
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

HYBRID REASONING WITH FORESTLOGIC

PROGRAMS

Cristina Feier Stijn Heymans

INFSYS RESEARCHREPORT184-08-14.

DECEMBER 2008

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT184-08-14., DECEMBER 2008

HYBRID REASONING WITH FORESTLOGIC PROGRAMS

Cristina Feier1 and Stijn Heymans2

Abstract. Open Answer Set Programming (OASP) is an attractive framework for integrating ontolo-
gies and rules. Although several decidable fragments of OASP have been identified, few reasoning
procedures exist. In this paper, we provide a sound, complete, and terminating algorithm for satisfi-
ability checking w.r.t. forest logic programs, a fragment where rules have a tree shape and allow for
inequality atoms and constants. We further introduce f-hybrid knowledge bases, a hybrid framework
whereSHOQ knowledge bases and forest logic programs co-exist, and we show that reasoning with
such knowledge bases can be reduced to reasoning with forestlogic programs only. We note that
f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule component, pro-
viding thus a genuine alternative approach to hybrid reasoning.

1Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail: feier@kr.tuwien.ac.at.

2Institute of Information Systems, Knowledge-Based Systems Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria. E-mail: heymans@kr.tuwien.ac.at.

Acknowledgements: This work is partially supported by the Austrian Science Fund (FWF) under the projects
Distributed Open Answer Set Programming (FWF P20305)andReasoning in Hybrid Knowledge Bases (FWF
P20840).

This Report is a Preliminary version.

Copyright c© 2009 by the authors

INFSYS RR 184-08-14. I

Contents

1 Introduction 1

2 Preliminaries 2

3 Forest Logic Programs 5

4 An Algorithm for Forest Logic Programs 7
4.1 Expansion Rules 8

4.1.1 (i) Expand unary positive. 8
4.1.2 (ii) Expand unary negative. 9
4.1.3 (iii) Choose a unary predicate. 10
4.1.4 (iv) Expand binary positive. 10
4.1.5 (v) Expand binary negative. 10
4.1.6 (vi) Choose a binary predicate. 11

4.2 Applicability Rules 11
4.2.1 (vii) Saturation 11
4.2.2 (viii) Blocking 11
4.2.3 (ix) Redundancy 11

4.3 Termination, Soundness, and Completion 12
4.4 Complexity Results 27

5 F-hybrid Knowledge Bases 27

6 Discussion and Related Work 33

7 Conclusions and Outlook 36

INFSYS RR 184-08-14. 1

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has received considerable attention
with approaches such asDescription Logic Programs[11], DL-safe rules[27], DL+log [29], dl-programs
[6], Description Logic Rules[21], and Open Answer Set Programming (OASP) [16]. OASP combines
attractive features from the DL and the Logic Programming (LP) world: an open domain semantics from the
DL side allows for stating generic knowledge, without the need to mention actual constants, and a rule-based
syntax from the LP side supports nonmonotonic reasoning vianegation as failure.

Several decidable fragments of OASP were identified by syntactically restricting the shape of logic
programs, while carefully safe-guarding enough expressiveness for integrating rule- and ontology-based
knowledge. Notable fragments areConceptual Logic Programs (CoLPs)[13] that are able to simulate
reasoning in the DLSHIQ andForest Logic Programs (FoLPs)[14] that are expressive enough to deal
with SHOQ. Note that bothSHOQ andSHIQ are close family ofSHOIN (D), the DL underlying the
Web Ontology language OWL-DL [31]. A serious shortcoming ofthese decidable fragments is their lack
of effective reasoning procedures. In [7], we took a first step in mending this by providing a sound and
complete algorithm forsimple CoLPs. Simple CoLPs are a particular type of CoLPs that disallow the use
of inverse predicates, inequality and allow just a restricted form of literal cyclity, but that are still expressive
enough to simulate the DLALCH.

In this report, we extend the algorithm of [7] toForest Logic Programs, an extension of simple CoLPs
with constants and inequality and no cyclicity restriction. FoLPs are able to simulate the DLSHOQ.
Furthermore, they serve well as an underlying integration vehicle for ontologies and rules. In order to
illustrate this, we definef-hybrid knowledge bases (fKBs), consisting of aSHOQ knowledge base and a rule
component that is a FoLP, with a nonmonotonic semantics similar to the semantics ofg-hybrid knowledge
bases[12], r-hybrid knowledge bases[30], andDL+log [29]. Our approach differs in two points with
current other proposals:

• In contrast with Description Logic Programs, DL-safe rules, and Description Logic Rules, f-hybrid
knowledge bases have, in line with traditional logic programming paradigms, a minimal model se-
mantics for the rule component, thus allowing for nonmonotonic reasoning.

• To ensure effective reasoning, our approach does not rely ona (weakly) DL-safeness condition such
as [27, 29, 30], which restricts the interaction of the rule component with the DL component. Instead,
we rely on a translation of the hybrid knowledge to FoLPs.

The major contributions of the paper can be summarized as follows:

• We define in Section 4 a nondeterministic algorithm for deciding satisfiability w.r.t. FoLPs, inspired
by tableaux-based methods from DLs. We show that this algorithm is terminating, sound, complete,
and runs in2-NEXPTIME. The algorithm is non-trivial from two perspectives: both the minimal model
semantics of OASP, compared to the model semantics of DLs, aswell as the open domain assumption,
compared to the closed domain assumption of ASP [8], pose specific challenges.

• We show in Section 5 that FoLPs are expressive enough to simulate the DLSHOQ with fKBs an
alternative characterization for hybrid representation and (nonmonotonic) reasoning of knowledge,
that supports a tight integration of ontologies and rules.

2 INFSYS RR 184-08-14.

2 Preliminaries

We recall the open answer set semantics from [16].Constantsa, b, c, . . ., variablesx, y, . . ., termss, t, . . .,
andatomsp(t1, . . . , tn) are defined as usual. We further allow forequality atomss = t. A literal is an atom
L or a negated atomnot L. An inequality literalnot (s = t) will often be denoted withs 6= t. An atom
(literal) that is not an equality atom (inequality literal)will be called aregular atom (literal). For a setα of
literals or (possibly negated) predicates,α+ = {l | l ∈ α, l an atom or a predicate} andα− = {l | not l ∈
α, l an atom or a predicate}. For example,{a,not b, c 6= d}+ = {a} and{a,not b, c 6= d}− = {b, c = d}.
For a setX of atoms,not X = {not l | l ∈ X}. For a set of (possibly negated) predicatesα, we will often
write α(x) for {a(x) | a ∈ α} andα(x, y) for {a(x, y) | a ∈ α}.

A program is a countable set of rulesα ← β, whereα is a finite set of regular literals andβ is a
finite set of literals. The setα is the head of the rule and represents a disjunction, whileβ is called
the body and represents a conjunction. Ifα = ∅, the rule is called aconstraint. Free rulesare rules
q(t1, . . . , tn) ∨ not q(t1, . . . , tn)← for termst1, . . . , tn; they enable a choice for the inclusion of atoms.
We call a predicateq free in a program if there is a free ruleq(x1, . . . , xn) ∨ not q(x1, . . . , xn)← in the
program, wherex1, . . . , xn are variables. Atoms, literals, rules, and programs that donot contain vari-
ables areground. For a rule or a programX, let cts(X) be the constants inX, vars(X) its variables, and
preds(X) its predicates withupreds(X) the unary andbpreds(X) the binary predicates. AuniverseU for
a programP is a non-empty countable superset of the constants inP : cts(P) ⊆ U . We callPU the ground
program obtained fromP by substituting every variable inP by every possible element inU . LetBP (LP)
be the set of regular atoms (literals) that can be formed froma ground programP .

An interpretationI of a groundP is any subset ofBP . We writeI |= p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I
andI |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Furthermore, for ground termss andt we writeI |= s = t
if s = t andI |= not s = t or I |= s 6= t if s 6= t. For a set of ground literalsX, I |= X if I |= l for every
l ∈ X. A ground ruler : α ← β is satisfiedw.r.t. I, denotedI |= r, if I |= l for somel ∈ α whenever
I |= β. A ground constraint← β is satisfied w.r.t.I if I 6|= β. For a ground programP without not , an
interpretationI of P is amodelof P if I satisfies every rule inP ; it is ananswer setof P if it is a subset
minimal model ofP . For ground programsP containingnot , theGL-reduct[8] w.r.t. I is defined asP I ,
whereP I containsα+ ← β+ for α← β in P , I |= not β−, andI |= α−. I is ananswer setof a groundP
if I is an answer set ofP I .

In the following, a program is assumed to be a finite set of rules; infinite programs only appear as
byproducts of grounding a finite program with an infinite universe. Anopen interpretationof a programP
is a pair(U,M) whereU is a universe forP andM is an interpretation ofPU . An open answer setof P is
an open interpretation(U,M) of P with M an answer set ofPU . An n-ary predicatep in P is satisfiableif
there is an open answer set(U,M) of P and a(x1, . . . , xn) ∈ Un such thatp(x1, . . . , xn) ∈M .

We introduce some notations for trees which extend those in [33]. Let · be a concatenation operator
between different symbols such as constants or natural numbers. AtreeT with root c (also denoted asTc),
wherec is a specially designated constant, has as nodes sequences of the formc · s, wheres is a (possibly
empty) sequence of positive integers formed with the help ofthe concatenation operator; forx · d ∈ T ,
d ∈ N∗1, we must have thatx ∈ T . For example a tree with rootc and 2 successors will be denoted as
{c, c · 1, c · 2} or {c, c1, c2}.

For a nodex ∈ T , we callsuccT (x) = {x · n ∈ T | n ∈ N∗}, successorsof x. As the successorship
relation is captured in the codification of the nodes, a tree is literally the set of its nodes. Thearity of a tree
is the maximum amount of successors any node has in the tree. The setAT = {(x, y) | x, y ∈ T,∃n ∈ N∗ :

1N∗ is the set of positive integers

INFSYS RR 184-08-14. 3

y = x ·n} denotes the set of arcs of a treeT . We define a partial order≤T on a treeT such that forx, y ∈ T ,
x ≤T y iff x is a prefix ofy. As usual,x <T y if x ≤T y andy 6≤T x. A branchIB in a treeT is a
prefix-closed subset ofT such that∀x 6= y ∈ IB : |x| 6= |y|. A path fromx to y in T , wherex <T y
denoted withpathT (x, y), is a subset ofT which contains all nodes which are at the same time greater or
equal tox in T and lesser or equal toy in T according to the partial order relation. A branchB in a treeTc

is a maximal path (there is no path inTc which strictly contains it) which contains the rootc. We denote the
subtreeof T atx by T [x], i.e.,T [x] = {y ∈ T | x ≤T y}.

A labeled treeis a pair(T, t) whereT is a tree andt : T → Σ is a labeling function; sometimes we will
identify the tree(T, t) with t. For a labeled treet : T → Σ, the subtree oft at x ∈ T is t[x] : T [x] → Σ
such thatt[x](y) = t(y) for y ∈ T [x].

A forestF is a set of trees{Tc | c ∈ C}, whereC is a set of distinguished constants. The set of nodes
NF of a forestF and the set of arcsAF of F are defined as follows:NF = ∪T∈FT andAF = ∪T∈FAT .
For a nodex ∈ F , we denote withsuccF (x) = succT (x) for x ∈ T , the set of successors ofx in F . Also,
as for trees, we define a partial order relationship≤F on the nodes of a forestF wherex ≤F y iff x ≤T y
for some treeT in F .

A labeled forestf is a tuple(F, f) whereF is a forest andf : NF → Σ is a labeling function; sometimes
we will identify the forest(F, f) with f . A labeled forest(F, f), with F = {Tc | c ∈ C}, induces a set of
labeled trees{(Tc, tc) | c ∈ C}, wheretc : Tc → Σ andtc(x) = f(x), for anyx ∈ Tc. Figure 1 depicts a
labeled forest which contains two labeled treesta andtb (their roots area andb respectively).

f : a{x} b{z}

a1{y} b1{z} b2{x} b3{x}

a11{x} a12{z} b21{z}

Figure 1: A Simple Labeled Forest

An extended forestEF is a tuple〈F,ES 〉 whereF = {Tc | c ∈ C} is a forest andES is a binary
relation which contains tuples of the form(x, y) wherex ∈ NF andy ∈ C, i.e.,ES relates nodes of the
forest with roots of trees in the forest.ES extends the successorship relation:succEF (x) = {y | y ∈
succF (x) or (x, y) ∈ ES}.

Figure 2 depicts an extended forest.
The presence ofES gives rise to so-called extended trees inEF , where such a tree (actually, a particular

type of graph) is one ofTc ∈ F , extended with the arcs{(x, d) | (x, d) ∈ ES , x ∈ T} and with the nodes
{d | (x, d) ∈ ES , x ∈ T}. The extension ofTc in EF is denoted withTEF

c . For example, the extension
of Ta in EF from Figure 2 contains the extra arc(a12, b) and the extension ofTb in EF contains the extra
arcs(b, a) and (b2, a). An extended subtree ofTEF with root x is denoted withTEF [x]: it is defined
(as a graph) as the extension ofT [x] with the arcs{(y, c) | (y, c) ∈ ES , y ∈ T [x]} and with the nodes
{c | (y, c) ∈ ES , y ∈ T [x]}. Finally, byNEF = NF we denote the set of nodes of an extended forestEF

4 INFSYS RR 184-08-14.

EF : a b

a1 b1{z} b2 b3

a11 a12 b21

Figure 2: An extended forest

and byAEF = AF ∪ ES the set of arcs ofEF .
A labeled extended forest is a tuple〈EF , ef 〉 whereEF is an extended forest andef : NEF → Σ is

a labeling function; sometimes we will identify the extended forest〈EF , ef 〉 with ef . A labeled extended
forest can be seen as a set of labeled extended trees, where a labeled extended tree is a tuple(T ef , tef),
whereT ef is an extended tree andtef : T ef → Σ is a labeling function defined such thattef (x) = ef (x),
for x ∈ T ef . For a labeled extended treetef : T ef → Σ, the subtree oftef atx ∈ T is tef [x] : T ef [x] → Σ
such thattef [x](y) = tef (y) for y ∈ T ef [x].

