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1 Introduction

Integrating Description Logics (DLs) with rules for the Samtic Web has received considerable attention
with approaches such &escription Logic Programg§l1], DL-safe ruleg27], DL+log [29], dl-programs
[6], Description Logic Rule$21], and Open Answer Set Programming (OASP) [16]. OASP dneth
attractive features from the DL and the Logic Programming)(vorld: an open domain semantics from the
DL side allows for stating generic knowledge, without theeh& mention actual constants, and a rule-based
syntax from the LP side supports nonmonotonic reasoningeggation as failure

Several decidable fragments of OASP were identified by syictdly restricting the shape of logic
programs, while carefully safe-guarding enough expressss for integrating rule- and ontology-based
knowledge. Notable fragments a@onceptual Logic Programs (CoLP§)3] that are able to simulate
reasoning in the DLSHZ Q and Forest Logic Programs (FOLPd)L4] that are expressive enough to deal
with SHO Q. Note that bottlSHOQ andSHZ Q are close family oSHOZN (D), the DL underlying the
Web Ontology language OWL-DL [31]. A serious shortcomingtu#se decidable fragments is their lack
of effective reasoning procedures. In [7], we took a firspstemending this by providing a sound and
complete algorithm fosimple CoLPs Simple CoLPs are a particular type of CoLPs that disallosvitbe
of inverse predicates, inequality and allow just a regddbrm of literal cyclity, but that are still expressive
enough to simulate the DULCH.

In this report, we extend the algorithm of [7] Eorest Logic Programsan extension of simple CoLPs
with constants and inequality and no cyclicity restrictioRoLPs are able to simulate the MdHO Q.
Furthermore, they serve well as an underlying integratiehiale for ontologies and rules. In order to
illustrate this, we definehybrid knowledge bases (fKBgpnsisting of & HO Q knowledge base and a rule
component that is a FoLP, with a nonmonotonic semanticdasira the semantics aj-hybrid knowledge
bases[12], r-hybrid knowledge basef80], and DL+log [29]. Our approach differs in two points with
current other proposals:

e In contrast with Description Logic Programs, DL-safe rulasd Description Logic Rules, f-hybrid
knowledge bases have, in line with traditional logic prognaing paradigms, a minimal model se-
mantics for the rule component, thus allowing for nonmonit@easoning.

e To ensure effective reasoning, our approach does not rety (areakly) DL-safeness condition such
as [27, 29, 30], which restricts the interaction of the rdenponent with the DL component. Instead,
we rely on a translation of the hybrid knowledge to FoLPs.

The major contributions of the paper can be summarized ksl

e We define in Section 4 a nondeterministic algorithm for diecjcsatisfiability w.r.t. FOLPSs, inspired
by tableaux-based methods from DLs. We show that this dhguoris terminating, sound, complete,
and runs irR-NEXPTIME. The algorithm is non-trivial from two perspectives: bdtle minimal model
semantics of OASP, compared to the model semantics of Dlvegkhas the open domain assumption,
compared to the closed domain assumption of ASP [8], posafgpehallenges.

e We show in Section 5 that FOLPs are expressive enough to aientiie DLSHOQ with fKBs an
alternative characterization for hybrid representatiod énonmonotonic) reasoning of knowledge,
that supports a tight integration of ontologies and rules.
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2 Preliminaries

We recall the open answer set semantics from [C&)nstantss, b, ¢, . . ., variablesz, y, . . ., termss, t, . . .,
andatomsp(ty, ..., t,) are defined as usual. We further allow &xuality atoms = ¢. A literal is an atom
L or a negated atomot L. An inequality literal not (s = t) will often be denoted withs # t. An atom
(literal) that is not an equality atom (inequality litera)ll be called aregular atom (literal) For a setx of
literals or (possibly negated) predicates, = {l | | € «, an atom or a predicajeanda™ = {l | not | €
a, 1 an atom or a predicaje For example{a, not b,c # d}" = {a} and{a, not b,c # d}~ = {b,c = d}.
For a setX of atoms,not X = {not [ |l € X}. For a set of (possibly negated) predicatesve will often
write a(z) for {a(x) | a € a} anda(x,y) for {a(z,y) | a € a}.

A programis a countable set of rules «— (3, wherea is a finite set of regular literals and is a
finite set of literals. The set is the head of the rule and represents a disjunction, whilds called
the body and represents a conjunction. df = (), the rule is called aonstraint Free rulesare rules

q(t1,...,ty) Vot q(ty,...,t,) < for termsty, ..., t,; they enable a choice for the inclusion of atoms.
We call a predicate freein a program if there is a free rulgz1, ..., x,) V not q(z1,...,x,) < in the
program, wherery, ..., z, are variables. Atoms, literals, rules, and programs thahatocontain vari-

ables argground For a rule or a progranX, let cts(X) be the constants iX, vars(X) its variables, and
preds(X) its predicates withupreds (X)) the unary andpreds(X) the binary predicates. AniverselU for
a programP is a non-empty countable superset of the constani ints(P) C U. We call P the ground
program obtained fron® by substituting every variable iR by every possible element . Let Bp (Lp)
be the set of regular atoms (literals) that can be formed &aground progran®.

An interpretation/ of a groundP is any subset oBp. We write I |= p(ty,...,t,) if p(t1,...,tn) € 1
and! = not p(ty,...,t,) if I = p(t1,...,t,). Furthermore, for ground termsandt we write/ = s =t
if s=tandl = nots=torl |=s #tif s#t. Forasetofground literal&, I = X if I |= [ for every
[ € X. Aground ruler : a «— g is satisfiedw.r.t. I, denoted! = r, if I = [ for somel € « whenever
I = 3. A ground constraint— /3 is satisfied w.r.t.J if I [~ 5. For a ground progran® without not, an
interpretation/ of P is amodelof P if I satisfies every rule i?; it is ananswer seof P if it is a subset
minimal model of P. For ground program$ containingnot, the GL-reduct[8] w.r.t. I is defined asP’,
whereP! containsat « g+ fora « 3in P, I |= not 3~, andI = o~. I is ananswer sebf a groundP
if Iis an answer set aP’.

In the following, a program is assumed to be a finite set ofstuiefinite programs only appear as
byproducts of grounding a finite program with an infinite wse. Anopen interpretatiorof a programpP
is a pair(U, M) whereU is a universe fol? and M is an interpretation of;;. An open answer seif P is
an open interpretatiofi/, M) of P with M an answer set aPy;. An n-ary predicate in P is satisfiableif
there is an open answer géf, M) of P and a(x1,...,xz,) € U™ such thap(z1,...,x,) € M.

We introduce some notations for trees which extend thos83h [Let - be a concatenation operator
between different symbols such as constants or natural exemBtree 7" with root ¢ (also denoted &),
wherec is a specially designated constant, has as nodes sequdrihbeS@mec - s, wheres is a (possibly
empty) sequence of positive integers formed with the helthefconcatenation operator; for- d € T,

d € N*1, we must have that € T. For example a tree with roetand 2 successors will be denoted as
{c,c-1,c-2} or{c,cl,c2}.

For a noder € T, we call succr(z) = {z-n € T | n € N*}, successorsf z. As the successorship
relation is captured in the codification of the nodes, a tsdiégdrally the set of its nodes. Tlaity of a tree
is the maximum amount of successors any node has in the thees€fAr = {(z,y) | x,y € T, 3In € N*:

IN* is the set of positive integers
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y = x-n} denotes the set of arcs of a trfBeWe define a partial ordet, on a tre€l’ such that foe, y € T,

x <p yiff zis a prefix ofy. As usual,x <7 yif x <p y andy £r x. A branchIB in atreeT is a
prefix-closed subset ¢f such thatvx #y € IB : |x| # |y|. A path fromz toy in T, wherez <p y
denoted withpathr(z,y), is a subset of” which contains all nodes which are at the same time greater or
equal tox in T" and lesser or equal tpin T according to the partial order relation. A branBhn a treeT,

is a maximal path (there is no path’lp which strictly contains it) which contains the raotWe denote the
subtreeof T atx by T'[z], i.e., T[z] = {y € T | z <7 y}.

A labeled treds a pair(T,t) whereT is a tree and : T — X is a labeling function; sometimes we will
identify the tree(T’,¢) with ¢. For a labeled tree: T — X, the subtree of atz € T ist[z] : T[z] — X
such that[z](y) = t(y) fory € T[x].

A forestF is a set of tree§T. | ¢ € C'}, whereC'is a set of distinguished constants. The set of nodes
N of a forestF' and the set of arcd p of F' are defined as followsNg = UpepT andAp = UrcpAr.

For a noder € F, we denote withsuccp(x) = sucer(z) for x € T, the set of successors ofin F'. Also,
as for trees, we define a partial order relationship on the nodes of a foregt wherex <p yiff z <r y
for some tredl" in F'.

Alabeled foresyf is a tuple(F, f) whereF'is aforestand : Ny — X is a labeling function; sometimes
we will identify the forest(F, f) with f. A labeled fores{F, f), with F' = {7, | ¢ € C'}, induces a set of
labeled tree§(7,,t.) | ¢ € C}, wheret. : T, — ¥ andt.(z) = f(zx), for anyz € T.. Figure 1 depicts a
labeled forest which contains two labeled tregandt, (their roots are: andb respectively).

[ afz} /b{z}\
al{y} b1{z} 02{z} b3{z}
all{x} al2{z} b21{z}

Figure 1: A Simple Labeled Forest

An extended foresEF is a tuple(F, ES) whereF = {1, | ¢ € C} is a forest andES is a binary
relation which contains tuples of the forfe, y) wherez € Ny andy € C, i.e., ES relates nodes of the
forest with roots of trees in the forestS extends the successorship relationiccgr(z) = {y | y €
succp(x) or (x,y) € ES}.

Figure 2 depicts an extended forest.

The presence afS gives rise to so-called extended tree€ifi, where such a tree (actually, a particular
type of graph) is one df. € F, extended with the arc§x,d) | (x,d) € ES,x € T} and with the nodes
{d | (z,d) € ES,x € T}. The extension of. in EF is denoted withl’*¥. For example, the extension
of T, in EF from Figure 2 contains the extra af¢12, b) and the extension df, in EF' contains the extra
arcs(b,a) and (b2,a). An extended subtree aF”F with root = is denoted with?##[z]: it is defined
(as a graph) as the extension®fz| with the arcs{(y,c) | (v,c) € ES,y € T[z|} and with the nodes
{c| (y,c) € ES,y € T[z]}. Finally, by Ngr = Nr we denote the set of nodes of an extended faof#st
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EF: 4 b
al ConfEy 2 B3
all al2 b21

Figure 2: An extended forest

and byAgr = Ap U ES the set of arcs obF'.

A labeled extended forest is a tup|€F', ef) where EF is an extended forest angf : Npp — X is
a labeling function; sometimes we will identify the extedderest(EF', ef ) with ef. A labeled extended
forest can be seen as a set of labeled extended trees, wheteled extended tree is a tuglg® , <),
whereT* is an extended tree antl : 7% — ¥ is a labeling function defined such thét (z) = ef (z),
for z € T¢. For a labeled extended tre€ : 7% — ¥, the subtree of atz € Tist[z] : T [z] — &
such that® [z](y) =t (y) fory € T [z].

Figure 3 depicts an extended labeled forest (a labeledoredsithe extended forest from Figure 2).

i | / Z}\
al{y} e 02fa} b3{a)
al1{z) a12{2} b21{2}

Figure 3: A labeled extended forest

We introduce the operation of replacing in a labeled extdrideest ef an extended subtreg/ 2]
with another extended subtre€ [y], where bothz andy are from N, and denote this operation with
replaces(x,y). Figure 4 describes the result of applying the replace ¢iperan the extended forest from
Figure 2 with two different sets of operators. In the first&;ag [b2] is replaced withtd [a1], while in the
second casé [a1] is replaced witht& [a12]. Note that the names of nodes of the subtree which is replaced
are not changed with the names of the nodes from the replacibgee, but new names are generated for
the new nodes in concordance with the naming scheme for ruddleat tree. Also, observe how in the first
replacement one of the 'extra’ arcs @f (b2, a), is dropped (it was part of the replaced extended subtree)
and a new ’'extra’ arc is introduced22, b), which mirrors the ar¢a12, b) from the replacing extending
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subtree. Similarly, in the second transformationl 2, b) is dropped andal, b) is introduced.

replaceqs (b2, al) : a{z} o biz}
al{y} I O TE
al1{z) a12{} b21{x} b22{2}
replace.s(al, al2) : a{i} | T » b{z}
| I
al{z} bi{z}  b2{z}  b3{a}

b21{z}
Figure 4: Two applications of the replace operatotefn

Finally, a directed grapli- is defined as usually by its sets of nodésand arcsA. We introduce two
graph-related notationgiathsa denotes the set of paths @ where each path is a tuple of nodes frdm
pathsg = {(z1,...,2n) | ((xs,zi+1) € A)i1<icn}, andconnected denotes the set of pairs of connected
nodes fromV: connectedg = {(x,y) | 3Pt = (x1,...,2y,) € pathsg : v1 = A xy = y}.

