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INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

WELL-FOUNDED SEMANTICS FOR

DESCRIPTIONLOGIC PROGRAMS IN THE

SEMANTIC WEB

THOMAS EITER

THOMAS LUKASIEWICZ

GIOVAMBATTISTA IANNI

ROMAN SCHINDLAUER

INFSYS RESEARCHREPORT1843-09-01

MARCH 2009





INFSYS RESEARCHREPORT

INFSYS RESEARCHREPORT1843-09-01, MARCH 2009

WELL-FOUNDED SEMANTICS FOR

DESCRIPTIONLOGIC PROGRAMS IN THESEMANTIC WEB

Thomas Eiter1

Thomas Lukasiewicz2,1

Giovambattista Ianni3

Roman Schindlauer1

Abstract. The realization of the Semantic Web vision, in which computational logic has a promi-
nent role, has stimulated a lot of research on combining rules and ontologies, which are formulated
in different formalisms, into a framework that is more useful for describing semantic content. In
particular, combining logic programming with the Web Ontology Language (OWL), which is a
standard based on description logics, emerged as an important issue for linking the Rules and Ontol-
ogy Layers of the Semantic Web. Non-monotonic description logic programs (ordl-programs) were
introduced for such a combination, in which a pair(L, P ) of a description logic knowledge base
L and a set of rulesP with negation as failure is given a model-based semantics that generalizes
the answer set semantics of logic programs. In this paper, wereconsider dl-programs and present
a well-founded semantics for them as an analog for the other main semantics of logic programs. It
generalizes the canonical definition of the well-founded semantics based on unfounded sets, and,
as we show, lifts many of the well-known properties from ordinary logic programs to dl-programs.
Among these properties: our semantics amounts to a partial model approximating the answer set
semantics, which yields for positive and stratified dl-programs a total model coinciding with the
answer set semantics; it has polynomial data complexity provided the access to the description logic
knowledge base is polynomial; under suitable restrictions, it has lower complexity and even first-
order rewritability is achievable. The results add to previous evidence that dl-programs are a versatile
and robust combination approach, which moreover is implementable using legacy engines.
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1 Introduction

During the last years, theSemantic Web[Berners-Lee et al. 2001; Fensel et al. 2002] has been gaining
momentum as a backbone for future information systems. A layered architecture has been conceived to ma-
terialize this vision, with the World Wide Web Consortium (W3C) being a steering force behind. This vision
comprises low-level syntactic data levels to high-level semantic layers for which computational logic plays a
prominent role. The W3C devotes particular efforts to develop recommended standards, which should ease
interoperability of intrinsically distributed applications. Important such standards are, e.g, the Resource De-
scription Framework (RDF) for the Data Layer of the architecture and the Web Ontology Language (OWL),
which is based on Description Logics, for the Ontology Layer; theRule Interchange Format (RIF)Work-
ing Group currently aims at a standard exchange format for rules at the Rules Layer rather than a common
semantics, given the plethora of existing languages and types of rules.

It has been realized that rule bases and ontologies, formulated in different languages, need to be com-
bined in order to have, on the one hand, the expressive capabilities that are needed to model certain scenarios,
and on the other hand to make interoperability of knowledge bases in different languages possible. However,
due to an impedance mismatch between rule and ontology formalisms, which adhere to different underlying
principles, such a combination is non-trivial. Many proposals have been made, cf. [Drabent et al. 2009;
Eiter et al. 2008; Motik et al. 2006; Rosati 2006; Lukasiewicz 2007] andreferences therein, which also give
taxonomies to distinguish different types of combinations and discuss fundamental technical issues.

Roughly, there arehomogeneous combinations, where the rule and the ontology predicates are not dis-
tinguished in the integrated framework, andheterogeneous combinations, where the rule and the ontology
predicates are distinguished; among the latter,loose couplings, in which the rule bodies may contain queries
to the ontology, andtight integrations, in which the integrated language has a semantics that defines models
of hybrid knowledge bases by referring to the semantics of the original rule language and to the FOL models
of the ontology [Drabent et al. 2009].

An advanced approach of loose coupling aredescription logic programs(or dl-programs) [Eiter et al.
2004;2008], which are of the formKB = (L,P ), whereL is a knowledge base in a description logic, andP
is a finite set of description logic rules (ordl-rules). Such dl-rules are similar to usual rules in logic programs
with negation as failure, but may also containqueries toL in their bodies which are given by special atoms
(on which possibly default negation may apply). For example, a rule

cand(X,P )← paperArea(P,A), DL[Referee](X), DL[expert ](X,A)

may express thatX is a candidate reviewer for a paperP , if the paper is in areaA, andX is known to be
a referee and an expert for areaA. Here, the latter two are queries to the description logic knowledge base
L, which has a conceptRefereeand roleexpertin its signature. For the evaluation, the precise definition
of Refereeandexpertwithin L is fully transparent, and only the logical contents at the level of inference
counts. Thus, dl-programs fully support encapsulation and privacy of L: note indeed that, in many cases,
parts ofL should be (or are) not accessible. For example, ifL contains an ontology about risk assessment
in credit assignment, or ifL is accessible only via web through a querying service, it must be assumed that
only extensional and/or external reasoning services are available foraccessingL.

Another important feature of dl-rules is that queries toL also allow for specifying an input fromP , and
thus for aflow of information fromP toL, besides the flow of information fromL toP , given by any query
to L. Hence, dl-programs allow for building rules on top of ontologies, but also(to some extent) building
ontologies on top of rules. This is achieved by dynamic update operators through which the extensional part
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of L can be modified for subjunctive querying. For example, the rule

paperArea(P,A)← DL[keyword ⊎ kw ; inArea](P,A)

intuitively says that paperP is in areaA, if P is in A according to the description logic knowledge base
L, where the extensional part of thekeywordrole inL (which is known to influenceinArea) is augmented
by the facts of a binary predicatekw from the program. In this way, additional knowledge (gained in the
program) can be supplied toL before querying. Using this mechanism, also more involved relationships
between concepts and/or roles inL can be defined and exploited.

Eiter et al. [2004; 2008] faithfully extended the answer set semantics [Gelfond and Lifschitz 1991]
for ordinary normal programs, which is one of the most widely used semantics for nonmonotonic logic
programs, to dl-programs. More precisely, they defined the notions ofweakand strong answer setsof
dl-programs, which coincide with usual answer sets in the case of ordinary normal programs. The descrip-
tion logic knowledge bases in dl-programs are specified in the well-known description logicsSHIF(D)
andSHOIN (D) which underly OWL Lite and OWL DL [Horrocks and Patel-Schneider 2004; Horrocks
et al. 2003], respectively, but may be easily adapted to description logicsin the upcoming OWL2 standard
[Cuenca Grau et al. 2008]. The resulting formalism is very expressiveand facilitates advanced applications
like closed-world reasoning, default logic, non-deterministic model generation etc.