Figure 3 depicts an extended labeled forest (a labeled version of the extended forest from Figure 2).

ef : a{x} b{z}

a1{y} b1{z} b2{x} b3{x}

a11{x} a12{z} b21{z}

Figure 3: A labeled extended forest

We introduce the operation of replacing in a labeled extended forest ef an extended subtreetef [x]
with another extended subtreetef [y], where bothx andy are fromNEF , and denote this operation with
replaceef (x, y). Figure 4 describes the result of applying the replace operation on the extended forest from
Figure 2 with two different sets of operators. In the first case, tefb [b2] is replaced withtefa [a1], while in the

second casetefa [a1] is replaced withtefa [a12]. Note that the names of nodes of the subtree which is replaced
are not changed with the names of the nodes from the replacingsubtree, but new names are generated for
the new nodes in concordance with the naming scheme for nodesof that tree. Also, observe how in the first
replacement one of the ’extra’ arcs oftb, (b2, a), is dropped (it was part of the replaced extended subtree)
and a new ’extra’ arc is introduced,(b22, b), which mirrors the arc(a12, b) from the replacing extending

INFSYS RR 184-08-14. 5

subtree. Similarly, in the second transformation,(a12, b) is dropped and(a1, b) is introduced.

replaceef (b2, a1) : a{x} b{z}

a1{y} b1{z} b2{y} b3{x}

a11{x} a12{z} b21{x} b22{z}

replaceef (a1, a12) : a{x} b{z}

a1{z} b1{z} b2{x} b3{x}

b21{z}

Figure 4: Two applications of the replace operator onef

Finally, a directed graphG is defined as usually by its sets of nodesV and arcsA. We introduce two
graph-related notations:pathsG denotes the set of paths inG, where each path is a tuple of nodes fromV :
pathsG = {(x1, . . . , xn) | ((xi, xi+1) ∈ A)1≤i<n}, andconnectedG denotes the set of pairs of connected
nodes fromV : connectedG = {(x, y) | ∃Pt = (x1, . . . , xn) ∈ pathsG : x1 = x ∧ xn = y}.

3 Forest Logic Programs

Forest Logic Programs (FoLPs)were introduced in [14] as a syntactical fragment of OASP. FoLPs are
a generalization of Conceptual Logic Programs [13] which are logic programs with tree-shaped rules for
which satisfiability checking under the open answer set semantics is decidable. FoLPs impose the same
structure for rules as CoLPs, but also allow for constants.

Definition 3.1 A forest logic program (FoLP)is a program with only unary and binary predicates, and such
that a rule is either afree rule

a(s) ∨ not a(s)← or f (s, t) ∨ not f (s, t)← (1)

wheres andt are terms such that ifs andt are both variables, they are different2, aunary rule

r : a(s)← β(s), (γm (s, tm), δm (tm))1≤m≤k , ψ (2)

2A rule f(X, X) ∨ not f(X, X)← is not allowed.

6 INFSYS RR 184-08-14.

wheres andtm, 1 ≤ m ≤ k, are terms (again, if boths andtm are variables, they are different; similarly
for ti andtj), where

1. ψ ⊆
⋃

1≤i6=j≤k{ti 6= tj} and{6=} ∩ γm = ∅ for 1 ≤ m ≤ k,

2. ∀ti ∈ vars(r) : γ+
i 6= ∅, i.e., for variablesti there is a positive atom that connectss andti,

or abinary rule
f (s, t)← β(s), γ(s, t), δ(t) (3)

with {6=} ∩ γ = ∅ andγ+ 6= ∅ if t is a variable (s andt are different if both are variables), or aconstraint

← a(s) or ← f (s, t) (4)

wheres andt are different if both are variables).

The constraints can be left out of the fragment without losing expressivity. Indeed, a constraint← body

can be replaced by a rule of the formconstr(x) ← not constr(x), body , for a new predicateconstr . As
their name suggests FoLPs have theforest model property: every open answer set can be written as a set of
trees.

Definition 3.2 Let P be a program. A predicatep ∈ upreds(P) is forest satisfiablew.r.t. P if there is an
open answer set(U,M) of P and there is an extended forestEF ≡ ({Tε}∪{Ta | a ∈ cts(P)},ES), where
ε is a constant, possibly one of the constants appearing inP 3, and a labeling functionL : {Tε} ∪ {Ta | a ∈
cts(P)} ∪AEF → 2preds(P) such that

• U = NEF , and

• p ∈ L(ε),

• z · i ∈ T , T ∈ EF , i > 0, iff there is somef(z, z · i) ∈M , z ∈ T , and

• for y ∈ T , T ∈ EF , q ∈ upreds(P), f ∈ bpreds(P), we have that

– q(y) ∈M iff q ∈ L(y), and

– f(y, u) ∈M iff (u = y · i ∨ u ∈ cts(P)) ∧ f ∈ L(y, u).

We call such a(U,M) a forest modeland a programP has theforest model propertyif the following
property holds:

If p ∈ upreds(P) is satisfiable w.r.t.P thenp is forest satisfiable w.r.t.P .

Proposition 3.3 FoLPs have the forest model property [15].

In [7], we introduced the class of simple Conceptual Logic Programs. It is easy to see that every simple
CoLP is an FoLP. As satisfiability checking w.r.t. simple Conceptual Logic Programs isEXPTIME-hard, the
following property follows:

Proposition 3.4 Satisfiability checking w.r.t. FoLPs isEXPTIME-hard.

3Note that in this caseTε ∈ {Ta | a ∈ cts(P)}. Thus, the extended forest contains for every constant fromP a tree which has
as root that specific constant and possibly, but not necessarily, an extra tree with unidentified root node.

INFSYS RR 184-08-14. 7

4 An Algorithm for Forest Logic Programs

In this section, we define a sound, complete, and terminatingalgorithm for satisfiability checking w.r.t.
FoLPs. In [15] it has been shown that several restrictions ofFoLPs which have the finite model property are
decidable, but there was no result so far regarding the wholefragment. Thus, the algorithm described in this
section also establishes a decidability result for FoLPs.

For every non-free predicateq and a FoLPP , let Pq be the rules ofP that haveq as a head predicate.
For a predicatep,±p denotesp or not p, whereby multiple occurrences of±p in the same context will refer
to the same symbol (eitherp or not p). The negation of±p (in a given context) is∓p, that is,∓p = not p
if ±p = p and∓p = p if ±p = not p.

The basic data structure for our algorithm is acompletion structure.

Definition 4.1 A completion structure for a FoLPP is a tuple〈EF , G, ct, st, bl〉 whereEF = 〈F,ES 〉
is an extended forest which together with the labeling functionsct andst and with the setbl of blocking
pairs is used to represent/construct a tentative forest model. G = 〈V,A〉 is a directed graph with vertices
V ⊆ BPNEF

and arcsA ⊆ BPNEF
× BPNEF

which is used to keep track of dependencies between elements
of the constructed model (the atom dependency graph ofPNEF

): V represents the tentative model, while
NEF represents the tentative universe. Below the signature andthe role for each labeling function is given:

• The content function ct : NEF ∪ AEF → 2preds(P)∪not (preds(P)) maps a node of the extended
forest to a set of (possibly negated) unary predicates and anarc of the extended forest to a set of
(possibly negated) binary predicates such thatct(x) ∈ upreds(P) ∪ not(upreds(P)) if x ∈ NEF ,
andct(x) ∈ bpreds(P) ∪ not(bpreds(P)) if x ∈ AEF . Every presence of a non-negated predicate
symbolp in the content of some node/arcx of EF indicates thatp(x) is part of the tentative model
represented byEF .

• The statusfunction st : {(x, q) | q ∈ ct(x), x ∈ NEF ∪ AEF} ∪ {(x, q) | not q ∈ ct(x), x ∈
AEF} ∪ {(x,not q, r) | not q ∈ ct(x), x ∈ NEF , r ∈ Pq} → {exp, unexp} attaches to every
(possibly negated) predicate which appears in the content of a node/arcx of EF a status value which
indicates whether the predicate has already been expanded in that node/edge. As it will be indicated
later, the completion structure is evolved such that the presence of any (possibly negated) predicate
symbol in the content of some node/arc is justified, so it is necessary to keep track which predicate
symbols have already been justified in every node/arc ofEF . As negative unary predicates have to be
justified by showing that no rule which defines them can be applied and this will be done in potentially
more than one step, the function takes as an argument also a rule for such negated predicate symbols.

The last component of a completion structure,bl, is a set of pairs of elements fromNEF , which contains
the so-called blocking pairs of the completion structure. The presence of a pair of nodes(x, y) in bl indicates
that the predicate symbols present inct(y) can be justified in a similar way as the predicate symbols in
ct(x).

An initial completion structurefor checking satisfiability of a unary predicatep w.r.t. a FoLPP is a
completion structure〈EF , G, ct, st, bl〉 with EF = 〈F,ES 〉, F = {Tε} ∪ {Ta | a ∈ cts(P)}, where
ε is a constant, possibly incts(P), andTx = {x}, for everyx ∈ cts(P) ∪ {ε}, ES = ∅, G = 〈V,A〉,
V = {p(ε)}, A = ∅, ct(ε) = {p}, st(ε, p) = unexp, andbl = ∅.

In the definition above the forest is initialized with the setof single-node trees having as root a constant
appearing inP and possibly a new single-node tree with an anonymous root. The root of the anonymous tree,

8 INFSYS RR 184-08-14.

in case this exists, should containp, the predicate which one tries to prove that it is satisfiable. Otherwise
the root of one of the other trees should containp. G is initialized to the graph with a single vertexp(ε).
There are no blocking pairs in the initial completion structure.

In the following, we will show how to expand an initial completion structure to prove the satisfiability of
a unary predicatep w.r.t. a FoLPP , how to determine when no more expansion is needed (e.g., like in the
case ofblocking), and under what circumstances aclashoccurs. In particular,expansion ruleswill evolve a
completion structure, starting with a guess for an initial completion structure for checking satisfiability ofp
w.r.t. P , to a complete clash-free structure that corresponds to a finite representation of an open answer set
in casep is satisfiable w.r.t.P . Applicability rulesstate the necessary conditions such that these expansion
rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion structure whenever in the process of justifying a
literal l in the current model, a new literal±p(z) has to be considered (either as being part of the model, in
case the literal is an atom, or as not being part of the model, in case the literal is a negated atom). This means
that±p has to be inserted in the content ofz in case it is not already there and marked as unexpanded, and
in case±p(z) is an atom, it has to be ensured that it is a node inG and if l is also an atom, a new arc from
l to ±p(z) should be created to capture the dependencies between the two elements of the model. More
formally:

• if ±p /∈ ct(z), thenct(z) = ct(z) ∪ {±p} and st(z,±p) = unexp in case±p = p or p ∈
bpreds(P) andst(z,±p, r) = unexp, for all r ∈ Pp in case±p = not p andp ∈ upreds(P),

• if ±p = p and±p(z) /∈ V , thenV = V ∪ {±p(z)},

• if l ∈ BPN
EF

and±p = p, thenA = A ∪ {(l,±p(z))}.

As a shorthand, we denote this sequence of operations asupdate(l,±p, z); more general,update(l, β, z)
for a set of (possibly negated) predicatesβ, denotes∀ ± a ∈ β, update(l,±a, z).

In the following, for a completion structure〈EF , G, ct, st, bl〉, let x ∈ NEF and(x, y) ∈ AEF be the
node, respectively arc, under consideration.

4.1.1 (i) Expand unary positive.

For a unary positive predicate (non-free)p ∈ ct(x) such thatst(x, p) = unexp,

• nondeterministically choose a ruler ∈ Pp of the form (2) such thats (the term in the head of the rule)
unifies withx. The rule will be used to motivate the presence ofp(x) in the tentative open answer set.

• for theβ in the body ofr, update(p(x), β, x),

• pick up (or define when needed)k successors forx, (ym)1≤m≤k, such that:

– for every1 ≤ i, j ≤ k such thatti 6= tj ∈ ψ: yi 6= yj ;

– for every1 ≤ m ≤ k:

∗ ym ∈ succEF (x), or

INFSYS RR 184-08-14. 9

∗ ym is defined as a new successor ofx in the treeTc, wherex ∈ Tc: ym = x · n, where
n ∈ N∗ s.t.x · n /∈ succEF (x), andTc = Tc ∪ {ym}, or

∗ ym is defined as a new successor ofx in EF in the form of a constant:ym = a, where
a is a constant fromcts(P) s.t. a /∈ succEF (x). In this case also add(x, a) to ES :
ES = ES ∪ (x, a).

• for every successorym of x, 1 ≤ m ≤ k: update(p(x), γm, (x, ym)) andupdate(p(x), δm, ym).

• setst(x, p) = exp.

4.1.2 (ii) Expand unary negative.

In general, justifying a negative unary literalnot p ∈ ct(x) (or in other words, the absence ofp(x) in the
constructed model) implies that the body of every ground rule which definesp(x) has to be refuted. The
body of such a ground rule can be either:

• locally refuted (a literal fromβ(x) has to be refuted which amounts to the fact that a certain±q ∈ β
does not appear inct(x))

• depending on the particular grounding of the rule, it has to be refuted in one of the outgoing arcs ofx,
or in some successor ofx. In other words a certain±f ∈ δm should not appear inct(x, yj), where
yj is a successor ofx or a±q ∈ γm should not appear inct(yj), where againyj is a successor ofx.

• refuted by the fact that there is no valid assignment of successors ofx in the completion to succes-
sors ofs in the rule which fulfill the inequalities in the rule, due to an insufficient number of such
successors.

Formally, for a unary negative predicate (non-free)not p ∈ ct(x) and a ruler ∈ Pp of the form (2)
such thatx unifies withs (s is the term from the head of the rule) andst(x,not p, r) = unexp do one of the
following:

• choose a±q ∈ β, andupdate(not p(x),∓q, x). Also setst(x,not p, r) = exp, or

• if

– for all p ∈ upreds(P), p ∈ ct(x) or not p ∈ ct(x), and

– for all p ∈ ct(x), st(p, x) = exp

then for allyi1 , . . . , yik such that(1 ≤ ij ≤ n)1≤j≤k, wheresuccEF (x) = {y1, . . . yn}: if for all
1 ≤ j, l ≤ k, tj 6= tl ∈ ψ ⇒ yij 6= yil, then do one of the following:

– for somem, 1 ≤ m ≤ k, pick up a binary (possibly negated) predicate symbol±f from δm and
update(not p(x),∓f, (x, yim)), or

– for somem, 1 ≤ m ≤ k, pick up a unary negated predicate symbolnot q from γm and
update(not p(x), q, yim).

Setst(x,not p, r) = exp.