3 Forest Logic Programs

Forest Logic Programs (FoLPsyere introduced in [14] as a syntactical fragment of OASR.F=oare

a generalization of Conceptual Logic Programs [13] whiah lagic programs with tree-shaped rules for
which satisfiability checking under the open answer set sinwis decidable. FoLPs impose the same
structure for rules as CoLPs, but also allow for constants.

Definition 3.1 A forest logic program (FOLPis a program with only unary and binary predicates, and such
that a rule is either &ee rule

a(s) V not a(s) < orf(s,t)V not f(s,t) — 1)
wheres andt are terms such that ifandt are both variables, they are differ%nnunary rule

r:a(s) < B(8), (Ym (8 tm), Om(tm)) 1 <m<ks ¥ 2)
“Arule f(X, X) V not f(X, X) « is not allowed.
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wheres andt,,, 1 < m < k, are terms (again, if both andt,, are variables, they are different; similarly
for t; andt;), where

1o CUscizjartts # ti} and{#} Nyy = 0for1 <m <k,
2. Vt; € vars(r) 1 v~ # 0, i.e., for variableg; there is a positive atom that connestandt;,

or abinary rule
f(s,t) — B(s), (s, 1), 0(t) 3)
with {#} N~y = 0 andy™ # Qif ¢ is a variable £ andt are different if both are variables), orcanstraint
— a(s) or « f(s,1) (@)
wheres andt are different if both are variables).
The constraints can be left out of the fragment without lggRrpressivity. Indeed, a constrairt body
can be replaced by a rule of the fortoanstr(z) <« not constr(zx), body, for a new predicateonstr. As

their name suggests FoLPs have finest model propertyevery open answer set can be written as a set of
trees.

Definition 3.2 Let P be a program. A predicate € upreds(P) is forest satisfiablev.r.t. P if there is an
open answer s€U, M) of P and there is an extended fordst' = ({T.} U{T, | a € cts(P)}, ES), where
¢ is a constant, possibly one of the constants appearii} jmnd a labeling functiod : {7.} U {T, | a €
cts(P)} U Agp — 2P74(P) such that

e U= Ngp,and
e p€L(e),

z-ie€T,T € EF,i> 0, iff there is somef(z,z-i) € M,z € T, and

fory e T, T € EF, q € upreds(P), f € bpreds(P), we have that

- q(y) € M iff g € L(y), and
— fly,u) e Miff (u=y-iVuéects(P))AfeL(y,u).

We call such gU, M) aforest modebnd a programP has theforest model propertyf the following
property holds:

If p € upreds(P) is satisfiable w.r.tP thenp is forest satisfiable w.r.t°.
Proposition 3.3 FoLPs have the forest model property [15].

In [7], we introduced the class of simple Conceptual LogiogPams. It is easy to see that every simple
CoLP is an FoLP. As satisfiability checking w.r.t. simple Ceptual Logic Programs BXPTIME-hard, the
following property follows:

Proposition 3.4 Satisfiability checking w.r.t. FOLPs BxPTIME-hard.

3Note that in this cas&. € {T. | a € cts(P)}. Thus, the extended forest contains for every constant faartree which has
as root that specific constant and possibly, but not nedbssar extra tree with unidentified root node.
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4 An Algorithm for Forest Logic Programs

In this section, we define a sound, complete, and terminatiggrithm for satisfiability checking w.r.t.
FoLPs. In [15] it has been shown that several restrictiorsobfPs which have the finite model property are
decidable, but there was no result so far regarding the wharenent. Thus, the algorithm described in this
section also establishes a decidability result for FoLPs.

For every non-free predicateand a FOLPP, let P, be the rules of? that haveg as a head predicate.
For a predicate, +p denoted or not p, whereby multiple occurrences & in the same context will refer
to the same symbol (eitheror not p). The negation oftp (in a given context) isrp, that is,Fp = not p
if +p =pandFp = pif +p = not p.

The basic data structure for our algorithm isanpletion structure

Definition 4.1 A completion structure for a FOLPP is a tuple(EF, G, cT, ST, bl) where EF = (F, ES)

is an extended forest which together with the labeling flmstcT andsT and with the sebl of blocking

pairs is used to represent/construct a tentative foresema#l = (V, A) is a directed graph with vertices

V C Bpy,, and arcsd € Bp,, . x Bpy, whichis used to keep track of dependencies between elements
of the constructed model (the atom dependency grapf\gf,): V represents the tentative model, while
Ngr represents the tentative universe. Below the signaturéhenible for each labeling function is given:

e The contentfunction cT : Ngp U App — 2Preds(P)Unot (preds(P)) maps g node of the extended
forest to a set of (possibly negated) unary predicates amar@of the extended forest to a set of
(possibly negated) binary predicates such thetr) € upreds(P) U not(upreds(P)) if € Ngr,
andct(x) € bpreds(P) U not(bpreds(P)) if x € Agr. Every presence of a non-negated predicate
symbolp in the content of some node/atcof EF indicates thap(z) is part of the tentative model
represented by .

e Thestatusfunctionst : {(x,q) | ¢ € ¢T(x),x € Ngr U Agr} U{(x,q) | not ¢ € c1(z),x €
Agp} U {(z,not ¢q,7) | not ¢ € cr(z),x € Ngp,r € P,} — {exp, unexp} attaches to every
(possibly negated) predicate which appears in the confenhode/arce of EF' a status value which
indicates whether the predicate has already been expandedtinode/edge. As it will be indicated
later, the completion structure is evolved such that thegree of any (possibly negated) predicate
symbol in the content of some node/arc is justified, so it ieBsary to keep track which predicate
symbols have already been justified in every node/at€fof As negative unary predicates have to be
justified by showing that no rule which defines them can beiaggind this will be done in potentially
more than one step, the function takes as an argument alé® farsuch negated predicate symbols.

The last component of a completion structuilejs a set of pairs of elements froMzz, which contains
the so-called blocking pairs of the completion structuriee Presence of a pair of nodes y) in bl indicates
that the predicate symbols presentan(y) can be justified in a similar way as the predicate symbols in
CcT(x).

An initial completion structurefor checking satisfiability of a unary predicapew.r.t. a FOLPP is a
completion structuré EF', G, T, ST, bl) with EF = (F,ES), F = {T.} U{T, | a € cts(P)}, where
e is a constant, possibly ints(P), andT, = {z}, for everyx € cts(P) U {e}, ES = 0, G = (V, A),

V ={p(e)}, A= 0, cr(e) = {p}, sT(e,p) = unexp, andbl = .

In the definition above the forest is initialized with the eésingle-node trees having as root a constant
appearing inP and possibly a new single-node tree with an anonymous rdt rdot of the anonymous tree,
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in case this exists, should containthe predicate which one tries to prove that it is satisfialleéherwise
the root of one of the other trees should contair(s is initialized to the graph with a single vertexe).
There are no blocking pairs in the initial completion stuuet

In the following, we will show how to expand an initial compten structure to prove the satisfiability of
a unary predicate w.r.t. a FOLPP, how to determine when no more expansion is needed (e.g.nlithe
case oblocking, and under what circumstanceslashoccurs. In particularexpansion rulesvill evolve a
completion structure, starting with a guess for an init@hpletion structure for checking satisfiability of
w.r.t. P, to a complete clash-free structure that corresponds tote fepresentation of an open answer set
in casep is satisfiable w.r.t.P. Applicability rulesstate the necessary conditions such that these expansion
rules can be applied.

4.1 Expansion Rules

The expansion rules will need to update the completion streovhenever in the process of justifying a
literal / in the current model, a new literalp(z) has to be considered (either as being part of the model, in
case the literal is an atom, or as not being part of the madehse the literal is a negated atom). This means
that+p has to be inserted in the contentzoin case it is not already there and marked as unexpanded, and
in casetp(z) is an atom, it has to be ensured that it is a nod€ iand if is also an atom, a new arc from

[ to £p(z) should be created to capture the dependencies betweendredaments of the model. More
formally:

o if £p ¢ C1(2), thencr(z) = cT(2) U {£p} andsT(z,£p) = unezp in casetp = porp €
bpreds(P) andsT(z, +p,r) = unexp, for allr € P, in casetp = not p andp € upreds(P),

o if p=pand+Lp(z) ¢ V,thenV =V U {£p(2)},
o if | € Bp,,  and+p=p, thend =AU {(l,£p(2))}.

As a shorthand, we denote this sequence of operatiomgdase (I, +p, z); more generalypdate(l, 3, z)
for a set of (possibly negated) predicateglenotes’ + a € (3, update(l, +a, z).

In the following, for a completion structuré’F', G, cT, ST, bl), letx € Ngr and(z,y) € Agp be the
node, respectively arc, under consideration.
4.1.1 (i) Expand unary positive.

For a unary positive predicate (non-frgef cT(z) such thast(x, p) = unezp,

¢ nondeterministically choose a rute= P, of the form (2) such that (the term in the head of the rule)
unifies withz. The rule will be used to motivate the presence(af) in the tentative open answer set.

e for the 3 in the body ofr, update (p(z), 5, x),
e pick up (or define when needek)successors fat, (v, )1<m<k, such that:

— foreveryl <i,j < ksuchthat; #t; € ¥: y; # yj;
— foreveryl < m < k:

* Ym € succgp(x), OF



INFSYS RR 184-08-14. 9

x Yy, iS defined as a new successorzoin the treeT,, wherex € T.: y,, = x - n, where
neN"st.z-n¢ succgr(z), andT, = T, U {ym,}, or

x Yy, IS defined as a new successorwoin EF' in the form of a constanty,, = a, where
a is a constant fronets(P) s.t. a ¢ succpr(x). In this case also adk,a) to ES:
ES = ES U (z,a).

e for every successay,, of x, 1 < m < k: update(p(x), Ym, (x, ym)) andupdate(p(x), dm, Ym)-

e setsT(x,p) = exp.

4.1.2 (ii) Expand unary negative.

In general, justifying a negative unary literabt p € c¢T(x) (or in other words, the absence jgfr) in the
constructed model) implies that the body of every ground wihich defineg(x) has to be refuted. The
body of such a ground rule can be either:

e locally refuted (a literal from3(x) has to be refuted which amounts to the fact that a cettaire
does not appear iat(x))

e depending on the particular grounding of the rule, it hasstodbuted in one of the outgoing arcsxf
or in some successor af In other words a certaif- f € §,, should not appear ioT(x,y;), where
y; IS a successor of or atq € ~,, should not appear iaT(y;), where agairy; is a successor af.

e refuted by the fact that there is no valid assignment of sssms ofx in the completion to succes-
sors ofs in the rule which fulfill the inequalities in the rule, due to msufficient number of such
successors.

Formally, for a unary negative predicate (non-fre@} p € cr(x) and a ruler € P, of the form @)
such thate unifies withs (s is the term from the head of the rule) andx, not p,r) = unexp do one of the
following:

e choose atq € 3, andupdate(not p(x), Fq, z). Also setst(z, not p,r) = exp, or

o if
— for all p € upreds(P), p € cT(z) or not p € ¢t(z), and
— forallp € cT(x), sST(p, z) = exp
then for ally;,,...,y;, suchthat(l < i; < n)i<j<k, Wheresuccgr(xz) = {y1,...y,}: if for all

1 <j,l <k, tj#t €=y # vy, then do one of the following:

— for somem, 1 < m < k, pick up a binary (possibly negated) predicate symbglfrom ¢,,, and
update(not p(x), Ff, (x,yi,,)), O

— for somem, 1 < m < k, pick up a unary negated predicate symhok ¢ from ~,, and
update(TLOt p(x)a q, yim)'

Setst(z, not p,r) = exp.
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One can see that once the body of a ground unary rule derigeddrunary rule € P,, which is grounded
such thats, the term in the head, is substituted withthe current node (whenever possible), is locally
refuted, the bodies of all similar groundings (similar ie gense that is substituted with) of this rule are
locally refuted, too. This is not the case for the other twiatagion cases. All possible groundings have to
be considered and this is not possible until all the suceessar are known. The local refutation case is
captured in the first part of the rule, while the other two sasee captured in the second part of the rule.
Note that a condition for the second part of the rule to beiegbple is that all positive predicates in the
content of the current node have been expanded and therepisssility for a new positive predicate to
be inserted ircT(z). If this condition is met, an iteration over all possible gndings of ruler is triggered.
For every possible grounding it is first checked whether tiegjuality constraints are not violated, and if
this is not the case, one of the resulting literals from the-local part of the rule-s ord-s) is refuted.

