∪ s

1−i
n 6|= Q becausec ∈ Xi andQ contains only static queries. Contradiction. This proves (1) fork = 0.

(2) Let c be positive and towards a contradiction consider a statesi ∈ Si, such thatsi = s ∩ Li and
there exists a historyh = si, A1, s

i
1, . . . , s

i
n−1, An, s

i
n, such thatsi

n 6|= Q. SinceX1−i has NOP, there
exists a sequence ofn+ 1 states, such thath1−i = s1−i, ∅, s1−i

1 , . . . , s1−i
n−1, ∅, s

1−i
n is a history ofX1−i. By

Lemma 1(ii) , h = si ∪ s1−i, A1, . . . , An, s
i
n ∪ s

1−i
n is a history ofX0 ∪X1. Furthermore,si

n 6|= Q implies
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si
n ∪ s

1−i
n 6|= Q becausec ∈ Xi andQ contains only static queries. Contradiction. Ifc is negative, then

there exists a historyh = s,A1, s1, . . . , sn−1, An, sn, such thatsn 6|= Q. By Lemma 1(iii) , every transition
of the historyhi = si, A1, s1 ∩ L

i, . . . , sn−1 ∩ L
i, An, sn ∩ L

i is in Ri. Furthermore,sn 6|= Q implies
sn ∩ L

i 6|= Q becausec ∈ Xi andQ contains only static queries. Contradiction. This proves (2) fork = 0.
Induction Step: Let (1) and (2) be true for dynamic queries of nesting depth at mostk − 1 and consider

a dynamic queryc of nesting depthk. Then,Q contains only static queries and dynamic queries of nesting
depth at mostk − 1. Thus, (1) and (2) also hold forc, as follows easily by the arguments of the base case,
replacing justifications by the fact thatQ contains only static queries with a respective justification thatQ
contains only static queries and dynamic queries of nesting depth at mostk − 1.

So far, we have shown that (1) and (2) hold for any basic query. By the structure ofS (cf. Lemma 1(i)),
we conclude for any existential or universal queryc thatX0 ∪ X1 |= c if c ∈ Ci, Xi |= c, andX1−i has
NOP if c contains a negative dynamic query, as well as thatXi |= c if c ∈ Ci, X0 ∪ X1 |= c, andX1−i

has NOP ifc contains a positive dynamic query. Therefore,Xi |= Ci andX1−i has NOP ifCi contains a
negative dynamic query, fori ∈ {0, 1}, impliesX0 ∪X1 |= C. Conversely,X0 ∪X1 |= C andX1−i has
NOP ifCi contains a positive dynamic query impliesXi |= Ci, for i ∈ {0, 1}.

We now proceed with the proof of the theorem. Case(i): LetXi be a near-solution to(Di, Ii, Ci,⊏Ci),
for i = 0, 1. Suppose that, fori = 0, 1, Xi has NOP if some dynamic query occurs negatively inC1−i.
We show thatX0 ∪ X1 is a near-solution to(D, I, C,⊏C). By Lemma 1(i), X0 ∪ X1 is consistent,
sinceX0 andX1 are consistent. Furthermore,D0

u ∪ D
1
u ∪ I

0 ∪ I1 ⊆ X0 ∪ X1 ⊆ D ∪ I follows from
D0

u∪I
0 ⊆ X0 ⊆ D0∪I0 andD1

u∪I
1 ⊆ X1 ⊆ D1∪I1, respectively. Eventually,X0 |= C0 andX1 |= C1

impliesX0 ∪X1 |= C. This proves thatX0 ∪X1 is a near-solution to(D, I, C,⊏C).
Case(ii) : LetX be a near-solution to(D, I, C,⊏C), and let(X0, X1) be a partitioning ofX such that

X0 ⊆ D0 andX1 ⊆ D1. Suppose that, fori = 0, 1, Xi has NOP if some dynamic query occurs positively
in C1−i. We prove that fori = 0, 1, Xi is a near-solution to(Di, Ii, Ci,⊏Ci). SinceX is consistent, also
X0 andX1 are consistent. To see this, observe that w.l.o.g., ifX0 is inconsistent, then the static laws inX0

are unsatisfiable, which impliesX is unsatisfiable as well, a contradiction. Moreover,Du∪ I ⊆ X ⊆ D∪ I
impliesD0

u ∪ I
0 ⊆ X0 ⊆ D0 ∪ I0 andD1

u ∪ I
1 ⊆ X1 ⊆ D1 ∪ I1. Finally, X0 ∪ X1 |= C implies

X0 |= C0 andX1 |= C1. Thus,X0 andX1 are near solutions to(D0, I0, C0,⊏C0) and(D1, I1, C1,⊏C1),
respectively. 2

Informally, the NOP property in Theorem 1 is needed to ensure that the transition diagrams of near-
solutions to the sub-problems can be “combined”. As already mentioned above, this is only necessary in the
presence of dynamic queries.

For a full decomposition of an ADU problem, we need beyond a near decomposition also a factorization
of the preference relation, which is formally defined as follows.

Definition 7 (Preference Factorization) Let ⊏C be a preference relation for action descriptions over sig-
natureL, and let(L0,L1) be a partitioning ofL. A pair (⊏C0 ,⊏C1) of preference relations⊏Ci for action
descriptions overLi, i = 0, 1, is a factorization of⊏C with respect to(L0,L1), if for any action descrip-
tionsD,D′ overL that are decomposable with respect to(L0,L1), it holds thatD ⊏C D′ implies that
eitherD0

⊏C0 D′0 ∧D′1 6⊏C1 D1 or D′0 6⊏C0 D0 ∧D1
⊏C1 D′1.

Note that preference by strict subset inclusion (⊑C=⊂) is always factorizable (e.g., taking⊂ as the
preference relations of the factorization). We also remark that if the set of queriesC is decomposable with
respect to(L0,L1), then the query weight preference<weightq is factorizable, provided that weights are
nonnegative (for instance, taking the same weights for the factorization).
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A full decomposition of an ADU problem is then as follows.

Definition 8 (ADU Decomposition) A decompositionof an ADU problem(D, I, C, ⊏C) with respect
to a partitioning (L0,L1) of its signatureL is a pair ((D0, I0, C0,⊏C0), (D1, I1, C1,⊏C1)) such that
((D0, I0, C0), (D1, I1, C1)) is a near-decomposition of(D, I, C,⊏C) and(⊏C0 ,⊏C1) is a factorization of
⊏C .

The following result, which is the main result of this section regarding solutionsof an ADU problem, is
then easily obtained from Theorem 1.

Theorem 2 Let ((D0, I0, C0,⊏C0), (D1, I1, C1,⊏C1)) be a decomposition of an ADU problem(D, I,
C,⊏C) with respect to a partitioning(L0,L1) of its signatureL. Suppose that either (i) no dynamic
query occurs inC, or (ii) no dynamic query occurs inC1. If Xi is a solution to(Di, Ii, Ci,⊏Ci) for
i = 0, 1, where in case (ii)X1 has NOP, thenX0 ∪X1 is a solution to(D, I, C,⊏C). Furthermore, in case
(i) every solution to(D, I, C,⊏C) can be represented in this form.

Item (i) states that we can fully decompose an ADU into two components, and that all solutions can
be obtained by a simple combination of the solutions of the individual components. However, this works
in general only in absence of dynamic queries (combining the transition graphs of the components is then
unproblematic). Item(ii) accounts for possible dynamic queries in one component, which are unproblematic
as long as solutions of the other have NOP. However, not all solutions canbe composed from solutions of
the components in general.

Example 4 Consider the ADU problem(D∪D′, I, C,⊂), with D, I, andC as in Example 1, andD′

as in Example 3. SinceX0 = D ∪ I \ {(2)} is a solution to(D, I, C,⊂) (cf. Example 1),X1 = D′

is (the unique) solution to(D′, ∅, ∅,⊂) (cf. Example 3), andD′ has NOP (which is easily verified), by
Theorem 2(ii) X0 ∪X1 = (D∪D′ ∪ I) \ {(2)} is a solution to(D∪D′, I, C,⊂). 2

Example 5 Consider the ADU problem(D∪D′, I, C,<weightq), with D, I, C, andweightq as in Exam-
ple 2, andD′ as in Example 3. AgainX0∪X1 = (D∪D′ ∪ I)\{(2)} is a solution to(D∪D′, I, C,<weightq

), asX0 = D∪ I \{(2)} is a solution to(D, I, C,<weightq) (cf. Example 2), and asX1 = D′ is (the unique)
solution to(D′, ∅, ∅, <weightq). By Theorem 1,Du∪D

′ ∪ I is a different near-solution to this ADU problem
sinceDu∪ I is a near-solution to(D, I, C,<weightq). Moreover, setting the weight of query (12) to 0 (which
amounts to assigning the preferred queries a ‘don’t care’ status), it would be another solution. 2

Theorem 1 provides a basis for decomposing an ADU into smaller ADUs that can be solved in a divide-
and-conquer manner, and Theorem 2 shows some possible exploitation. These results can be integrated into
algorithms for computing solutions, which we consider in Section 6 below. Finally, note that for our exem-
plary preference relations⊂ and<weightq with non-negative weights, the benign properties of monotonicity
and non-minimization with respect toL, carry over to their standard factorizations (given by restricting the
relation to the relevant domain) and can be recursively exploited.

5 Complexity Analysis

In this section, we investigate the computational complexity of relevant tasks for solving an ADU problem,
including to decide whether a solution exists and whether given actions description is a solutions. The
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D |= Co & D ⊏C D′ solution existence solution checking

in PSPACE PSPACE PSPACE

in ∆P
i (i > 1) ΣP

i ΠP
i

in P NP DP

Table 1: Complexity of deciding solution existence and solution checking, depending on the complexity of
the relevant subproblems (completeness results; hardness holds for fixed preference relation⊏C).

complexity of these tasks strongly depends on the complexity of deciding whether a given action description
satisfies a set of (obligatory) queries (i.e.,D |= Co), and whether an action description is preferred over
another action description under the given preference relation (i.e.,D ⊏C D′).

We first consider the worst-case complexity of the above mentioned subproblems as a parameter and
derive upper bounds (in terms of membership results) for deciding whether an ADU problem has a solution,
and for checking whether an action description is a solution to an ADU problem in a generic setting. We
then ‘instantiate’ this generic setting by considering different classes (restricted sets) of queries which yield
different complexities for decidingD |= Co, and by studying concrete preference relations for which the
complexity of decidingD ⊏C D′ differs. In particular, we provide completeness results for the syntactic
preference⊂ (for which decidingD ⊏C D′ is polynomial) and for the semantic preference<weightq (for
which decidingD ⊏C D′ ranges up toPSPACE) for the various classes of queries considered.

5.1 Generic Upper Bounds

Our main result on generic upper bounds, which however also gives thegeneral picture of more precise
complexity characterizations, is summarized in Table 1. Recall thatPSPACE is the class of decision
problems that can be decided by a (deterministic) Turing machine using spaceat most polynomial in the
length of the input.PSPACE entails the so-calledpolynomial hierarchy, a sequence of classes defined as
∆P

0 = ΣP
0 = ΠP

0 = P, and fori ≥ 0, by ∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i , andΠP
i+1 = coNPΣP

i . Finally,
DP is the class of decision problems whoseyesinstances are characterized by the “conjunction” of anNP
problem and an independentcoNP problem. The prototypical such problem is SAT-UNSAT, whoseyes
instances are pairs(F,G) of propositional formulas such thatF is satisfiable andG is unsatisfiable; this
problem is also complete forDP . For a background in complexity theory, we refer to [49].

Informally, the results show that modulo the cost of deciding action queries and preference, the com-
plexity of solution existence and checking increases at most by one level inthe polynomial hierarchy, which
is due to the exponential search space for a solution respectively a bettersolution candidate, which might
be nondeterministically guessed. Since the search space can be traversed in polynomial space, there is no
increase in complexity in the most general case.

We next formally establish Table 1. Given an ADU problem(D, I, C,⊏C), let Ccheck denote the class
of problems of decidingD′ |= Co for anyDu ∪ I ⊆ D′ ⊆ D ∪ I. Similarly, letPcheck denote the class
of problems of deciding whetherD1 ⊏C D2 holds, for action descriptionsDu ∪ I ⊆ Di ⊆ D ∪ I and
i ∈ {1, 2}.

Theorem 3 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution (or a near-solution) is
(i) in PSPACE if Ccheck is in PSPACE, (ii) in ΣP

i if Ccheck is in ∆P
i andi > 1, (iii) in NP if Ccheck is
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in P.
Given an ADU problem(D, I, C,⊏C) together with an action descriptionD′, deciding whetherD′ is a
solution for it is (a) inPSPACE if Ccheck andPcheck are inPSPACE, (b) in ΠP

i if Ccheck andPcheck
are in∆P

i andi > 1, (c) in DP if Ccheck andPcheck are inP.