However, under a data-oriented perspective, similar as in deductive databases, also thewell-founded se-
mantics[van Gelder et al. 1991] is of great importance for the Web. It is, besides the answer set semantics,
the most widely used semantics for nonmonotonic logic programs. Differently from the answer set seman-
tics, the well-founded semantics remains agnostic in the presence of conflicting information and leaves truth
values undefined, rather than to reason by cases in different worlds;on the other hand, it assigns the truth
value false to a maximal set of atoms that cannot become true during the evaluation of a given program.
The well-founded semantics has several attractive features, of which the most important are perhaps that:
it extends the perfect model semantics of stratified programs and it has polynomial time complexity (mea-
sured by the data size), while the answer set semantics is intractable; indeed, efficient implementations are
available, of which XSB1 is widely known. The well-founded semantics assigns a coherent meaning toall
logic programs, while some programs may have no answer sets: moreover, itis a skeptical approximation
of the answer set semantics, in the sense that every well-founded consequence of a given ordinary normal
programP is contained in every answer set ofP . For the Web context, the significance of the well-founded
semantics is evidenced by the fact that several reasoners in this area adopt it for handling nonmonotonic
negation, includingF lora-22 (which builds on XSB) and OntoBroker3 that are based on F-Logic, and IRIS
and MINS,4 which target the WSML-Rule language [de Bruijn et al. 2006].

Motivated by these observations, in this paper, we consider the issue of the well-founded semantics for
dl-programs. Such a semantics should fulfill some desired properties. Naturally, we expect that it faithfully
generalizes the well-founded semantics of ordinary logic programs; that itapproximates the answer set
semantics of dl-programs, in particular, in the case where negation is layered (where strong answer sets
are unique); furthermore, for any underlying description logic with a polynomial data complexity, the data
complexity of dl-programs under the well-founded semantics should be polynomial as well, or even lower,
depending on the structure of the rules and the description logic knowledgebase.

1http://xsb.sourceforge.net/
2http://flora.sourceforge.net/
3http://www.ontoprise.de/en/home/products/ontobroker/
4http://iris-reasoner.org/, http://tools.sti-innsbruck.at/mins/
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The semantics proposed in this paper has the above and several other beneficial properties. Our main
contributions can be summarized as follows:

• We define the well-founded semantics for normal dl-programs by generalizing Van Gelderet al.’s
[1991] fixpoint characterization of the well-founded semantics for ordinary normal programs based
on greatest unfounded sets. While such a characterization adheres to the intuitive definition of well-
founded semantics, technical issues require careful thought for the proper extension to hybrid rule
languages that incorporate description logics. Our proposal is the firstdefinition of well-founded
semantics for such a language that is directly based on the intuitive notion of unfounded set; other
related hybrid languages with well-founded semantics [Drabent et al. 2007; Knorr et al. 2007] allow
either only limited interaction between the rule and the ontology part, or are defined by alternating
fixpoints giving the semantics a more technical flavor (see Section 9). It is important to point out
that the dl-programs under the well-founded semantics considered here are modularly defined and not
restricted to a specific underlying description logic; they are easily adaptedto the description logics
of the upcoming OWL 2 proposal.5

• We then prove some appealing semantic properties of the well-founded semantics for dl-programs.
In particular, it generalizes the well-founded semantics for ordinary normal programs. Moreover,
for general dl-programs, the well-founded semantics is a partial model, and for positive (resp., strat-
ified) dl-programs, it is a total model and the canonical least (resp., iterative least) model of these
dl-programs. Furthermore, we also show that the well-founded semantics tolerates abbreviations for
dl-atoms.

• Generalizing a result by Baral and Subrahmanian [1993], we then showthat the well-founded seman-
tics for dl-programs can be characterized in terms of the least and the greatest fixpoint of an operator
γ2

KB, which is defined using a generalized Gelfond-Lifschitz transform of dl-programs relative to an
interpretation.

• We also show that, similarly as for ordinary normal programs, the well-founded semantics for dl-
programs approximates the strong answer set semantics for dl-programs.That is, everywell-founded
ground atom is true in every answer set, and everyunfoundedground atom is false in every answer set.
Hence, every well-founded ground atom and no unfounded ground atom is a cautious (resp., brave)
consequence of a dl-program under the strong answer set semantics.Furthermore, we prove that when
the well-founded semantics of a dl-program is total, then it is the only strong answer set.

• As for computation, we show how the well-founded semantics of dl-programsKB can be computed
by finite sequences of finite fixpoint iterations, using the operatorγKB and the immediate consequence
operatorTKB of positive dl-programsKB . We also report on an implementation of the well-founded
semantics, which is based on these ideas.

• We then give a characterization of the combined complexity of the well-founded semantics for dl-
programs, over bothSHIF(D) andSHOIN (D). Like for ordinary normal programs, it is lower
or equal to the complexity under the answer set semantics forSHIF(D). More precisely, relative to
program complexity [Dantsin et al. 2001], literal inference under the well-founded semantics for dl-
programs overSHIF(D) is EXP-complete, while cautious literal inference under the strong answer

5http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/
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set semantics for dl-programs overSHIF(D) is complete for co-NEXP [Eiter et al. 2004]. However,
the problem is PNEXP-complete under both the well-founded and the answer set semantics for dl-
programs overSHOIN (D) [Eiter et al. 2008]. Intuitively, the latter is explained by the fact that
in case of very expressive description logics, the power of non-determinism in the rules ofP can be
emulated by the description logic part.

• We also characterize the data complexity of literal inference from dl-programs under the well-founded
semantics, which does not increase much compared to the data complexity of query answering in the
underlying description logics: For dl-programs over bothSHIF(D) andSHOIN (D), the problem
is PNP-complete under data complexity.

• We then delineate several data tractable cases. In detail, we show that when all dl-queries in a dl-
program can be evaluated in polynomial time (e.g., for certain dl-queries over Horn-SHIQ [Hustadt
et al. 2005] as underlying description logic), then reasoning from dl-programs under the well-founded
semantics is complete for P under data complexity, and thus has the same data complexity as reasoning
from ordinary normal programs under the well-founded semantics. Furthermore, when the evaluation
of dl-queries in a dl-program is first-order rewritable (e.g., for certain dl-queries overDL-Lite [Cal-
vanese et al. 2007] as underlying description logic), and the dl-program is additionally acyclic, then
reasoning from dl-programs under the well-founded semantics is also first-order rewritable, and thus
can be done in LOGSPACE under data complexity. Hence, in the latter case, dl-programs under the
well-founded semantics can be efficiently evaluated by means of commercial, SQL-expressive rela-
tional database systems.