4.1.3 (iii) Choose a unary predicate.

If for all a € cT(x), sST(2,a) = exp orais free, and for al(x, y) € Agr, and for all£f € cT(x,y) (both
positive and negative predicates)((x,y), +f) = exp or f is free, and there is@ € upreds(P) such that
p ¢ ct(xz) andnot p ¢ cT(zx), then addp to cT(z) with sT(z,p) = unexp or addnot p to cT(x) with
ST(x, not p,r) = unexp, for every ruler € P,.

This rule says that in case there is a neder which all the positive predicate symbols in its contemd a
all the predicate symbols in the contents of its outgoing are free or have already been expanded and there
are still unary predicate symbols which do not appear in timtent of the current node, one has to pick such
a unary predicate symbgpland to inject eithep or not p in cT(z). This is needed for consistency reasons: it
is not enough to find a justification for the predicate we wargrove that is satisfiable, but one has to show
also that this justification makes part from an actual mogeich is done by actually constructing such a
model. We do not impose that all negative predicate symhel®@panded as that would constrain all the
ensuing literals to be locally refuted (the second parttieréxpand unary negative rule has as precondition
the fact that all predicate symbols appear in the conterfi@ttrrent node - see above).

4.1.4 (iv) Expand binary positive.

For a binary positive predicate symbol (non-freeh cT(x,y) such thast((z,y),p) = unexp nondeter-
ministically choose arule € P, of the form (3) such that unifies withs andy unifies witht (s andt are the
terms from the head of the rule) to motivateFor 3, v, andé corresponding te do: update(p(z,y), 5, x),

update(p(z,y),7, (x,y)), andupdate(p(z,y), 6,y). Finally, setsT((z,y),p) = ewp.

4.1.5 (v) Expand binary negative.

For a binary negative predicate symbol (non-freej p in c¢T(x,y) such thast((z,y), not p) = unexp,
and for every rule- ¢ P, of the form (3) such that unifies withs andy unifies witht (s andt are the terms
from the head of the rule) do one of the following:

e nondeterministically choose-g from 3 andupdate(not p(x,y), Fq,x), or
e nondeterministically choose-af from v andupdate(not p(z,y), Ff, (z,y)), or

e nondeterministically choose-ag from 6 andupdate(not p(z,v), Fq,v)).
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Finally, setst((x,y), not p) = exp. Note that a binary rule is always local in the sense that arbiliteral
+f(z,y) can always be justified using a component freny, and/or(z, y).

4.1.6 (vi) Choose a binary predicate.

There is anc € Ngp for which none ofa € ct(x) can be expanded with rules (i-i), and for &, y) €
Agr none of£f € cr(x,y) can be expanded with rules (iv-v), and there is an(atg/) € Agr and a
p € bpreds(P) such that ¢ cT(x,y) A not p ¢ cT(z,y). Then, addp to cT(x,y) with sT((x,y),p) =
unexp or addnot p to cT(z,y) with sT((z,y), not p) = unezp.

4.2 Applicability Rules

A second set of rules is not updating the completion strectunder consideration, but restricts the use of
the expansion rules. We refer to these rules as so-callditalpifity rules.

4.2.1 (vii) Saturation

We call a noder € Ngp saturatedif

e for all p € upreds(P) we havep € cT(x) or not p € cT(z) and none oftqg € cT(x) can be
expanded according to the rules (i-iii) ,

e forall (z,y) € Aper, T € EF andp € bpreds(()P), p € ¢T(z,y) of not p € ¢T(z,y) and none of
+f € cr(z,y) can be expanded according to the rules (iv-vi).

We impose that no expansions can be performed on a nodeNigimwhich does not belong tets(()P)
until its predecessors are saturated (we exclude congtatit®y can have more then one predecessor in the
completion, including themselves).

4.2.2 (viii) Blocking

A nodex € Ngr is blockedif there is an ancestay of z in F', y <p z,y & cts(P), s.t. cr(x) C cT(y)
and the sepathsc(y,z) = {(p.q) | (p(y),q(x)) € connecteds} is empty. We cally, z) ablocking pair
and updateél: bl = bl U {(y,z)}. No expansions can be performed on a blocked node. Intlyitif¢here

is an ancestoy of  which is not a constant, whose content includes the confentand there are no paths
in G from a positive literap(y) to another positive literaj(x) one could reuse the justification fgrwhen
dealing withz.

4.2.3 (ix) Redundancy

A nodex € Ngr is redundantif it is saturated, it is not blocked, and there @&r@ncestors ofr in F,
(yi)1<i<k, Wherek = 27(20" — 1) + 2, andp = |upreds(P)|, such thatT(z) = cT(y;). In other words, a
node is redundant if there are otlienodes on the same branch with the current node which all laaveat
equal to the content of the current node. The presence ofumdedt node stops the expansion process.
In the completeness proof we show that any forest model ofL&#HFdwhich satisfiep can be reduced to
another forest model which satisfipand has at most + 1 nodes with equal content on any branch of a
tree from the forest model, and furthermore ket 1)st node, in case it exists, is blocked. One can thus
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search for forest models only of the latter type. This rulpleixs that result: we discard models which are
not in this shrunk search space.

4.3 Termination, Soundness, and Completion

We call a completion structuentradictory if for somex € Ngr anda € upreds(P), {a, not a} C cT(x)

or for some(z,y) € Agp and f € bpreds(P), {f,not f} C c1(x,y). A complete completion structure
for a FOLP P and ap € upreds(P), is a completion structure that results from applying thpassion
rules to the initial completion structure fprand P, taking into account the applicability rules, such that no
expansion rules can be further applied. Furthermore, a lenpompletion structur€'S = (EF, G, CT,

ST, bl) is clash-freeif:

e (1) CS is not contradictory
e (2) EF does not contain redundant nodes
e (2) GG does not contain positive cycles.

We show that an initial completion structure for a unary pratdp and a FOLPP can always be ex-
panded to a complete completion structuegrfinatior), that, if p is satisfiable w.r.tP, there is a clash-free
complete completion structurequndnegs and, finally, that, if there is a clash-free complete caatiph
structurep is satisfiable w.r.tP (completeneds

Proposition 4.2 (termination) Let P be a FOLP and € upreds(P). Then, one can construct a finite com-
plete completion structure by a finite number of applicationthe expansion rules to the initial completion
structure forp w.r.t. P, taking into account the applicability rules.

Proof Sketch. Assume one cannot construct a complete completion steudiyira finite number of
applications of the expansion rules, taking into accouatapplicability rules. Clearly, if one has a finite
completion structure that is not complete, a finite applicabf expansion rules would complete it unless
successors are introduced. However, one cannot introdéioéely many successors: every infinite path in
the extended forest will eventually contdin+ 1| saturated nodes with equal content, wheiis as in the
redundancy rule, and thus either a blocked or a redundamt, mddch is not further expanded. Furthermore,
the arity of the trees in the completion structure is boundhgynumber of predicates it and the degrees
of the rules. O

Proposition 4.3 (soundness) et P be a FOLP andy € upreds(P). If there exists a complete clash-free
completion structure fop w.r.t. P, thenp is satisfiable w.r.t.P.

Proof. From a clash-free complete completion structure, we witistuct an open interpretation, and
show that this interpretation is an open answer se? dhat satisfiew. Let (EF, G, cT, sT, bl) be such
a clash-free complete completion structure wWitl" = (F, ES) the extended forest ar@ = (V, A) the
corresponding dependency graph.

1. Construction of open interpretation

We construct a new grapfi.,; = (Veut, Aest) by extendingG in the following way: first, we set
Verr = V andA.,; = A, and then for every paitr, y) € bl do the following:
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e (@) for everyp such thap(x) € V, addp(y) t0 Vegt: Verr = Veur U {p(y)};

e (b) for everyf andz such thatf(z, z) € V, addf(y, z) t0 Veyi: Vewr = Verr U{f(y,2)};

e (c) for everyp, g such that(p(z),q(z)) € Acyt, add (p(y),q(y)) 10 Aegrl Aet = Aegt U
{(p(y),a(y)};

e (d) for everyp, g, z such thatp(z), q(2)) € Aext, andz # z add(p(y), q(z)) t0 Aegr: Aext =
Aeazt U {(p(y)7 Q(Z))}'

e (e) for everyp, f, z such that(p(), f(z,2)) € A, add (p(y), f(y.2)) 10 Aurt® Azt =
Aezt U {(p(y)v f(yv Z))}’

o (f) for every f, g, z such that(f(z,z2),q(z)) € Acw, add(f(y,2),q(y)) 10 Aegr? Aewr =
Aeazt U {(f(yv 2)7 Q(y))}'

e (g) for every f, g, = such that(f(z,2),q(2)) € Acar, add (f(y,2),q(2)) 10 Acar’ Acxt =
Aezt U {(f(yv z))Q(Z))};

e (h) for everyf, g, z such that f(x, 2), g(z, 2)) € Aext, @dA(f(y,2),9(y,2)) 10 Aeps: : Ayt =
Aeazt U {(f(yv Z)?Q(yv Z))}'

Basically, we replicate the content of the blocking nodehasdontent of the blocked node, and also
all the connections from/within the blocking node as cotines from/within the blocked node (or,
in other words, the content of the blocked node is identig#i Whe content of the blocking node and
it is justified in a similar way).

Define the open interpretatid@/, M) then ag Ngp, Veyt), 1.€., the universe is the set of nodes in the
extended forest, and the interpretation corresponds todtes inV.,;.

2. M is a model ofP}Y'. All free rules are trivially satisfied.

Take a ground unary rule? : a(z) < 1 (z), (v} (@, ym), 0, (ym)) 1<m<k (the rule was grounded
using individuals fromU) originating fromr : a(s) «— B(s), (Ym (S, tm), Om(tm)) 1<m<k, ¥, With
B (z) € M,foralll < m < ki v (z,ym) € M andéd,,” (y,) € M, and for allt; # t; €
vty # yj. AssumeM = B () U Ur<par Ym (2 ¥m) U Ur<pek 0m (ym) (together with the
assumptions about the negative part of the rule, this arsdattl = 5(x) U U, <,y <f, Ym (2, ym) U
Ui<m<i Om(ym) U ) anda(z) ¢ M (the rule is not satisfied).

Depending orx there are two cases:

e Assumer is not a blocked node. Thewt a € cT(x), z is saturated, and no expansion rules can
be further applied taot a. This means that for every ground rule derived from a rude P, for
which s (the term in the head) unifies withand grounded in such a way thatvas substituted
with z, theexpand unary negativeile has been applied. Such a rule-is The application of
theexpand unary negativelle tonot a € cT(z) andr’ leads to one of the following situations:

— thereis a unary predicate symhey € 3, such thatrq € ct(z) (the result oupdate(not a(z), Fq, x)),
or in other wordsgFq(z) € M. This contradicts with\/ = ((x).

— there are two successorsxfy; andy; such thaty; = y; andt; # ¢; € 1. This contradicts
the assumption that for a] # t; € ¥ y; # y;.

— for somem 1 < m < k, there is a binary/unary predicate symbof € ~,,/+q € 0.,
such thatrf € cT(z,ym)/Fq € CT(ym) (the result ofupdate(not a(x), Ff, (x,ym))
| update(not a(z),Fq,ym)), Or in other wordsFf(x,y,) € MIFq(ym) € M. This
contradicts withV |= vy, (2, Yy )IM = 0y (Yim)-
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e In casexr is a blocked node, by replacingwith y in 7/, wherey is the corresponding block-
ing node, one obtains a ground rute which again should not be satisfied because due to
the construction of\/, M [ B(z) U Uj<ne<p Y@, Ym) U U< Om(ym) U 3 implies

M = B(y) UUr<me<k Y7 (¥ Ym) U Ui <iar Om(ym) U anda(z) ¢ M impliesa(y) ¢ M.
Thus, this case is reduced to the case above.

In all cases we get a contradiction, so the original assumgtiat the rule”’ is not satisfied by\/
was false. Thus, every unary rule is satisfied\lby

The proof for the satisfiability of binary rules is similar.