10 INFSYS RR 184-08-14.

One can see that once the body of a ground unary rule derived from a unary ruler ∈ Pp, which is grounded
such thats, the term in the head, is substituted withx, the current node (whenever possible), is locally
refuted, the bodies of all similar groundings (similar in the sense thats is substituted withx) of this rule are
locally refuted, too. This is not the case for the other two refutation cases. All possible groundings have to
be considered and this is not possible until all the successors of x are known. The local refutation case is
captured in the first part of the rule, while the other two cases, are captured in the second part of the rule.
Note that a condition for the second part of the rule to be applicable is that all positive predicates in the
content of the current node have been expanded and there is nopossibility for a new positive predicate to
be inserted inct(x). If this condition is met, an iteration over all possible groundings of ruler is triggered.
For every possible grounding it is first checked whether the inequality constraints are not violated, and if
this is not the case, one of the resulting literals from the non-local part of the rule (γ-s orδ-s) is refuted.

4.1.3 (iii) Choose a unary predicate.

If for all a ∈ ct(x), st(x, a) = exp or a is free, and for all(x, y) ∈ AEF , and for all±f ∈ ct(x, y) (both
positive and negative predicates)st((x, y),±f) = exp or f is free, and there is ap ∈ upreds(P) such that
p /∈ ct(x) andnot p /∈ ct(x), then addp to ct(x) with st(x, p) = unexp or addnot p to ct(x) with
st(x,not p, r) = unexp, for every ruler ∈ Pp.

This rule says that in case there is a nodex for which all the positive predicate symbols in its content and
all the predicate symbols in the contents of its outgoing arcs are free or have already been expanded and there
are still unary predicate symbols which do not appear in the content of the current node, one has to pick such
a unary predicate symbolp and to inject eitherp or not p in ct(x). This is needed for consistency reasons: it
is not enough to find a justification for the predicate we want to prove that is satisfiable, but one has to show
also that this justification makes part from an actual model,which is done by actually constructing such a
model. We do not impose that all negative predicate symbols are expanded as that would constrain all the
ensuing literals to be locally refuted (the second part for the expand unary negative rule has as precondition
the fact that all predicate symbols appear in the content of the current node - see above).

4.1.4 (iv) Expand binary positive.

For a binary positive predicate symbol (non-free)p in ct(x, y) such thatst((x, y), p) = unexp nondeter-
ministically choose a ruler ∈ Pp of the form (3) such thatx unifies withs andy unifies witht (s andt are the
terms from the head of the rule) to motivatep. Forβ, γ, andδ corresponding tor do: update(p(x, y), β, x),
update(p(x, y), γ, (x, y)), andupdate(p(x, y), δ, y). Finally, setst((x, y), p) = exp.

4.1.5 (v) Expand binary negative.

For a binary negative predicate symbol (non-free)not p in ct(x, y) such thatst((x, y),not p) = unexp,
and for every ruler ∈ Pp of the form (3) such thatx unifies withs andy unifies witht (s andt are the terms
from the head of the rule) do one of the following:

• nondeterministically choose a±q from β andupdate(not p(x, y),∓q, x), or

• nondeterministically choose a±f from γ andupdate(not p(x, y),∓f, (x, y)), or

• nondeterministically choose a±q from δ andupdate(not p(x, y),∓q, y)).

INFSYS RR 184-08-14. 11

Finally, setst((x, y),not p) = exp. Note that a binary rule is always local in the sense that a binary literal
±f(x, y) can always be justified using a component fromx, y, and/or(x, y).

4.1.6 (vi) Choose a binary predicate.

There is anx ∈ NEF for which none ofa ∈ ct(x) can be expanded with rules (i-ii), and for all(x, y) ∈
AEF none of±f ∈ ct(x, y) can be expanded with rules (iv-v), and there is an arc(x, y) ∈ AEF and a
p ∈ bpreds(P) such thatp /∈ ct(x, y) ∧ not p /∈ ct(x, y). Then, addp to ct(x, y) with st((x, y), p) =
unexp or addnot p to ct(x, y) with st((x, y),not p) = unexp.

4.2 Applicability Rules

A second set of rules is not updating the completion structure under consideration, but restricts the use of
the expansion rules. We refer to these rules as so-called applicability rules.

4.2.1 (vii) Saturation

We call a nodex ∈ NEF saturatedif

• for all p ∈ upreds(P) we havep ∈ ct(x) or not p ∈ ct(x) and none of±q ∈ ct(x) can be
expanded according to the rules (i-iii) ,

• for all (x, y) ∈ ATEF , T ∈ EF andp ∈ bpreds(()P), p ∈ ct(x, y) or not p ∈ ct(x, y) and none of
±f ∈ ct(x, y) can be expanded according to the rules (iv-vi).

We impose that no expansions can be performed on a node fromNEF which does not belong tocts(()P)
until its predecessors are saturated (we exclude constantsas they can have more then one predecessor in the
completion, including themselves).

4.2.2 (viii) Blocking

A nodex ∈ NEF is blockedif there is an ancestory of x in F , y <F x, y 6∈ cts(P), s.t. ct(x) ⊆ ct(y)
and the setpathsG(y, x) = {(p, q) | (p(y), q(x)) ∈ connectedG} is empty. We call(y, x) a blocking pair
and updatebl: bl = bl ∪ {(y, x)}. No expansions can be performed on a blocked node. Intuitively, if there
is an ancestory of x which is not a constant, whose content includes the content of x, and there are no paths
in G from a positive literalp(y) to another positive literalq(x) one could reuse the justification fory when
dealing withx.

4.2.3 (ix) Redundancy

A nodex ∈ NEF is redundantif it is saturated, it is not blocked, and there arek ancestors ofx in F ,
(yi)1≤i≤k, wherek = 2p(2p2

− 1) + 2, andp = |upreds(P)|, such thatct(x) = ct(yi). In other words, a
node is redundant if there are otherk nodes on the same branch with the current node which all have content
equal to the content of the current node. The presence of a redundant node stops the expansion process.
In the completeness proof we show that any forest model of a FoLP P which satisfiesp can be reduced to
another forest model which satisfiesp and has at mostk + 1 nodes with equal content on any branch of a
tree from the forest model, and furthermore the(k + 1)st node, in case it exists, is blocked. One can thus

12 INFSYS RR 184-08-14.

search for forest models only of the latter type. This rule exploits that result: we discard models which are
not in this shrunk search space.

4.3 Termination, Soundness, and Completion

We call a completion structurecontradictory, if for somex ∈ NEF anda ∈ upreds(P), {a,not a} ⊆ ct(x)
or for some(x, y) ∈ AEF andf ∈ bpreds(P), {f,not f} ⊆ ct(x, y). A complete completion structure
for a FoLPP and ap ∈ upreds(P), is a completion structure that results from applying the expansion
rules to the initial completion structure forp andP , taking into account the applicability rules, such that no
expansion rules can be further applied. Furthermore, a complete completion structureCS = 〈EF , G, ct,
st, bl〉 is clash-freeif:

• (1) CS is not contradictory

• (2) EF does not contain redundant nodes

• (2)G does not contain positive cycles.

We show that an initial completion structure for a unary predicatep and a FoLPP can always be ex-
panded to a complete completion structure (termination), that, ifp is satisfiable w.r.t.P , there is a clash-free
complete completion structure (soundness), and, finally, that, if there is a clash-free complete completion
structure,p is satisfiable w.r.t.P (completeness).

Proposition 4.2 (termination) LetP be a FoLP andp ∈ upreds(P). Then, one can construct a finite com-
plete completion structure by a finite number of applications of the expansion rules to the initial completion
structure forp w.r.t. P , taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion structure by a finite number of
applications of the expansion rules, taking into account the applicability rules. Clearly, if one has a finite
completion structure that is not complete, a finite application of expansion rules would complete it unless
successors are introduced. However, one cannot introduce infinitely many successors: every infinite path in
the extended forest will eventually contain|k + 1| saturated nodes with equal content, wherek is as in the
redundancy rule, and thus either a blocked or a redundant node, which is not further expanded. Furthermore,
the arity of the trees in the completion structure is bound bythe number of predicates inP and the degrees
of the rules.

Proposition 4.3 (soundness)Let P be a FoLP andp ∈ upreds(P). If there exists a complete clash-free
completion structure forp w.r.t. P , thenp is satisfiable w.r.t.P .

Proof. From a clash-free complete completion structure, we will construct an open interpretation, and
show that this interpretation is an open answer set ofP that satisfiesp. Let 〈EF , G, ct, st, bl〉 be such
a clash-free complete completion structure withEF = 〈F,ES 〉 the extended forest andG = (V,A) the
corresponding dependency graph.

1. Construction of open interpretation.

We construct a new graphGext = (Vext , Aext) by extendingG in the following way: first, we set
Vext = V andAext = A, and then for every pair(x, y) ∈ bl do the following:

INFSYS RR 184-08-14. 13

• (a) for everyp such thatp(x) ∈ V , addp(y) to Vext : Vext = Vext ∪ {p(y)};

• (b) for everyf andz such thatf(x, z) ∈ V , addf(y, z) to Vext : Vext = Vext ∪ {f(y, z)};

• (c) for everyp, q such that(p(x), q(x)) ∈ Aext , add (p(y), q(y)) to Aext : Aext = Aext ∪
{(p(y), q(y))};

• (d) for everyp, q, z such that(p(x), q(z)) ∈ Aext , andz 6= x add(p(y), q(z)) toAext : Aext =
Aext ∪ {(p(y), q(z))};

• (e) for everyp, f , z such that(p(x), f(x, z)) ∈ Aext , add (p(y), f(y, z)) to Aext : Aext =
Aext ∪ {(p(y), f(y, z))};

• (f) for every f , q, z such that(f(x, z), q(x)) ∈ Aext , add (f(y, z), q(y)) to Aext : Aext =
Aext ∪ {(f(y, z), q(y))};

• (g) for everyf , q, z such that(f(x, z), q(z)) ∈ Aext , add (f(y, z), q(z)) to Aext : Aext =
Aext ∪ {(f(y, z), q(z))};

• (h) for everyf , g, z such that(f(x, z), g(x, z)) ∈ Aext , add(f(y, z), g(y, z)) toAext : : Aext =
Aext ∪ {(f(y, z), g(y, z))};

Basically, we replicate the content of the blocking node as the content of the blocked node, and also
all the connections from/within the blocking node as connections from/within the blocked node (or,
in other words, the content of the blocked node is identical with the content of the blocking node and
it is justified in a similar way).

Define the open interpretation(U,M) then as(NEF , Vext), i.e., the universe is the set of nodes in the
extended forest, and the interpretation corresponds to thenodes inVext .

2. M is a model ofPM
U . All free rules are trivially satisfied.

Take a ground unary rule:r′ : a(x) ← β+(x), (γ+
m (x , ym), δ+m (ym))1≤m≤k (the rule was grounded

using individuals fromU) originating fromr : a(s) ← β(s), (γm (s, tm), δm (tm))1≤m≤k , ψ, with
β−(x) * M , for all 1 ≤ m ≤ k: γm

−(x, ym) * M andδm
−(ym) * M , and for allti 6= tj ∈

ψ: yi 6= yj. AssumeM |= β+(x) ∪
⋃

1≤m≤k γ
+
m(x, ym) ∪

⋃

1≤m≤k δ
+
m(ym) (together with the

assumptions about the negative part of the rule, this amounts toM |= β(x)∪
⋃

1≤m<≤k γm(x, ym)∪
⋃

1≤m≤k δm(ym) ∪ ψ) anda(x) /∈M (the rule is not satisfied).

Depending onx there are two cases:

• Assumex is not a blocked node. Thennot a ∈ ct(x), x is saturated, and no expansion rules can
be further applied tonot a. This means that for every ground rule derived from a ruler ∈ Pa for
which s (the term in the head) unifies withx and grounded in such a way thats was substituted
with x, theexpand unary negativerule has been applied. Such a rule isr′. The application of
theexpand unary negativerule tonot a ∈ ct(x) andr′ leads to one of the following situations:

– there is a unary predicate symbol±q ∈ β, such that∓q ∈ ct(x) (the result ofupdate(not a(x),∓q, x)),
or in other words,∓q(x) ∈M . This contradicts withM |= β(x).

– there are two successors ofx, yj andyl such thatyj = yl andti 6= tj ∈ ψ. This contradicts
the assumption that for allti 6= tj ∈ ψ: yi 6= yj.

– for somem 1 ≤ m ≤ k, there is a binary/unary predicate symbol±f ∈ γm/±q ∈ δm
such that∓f ∈ ct(x, ym)/∓q ∈ ct(ym) (the result ofupdate(not a(x),∓f, (x, ym))
/ update(not a(x),∓q, ym)), or in other words,∓f(x, ym) ∈ M /∓q(ym) ∈ M . This
contradicts withM |= γm(x, ym)/M |= δm(ym).

14 INFSYS RR 184-08-14.

• In casex is a blocked node, by replacingx with y in r′, wherey is the corresponding block-
ing node, one obtains a ground ruler

′′

which again should not be satisfied because due to
the construction ofM , M |= β(x) ∪

⋃

1≤m<≤k γm(x, ym) ∪
⋃

1≤m≤k δm(ym) ∪ ψ implies
M |= β(y) ∪

⋃

1≤m<≤k γm(y, ym) ∪
⋃

1≤m≤k δm(ym) ∪ ψ anda(x) /∈ M impliesa(y) /∈ M .
Thus, this case is reduced to the case above.

In all cases we get a contradiction, so the original assumption that the ruler′ is not satisfied byM
was false. Thus, every unary rule is satisfied byM .

The proof for the satisfiability of binary rules is similar.

3. M is a minimal model ofPM
U . Before proceeding with the actual proof we introduce a notation and

a lemma which will prove useful in the following. LetEF
′

be the directed graph(NEF , A
′

) which
has as nodes all the nodes fromEF and as arcs all the arcs ofEF plus some ’extra’ arcs which point
from blocked nodes to successors of corresponding blockingnodes to reflect on the changes made to
construct an actual model from a completion structure:A

′

= AEF ∪{(y, z) | ∃x s. t. (x, y) ∈ bl∧z ∈
succEF (x)}. Figure?? gives an example of constructing the graphEF

′

from an extended forestEF

by addition of extra arcs:(x, y) is a blocking pair,z1, . . . , zn, andb are the successors ofx, so extra
arcs fromy to each of these successors are added (the dotted arrows). Among the successors ofx the
one which is on the same path withy is singled out and denoted withz (this will be relevant later).

a b

x

z1 . . . z . . . zn

y

Figure 5: ConstructingEF
′

: (x, y) is a blocking pair

Lemma 4.4 Let Pt be a path from a literalL1 to a literal L2 in G/Gext . If L1 = p(x) for some
p ∈ upreds(P) andL2 = q(y) for someq ∈ upreds(P) (q is not necessarily different fromp) or
L2 = g(y, z) for someg ∈ bpreds(P) and x 6= y then there is a path fromx to y in EF/EF

′

:
(x1 = x, x2, . . . , xn = y); furthermore, for every1 ≤ i ≤ n there is a unary literalli in Pt with
argumentxi and there is a path fromli to li+1 in G/Gext for every1 ≤ i < n.