The rest of this paper is organized as follows. In Section 2, we revisit some basic concepts of nonmono-
tonic logic programs and description logics. Section 3 recalls dl-programs and their answer set semantics
as defined in [Eiter et al. 2008]. In Section 4, we introduce the well-founded semantics for dl-programs,
and in Section 5, we analyze its semantic properties. Sections 6 and 7 contain complexity characterizations
and data tractable cases, respectively, while Section 8 briefly reports ona prototype implementation. After
a discussion of related work in Section 9, we give in Section 10 a brief summary and an outlook on future
research issues. Note that detailed proofs of all results in the body of thepaper are given in Appendices
A–D.

2 Preliminaries

In this section, we recall normal programs under the well-founded semantics, as well as the expressive
description logicsSHIF(D) andSHOIN (D).

2.1 Normal Programs

We now recall the syntax of normal programs and their well-founded semantics.

2.1.1 Syntax

As for the syntax of normal programs, we assume a function-free first-order vocabularyΦ = (P, C), con-
sisting of two nonempty finite setsC andP of constant and predicate symbols, respectively, and a setX of
variables. We adopt the convention that variables start with an uppercase letter, while constant and predicate
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symbols start with a lowercase letter. Aterm is either a variable fromX or a constant symbol fromΦ. A
classical literal(or literal) l is an atoma or a negated atom¬a. A negation-as-failure(NAF) literal is an
atoma or a default-negated atomnot a. A normal rule(or rule) r is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m> k> 0 , (1)

wherea, b1, . . . , bm are atoms. We refer toa as theheadof r, denotedH(r), while the conjunction
b1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive (resp.,negative) part is b1, . . . , bk (resp.,
not bk+1, . . . ,not bm). We defineB(r) = B+(r) ∪ B−(r), whereB+(r) = {b1, . . . , bk} andB−(r) =
{bk+1, . . . , bm}. We sayr is afact iff m = 0. A normal program(or program) P is a finite set of rules. We
sayP is positiveiff no rule inP contains default-negated atoms.

Example 2.1 All variablesX inX and constant symbolsc in Φ are terms;supplied(cpu, S) andvendor(V )
are atoms. An example rule isr = avoid(V ) ← vendor(V ),not rebate(V ), which may encode that
vendors without rebate are avoided. Then,H(r) = avoid(V ), B+(r) = {vendor(V )}, andB−(r) =
{rebate(V )}.

2.1.2 Well-Founded Semantics

The well-founded semantics of normal programsP has many different equivalent definitions [van Gelder
et al. 1991; Baral and Subrahmanian 1993]. We recall here the one based on unfounded sets, via the operators
UP , TP , andWP .

Let P be a program.Ground terms, atoms, literals, etc., are defined as usual. We denote byHBP the
Herbrand baseof P , that is, the set of all ground atoms with predicate and constant symbols from P (if P
contains no constant symbol, then choose an arbitrary one fromΦ), and byground(P ) the set of all ground
instances of rules inP (relative toHBP ).

For literalsl= a (resp.,l=¬a), we use¬.l to denote¬a (resp.,a), and for sets of literalsS, we define
¬.S = {¬.l | l∈S} andS+ = {a∈S | a is an atom}. We useLitP = HBP ∪ ¬.HBP to denote the
set of all ground literals with predicate and constant symbols fromP . A set of ground literalsS⊆LitP
is consistentiff S ∩ ¬.S= ∅. A (three-valued) interpretationrelative toP is any consistent set of ground
literalsI ⊆LitP .

A setU ⊆HBP is anunfounded setofP relative toI ⊆LitP , if for everya∈U and everyr∈ ground(P )
with H(r)= a, either (i)¬b∈ I ∪¬.U for some atomb∈B+(r), or (ii) b∈ I for some atomb∈B−(r).
There exists the greatest unfounded set ofP relative toI, denotedUP (I). Intuitively, if I is compatible with
P , then all atoms inUP (I) can be safely switched to false and the resulting interpretation is still compatible
with P .

The two operatorsTP andWP on consistentI ⊆LitP are then defined by:

• TP (I)= {H(r) | r∈ ground(P ), B+(r)∪¬.B−(r)⊆ I};

• WP (I)=TP (I)∪¬.UP (I).

The operatorWP is monotonic, and thus has a least fixpoint, denotedlfp(WP ),6 which is thewell-founded
semanticsof P , denotedWFS (P ). A ground atoma∈HBP is well-founded(resp.,unfounded) relative to

6As usual, for a generic operatorT , we defineT
0(A) = A andT

i+1(A) = T (T i(A)) for every integeri > 0. If T is
monotonic, thenT has a least fixpoint, denotedlfp(T ), andlfp(T ) = T

∞(∅) =
S

i>0
T

i(∅).
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P , if a (resp.,¬a) is in lfp(WP ). Intuitively, starting withI = ∅, rules are applied to obtain new positive and
negated facts (viaTP (I) and¬.UP (I), respectively). This process is repeated until no longer possible.

The unfounded set of a partial interpretationI intuitively collects all those atoms that cannot become
true when extendingI with further information. An atomb is unfounded iff there is no rule withb in its
head and with a body that can be made true. For example, an atom not appearing in any head is clearly
unfounded. One crucial point in the definition of unfounded set is that falsity of rule bodies can be testified
by unfounded atoms belonging to the same unfounded set, giving a notion of“self-supportedness”.

Example 2.2 Consider the ground programP = {p←not q; q← p; p←not r}. For I = ∅, we have that
TP (I)= ∅ andUP (I)= {r}: p cannot be unfounded because of the first rule and condition (ii), and
henceq cannot be unfounded because of the second rule and condition (i). Thus,WP (I)= {¬r}. Since
TP ({¬r})= {p} andUP ({¬r})= {r}, it then follows thatWP ({¬r})= {p,¬r}. AsTP ({p,¬r})= {p, q}
andUP ({p,¬r})= {r}, it then followsWP ({p,¬r})= {p, q,¬r}. Thus,lfp(WP )= {p, q,¬r}. That is,r
is unfounded relative toP , and the other atoms are well-founded.

2.2 Description Logics

In this section, we recall the syntax and the semantics of the expressive Description Logics (DLs)SHIF(D)
andSHOIN (D), which provide the logical underpinning of the Web ontology languages OWL Lite and
OWL DL, respectively (see [Horrocks and Patel-Schneider 2004; Horrocks et al. 2003] for further details
and background). While we focus here on these DLs, dl-programs canbe based on many other DLs such as
those of the upcoming OWL 2 proposal, with little adaptation (see also Footnote 7).