. M is a minimal model OP{}/[. Before proceeding with the actual proof we introduce atimisand

a lemma which will prove useful in the following. LétF" be the directed grapiVzr, A') which
has as nodes all the nodes frdii’ and as arcs all the arcs &fF' plus some ’extra’ arcs which point
from blocked nodes to successors of corresponding bloakinigs to reflect on the changes made to
construct an actual model from a completion structute= AprU{(y,2) | Iz s. t.(z,y) € blAz €
succgp(z)}. Figure?? gives an example of constructing the gragh’ from an extended forestF

by addition of extra arcs{z, y) is a blocking pairz1, . .., z,, andb are the successors of so extra
arcs fromy to each of these successors are added (the dotted arrowshgiine successors ofthe
one which is on the same path wighs singled out and denoted with(this will be relevant later).

Figure 5: ConstructindZF : (z,y) is a blocking pair

Lemma 4.4 Let Pt be a path from a literalL, to a literal Ly in G/G ey If Ly = p(z) for some
p € upreds(P) and Ly = ¢(y) for someq € upreds(P) (¢ is not necessarily different from) or
Ly = g(y,z) for someg € bpreds(P) andx # y then there is a path from to y in EF/EF':
(r1 = z,29,...,2, = y); furthermore, for everyi < ¢ < n there is a unary literal; in Pt with
argumentz; and there is a path frony to ;11 in G/G ., for everyl < i < n.

Proof.
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LetS = (x1 = z,x9,...,2,) be a tuple of nodes frorEF/EF' constructed in the following way:
for every unary literal in Pt addarg(l) to the tuple if it is not already there (we assume that the
elements ofPt are considered in order of their apparition/t in the process of this construction).
We will show that$'is a path inEF/EF' and further more that,, = y.

For every two consecutive elements of the tupleandx; 1, with 1 < i < n, there must be two
unary literals!’ and{” in Pt, with argumentsz; andz;,, respectively, such that there is no other
unary literall in the sub-path oft: (l', e ,l"). It is easy to see that such a sub-path has the form:
(r(x), fi(xi,xiv1)s - f(®i, 1), s(xi41)) (this is the only way to reach a unary literal from
another inG/G..; without passing through another unary literal), and thusz; ) € A/A’ for
everyl <i <n: (z1,...,z,)is apathinEF/EF

To see that:,, = y, consider the opposite:, # y. Then there must be a unary litetak r(z,,) in Pt
with argumentz,, such that there is no other unary literal in the sub-patRof(r(x,), ..., g(y, 2)).
This would imply that the sub-path has the forfx,,), fi(xn,t),. .., fm(zn, 1), 9(y, 2), wheret is
some successor of, in EF /EF": (x,,t) € A/A’. Butthere is no arc of the forify,, (z,, t), g(y, 2))
in A/A' with z,, # y, SO we obtain a contradiction.

That there is a path froh to [, 1 in G/G ., for everyl < i < n, wherel;-s are the unary literals
identified above witturg(l;) = z;, 1 < i < n, is obvious from the way was constructed.

O

Now we can proceed to the actual proof of statement. Assuere tha model’ C M of Q = P.
Then3l; € M : 1, ¢ M'. Take aruler; € Q of the forml; — ; with M | (;; note that such a
rule always exists by construction df and expansion rule (i) . B/’ = ;, thenM’ =1; (asM’is a
model), a contradiction. Thud/’ = 3, such thaBll, € 31 : ls ¢ M’. Continuing with the same line
of reasoning, one obtains an infinite sequefigels, ...} with (I; € M),<; and(l; ¢ M')1<;. M is
finite (the complete clash-free completion structure hankmnstructed in a finite number of steps,
and when constructing/(V,,:) we added only a finite number of atoms to the ones alreadyirgxis
in V), thus there must bé < 4,5, i # j, such that; = [;. We observe thatl;,l;+1)i<i € Eex

by construction off.,; and expansion rule (i), so our assumption leads to the existef a cycle in
Gext-

Claim 4.5 LetC = (Iy,ls,...,l, = [1) be a cycle inG.,;. If one of the following holds:

e (i) there is no unary literal i’ and for everyl; = fi(z;,v:), 1 <i < n, z; is not blocked

e (ii) there is at least one unary literal @ and for every unary literal i6: I;, j € {1,2,...,n},
its argumentirgs(l;) is not a blocked node i6’'S

thenC'is a cycle inG.

Proof. From the construction of7.,; one can see that any arc which is added-tes of the form
(p(x),1) or (f(z,y),1), wherep is some unary predicate; is some binary predicate, andis a
blocked node. ltis clear that when condition (i) or condit{@) holds there is no arc of the first form
in C. As concerns arcs of the latter type, it is again obvious tivate are no such arcs if condition
(i) is fulfilled. In case condition (ii) holds, assume thesean arc(f(x,y), 1) wherex is a blocking
node. We know that there must be at least one unary literalecycle. Let this be(z). In this case
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there is a path itz (and also inG.,;) from p(z) to f(x,y) andz is different fromx by virtue of (ii).
According to lemma 4.4 this path contains a unary literahwityument: (as any path irEF from z
to z containsz). However this contradicts with condition (ii) which saymt there is no such literal
inC. O

Claim 4.6 LetC = (Iy,ls,...,l, = 1) be a cycle inG.,;. If one of the following holds:

e (i) there is no unary literal i and for somé; = f;(z;,vy;), 1 <i < n, z; is blocked

e (ii) there is at least one unary literal @ and all unary literals have the same argumenthich
is a blocked node

thenG contains a cycleProof. We will treat the two cases separately:

(i) First, notice that in this case (when there is no unaerdit in the cycle)args(ly) = args(ly) =

. = args(l,) = (z,y) as there is no arc ial.,; from a binary literalf(z,y) to another binary
literal g(z,t), with z # z ory # t (by construction ofG.,;). So the cycle can be written as
¢ = (fl(x>y)7f2($7y)>"' 7fn(x>y) = fl(l’,y))’ Where(fi € bPTEdS(P))ISiSH- Let 2 be the
blocking node corresponding ta (z,x) € bl. As ((fi(x,y), fi+1(2,y)) € Aext)i<i<n, it follows

that ((fi(zvy)7fi+l(z7y)) € A)1§i<n’ SOC, = (fl(zvy)7f2(z7y)7"'>fn(z7y) = fl(z7y)) is a
cycle inG.

(i) Let p1(y), p2(v), ..., pn(y) be the unary literals i’ with y being a blocked node. W.l.o.g. we
considerp,, = p1. Then the cycle can be written &S:= (p1(vy), f11(y,21),- -, fim, (¥, 21), p2(v),

fa1(y,22), - foma (45 22))s - pa(y) = p1(y) where(fi; € bpreds(P))1<i<n1<j<mis ((y;2i) €
A)i<i<n (as the only binary literals reachable froity) are of the formf (y, z), where(y, z) € A).

Similar with the previous case one can show tHat= (p; (), f11(x, z1), . .. s fimy (x, 21), p2(x), fa1(z, 22),
ooy foms (2, 22)), ... pn(z) = p1(z), wherex is the corresponding blocking node far (z,y) € bl

is a cycle inG. O
Claim4.7 LetC = (ly,ly,...,1l, = 1) be a cycle inG.,;. If there are at least two unary literals

in C' with different arguments and at least one unary literal ls|aargument a blocked nodethen
there is a path iz from a literall; to a literally, whereargs(l1) = =, args(l2) = y, andx is the
corresponding blocking node fgr (z,y) € bl.

Proof. Lett be the argument of a unary literal in the cycle different fronAs there is a path it
from somep(t) to somegy(y) and also viceversa from soméy) to somep(t) according to lemma 4.4
there must also be a pathEF' from ¢ to y and a path fromy to ¢. In other words there exists a cycle
in EF" which involves bothy and¢. Furthermore for every element of the cyclefi# , there is a
unary literal inC' which has this element as an argument. From them'ywas constructed (see also
Figure 5), one can see that any cycleﬂﬁ' which involves a blocked nodgwhich makes part from
a treeT in the corresponding simple forest contains the patfi inom = to y, wherez is the node
which is a successor af in T', and is on the same path inasx andy, « being the corresponding
blocking node fory: formally, (x,y) € bl, z € sucer(x), z € pathp(x,y). There are two kinds of
cycles inEF":
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e cycles which contairx, z, andy (these cycles will contain also elements from other treaa th
T): in this case there is a unary litefalwith argument: in C' and there is as well a unary literal
lo with argumenty in C' (from the condition of the claim) - so the claim is satisfied

e cycles which contair, andy, but do not contain: (actually, this is a unique such cycle which
has all elements fromathr(z,y)): in this case there are two unary litergsandis in C, with
argumentsy, andz respectively, such that there is no other unary literal @engath induced by
C'in G, from I3 to l3. In this case this path has the form(y), f1(y, 2), ..., fu(y, 2), q(2).
Due to the construction aF.,;, the existence of the path(vy), f1(y, 2), .-, fu(y,2),q(2)) in
G+ implies the existence of the path(z), fi(x,2),..., fu(z,2),q(2)) in G. At the same
time note that there is a path @ from ¢(z) to p(y). So, (p(x),q(z)) € connecteds and
(q(2),p(y)) € connectedg, thus(p(z), p(y)) € connected and the claim is satisfied.

O

One can see that the hypotheses of the three claims covarsaibfe types of cycle§' in G.,; and
that the consequences of having such a cycle are contraglictieach case with the fact that’'F',
G, cT, ST, bl) is a complete clash-free completion structure (in the césleedfirst two claims, one
obtains that there must be a cycleGh while the conclusion of the third claim contradicts witketh
blocking condition for a pair of blocking nodes fraif). Thus, there cannot be such a cy€lén G ..,
and M is minimal.

O

Proposition 4.8 (completeness) et P be a FOLP and € upreds(P). If p is satisfiable w.r.tP, then there
exists a clash-free complete completion structurepfarr.t. P.

Proof. If p is satisfiable w.r.t. P thenp is forest-satisfiable w.r.t.P (Proposition 3.3). We construct
a clash-free complete completion structure gaw.r.t. P, by guiding the nondeterministic application of
the expansion rules with the help of a forest modelFoivhich satisfiesp and by taking into account
the constraints imposed by the saturation, blocking, rddoay, and clash rules. The proof is inspired
by completeness proofs in Description Logics for tabledor,example in [20], but requires additional
mechanisms to eliminate redundant parts from Open Answisr Se

In order to proceed we need to introduce the notiometdixed completion structurevhich is a tuple
(EF, G, cT, sT, bl), whereEF is an extended forest, arfd, cT, st, bl represent the same kind of entities
as their homonym counterparts in the definition of a comgfesitructure. Arnnitial relaxed completion
structure for checking satisfiability of a unary predicatev.r.t. a FOLP P is defined similarly as an initial
completion structure for checking satisfiabilityyodv.r.t. P. Arelaxed completion structure is evolved using
the expansion rules (i)-(vi) and the applicability rules)¢viii). Note that theredundancyrule is left out.

A complete clash-free relaxed completion structure isaxesl completion structure evolved from an initial
relaxed completion structure fprand P, such that no expansion rules can be further applied, wkicloti
contradictory and for whicli does not contain positive cycles.

The first step of the proof consists in constructing a corepiésh-free relaxed completion structure
starting from a forest model of a FOLP which satisfieg. Note that in the general case, constructing a
complete clash-free relaxed completion structure miglat hen-terminating process (the termination for the
construction of complete clash-free completion strudw@s based on the application of the redundancy
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rule), but as we will see in the following, the process doemieate when a forest model is used as a
guidance.

So, let(U, M) be an open answer set of a FolEPwhich satisfiep which at the same time is a forest
model of P. Then there exists an extended forédt = ({T.} U {T, | a € cts(P)}, ES), wheree is
a constant, possibly one of the constants appearing, iand a labeling functior : {T.} U{T, | a €
cts(P)} U Agp — 2P74s(P) which fulfill the conditions from definition 3.2.

We define an initial relaxed completion structuté, = (EF’, G, cT, ST, bl) for p and P such that
EF' = (F',ES"), F' = {T!} U{T. | a € cts(P)}, wheree is the same: used to defineZF, and
T, = {x}, for everyx € cts(P) U {e}, andES’ =0, G = (V,A),V = {p(e)}, A = 0, andcT(e) = {p},
ST(e,p) = unexp, bl = (. We will evolve this completion structure using rules {)ij. To this purpose we
inductively define a functiom : Nz — U that relates nodes in the relaxed completion structure deso
in the forest model satisfying the following properties:

{g]q€cr(2)} CL(n(z)), forall z € Ny
{q | notqecr(z)}NL(r(z) =0, forall z € Ny

Intuitively, the positive content of a node/edge in the ctatipn structure is contained in the label of
the corresponding forest model node, and the negative moote node/edge in the completion structure
cannot occur in the label of the corresponding forest modéén

Claim 4.9 Let C'S be a relaxed completion structure derived frot$iy andr a function that satisfieg). If
an expansion rule is applicable € then the rule can be applied such that the resulting relasetgetion
structureCS’ and an extension’ of = still satisfies f).