Proof.

INFSYS RR 184-08-14. 15

Let S = (x1 = x, x2, . . . , xn) be a tuple of nodes fromEF/EF
′

constructed in the following way:
for every unary literall in Pt addarg(l) to the tuple if it is not already there (we assume that the
elements ofPt are considered in order of their apparition inPt in the process of this construction).
We will show thatS is a path inEF/EF

′

and further more thatxn = y.

For every two consecutive elements of the tuple,xi andxi+1, with 1 ≤ i < n, there must be two
unary literalsl

′

and l
′′

in Pt, with argumentsxi andxi+1 respectively, such that there is no other
unary literall in the sub-path ofPt: (l

′

, . . . , l
′′

). It is easy to see that such a sub-path has the form:
(r(xi), f1(xi, xi+1), . . . , fm(xi, xi+1), s(xi+1)) (this is the only way to reach a unary literal from
another inG/Gext without passing through another unary literal), and thus(xi, xi+1) ∈ A/A

′

for
every1 ≤ i < n: (x1, . . . , xn) is a path inEF/EF

′

.

To see thatxn = y, consider the opposite:xn 6= y. Then there must be a unary literall = r(xn) in Pt
with argumentxn such that there is no other unary literal in the sub-path ofPt: (r(xn), . . . , g(y, z)).
This would imply that the sub-path has the formr(xn), f1(xn, t), . . . , fm(xn, t), g(y, z), wheret is
some successor ofxn in EF/EF

′

: (xn, t) ∈ A/A
′

. But there is no arc of the form(fm(xn, t), g(y, z))
in A/A

′

with xn 6= y, so we obtain a contradiction.

That there is a path fromli to li+1 in G/Gext for every1 ≤ i < n, whereli-s are the unary literals
identified above witharg(li) = xi, 1 ≤ i ≤ n, is obvious from the wayS was constructed.

Now we can proceed to the actual proof of statement. Assume there is a modelM ′ ⊂M ofQ = PM
U .

Then∃l1 ∈M : l1 /∈ M ′. Take a ruler1 ∈ Q of the forml1 ← β1 with M |= β1; note that such a
rule always exists by construction ofM and expansion rule (i) . IfM ′ |= β1, thenM ′ |= l1 (asM ′ is a
model), a contradiction. Thus,M ′ 6|= β1 such that∃l2 ∈ β1 : l2 /∈M

′. Continuing with the same line
of reasoning, one obtains an infinite sequence{l1, l2, . . .} with (li ∈ M)1≤i and(li /∈ M

′)1≤i. M is
finite (the complete clash-free completion structure has been constructed in a finite number of steps,
and when constructingM (Vext) we added only a finite number of atoms to the ones already existing
in V), thus there must be1 ≤ i, j, i 6= j, such thatli = lj. We observe that(li, li+1)1≤i ∈ Eext

by construction ofEext and expansion rule (i), so our assumption leads to the existence of a cycle in
Gext .

Claim 4.5 LetC = (l1, l2, . . . , ln = l1) be a cycle inGext . If one of the following holds:

• (i) there is no unary literal inC and for everyli = fi(xi, yi), 1 ≤ i ≤ n, xi is not blocked

• (ii) there is at least one unary literal inC and for every unary literal inC: lj , j ∈ {1, 2, . . . , n},
its argumentargs(lj) is not a blocked node inCS

thenC is a cycle inG.

Proof. From the construction ofGext one can see that any arc which is added toG is of the form
(p(x), l) or (f(x, y), l), wherep is some unary predicate,f is some binary predicate, andx is a
blocked node. It is clear that when condition (i) or condition (ii) holds there is no arc of the first form
in C. As concerns arcs of the latter type, it is again obvious thatthere are no such arcs if condition
(i) is fulfilled. In case condition (ii) holds, assume there is an arc(f(x, y), l) wherex is a blocking
node. We know that there must be at least one unary literal in the cycle. Let this bep(z). In this case

16 INFSYS RR 184-08-14.

there is a path inG (and also inGext) from p(z) to f(x, y) andz is different fromx by virtue of (ii).
According to lemma 4.4 this path contains a unary literal with argumentx (as any path inEF from z
to x containsx). However this contradicts with condition (ii) which says that there is no such literal
in C.

Claim 4.6 LetC = (l1, l2, . . . , ln = l1) be a cycle inGext . If one of the following holds:

• (i) there is no unary literal inC and for someli = fi(xi, yi), 1 ≤ i ≤ n, xi is blocked

• (ii) there is at least one unary literal inC and all unary literals have the same argumenty which
is a blocked node

thenG contains a cycle.Proof. We will treat the two cases separately:

(i) First, notice that in this case (when there is no unary literal in the cycle),args(l1) = args(l2) =
. . . = args(ln) = (x, y) as there is no arc inAext from a binary literalf(x, y) to another binary
literal g(z, t), with x 6= z or y 6= t (by construction ofGext). So the cycle can be written as
C = (f1(x, y), f2(x, y), . . . , fn(x, y) = f1(x, y)), where(fi ∈ bpreds(P))1≤i≤n. Let z be the
blocking node corresponding tox: (z, x) ∈ bl. As ((fi(x, y), fi+1(x, y)) ∈ Aext)1≤i<n, it follows
that ((fi(z, y), fi+1(z, y)) ∈ A)1≤i<n, soC

′

= (f1(z, y), f2(z, y), . . . , fn(z, y) = f1(z, y)) is a
cycle inG.

(ii) Let p1(y), p2(y), . . . , pn(y) be the unary literals inC with y being a blocked node. W.l.o.g. we
considerpn = p1. Then the cycle can be written as:C = (p1(y), f11(y, z1), . . . , f1m1

(y, z1), p2(y),
f21(y, z2), . . . , f2m2

(y, z2)), . . . pn(y) = p1(y) where(fij ∈ bpreds(P))1≤i<n,1≤j≤mi
, ((y, zi) ∈

A
′

)1≤i<n (as the only binary literals reachable fromp(y) are of the formf(y, z), where(y, z) ∈ A
′

).
Similar with the previous case one can show thatC

′

= (p1(x), f11(x, z1), . . . , f1m1
(x, z1), p2(x), f21(x, z2),

. . . , f2m2
(x, z2)), . . . pn(x) = p1(x), wherex is the corresponding blocking node fory: (x, y) ∈ bl

is a cycle inG.

Claim 4.7 Let C = (l1, l2, . . . , ln = l1) be a cycle inGext . If there are at least two unary literals
in C with different arguments and at least one unary literal has as argument a blocked nodey then
there is a path inG from a literal l1 to a literal l2 whereargs(l1) = x, args(l2) = y, andx is the
corresponding blocking node fory: (x, y) ∈ bl.

Proof. Let t be the argument of a unary literal in the cycle different fromy. As there is a path inGext

from somep(t) to someq(y) and also viceversa from someq(y) to somep(t) according to lemma 4.4
there must also be a path inEF

′

from t to y and a path fromy to t. In other words there exists a cycle
in EF

′

which involves bothy andt. Furthermore for every element of the cycle inEF
′

, there is a
unary literal inC which has this element as an argument. From the wayEF

′

was constructed (see also
Figure 5), one can see that any cycle inEF

′

which involves a blocked nodey which makes part from
a treeT in the corresponding simple forest contains the path inT from z to y, wherez is the node
which is a successor ofx in T , and is on the same path inT asx andy, x being the corresponding
blocking node fory: formally, (x, y) ∈ bl, z ∈ succT (x), z ∈ pathT (x, y). There are two kinds of
cycles inEF

′

:

INFSYS RR 184-08-14. 17

• cycles which containx, z, andy (these cycles will contain also elements from other trees than
T): in this case there is a unary literall1 with argumentx in C and there is as well a unary literal
l2 with argumenty in C (from the condition of the claim) - so the claim is satisfied

• cycles which containz, andy, but do not containx (actually, this is a unique such cycle which
has all elements frompathT (z, y)): in this case there are two unary literalsl2, andl3 in C, with
argumentsy, andz respectively, such that there is no other unary literal on the path induced by
C in Gext from l2 to l3. In this case this path has the form:p(y), f1(y, z), . . . , fn(y, z), q(z).
Due to the construction ofGext , the existence of the path(p(y), f1(y, z), . . . , fn(y, z), q(z)) in
Gext implies the existence of the path(p(x), f1(x, z), . . . , fn(x, z), q(z)) in G. At the same
time note that there is a path inG from q(z) to p(y). So, (p(x), q(z)) ∈ connectedG and
(q(z), p(y)) ∈ connectedG, thus(p(x), p(y)) ∈ connectedG and the claim is satisfied.

One can see that the hypotheses of the three claims cover all possible types of cyclesC in Gext and
that the consequences of having such a cycle are contradicting in each case with the fact that〈EF ,
G, ct, st, bl〉 is a complete clash-free completion structure (in the case of the first two claims, one
obtains that there must be a cycle inG, while the conclusion of the third claim contradicts with the
blocking condition for a pair of blocking nodes frombl). Thus, there cannot be such a cycleC inGext

andM is minimal.

Proposition 4.8 (completeness)LetP be a FoLP andp ∈ upreds(P). If p is satisfiable w.r.t.P , then there
exists a clash-free complete completion structure forp w.r.t. P .

Proof. If p is satisfiable w.r.t.P then p is forest-satisfiable w.r.t.P (Proposition 3.3). We construct
a clash-free complete completion structure forp w.r.t. P , by guiding the nondeterministic application of
the expansion rules with the help of a forest model ofP which satisfiesp and by taking into account
the constraints imposed by the saturation, blocking, redundancy, and clash rules. The proof is inspired
by completeness proofs in Description Logics for tableaux,for example in [20], but requires additional
mechanisms to eliminate redundant parts from Open Answer Sets.

In order to proceed we need to introduce the notion ofrelaxed completion structurewhich is a tuple
〈EF , G, ct, st, bl〉, whereEF is an extended forest, andG, ct, st, bl represent the same kind of entities
as their homonym counterparts in the definition of a completion structure. Aninitial relaxed completion
structure for checking satisfiability of a unary predicatep w.r.t. a FoLPP is defined similarly as an initial
completion structure for checking satisfiability ofpw.r.t. P . A relaxed completion structure is evolved using
the expansion rules (i)-(vi) and the applicability rules (vii)-(viii). Note that theredundancyrule is left out.
A complete clash-free relaxed completion structure is a relaxed completion structure evolved from an initial
relaxed completion structure forp andP , such that no expansion rules can be further applied, which is not
contradictory and for whichG does not contain positive cycles.

The first step of the proof consists in constructing a complete clash-free relaxed completion structure
starting from a forest model of a FoLPP which satisfiesp. Note that in the general case, constructing a
complete clash-free relaxed completion structure might bea non-terminating process (the termination for the
construction of complete clash-free completion structures was based on the application of the redundancy

18 INFSYS RR 184-08-14.

rule), but as we will see in the following, the process does terminate when a forest model is used as a
guidance.

So, let(U,M) be an open answer set of a FoLPP which satisfiesp which at the same time is a forest
model ofP . Then there exists an extended forestEF = 〈{Tε} ∪ {Ta | a ∈ cts(P)},ES 〉, whereε is
a constant, possibly one of the constants appearing inP , and a labeling functionL : {Tε} ∪ {Ta | a ∈
cts(P)} ∪AEF → 2preds(P) which fulfill the conditions from definition 3.2.

We define an initial relaxed completion structureCS 0 = 〈EF ′, G, ct, st, bl〉 for p andP such that
EF ′ = 〈F ′,ES ′〉, F ′ = {T ′

ε} ∪ {T
′
a | a ∈ cts(P)}, whereε is the sameε used to defineEF , and

Tx = {x}, for everyx ∈ cts(P) ∪ {ε}, andES ′ = ∅, G = 〈V,A〉, V = {p(ε)}, A = ∅, andct(ε) = {p},
st(ε, p) = unexp, bl = ∅. We will evolve this completion structure using rules (i)-(viii). To this purpose we
inductively define a functionπ : NEF ′ → U that relates nodes in the relaxed completion structure to nodes
in the forest model satisfying the following properties:

‡

{

{q | q ∈ ct(z)} ⊆ L(π(z)), for all z ∈ NEF ′

{q | not q ∈ ct(z)} ∩ L(π(z)) = ∅, for all z ∈ NEF ′

Intuitively, the positive content of a node/edge in the completion structure is contained in the label of
the corresponding forest model node, and the negative content of a node/edge in the completion structure
cannot occur in the label of the corresponding forest model node.

Claim 4.9 Let CS be a relaxed completion structure derived fromCS 0 andπ a function that satisfies (‡). If
an expansion rule is applicable toCS then the rule can be applied such that the resulting relaxed completion
structureCS ′ and an extensionπ′ of π still satisfies (‡).

We start by settingπ(x) = x, for everyx ∈ cts(P)∪{ε} (the roots of the trees in the relaxed completion
structure correspond to the roots of the trees in the forest model). It is clear that (‡) is satisfied forCS 0. By
induction letCS be a relaxed completion structure derived fromCS 0 andπ a function that satisfies (‡). We
consider the expansion rules and the applicability rules saturation and blocking:

1. Expand unary positive. As q ∈ ct(x), we have, by the induction hypothesis, thatq ∈ L(π(x)).
SinceM is a minimal model there is anr ∈ Pq of the form (2) and a ground versionr′ : q(π(x)) ←
β+(π(x)), (γ+

m(π(x), zm))1≤m≤k, (δ
+
m(zm))1≤m≤k ∈ (Pq)

M
U such thatM |= β+(π(x))∪(γ+

m(π(x), zm))1≤m≤k∪
(δ+m(zm))1≤m≤k. Setrl(q, x) = r andupdate(q(x), β, x). Next, for each1 ≤ m ≤ k:

• If zm = π(z) for somez already inEF ′, takeym = z; also, if z ∈ cts(P) and(x, z) /∈ ES′

thenES′ = ES′ ∪ {(x, z)},

• if zm = π(x) · s and zm is not yet the image ofπ of some node inEF ′, then addx · s as
a new successor ofx in F ′: T ′

c = T ′
c ∪ {x · s}, wherex ∈ T ′

c, setπ(x · s) = π(x) · s and
π(x, x · s) = (π(x), π(x) · s).

• update(q(x), γm, (x, ym)),

• update(q(x), δm, ym).

In other words we removed the nondeterminism from theexpand unary positive rule, by choosing the
rule r and the successors corresponding to the open answer set(U,M). One can verify that (‡) still
holds forπ.