Intuitively, DLs model a domain of interest in terms of concepts and roles, which represent classes of
individuals and binary relations on classes of individuals, respectively. A DL knowledge base encodes in
particular subset relationships between classes of individuals, subsetrelationships between binary relations
on classes of individuals, the membership of individuals to classes, and themembership of pairs of indi-
viduals to binary relations on classes. Other important ingredients ofSHIF(D) (resp.,SHOIN (D)) are
datatypes (resp., datatypes and individuals) in concept expressions.

2.2.1 Syntax

We first describe the syntax ofSHOIN (D), which has the following datatypes and elementary ingredients.
We assume a setE of elementary datatypesand a setV of data values. A datatype theoryD= (∆D, ·D)
consists of adatatype(or concrete) domain∆D and a mapping·D that assigns to every elementary datatype
a subset of∆D and to every data value an element of∆D. The mapping·D is extended to all datatypes
by {v1, . . .}D = {vD1 , . . .}. Let Ψ = (A ∪RA ∪RD, I ∪V) be a vocabulary, whereA, RA, RD, andI

are pairwise disjoint (denumerable) sets ofatomic concepts, abstract roles, datatype(or concrete) roles, and
individuals, respectively. We denote byR−

A the set of inversesR− of all R∈RA.
Roles and concepts are defined as follows. Arole is an element ofRA ∪R−

A ∪RD. Conceptsare
inductively defined as follows. Every atomic conceptC ∈A is a concept. Ifo1, o2, . . . are individuals from
I, then{o1, o2, . . .} is a concept (calledoneOf). If C andD are concepts, then also(C ⊓ D), (C ⊔ D),
and¬C are concepts (calledconjunction, disjunction, andnegation, respectively). IfC is a concept,R
is an abstract role fromRA ∪R−

A, andn is a nonnegative integer, then∃R.C, ∀R.C, >nR, and6nR
are concepts (calledexists, value, atleast, andatmost restriction, respectively). IfD is a datatype,U is a
datatype role fromRD, andn is a nonnegative integer, then∃U.D, ∀U.D, >nU , and6nU are concepts
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(calleddatatype exists, value, atleast, andatmost restriction, respectively). We use⊤ and⊥ to abbreviate
the conceptsC ⊔¬C andC ⊓¬C, respectively, and we eliminate parentheses as usual.

We next define axioms and knowledge bases as follows. Anaxiom is an expression of one of the
following forms:

1. C ⊑D, calledconcept inclusion axiom, whereC andD are concepts;

2. R⊑S, calledrole inclusion axiom, where eitherR,S ∈RA orR,S ∈RD;

3. Trans(R), calledtransitivity axiom, whereR ∈ RA;

4. C(a), calledconcept membership axiom, whereC is a concept anda∈ I;

5. R(a, b) (resp.,U(a, v)), calledrole membership axiom, whereR∈RA (resp.,U ∈RD) anda, b∈ I

(resp.,a∈ I andv is a data value); and

6. a= b (resp.,a 6= b), or =(a, b) (resp., 6=(a, b)), called equality (resp., inequality) axiom, where
a, b∈ I.

We also useF ≡ G to abbreviate the two concept or role inclusion axiomsF ⊑G andG⊑F . A
(description logic) knowledge baseL is a finite set of axioms.

For an abstract roleR∈RA, we defineInv(R)=R− andInv(R−)=R. Let thetransitive and reflexive
closure of⊑ on abstract rolesrelative toL, denoted⊑⋆, be defined as follows. For two abstract roles
R andS in L, let S⊑⋆R relative toL iff either (a) S=R, (b) S⊑R∈L, (c) Inv(S)⊑ Inv(R)∈L, or
(d) some abstract roleQ exists such thatS⊑⋆Q andQ⊑⋆R relative toL. An abstract roleR is simple
relative toL iff, for each abstract roleS such thatS⊑⋆R relative toL, it holds that (i)Trans(S) 6∈L

and (ii) Trans(Inv(S)) 6∈L. For decidability, number restrictions inL are restricted to simple abstract
roles [Horrocks et al. 1999]. Observe that inSHOIN (D), concept and role membership axioms can also
be expressed through concept inclusion axioms. The knowledge that theindividual a is an instance of
the conceptC can be expressed by the concept inclusion axiom{a}⊑C, while the knowledge that the
pair (a, b) (resp.,(a, v)) is an instance of the roleR (resp.,U ) can be expressed by{a}⊑∃R.{b} (resp.,
{a}⊑∃U.{v}).

The syntax ofSHIF(D) is the one ofSHOIN (D), but without the oneOf constructor and with the
atleast and atmost constructors limited to0 and1.

The following example introduces a DL knowledge base for a product database, which is also used in
some subsequent examples.

Example 2.3 (Product Database)A small computer store obtains its hardware from several vendors. It
uses the following DL knowledge baseL1, which contains information about the product range that is
provided by each vendor and about possible rebate conditions (we assume here that choosing two or more
parts from the same seller causes a discount). For some parts, a shop may already be contracted as supplier.

> 1 supplier ⊑ Shop; ⊤ ⊑ ∀supplier .Part ; > 2 supplier ⊑ Discount ;
Shop(s1); Shop(s2); Shop(s3);
Part(harddisk); Part(cpu); Part(case);
provides(s1, cpu); provides(s1, case); provides(s2, harddisk);
provides(s2, cpu); provides(s3, harddisk); provides(s3, case);
supplier(s3, case); case 6= cpu; case 6= harddisk ; cpu 6= harddisk .
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Here, the first two axioms determineShop andPart as domain and range of the propertysupplier , re-
spectively, while the third axiom constitutes the conceptDiscount by putting a cardinality constraint on
supplier .

2.2.2 Semantics

We now define the semantics ofSHIF(D) andSHOIN (D) in terms of general first-order interpretations,
as usual, and we also recall some important reasoning problems in DLs.

An interpretationI = (∆I , ·I) with respect to a datatype theoryD= (∆D, ·D) consists of a nonempty
(abstract) domain∆I disjoint from ∆D, and a mapping·I that assigns to each atomic conceptC ∈A a
subset of∆I , to each individualo∈ I an element of∆I , to each abstract roleR∈RA a subset of∆I ×∆I ,
and to each datatype roleU ∈RD a subset of∆I ×∆D. The mapping·I is extended to all concepts and
roles as usual (where#S denotes the cardinality of a setS):

• (R−)I = {(a, b) | (b, a)∈RI};

• {o1, . . . , on}
I = {oI

1
, . . . , oI

n
};

• (C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI , and(¬C)I = ∆I \CI ;

• (∃R.C)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈CI};

• (∀R.C)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈CI};

• (>nR)I = {x∈∆I | #({y | (x, y)∈RI}) > n};

• (6nR)I = {x∈∆I | #({y | (x, y)∈RI}) 6 n};

• (∃U.D)I = {x∈∆I | ∃y : (x, y)∈UI ∧ y ∈DD};

• (∀U.D)I = {x∈∆I | ∀y : (x, y)∈UI → y ∈DD};

• (>nU)I = {x∈∆I | #({y | (x, y)∈UI}) > n};

• (6nU)I = {x∈∆I | #({y | (x, y)∈UI}) 6 n}.