Proof. Let D = Du ∪ Dm. In order to decide whether(D, I, C,⊏C) has a solution, we can guess a
near-solutionD′ such thatDu ∪ I ⊆ D

′ ⊆ Du ∪ I, along with a states for D′ (to witness consistency), and
checkD′ |= Co in polynomial space(i), otherwise in polynomial time(iii) , respectively with the help of a
ΣP

i−1-oracle. This proves(i), (ii) , and(iii) .
As for deciding whether a givenD′ is a solution, let us consider the complementary problem. We can

nondeterministically guessD′′ together with a states′′ and proceed as follows. We check in polynomial
time whetherDu ∪ I 6⊆ D′, orD′ 6⊆ D ∪ I. We also check whetherD′ is inconsistent(a) in polynomial
space, respectively(b) with a single call to anNP-oracle. Deciding whetherD′ 6|= Co can be done in
polynomial space in Case(a), and in polynomial time with aΣP

i−1-oracle in Case(b). Furthermore, we
check in polynomial time whetherDu ∪ I ⊂ D′′ ⊆ D ∪ I and ifD′′ is consistent (whethers′′ is state of
D′′). Two further checks decide whetherD′′ |= Co andD′

⊏C D′′ (a) in PSPACE, and(b) in polynomial
time with the help of aΣP

i−1-oracle. Thus, the complementary problem is(a) in PSPACE, respectively(b)
in ΣP

i , proving(a) and(b).
For (c) we nondeterministically guess a states′ of D′ which we use to check consistency in polynomial

time. Also we decideDu ∪ I ⊆ D′ ⊆ Du ∪ I in polynomial time. An independentcoNP-check excludes
more preferred near-solutions, i.e., the complementary problem of guessingD′′ together with a states′′ and
checkingDu ∪ I ⊂ D′′ ⊆ D ∪ I, consistency (whethers′′ is state ofD′′), D′′ |= Co, andD′

⊏C D′′ in
polynomial time. This provesDP -membership for(c). 2

Before we turn our attention to ‘instantiating’ this general result for ADU problems with different classes
(restricted sets) of queries and concrete preference relations, whichwill yield precise complexity characteri-
zations in terms of completeness results, we remark that to ease exposition, in the remainder of this section
proofs are sketched, resembling the main arguments and constructions, while full proofs are given in Ap-
pendix A.

5.2 Query Entailment

As outlined in the beginning of this section, one of the two important subtasks in solving ADU problems is
checking whether a set of queries is entailed by an action description. Thissubtask has a major influence on
the complexity of finding solutions of an ADU problem. Therefore, besides considering arbitrary queries,
we also investigate restricted classes of queries. In particular, when the maximal nesting depth of dynamic
queries is fixed by an integerk, and when no dynamic queries occur at all.

Theorem 4 Given an action descriptionD and a setC of queries, decidingD |= C is (i) PSPACE-
complete in general, (ii)ΘP

k+3-complete ifk is the maximal nesting depth of dynamic queries inC, and (iii)
PNP
‖ -complete ifC does not involve dynamic queries.

HerePNP
‖ means polynomial-time with a single parallel evaluation of calls to anNP oracle. Similarly for

i > 1, ΘP
i is the class of problems that can be decided in polynomial time with parallel calls to aΣP

i−1 oracle
(alternatively, this class is often characterized by allowingO(logn) many oracle calls) [59].
Proof. Concerning(i) the result has been shown in [16]. Membership in Case(iii) follows from the fact
that checking the truth of a negated universal query of the form¬ALWAYS Q, whereQ is a conjunction
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of clauses over static queries of the formholdsF or ¬holdsF , is in NP. Hence, the complementary task,
i.e., checking the truth of a positive universal query,ALWAYS Q, is in coNP. Thus,D |= c is decided
in polynomial time with a single parallel evaluation ofn NP-oracle calls, given thatn is the number of
universal queries inc. Similarly, one proves in Case(ii) by induction on the nesting depthk, thatD |= c is
decided in polynomial time with parallelΣP

k+2-oracle calls.
As for hardness, the problem in(iii) is reduced to the followingPNP

‖ -hard decision version ofMaximum
CNF Satisfiability[37]: Given a Boolean formulaF in conjunctive normal form (CNF)and an integerk,
decide whether the maximum number of clauses inF that can be simultaneously satisfied by an interpreta-
tion is 0 mod k. Consider a 3-CNF formula of the form

∧n
i=1 Li,1 ∨ Li,2 ∨ Li,3, whereLi,j , 1 ≤ i ≤ n,

1 ≤ j ≤ 3, is a literal over atomsX = {X1, . . . , Xm}, and the following action descriptionD1:

causedCi if Li,1, causedCi if Li,2, causedCi if Li,3,
caused¬Ci if ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3,

}

1 ≤ i ≤ n

causedF1,1 if C1, caused¬F1,1 if ¬C1,
causedF1,0 if ¬C1, caused¬F1,0 if C1,

causedFi,j if Ci ∧ Fi−1,j−1,
caused¬Fi,j if ¬Ci ∧ Fi−1,j−1,

}

2 ≤ i ≤ n, 1 ≤ j ≤ i

causedFi,j if ¬Ci ∧ Fi−1,j ,
caused¬Fi,j if Ci ∧ Fi−1,j ,

}

2 ≤ i ≤ n, 0 ≤ j < i

ThenD1 |= ck iff the maximum number of clauses inF that can be simultaneously satisfied by an interpre-
tation is0 mod k, whereck is the following query:

ck = ALWAYS holds Fn,0∨

SOMETIMES holds Fn,k ∧ ALWAYS (¬holdsFn,k+1 ∧ . . . ∧ ¬holdsFn,n)∨
. . .
SOMETIMES holds Fn,lk ∧ ALWAYS (¬holdsFn,lk+1 ∧ . . . ∧ ¬holdsFn,n),

For hardness in Case(ii) , considerm Quantified Boolean Formulas (QBFs)

Φl = Q1X
l
1Q2X

l
2 · · · QnX

l
nE

l, 1 ≤ l ≤ m

whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀ otherwise,Xk
i andX l

j , 1 ≤ i, j ≤ n and1 ≤ k, l ≤ m, are
pairwise disjunct sets of propositional variables ifi 6= j or k 6= l. andEl is Boolean formula over atoms
in X l = X l

1 ∪ · · · ∪ X
l
n, such that ifΦl is false thenΦl+1, . . . ,Φm are false, too. Deciding whether the

maximum indexo, 1 ≤ o ≤ m, such thatΦo is true, is odd isΘP
n+1-hard [59]. The problem of deciding

D |= c for a queryc with nesting depthk of dynamic queries is reduced to this problem, as follows.
Let n = k + 2, 1 ≤ l ≤ m, and let the action descriptionD2 consist of the following statements:

causedF l
i if F l

i after Ai−1,
caused¬F l

i if ¬F l
i after Ai−1,

}

2 ≤ i ≤ n, F l
i ∈ X

l
i

causedF l
j after Ai−1 ∧ F

l
j ,

caused¬F l
j after Ai−1 ∧ ¬F

l
j ,

}

2 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, F l
j ∈ X

l
j
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Consider the query:

co =











∨(m−3)/2
l=0 (SOMETIMES f2l+1 ∧ ALWAYS ¬f2l+2) ∨ fm if m is odd,

∨(m−2)/2
l=0 (SOMETIMES f2l+1 ∧ ALWAYS ¬f2l+2) otherwise,

where

f l = p1 necessarilyp1 (. . . (pn−1 necessarilypn−1 holdsEl after {An−1}) . . .) after {A1},

wherepi = ¬ if i is even andpi is void otherwise, for1 ≤ i ≤ n− 1. Then, the maximum indexo such that
Φo is true, is odd iffD2 |= co. 2

5.3 Solution Existence

Equipped with these precise complexity characterizations ofCcheck for ADU problems of some classes
of queries, we aim to exactly characterize the complexity of the solution finding tasks for these classes of
queries and particular preference relations. Notice that checking whether a solution exists is independent of
the concrete preference relation and its computation. This leads to the following result.

Theorem 5 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution (or a near-solution) is
(i) PSPACE-complete in general, (ii)ΣP

k+3-complete, ifk is the maximal nesting depth of dynamic queries
in Co, (iii) ΣP

2 -complete, ifCo does not involve dynamic queries, and (iv)NP-complete ifCo = ∅.

Proof. Membership follows from Theorems 3 and 4, and Hardness in Case(i) follows from Theorem 4.
For hardness in Case(ii) , let n = k + 2 and letΦ = ∃Y Q1X1 · · · QnXnE be a QBF, whereQi = ∃ if
i ≡ 0 mod 2 andQi = ∀ otherwise. Consider

Du = D2 ∪ {causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1,Dm = {causedYi, caused¬Yi |
Yi ∈ Y }, I = ∅, C = Co ∪ Cp with Cp = ∅ and

Co = {ALWAYS p1 necessarilyp1(. . . (pn−1 necessarilypn−1holdsE after {An−1}) . . .) after {A1}},

wherepi = ¬ if i is odd, void otherwise, for1 ≤ i ≤ n− 1. Then, there exists a solution to the action
description update problem(Du ∪Dm, I, C,⊏C) iff Φ is true.

For (iii) let Φ = ∃Y ∀X E and consider the action description update problem(Du ∪ Dm, I, C,⊏C),
whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS holds E}.
Again, the action description update problem(Du ∪Dm, I, C,⊏C) has a solution iffΦ is true.

Finally, for (iv), letE be a Boolean formula over atomsY and let us defineDu = {causedY1 if ¬E,
caused¬Y1 if ¬E}, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = ∅. Then, (Du ∪
Dm, I, C,⊏C) has a solution iffE is satisfiable. 2

This result can be instantiated with any preference relation and yields completeness results for deciding
the existence of a solution. When instantiated with our syntactic preference⊂, a remarkable consequence
is the following. Deciding whetherD ∪ I is a solution to an ADU problem(D, I, C,⊂) has the same
complexity as decidingD |= Co in general. Deciding the existence of an arbitrary solution is slightly harder
than decidingD |= Co for restricted settings of queries inCo. Intuitively, the additional computational
effort accounts for the search of a solution candidate.
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5.4 Solution Checking

We finally turn our attention to the recognition of solutions, where we provide respective results for the
syntactic preference⊂ and the semantic preference<weightq . Again the problem turns out to bePSPACE-
complete in general. Similarly as before, for⊂ in restricted query settings testing arbitrary solution candi-
dates has higher complexity than testingD ∪ I, which intuitively accounts for the additional maximality
criterion to be checked for a solution.

Theorem 6 Given an ADU problem(D, I, C,⊂) and an action descriptionD′, deciding whetherD′ is a
solution for it is (i)PSPACE-complete for general queries inCo, (ii) ΠP

k+3-complete ifk is the maximal
nesting depth of dynamic queries inCo, (iii) ΠP

2 -complete ifCo does not involve dynamic queries, and (iv)
DP -complete ifCo = ∅.

Proof. Membership follows from Theorem 3, observing that for any given action descriptionsD′ andD′′,
decidingD′ ⊂ D′′ can be done in polynomial time, i.e., thatPcheck is in P for ⊂.

Hardness in Case(i) follows from Theorem 4. For(ii) letn = k+2 and letΦ = ∀Y Q1X1 · · · QnXnE
be a QBF, whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀ otherwise. Consider

Du = D2 ∪ {causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1,Dm = {causedYi, caused¬Yi |
Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS f ∨ g}, where

f = p1 necessarilyp1 (. . . (pn−1 necessarilȳpn−1 holdsE after {An−1}) . . .) after {A1},

g =
∧

Yi∈Y
SOMETIMES holds Yi ∧ SOMETIMES holds ¬Yi,

wherepi = ¬ if i is odd, void otherwise, for1 ≤ i ≤ n− 1, andp̄n − 1 = ¬ if n is odd and void otherwise.
Then,Du is a solution to the action description update problem(Du ∪Dm, I, C,⊂) iff Φ is true.

For (iii) let Φ = ∀Y ∃X E and consider the action description update problem(Du ∪ Dm, I, C,⊂),
whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS ¬holdsE ∨
g}, with g as before. The ADU problem(Du ∪Dm, I, C,⊂) hasDu = ∅ as a solution iffΦ is true.

Finally (iv), let E1 andE2 be Boolean formulas over atomsY1 andY2, respectively. ConsiderDu =
{caused¬F, causedF if ¬E1},Dm = {causedF if ¬E2}, I = ∅, andC = ∅. Then,(Du ∪Dm, I, C,⊂)
has solutionDu iff E1 is satisfiable andE2 is unsatisfiable. 2

We next consider solution checking for the semantic preference<weightq . Note that whilePcheck is
polynomial for⊂, this is no longer the case for<weightq . However, intuitively whenever the complexity of
Pcheck does not outweigh the complexity ofCcheck, i.e., when we do not allow for more complex queries
in Cp than inCo, then we stay within the same upper bounds as for⊂. Providing also matching lower
bounds yields the following result, which differs from the previous one only if C = ∅. The intuitive reason
is that for the syntactic preference also in this case a maximality check is needed to recognize a solution,
while the semantic preference is indifferent forC = ∅, which means that basically a consistency check is
sufficient and that every near-solution also is a solution.