INFSYS RR 184-08-14. 19

2. One can deal with the rules (ii-vi) in a similar way, makingthe nondeterministic choices in accordance
with (U,M).

3. Saturation. No expansion rule can be applied on a node fromEF ′ which is not a constant until its
predecessor is saturated. This rule is independent of the particular open answer set which guides the
construction, so it is applied as usually.

4. Blocking. Consider a nodex ∈ NEF ′ which is selected for expansion. If there is a saturated node
y ∈ NEF ′ which is not a constant,y <Tc x, whereTc ∈ F

′, ct(x) ⊆ ct(y), andpathsG(y, x) = ∅
thenx is blocked and(y, x) is added to the set of blocking pairs:bl = bl ∪ {(y, x)}. Furthermore,
we impose that if there are more nodesy which satisfy the condition we will consider as the blocking
node forx the one which is closest to the root of the treeTc (the tree from whichxmakes part), so the
nodey for which there is no nodez such thatz <Tc y, ct(x) ⊆ ct(z), andpathsG(z, y) = ∅. This
choice over possible blocking nodes is relevant for the nextstage of the proof, where a complete clash-
free relaxed completion structure is transformed into a complete clash-free completion structure. The
condition (‡) still holds forπ as we have not modified the content of nodes, but just removed some
unexpanded nodes.

So, (‡) holds forCS
′

which was evolved fromCS, no matter which expansion rule or applicability rule
was used. It is easy to see, that if (‡) holds for a particular relaxed completion structureCS then this fact
together with the fact that(U,M) is an open answer set ofP guarantees thatCS is clash-free. So, in order
to obtain a complete clash-free relaxed completion structure one has just to apply rules (i-viii) in the manner
described above. To see that the process terminates, assumeit does not. Then, for everyx, y ∈ NEF ′ such
thatx <′

F y andct(x) = ct(y), the blocking rule cannot be applied, so there is a path from ap(x) to some
q(y). This suggests the existence of an infinite path inG (as on any infinite branch in a tree fromF ′ there
would be an infinite number of nodes with equal content - thereis a finite amount of values for the content
of a node), which contradicts with the fact that any atom in anopen answer set is justified in a finite number
of steps[13, Theorem 2].

At this point we have constructed a complete clash-free relaxed completion structureCS for p w.r.t P
starting from a forest open answer set forP which satisfiesp.

The preference relation over different blocking nodes choices in the construction above has several
consequences described by the following results:

Lemma 4.10 LetCS = 〈EF , G, ct, st, bl〉 be a complete clash-free relaxed completion structure con-
structed in the manner described above (EF = 〈F ,ES 〉). Then, for everyx such that there exists ay so
that (x, y) ∈ bl (x is a blocking node inCS), there is no nodez <Tc x, Tc ∈ F such thatct(z) = ct(x).

Proof. Assume by contradiction thatx is a blocking node inCS, so, there is ay such that(x, y) ∈ bl,
and that there exists alsoz <Tc x, Tc ∈ F such thatct(z) = ct(x). Observe thatpathsG(z, y) =
{(p(z), q(y)) | p ∈ ct(z) ∧ q ∈ ct(y) ∧ (∃r ∈ ct(x) s. t. (p(z), r(x)) ∈ pathsG(z, x) ∧ (r(x), q(y)) ∈
pathsG(x, y))} (according to lemma 4.4 the existence of a path from ap(z) to a q(y) in G implies the
existence of a path fromz to y in EF ; all paths fromz to y in EF include the path fromz to y in Tc and
converselyx, and then according to the same lemma there must be a literal in the initial path inG with
argumentx: r(x) in this case). ButpathsG(x, y) = ∅ as(x, y) ∈ bl, sopathsG(z, y) = ∅. Additionally,
ct(z) = ct(x) ⊇ ct(y), so the existence ofz is in contradiction with the preference condition over
potentially blocking nodes. Thus, the lemma holds.

20 INFSYS RR 184-08-14.

Corollary 4.11 Let CS = 〈EF , G, ct, st, bl〉 be a complete clash-free relaxed completion structure
constructed in the manner described above (EF = 〈E,ES 〉) and IB a branch of a treeTc from F . Then
there are at most2p distinct blocking nodes inIB wherep = |upreds(P)|.

Proof. The result follows from the fact that there cannot be two blocking nodes with equal content on
the same path in a tree according to the previous lemma and thefinite number of values for the content of a
node which is given by the cardinality of the power set ofupreds(P).

The next step is to transform a relaxed clash-free complete completion structureCS = 〈EF , G, ct, st,
bl〉, whereEF = 〈F ,ES 〉, into a complete clash-free completion structure, that is,a complete clash-free
relaxed completion structure which has no redundant nodes.This is done by applying a series of successive
transformations on the relaxed completion structure - eachtransformation “shrinks” the completion structure
in the sense that the newer returned relaxed completion structure has a lesser number of nodes than the
original one and is still complete and clash-free. The result of applying the transformation is a relaxed clash-
free complete completion structure which has a bound on the number of nodes on any branch which matches
the boundk from the redundancy condition, which is thus a clash-free complete completion structure. A
way to shrink a (relaxed) completion structure is that whenever two nodesu andv in a treeTc fromF are on
the same path,u <Tc v, and they have equal content,ct(u) = ct(v), the subtreeTc[u] is replaced with the
subtreeTc[v]. We call such a transformationcollapseCS(u, v) and its results is a new relaxed completion
structureCS

′

= 〈EF
′

, G
′

, ct
′

, st
′

, bl
′

〉, where the elements of this new completion structure are defined
in the following. Letef : NEF → C be a labeled extended forest which associates to every node of EF a
label from a set of distinguished constantsC such thatef (x) 6= ef (y) for everyx andy in NEF such that
x 6= y. Let ef

′

= replaceef (u, v) be a new labeled extended forest andEF
′

be the corresponding unlabeled
extended forest. For everyx ∈ EF

′

let x be the counterpart ofx in EF in the sense that:ef
′

(x) = ef (x).
Note that for everyx ∈ EF

′

there is a unique such counterpart inEF . For simplicity we also introduce
the notationS to refer to the counterpart tuple (the tuple of counterpart nodes) corresponding to the tuple of
nodes fromS from T

′

. Formally,(x1, . . . , xn) = (x1, . . . , xn). With the help of this notion of counterpart
node we will define also the other components of the resulted completion structure (EF

′

has already been
defined):

• G
′

= (V
′

, A
′

). The set of nodesV
′

of the new graphG
′

contains all literalsl for which there is a
literal in V formed with the same predicate symbol asl and having as arguments the counterpart of
the arguments ofl. Additionally, V

′

contains binary literals which connect the predecessor ofu (it is
the same both inEF andEF

′

) with the new nodeu which were also present inV - this is necessarily
asu = v, so otherwise these connections would be lost:

V
′

={l1 | ∃l2 ∈ V s. t. pred(l1) = pred(l2) ∧ arg(l1) = arg(l2)}∪

{f(z, u) | z ∈ T
′

∧ f(z, u) ∈ V }.

The set of arcsA
′

of the new graphG
′

contains all pair of literals(l1, l2) for which there is a corre-
sponding pair inE, (l3, l4), such thatl3 andl4 have the same predicate symbols asl1 andl2, respec-
tively, and their argument tuples are the counterpart of theargument tuples ofl1, andl2, respectively.
Additionally,A

′

contains arcs fromA which connect literals whose arguments include the predeces-
sor ofu (it is the same both inT andT

′

) with literals whose arguments include the new nodeu - this

INFSYS RR 184-08-14. 21

is necessarily asu = v, so otherwise these connections would be lost:

A
′

={(l1, l2) | ∃(l3, l4) ∈ A s. t.pred(l1) = pred(l3) ∧ pred(l2) = pred(l4)

∧ arg(l1) = arg(l3) ∧ arg(l2) = arg(l4)}∪

{(l1, l2) | (l1, l2) ∈ E ∧ u ∈ arg(l2) ∧ z ∈ arg(l1) ∧ z < u}.

• ct
′

(x) = ct(x), for everyx ∈ ef
′

;

• st
′

(x) = st(x), for everyx ∈ ef
′

;

• bl
′

= {(x, y) | (x, y) ∈ bl ∧ pathsG
′ (x, y) = ∅}. We maintain those blocking pairs whose counter-

parts inEF formed a blocking pair, and which further more still fulfill the blocking condition.

Note that the result of applying the transformation on a complete clash-free relaxed completion structure
might be an incomplete clash-free relaxed completion structure. If completeness of the original structure
was achieved by applying among others the blocking rule, thetransformation might leave some branches
“unfinished” in case the blocking node is eliminated or simply because two nodes who formed a blocking
pair are still found in the new structure, but they do not longer fulfill the blocking condition. We will de-
scribe two cases in which the transformation can be applied without losing the completeness of the resulted
structure by means of two lemmas. Before that, however, we need to state a general result which will prove
useful in the demonstration of the two lemmas. The result states that if as a result of applying thecollapse
transformation on a complete clash-free relaxed completion structure one obtains a completion structure in
which the path between a blocking pair of nodes remains untouched (every node in the original path is the
counterpart of some node in the new structure), then the nodes which have as counterparts the nodes of the
blocking pair form a blocking pair in the new completion structure.

Lemma 4.12 LetCS = 〈EF , G, ct, st, bl〉, EF = 〈F ,ES 〉 be a complete clash-free relaxed completion
structure andCS

′

= 〈EF
′

, G
′

, ct
′

, st
′

, bl
′

〉 the result returned bycollapseCS(u, v), whereu andv are
two nodes fromEF which fulfill the usual conditions necessary for the application of collapse. Then, for
every(x, y) ∈ bl: if for every z ∈ pathTc(x, y) (x, y ∈ Tc), existsz

′

∈ EF
′

such thatz′ = z, then
(x

′

, y
′

) ∈ bl
′

, wherex
′

, y
′

∈ EF
′

, x′ = x andy′ = y.

Proof. Let EF , EF
′

, x, y, x
′

, andy
′

be as defined in the lemma. The conditions for the two nodesx
′

andy
′

from EF
′

to form a blocking pair:(x
′

, y
′

) ∈ bl
′

, are that(x, y) ∈ bl andpathsG
′ (x

′

, y
′

) = ∅. The
first condition is part of the prerequisites of the lemma, so it remains to be proved thatpathsG

′ (x
′

, y
′

) = ∅.
Assume by contradiction that there exists a path inG

′

from ap(x
′

) to aq(y
′

). Then according to lemma 4.4
there is a pathPt in EF

′

from x
′

to y
′

such that for everyz ∈ P there exists a unary literal with argument
z in the path inG

′

from p(x
′

) to q(y
′

). Any path inEF
′

from x
′

to y
′

includes the path inT
′

c (the tree from
which bothx

′

to y
′

make part) fromx
′

to y
′

. AssumepathT
′

c
(x

′

, y
′

) = (x
′

1 = x
′

, x
′

2, . . . , x
′

n = y
′

): thenPt

contains the unary literalsl1
′

, l2
′

, . . . , ln
′

with arg(li
′

) = x
′

i, for 1 ≤ i ≤ n such that(li
′

, l
′

i+1) ∈ pathsG
′ ,

for every1 ≤ i < n. Letx
′

i = xi. As every node on the pathpathTc(x, y) is the counterpart of some node in
pathT

′

c
(x

′

, y
′

) and every node inpathT
′

c
(x

′

, y
′

) has the some counterpart inpathTc(x, y), one can conclude
thatpathTc(x, y) = (x1, x2, . . . , xn). Also, from the definition ofcollapse one can see that the presence
of unary literalsli

′

with arg(li
′

) = x
′

i in Pt/G
′

implies the presence of literalsli with arg(li) = xi and
pred(li) = pred(l

′

i) in G, for every1 ≤ i ≤ n. Furthermore(li
′

, l
′

i+1) ∈ pathsG
′ implies (li, li+1) ∈

22 INFSYS RR 184-08-14.

pathsG, for every1 ≤ i < n. The latter results leads to:(l1, ln) ∈ pathsG with arg(l1) = x1 = x1
′

= x
andarg(ln) = xn = xn

′

= y, or in other words to(pred(l1), pred(ln)) ∈ pathsG(x, y). This contradicts
with the fact that(x, y) ∈ bl, and thuspathsG(x, y) = ∅.

Lemma 4.13 LetCS = 〈EF , G, ct, st, bl〉, EF = 〈F ,ES 〉 be a complete clash-free relaxed completion
structure. If there are two nodesu andv in a treeTc in F such thatu <Tc v, ct(u) = ct(v), and there is no
blocking nodex′, x′ <Tc v, collapseCS(u, v) returns a complete clash-free relaxed completion structure.

Proof. We have to show thatCS
′

= collapseCS(u, v) is complete, that is, no expansion rule further applies
to this completion structure. We will consider every leaf nodex of EF

′

and show that no rule can be applied
to further expand such a node. There are three possible casesas concerns the counterpart ofx in EF , x
(which at its turn is a leaf node inEF):

• x is a blocked node inCS, which does not make part from the treeTc from whichu andv make part.
Let Td be the tree from whichx makes part: then there is a nodey

′

∈ Td such that(y
′

, x) ∈ bl. No
node was eliminated fromTd as a result of the transformation so for everyz ∈ pathTc(x, y

′), exists
z
′

∈ EF
′

such thatz′ = z. Thus lemma 4.12 can be applied:(x, y) ∈ bl
′

, wherey is the node inEF
′

for whichy = y
′

. Sox is a blocked node inCS.

• x is a blocked node inCS which makes part from the same treeTc from whichu andv also make
part: then there is a nodey

′

∈ Tc such that(y
′

, x) ∈ bl. Depending on the location ofy
′

in Tc one can
distinguish between the following situations :

– y
′

6>Tc u (Figure 6 a)): in this casey
′

is on a branch which does not containu andv (as it is
also the case thaty

′

6< u due to the fact that there is no blocking nodex′ such thatε ≤ x′ < v)
and it is not eliminated as a result of applying the transformation, so the path fromx to y

′

in Tc

is preserved as a result of the transformation. Lemma 4.12 can be applied with the result that
(x, y) ∈ bl wherey is the node inEF

′

for whichy = y
′

– y
′

≥Tc u andy
′

6≥ v (Figure 6 b)): in this casey
′

is eliminated as a result of applying the
transformation, butx is also eliminated which contradicts with the existence ofx in CS

′

. To
see whyx is also eliminated notice thaty

′

6≤ v (as again this would contradict with the fact that
there is no blocking nodex′ such thatε ≤ x′ < v) andx > y

′

. This implies thatx > u and
x 6≤ v which suggests thatx is one of the eliminated nodes, too.