The satisfactionof a DL axiomF in the interpretationI = (∆I , ·I) with respect toD= (∆D, ·D),
denotedI |=F , is defined as follows: (1)I |=C ⊑D iff CI ⊆DI ; (2) I |= R⊑S iff RI ⊆SI ; (3)
I |=Trans(R) iff RI is transitive; (4)I |=C(a) iff aI ∈CI ; (5) I |=R(a, b) iff (aI , bI)∈RI (resp.,
I |=U(a, v) iff (aI , vD)∈UI); and (6)I |= a= b iff aI = bI (resp.,I |= a 6= b iff aI 6= bI). The interpreta-
tion I satisfiesthe axiomF , or I is amodelof F , iff I |=F . The interpretationI satisfiesa DL knowledge
baseL, or I is a modelof L, denotedI |=L, iff I |=F for all F ∈L. We say thatL is satisfiable(resp.,
unsatisfiable) iff L has a (resp., no) model. An axiomF is a logical consequenceof L, denotedL |=F , iff
every model ofL satisfiesF . A negated axiom¬F is alogical consequenceof L, denotedL |=¬F , iff every
model ofL does not satisfyF .

Some important reasoning problems related to DL knowledge basesL are the following: (1) decide
whether a givenL is satisfiable; (2) givenL and a conceptC, decide whetherL 6|= C ⊑⊥; (3) givenL and
two conceptsC andD, decide whetherL |= C ⊑D; (4) givenL, an individuala∈ I, and a conceptC, decide
whetherL |= C(a); (5) givenL, two individualsa, b∈ I (resp., an individuala∈ I and a data valuev), and
an abstract roleR∈RA (resp., a datatype roleU ∈RD), decide whetherL |= R(a, b) (resp.,L |= U(a, v)),
and (6) givenL and two individualsa, b∈ I, decide whetherL |= a = b or whetherL |= a 6= b.

Here, (1) is a special case of (2), sinceL is satisfiable iffL 6|= ⊤⊑⊥. Furthermore, (2) and (3) can be
reduced to each other, sinceL |=C ⊓¬D⊑⊥ iff L |=C ⊑D. Finally, inSHOIN (D), since concept and
role membership axioms can also be expressed through concept inclusion axioms (see above), (4) and (5)
are special cases of (3).
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Example 2.4 (Product Database cont’d)Consider againL1 of Example 2.3. We observe that, for exam-
ple, Discount ⊑ Shop is not a logical consequence ofL1. Furthermore,> 2 provides(s3) is a logical
consequence ofL1, while Discount(s3) is not.

3 Description Logic Programs

In this section, we recalldescription logic programs(or simplydl-programs) under the answer set semantics
from [Eiter et al. 2004;2008], which combine DLs (under the general first-order semantics) and normal
programs under the answer set semantics. They consist of a DL knowledge baseL and a finite set of
generalized rules (calleddl-rules) P . Such rules are similar to usual rules in logic programs with negation
as failure, but may also containqueries toL in their bodies, possibly default negated. In such a query, it is
asked whether a certain DL axiom or its negation logically follows fromL. In [Eiter et al. 2004;2008], we
considered dl-programs that may also contain classical negation and not necessarily monotonic queries toL.
Here, we consider only the case where classical negation is absent andall queries toL are monotonic. The
former is in line with the traditional well-founded semantics in the ordinary case,while the latter makes the
development of a well-founded semantics for dl-programs simpler, putting thefocus on the premier fragment
of dl-programs. Indeed, most atoms with queries toL are in fact monotonic (naturally, a dl-program may
still contain NAF-literals). Furthermore, non-monotonic queries toL may be naturally emulated by atoms
with monotonic queries under well-founded semantics (cf. Section 5).

3.1 Syntax

We now define the syntax of dl-programs. As in Section 2.1, we assume a function-free first-order vo-
cabularyΦ= (P, C), consisting of two nonempty finite setsC andP of constant and predicate symbols,
respectively, and a setX of variables. Atermis either a constant symbol fromC or a variable fromX . As in
Section 2.2, we assume a description logic vocabularyΨ = (A ∪RA ∪RD, I ∪V), whereA, RA, RD, I,
andV are pairwise disjoint (denumerable) sets of atomic concepts, abstract roles, datatype roles, individu-
als, and data values, respectively. We assume thatA∪RA∪RD is disjoint fromP, while IP ⊆ C ⊆ I∪V,
whereIP is the set of all constant symbols appearing inP .

We define dl-queries and dl-atoms, which are used in rule bodies to express queries to the DL knowledge
baseL, as follows. Adl-queryQ(t) is either

(a) a concept inclusion axiomF or its negation¬F ; or

(b) of the formsC(t) or¬C(t), whereC is a concept, andt is a term; or

(c) of the formsR(t1, t2) or¬R(t1, t2), whereR is a role, andt1 andt2 are terms; or

(d) of the forms=(t1, t2) or 6=(t1, t2), wheret1 andt2 are terms.

Note here thatt is the empty argument list in (a),t= t in (b), andt= (t1, t2) in (c) and (d), and terms are
defined as above. Adl-atomhas the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m> 0, (2)

where eachSi is either a concept, a role, or a special symbolθ∈{=, 6=}; opi ∈{⊎, −∪}; pi is a unary
predicate symbol, ifSi is a concept, and a binary predicate symbol, otherwise; andQ(t) is a dl-query. We
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call p1, . . . , pm its input predicate symbols. Intuitively, opi =⊎ (resp.,opi = −∪) increasesSi (resp.,¬Si) by
the extension ofpi. A dl-rule r is of the form (1), where anyb1, . . . , bm ∈B(r) may be a dl-atom. Adl-pro-
gramKB = (L, P ) consists of a DL knowledge baseL and a finite set of dl-rulesP . We sayKB = (L, P )
is positiveiff P is positive.