Theorem 7 Given an ADU problem(D, I, C,<weightq) and an action descriptionD′, deciding whetherD′

is a solution for it is (i)PSPACE-complete for general queries inC, (ii) ΠP
k+3-complete ifk is the maximal

nesting depth of dynamic queries inC, (iii) ΠP
2 -complete ifC does not involve dynamic queries, and (iv)

NP-complete ifC = ∅.
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Proof. Membership for(i), (ii) , and(iii) follows easily from Theorems 3 and 4. For(iv), i.e.C = ∅, Pcheck
is trivial for <weightq , hence we can decide whetherD′ is a solution essentially by checking consistency.

Hardness in Case(i) follows from Theorem 4. For(ii) letn = k+2 and considerΦ,Du,Dm, I, andCo

from the proof of Theorem 6(ii) . Additionally, letCp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈
Y } and consider a weight of 1 for eachc ∈ Cp. Then,Du is a solution to(Du ∪Dm, I, Co ∪ Cp, <weightq)
iff it is a solution to(Du ∪Dm, I, Co,⊂).

For(iii) considerΦ,D, I, andCo from the proof of Theorem 6(ii) . Again, letCp = {ALWAYS holds Yi,
ALWAYS holds ¬Yi | Yi ∈ Y } with weight 1 for eachc ∈ Cp. Then, for the same reason as above,Du is
a solution to(Du ∪Dm, I, Co ∪ Cp, <weightq) iff it is a solution to(Du ∪Dm, I, Co,⊂).

Finally (iv), letE be a Boolean formula over atomsY and consider the ADU problem given byDu =
{causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = ∅, I = ∅, andC = ∅. Then,Du is a solution to(Du ∪
Dm, I, C,<weightq) iff E is satisfiable. 2

Hence, even recognizing solutions is quite hard. However, recognizingnear-solutions is easier for re-
stricted sets of queries (ΘP

k+3-complete if the maximal nesting depth of dynamic queries inC is k, PNP
‖ -

complete ifC has no dynamic queries, andNP-complete ifC = ∅). This follows easily from Theorem 4.

6 Computing Solutions

Equipped with a clear picture of the computational cost in terms of complexity forthe relevant (sub-)tasks
of solving an ADU problem, we now turn to the issue of computing solutions usingdedicated, deterministic
algorithms.

6.1 General Algorithms

With an oracle for near-solutions, in case of the syntactic preference⊂, we can incrementally compute a
solution to an ADU problem(D, I, C,⊂) whereD = Du ∪ Dm, in polynomial time using the algorithm
in Figure 5. By virtue of Theorems 5 and 6, this algorithm is worst case optimal,even when the nesting
depthk of dynamic queries is restricted, since computing a solution needs the power of a ΣP

k+3 oracle.
If the existence test for a near-solution of(Du ∪ Dm, I, C,⊂) in Step 1 or Step 2 in fact returns some
near-solutionDn, then we can replace the respective assignment toD′ by the assignmentsD′ := Dn and
Dm := Dm \D

n.
We remark that for semantic preferences, like<weightq , such a deterministic polynomial time procedure

for computing solutions, using an oracle for computing near solutions, doesnot work in general. However,
in certain cases an oracle for near-solutions can be used effectively ina similar way. For instance, whenever
the queries inCp can be strictly ordered according to their (non-negative) weights, suchthat no subset of
queries that are before a queryc in the ordering can sum up to a higher weight thanc. Then, in a procedure
similar to SOLUTION, one can iterate through the set of queriesCp once, using the oracle to determine
whether near-solutions exist to the slightly modified problem where certain queries fromCp are added toCo

in order to determine the set of queries fromCp satisfied by an optimal solution. Once this set is known, any
near-solution of the problem where these queries are added toCo, is a solution to the original problem.

For the general case of<weightq with nonnegative weights, for instance, a branch and bound algorithm
can be devised from Algorithm SOLUTION that uses an oracle for near-solutions to compute an initial
solution candidate and, throughout the computation, better candidates as usual in the style of an anytime
algorithm.
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Algorithm SOLUTION⊂

Input: an ADU problem(D, I, C,⊂)

Output: some solution of(D, I, C,⊂), if one exists.

Step 1 if (Du ∪Dm, I, C,⊂) has a near-solution
thenD′ := Du elsehalt; // no solution exists

Step 2 whileDm 6= ∅ do
choose someℓ ∈ Dm;
Du := D′ ∪ {ℓ}; Dm := Dm \ {ℓ};
if (Du ∪Dm, I, C,⊂) has a near-solutionthenD′ := D′ ∪ {ℓ};

endwhile;

Step 3 outputD′. 2

Figure 5: Algorithm to compute some solution preferred by set-inclusion

For other preferences⊏C , algorithms will have to be developed that similarly exploit the structure of
⊏C to prune the search space effectively. If⊏C is monotone with respect to the underlying signature, we
may adapt Algorithm SOLUTION similarly as for<weightq to a branch and bound algorithm that aims at
enumerating near-solutions (for which e.g. techniques as in [12] are useful) and cuts branches in the search
tree if no better near-solutions compared to the currently most preferred ones,D1, . . . , Dm, can be found in
them; more precisely, any branch for a (partial) near-solutionD can be cut such thatD∪{ℓ1, . . . , ℓm} ⊏C Di

for someDi. Note that every solution preferred under⊏C is also preferred under set-inclusion, and we can
adapt in the same way the variant of Algorithm SOLUTION that exploits near-solutions returned by the
oracle. This scheme may be further refined, as usual, by exploiting properties like solution dominance (for
each possible solutionD′ such thatD ⊆ D′ ⊆ {ℓ1, . . . , ℓm}, one of the solutionsDi is preferred); further
investigation remains for future work.

6.2 Near-Solutions

Near-solutions to a given ADU problem may be nondeterministically computed asin the membership part
of Theorem 5, or may be obtained from a QBF encoding using a QBF solver. We present here a different
computation method, which builds on update descriptions and “update fluent sets.” Roughly, rather than to
consider varying update descriptions, in this method the problem is compiled intoa single action descrip-
tion, called theupdate description, in which special update fluents govern the inclusion and exclusion of
causal laws. Determining an update amounts then to determine an appropriate update fluent set, which is
semantically defined and may be computed by query answering and state set generation algorithms.

Definition 9 LetD = Du ∪ Dm be an action description with signature〈F,A〉. Theupdate description
U(D) is the action description obtained fromD as follows:

1. Extend〈F,A〉 by a setH of k = |Dm| new fluents (calledupdate fluents) H1, . . . , Hk;

2. label each static law (4) inDm with a fluentHi ∈H:

causedL if G ∧Hi, (21)
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Algorithm NEAR-SOLUTION(D, I, C,⊏C)
Input: an ADU problem(D, I, C,⊏C)

Output: some near-solution of(D, I, C,⊏C), if one exists.

Step 1 ifD ∪ I is consistent andD ∪ I |= Co then outputD ∪ I and halt;

Step 2 construct the update descriptionU of D ∪ I =Du ∪ I ∪Dm;

Step 3 ifsome update fluent setM for U relative toCo exists
then take an arbitrary suchM elsehalt; // no near-solution exists

Step 4 identify the setW of causal laws inDm labeled by the elements ofM;

Step 5 outputDu ∪W ∪ I.

Figure 6: Algorithm to compute some near-solution

and each dynamic law (5) inDm with a fluentHi ∈H:

causedL if G after H ∧Hi, (22)

such that no two laws are labeled by the same fluentHi;

3. for eachHi labeling a law, add the dynamic law:

inertial Hi,¬Hi. (23)

We next define update fluent sets. To this end, we define, given an action descriptionDu ∪Dm and a set
of conditionsC on the same signature, a partitioningSU

C , S
U
¬C of the state setSU of the update description

U = U(D) of Du ∪ Dm having the setH of update fluents, as follows. For any two statess, s′ ∈ SU let
s =H s′ iff s ∩H = s′ ∩H, and let SU

H,s = {s′ ∈ SU | s′ =H s}. Given a queryc and states ∈ SU , we
say thatc holds ats wrt. SU

H,s, if in case(i) c is existential (8),E, s′ |= Q holds at somes′ ∈ SU
H,s; (ii) c is

universal (9),E, s′ |= Q holds at alls′ ∈ SU
H,s; (iii) c is a Boolean combination of existential and universal

queriesci, the combination evaluates to true if eachci has the value ats wrt. SU
H,s. Then,SU

C = {s ∈ SU | c

holds ats wrt. SU
H,s, for all c ∈ C}. Furthermore, in the rest of this section, we identify states with the sets

of fluents which are true at that state.

Definition 10 Anupdate (fluent) setfor U relative toC is a setM ⊆ H such that (i)s ∩H = M for some
s ∈ SU , and (ii)SU

H,s ⊆ S
U
C .

With the notions above, we can compute a near-solution to an ADU problem(D, I, C,⊏C), where
D = Du ∪Dm, with the algorithm NEAR-SOLUTION shown in Figure 6. The key to its correctness is the
following proposition.

Proposition 2 Let(D, I, C,⊏C) be an ADU problem, withD = Du∪Dm. LetU be the update description
ofD∪I = Du∪I∪Dm, and letW denote a subset ofDm containing laws labeled by the elementsM ⊆ H

in U . ThenD′ = Du∪ I ∪W is a near-solution to(D, I, C,⊏C) iff M is an update set forU relative toCo.
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The proof of this correspondence result, which is technically involving, isgiven in Appendix B. It
follows the intuition that by considering an update set forD∪I relative toCo and ‘adding’ the corresponding
labeled laws (which by construction are fromDm) toDu∪ I, one ends up with an action descriptionD′ that
satisfiesCo. The essential argument is by showing that for any states of D′, s∪M is a state ofU , and due
to Condition(ii) of Definition 10 it is a state inSU

Co
, which in turn implies thats ∈ SD′

Co
, i.e., thatD′ |= Co .

Moreover, Condition(i) of Definition 10 guarantees thatD′ is consistent. Vice versa, to every near-solution
corresponds an update setM , given by the labels of the modifiable laws included in the near-solution.

From Proposition 2, the correctness of algorithm NEAR-SOLUTION is then easily established.

Theorem 8 Let(D, I, C,⊏C) be an ADU problem, withD = Du∪Dm. Then AlgorithmNEAR-SOLUTION

outputs some near-solution of(D, I, C,⊏C) if and only if some near-solution of(D, I, C,⊏C) exists.

We observe that for⊂ as the preference ordering⊏C , the algorithm can be easily adapted to find so-
lutions instead of near solutions: to this end, in Step 3 we take a maximal one. We also note that Step 1
is not necessary as far as mere computation of any near-solution is concerned. However, in the view of
ADU problem solving it may be worthwhile to particularly returnD ∪ I first, if it is a near-solution, since
it constitutes the case whereI can be incorporated without modification toD. This is in particular relevant
for preference relations⊏C that are non-minimizing, as then in fact a solution is output.

Example 6 Consider an ADU problem(D, I, C,⊏C) given byD, I, andC as presented in Example 1.
Note thatD ∪ I 6|= C (as explained in Example 1). We obtain the following update descriptionU of
Du ∪ I ∪Dm, which containsDu ∪ I and the laws:

causedTvON if PowerON , H1,
caused¬TvON if ¬PowerON , H2,
inertial Hi,¬Hi (1 ≤ i ≤ 2).

According to the transition diagram described byU , we have that actionPushPBRC is not executable, i.e.,
query (3) fails, at any states ⊇ {PowerON ,TvON , H1}. Moreover, at any states ⊇ {PowerON ,TvON }
such thatH2 6∈ s, query (12) fails due to missing causation for¬TvON . Query (17), however, is satisfied
at every state ofU . We thus obtain

SU
¬C = {s ∈ SU | s satisfiesH1 ∨ ¬H2},

and, for instance,{PowerON ,TvON , H2} ∈ S
U
C . Therefore,{H2} is an update set forU relative toC,

and obviously it is the only one. Hence, if we add the law labeled byH2 toDu ∪ I, or equivalently remove
the law (2) that is labeled byH1 fromD ∪ I, we obtain a near-solution to the problem (cf. also Example 1).
2

Example 7 Consider a slight variant of the previous Example 6, where also the dynamiclaws inD (except
for the inertia laws) are modifiable, and with the following causal laws added toDm:

causedTvON after PushPBTV ∧ ¬PowerON ,
caused¬TvON after PushPBTV ∧ PowerON .

The transition diagram described byD ∪ I is the same as in Figure 4, and thus for the same reasons as
mentioned in Example 1,D ∪ I 6|= C. The update descriptionU of Du ∪ I ∪Dm consists ofDu ∪ I, the
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labeled laws as presented in Example 6, and the following causal laws:

causedPowerON after PushPBTV ∧ ¬PowerON , H3,
caused¬PowerON after PushPBTV ∧ PowerON , H4,
causedTvON after PushPBTV ∧ ¬PowerON , H5,
caused¬TvON after PushPBTV ∧ PowerON , H6,
inertial Hi,¬Hi (3 ≤ i ≤ 6).