We start by setting (z) = z, for everyx € cts(P)U{e} (the roots of the trees in the relaxed completion
structure correspond to the roots of the trees in the foresiet. It is clear thati( is satisfied forCS,. By
induction letCS be a relaxed completion structure derived fréifi, andr a function that satisfieg). We
consider the expansion rules and the applicability rulegraion and blocking:

1. Expand unary positive As ¢ € cT(x), we have, by the induction hypothesis, that L(7(x)).
SinceM is a minimal model there is ane P, of the form (2) and a ground versiot: g(r(x)) «

BE (@), (3 (7(2), 2m ) 1<mes (6 (2m))1<mek € (Pg)yf suchthatll = 5 (7 (2)) V(v (7(2), 2m))1<m<iU
(8,5 (2m))1<m<k- SetrRL(q, z) = r andupdate(q(z), 3, z). Next, for eachl < m < k:

o If 2, = 7(2) for somez already inEF’, takey,, = z; also, ifz € cts(P) and(z, z) ¢ ES’
thenES' = ES" U {(x,2)},

o if 2, = w(x) - s andz,, is not yet the image ofr of some node inEF’, then addr - s as
a new successor of in F': T, = T/ U {x - s}, wherez € T/, setr(z - s) = w(z) - s and
m(z,x-s) = (w(x),m(x) - s).

o update(q(x), Ym, (€, Ym)),

o update(q(z), O, Ym)-

In other words we removed the nondeterminism frometkigand unary positive ruldy choosing the

rule r» and the successors corresponding to the open answgy.set). One can verify that{) still
holds for.
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2. One can deal with the rules (ii-vi) in a similar way, makthg nondeterministic choices in accordance
with (U, M).

3. Saturation No expansion rule can be applied on a node flBA{ which is not a constant until its
predecessor is saturated. This rule is independent of ttieydar open answer set which guides the
construction, so it is applied as usually.

4. Blocking Consider a node € Npp» which is selected for expansion. If there is a saturated node
y € Ngp which is not a constany, <7, x, whereT, € F’, ct(z) C ¢1(y), andpathsg(y,z) = 0
thenz is blocked andy, =) is added to the set of blocking pairs: = bl U {(y,z)}. Furthermore,
we impose that if there are more nodewhich satisfy the condition we will consider as the blocking
node forx the one which is closest to the root of the tiieethe tree from which: makes part), so the
nodey for which there is no node such that: <7, y, c¢T(z) C cT(2), andpathsg(z,y) = 0. This
choice over possible blocking nodes is relevant for the siage of the proof, where a complete clash-
free relaxed completion structure is transformed into aplete clash-free completion structure. The
condition ¢) still holds forw as we have not modified the content of nodes, but just remawe s
unexpanded nodes.

So, ) holds forC'S” which was evolved front'S, no matter which expansion rule or applicability rule
was used. Itis easy to see, thatiij biolds for a particular relaxed completion structdré then this fact
together with the fact that/, M) is an open answer set #f guarantees that'S is clash-free. So, in order
to obtain a complete clash-free relaxed completion straeactue has just to apply rules (i-viii) in the manner
described above. To see that the process terminates, agsimes not. Then, for every,y € Ny such
thatz <> y andcr(z) = cT(y), the blocking rule cannot be applied, so there is a path frp(:ato some
q(y). This suggests the existence of an infinite pattifas on any infinite branch in a tree froff{ there
would be an infinite number of nodes with equal content - tieeefinite amount of values for the content
of a node), which contradicts with the fact that any atom impen answer set is justified in a finite number
of steps[13, Theorem 2].

At this point we have constructed a complete clash-freexeel@ompletion structuré’S for p w.r.t P
starting from a forest open answer set fowhich satisfiew.

The preference relation over different blocking nodes oéwiin the construction above has several
consequences described by the following results:

Lemma4.10 LetC'S = (EF, G, cT, ST, bl) be a complete clash-free relaxed completion structure con-
structed in the manner described above( = (F, ES)). Then, for every: such that there exists @ so
that (z,y) € bl (x is a blocking node i), there is no node <. x, T, € F such thatct(z) = c1(x).

Proof. Assume by contradiction thatis a blocking node irC'S, so, there is g such that(z,y) € bl,
and that there exists also <7, z, T, € F such thatcT(z) = ctT(z). Observe thapathsg(z,y) =
{(p(2),a(y)) | p € cT(2) Ag € cT(y) A (3r € cT(z) s. t.(p(2), r(2)) € pathsa(z, x) A (r(z),q(y)) €
pathsa(x,y))} (according to lemma 4.4 the existence of a path frop(8 to a¢(y) in G implies the
existence of a path fromto y in EF’; all paths fromz to y in EF include the path fromx to y in 7. and
converselyz, and then according to the same lemma there must be a litethkiinitial path inG with
argumentz: r(x) in this case). Bupathsg(x,y) = 0 as(x,y) € bl, sopathsg(z,y) = 0. Additionally,
cr(z) = cr(z) 2 cr(y), so the existence of is in contradiction with the preference condition over
potentially blocking nodes. Thus, the lemma holds. O
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Corollary 4.11 LetCS = (EF, G, cr, ST, bl) be a complete clash-free relaxed completion structure
constructed in the manner described abogé (= (E, ES)) and I B a branch of a tre€l,. from F. Then
there are at mos2? distinct blocking nodes id B wherep = |upreds(P)].

Proof. The result follows from the fact that there cannot be two kileg nodes with equal content on
the same path in a tree according to the previous lemma arfahiteenumber of values for the content of a
node which is given by the cardinality of the power setpfeds(P). O

The next step is to transform a relaxed clash-free compteteptetion structur€'S = (EF, G, CT, ST,
bl), whereEF = (F, ES), into a complete clash-free completion structure, tha&ispmplete clash-free
relaxed completion structure which has no redundant nodgs.is done by applying a series of successive
transformations on the relaxed completion structure - gacisformation “shrinks” the completion structure
in the sense that the newer returned relaxed completiootsieihas a lesser number of nodes than the
original one and is still complete and clash-free. The tasfdpplying the transformation is a relaxed clash-
free complete completion structure which has a bound onuh@er of nodes on any branch which matches
the boundk from the redundancy condition, which is thus a clash-frempmlete completion structure. A
way to shrink a (relaxed) completion structure is that whenévo nodes: andv in a treeT,. from F' are on
the same pathy <7, v, and they have equal contenty(u) = cT(v), the subtred[u] is replaced with the
subtreeT,[v]. We call such a transformatiamwllapsecs(u,v) and its results is a new relaxed completion
structureC'S’ = (EF', G', c1’, sT', bl'), where the elements of this new completion structure ar@eiefi
in the following. Letef : Ngr — C be alabeled extended forest which associates to every Hoklé' a
label from a set of distinguished constantsuch thatef (x) # ef (y) for everyz andy in Ngr such that
x #y. Let ef = replaces(u,v) be a new labeled extended forest dnil’ be the corresponding unlabeled
extended forest. For everye EF’ let be the counterpart of in EF in the sense thatf (z) = ef (T).
Note that for everyr € EF’ there is a unigue such counterpartAl#’. For simplicity we also introduce
the notationS to refer to the counterpart tuple (the tuple of counterpadas) corresponding to the tuple of
nodes fromS from 7" . Formally, (z1,...,z,) = (Z1,...,Z5). With the help of this notion of counterpart
node we will define also the other components of the resulbeaptetion structure {F has already been
defined):

e G = (V',A"). The set of node¥" of the new graphG' contains all literald for which there is a
literal in V' formed with the same predicate symbol/aend having as arguments the counterpart of
the arguments of Additionally, V' contains binary literals which connect the predecessar(ifis
the same both i F’ andEF') with the new node: which were also present ¥ - this is necessarily
asu = v, So otherwise these connections would be lost:

V' ={l1 | 3y € V s. t.pred(l) = pred(la) A arg(ly) = arg(ly) U
{(f(z,u) |zeT A f(z,u) € V}.

The set of arcst” of the new graphG’ contains all pair of literalgl,, l2) for which there is a corre-
sponding pair inZ, (I3,14), such thats andi, have the same predicate symbold;aand!s, respec-
tively, and their argument tuples are the counterpart oatgement tuples df;, andl,, respectively.
Additionally, A" contains arcs fromat which connect literals whose arguments include the presdece
sor ofu (it is the same both ifi’ andT") with literals whose arguments include the new nadethis
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is necessarily ag = v, so otherwise these connections would be lost:

A" ={(l1,15) | 3(I3,1y) € As. t.pred(ly) = pred(ls) A pred(ly) = pred(ly)

Aarg(ly) = arg(ls) Narg(ly) = arg(ly) U
{(li, 1) | (I1,le) e ENu € arg(la) Az € arg(ly) A z < u}.

e CT' (z) = cT(T), for everyz € ef ;
e ST () = ST(Z), for everyz € ef ;

o bl = {(z,y) | (%,9) € bl A paths,(z,y) = 0}. We maintain those blocking pairs whose counter-
parts inEF formed a blocking pair, and which further more still fulfitie blocking condition.

Note that the result of applying the transformation on a deterlash-free relaxed completion structure
might be an incomplete clash-free relaxed completion sirac If completeness of the original structure
was achieved by applying among others the blocking ruletrdmesformation might leave some branches
“unfinished” in case the blocking node is eliminated or siyripcause two nodes who formed a blocking
pair are still found in the new structure, but they do not emfilfill the blocking condition. We will de-
scribe two cases in which the transformation can be applidtbut losing the completeness of the resulted
structure by means of two lemmas. Before that, however, \ed teestate a general result which will prove
useful in the demonstration of the two lemmas. The resuléstiat if as a result of applying thellapse
transformation on a complete clash-free relaxed completioucture one obtains a completion structure in
which the path between a blocking pair of nodes remains ghtel (every node in the original path is the
counterpart of some node in the new structure), then thesnotiech have as counterparts the nodes of the
blocking pair form a blocking pair in the new completion sture.

Lemma4.12 LetC'S = (EF, G, cT, ST, bl), EF = (F, ES) be a complete clash-free relaxed completion
structure andC'S” = (EF', G, cr’, sT', bl') the result returned byollapsecS(u, v), whereu and v are
two nodes fromZF which fulfill the usual conditions necessary for the appliwa of collapse. Then, for
every(m y) € bl: if for everyz € pathr, (z,y) (z,y € T¢), existsz’ € EF’' such thaty = z, then
(z',y') e bl',wherez',y' € EF', 2’ =z andy’ = 4.