Example 3.1 (Product Database cont’d)Consider the dl-programKB1 = (L1, P1), with L1 as in Exam-
ple 2.3 andP1 given as follows, choosing vendors for needed parts relative to possible rebates:

(1) vendor(s2); vendor(s1); vendor(s3);
(2) needed(cpu); needed(harddisk); needed(case);
(3) avoid(V )← vendor(V ),not rebate(V );
(4) rebate(V )← vendor(V ),DL[supplier ⊎ buy cand ;Discount ](V );
(5) buy cand(V, P )← vendor(V ),not avoid(V ),DL[provides ](V, P ), needed(P ),

not exclude(P );
(6) exclude(P )← buy cand(V1, P ), buy cand(V2, P ), V1 6= V2;
(7) exclude(P )← DL[supplier ](V, P ),needed(P );
(8) supplied(V, P )← DL[supplier ⊎ buy cand ; supplier ](V, P ),needed(P ).

Rules (3)–(5) choose a possible vendor (buy cand ) for each needed part, taking into account that the se-
lection might affect the rebate condition (by feeding the possible vendor back toL1, where the discount is
determined). Rules (6) and (7) assure that each hardware part is bought only once, considering that for some
parts a supplier might already be chosen. Rule (8) eventually summarizes allpurchasing results.

3.2 Answer Set Semantics

We now define the answer set semantics of dl-programs and summarize some of its semantic properties. We
first define (Herbrand) interpretations and the satisfaction of dl-programs in interpretations. The latter hinges
on defining the truth of ground dl-atoms in interpretations. In the sequel, letKB = (L, P ) be a dl-program
over the vocabularyΦ= (P, C).

TheHerbrand baseof P , denotedHBP , is the set of all ground atoms with (a) predicate symbols inP
that occur inP and (b) constant symbols inC. An interpretationI relative toP is any subset ofHBP . Such
anI is amodelof a ground atom or dl-atoma (or I satisfiesa) underL, denotedI |=L a, if the following
holds:

• if a∈HBP , thenI |=L a iff a∈ I;

• if a is a ground dl-atomDL[λ;Q](c), whereλ = S1op1 p1, . . . , Smopmpm, thenI |=L a iff L(I;λ) |=
Q(c), whereL(I;λ) = L∪

⋃m
i=1Ai(I) and, for1 6 i 6 m,

Ai(I) =

{

{Si(e) | pi(e)∈ I}, if opi =⊎;
{¬Si(e) | pi(e)∈ I}, if opi = −∪.

We sayI is a modelof a ground dl-ruler iff I |=L H(r) wheneverI |=LB(r), that is, I |=L a for all
a∈B+(r) and I 6|=L a for all a∈B−(r). We sayI is a modelof a dl-programKB = (L,P ), denoted
I |=KB , iff I |=L r for all r∈ ground(P ). We sayKB is satisfiable(resp.,unsatisfiable) iff it has some
(resp., no) model.
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Observe that the above satisfaction of dl-atomsa in Herbrand interpretationsI also involves negated con-
cept inclusion axioms¬(C ⊑D), negated concept membership axioms¬C(a), and negated role member-
ship axioms¬R(a, b) and¬U(a, v). For this reason, we slightly extend the standard syntax and semantics
of SHIF(D) andSHOIN (D) by also allowing such negated axioms.7 The notions of satisfaction, sat-
isfiability, and entailment are naturally extended to handle such negated axioms. In particular, a first-order
interpretationI = (∆I , ·I) satisfies¬(C ⊑D) (resp.,¬C(a), ¬R(a, b), ¬U(a, v)) iff CI 6⊆DI (resp.,
aI 6∈ CI , (aI , bI) 6∈ RI , (aI , vD) 6∈ UI). Entailment (for dl-atoms) in the slight extensions ofSHIF(D)
andSHOIN (D) can then be reduced to entailment inSHIF(D) andSHOIN (D) [Eiter et al. 2008],
respectively.

A ground dl-atoma is monotonicrelative toKB =(L,P ) iff I ⊆ I ′⊆HBP implies that ifI |=L a then
I ′ |=L a. In this paper, we focus on monotonic ground dl-atoms relative to a dl-program (which seem to be
most natural), but one can also define non-monotonic ones (see [Eiter etal. 2004;2008] and Section 9 for
further discussion).

Like ordinary positive programs, every positive dl-programKB is satisfiable and has a unique least
model, denotedMKB , which naturally characterizes its semantics.

The strong answer set semanticsof general dl-programs is then defined by a reduction to the least
model semantics of positive ones as follows, using a generalized transformation that removes all default-
negated atoms in dl-rules. For dl-programsKB = (L,P ), thestrong dl-transformof P relative toL and
an interpretationI ⊆HBP , denotedsP I

L, is the set of all dl-rules obtained fromground(P ) by (i) deleting
every dl-ruler such thatI |=L a for somea∈B−(r), and (ii) deleting from each remaining dl-ruler the
negative body. Notice thatsP I

L generalizes the Gelfond-Lifschitz reductP I [Gelfond and Lifschitz 1991].
Let KB I denote the dl-program(L, sP I

L). SinceKB I is positive, it has a unique least model. Astrong
answer set(or simplyanswer set) of KB is an interpretationI ⊆HBP that coincides with the unique least
model ofKB I .

Example 3.2 (Product Database cont’d)The dl-programKB1 = (L1, P1) of Example 3.1 has the follow-
ing three strong answer sets (only relevant atoms are shown):

{supplied(s3 , case); supplied(s2 , cpu); supplied(s2 , harddisk); rebate(s2 ); . . .};
{supplied(s3 , case); supplied(s3 , harddisk); rebate(s3 ); . . .};
{supplied(s3 , case); . . .}.

Since the suppliers3 was already fixed for the partcase, two possibilities for a discount remain (rebate(s2 )
or rebate(s3 ); s1 is not offering the needed partharddisk , and the shop will not give a discount only for the
partcpu).

We finally summarize some semantic properties. The strong answer set semantics of dl-programs
KB =(L,P ) without dl-atoms coincides with the ordinary answer set semantics ofP [Gelfond and Lif-
schitz 1991]. Moreover, strong answer sets of a general dl-program KB are also minimal models ofKB .
Finally, positive and stratified dl-programs have exactly one strong answer set, which coincides with their
canonical minimal model. Here,stratified dl-programsare composed of hierarchic layers of positive dl-
programs that are linked via default negation [Eiter et al. 2004;2008].

7 Actually, OWL 2 follows a similar pattern, allowing for negative property membership assertions, cf.http://www.w3.
org/TR/2008/WD-owl2-quick-reference-20081202/. Negative role membership axioms can also be easily emulated
using qualified role expressions, cf. [Eiter et al. 2008]; for DLs with limited expressiveness,−∪ can be simply restricted to concepts.
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4 Well-Founded Semantics

In this section, we define the well-founded semantics for dl-programs. We do this by generalizing the well-
founded semantics for ordinary normal programs. More specifically, wegeneralize the definition based on
unfounded sets as given in Section 2.