According to the transition diagram described byU , query (3) still fails, since the actionPushPBRC is
not executable whenevers ⊇ {PowerON ,TvON , H1}. Let us consider the remaining statess of U , i.e.,
only those such thatH1 6∈ s. We first observe that a failure of query (12) is witnessed by any suchstate
s ⊇ {PowerON ,TvON } such thatH6 6∈ s and eitherH2 6∈ s or H4 6∈ s (or both), since there is no
causation for¬TvON when executingPushPBTV . Finally, query (17) does not hold at any such states
where the power and the TV are off, i.e.,s∩{PowerON ,TvON } = ∅, if {H2, H5} ⊆ s andH3 6∈ s. More
formally,

SU
¬C = {s ∈ SU | s satisfiesH1 ∨ (¬H6 ∧ (¬H2 ∨ ¬H4)) ∨ (¬H3 ∧H2 ∧H5)}.

Two update sets forU relative toC are{H3, H4, H5, H6} and{H2, H3, H4, H6}. (That they actually consti-
tute update sets is witnessed, e.g., by{H3, H4, H5, H6} ∈ S

U
C and{H2, H3, H4, H6} ∈ S

U
C , respectively.)

We may choose either one and, by adding the corresponding causal lawstoDu ∪ I, we get a near-solution
to the problem. Note however, that in case of⊏C=⊂, for instance, none of the near-solutions is a solution,
as removing (2) is sufficient. This is reflected by the (maximal) update set{H2, H3, H4, H5, H6}. 2

Algorithm NEAR-SOLUTION can be run in polynomial space, and is thus within the worst case optimal
bounds. Indeed, the update descriptionU forD andC can be easily computed in polynomial time, and after
the consistency and entailment check in Step 1, the bulk of the work is with Step 3, i.e., to compute an update
setM . Here, we can resort to different methods. If the full state setSU of U would be explicitly given, then
Step 3 is clearly feasible in polynomial time. Otherwise, we can use an algorithm that enumeratesSU , and
for each states generated takes∩H as candidate update setM for which condition(ii) SU

H,s ⊆ S
U
C is tested

using query answering; a brief outline is as follows. LetFs =
∧

Hi∈M
Hi ∧

∧

Hi∈H\M ¬Hi; intuitively,

Fs holds at a states′ iff s′ belongs toSU
H,s. Then, for each existential queryc of form (8), definecs =

SOMETIMES holds Fs ∧Q, and for each universal queryc of form (9), letcs = ALWAYS holds Fs ⊃ Q.
For a Boolean combinationc of existential and universal queries, we definecs as the query obtained by
rewriting each occurrence of an existential or universal query as described above. ThenSU

H,s ⊆ SU
C is

equivalent to entailmentU |= cs for each queryc in C.
Thus, one can build algorithms to compute near-solutions of an ADU on top of basic reasoning services

for action descriptions that generate sets of states and perform query answering (as supported e.g. in AD-
Query [19], under some limitations), which are applied to the update description U(D). Compared to a
simple search over the near-solution candidatesD′ such thatDu ∪ I ⊆ D′ ⊆ D ∪ I and testing whether
D′ |= Co, this approach has some attractive advantages. One is that we may compile thetransition diagram
of U(D) into an efficient representation (e.g., into binary decision diagrams that arecustomary in efficient
processing of transition-based formalisms), and perform state generation and query answering over this
single representation, rather than to consider reasoning over varying transition diagrams, which may have
considerable management cost (setting up data structures anew, etc.) at least without further precaution and
effort.
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Furthermore, the update description is a useful basis for iterated Markovian (history-less) updates un-
der lazy evaluation, and more generally for realizing non-Markovian semantics of sequences of updates
I1, . . . , Ik, in analogy to update programs in the context of logic programming updates [4, 18]. In the Marko-
vian case, the result of updating an action descriptionD is obtained by incorporating theIi, i = 1, . . . , k one
after the other intoD. The update descriptionU(D) may be generalized to capture such iterative updates
rather easily, by using time stamped copies of action descriptions that are suitably linked, and modifying
the preference ordering⊏C appropriately into a prioritized version. In the non-Markovian case, linkage and
preference ordering can be tailored to realize particular update semantics. Investigating this is left for further
work.

7 Discussion

7.1 Related Work

Updating and revising knowledge bases has been studied extensively in the context of both databases and AI,
with different approaches, and in various representation frameworks, e.g. [61, 36, 54, 28, 29, 18, 46, 33,
34, 35, 56, 41, 44, 57, 64, 62, 32, 38, 16]. The relation of this problem to reasoning about actions has been
identified earlier [60, 55, 51], since the effects of executing an action in agiven situation can be modeled as
the change of a theory representing the current state by a formula representing the action effects. However,
compared to reasoning in action languages, such an approach leaves theaction under consideration and its
effects rather implicit. Therefore, we restrict our attention to those works that either treat the notion of an
action explicitly in the language, or that are otherwise more closely related to our work.

Sakama and Inoue’s work [56] is similar to our work in that it also studies update problems in a non-
monotonic framework (yet in logic programming) and considers the same criterion of minimal change. It
deals with three kinds of updates to a knowledge baseD: theory update ofD by some new information
I, inconsistency removal fromD, and view update ofD=Du ∪ Dm by some new informationI. In the
context of reasoning about actions and change, these kinds of updates are expressible as ADU problems
(D, I, ∅,⊂), (D, ∅, ∅,⊂), and(Du ∪ Dm ∪ I), ∅, ∅,⊂). Sakama and Inoue show in [56] that checking for
solution existence isNP-hard for each problem; this complies with Theorem 5(iii) . An important differ-
ence to [56] is that in an ADU problem(D, I, C,⊂), the conditionsC may not be directly expressed inD.
Moreover, the semantics of an action descriptionD in C is a transition diagram, and only captured byall
answer sets of a logic program corresponding to D by known transformations.

Li and Pereira [41] and Liberatore [44] study, like we do, theory update problems in the context of
reasoning about actions and change, based on an action language (but languageA instead ofC). New
information,I, contains facts describing observations over time (e.g., the actionPushPBRC occurs at time
stamp 0). The action languageC we use is more expressive thanA in that it accommodates nondeterminism
and concurrency, and the changes in the world are not only due to direct effects of actions. To formulate
temporal observations, we can extend our query language by queries of the forms

E occurs atti, (24)

P holds at ti, (25)

whereE is an action name,P is a fluent name, andti is a time stamp; a states satisfies a query (24) resp.
(25) if, for some history (10) such thats= s0, E is inAi+1 resp.si satisfiesP .

Our notion of consistency of an action descriptionD (in essence, the existence of a state) is different
from that of Zhang in [63]. They describe action domains in propositionaldynamic logic, and require for
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consistency the existence of some model of an action description. Different from the setting here, conflicting
action effects may prevent any model. With the extension of our query language discussed above, other
forms of consistency studied in [63] can be achieved in our framework, by describing possible scenarios or
formulas as queries.

Some of the related work mentioned above, like [5, 45, 2, 32], study action description updates in
connection with the problem of elaboration tolerance. The goal is to answerthe following question: how can
an action description be updated to tolerate new elaborations on the action domain? [32] studies the update
problem in the context of dynamic logic [30]. Here action domains are represented in a simplified version
of dynamic logic. An action domain description consists of static laws (e.g.,Up → Light , which expresses
that “if the switch is up then the light is on”), effect laws for actions (e.g.,¬Up → [Toggle]Up, which
expresses that “whenever the switch is down, after toggling it, the room is litup”), and executability laws
for actions (e.g.,¬Broken → 〈Toggle〉⊤, which expresses that “toggle can not be executed if the switch
is broken”). To handle the frame problem and the ramification problem, a consequence relation is built (in
a meta-language) over the action description. Note that the action descriptionlanguageC does not require
such a meta-language to be able to handle these problems. In this formal framework for reasoning about
actions and change, the authors consider revising beliefs about states of the world (as in, e.g., [33, 57]),
as well as revising beliefs about the action laws. They update action descriptions with respect to some
elaborations (described also by causal laws), by modifying the causal laws in the action description by first
“contraction” and then “expansion”. In the end, the antecedents of somecausal laws in the action description
are strengthened with respect to the new elaborations. Consider the example above; during a blackout, the
agent toggles the switch when it is down, and the room is still dark. Such an elaboration is described by a
causal law, likeBlackout → [Toggle]Light . The action description is modified by this elaboration, by first
contracting the effect laws (e.g.,¬Up → [Toggle]Up) and then expanding the theory with the weakened
laws (e.g.,¬Up ∧ ¬Blackout → [Toggle]Up). The idea behind modifying a theory with an elaboration of
the formφ→ [a]ψ in this way, is to ensure two conditions whenψ does not hold: firsta still has the effect
ψ; and seconda has no effect except those literals that are consequences of¬ψ. The semantics of such
syntactic operations are given in terms of changes (e.g., addition/removal of edges) in the transition diagram.
Note that [32] modifies causal laws to tolerate elaborations, whereas we add new causal laws (which may
be obtained from some observations, or which may describe some elaborations) to the original description
and furthermore we drop a minimal set of causal laws from the original theory so that given queries (which
may describe some desired/preferred conditions on the domain) are entailedby the updated description.

Another related work that studies action description updates, for elaboration tolerance, is [2]. The
authors introduce an action description language, called Evolp Action Programs (EAPs), built upon the
update language Evolp [3]. This language can be used to represent action domains, as well as their updates
due to some elaborations. An action domain description consists of static rules (e.g.,Light ← Up), dynamic
rules (e.g.,effect(Light ← Up)← Toggle,¬Up which expresses that, if at some stepn the switch is down,
thenLight ← Up becomes true at stepn + 1), inertial declarations (e.g.,inertial(Light)), and initialize
declarations (e.g.,initialize(Light) which stands forLight ← prev(Light) whereprev(F ) is a new atom
introduced for describing the value of fluentF in the previous state) introduced for representing inertia. Note
that in the action languageC, there is no need to introduce new atoms to be able to handle the frame problem.
An elaboration is encoded as a separate action descriptionD, and then “asserted” to the main description,
using theassert construct of Evolp. Adding to the main descriptionassert(D) is different from addingD.
For instance, consider addingassert(Light ← Up) ← Toggle to an action description. Then, when the
switch is toggled, the ruleLight ← Up remains inertially true until its truth is possibly deleted afterwards.
The semantics of an EAP (an thus theassert construct) is given by means of stable models [25]. Note
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that [2] is similar to our work in that updates that consist of static/dynamic rulesare described in the same
language as the action description. On the other hand, the language of [2]allows us to talk about, as a part
of the updates, changes over rules (using the assert construct).

The works by Lifschitz [45] and by Balduccini and Gelfond [5] are similarto [2] in that they also modify
action descriptions with respect to new elaborations, by means of adding causal laws, in the sense of additive
elaboration tolerance [48, 50]. Lifschitz describes in [45] an action domain in languageC such that every
causal law is defeasible (by means of an abnormality predicate). To formulate some other variations of the
domain, the agent can just add new causal laws, some of which “disable” some existing causal laws. In [5],
the authors extend an action description, encoded as a logic program, with “consistency restoring” rules, so
that when the action description and given observations are incompatible, these rules can be “applied” to get
some consistent answer set. This, however, is more geared towards handling exceptions. In [45] and [5], the
causal laws of the original domain description are not modified.

Concerning results on the computational complexity, Eiter and Gottlob [21] study a number of syntax-
based as well as model-based knowledge base revision operators and provide precise complexity characteri-
zations for the problem of checking whether a given formula is derivablefrom a revised (updated) knowledge
base by reducing the problem to the evaluation of counterfactuals. Herzig[31] improved these complexity
bounds for restricted settings under Winslett’s Possible Models Approach. Liberatore [43] considers further
approaches for belief update from the literature, derived corresponding complexity results, and extended
them to the problem of iterated update. Cayrolet al. [10] study pre-ordered belief bases. A priority relation
on belief bases induces a preference relation on the set of subsets of abelief base, which can be used to
select preferred subsets in order to define (refined) change operators. They provide complexity results for
inclusion-based preference, maximum cardinality, and lexicographic preference by investigating entailment
of a formula by a set of consistent subsets of a belief base under various entailment principles including
credulous, skeptical, and so-called argumentative entailment. Baral and Zhang [6] considers the complexity
of model checking for knowledge update. As for traditional belief update, the relation to reasoning about
actions consists in regarding the effects of an action as an update to the current state. However, motivated
by sensing actions that do not change the world, Baral and Zhang distinguish knowledge updates as belief
updates where changes not only correspond to alterations of the real world but may also be affect an agent’s
knowledge about the world. They give a model theoretic account of knowledge updates based on modal
logics, show that the complexity of model checking is on the second layer of the polynomial hierarchy, and
identify tractable subclasses.