Proof. Let EF, EF', z, y, 2, andy be as defined in the lemma. The conditions for the two nades
andy' from EF’ to form a blocking pair:(z',y') € bl', are that7,) € bl andpaths(z',y) = 0. The
first condition is part of the prerequisites of the lemma,tsemains to be proved thatiths (:U', y') = 0.
Assume by contradiction that there exists a patf¥'ifirom ap(z') to aq(y'). Then according to lemma 4.4
there is a pathPt in EF' from z' to y’ such that for every ¢ P there exists a unary literal with argument
zin the path inG’ from p(z ') toq(y ) Any path inEF' fromm tOy mcludes the path |T (the tree from
which bothz” toy" make part) fromz" toy. Assumepath.. ( ) = (acl =z xz,..., y'): thenPt
contains the unary literals', 5, ..., 1, with arg(l; ) x;, . for 1 < i < nsuch that(l,—’, i+1) € pathsgy,
for everyl < i < n. Letx; = z;. As every node on the pagluthr, (x, y) is the counterpart of some node in
pathy(z',y') and every node ipath,- (z',y') has the some counterpartjinthr, (z, y), one can conclude
thatpfttth(x,y) = (x1,22,...,Tp). CAIso, from the definition otollapse one can see that the presence
of unary literalsl;” with arg(l;') = x; in Pt/G" implies the presence of literalswith arg(l;) = z; and
pred(l;) = pred(l;) in G, for everyl < i < n. Furthermore(l; +1) € paths . implies (I;,1;41) €
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pathsg, for everyl < i < n. The latter results leads t¢ly, 1) € pathsg with arg(ly) = x1 = T =1
andarg(l,) = z, = T, = y, or in other words tdpred(l,), pred(l,)) € pathsc(z,y). This contradicts
with the fact thatx, y) € bl, and thupathsg(x,y) = 0. O

Lemma4.13 LetC'S = (EF, G, CT, ST, bl), EF = (F, ES) be a complete clash-free relaxed completion
structure. If there are two nodesandv in a treeT, in F' such that. <7, v, cT(u) = CcT(v), and there is no
blocking noder’, 2’ <7, v, collapsecs(u, v) returns a complete clash-free relaxed completion strgctur

Proof. We have to show thaf'sS’ = collapsecs(u,v) is complete, that is, no expansion rule further applies
to this completion structure. We will consider every leaflea of EF’ and show that no rule can be applied
to further expand such a node. There are three possible aasamcerns the counterpartoin EF, T
(which at its turn is a leaf node iBF):

e T is a blocked node id’'S, which does not make part from the tr€efrom which« andv make part.
Let T be the tree from whictt makes part: then there is a noglee T; such thal(y',f) € bl. No
node was eliminated fror; as a result of the transformation so for everg pathr. (Z,y’), exists
z € EF suchthat’ = z. Thus lemma 4.12 can be appligd:, y) € bl’, wherey is the node inZF"’
for whichy = y'. Soz is a blocked node i@'S.

e T is a blocked node i"'S which makes part from the same trégfrom which« andv also make
part: then there is a node € 7. such tha(y’, %) € bl. Depending on the location gf in 7., one can
distinguish between the following situations :

— v %1, u (Figure 6 a)): in this casg is on a branch which does not contairandv (as it is
also the case that # u due to the fact that there is no blocking nadesuch that < 2’/ < v)
and it is not eliminated as a result of applying the transfiiom, so the path from to ' in 7,
is preserved as a result of the transformation. Lemma 4.42dbeapplied with the result that
(z,) € bl wherey is the node inEF" for whichy = ¢/

-y >7 wandy # v (Figure 6 b)): in this casg is eliminated as a result of applying the
transformation, buf is also eliminated which contradicts with the existencerafi C'S". To
see whyz is also eliminated notice that « v (as again this would contradict with the fact that
there is no blocking node’ such that < 2/ < v) andz > y'. This implies thatt > u and
T £ v which suggests that is one of the eliminated nodes, too.

— y > v (Figure 6 ¢)): in this casg’ is not eliminated as a result of applying the transformation
so the path fronT to 3/’ in 7. is preserved as a result of the transformation. Lemma 4Abea
applied with the result thdte, y) € bl wherey is the node inEF’ for whichy = ¢/

So the conclusion of the analysis above is the existence oflam e 7' such that(y, ) € bl. As
pathsg(y,Z) = 0, paths s (y, z) = () as the subtre&[y] can be found i intact in the form of the
subtreel” [y]: the eliminated nodes were not part of this subtree as, ati@re is no blocking node
2'in T, such that < 2’ < v.

e T is not a blocked node i6'S; asC'S is complete, no expansion rule can be applied to C'S and,
by transfer neither ta in C'S’ (as they are two nodes which have equal contents which aitgds
in a similar way).

O
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Figure 6: Shrinking a completion structure by eliminatinguitree with a root above any blocking node
(the eliminated part is highlighted with continuous linee part highlighted with dashed line is still kept in)

Lemma4.14 Let CS = (T, G, cT, ST, bl) be a complete clash-free relaxed completion structure. |If
there are three nodes, u, andv in T such thatz < u < v and there is no blocking nod€ such that

z < 2/ < v, andpathsg(z,u) C pathsg(z,v), collapsecs(u,v) returns a complete clash-free relaxed
completion structure.

Proof. Like for the lemma above we show that any leaf node in the cetigpl structureC'S’ =
collapsecs(u,v) (or more precisely in the corresponding tfE§ cannot be further expanded. Again we
consider every such leafand we distinguish between three cases as concerns itecparttin, z:

e T is a blocked node 'S, which does not make part from the trég from which » andv make
part.This case is similar with the first case in the previamsrha.

e T is a blocked node ii'S which makes part from the same tréefrom which« andv make part:
then there is a nodg < T, such that(z, y') € bl. Using a similar argument as for the previous
lemma one concludes that there is a ngde 7" such that)’ = 7, or in other wordg,” has not been
eliminated as a result of applying the transformation. mftiilowing we will show that(y, z) € bl’
andz is not further expanded. We will do this on a case-basis dernisig different locations aj and
T in T, w.r.t. the nodeg, u, anv (we consider only those cases in which after the transfoomdioth
7 andx are maintained in the structure):

— 7 <r. z and there is a node such that:' <7. u, 2 >r. 7, andz >7, 2 (Figure 7 a)): in
this case the transformation does not remove any node jftaf, (7, 7) so lemma 4.12 can be
applied with the result thaiy, ) € bl

— 7y >7, v (Figure 7 b)): in this case no nodes from the subffglg] are removed during the
transformation so using the same argument as above we ohé#iy, =) € bl

— 7y #1. zandy £r. z (Figure 7 c)): in this casg is not on the same path asu, andv and again
the subtred’,[77] is copied intact intd,, so(y, z) € bl'.
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— 7y <r. zandZ >7, v: in this caseyj, z, u, v andz are all on the same path .. Assume by
contradiction thapaths . (y, x) # 0, or in other words there is a pathd from ap(y) to some
q(z). By lemma 4.4 one obtains that there must be a pathbetweeny andz in EF’: note that
every such path contairmtth/ (y,x). From the same lemma and the previous observation one

obtains that there exists a set of unary liteiglgs, .. ., 1, in G with argumentsey, 2, . . . Zy,,
wherepathp (y,xz) = (v1 = y,T2,... 2, = y) such that(l;,l;11) € paths., forl <i < n.
Note that(l,-,cliﬂ) € paths ., for1 <i < nimplies that(l;, ;) € paths.,forl <i <j <n.
Observe that the counterpart offrom T, in TC' is still z and the counterpart af from 7

in Té is u, or in other wordsz = z andw = v. SO0, z,u € pathg(z,y), or in other
words existsl < j < k < n such thatr; = z andx;, = u. As (ll,ljc),(lj,lk),(lk,ln) €
paths.s: (pred(ly),pred(l;)) € paths.(y,z), (pred(l;),pred(ly)) € paths.(z,u), and
(pred(ly), pred(l,)) € paths s (u, ). By definition ofcollapse: paths . (y,u) = pathsa(7, u),
paths i (z,u) = pathsg(z,u) andpaths . (u,y) = pathsg(v,T), S0: (pred(ly), pred(l;)) €
pathsq(7, z), (pred(ly), pred(ly)) € pathsa(z,w), and(pred(ly,), pred(l,)) € paths (v, T).
From the lemma conditiopaths(z, u) C pathsg(z,v), thus(pred(l;), pred(ly)) € pathsq(z,v).
Finally, (pred(ly),pred(l;)) € pathsg (7, z), (pred(l;), pred(ly)) € pathsg(z,v), and(pred(ly), pred(ly,)) €
paths s (v, T) implies (pred(ly), pred(l,)) € pathsg(y,T), which is a contradiction with the
fact thatpathsq(7,7) = () as(y,T) € bl. Thus, our assumption is falspuths . (y,z) = 0,
and(y,z) € bl'.

e T is not a blocked node i6v'S (Figure 7 d)); using a similar argument as for the previousnte one
can show that no expansion rule applies:io C'S’.
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Figure 7: Shrinking a completion structure by eliminatingudtree with a root below a blocking node (the
eliminated part is highlighted)
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Now, we will describe a sequence of transformations on xeelalash-free complete completion struc-
tureCS = (EF, G, ct, ST, bl), EF = (F, ES), which returns a complete clash-free completion structure
The transformations which have to be appliedt6 are the following (the order in which they are applied
is irrelevant):

e for every two nodes: andv in a tree7, € F such thatc <7, v <7, v, ¢T(u) = cT(v), and
there is no blocking node, ¢ <7, = <7, v, collapsecs(u,v) (we will call such a transformation a
transformation of type 1) ;

o for every two nodes:, andv in a treeT, € F for which there exists a nodein 7. such that: <,
u <7, v and there is no blocking nodesuch that <7, x <7, v, andpathsg(z,u) C pathsg(z,v),
collapsecs(u,v) (we will call such a transformation a transformation of ty#)e

That the resulted completion structure is complete folldwsctly from Lemma 4.13 and Lemma 4.14.
We still have to prove the following claim:

Claim 4.15 LetC'S = (EF, G, cT, ST, bl) be a complete relaxed completion structure to which no trans
formation of the form described above can be further appli@then every branch of'S has at most
k= 2°P(2P° — 1) + 3 nodes withp = |upreds(P)|.

We will analyze every branch of every trég at a time. Consider the current branch/i8 and that
it contains the blocking nodes;, s, ...z,. From Corollary 4.11 we know that < 2P, wherep =
|lupreds(P)|. The last node of the branch will be denoted withi (Figure 8). We split the branchB in
n + 1 paths and count the maximum number of nodes with a certaiteisbim each of these paths. In order
to do this need an additional lemma which is defined next.

Lemma 4.16 Let I B be a branch in a tre€, as depicted in Figure 8. For a givenc 2ureds(0P):

e foranyl <i < n, there can be at mo&?t” nodes ipathr, (x;, z;41) With content equal te, in case
there is no node: € T, such thatc <7, x <7, x; andcT(z) = s

e foranyl < i < n, there can be at mogP” — 1 nodes inpathr.(x;,z;+1) with content equal ta,
except forz;, in case there is a node € T, such thatt <7, = <7, x; andcTt(z) = s

e there can be at mog¥” nodes inpathy, (., end) with content equal te, except forz,,.

Proof.

We will prove that for anyl < i < n, there can be at mo&t’ nodes inpathr, (z;, x;+1) with content
equal tos in case there is no node € T, such thate <7, = <p. z; andcTt(z) = s. Assume by
contradiction that there are at le&@sf + 1 nodes inpathr, (x;, z;+1) With content equal ta. Let’s call
these nodeyy, yo, . . ., ym, Wherem > 2°°. It is necessary thatathsc(y1,v:) DO pathsg(yr,yiv1) for
everyl < i < m, otherwise a transformation of type 2 could be further a&gaptoC'S. As pathsg(z,y) C
upreds(()P) x upreds(()P) and|2urreds(OP)xupreds(OP)| — 9p*  and there at leag®” distinct values for
pathsa(y1,yi), whenl < i < m, there must be ah < i < m such thapathsg(y1,y;) = 0. Butin this
case(y1,y;) € bl (as the two nodes also have equal content) which contraditiighe fact thaty; # end.
The other cases are proved similarly. O

Now we will proceed to the actual counting. Lete 24r4s(0F) pe a possible content value for any
node in/ B. We will count the maximum number of nodes with conteint I B - in order to do this we have
to distinguish between three different cases as regards
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Figure 8: A random branchB in the resulted complete clash-free relaxed completiarcsire:xq, ..., z,
are blocking nodes

e there is no node: € T, with ¢ <7, * <7, x; such thaicT(z) = s, and there is nd < ¢ < n such
thatct(z;) = s. In this case there is maximum 1 node with content equalitopathr, (¢, z1) (the
root), maximum2?” nodes in eachathr, (z;,z; + 1) and maximun?’ nodes inpathr, (x,, end)
(according to lemma 4.16); for the last path there cannd”ber 1 nodes as that would mean that
end Is a blocked node with content equal4oso there would be a blocking node with content equal
to s, which contradicts with the fact the hypothesis there islocking node with content equal t9.
Also there are at mo&¥ — 1 blocking nodes (if there would [# such nodes, the maximum indicated
by corollary 4.11 there would remain no valid value §r Summing all up, in this case there are at
most27’2(2p — 1) + 1 nodes with content equal to

e there is no node such thatt <7, « <7, z; such thatcr(z) = s but there isa node;, 1 <i <n
such thatcT(z;) = s. In this case there is no nodesuch thate <1, = <7, x; which has content
equal tos (lemma 4.10), and thysathr, (c, 1) maximum 1 node with content equal ¢qthe root).
pathr, (z;,x;41) has maximun2?’ nodes, every patlw;, z;1), wherei < j < n has maximum
2" — 1 nodes, and the path,,, end) has maximun2?’ nodes (according to lemma 4.16). Summing
all up, in this case there are at m¢st” — 1)(n — i + 1) + 3 nodes with content equal t wheren is
the number of blocking nodes. There are at n28gilocking nodes (corollary 4.11), so the maximum
of the expression is met wheén= 1 andn = 2?7 and is2P(2P" — 1) + 3.