– y
′

≥ v (Figure 6 c)): in this casey
′

is not eliminated as a result of applying the transformation,
so the path fromx to y

′

in Tc is preserved as a result of the transformation. Lemma 4.12 can be
applied with the result that(x, y) ∈ bl wherey is the node inEF

′

for whichy = y
′

So the conclusion of the analysis above is the existence of a nodey ∈ T
′

such that(y, x) ∈ bl. As
pathsG(y, x) = ∅, pathsG

′ (y, x) = ∅ as the subtreeT [y] can be found inT
′

intact in the form of the
subtreeT

′

[y]: the eliminated nodes were not part of this subtree as, again, there is no blocking node
x′ in T , such thatε ≤ x′ < v.

• x is not a blocked node inCS; asCS is complete, no expansion rule can be applied tox in CS and,
by transfer neither tox in CS

′

(as they are two nodes which have equal contents which are justified
in a similar way).

INFSYS RR 184-08-14. 23

c

u y
′

v x

a)

c

u

v y
′

x

b)

c

u

v

y
′

x

c)

Figure 6: Shrinking a completion structure by eliminating asubtree with a root above any blocking node
(the eliminated part is highlighted with continuous line; the part highlighted with dashed line is still kept in)

Lemma 4.14 Let CS = 〈T, G, ct, st, bl〉 be a complete clash-free relaxed completion structure. If
there are three nodesz, u, and v in T such thatz < u < v and there is no blocking nodex′ such that
z < x′ < v, andpathsG(z, u) ⊆ pathsG(z, v), collapseCS(u, v) returns a complete clash-free relaxed
completion structure.

Proof. Like for the lemma above we show that any leaf node in the completion structureCS
′

=
collapseCS(u, v) (or more precisely in the corresponding treeT

′

) cannot be further expanded. Again we
consider every such leafx and we distinguish between three cases as concerns its counterpart inT , x:

• x is a blocked node inCS, which does not make part from the treeTc from which u andv make
part.This case is similar with the first case in the previous lemma.

• x is a blocked node inCS which makes part from the same treeTc from whichu andv make part:
then there is a nodey

′

∈ Tc such that(x, y
′

) ∈ bl. Using a similar argument as for the previous
lemma one concludes that there is a nodey ∈ T

′

such thaty
′

= y, or in other wordsy
′

has not been
eliminated as a result of applying the transformation. In the following we will show that(y, x) ∈ bl

′

andx is not further expanded. We will do this on a case-basis considering different locations ofy and
x in Tc w.r.t. the nodesz, u, anv (we consider only those cases in which after the transformation both
y andx are maintained in the structure):

– y ≤Tc z and there is a nodez
′

such thatz
′

<Tc u, z
′

≥Tc y, andx >Tc z
′

(Figure 7 a)): in
this case the transformation does not remove any node frompathTc(y, x) so lemma 4.12 can be
applied with the result that(y, x) ∈ bl

′

.

– y >Tc v (Figure 7 b)): in this case no nodes from the subtreeTc[y] are removed during the
transformation so using the same argument as above we obtainthat(y, x) ∈ bl

′

.

– y 6>Tc z andy 6≤Tc z (Figure 7 c)): in this casey is not on the same path asz, u, andv and again
the subtreeTc[y] is copied intact intoT

′

c , so(y, x) ∈ bl
′

.

24 INFSYS RR 184-08-14.

– y ≤Tc z andx ≥Tc v: in this casey, z, u, v andx are all on the same path inTc. Assume by
contradiction thatpathsG

′ (y, x) 6= ∅, or in other words there is a path inG
′

from ap(y) to some
q(x). By lemma 4.4 one obtains that there must be a pathPt betweeny andx in EF ′: note that
every such path containspathT

′

c
(y, x). From the same lemma and the previous observation one

obtains that there exists a set of unary literalsl1, l2, . . . , ln in G
′

with argumentsx1, x2, . . . xn,
wherepathT

′

c
(y, x) = (x1 = y, x2, . . . xn = y) such that(li, li+1) ∈ pathsG

′ , for 1 ≤ i < n.
Note that(li, li+1) ∈ pathsG

′ , for 1 ≤ i < n implies that(li, lj) ∈ pathsG
′ , for 1 ≤ i < j ≤ n.

Observe that the counterpart ofz from Tc in T
′

c is still z and the counterpart ofv from Tc

in T
′

c is u, or in other wordsz = z and u = v. So, z, u ∈ pathT
′

c
(x, y), or in other

words exists1 ≤ j < k ≤ n such thatxj = z andxk = u. As (l1, lj), (lj , lk), (lk, ln) ∈
pathsG

′ : (pred(l1), pred(lj)) ∈ pathsG
′ (y, z), (pred(lj), pred(lk)) ∈ pathsG

′ (z, u), and
(pred(lk), pred(ln)) ∈ pathsG

′ (u, x). By definition ofcollapse: pathsG
′ (y, u) = pathsG(y, u),

pathsG
′ (z, u) = pathsG(z, u) andpathsG

′ (u, y) = pathsG(v, x), so: (pred(l1), pred(lj)) ∈
pathsG(y, z), (pred(lj), pred(lk)) ∈ pathsG(z, u), and(pred(lk), pred(ln)) ∈ pathsG

′ (v, x).
From the lemma conditionpathsG(z, u) ⊆ pathsG(z, v), thus(pred(lj), pred(lk)) ∈ pathsG

′ (z, v).
Finally, (pred(l1), pred(lj)) ∈ pathsG(y, z), (pred(lj), pred(lk)) ∈ pathsG(z, v), and(pred(lk), pred(ln)) ∈
pathsG

′ (v, x) implies (pred(l1), pred(ln)) ∈ pathsG(y, x), which is a contradiction with the
fact thatpathsG(y, x) = ∅ as(y, x) ∈ bl. Thus, our assumption is false:pathsG

′ (y, x) = ∅,
and(y, x) ∈ bl

′

.

• x is not a blocked node inCS (Figure 7 d)); using a similar argument as for the previous lemma one
can show that no expansion rule applies tox in CS

′

.

c

y

z

z
′

u x

v

a)

c

z

u

v

y

x

b)

ε

z y

u x

v

c)

c

y

z

u

v

x

d)

Figure 7: Shrinking a completion structure by eliminating asubtree with a root below a blocking node (the
eliminated part is highlighted)

INFSYS RR 184-08-14. 25

Now, we will describe a sequence of transformations on a relaxed clash-free complete completion struc-
tureCS = 〈EF , G, ct, st, bl〉, EF = 〈F ,ES 〉, which returns a complete clash-free completion structure.
The transformations which have to be applied toCS are the following (the order in which they are applied
is irrelevant):

• for every two nodesu and v in a treeTc ∈ F such thatc <Tc u <Tc v, ct(u) = ct(v), and
there is no blocking nodex, c ≤Tc x <Tc v, collapseCS(u, v) (we will call such a transformation a
transformation of type 1) ;

• for every two nodesu, andv in a treeTc ∈ F for which there exists a nodez in Tc such thatz <Tc

u <Tc v and there is no blocking nodex such thatz <Tc x <Tc v, andpathsG(z, u) ⊆ pathsG(z, v),
collapseCS(u, v) (we will call such a transformation a transformation of type2).

That the resulted completion structure is complete followsdirectly from Lemma 4.13 and Lemma 4.14.
We still have to prove the following claim:

Claim 4.15 LetCS = 〈EF , G, ct, st, bl〉 be a complete relaxed completion structure to which no trans-
formation of the form described above can be further applied. Then every branch ofCS has at most
k = 2p(2p2

− 1) + 3 nodes withp = |upreds(P)|.

We will analyze every branch of every treeTc at a time. Consider the current branch isIB and that
it contains the blocking nodesx1, x2, . . . xn. From Corollary 4.11 we know thatn ≤ 2p, wherep =
|upreds(P)|. The last node of the branch will be denoted withend (Figure 8). We split the branchIB in
n+ 1 paths and count the maximum number of nodes with a certain content in each of these paths. In order
to do this need an additional lemma which is defined next.

Lemma 4.16 Let IB be a branch in a treeTc as depicted in Figure 8. For a givens ∈ 2upreds(()P):

• for any1 ≤ i < n, there can be at most2p2

nodes inpathTc(xi, xi+1) with content equal tos, in case
there is no nodex ∈ Tc such thatc <Tc x ≤Tc xi andct(x) = s

• for any1 ≤ i < n, there can be at most2p2

− 1 nodes inpathTc(xi, xi+1) with content equal tos,
except forxi, in case there is a nodex ∈ Tc such thatc <Tc x ≤Tc xi andct(x) = s

• there can be at most2p2

nodes inpathTc(xn, end) with content equal tos, except forxn.

Proof.
We will prove that for any1 ≤ i < n, there can be at most2p2

nodes inpathTc(xi, xi+1) with content
equal tos in case there is no nodex ∈ Tc such thatc <Tc x ≤Tc xi and ct(x) = s. Assume by
contradiction that there are at least2p2

+ 1 nodes inpathTc(xi, xi+1) with content equal tos. Let’s call
these nodey1, y2, . . . , ym, wherem > 2p2

. It is necessary thatpathsG(y1, yi) ⊃ pathsG(y1, yi+1) for
every1 < i < m, otherwise a transformation of type 2 could be further applied toCS. As pathsG(x, y) ⊆
upreds(()P) × upreds(()P) and|2upreds(()P)×upreds (()P)| = 2p2

, and there at least2p2

distinct values for
pathsG(y1, yi), when1 < i < m, there must be an1 < i < m such thatpathsG(y1, yi) = ∅. But in this
case(y1, yi) ∈ bl (as the two nodes also have equal content) which contradictswith the fact thatyi 6= end.
The other cases are proved similarly.

Now we will proceed to the actual counting. Lets ∈ 2upreds(()P) be a possible content value for any
node inIB. We will count the maximum number of nodes with contents in IB - in order to do this we have
to distinguish between three different cases as regardss:

26 INFSYS RR 184-08-14.

c

x1

x2

. . .

xn

end

Figure 8: A random branchIB in the resulted complete clash-free relaxed completion structure:x1, . . . ,xn

are blocking nodes

• there is no nodex ∈ Tc with c <Tc x <Tc x1 such thatct(x) = s, and there is no1 ≤ i ≤ n such
thatct(xi) = s. In this case there is maximum 1 node with content equal tos in pathTc(c, x1) (the
root), maximum2p2

nodes in eachpathTc(xi, xi + 1) and maximum2p2

nodes inpathTc(xn, end)
(according to lemma 4.16); for the last path there cannot be2p2

+ 1 nodes as that would mean that
end is a blocked node with content equal tos, so there would be a blocking node with content equal
to s, which contradicts with the fact the hypothesis there is no blocking node with content equal tos).
Also there are at most2p−1 blocking nodes (if there would be2p such nodes, the maximum indicated
by corollary 4.11 there would remain no valid value fors). Summing all up, in this case there are at
most2p2

(2p − 1) + 1 nodes with content equal tos.

• there is no nodex such thatc <Tc x <Tc x1 such thatct(x) = s but there is a nodexi, 1 ≤ i ≤ n
such thatct(xi) = s. In this case there is no nodex such thatc <Tc x <Tc xi which has content
equal tos (lemma 4.10), and thuspathTc(c, x1) maximum 1 node with content equal tos (the root).
pathTc(xi, xi+1) has maximum2p2

nodes, every path(xj , xj+1), wherei < j < n has maximum
2p2

− 1 nodes, and the path(xn, end) has maximum2p2

nodes (according to lemma 4.16). Summing
all up, in this case there are at most(2p2

− 1)(n− i+1)+3 nodes with content equal tos, wheren is
the number of blocking nodes. There are at most2p blocking nodes (corollary 4.11), so the maximum
of the expression is met wheni = 1 andn = 2p and is2p(2p2

− 1) + 3.

• there is a nodex such thatc <Tc x <Tc x1 andct(x) = s. In this casect(xi) 6= s, for every
1 ≤ i ≤ n (lemma 4.10). The counting is as follows:pathTc(c, x1) has maximum 1 node with
content equal tos (x), otherwise a transformation of type 1 could be applied,pathTc(xi, xi+1) has
maximum2p2

− 1 nodes,1 ≤ i < n and the path(xn, end) has maximum2p2

nodes (according to
lemma 4.16). Also there are at most2p − 1 blocking nodes (if there would be2p such nodes, the
maximum indicated by corollary 4.11 there would remain no valid value fors). Summing all up, in
this case there are at most(2p2

− 1)(2p − 1) + 1 nodes with content equal tos.

From the three cases the maximum of number of nodes with content equal to a givens in any branch
IB of a treeTc ∈ F is 2p(2p2

− 1) + 3, which is exactlyk.

INFSYS RR 184-08-14. 27

Table 1: Syntax and Semantics ofSHOQ Constructs

construct name syntax semantics

atomic conceptC A AI ⊆ ∆I

role R RI ⊆ ∆I ×∆I

nominalsI {o} {oI} ⊆ ∆I ,

concept conj. C ⊓D (C ⊓D)I = CI ∩DI

concept disj. C ⊔D (C ⊔D)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃R.C (∃R.C)I = {x | ∃y : (x, y) ∈ RI andy ∈ CI}
value restriction ∀R.C (∀R.C)I = {x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI}
atleast restriction ≥ nS.C (≥ nS.C)I = {x |#{y | (x, y) ∈ SI andy ∈ CI} ≥ n}
atmost restriction ≤ nS.C (≤ nS.C)I = {x |#{y | (x, y) ∈ SI andy ∈ CI} ≤ n}

At this point we have a complete relaxed clash-free completion structure with at mostk nodes on any
branch, thus a complete clash-free completion structure for p w.r.t. P .

4.4 Complexity Results

Let CS = 〈EF , G, ct, st, bl〉 be a complete completion structure. Every path of a tree inEF contains
at mostk + 1 nodes with equal content (as suggested by the applicabilityrules (viii) and (ix)), wherek
is as defined in the redundancy rule; thus, there are at most(k + 1)2n nodes on every such path, where
n = |upreds(P)|. The branching of every tree is bound by a constantq which is a linear function of the
number of variables in unary rules fromP . Thus, there are at mostq(k+1)2n

nodes in a tree, and at most
(c + 1)q(k+1)2n

nodes inEF , wherec is the number of constants present in the program at hand. So the
amount of nodes inCS is double exponential in the size ofP , and the algorithm runs in2-NEXPTIME.

Note that such a high complexity is expected when dealing with tableaux-like algorithms. For example
in Description Logics, although satisfiability checking inSHIQ is EXPTIME-complete, practical algorithms
run in2-NEXPTIME [32].