We first define the notion of an unfounded set for dl-programsKB = (L,P ). This is not that easy
technically: first, truth and falsity of dl-atoms depend onL, besidesP . Second, establishing definite falsity
of a positive classical atomb in a rule body is as easy as checking that¬b appears in the current interpretation.
Instead, for proving that a positive dl-atom is definitely false, it is necessary to consider a more general
sufficient condition, which accounts for any possible further expansion of the current interpretation. These
considerations lead to the following notion of unfounded set for dl-programs.

Definition 4.1 (Unfounded Set)Let I ⊆LitP be consistent. A setU ⊆HBP is anunfounded setof KB

relative toI iff the following holds:

(∗) for everya∈U and everyr∈ground(P ) with H(r)= a, either (i)¬b∈ I ∪¬.U for some ordinary
atomb∈B+(r), or (ii) b∈ I for some ordinary atomb∈B−(r), or (iii) for some dl-atomb∈B+(r),
it holds thatS+ 6|=Lb for every consistentS ⊆ LitP with I ∪¬.U ⊆S, or (iv) for some dl-atom
b∈B−(r), I+|=Lb.

What is new here are conditions (iii) and (iv). Intuitively, (iv) says thatnot b is for sure false, regardless
of how I is further expanded, while (iii) says thatb will never become true, if we expandI in a way such
that all unfounded atoms are kept false. The following examples illustrate theconcept of an unfounded set
for dl-programs.

Example 4.2 ConsiderKB2 = (L2, P2), whereL2 = {S⊑C} andP2 is as follows:

p(a)← DL[S ⊎ q;C](a); q(a)← p(a); r(a)← not q(a), not s(a).

Here,S1 = {p(a), q(a)} is an unfounded set ofKB2 relative toI = ∅, sincep(a) is unfounded due to (iii),
while q(a) is unfounded due to (i). The setS2 = {s(a)} is trivially an unfounded set ofKB2 relative toI,
since no rule definings(a) exists.

Relative toI = {q(a)}, S1 is not an unfounded set ofKB2 (for p(a), the condition fails) butS2 is. The
setS3 = {r(a)} is another unfounded set ofKB2 relative toI.

Example 4.3 Consider a variantKB3 = (L2, P3) of the dl-programKB2 = (L2, P2) of Example 4.2, where
P3 is obtained fromP2 by negating the dl-literal inP2. Then,S1 = {p(a), q(a)} is not an unfounded set
of KB3 relative toI = ∅ (condition (iv) fails forp(a)), butS2 = {s(a)} is. Relative toI = {q(a)}, however,
bothS1 andS2 as well asS3 = {r(a)} are unfounded sets ofKB3.

Example 4.4 Among the unfounded sets ofKB1 =(L1, P1) in Example 3.1 relative toI0 = ∅, there is
{buy cand(s1, harddisk), buy cand(s2, case), buy cand(s3, cpu)} due to (iii), since the dl-atom in rule
(5) ofP1 will never evaluate to true for these pairs. It reflects the intuition that the conceptprovides narrows
the choice for buying candidates.

The following lemma shows that the set of unfounded sets ofKB relative toI is closed under union,
which implies thatKB has a greatest unfounded set relative toI.
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Lemma 4.5 LetKB = (L,P ) be a dl-program, and letI ⊆LitP be consistent. Then, the set of unfounded
sets ofKB relative toI is closed under union.

Based on the above result thatKB has a greatest unfounded set relative toI, we now generalize the
operatorsTP , UP , andWP to dl-programs as follows.

Definition 4.6 (TKB, UKB,WKB) The operatorsTKB, UKB, andWKB on all consistentI⊆LitP are as fol-
lows:

• a ∈ TKB (I) iff a ∈ HBP and somer ∈ ground(P ) exists such that (a)H(r)= a, (b) I+ |=L b for
all b ∈ B+(r), (c) ¬b ∈ I for all ordinary atomsb ∈ B−(r), and (d)S+ 6|=L b for each consistent
S ⊆ LitP with I ⊆ S, for all dl-atomsb ∈ B−(r);

• UKB (I) is the greatest unfounded set ofKB relative toI; and

• WKB (I)=TKB (I)∪¬.UKB (I).

Note thatTKB (I)∩UKB (I)= ∅, and thusWKB (I) is indeed well-defined. The following result shows
that the three operators are all monotonic.

Lemma 4.7 LetKB be a dl-program. Then,TKB , UKB , andWKB are monotonic.

Thus, in particular,WKB has a least fixpoint, denotedlfp(WKB ). The well-founded semantics of dl-
programs can thus be defined as follows.

Definition 4.8 (Well-founded Semantics)Let KB = (L,P ) be a dl-program. Thewell-founded semantics
of KB , denotedWFS (KB), is defined aslfp(WKB ). An atoma∈HBP is well-founded(resp.,unfounded)
relative toKB iff a (resp.,¬a) belongs toWFS (KB).

The following examples illustrate the well-founded semantics of dl-programs.

Example 4.9 ConsiderKB2 of Example 4.2. ForI0 = ∅, we haveTKB2
(I0)= ∅ andUKB2

(I0)= {p(a),
q(a), s(a)}. Hence,WKB2

(I0)= {¬p(a),¬q(a),¬s(a)} (=I1). In the next iteration,TKB2
(I1)= {r(a)}

andUKB2
= {p(a), q(a), s(a)}. Thus,WKB2

(I1) = {¬p(a), ¬q(a), r(a),¬s(a)} (=I2). SinceI2 is total
andWKB2

is monotonic, it followsWKB2
(I2)= I2 and henceWFS (KB2)= {¬p(a),¬q(a), r(a),¬s(a)}.

Accordingly,r(a) is well-founded and all other atoms are unfounded relative toKB2. Note thatKB2 has
the unique answer setI = {r(a)}.

Example 4.10 Now considerKB3 of Example 4.3. ForI0 = ∅, we haveTKB3
(I0)= ∅ andUKB3

(I0) =
{s(a)}. Hence,WKB3

(I0)= {¬s(a)} (=I1). In the next iteration, we haveTKB3
(I1)= ∅ andUKB3

(I1) =
{s(a)}. Then,WKB3

(I1)= I1 andWFS (KB3)= {¬s(a)}; atoms(a) is unfounded relative toKB3. Note
thatKB3 has no answer set.