More closely related to our work are investigations concerning the complexityof reasoning about actions
in an action language. For the action languageA, Liberatore [42] establishes, for instance,NP-completeness
of consistency checking andcoNP-completeness for entailment, which essentially amounts to checking
whether

D |= ALWAYS necessarily (holdsF ) after A1; . . . ;An,

for a given action descriptionD, a fluentF , and a sequence of actionsA1; . . . ;An in our setting. Langet
al. [39] refer to this as “progression problem;” they investigated its computational complexity for simple
causal action theories which constitute a special case of causal theoriesin different languages, in particular
capturing the fragment of action languageC that we considered. Besides the progression problem, the
complexity of other reasoning tasks, including executability and determinism, is addressed in this framework
which is further extended to so-called generalized action theories. We remark that, like for progression,
several of these results can be obtained as special cases of decidingD |= c for particular queriesc in our
setting. Moreover, to the best of our knowledge, the complexity of decidingaction queries has not been
addressed so far (apart from thePSPACE result for the general case for the query language we considered,
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which has been proven in [16]), let alone the problem of updating action descriptions in the presence of
meta-knowledge expressed by action queries.

7.2 Nature of Change

As already briefly mentioned in Section 3, our notion of action update has moreof a belief revision than a
belief update flavor. This view is supported by a deeper analysis of change in connection with reasoning
about actions and change [38, 53]. Lang [38] describes a scope for revision and for update, and he notices
that, as pointed out by [23, 24], the scope can not be simply decided by whether the theory is about static
vs. dynamic worlds. Then, as also pointed out by [9, 13], Lang relates revision and update by means
of backward-forward reasoning, in particular, by means of action progression. According to [38], belief
revision is to correct some initial beliefs about the past/present/future state of the world by some observations
about the past/present state of the world. On the other hand, belief updateby some formulaα corresponds
to progressing the theory by a specific feedback-free action that will make α true with respect to a given
update operator; hereα does not describe observations. In this framework, Lang says that our approach is
closer to a revision process than to an update; however, since our approach changes the transition diagram
of an action description, it is meaningful to consider it as an update process as well.

The AGM and KM postulates [1, 36] are based on an underlying logic that ismonotonic in nature.
However, the action languageC we consider is nonmonotonic. For instance, ifD consists of the single law

causedP if P

whereP is the single fluent and there are no actions, then the transition diagram described byD, T (D),
has a single states = {P}. Thus the causal lawcausedP is satisfied byT (D) (equivalently,D |=
ALWAYS holds P ), and can be seen a semantic consequence ofD. However, if we add

caused¬P if ¬P

to D, thenT (D) has another states′ = {¬P} andD 6|= ALWAYS holds P ; thuscausedP is no longer
a semantic consequence. The AGM framework, and similarly the KM framework, is not suitable for non-
monotonic settings, as discussed, e.g., for non-monotonic logic programming in[18] and for defeasible logic
in [8]. Thus governing our action description updates with the AGM or KM postulates is not meaningful; an
AGM- respectively KM-style theory for non-monotonic logics with significant attention is, to our knowledge,
still missing. Instead, we considered some basic properties in Section 4 that are analog to properties for non-
monotonic logic programming updates [18]. We note that [33], for instance,considers the incorporation
of belief change into the fluent calculus, geared by an axiomatic treatment ofbelief revision and update
satisfying the AGM and KM postulates, respectively. However, the underlying logic is monotonic and only
static knowledge is subject to change, and preference is based on a ranking of states.

7.3 Repair of Action Descriptions

We can sometimes improve solutions (and near-solutions) to an ADU problem(D, I, C,⊏C) by considering
a slightly different version of the problem. We may take the view that a causallaw is not completely wrong,
and for instance holds in certain contexts. Suppose thatI is a dynamic law of the form:

causedL′ after A′ ∧G′,

whereL′ is a literal,G′ is a propositional combination of fluents, andA′ is an action. We can obtain
an action descriptionDs from D, which describes the same transition diagram asD, by replacing each
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dynamic law (5) inDm with:
causedL if F after H ∧G′,
causedL if F after H ∧ ¬G′.

We then have that for each near-solutionD′ to (D, I, C,⊏C) there exists some near-solutionDs′ to (Ds, I,
C,⊏C) which containsD′ as a subset (in particular, for subset preference⊂, each solution to(D, I, C,⊂)
gives rise to some solution of(Ds, I, C,⊂)); with an (ad-hoc) adaptation of the solution preference⊏C

to ⊏
s
C , the solutions of(D, I, C,⊏C) can then be recovered from the ones of(Ds, I, C,⊏s

C). Therefore,
such a replacement method can be useful to prevent “complete removal” ofsome laws from the given
action description. Furthermore, solutions of(Ds, I, C,⊏s

C) which do not correspond to solutions of the
original problem(D, I, C,⊏C) can be viewed as approximations of solutions for the latter. They might be
of particular interest if the original problem has no solution.

Similar methods are also useful for repairing an action description, e.g., if some dynamic laws (5) in the
action description have missing formulas inH. In this case, we need to replace such causal laws by some
modified statement(s) from a candidate space. Our current framework can be generalized in this direction
by changing the candidate solution space for a solutionD′ from Du ⊆ D′ ⊆ Du ∪ I to a set of action
descriptionscand(D, I) such thatDu ∪ I ⊆ D

′ holds for eachD′ ∈ cand(D, I); if a modifiable causal law
ℓi in D gives rise to alternative candidate replacementscand(ℓi, I), thencand(D, I) = {

⋃n
i=1Di | Di ∈

cand(ℓi, I)} should hold, whereD = {ℓ1, . . . , ℓn}.
We note that as for repairing action descriptions, [15] took a slightly different, semantics-oriented view

for resolving conflicts between an action description and a set of conditions, in the context of action language
C. Conflicts are characterized by means of states and transitions in the transition diagram described by the
given action description that violate some given conditions. The goal is to resolve each conflict by modifying
the action description, but not necessarily by deleting some causal laws. However, the repair of a single
conflict might be achieved by numerous alternative changes to the action description, such that the candidate
solution space is very large; furthermore, the repairs of individual conflicts interfere with each other, and
might introduce other conflicts. This led the authors of [15] to propose support for the user in terms of
query services on an action description and conditions, which provide explanations for certain disorders,
rather than an automated repair; a respective tool and methodology for its usage to correct editorial errors
in the knowledge representation process (e.g., by typos or omitted formula parts) are described in [19, 20].
An interesting issue for further work is to analyze under which conditions such repairs can be obtained as
solutions of an ADU problem in a generalized framework as outlined above.

8 Conclusion

In this paper, we have considered the problem of updating an action description with some new information
in the framework of action languages, where meta-level knowledge aboutthe domain in terms of observa-
tions and other constraints is respected. To this end, we have introduced aformal notion of action description
update which, given an action descriptionD, the new informationI (as a set of statements) and some desired
conditionsC (expressed in an action query language), singles out a solution to the update problem, based
on a preference relation⊏C over action descriptions.

We then studied semantical and computational properties of action updates in this framework, where
we presented among other results decomposition results and complexity characterizations of basic decision
problems associated with computing solutions, viz. deciding solution existence and solution recognition.
We considered in the complexity analysis generic settings as well as particularinstances, paying attention
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to different classes of conditions and preference relations. Furthermore, we presented some algorithms for
computing solutions and near-solutions (which approximate solutions), and we discussed our work in the
context of the literature.

Several issues remain for further work. Our computational results provide a basis for the realization of
concrete implementations to incorporate updates into action descriptions in the action languageC, based on
top of existing reasoning system like the causal calculator [47] or AD-Query [19], which is an important
need for deploying such systems to applications. However, for practicalconcerns, efficient domain-tailored
algorithms will need to be developed.

In connection with this, meaningful fragments of low (polynomial) complexity areof interest; related to
this is the study of language fragments that correspond to simpler (less expressive) action languages, such
asA or B (see [26]). However, several of the intractability results that we established here involved rather
simple action descriptions, which suggests that polynomial complexity will have tobe achieved by pragmatic
constraints rather than logical or structural conditions. On the other hand, also richer, more expressive action
languages, such as the languageC with disjunctive causal laws may be studied, the action languageC+ [40],
or the action languageK [17] (into which the language considered here maps naturally) may be studied.

Further issues are to consider richer forms of conditions (e.g., by generalized action query languages),
and to extend the current computational study to further notions of preference relations. For example, to
syntax-based preference using cardinality, lexicographic ordering,or formula ranking, possibly with priority
levels on top [7, 10], or to semantic-based preference that uses other weight assignments like those in [16]
(which are computable in polynomial space) or preference based on state- and transition-rankings, inspired
by approaches e.g. in conditional reasoning (see [22]).

Another issue are multiple updates. The update descriptions that we presented here provide a useful
basis for a realization of Markovian (history-less) updatesI1, I2, . . . , Ik of an action description under lazy
evaluation, and may be used, similar as update programs in the context of logicprogram updates [4, 18],
also to realize non-Markovian semantics of a sequence of updates to an action description. However, this
remains to be explored in further investigation.

Finally, in regard with connection with AGM and KM theory, postulates and properties that are tailored
to theories of action in a non-monotonic setting would be interesting.

Appendix

A Proofs for Section 5

Theorem 4 Given an action descriptionD and a setC of queries, decidingD |= C is (i) PSPACE-
complete in general, (ii)ΘP

k+3-complete ifk is the maximal nesting depth of dynamic queries inC, and (iii)
PNP
‖ -complete ifC does not involve dynamic queries.

Proof. Concerning(i) the result has been shown in [16]. We proceed with the proof of(ii) and(iii) .
Membership: W.l.o.g.C contains a single queryc. Let us consider(iii) first. Then,c is a conjunction of
clauses over universal queries of the formALWAYS Q or¬ALWAYS Q, whereQ is a conjunction of clauses
over static queries of the formholdsF or ¬holdsF . Checking truth of a negated universal (sub-)query of
this form is inNP. To wit, we nondeterministically guess a possible states of D and verify in polynomial
time thats is a state ofD (satisfies all static laws ofD) and thats does not satisfyQ (there is a clause inQ
such that none of its static queries is satisfied ats). Hence, the complementary task, i.e., checking the truth
of a positive universal query,ALWAYS Q, is in coNP. Thus, we can decideD |= c in polynomial time with
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a single parallel evaluation ofn NP-oracle calls, given thatn is the number of universal queries inc. This
provesPNP

‖ -membership.
For (ii) , the queryc is a conjunction of clauses over universal queries of the formALWAYS Q or

¬ALWAYS Q, whereQ is a conjunction of clauses over static queries as above and over dynamic queries
necessarilyQk−1 after A1; . . . ;An or ¬necessarilyQk−1 after A1; . . . ;An, whereQk−1 is a basic query
of nesting depthk − 1. Let c1 − c4 denote queries of the formc1 = ALWAYS Q, c2 = ¬ALWAYS Q,
c3 = ALWAYS ¬Q, andc4 = ¬ALWAYS ¬Q, respectively. We show by induction that deciding whether
D |= c is in ΘP

k+3.
Base case (k = 0): For staticQ, by (iii) decidingD |= ci, is in PNP

‖ , for 1 ≤ i ≤ 4. Hence, let
Q = necessarilyQk−1 after A1; . . . ;An be a dynamic query. DecidingD |= c1 is in NP since the
complementary problemD |= c2 is in coNP. The latter problem is decided by nondeterministically guessing
a historyh = s0, A1, s1, . . . , sn−1, An, sn of lengthn and checking in polynomial time thath is a history
of D, i.e., thatsi (0 ≤ i ≤ n) is a state ofD and that〈si, Ai+1, si+1〉 (0 ≤ i < n) is in R. Furthermore,
D, sn |= ¬Qk−1 can be checked in polynomial time sinceQk−1 is a propositional combination of static
queries, witnessingD 6|= c1. DecidingD |= c3 is in ΠP

2 and the complementary problemD |= c4 is in ΣP
2 .

To wit, in order to disproveD |= c3, guess a states and—as outlined above—use theNP-oracle to verify
that for all historiesh of lengthn emanating froms (s0 = s) it holds thatD, sn |= Qk−1. This establishes
D, s 6|= ¬Q and hence,D 6|= c3. Putting all together, in order to decideD |= c, an oracle forΣP

2 problems
is sufficient to decide the truth of any universal query inc. Thus,D |= c can be checked in polynomial time
with a polynomial number of parallelΣP

2 -oracle calls and therefore is inΘP
3 .

Induction step: Let the nesting depth of dynamic queries bek > 0, and assume that decidingD |= Qk−1

is in ΘP
k+2 for any subquery of nesting depthk − 1. Then, as easily seen by the arguments for the base case

above,D |= I can be decided by means of aΣP
k+2-oracle for any universal queryQ ∈ c. Thus, again by

parallel evaluation,D |= c is in ΘP
k+3.

Hardness: In order to prove(iii) we reduce the problem to the followingPNP
‖ -hard decision version of

Maximum CNF Satisfiability: Given a Boolean formulaF in conjunctive normal form (CNF)and an in-
tegerk, decide whether the maximum number of clauses inF that can be simultaneously satisfied by an
interpretation is0 mod k.