5 F-hybrid Knowledge Bases

In this section, we introducef-hybrid knowledge bases, a formalism that combines knowledge basesex-
pressed in the Description LogicSHOQ with forest logic programs.

Description logics (DLs)are a family of logical formalisms based on frame-based systems [24] and
useful for knowledge representation. Its basic language features include the notions ofconceptsandroles
which are used to define the relevant concepts and relations in some (application) domain. Different DLs
can then be identified, among others, by the set of constructors that are allowed to form complex concepts
or roles; see, for example, the 2 left-most columns of Table 1, that define the constructs inSHOQ [18].

The semantics of DLs is given by interpretationsI = (∆I , ·I) where∆I is a non-empty domain and·I

is an interpretation function. We summarize the constructsof SHOQ with their interpretation in Table 1.

28 INFSYS RR 184-08-14.

A SHOQ knowledge baseis a set ofterminological axiomsC ⊑ D with C andD SHOQ-concept
expressions,role axiomsR ⊑ S with R andS roles, andtransitivity axiomsTrans(R) for a role name
R. If the knowledge base contains an axiomTrans(R), we callR transitive. For the role axioms in a
knowledge base, we define⊑∗ as the transitive closure of⊑. A simple roleR in a knowledge base is a role
that is not transitive nor does it have any transitive subroles (w.r.t. to reflexive transitive closure⊑∗ of ⊑).
Terminological and role axioms express a subset relation: an interpretationI satisfiesan axiomC1 ⊑ C2

(R1 ⊑ R2) if CI
1 ⊆ CI

2 (RI
1 ⊆ RI

2). An interpretation satisfies a transitivity axiomTrans(R) if RI is a
transitive relation. An interpretation is amodelof a knowledge baseΣ if it satisfies every axiom inΣ. A
conceptC is satisfiablew.r.t. Σ if there is a modelI of Σ such thatCI 6= ∅. The number restrictions
(at most and at least) are always such that the roleR in, e.g.,≥ nR.C, is simple; this in order to avoid
undecidability of satisfiability checking (see, e.g., [19]).

We will assume theunique name assumptionby imposing thatoI = o for individualso ∈ I. Note that
individuals are thus assumed to be part of any domain∆I . Note that OWL does not have the unique name
assumption [31], and thus different individuals can point to the same resource. However, the open answer
set semantics gives a Herbrand interpretation to constants, i.e., constants are interpreted as themselves, and
for consistency we assume that also DL nominals are interpreted this way.

Example 5.1 Consider the followingSHOQ knowledge baseΣ:

Father ⊑ ∃child .Human ⊓ ¬Female

{john} ⊑ (≤ 2child .Human)

Intuitively, the first terminological axiom says that fathers have a human child and are not female. The
second axiom says thatjohn has less than 2 human children.

Definition 5.2 An f-hybrid knowledge baseis a pair〈Σ, P 〉 whereΣ is aSHOQ knowledge base andP is
a FoLP.

Atoms and literals inP might have as the underlying predicate an atomic concept or role name from
Σ, in which case they are calledDL atomsandDL literals respectively. Additionally, there might be other
predicate symbols available, but without loss of generality we assume they cannot coincide with complex
concept or role descriptions. Note that we do not impose Datalog safeness or(weakly) DL safeness[28,
30, 29] for the rule component. Intuitively, the restrictedshape of FoLPs suffices to guarantee decidability;
FoLPs are in general neither Datalog safe nor weakly DL-safe; we will discuss the relation with weakly
DL-safeness in detail in Section 6.

Example 5.3 An f-hybrid knowledge base〈Σ, P 〉, with Σ as in Example 5.1 andP , the FoLP,

unhappy(X) ← not Father(X)

indicates that persons that are not fathers are unhappy, where Father(X) is a DL literal.

Similarly as in [12], we define, given a DL interpretationI = (∆I , ·I) and a ground programP , the
projectionΠ(P,I) of P with respect toI, as follows: for every ruler in P ,

• if there exists a DL literal in the head of the form

INFSYS RR 184-08-14. 29

– A(t1, . . . , tn) with (t1, . . . , tn) ∈ AI , or

– not A(t1, . . . , tn) with (t1, . . . , tn) 6∈ AI ,

then deleter,

• if there exists a DL literal in the body of the form

– A(t1, . . . , tn) with (t1, . . . , tn) 6∈ AI , or

– not A(t1, . . . , tn) with (t1, . . . , tn) ∈ AI ,

then deleter,

• otherwise, delete all DL literals fromr.

Intuitively, the projection “evaluates” the program with respect toI by removing (evaluating) rules and DL
literals consistently withI; conceptually this is similar to the GL-reduct, which removes rules and negative
literals consistently with an interpretation of the program.

Definition 5.4 Let 〈Σ, P 〉 be an f-hybrid knowledge base. Aninterpretationof 〈Σ, P 〉 is a tuple(U,I,M)
such that

• U is a universe forP ,

• I = (U, ·I) is an interpretation ofΣ, and

• M is an interpretation ofΠ(PU ,I).

Then,(U,I,M) is amodelof an f-hybrid knowledge base〈Σ, P 〉 if I is a model ofΣ andM is an answer
set ofΠ(PU ,I).

The semantics of a f-hybrid knowledge base〈Σ, P 〉 is such that ifΣ = ∅, a model of〈Σ, P 〉 corresponds
to an open answer set ofP , and ifP = ∅, a model of〈Σ, P 〉 corresponds to a DL model ofΣ. In this way,
the semantics of f-hybrid knowledge bases is nicely layeredon top of both the DL semantics and the open
answer set semantics.

Example 5.5 For the f-hybrid knowledge base〈Σ, P 〉 in Example 5.3, take a universeU = {john, x}
and ·I defined such thatFather I = {x}, childI = {(x, john)}, FemaleI = ∅, HumanI = U , and
johnI = john . It is easy to see thatI = (U, ·I) is indeed a model ofΣ.

We project the programP taking into accountI, such thatPU is the program

unhappy(x) ← not Father(x)
unhappy(john) ← not Father(john)

and sincex ∈ Father I andjohn 6∈ Father I , we have thatΠ(PU ,I) is

unhappy(john) ←

such thatM = {unhappy(john)} is an answer set ofΠ(PU ,I), and(U,I,M) is a model of〈Σ, P 〉.

30 INFSYS RR 184-08-14.

For p a concept expression fromΣ or a predicate fromP , we say thatp is satisfiablew.r.t. (Σ, P) if
there is a model(U,I,M) such thatpI 6= ∅ or p(x1, . . . , xn) ∈M for somex1, . . . , xn in U , respectively.
Note that Definition 5.4 is in general applicable to other DLsthanSHOQ as well as to other programs than
FoLPs. Indeed, in [12], a similar definition was used forDLRO−{≤} andguarded programs.

We can reduce satisfiability checking w.r.t. f-hybrid knowledge bases to satisfiability checking of FoLPs
only. Roughly, for each concept expression one introduces anew predicate together with rules that define
the semantics of the corresponding DL construct. Constraints then encode the axioms, and the first-order
interpretation of DL concept expressions is simulated using free rules.

Taking the knowledge baseΣ of Example 5.3, we can translateFather ⊑ ∃child .Human ⊓ ¬Female to
the constraint← Father(X),not (∃child .Human ⊓ ¬Female)(X) where(∃child .Human ⊓ ¬Female)
is a predicate defined by the rules

(∃child .Human ⊓ ¬Female)(X)← (∃child .Human)(X), (¬Female)(X)

i.e., a DL conjunction translates to a set of literals in the body. Further, we define an exists restriction and
negation as follows:

∃child .Human(X) ← child(X ,Y),Human(Y)
¬Female(X) ← not Female(X)

Finally, the first-order semantics of concepts and roles is obtained as follows:

Father(X) ∨ not Father(X) ←
Female(X) ∨ not Female(X) ←
Human(X) ∨ not Human(X) ←

child(X ,Y) ∨ not child(X ,Y) ←

Similarly, the axiom{john} ⊑ (≤ 2child .Human) is translated as the constraint

← {john}(X),not (≤ 2child .Human)(X)

and rules

{john}(john) ←
(≤ 2child .Human)(X) ← not (≥ 3child .Human)(X)
(≥ 3child .Human)(X) ← child(X ,Y1), child(X ,Y2), child(X ,Y3),

Human(Y1),Human(Y2),Human(Y3),Y1 6= Y2 ,Y1 6= Y3 ,Y2 6= Y3

Before proceeding with the formal translation, we define theclosureclos(Σ) of a SHOQ knowledge
baseΣ as the smallest set satisfying the following conditions:

• for eachC ⊑ D an axiom inΣ (role or terminological),{C,D} ⊆ clos(Σ),

• for eachTrans(R) in Σ, {R} ⊆ clos(Σ),

• for everyD in clos(Σ), we have

– if D = ¬D1, then{D1} ⊆ clos(Σ),

– if D = D1 ⊔D2, then{D1,D2} ⊆ clos(Σ),

INFSYS RR 184-08-14. 31

– if D = D1 ⊓D2, then{D1,D2} ⊆ clos(Σ),

– if D = ∃R.D1, then{R,D1} ∪ {∃S.D1 | S⊑∗R,S 6= R,Trans(S) ∈ Σ} ⊆ clos(Σ),

– if D = ∀R.D1, then{∃R.¬D1} ⊆ clos(Σ),

– if D = (≤ n Q.D1), then{(≥ n+ 1 Q.D1)} ⊆ clos(Σ),

– if D = (≥ n Q.D1), then{Q,D1} ⊆ clos(Σ).

Concerning the addition of the extra∃S.D1 for ∃R.D1 in the closure, note thatx ∈ (∃R.D1)
I holds if

there is some(x, y) ∈ RI with y ∈ DI
1 , and, in particular,S⊑∗R with S transitive such that(x, u0) ∈

SI , . . . , (un, y) ∈ S
I with y ∈ DI

1 . The latter amounts tox ∈ (∃S.D1)
I . Thus, in the open answer set

setting, we have that∃R.D1(x) is in the open answer set ifR(x, y) andD1(y) hold or∃S.D1(x) holds for
some transitive subroleS of R. The predicate∃S.D1 will be defined by adding recursive rules, hence the
inclusion of such predicates in the closure.

Furthermore, for a(≤ n Q.D1) in the closure, we add{(≥ n + 1 Q.D1)}, since we will base our
definition of the former predicate on the DL equivalence(≤ n Q.D1) ≡ ¬(≥ n+ 1 Q.D1).

Formally, we defineΦ(Σ) to be the following FoLP, obtained from theSHOQ knowledge baseΣ:

• For each terminological axiomC ⊑ D ∈ Σ, add the constraint

← C (X),not D(X) (5)

• For each role axiomR ⊑ S ∈ Σ, add the constraint

← R(X ,Y),not S (X ,Y) (6)

• Next, we distinguish between the types of concept expressions that appear inclos(Σ). For each
D ∈ clos(Σ):

– if D is a concept name, add
D(X) ∨ not D(X)← (7)

– if D is a role name, add
D(X ,Y) ∨ not D(X ,Y)← (8)

– if D = {o}, add
D(o)← (9)

– if D = ¬E, add
D(X)← not E (X) (10)

– if D = E ⊓ F , add
D(X)← E (X),F (X) (11)

– if D = E ⊔ F , add
D(X) ← E (X)
D(X) ← F (X)

(12)

32 INFSYS RR 184-08-14.

– if D = ∃Q.E, add
D(X)← Q(X ,Y),E (Y) (13)

and for allS⊑∗Q, S 6= Q, with Trans(S) ∈ Σ, add rules

D(X)← (∃S .E)(X) (14)

If Trans(Q) ∈ Σ, we further add the rule

D(X)← Q(X ,Y),D(Y) (15)

– if D = ∀R.E, add
D(X)← not (∃R.¬E)(X) (16)

– if D = (≤ n Q.E), add
D(X)← not (≥ n + 1 Q .E)(X) (17)

– if D = (≥ n Q.E), add

D(X)← Q(X ,Y1), . . . ,Q(X ,Yn),E (Y1), . . . ,E (Yn), (Yi 6= Yj)1≤i 6=j≤n (18)

Rule(13) is what one would intuitively expect for the exists restriction. However, in caseQ is transitive
this rule is not enough. Indeed, ifQ(x, y),Q(y, z), E(z) are in an open answer set, one expects(∃Q.E)(x)
to be in it as well ifQ is transitive. However, we have no rules enforcingQ(x, z) to be in the open answer
set without violating the FoLP restrictions. We can solve this by adding to(13) the rule(15), such that such
a chainQ(x, y),Q(y, z), withE(z) in the open answer set correctly deducesD(x).

It may still be that there are transitive subroles ofQ that need the same recursive treatment as above. To
this end, we introduce rule(14).

We do not need such a trick with the number restrictions sincethe rolesQ in a number restriction are
required to be simple, i.e., without transitive subroles.

Proposition 5.6 Let 〈Σ, P 〉 be aSHOQ knowledge base. Then,Φ(Σ)∪P is a FoLP, and has a size that is
polynomial in the size ofΣ.

Proof. Observing the rules inΦ(Σ), it is clear that this program is a FoLP.
The size of the elements inclos(Σ) is linear and the size ofclos(Σ) itself is polynomial inΣ. The size

of the FoLPΦ(Σ) is polynomial in the size ofclos(Σ). The only non-trivial case in showing the latter arises
by the addition of rule(18) which introducesn(n−1)

2 inequalities for a number restriction(≥ n Q.E). We
assume, as is not uncommon in DLs (see, e.g., [32]), that the numbern is represented in unary notation

11 . . . 1
︸ ︷︷ ︸

n

such that the number of introduced inequalities is quadratic in the size of the number restriction.

Proposition 5.7 Let 〈Σ, P 〉 be an f-hybrid knowledge base. Then, a predicatep is satisfiable w.r.t.(Σ, P)
iff p is satisfiable w.r.t.Φ(Σ) ∪ P .

INFSYS RR 184-08-14. 33

Proof. The proof goes along the lines of the proof in [12, Theorem 1].
(⇒). Assumep is satisfiable w.r.t.(Σ, P), i.e., there exists a model(U,I,M) of (Σ, P) in which p has a
non-empty extension. Now, we construct the open interpretation (U,N) of Φ(Σ) ∪ P as follows:

N = M ∪ {C(x) | x ∈ CI , C ∈ clos(Σ)} ∪ {R(x1, x2) | (x1, x2) ∈ R
I , R ∈ clos(Σ)}

with C andR concept expressions and role names respectively.
It is easy to verify that(U,N) is an open answer set ofΦ(Σ) ∪ P and that(U,N) satisfiesp.