e there is a node: such thate <7, <7, z; andcT(x) = s. In this casect(z;) # s, for every
1 < i < n (lemma 4.10). The counting is as followguthr, (c,z1) has maximum 1 node with
content equal t& (z), otherwise a transformation of type 1 could be appliet/ir, (z;, z;+1) has
maximum2?® — 1 nodes,1 < i < n and the path{z,,, end) has maximun®?”’ nodes (according to
lemma 4.16). Also there are at mast — 1 blocking nodes (if there would b2’ such nodes, the
maximum indicated by corollary 4.11 there would remain nlidvealue fors). Summing all up, in
this case there are at mc(QE’2 —1)(2P — 1) 4+ 1 nodes with content equal to

From the three cases the maximum of number of nodes with mbatpial to a givers in any branch
IB ofatreel, € Fis 21’(21’2 — 1) + 3, which is exactlyk.
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Table 1: Syntax and Semantics®H O O Constructs

constructname | syntax semantics

atomic concepC A AT C AT

role R RT C AT x AT

nominalsl {o} {o?} C AT,

concept con;. CnbD (CnDY=c*tnD?

concept disj. CuD (CuD)t =c*tuD?

negation -C (~C)t = AT\ C*

exists restriction | 3IR.C (3R.C)E ={z| 3y : (z,y) € RT andy € CT}
value restriction | VYR.C (VR.C)E ={z|Vy: (z,y) € RT =y C*}
atleast restriction| > nS.C' | (> nS.C)T = {z | #{y | (z,y) € ST andy € C%} > n}
atmost restriction| < nS.C | (< nS.C)T = {z | #{y | (z,y) € ST andy € CT} < n}

At this point we have a complete relaxed clash-free comgietiructure with at most nodes on any
branch, thus a complete clash-free completion structure ¥aor.t. P. O

O

4.4 Complexity Results

Let CS = (EF, G, cT, ST, bl) be a complete completion structure. Every path of a treBAhcontains
at mostk + 1 nodes with equal content (as suggested by the applicabiligs (viii) and (ix)), wherek
is as defined in the redundancy rule; thus, there are at (Rost1)2" nodes on every such path, where
n = |upreds(P)|. The branching of every tree is bound by a constamthich is a linear function of the
number of variables in unary rules frof. Thus, there are at most**1)2" nodes in a tree, and at most
(c + 1)¢*+1)2" nodes inEF, wherec is the number of constants present in the program at handheSo t
amount of nodes ir€’'S is double exponential in the size &%, and the algorithm runs iZ-NEXPTIME.

Note that such a high complexity is expected when dealing taibleaux-like algorithms. For example
in Description Logics, although satisfiability checkingS#{Z Q is ExPTIME-complete, practical algorithms
run in 2-NEXPTIME [32].

5 F-hybrid Knowledge Bases

In this section, we introducéhybrid knowledge bases, a formalism that combines knowledge lmses
pressed in the Description Logi&H O Q with forest logic programs.

Description logics (DLs)are a family of logical formalisms based on frame-basedesyst[24] and
useful for knowledge representation. Its basic languagtufes include the notions cbnceptsandroles
which are used to define the relevant concepts and relatossme (application) domain. Different DLs
can then be identified, among others, by the set of construtitat are allowed to form complex concepts
or roles; see, for example, the 2 left-most columns of Tabtldt define the constructs 8HOQ [18].

The semantics of DLs is given by interpretatidhs- (AZ, -Z) whereA? is a non-empty domain and
is an interpretation function. We summarize the constrattsHO Q with their interpretation in Table 1.
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A SHOQ knowledge bases a set ofterminological axiomg” T D with C and D SHO 9-concept
expressionsfole axiomsR C S with R and .S roles, andtransitivity axiomsTrans(R) for a role name
R. If the knowledge base contains an axidmans(R), we call R transitive For the role axioms in a
knowledge base, we defirte as the transitive closure @f. A simple roleR in a knowledge base is a role
that is not transitive nor does it have any transitive sz d@iv.r.t. to reflexive transitive closufe of C).
Terminological and role axioms express a subset relatiorninterpretatiorzZ satisfiesan axiomC; = Cs
(R1 C Ry) if CT C C¥ (RT C RI). Aninterpretation satisfies a transitivity axiomtans(R) if R” is a
transitive relation. An interpretation israodelof a knowledge basg if it satisfies every axiom irC. A
conceptC is satisfiablew.r.t. ¥ if there is a modell of ¥ such thatC? +# (. The number restrictions
(at most and at least) are always such that the fole, e.g.,> nR.C, is simple; this in order to avoid
undecidability of satisfiability checking (see, e.g., [19]

We will assume thainique name assumptidoy imposing thab” = o for individualso € I. Note that
individuals are thus assumed to be part of any domin Note that OWL does not have the unique name
assumption [31], and thus different individuals can paintite same resource. However, the open answer
set semantics gives a Herbrand interpretation to constiagtsconstants are interpreted as themselves, and
for consistency we assume that also DL nominals are intexghthis way.

Example 5.1 Consider the followingsHO Q knowledge bas:

Father C  3dchild. Human M —Female
{john} T (< 2child. Human)

Intuitively, the first terminological axiom says that fathdave a human child and are not female. The
second axiom says th@hn has less than 2 human children. "

Definition 5.2 An f-hybrid knowledge bass a pair(X, P) whereX is aSHOQ knowledge base ang is
a FoLP.

Atoms and literals inP might have as the underlying predicate an atomic concepblernrame from
33, in which case they are callddl atomsandDL literals respectively. Additionally, there might be other
predicate symbols available, but without loss of gensralit assume they cannot coincide with complex
concept or role descriptions. Note that we do not impose |IDgitsafeness ofweakly) DL safenesi28,
30, 29] for the rule component. Intuitively, the restricthpe of FOLPs suffices to guarantee decidability;
FoLPs are in general neither Datalog safe nor weakly DL:sa&ewill discuss the relation with weakly
DL-safeness in detail in Section 6.

Example 5.3 An f-hybrid knowledge basg:, P), with X as in Example 5.1 an&, the FOLP,
unhappy(X) <« not Father(X)

indicates that persons that are not fathers are unhappyrevhether(X) is a DL literal. "

Similarly as in [12], we define, given a DL interpretati@n= (AZ,-Z) and a ground progran®, the
projectionII(P,Z) of P with respect tdZ, as follows: for every rule in P,

o if there exists a DL literal in the head of the form
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— A(ty,... t,) with (¢q,...,t,) € AT, or
— not A(ty,...,t,) with (t1,...,t,) & AL,
then delete,
e if there exists a DL literal in the body of the form
— A(ty, ..., tn) with (t1,...,t,) & AL, or
— not A(ty,. .., t,) With (t1,...,t,) € AZ,
then delete,

e otherwise, delete all DL literals from

Intuitively, the projection “evaluates” the program witspect tdZ by removing (evaluating) rules and DL
literals consistently witlT; conceptually this is similar to the GL-reduct, which rerasvules and negative
literals consistently with an interpretation of the pragra

Definition 5.4 Let (X, P) be an f-hybrid knowledge base. Amterpretationof (3, P) is a tuple(U,Z, M)
such that

e U is a universe forP,
e 7 = (U,-1)is an interpretation of, and
e M is an interpretation ofl( Py, 7).

Then,(U,Z, M) is amodelof an f-hybrid knowledge basg:, P) if Z is a model of: and M is an answer
set of [1( Py, 7).

The semantics of a f-hybrid knowledge bd&k P) is such that i®> = (), a model of(3, P) corresponds
to an open answer set &f, and if P = (), a model of(%, P) corresponds to a DL model &f. In this way,
the semantics of f-hybrid knowledge bases is nicely layeretbp of both the DL semantics and the open
answer set semantics.

Example 5.5 For the f-hybrid knowledge basg@:, P) in Example 5.3, take a univerdé = {john,z}
and - defined such thafather?! = {z}, child® = {(z,john)}, Female? = 0, Human® = U, and
johnT = john. Itis easy to see that = (U, -7) is indeed a model of.

We project the progran® taking into account, such thatP;; is the program

unhappy(z) <« not Father(x)
unhappy(john) <« not Father(john)

and sincer € Father? andjohn ¢ Father®, we have thall(Py,T) is
unhappy(john)

such thatM = {unhappy(john)} is an answer set dfi( Py, Z), and(U,Z, M) is a model of 3, P). =
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For p a concept expression frol or a predicate fromP, we say thap is satisfiablew.r.t. (X, P) if
there is a mode(U, Z, M) such thap? # () or p(x1, ..., x,) € M for somezy, ..., z, in U, respectively.
Note that Definition 5.4 is in general applicable to other BhanSHOQ as well as to other programs than
FoLPs. Indeed, in [12], a similar definition was used o RO~ {=} andguarded programs

We can reduce satisfiability checking w.r.t. f-hybrid knedde bases to satisfiability checking of FoLPs
only. Roughly, for each concept expression one introduceswapredicate together with rules that define
the semantics of the corresponding DL construct. Congsréiten encode the axioms, and the first-order
interpretation of DL concept expressions is simulatedgifiee rules.

Taking the knowledge baseof Example 5.3, we can translat@ther C Jchild. Human M —Female to
the constraint — Father(X), not (Ichild. Human M —Female)(X ) where (3 child. Human M —Female)
is a predicate defined by the rules

(Jchild. Human M —Female)(X ) < (3child. Human)(X), (—Female)(X)

i.e., a DL conjunction translates to a set of literals in thelyo Further, we define an exists restriction and

negation as follows:
Jchild. Human(X) <« child(X,Y), Human(Y")
—Female(X) <« not Female(X)

Finally, the first-order semantics of concepts and rolebiained as follows:

Father(X) V not Father(X
Female(X) V not Female(X
Human(X) V not Human(X

child(X,Y) V not child(X,Y

Similarly, the axiom{john} C (< 2child. Human) is translated as the constraint
— {john}(X), not (< 2child. Human)(X)

and rules

{gohn}(john)
(< 2child.Human)(X) <« not (> 3child. Human)(X)
(> 3child. Human)(X) <« child(X,Yy), child(X, Yy), child(X, Ys),
Human(Yy), Human(Yz), Human(Ys), Y # Yo, Y, # Y5, Yo # Y3

Before proceeding with the formal translation, we definedlosure clos(X) of a SHOQ knowledge
baseX as the smallest set satisfying the following conditions:

e for eachC C D an axiom inX (role or terminological){C, D} C clos(X),
e for eachTrans(R) in 3, {R} C clos(Y),
e foreveryD in clos(X), we have

— if D ==Dy,then{D;} C clos(X),
— if D = Dy U Ds, then{Dl,Dg} - clos(Z‘,),
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if D = DM Dy, then{D1, D2} C clos(¥),

if D=3R.Dy,then{R,D,}U{3S.D; | SER,S # R, Trans(S) € ¥} C clos(X),
if D =VR.Dy,then{3R.-~D1} C clos(¥),

if D= (<nQ@.D;),then{(>n+1Q.D1)} C clos(X),

if D= (>n@Q.D;),then{Q, Dy} C clos(X).

Concerning the addition of the extes.D; for 3R.D; in the closure, note that ¢ (3R.D;)* holds if
there is somdz,y) € RZ with y € D¥, and, in particularSER with S transitive such thatz, ug) €
ST ... (un,y) € ST withy € D¥. The latter amounts te € (35.D;)%. Thus, in the open answer set
setting, we have thatR.D; (z) is in the open answer setf(x,y) and D, (y) hold or3S.D; (z) holds for
some transitive subrolg of R. The predicatelS.D; will be defined by adding recursive rules, hence the
inclusion of such predicates in the closure.

Furthermore, for < n @Q.D) in the closure, we add(> n + 1 Q.D;)}, since we will base our
definition of the former predicate on the DL equivalefigen Q.D;1) = —~(>n+ 1 Q.Dy).