W.l.o.g., letF be a 3-CNF formula of the form
∧n

i=1 Li,1 ∨ Li,2 ∨ Li,3, whereLi,j , 1 ≤ i ≤ n,
1 ≤ j ≤ 3, is a literal over atomsX = {X1, . . . , Xm}. ForXi ∈ X, by¬L we denote¬Xi if L = Xi and
Xi if L = ¬Xi. Consider the action descriptionD1 consisting of:

causedCi if Li,1, causedCi if Li,2, causedCi if Li,3,
caused¬Ci if ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3,

}

1 ≤ i ≤ n

causedF1,1 if C1, caused¬F1,1 if ¬C1,
causedF1,0 if ¬C1, caused¬F1,0 if C1,

causedFi,j if Ci ∧ Fi−1,j−1,
caused¬Fi,j if ¬Ci ∧ Fi−1,j−1,

}

2 ≤ i ≤ n, 1 ≤ j ≤ i

causedFi,j if ¬Ci ∧ Fi−1,j ,
caused¬Fi,j if Ci ∧ Fi−1,j ,

}

2 ≤ i ≤ n, 0 ≤ j < i

Observe thatD1 contains only static laws. A state,s, consistent withD1 corresponds to an arbitrary total
interpretation onX together with a total interpretation on fluentsCi, 1 ≤ i ≤ n, such thatCi is true ats iff
the interpretation onX satisfies clauseCi. The latter is enforced by the first4n laws inD1. The remaining
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laws cause a total interpretation on fluentsFi,j , 1 ≤ j ≤ i ≤ n, such thatFi,j is true ats iff the interpretation
onX satisfiesj clauses among{C1, . . . , Ci}.

Now consider the following query:

ck = ALWAYS holds Fn,0∨

SOMETIMES holds Fn,k ∧ ALWAYS (¬holdsFn,k+1 ∧ . . . ∧ ¬holdsFn,n)∨
. . .
SOMETIMES holds Fn,lk ∧ ALWAYS (¬holdsFn,lk+1 ∧ . . . ∧ ¬holdsFn,n),

wherel = ⌊n/k⌋.
We show that the maximum number of clauses inF that can be simultaneously satisfied by an interpre-

tation is0 mod k iff D1 |= ck.
Only-If: Suppose that the maximum numbero of clauses inF that can be simultaneously satisfied

by an interpretation is0 mod k. Considero = 0 first. Then, no clause ofF is satisfiable. By con-
struction,Fi,0 holds for1 ≤ i ≤ n at every states of D1. In particular,Fn,0 holds at every state, and
thereforeALWAYS holds Fn,0 is entailed byD1, i.e.,D1 |= ck. Now let o > 0. W.l.o.g. o = ak for
some1 ≤ a ≤ l. Then, by constructionFn,j is false foro < j ≤ n at every states of D1. There-
fore, D1 |= ALWAYS (¬holds Fn,ak+1 ∧ . . . ∧ ¬holds Fn,n). Also by construction,Fn,o is true at a
state corresponding to an assignment that maximizes the simultaneously satisfiedclauses. This implies
D1 |= SOMETIMES holds Fn,ak. Observing that, together, these two queries constitute a conjunct ofck,
we conclude thatD1 |= ck.

If: SupposeD1 |= ck, and assumeD1 |= ALWAYS holds Fn,0 first. Then, by construction no clause
in F is satisfiable, Hence the maximum numbero of clauses inF that can be simultaneously satisfied by
an interpretation is0 and thuso ≡ 0 mod k. Now let any other conjunct ofck be entailed byD1, i.e., for
some1 ≤ a ≤ l it holds thatD1 |= SOMETIMES holds Fn,ak andD1 |= ALWAYS (¬holdsFn,ak+1 ∧
. . . ∧ ¬holds Fn,n). Then, there is a states at whichFn,ak is true. By construction, this means thatak
clauses ofF can simultaneously be satisfied. Moreover,Fn,j is false at every states of D1 if j > ak. Again
by construction, this implies thatak is the maximum number of clauses inF that can be simultaneously
satisfied. Sinceak ≡ 0 mod k this proves the claim.

For hardness in Case(ii) , considerm quantified Boolean formulas of form

Φl = Q1X
l
1Q2X

l
2 · · · QnX

l
nE

l, 1 ≤ l ≤ m,

whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀ otherwise,Xk
i andX l

j , 1 ≤ i, j ≤ n and1 ≤ k, l ≤ m, are
pairwise disjunct sets of propositional variables ifi 6= j or k 6= l. andEl is Boolean formula over atoms
in X l = X l

1 ∪ · · · ∪ X
l
n, such that ifΦl is false thenΦl+1, . . . ,Φm are false, too. Deciding whether the

maximum indexo, 1 ≤ o ≤ m, such thatΦo is true, is odd isΘP
n+1-hard.

We reduce the problem of decidingD |= c for a queryc with nesting depthk of dynamic queries to this
problem, as follows.

Let n = k + 2, 1 ≤ l ≤ m, and letD2 be the action description consisting of the statements:

causedF l
i if F l

i after Ai−1,
caused¬F l

i if ¬F l
i after Ai−1,

}

2 ≤ i ≤ n, F l
i ∈ X

l
i

causedF l
j after Ai−1 ∧ F

l
j ,

caused¬F l
j after Ai−1 ∧ ¬F

l
j ,

}

2 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, F l
j ∈ X

l
j
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Observe that a states of D2 corresponds to an arbitrary consistent total interpretation overX1 ∪ · · · ∪Xm.
Note also that〈s, {Ai}, s

′〉 (1 ≤ i ≤ n − 1) is a transition in the transition diagram described byD2 iff all
fluents are interpreted identically except those overX1

i+1 ∪ · · · ∪X
m
i+1.

Consider the query:

co =











∨(m−3)/2
l=0 (SOMETIMES f2l+1 ∧ ALWAYS ¬f2l+2) ∨ fm if m is odd,

∨(m−2)/2
l=0 (SOMETIMES f2l+1 ∧ ALWAYS ¬f2l+2) otherwise,

where

f l = p1 necessarily, p1 (. . . (pn−1 necessarilypn−1 holdsEl after {An−1}) . . .) after {A1},

wherepi = ¬ if i is even, void otherwise, for1 ≤ i ≤ n− 1.
We first prove thatΦl is true iff there exists a states of D2, such thatD2, s |= f l.
For the only-if direction supposeΦl is true. We show by a recursive argument that if a states0

coincides with a satisfying truth assignment forΦl on X l
1 thenD2, s0 |= f l. Assume thatsn−2 is a

state ofD2 that coincides with a satisfying truth assignment forΦl onX l
1 ∪ · · · ∪ X

l
n−1. We show that

D2, sn−2 |= pn−1N pn−1 holds El after {An−1}. If n − 1 is odd thenQn = ∀. Thus, any assign-
ment onX l

n will turn the assignment onX l
1 ∪ · · · ∪ X

l
n−1 given bysn−2 into a satisfying assignment for

El. Thus, every transition by{An−1} from sn−2 will lead to a statesn−1 that satisfiesEl. This proves
D2, sn−2 |= necessarily holdsEl after An−1 if n − 1 is odd. So letn − 1 be even. ThenQn = ∃. In
this case, there exists an assignment onX l

n that, together with the assignment onX l
1 ∪ · · · ∪ X

l
n−1 given

by sn−2, is a satisfying assignment forEl. Thus, there is a transition by{An−1} from sn−2 to a statesn−1

that satisfiesEl. Therefore,D2, sn−2 |= ¬necessarily¬holdsEl after An−1 if n− 1 is even. In any case,
D2, sn−2 |= pn−1N holds pn−1E

l after {An−1}. Applying this argument recursively proves the claim
that if a states0 coincides with a satisfying truth assignment forΦl onX l

1, thenD2, s0 |= f l, and thus, that
there exists a state ofD2 such thatD2, s |= f l.

For the if-direction lets be a state ofD2, such thatD2, s |= f l. We establish the truth ofΦl recursively
as follows. Leth = s,A1, s1, . . . , sn−3An−2, sn−2 be a history ofD2. We show thatsn−2 is a state ofD2

that coincides with a truth assignment onX l
1 ∪ · · · ∪ X

l
n−1, such thatQnE

l is true. Ifn − 1 is odd, then
D2, sn−2 |= necessarily holdsEl after An−1, sinceD2, s |= f l. Thus, any assignment onX l

n will turn the
assignment onX l

1 ∪ · · · ∪ X
l
n−1 given bysn−2 into a satisfying assignment forEl. If n − 1 is even, then

D2, sn−2 |= ¬necessarily¬holdsEl after An−1, sinceD2, s |= f l. Therefore, there exists an assignment
onX l

n that will turn the assignment onX l
1 ∪ · · · ∪ X

l
n−1 given bysn−2 into a satisfying assignment for

El. Hence, in any caseQnE
l is true. Applying this argument recursively proves the claim thatD2, s |= f l

implies the truth ofΦl.
We now show that the maximum indexo such thatΦo is true, is odd iffD2 |= co.
Only-If: Let the maximum indexo such thatΦo is true be odd. Consider any states of D2 such that

D2, s |= fo. If o = m this provesD2 |= co. So leto < m. Then additionallyD2, s 6|= fo+1, for every
states′ of D2. Hence,D2 |= SOMETIMES fo andD2 |= ALWAYS ¬fo+1, i.e., for l = (o − 1)/2
D2 |= SOMETIMES f2l+1 ∧ ALWAYS ¬f2l+2. This provesD2 |= co.

If: AssumeD2 |= co. If m is odd andD2 |= fm, Thenm is the maximum indexo such thatΦo

is true, ando is odd. This proves the claim. So consider the remaining cases, i.e., there is anindex l
(0 ≤ l ≤ (m−3)/2 if m is odd and0 ≤ l ≤ (m−2)/2, otherwise), such thatD2 |= SOMETIMES f2l+1∧
ALWAYS ¬f2l+2. Then, there is a states of D2 such thatf2l+1 is entailed, whereasf2l+2 is not entailed



INFSYS RR 1843-13-08 37

at any states′ of D2. Let o = 2l + 1. We conclude thatΦo is true andΦo+1 is false. Thus,o is the
maximum index such thatΦo is true, and it is odd. This proves the claim and thereforeΘP

n+1-hardness, i.e.,
ΘP

k+3-hardness. 2

Theorem 5 Deciding whether a given ADU problem(D, I, C,⊏C) has a solution (or a near-solution) is (i)
PSPACE-complete in general, (ii)ΣP

k+3-complete, ifk is the maximal nesting depth of dynamic queries in
Co, (iii) ΣP

2 -complete, ifCo does not involve dynamic queries, and (iv)NP-complete ifCo = ∅.
Proof.
Membership: Follows from Theorems 3 and 4.
Hardness: Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2 and let

Φ = ∃Y Q1X1 · · · QnXnE

be a QBF, whereQi = ∃ if i ≡ 0 mod 2 andQi = ∀ otherwise. Consider

Du = D2 ∪ {causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1,Dm = {causedYi, caused¬Yi |
Yi ∈ Y }, I = ∅, C = Co ∪ Cp with Cp = ∅ and

Co = {ALWAYS p1 necessarilyp1(. . . (pn−1 necessarilypn−1holdsE after {An−1}) . . .) after {A1}},

wherepi = ¬ if i is odd, void otherwise, for1 ≤ i ≤ n− 1. We show that there exists a solution to the
action description update problem(Du ∪Dm, I, C,⊏C) iff Φ is true.

For the only-if direction, letDu ⊆ D′ ⊆ Du ∪ Dm be a solution. ThenD′ is consistent and states
of D′ coincide with some interpretation onY and an arbitrary interpretation onX1, . . . , Xn. By the same
arguments as in the hardness proof of Theorem 4(ii) , the fact thatD′ |= Co witnesses the truth ofΦ.

For the if-direction letΦ be true. Consider a satisfying truth assignment onY , let D′
m be the set of

static causal laws fromDm compliant with this assignment, and letD′ = Du ∪D
′
m. Then,D′ is consistent

andDu ⊆ D′ ⊆ Du ∪Dm. Moreover, by the same arguments as in the hardness proof of Theorem4 (ii) ,
D′ |= Co. This proves thatD′ is a near-solution, and hence the existence of a solution.

For (iii) let Φ = ∃Y ∀X E and consider the action description update problem(Du ∪ Dm, I, C,⊏C),
whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS holds E}.
We prove that the action description update problem(Du ∪Dm, I, C,⊏C) has a solution iffΦ is true.

For the only-if direction, letDu ⊆ D′ ⊆ Dm be a solution. ThenD′ is consistent and states ofD′

coincide with some interpretation onY and an arbitrary interpretation onX. SinceD′ |= Co, E is true at
every such state, witnessing that any truth assignment onX turns the joint assignment on both,Y andX,
into a satisfying assignment forE. This proves the truth ofΦ.