(⇐). Assume(U,N) is an open answer set ofΦ(Σ)∪P such thatp is satisfied. We define the interpretation
(U,I,M) of (Σ, P) as follows:

• I = (U, ·I) is defined such thatAI = {x | A(x) ∈ N} for concept namesA, P I = {(x1, x2) |
P (x1, x2) ∈ N} for role namesP andoI = o, for o a constant symbol inΣ. I is then an interpretation
of Σ.

• M = N \{p(x1, . . . , xn) | p ∈ clos(Σ)}, such thatM is an interpretation ofΠ(PU ,I).

As a consequence,(U,I,M) is an interpretation of〈Σ, P 〉 and it is easy to verify that(U,I,M) is a model
of (Σ, P) which satisfiesp.

Note that Proposition 5.7 also holds for satisfiability checking of concept expressionsC: introduce a
rulep(X)← C(X) in P and check satisfiability ofp.

Using the translation from f-hybrid knowledge bases to forest logic programs in Proposition 5.7 and the
polynomiality of this translation (Proposition 5.6), together with the complexity of the terminating, sound,
and complete algorithm for satisfiability checking w.r.t. FoLPs, we have the following result:

Proposition 5.8 Satisfiability checking w.r.t. f-hybrid knowledge bases isin 2-NEXPTIME.

As satisfiability checking ofALC concepts w.r.t. anALC TBox (note thatALC is a fragment ofSHOQ)
is EXPTIME-complete ([1, Chapter 3]), we have that satisfiability checking w.r.t. f-hybrid knowledge bases
is EXPTIME-hard.

Proposition 5.9 Satisfiability checking w.r.t. f-hybrid knowledge bases isEXPTIME-hard.

Note that gap between the hardness result and the worst-caseruntime complexity of the algorithm. This
is a similar gap that arises forSHIQ and its tableaux algorithm (see Section 4.4).

6 Discussion and Related Work

We compare f-hybrid knowledge bases to the r-hybrid knowledge bases from [30], which extendsDL+log

from [29] with inequalities and negated DL atoms.
In [30], a r-hybrid knowledge base consists of a DL knowledgebase (the specific DL is a parameter) and

a disjunctive Datalog program where each rule isweakly DL-safe:

• every variable in the rule appears in a positive atom in the body of the rule (Datalog safeness), and

• every variable either occurs in a positive non-DL atom in thebody of the rule, or it only occurs in
positive DL atoms in the body of the rule.

34 INFSYS RR 184-08-14.

The semantics of r-hybrid and f-hybrid knowledge bases correspond to a large extent. The main differ-
ence is that f-hybrid knowledge bases do not make thestandard names assumption, in which basically the
domain of every interpretation is the same infinitely countable set of constants.

Some key differences to note are the following:

• We do not require Datalog safeness neither do we require weakly DL-safeness. Indeed, f-hybrid
knowledge bases may have a rule component (i.e., the programpart) that is not weakly DL-safe. Take
the f-hybrid knowledge base〈Σ, P 〉 from Example 5.3 withP :

unhappy(X) ← not Father(X)

The atomFather(X) is a DL-atom such that the rule is neither Datalog safe nor weakly DL-safe.
Modifying the program to

unhappy(X) ← Human(X),not Father(X)

leads to a Datalog safe program (X appears in a positive atomHuman(X) in the body of the rule),
however, it is still not weakly DL-safe asX is not appearing only in positive DL-atoms.

On the other hand, both the above rules are FoLPs and thus constitute a valid component of an f-hybrid
knowledge base.

• In the case of r-hybrid knowledge bases, due to the safeness conditions, it suffices for satisfiability
checking to ground the rule component with the constants appearing explicitly in the knowledge base.4

One does not have such a property for f-hybrid knowledge bases. Consider the f-hybrid knowledge
base〈Σ, P 〉 with Σ = ∅ and the programP

a(X) ← not b(X)
b(0) ←

This program is a FoLP, but it is not Datalog safe nor is it weakly DL-safe. Grounding only with the
constants in the program yields the projection

a(0) ← not b(0)
b(0) ←

such thata is not satisfiable. However, grounding with, e.g.,{0, x}, one gets

a(0) ← not b(0)
a(x) ← not b(x)
b(0) ←

such thata is indeed satisfiable, in correspondence with one would expect.

• Decidability for satisfiability checking of r-hybrid knowledge bases is guaranteed if decidability of the
conjunctive query containment/union of conjunctive queries containment problems is guaranteed for
the DL at hand. In contrast, we relied on a translation of DLs to FoLPs for establishing decidability,
and not all DLs can be translated this way; we illustrated thetranslation forSHOQ.

4[30, 29] considers checking satisfiability of knowledge bases rather than satisfiability of predicates. However, the former can
easily be reduced to the latter.

INFSYS RR 184-08-14. 35

Hybrid MKNF knowledge bases [26, 25] consist of a DL component and a component of so-called
MKNF rules. Such MKNF rules allow for modal operatorsK andnot in front of atoms; for a detailed
definition, we refer the reader to [26]. Hybrid MKNF knowledge bases generalize approaches to integrating
ontologies and rules such as CARIN [23],AL-log [4], DL-safe rules [27], and the Semantic Web Rule
Language (SWRL) [17], as well as r-hybrid knowledge bases [30]. In particular, one can write the latter as
equisatisfiable hybrid MKNF knowledge bases [26, Theorem 4.8].

In contrast with f-hybrid knowledge bases, hybrid MKNF knowledge bases, as do r-hybrid knowledge
bases, make the standard names assumption. Additionally, decidability and reasoning for hybrid MKNF
knowledge bases is guaranteed byDL-safeness, a restriction of weakly DL-safeness, where every variable
in a rule has to appear in a non-DL atom of the body of the rule. As with r-hybrid knowledge bases,
our f-hybrid knowledge bases do not have such a restriction of the interaction between the structural DL
component and the rule component, but rely instead on the existence of an integrating framework (FoLPs
under an open answer set semantics) that has reasoning support; reasoning support that we provided in this
paper.

We give a brief overview of other approaches to integrating ontologies and rules, specifically highlight-
ing reasoning support.

Description Logic Programs[11] represent the common subset of OWL-DL ontologies and Horn logic
programs (programs without negation as failure or disjunction). As such, reasoning can be reduced to normal
LP reasoning. In [27], a clever translation ofSHIQ(D) (SHIQ with data types) combined withDL-safe
rules to disjunctive Datalog is provided. The translation relieson a translation to clauses and subsequently
applying techniques from basic superposition theory. Reasoning inDL+log [29] and r-hybrid knowledge
bases (see above) does not use a translation to other approaches, but defines a specific algorithm based on a
partial grounding of the program and a test for containment of conjunctive queries over the DL knowledge
bases.dl-programs[6] have a more loosely coupled take on integrating DL knowledge bases and logic
programs by allowing the program to query the DL knowledge base while as well having the possibility to
send (controlled) input to the DL knowledge base. Reasoningis done via a stable model computation of the
logic program, interwoven with queries that are oracles to the DL part.

Description Logic Rules [21] are defined as decidable fragments of SWRL. The rules have a tree-like
structure similar to the structure of FoLPs. Depending on the underlying DL, one can distinguish between
SROIQ rules (these do not actually extendSROIQ, they are just syntactic sugar on top of the language),
EL++ rules, Description Logic Program rules, and ELP rules [22].The latter can be seen as an extension
of bothEL++ rules and Description Logic Program rules, hence their name. Although Description Logic
Rules have tree-shaped bodies and from this perspective similar to FoLPs, their semantics is not a minimal
model semantics. Like Description Logics, there semanticsis first-order based.

The algorithm presented in Section 4 can be seen as a procedure that constructs a tableau (as is common
in most DL reasoning procedures), representing the possibly infinite open answer set by a finite structure.
There are several DL-based approaches which adopt a minimal-style semantics. Among this are autoepis-
temic [5], default [2] and circumscriptive extensions of DL[3, 10]. The first two extensions are restricted to
reasoning with explicitly named individuals only, while [10] allows for defeats to be based on the existence
of unknown individuals. A tableau-based method for reasoning with the DLALCO in the circumscriptive
case has been introduced in [9]. A special preference clash condition is introduced there to distinguish be-
tween minimal and non-minimal models which is based on constructing a new classical DL knowledge base
and checking its satisfiability.

A formalism related to FoLPs isFDNC [34]. FDNC is an extension of ASP with function symbols
where rules are syntactically restricted in order to maintain decidability. While the syntactical restriction is

36 INFSYS RR 184-08-14.

similar to the one imposed on FoLP rules, predicates having arity maximum two, and the terms in a binary
literal can be seen as arcs in a forest (imposing the Forest Model Property), the direction of deduction is
different: while for FoLPs, all binary literals in a rule body have an identical first term which is also the
term which appears in the head, forFDNC (with the exception of one rule type) the second term is the one
which also appears in the head.FDNC rules are required to be safe unlike FoLP ones. The complexity for
standard reasoning tasks forFDNC is EXPTIME-complete and worst-case optimal algorithms are provided.

7 Conclusions and Outlook

We introduced FoLPs, a logic programming paradigm suitablefor integrating ontologies and rules, and
provided a sound, complete, and terminating algorithm for satisfiability checking that runs in2-NEXPTIME.
We showed how to use FoLPs as the underlying integration vehicle for reasoning with f-hybrid knowledge
bases, a nonmonotonic framework that integratesSHOQ with FoLPs, without having to resort to (weakly)
DL-safeness.

For the future, we intend to look into an extension of f-hybrid knowledge bases and its reasoning algo-
rithm, from SHOQ towardsSROIQ(D) the DL underlying OWL-DL in OWL 25. A prototype imple-
mentation of the algorithm is planned, and will feed the needfor optimization strategies.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.The DL
Handbook: Theory, Implementation, and Applications, 2003.

[2] F. Baader and B. Hollunder. Embedding defaults into terminological representation systems.J. of
Automated Reasoning, 14(2):149–180, 1995.

[3] P. Bonatti, C. Lutz, and F. Wolter. Expressive non-monotonic description logics based on circum-
scription. InProc. of 10th Int. Conf. on Principles of Knowledge Repr. andReasoning (KR’06), pages
400–410, 2006.

[4] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and Description
Logics. J. of Intelligent and Cooperative Information Systems, 10:227–252, 1998.

[5] F. M. Donini, D. Nardia, and R.Rosati. Description logics of minimal knowledge and negation as
failure. ACM Trans. on Comput. Logic, 3(2):177–225, 2002.

[6] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the semantic web.Artificial Intelligence, 172(12-13):1495–1539,
2008.

[7] C. Feier and S. Heymans. A sound and complete algorithm for simple conceptual logic programs. In
Proc. of ALPSWS 2008, 2008.

[8] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InProc. of
ICLP’88, pages 1070–1080, 1988.

5http://www.w3.org/2007/OWL

INFSYS RR 184-08-14. 37

[9] S. Grimm and P. Hitzler. Reasoning in circumscriptiveALCO. Technical report, FZI at University of
Karlsruhe, Germany, September 2007.

[10] S. Grimm and P. Hitzler. Defeasible inference with circumscriptive OWL ontologies. InWorkshop on
Advancing Reasoning on the Web: Scalability and Commonsense, 2008.

[11] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining logic
programs with description logic. InProc. of the World Wide Web Conference (WWW), pages 48–57,
2003.

[12] S. Heymans, J. de Bruijn, L. Predoiu, C. Feier, and D. VanNieuwenborgh. Guarded hybrid knowledge
bases.TPLP, 8(3):411–429, 2008.

[13] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual logic programs.Annals of Mathemat-
ics and Artificial Intelligence (Special Issue on Answer SetProgramming), 47(1–2):103–137, 2006.

[14] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming for the semantic
web. J. of Applied Logic, 5(1):144–169, 2007.

[15] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming for the semantic
web. J. of Applied Logic, 5(1):144–169, 2007.

[16] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming with guarded
programs.ACM Trans. on Comp. Logic, 9(4), October 2008.

[17] I. Horrocks and P. F. Patel-Schneider. A proposal for anOWL rules language. InProc. of the World
Wide Web Conference (WWW), pages 723–731. ACM, 2004.

[18] I. Horrocks and U. Sattler. Ontology reasoning in the shoq(d) description logic. InProc. of the 17th
Int. Joint Conf. on Artificial Intelligence, 2001.

[19] I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description Logics. InProc.
of the 6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), number 1705 in
LNCS, pages 161–180. Springer, 1999.

[20] U. S. I. Horrocks and S. Tobies. Practical reasoning forexpressive description logics. InProc. 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99), volume LNAI 1705, pages
161–180. Springer Verlag, 1999.

[21] M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. InProc. 18th European Conf. on
Artificial Intelligence(ECAI-08), pages 80–84, 2008.

[22] M. Krötzsch, S. Rudolph, and P. Hitzler. ELP: Tractable rules for OWL 2. InProc. 7th Int. Semantic
Web Conf. (ISWC-08), 2008.

[23] A. Y. Levy and M. Rousset. CARIN: A Representation Language Combining Horn Rules and Descrip-
tion Logics. InProc. of ECAI’96, pages 323–327, 1996.

[24] M. Minsky. A Framework for Representing Knowledge. In R. J. Brachman and H. J. Levesque, editors,
Readings in Knowledge Representation, pages 245–262. Kaufmann, Los Altos, CA, 1985.

38 INFSYS RR 184-08-14.

[25] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWLand logic programming live together
happily ever after? InProc. of the Int. Semantic Web Conf. (ISWC), pages 501–514, 2006.

[26] B. Motik and R. Rosati. Closing Semantic Web Ontologies. Technical report, 2006.

[27] B. Motik, U. Sattler, and R. Studer. Query answering forOWL-DL with rules. Journal of Web
Semantics, 3(1):41–60, 2005.

[28] R. Rosati. On the decidability and complexity of integrating ontologies and rules.Web Semantics,
3(1):41–60, 2005.

[29] R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog. InProc. of the Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR), pages 68–78, 2006.

[30] R. Rosati. On combining description logic ontologies and nonrecursive datalog rules. InProc. of the
2nd Int. Conf. on Web Reasoning and Rule Systems (RR 2008), 2008.

[31] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/, 2004.

[32] S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD
thesis, RWTH-Aachen, 2001.

[33] M. Y. Vardi. Reasoning about the past with two-way automata. InProc. 25th Int. Colloquium on
Automata, Languages and Programming, pages 628–641, 1998.

[34] M. Šimkus and T. Eiter.FDNC: Decidable non-monotonic disjunctive logic programs withfunction
symbols. InProc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2007), 2007.