Formally, we defineb(X) to be the following FoLP, obtained from tl#&+ O Q knowledge bas&:

e For each terminological axiof C D € X, add the constraint

— C(X),not D(X) (5)

e For eachrole axionk C S € ¥, add the constraint

— R(X,Y),not S(X,Y) (6)

e Next, we distinguish between the types of concept expressibat appear irlos(X). For each

D € clos(X):
— if D is a concept name, add
D(X)V not D(X) «— (7)
— if Dis arole name, add
D(X,Y)Vnot D(X,Y) «— (8)
— if D = {o}, add
D(o0) « ©)
— if D=-F, add
D(X) « not E(X) (10)
—ifD=FENF,add
D(X) « E(X), F(X) (11)
—ifD=FUF,add
D(X) — B(X) 12)



32 INFSYS RR 184-08-14.

—if D =3Q.E, add
D(X) < Q(X,Y),E(Y) (13)

and for allSEQ, S # @, with Trans(S) € 3, add rules
D(X) «— (38.E)(X) (14)

If Trans(Q) € 3, we further add the rule

D(X)— Q(X,Y),D(Y) (15)
— if D=VR.E, add
D(X) « not (AR—E)(X) (16)
—ifD=(<nQ.F), add
D(X)«—not (>n+1 Q.E)(X) (17)

—if D= (>nQ.E), add
D(X) — Q(X7 YZ)??Q(X7 Yn)vE(Y1)>>E(Yn)7(YZ # ij)lgz;ﬁjgn (18)

Rule (13) is what one would intuitively expect for the exists restdnt However, in casé) is transitive
this rule is not enough. Indeed,df(z,y), Q(y, z), E(z) are in an open answer set, one exp¢et3. F) (z)
to be in it as well ifQ is transitive. However, we have no rules enforc@@r, z) to be in the open answer
set without violating the FOLP restrictions. We can solis by adding tq(13) the rule(15), such that such
achainQ(z,y), Q(y, z), with E(z) in the open answer set correctly dedu¢s:).

It may still be that there are transitive subrolegbthat need the same recursive treatment as above. To
this end, we introduce rulg4).

We do not need such a trick with the number restrictions siheeaoles@ in a number restriction are
required to be simple, i.e., without transitive subroles.

Proposition 5.6 Let (X, P) be aSHOQ knowledge base. Thef#(X) U P is a FOLP, and has a size that is
polynomial in the size of.

Proof. Observing the rules i@ (), it is clear that this program is a FoLP.

The size of the elements itios(X) is linear and the size aoflos(Y) itself is polynomial inX. The size
of the FOLP® (X)) is polynomial in the size oflos(X). The only non-trivial case in showing the latter arises
by the addition of rulg18) which introduces@ inequalities for a number restrictiq> n Q.E). We
assume, as is not uncommon in DLs (see, e.g., [32]), thatutmbarn is represented in unary notation

11...1
—

n

such that the number of introduced inequalities is quaalmatihe size of the number restriction. O

Proposition 5.7 Let (X, P) be an f-hybrid knowledge base. Then, a predigate satisfiable w.r.t(3, P)
iff p is satisfiable w.r.t®(X) U P.
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Proof. The proof goes along the lines of the proof in [12, Theorem 1].
(=). Assumep is satisfiable w.r.t(3, P), i.e., there exists a modél,Z, M) of (3, P) in which p has a
non-empty extension. Now, we construct the open interpoet&l/, N) of ®(X) U P as follows:

N=MU{C(z)|zeCtC e clos(X)} U{R(x1,22) | (z1,22) € R, R € clos(X)}

with C and R concept expressions and role names respectively.

It is easy to verify thatU, V) is an open answer set &{(X) U P and that(U, N) satisfiesp.
(«<). Assumeg(U, N) is an open answer set @f3) U P such thap is satisfied. We define the interpretation
(U,Z,M) of (£, P) as follows:

e 7T = (U,-1) is defined such thatt? = {x | A(x) € N} for concept names!, PZ = {(z1,2) |
P(x1,22) € N} for role namesP ando? = o, for o a constant symbol ik. 7 is then an interpretation
of X.

e M = N\{p(z1,...,2,) | p € clos(X)}, such thatV is an interpretation ofl( Py, 7).

As a consequencél/,Z, M) is an interpretation of%, P) and it is easy to verify that/, Z, M) is a model
of (3, P) which satisfie. O

Note that Proposition 5.7 also holds for satisfiability dtieg of concept expressionS: introduce a
rule p(X) «— C(X) in P and check satisfiability gf.

Using the translation from f-hybrid knowledge bases togbtegic programs in Proposition 5.7 and the
polynomiality of this translation (Proposition 5.6), takyer with the complexity of the terminating, sound,
and complete algorithm for satisfiability checking w.r.aLlPs, we have the following result:

Proposition 5.8 Satisfiability checking w.r.t. f-hybrid knowledge baseis i3-NEXPTIME.

As satisfiability checking afA £LC concepts w.r.t. alLC TBox (note that4LC is a fragment oS HO Q)
is EXPTIME-complete ([1, Chapter 3]), we have that satisfiability ¢teg w.r.t. f-hybrid knowledge bases
iS EXPTIME-hard.

Proposition 5.9 Satisfiability checking w.r.t. f-hybrid knowledge basesxsTIME-hard.

Note that gap between the hardness result and the worstwgagae complexity of the algorithm. This
is a similar gap that arises f&#HZ Q and its tableaux algorithm (see Section 4.4).

6 Discussion and Related Work

We compare f-hybrid knowledge bases to the r-hybrid knogéeldases from [30], which exten@&C+/og
from [29] with inequalities and negated DL atoms.

In [30], a r-hybrid knowledge base consists of a DL knowlellgse (the specific DL is a parameter) and
a disjunctive Datalog program where each ruleeakly DL-safe

e every variable in the rule appears in a positive atom in treylms the rule Datalog safenegsand

e every variable either occurs in a positive non-DL atom in boey of the rule, or it only occurs in
positive DL atoms in the body of the rule.
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The semantics of r-hybrid and f-hybrid knowledge basesespaond to a large extent. The main differ-
ence is that f-hybrid knowledge bases do not makestaedard names assumptian which basically the
domain of every interpretation is the same infinitely cobgaset of constants.

Some key differences to note are the following:

e We do not require Datalog safeness neither do we require lw&dksafeness. Indeed, f-hybrid
knowledge bases may have a rule component (i.e., the pragumeirthat is not weakly DL-safe. Take
the f-hybrid knowledge basg:, P) from Example 5.3 withP:

unhappy(X) <« not Father(X)

The atomFather(X) is a DL-atom such that the rule is neither Datalog safe noiklydal -safe.
Modifying the program to

unhappy(X) <« Human(X), not Father(X)

leads to a Datalog safe prograi @ppears in a positive atoffuman(X) in the body of the rule),
however, it is still not weakly DL-safe a¥ is not appearing only in positive DL-atoms.

On the other hand, both the above rules are FOLPs and thutitatena valid component of an f-hybrid
knowledge base.

¢ In the case of r-hybrid knowledge bases, due to the saferesbtions, it suffices for satisfiability
checking to ground the rule component with the constantsajupy explicitly in the knowledge baée.
One does not have such a property for f-hybrid knowledgeshaSensider the f-hybrid knowledge
base(X, P) with ¥ = () and the progran

a(X) < not b(X)

This program is a FoLP, but it is not Datalog safe nor is it wedM_-safe. Grounding only with the
constants in the program yields the projection

a(0) — mnot b(0)

such that: is not satisfiable. However, grounding with, e{), z}, one gets

a(0) «— mnot b(0)
a(z) + not b(z)
b(0) «

such that is indeed satisfiable, in correspondence with one wouldaxpe

e Decidability for satisfiability checking of r-hybrid knoetige bases is guaranteed if decidability of the
conjunctive query containment/union of conjunctive gegriontainment problems is guaranteed for
the DL at hand. In contrast, we relied on a translation of Ql_BdLPs for establishing decidability,
and not all DLs can be translated this way; we illustratedttheslation forSHO Q.

4[30, 29] considers checking satisfiability of knowledgedsasather than satisfiability of predicates. However, thenés can
easily be reduced to the latter.
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Hybrid MKNF knowledge bases [26, 25] consist of a DL compdramd a component of so-called
MKNF rules. Such MKNF rules allow for modal operatdss andnot in front of atoms; for a detailed
definition, we refer the reader to [26]. Hybrid MKNF knowlaxllgases generalize approaches to integrating
ontologies and rules such as CARIN [23},£-log [4], DL-safe rules [27], and the Semantic Web Rule
Language (SWRL) [17], as well as r-hybrid knowledge basé$ [ particular, one can write the latter as
equisatisfiable hybrid MKNF knowledge bases [26, Theoresh 4.

In contrast with f-hybrid knowledge bases, hybrid MKNF kredge bases, as do r-hybrid knowledge
bases, make the standard names assumption. Additioneltidability and reasoning for hybrid MKNF
knowledge bases is guaranteedly-safenessa restriction of weakly DL-safeness, where every variable
in a rule has to appear in a non-DL atom of the body of the rule. with r-hybrid knowledge bases,
our f-hybrid knowledge bases do not have such a restrictfcdheointeraction between the structural DL
component and the rule component, but rely instead on tlstegxie of an integrating framework (FoLPs
under an open answer set semantics) that has reasoningtsuppsoning support that we provided in this
paper.

We give a brief overview of other approaches to integratingplogies and rules, specifically highlight-
ing reasoning support.

Description Logic Programg§l1] represent the common subset of OWL-DL ontologies anthHagic
programs (programs without negation as failure or disjongt As such, reasoning can be reduced to normal
LP reasoning. In [27], a clever translation®HZ Q(D) (SHZ Q with data types) combined witbL-safe
rulesto disjunctive Datalog is provided. The translation reli@sa translation to clauses and subsequently
applying techniques from basic superposition theory. Baiag in DL+Iog [29] and r-hybrid knowledge
bases (see above) does not use a translation to other appsoaat defines a specific algorithm based on a
partial grounding of the program and a test for containmébajunctive queries over the DL knowledge
bases. dl-programs[6] have a more loosely coupled take on integrating DL knogk bases and logic
programs by allowing the program to query the DL knowledgsebahile as well having the possibility to
send (controlled) input to the DL knowledge base. Reasosidgne via a stable model computation of the
logic program, interwoven with queries that are oracles©&DL part.

Description Logic Rules [21] are defined as decidable fragmef SWRL. The rules have a tree-like
structure similar to the structure of FoLPs. Depending enuhderlying DL, one can distinguish between
SROIZQ rules (these do not actually exteGR OZ Q, they are just syntactic sugar on top of the language),
ELTT rules, Description Logic Program rules, and ELP rules [22]e latter can be seen as an extension
of both£L1T rules and Description Logic Program rules, hence their naitiough Description Logic
Rules have tree-shaped bodies and from this perspectiviaistmFoLPs, their semantics is not a minimal
model semantics. Like Description Logics, there semaiiéisst-order based.

The algorithm presented in Section 4 can be seen as a precédiiconstructs a tableau (as is common
in most DL reasoning procedures), representing the pgsiifihite open answer set by a finite structure.
There are several DL-based approaches which adopt a misiyialsemantics. Among this are autoepis-
temic [5], default [2] and circumscriptive extensions of [}, 10]. The first two extensions are restricted to
reasoning with explicitly named individuals only, whileQlallows for defeats to be based on the existence
of unknown individuals. A tableau-based method for reaspmiith the DLALCO in the circumscriptive
case has been introduced in [9]. A special preference clastiitoon is introduced there to distinguish be-
tween minimal and non-minimal models which is based on coashg a new classical DL knowledge base
and checking its satisfiability.

A formalism related to FoLPs iEDNC [34]. FDNC is an extension of ASP with function symbols
where rules are syntactically restricted in order to manmndgcidability. While the syntactical restriction is
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similar to the one imposed on FoLP rules, predicates hawvilg maximum two, and the terms in a binary
literal can be seen as arcs in a forest (imposing the ForeseMeroperty), the direction of deduction is
different. while for FOLPs, all binary literals in a rule bpdhave an identical first term which is also the
term which appears in the head, @IDNC (with the exception of one rule type) the second term is thee on
which also appears in the hedd@DNC rules are required to be safe unlike FOLP ones. The complétit
standard reasoning tasks f@DNC is EXPTIME-complete and worst-case optimal algorithms are provided.

7 Conclusions and Outlook

We introduced FoLPs, a logic programming paradigm suitédmentegrating ontologies and rules, and
provided a sound, complete, and terminating algorithm &tisBability checking that runs i2-NEXPTIME.
We showed how to use FoLPs as the underlying integratiorckeefor reasoning with f-hybrid knowledge
bases, a nonmonotonic framework that integr&t®&8> O with FoLPs, without having to resort to (weakly)
DL-safeness.

For the future, we intend to look into an extension of f-hgltnowledge bases and its reasoning algo-
rithm, from SHOQ towardsSROZQ(D) the DL underlying OWL-DL in OWL 2. A prototype imple-
mentation of the algorithm is planned, and will feed the nieedptimization strategies.
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