For the if-direction letΦ be true. Consider a satisfying truth assignment onY , and letD′ be the set of
static causal laws fromDm compliant with this assignment. Then,D′ is consistent andDu ⊆ D′ ⊆ Dm.
Moreover, sinceΦ is true, any truth assignment onX turns the joint assignment on both,Y andX, into a
satisfying assignment forE. Therefore,E holds at all states ofD′, witnessingD′ |= Co. This proves that
D′ is a near-solution, and hence the existence of a solution.

Finally. for (iv), letE be a Boolean formula over atomsY and let us defineDu = {causedY1 if ¬E,
caused¬Y1 if ¬E}, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = ∅. Then, (Du ∪
Dm, I, C,⊏C) has a solution iffE is satisfiable.
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For the only-if direction, letDu ⊆ D′ ⊆ Du ∪ Dm be a solution. ThenD′ is consistent and states of
D′ coincide with some interpretation onY . SinceDu ⊆ D′, E is true at every such state. This proves the
satisfiability ofE.

For the if-direction letE be satisfiable. Consider a satisfying truth assignment onY , and letD′
m be the

set of static causal laws fromDm compliant with this assignment. Then,D′ = Du ∪D
′
m is consistent and

Du ⊆ D′ ⊆ Du ∪Dm. MoreoverD′ |= Co trivially. This proves thatD′ is a near-solution, and hence the
existence of a solution. 2

Theorem 6 Given an ADU problem(D, I, C,⊂) and an action descriptionD′, deciding whetherD′ is a
solution for it is (i)PSPACE-complete for general queries inCo, (ii) ΠP

k+3-complete ifk is the maximal
nesting depth of dynamic queries inCo, (iii) ΠP

2 -complete ifCo does not involve dynamic queries, and (iv)
DP -complete ifCo = ∅.
Proof.
Membership: Follows from Theorem 3, observing that for any given action descriptionsD′ andD′′, deciding
D′ ⊂ D′′ can be done in polynomial time, i.e., thatPcheck is in P for ⊂.
Hardness: Hardness in Case(i) follows from Theorem 4. For(ii) let n = k + 2 and let

Φ = ∀Y Q1X1 · · · QnXnE

be a QBF, whereQi = ∃ if i ≡ 1 mod 2 andQi = ∀ otherwise. Consider

Du = D2 ∪ {causedYi after Ai−1 ∧ Yi, caused¬Yi after Ai−1 ∧ ¬Yi | 2 ≤ i ≤ n},

whereD2 is the action description from the proof of Theorem 4 withl = 1,Dm = {causedYi, caused¬Yi |
Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS f ∨ g}, where

f = p1 necessarilyp1 (. . . (pn−1 necessarilȳpn−1 holdsE after {An−1}) . . .) after {A1},

g =
∧

Yi∈Y
SOMETIMES holds Yi ∧ SOMETIMES holds ¬Yi,

wherepi = ¬ if i is odd, void otherwise, for1 ≤ i ≤ n− 1, andp̄n − 1 = ¬ if n is odd and void otherwise.
We show thatDu is a solution to the action description update problem(Du ∪Dm, I, C,⊂) iff Φ is true.

Obviously,Du is consistent andI ⊆ Du. Additionally, states ofDu consist of arbitrary truth assign-
ments toY andX1, . . . , Xn. Therefore,Du satisfiesg, and henceDu |= Co. This proves thatDu is a
near-solution. We show that it is a maximum near-solution iffΦ is true.

For the only-if direction, towards a contradiction assume thatΦ is false. Then¬Φ is true. Observe that
¬Φ is a QBF of the form considered in the hardness proof of Theorem 5(ii) with E negated. Applying the
arguments of this proof, we obtain that there exists a setDu ⊂ D′ ⊆ Du ∪Dm, such thatD′ is consistent
andD′, s |= f for every states of D′ (Note thatp̄n−1 accounts for the negation ofE). ThereforeD′ |= Co,
and thusD′ is a near-solution. This contradicts the maximality ofDu.

For the if-direction, towards a contradiction assume thatDu is not maximal. Then, all sates of a max-
imum solution coincide on at least one assignment to someYi ∈ Y , and therefore it does not satisfyg.
Consequently,f is satisfied at all states of a maximum solution. Applying the arguments of the hardness
proof of Theorem 5(ii) , we conclude that¬Φ is true, a contradiction.

For (iii) let Φ = ∀Y ∃X E and consider the action description update problem(Du ∪ Dm, I, C,⊂),
whereDu = ∅, Dm = {causedYi, caused¬Yi | Yi ∈ Y }, I = ∅, andC = Co = {ALWAYS ¬holdsE ∨
g}, with g as before. We prove that the action description update problem(Du ∪Dm, I, C,⊂) hasDu = ∅
as a solution iffΦ is true.
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Obviously,Du is consistent andI ⊆ Du. Additionally, states ofDu consist of arbitrary truth assign-
ments toY andX. Therefore,Du satisfiesg, and henceDu |= Co. This proves thatDu is a near-solution.
We show that it is a maximum near-solution iffΦ is true.

For the only-if direction, towards a contradiction assume thatΦ is false. Then¬Φ is true. Observe that
¬Φ is a QBF of the form considered in the hardness proof of Theorem 5(iii) with E negated. Applying
the arguments of this proof, we obtain that there exists a setDu ⊂ D′ ⊆ Dm, such thatD′ is consistent
andD′ |= ALWAYS ¬holds E, i.e.,D′ |= Co. Therefore,D′ is a near-solution, which contradicts the
maximality ofDu.

For the if-direction, towards a contradiction assume thatDu is not maximal. Then, all sates of a max-
imum solution coincide on at least one assignment to someYi ∈ Y , and therefore it does not satisfyg.
Consequently, a maximum solution must satisfyALWAYS ¬holds E . Applying the arguments of the
hardness proof of Theorem 5(iii) , we conclude that¬Φ is true, a contradiction.

Finally (iv), let E1 andE2 be Boolean formulas over atomsY1 andY2, respectively. ConsiderDu =
{caused¬F, causedF if ¬E1},Dm = {causedF if ¬E2}, I = ∅, andC = ∅. Then,(Du ∪Dm, I, C,⊂)
has solutionDu iff E1 is satisfiable andE2 is unsatisfiable.

Obviously,I ⊆ Du, andDu |= Co. Therefore,Du is a solution iff it is consistent and maximal, i.e.,
no superset ofDu is consistent. We show that this two conditions hold iffE1 is satisfiable andE2 is
unsatisfiable.

For the only-if direction, assume thatDu is consistent and maximal. ThenE1 is satisfiable witnessed by
the truth assignment toY1 of any state ofDu. Furthermore,Du ∪Dm is inconsistent (otherwise it would be
a solution, since it trivially satisfiesCo), which implies thatE2 is unsatisfiable.

For the if-direction, letE1 be satisfiable andE2 be unsatisfiable. Then any satisfying assignment to
fluents inY1 together with assigning falsity toF and any truth assignment to fluents fromY2 yields a state
ofDu witnessing its consistency. Moreover,Du∪Dm is inconsistent due to the unsatisfiability ofE2, which
implies thatDu is maximal. This provesDP -hardness. 2

Theorem 7 Given an ADU problem(D, I, C,<weightq) and an action descriptionD′, deciding whetherD′

is a solution for it is (i)PSPACE-complete for general queries inC, (ii) ΠP
k+3-complete ifk is the maximal

nesting depth of dynamic queries inC, (iii) ΠP
2 -complete ifC does not involve dynamic queries, and (iv)

NP-complete ifC = ∅.
Proof.
Membership: For (i), (ii) , and(iii) membership follows from Theorems 3 and 4. Note that in order to decide
D1 <weightq D2 for any action descriptionsD1 andD2, such thatDu ∪ I ⊆ Di ⊆ D ∪ I for i ∈ {1, 2},
and a set of weighted queriesCp, we decideDi |= c, for everyc ∈ Cp (i.e., polynomially many), and sum
up the corresponding weights in polynomial time. Thus, ifDi |= c can be decided in polynomial space,
respectively in polynomial time with the help of aΣP

i−1-oracle, thenPcheck is in PSPACE, respectively
in ∆P

i , for <weightq . For (iv), i.e. C = ∅, Pcheck is trivial for <weightq . In this case we can decide whether
D′ is a solution by guessing a states and checking that it is a state ofD′ in polynomial time (witnessing
consistency) and additionally checkingDu ∪ I ⊆ D′ andD′ ⊆ D ∪ I in polynomial time. This proves
NP-membership for(iv).
Hardness: Hardness in Case(i) follows easily from Theorem 4. For(ii) let n = k + 2 and considerΦ, Du,
Dm, I, andCo from the proof of Theorem 6(ii) . Additionally, let

Cp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y }

and consider a weight of 1 for eachc ∈ Cp. Then,Du <weightq D′ for everyDu ⊂ D′ ⊆ Du ∪ Dm,
sinceweightq(Du) = 0, whereas all states ofD′ coincide on at least one assignment to someYi ∈ Y ,
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thus making at least one of the queries inCp true, i.e.,weightq(D
′) ≥ 1. Therefore,Du is a solution to

(Du ∪ Dm, I, Co ∪ Cp, <weightq) iff it is a solution to(Du ∪ Dm, I, Co,⊂), which provesΠP
k+3-hardness

(cf. Theorem 6(ii) ).
For (iii) considerΦ,D, I, andCo from the proof of Theorem 6(ii) . Again, let

Cp = {ALWAYS holds Yi,ALWAYS holds ¬Yi | Yi ∈ Y }

with weight 1 for eachc ∈ Cp. Then, for the same reason as above,Du <weightq D′ for everyDu ⊂
D′ ⊆ Du ∪ Dm. Therefore,Du is a solution to(Du ∪ Dm, I, Co ∪ Cp, <weightq) iff it is a solution to

(Du ∪Dm, I, Co,⊂), provingΠP
2 -hardness.

Finally (iv), letE be a Boolean formula over atomsY and consider the ADU problem given byDu =
{causedY1 if ¬E, caused¬Y1 if ¬E}, Dm = ∅, I = ∅, andC = ∅. Then,Du is a solution to(Du ∪
Dm, I, C,<weightq) iff E is satisfiable.

For the only-if direction, letDu be a solution. ThenDu is consistent, states ofDu coincide with some
interpretation onY , andE is true at every such state. This proves the satisfiability ofE.

For the if-direction letE be satisfiable. A satisfying truth assignment onY is a state ofDu, i.e.,Du is
consistent. Moreover,Du ∪ I ⊆ Du ⊆ D ∪ I andDu |= Co trivially. And sinceDu ∪ I = Du = D ∪ I,
we conclude thatDu is a solution. 2

B Proofs for Section 6

Prior to the proof of Proposition 2, we establish the following lemma which pinpointsthe relation between
states and transitions of an update descriptionU and any action descriptionD′ obtained by an (arbitrary)
selection of modifiable laws.

Lemma 2 LetD = Du ∪ Dm be an action description, and letD′
m be a subset ofDm. Let 〈S, V,R〉 be

the transition diagram described byD′ = Du ∪D
′
m. LetU = U(D) be the update description ofD, with

a setH of update fluents, and let〈SU , V U , RU 〉 be the transition diagram described byU . LetM be the
subset ofH labeling the laws inD′

m. Then the following hold:

(i) s \H ∈ S iff s ∈ SU ands ∩H = M,

(ii) 〈s,A, s′〉 in RU iff s =H s′, and

(iii) 〈s \H, A, s′ \H〉 ∈ R iff 〈s,A, s′〉 ∈ RU ands ∩H = M.

Proof.

(i) For the only-if direction consider any states ∈ S. By the definition of a transition diagram described
by an action description, for every static law (4) inD′, s satisfiesG ⊃ L.

Case 1.Take any static law (4) inU , that does not contain anyHi ∈ H. By the definition of an update
description, this static law is inDu as well. Then, sinces satisfiesG ⊃ L, s ∪M satisfiesG ⊃ L.

Case 2.Take any static law (21) inU such thatHi ∈ M. By the definition of an update description,
there is a corresponding static law (4) inD′

m. Then, sinces satisfiesG ⊃ L, s∪M satisfiesG∧Hi ⊃ L.

Case 3.Take any static law (21) inU such thatHi 6∈M. Sinces∪M does not satisfyG∧Hi, s∪M

satisfiesG ∧Hi ⊃ L.
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By the definition of an update description,U does not contain any other static laws. Therefore, from
these three cases, it follows thats ∪M is a state inSU .

For the if-direction consider any states in SU , such thats ∩H = M. By the definition of a transition
diagram described by an action description, for every static law (4) inU , s satisfiesG ⊃ L.

Case 1.Take any static law (4) inDu. By the definition of an update description it is also inU , and it
does not contain any element ofH. Therefore,s \H satisfiesG ⊃ L.

Case 2.Take any static law (4) inD′
m. By the definition of an update description, for every static

law (4) inD′
m, there is a static law (21) inU . Since, for every corresponding static law (21) inU , s

satisfiesG ∧Hi ⊃ L, and since by assumptionHi is in s, s \H satisfiesG ⊃ L.

From these two cases, it follows that, for every static law (4) inD′, s \H satisfiesG ⊃ L. Thus,s \H
is in S.

(ii) Since no element ofH appears in the head of any causal law inU except for the inertia laws (23), we
conclude that〈s,A, s′〉 in RU iff s =H s′.

(iii) For the only-if direction consider any〈s,A, s′〉 inR. By the definition of a transition diagram described
by an action description, for every dynamic law (5) inD′, s′ satisfiesL if the law is applicable to
〈s,A, s′〉 (i.e.,s ∪A satisfiesH ands′ satisfiesG). Due to(i), boths ∪M ands′ ∪M are inSU .

Case 1.Consider any dynamic law (5) inU , that does not contain anyHi ∈ H. Suppose that it is
applicable to〈s∪M, A, s′∪M〉. Then, since noHi ∈ H occurs in this law, it is applicable to〈s,A, s′〉
as well. By the definition of an update description, this law is inDu. Since〈s,A, s′〉 is inR, s′ satisfies
L. Thens′ ∪M satisfiesL.

Case 2.Consider any dynamic law (22) inU , that is not of the form (23), whereHi labels a dynamic
law (5) inD′

m, i.e.,Hi ∈M. Suppose that it is applicable to〈s ∪M, A, s′ ∪M〉. That is,s ∪M ∪A
satisfiesH ∧ Hi ands′ ∪M satisfiesG. SinceH does not contain anyHi ∈ H, s ∪ A satisfiesH;
sinceG does not contain anyHi ∈ H, s′ satisfiesG. Then, the corresponding dynamic law (5) inD′

m

is applicable to〈s,A, s′〉. Since〈s,A, s′〉 is inR, s′ satisfiesL. Then,s′ ∪M satisfiesL.

Case 3.Consider any dynamic law (23) inU . By (ii ) we conclude that〈s,A, s′〉 in RU iff s =H s′.
Hence,s∪M satisfiesHi iff s′∪M satisfiesHi. Therefore, this law is applicable to〈s∪M, A, s′∪M〉
iff L = Hi andHi is in M, orL = ¬Hi andHi 6∈M. Consequently,M is the only interpretation on
H satisfying the heads of the applicable inertia laws.

By the definition of an update description,U does not contain any other dynamic laws applicable to
〈s ∪M, A, s′ ∪M〉.

So far we have shown that,(a) for every〈s,A, s′〉 in R, s′ ∪M satisfies the heads of every dynamic
law inU that is applicable to〈s∪M, A, s′ ∪M〉. Moreover, we can observe that(b) for each dynamic
law inD′ applicable to〈s,A, s′〉, there is a corresponding law inU applicable to〈s ∪M, A, s′ ∪M〉,
and that(c) except for the inertia laws (23),U does not contain any other dynamic laws applicable to
〈s ∪M, A, s′ ∪M〉.

Since we know thats′ is the only interpretation satisfying the heads of all dynamic laws inD′ applica-
ble to〈s,A, s′〉, it follows from (a)–(c) and Case 3 above, thats′ ∪M is the only interpretation satisfy-
ing the heads of all dynamic laws inU applicable to〈s∪M, A, s′∪M〉. Therefore,〈s∪M, A, s′∪M〉
is inRU .
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For the if-direction consider any〈s,A, s′〉 in RU , such thats ∩H = s′ ∩H = M. Due to(i) above,
s \H ands′ \H are inS. By the definition of a transition diagram described by an action description,
for every dynamic law (5) inU , s′ satisfiesL if the law is applicable to〈s,A, s′〉 (i.e.,s∪A satisfiesH
ands′ satisfiesG).

Consider any dynamic law (5) inD′. Suppose that it is applicable to〈s \ H, A, s′ \ H〉. That is,
(s \H) ∪A satisfiesH ands′ \H satisfiesG.

Case 1.This law is inDu. SinceG andH do not contain any element ofH, s ∪ A satisfiesH and
s′ satisfiesG, and thus the law (5) is applicable to〈s,A, s′〉 as well. By the definition of an update
description, this law is also inU . Since〈s,A, s′〉 is inRU , s′ satisfiesL. SinceL does not contain any
element ofH, s′ \H satisfiesL.

Case 2.This law is inD′
m. Sinces contains every elementHi of H labeling a dynamic law inD′

m,
s ∪ A satisfiesH ∧ Hi. By the definition of an update description, there is a corresponding law (22)
in U , which is applicable to〈s,A, s′〉. Since〈s,A, s′〉 is inRU , s′ satisfiesL. SinceL does not contain
any element ofH, s′ \H satisfiesL.

So far we have shown that,(a) for every〈s,A, s′〉 in RU , s′ \H satisfies the heads of every dynamic
law inD′ that is applicable to〈s \H, A, s′ \H〉. Moreover, we can observe that(b) for each dynamic
law in U applicable to〈s,A, s′〉, except for the inertia laws (23), there is a corresponding law inD′

applicable to〈s \H, A, s′ \H〉, and that(c)D′ does not contain any other dynamic laws applicable to
〈s \H, A, s′ \H〉.

Since we know thats′ is the only interpretation satisfying the heads of all dynamic laws inU applicable
to 〈s,A, s′〉, it follows from (a)–(c) that s′ \ H is the only interpretation satisfying the heads of all
dynamic laws inD′ applicable to〈s \H, A, s′ \H〉. Therefore,〈s \H, A, s′ \H〉 is inR. 2

Proposition 2 Let(D, I, C,⊏C) be an ADU problem, withD = Du∪Dm. LetU be the update description
ofD∪I = Du∪I∪Dm, and letW denote a subset ofDm containing laws labeled by the elementsM ⊆ H

in U . ThenD′ = Du ∪ I ∪W is a near-solution to(D, I, C,⊏C) iff M is an update set forU relative
toCo.
Proof. Let (D, I, C,⊏C) be an ADU problem, withD = Du∪Dm. LetU be the update description ofD∪
I = Du ∪ I ∪Dm, with a setH of update fluents, describing the transition diagramTU = 〈SU , V U , RU 〉.
Let W be a subset ofDm containing laws labeled byM ⊆ H in U . Let T = 〈S, V,R〉 be the transition
diagram described byD′ = Du ∪ I ∪W . We show thatD′ is a near-solution to(D, I, C,⊏C) iff M is an
update set forU relative toCo.

For the if-direction suppose thatM is an update set forU relative toCo. We show thatD′ is a near-
solution to(D, I, C,⊏C) the definition of a solution hold.

(i) Sinces ∩H = M for some states ∈ SU , and due to Lemma 2(i), S is not empty. Therefore,D′ is
consistent.

(ii) It follows from the definition ofD′ thatDu ∪ I ⊆ D
′ ⊆ D ∪ I.

(iii) For any states in S, observe that by Lemma 2(i), s ∪M is in SU .

We show for any static or dynamic queryc and any states in S, thatU, s ∪M |= c impliesD′, s |= c.
Towards a contradiction assumeU, s∪M |= c andD′, s 6|= c, and consider a static queryc first. Since
no element ofH appears inc, and the query is static,s∪M 6|= c follows. However, this contradicts the
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assumption. So letc be a dynamic query andh a history (10) inT such thats0 = s andD′, sn 6|= Q.
We continue by induction on the nesting depthk of c. If k = 0, thenQ is a static query and, since no
element ofH appears inc, it follows thatsn ∪M 6|= Q. Moreover, by Lemma 2(iii) ,

hU = s0 ∪M, A0, s1 ∪M, . . . , sn−1 ∪M, An, sn ∪M

is a history inTU . Thus, we concludeU, s∪M 6|= c, a contradiction. So let us assume the claim holds
for dynamic queries with maximum nesting depthk − 1, and consider a dynamic query of nesting
depthk. Then,Q contains only static queries and dynamic queries of nesting depth at mostk − 1. By
hypothesis,D′, sn 6|= Q impliesU, sn ∪M 6|= Q. Furthermore, again by Lemma 2(iii) , the historyhU

corresponding toh is a history inTU . Thus, we concludeU, s ∪M 6|= c, a contradiction. This proves
U, s∪M |= c impliesD′, s |= c for all s in S, and any static or dynamic queryc, and thus also for any
basic queryc.

We continue considering existential and universal queriesc. We show that ifc holds ats ∪M wrt.
SU

H,s∪M
, thenD′ |= c. For an existentially quantified basic queryQ, the claim follows from the fact

that, by definition, ifc holds ats ∪M wrt. SU
H,s∪M

, somes′ ∈ SU exists such thatU, s′ |= Q and
s′ =H s. By Lemma 2(i), we conclude thats′ \H is a state ofD′. Moreover, fromU, s′ |= Q and
the fact thatQ is basic, it follows thatD′, s′ \H |= Q, and henceD′ |= c. So letc be a universally
quantified basic queryQ, and towards a contradiction, assume thatD′ 6|= c. Then, there exists a state
s′ of D′ such thatD′, s′ 6|= Q. Note that by Lemma 2(i) s′ ∪M ∈ SU . Moreover, sinceQ is basic
we conclude thatU, s′ ∪M 6|= Q (otherwiseD′, s′ |= Q follows which is in contradiction with our
assumption). However,U, s′ ∪M 6|= Q contradicts thatc holds ats∪M wrt. SU

H,s∪M
. Therefore, ifc

holds ats∪M wrt. SU
H,s∪M

, thenD′ |= c for every existential and universal queryc; the same follows
for any Boolean combination of existential and universal queries. This proves that ifc holds ats ∪M

wrt. SU
H,s∪M

, thenD′ |= c, for any queryc.

Finally, we show thatD′ |= Co. Consider an arbitrarys ∈ S (which exists, since by(i) D′ is consistent).
Then, due to Condition(ii) for update fluent sets,s ∪M ∈ SU

Co
. This means by definition thatc holds

at s wrt. SU
H,s for everyc ∈ Co. As we have shown above, this impliesD′ |= c for all c ∈ Co. This

provesD′ |= Co.

For the only-if direction letD′ be a near-solution to(D, I, C,⊏C). We show thatM is an update set
for U relative toCo, i.e.,(i) s ∩H = M for somes ∈ SU , and(ii) SU

H,s ⊆ S
U
Co

.

(i) SinceD′ is consistent there exists a states ∈ S. Furthermore, by Lemma 2(i) we conclude that
s ∪M ∈ SU , for any such states.

(ii) We first show for any static or dynamic queryc and any states in S, thatD′, s |= c impliesU, s∪M |=
c. Towards a contradiction assumeD′, s |= c andU, s ∪M 6|= c, and consider a static queryc first.
Since no element ofH appears inc, and the query is static,s 6|= c follows. However, this contradicts the
assumptionD′, s |= c. So letc be a dynamic query andhU a history (10) inTU such thats0 = s ∪M

andU, sn 6|= Q. We continue by induction on the nesting depthk of c. If k = 0, thenQ is a static query
and, since no element ofH appears inc, it follows thatsn \H 6|= Q. Furthermore, by Lemma 2(ii) ,
si =H s0 for 1 ≤ i ≤ n. Therefore, by Lemma 2(iii) ,

h = s0 \H, A0, s1 \H, . . . , sn−1 \H, An, sn \H
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is a history inT . Thus, we concludeD′, s 6|= c, a contradiction. So let us assume the claim holds
for dynamic queries with maximum nesting depthk − 1, and consider a dynamic query of nesting
depthk. Then,Q contains only static queries and dynamic queries of nesting depth at mostk − 1. By
hypothesis,U, sn 6|= Q impliesD′, sn \H 6|= Q. Furthermore, again by Lemma 2(ii) and(iii) , the
historyh corresponding tohU is a history inT . Thus, we concludeD′, s 6|= c, a contradiction. This
provesD′, s |= c impliesU, s∪M |= c for all s in S, and any static or dynamic queryc, and thus also
for any basic queryc.

We continue considering existential and universal queriesc. Lets be any state inSU such thats∩H =
M. We show thatD′ |= c implies thatc holds ats wrt. SU

H,s. For an existentially quantified basic
queryQ, the claim follows from the fact that then there exists a states′ ∈ S, such thatD′, s′ |= Q. By
Lemma 2(i) s′ ∪M is a state inSU , and sinceQ is basic, it follows thatU, s′ ∪M |= Q. Moreover
s′ ∪M =H s, and hence,c holds ats wrt. SU

H,s by definition. So letc be a universally quantified
basic queryQ, and towards a contradiction, assume thatc does not hold ats wrt. SU

H,s. Then there
existss′ ∈ SU

H,s, such thatU, s′ 6|= Q. By Lemma 2(i) s′ \M is a state ofD′, and sinceQ is basic,
D′, s 6|= Q follows. However, this contradictsD′ |= c. Therefore, ifD′ |= c, thenc holds ats wrt.
SU

H,s for every existential and universal queryc; the same follows for any Boolean combination of
existential and universal queries. This proves thatD′ |= c implies thatc holds ats wrt. SU

H,s.

Therefore, given thatD′ is a near-solution and henceD′ |= Co, we conclude thatSU
H,s ⊆ S

U
Co

. 2
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