Example 4.11 Consider againUKB1
(I0 = ∅) of Example 4.4. Then,WKB1

(I0) consists of¬UKB1
(I0)

and all facts ofP1. This input to the first iteration along with (iii) applied to rule (8) adds thosesupplied

atoms toUKB1
(I1) that correspond to the (negated)buy cand atoms ofUKB1

(I0). Then,TKB1
(I1) contains

exclude(case) which forces additionalbuy cand atoms intoUKB1
(I2), regarding (i) and rule (5). The same

unfounded set thereby includesrebate(s1 ), stemming from rule (4). As a consequence,avoid(s1 ) is in
TKB1

(I3). Eventually, the finalWFS (KB1) is not able to make any positive assumption about choosing a
new vendor (buy cand ), but it is clear abouts1 being definitely not able to contribute to a discount situation,
since a supplier forcase is already chosen inL1, ands1 offers only a single further part.
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5 Semantic Properties

In this section, we explore the semantic properties of the well-founded semantics for dl-programs, and their
relationship to the strong answer set semantics. An immediate result is that it conservatively extends the
well-founded semantics for ordinary normal programs.

Theorem 5.1 LetKB =(L,P ) be a dl-program without dl-atoms. Then, the well-founded semantics ofKB

coincides with the well-founded semantics ofP .

The next result shows that the well-founded semantics of a dl-programKB = (L,P ) is a partial model
of KB . Here, a consistentI ⊆LitP is a partial modelof KB iff some consistentJ ⊆LitP exists such
that (i) I ⊆ J , (ii) J+ is a model ofKB , and (iii) J is total, that is,J+ ∪ (¬.J)+ =HBP . Intuitively, the
three-valuedI can be extended to a (two-valued) modelI ′⊆HBP of KB .

Theorem 5.2 LetKB be a dl-program. Then,WFS (KB) is a partial model ofKB .

Importantly, the well-founded semantics for dl-programs can be characterized in terms of the least and
the greatest fixpoint of a monotonic operatorγ2

KB
similar as the well-founded semantics for ordinary normal

programs [Baral and Subrahmanian 1993]. We then use this characterization to derive further properties of
the well-founded semantics for dl-programs.

Definition 5.3 For a dl-programKB = (L,P ), let the operatorγKB on I ⊆HBP be

γKB (I)=M
KB

I ,

which is the least model of the positive dl-programKB I = (L, sP I
L).

The next result shows thatγKB is anti-monotonic, like its counterpart for ordinary normal programs
[Baral and Subrahmanian 1993]. Note that this result holds only if all dl-atoms inP are monotonic.

Proposition 5.4 LetKB = (L,P ) be a dl-program. Then,γKB is anti-monotonic.

Hence, the operatorγ2
KB

(I)= γKB (γKB (I)), for all I ⊆HBP , is monotonic and thus has a least and a
greatest fixpoint, denotedlfp(γ2

KB
) andgfp(γ2

KB
), respectively. We can use these fixpoints to characterize

the well-founded semantics ofKB .

Theorem 5.5 Let KB = (L,P ) be a dl-program. Then, an atoma∈HBP is well-founded(resp., un-
founded) relative toKB iff a∈ lfp(γ2

KB
) (resp.,a 6∈ gfp(γ2

KB
)).

Example 5.6 Consider again the dl-programKB1 of Example 3.1. The setlfp(γ2
KB1

) contains the atoms
avoid(s1) andsupplied(s3, case), while gfp(γ2

KB1
) does not containrebate(s1). Thus,WFS (KB1) con-

tains the literalsavoid(s1), supplied(s3, case), and¬rebate(s1), corresponding to the result of Exam-
ple 4.11 (and, moreover, to the intersection of all answer sets ofKB1).

The next theorem shows that the well-founded semantics for dl-programsapproximates their strong
answer set semantics. That is, every well-founded ground atom is true inevery answer set, and every
unfounded ground atom is false in every answer set.
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Theorem 5.7 Let KB =(L,P ) be a dl-program. Then, every strong answer set ofKB includes all atoms
a∈HBP that are well-founded relative toKB and no atoma∈HBP that is unfounded relative toKB .

A ground atoma is a cautious(resp.,brave) consequence under the strong answer set semanticsof a
dl-programKB iff a is true in every (resp., some) strong answer set ofKB . Hence, under the strong answer
set semantics, every well-founded and no unfounded ground atom is a cautious (resp., brave) consequence
of KB .

Corollary 5.8 LetKB =(L,P ) be a dl-program. Then, under the strong answer set semantics, every well-
founded atoma∈HBP relative toKB is a cautious(resp., brave) consequence ofKB , and no unfounded
atoma∈HBP relative toKB is a cautious(resp., brave) consequence of a satisfiableKB .

If the well-founded semantics of a dl-programKB=(L,P ) is total, that is, contains eithera or ¬a for
everya∈HBP , then it specifies the only strong answer set ofKB .

Theorem 5.9 Let KB = (L,P ) be a dl-program. If every atoma∈HBP is either well-founded or un-
founded relative toKB , then the set of all well-founded atomsa∈HBP relative toKB is the only strong
answer set ofKB .

Like in the case of ordinary normal programs, the well-founded semantics for positive and stratified
dl-programs is total and coincides with their least model semantics and iterativeleast model semantics,
respectively. This result can be elegantly proved using the characterization of the well-founded semantics
given in terms of theγ2

KB
operator.

Theorem 5.10 LetKB = (L,P ) be a dl-program. IfKB is positive(resp., stratified), then(a) WFS (KB)
is a total model, that is,WFS (KB)+ ∪ (¬.WFS (KB))+ =HBP , and(b) WFS (KB)∩HBP is the least
model(resp., the iterative least model) of KB , which coincides with the unique strong answer set ofKB .

Example 5.11 The dl-programKB2 in Example 4.2 is stratified (intuitively, the recursion through negation
is acyclic) whileKB3 in Example 4.3 is not. The result computed in Example 4.9 verifies the conditions of
Theorem 5.10.

We finally show that we can limit ourselves to dl-programs indl-query form, where dl-atoms equate
designated predicates. Formally, a dl-programKB = (L,P ) is in dl-query form, if eachr∈P involving a
dl-atom is of the forma← b, whereb is a dl-atom. Any dl-programKB = (L,P ) can be transformed into
a dl-programKBdl =(L,P dl) in dl-query form. Here,P dl is obtained fromP by replacing every dl-atom
a(t) = DL[λ;Q](t) by pa(t), and by adding the dl-rulepa(X)← a(X) to P , wherepa is a new predicate
symbol, andX is a list of variables corresponding tot. Informally,pa is an abbreviation fora.

The following result now shows thatKBdl andKB are equivalent under the well-founded semantics.
Intuitively, this means that the well-founded semantics tolerates abbreviationsin the sense that they do not
change the semantics of a dl-program. This normal form is particularly useful for the computation of the
well-founded semantics, as it allows to eliminate dl-atoms from arbitrary rules and to move them to special
rules. Another good property is that the transformation to normal form preserves stratification.

Theorem 5.12 LetKB = (L,P ) be a dl-program. Then,WFS (KB)=WFS (KBdl ) ∩ LitP .
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Table 1: Complexity of literal entailment from dl-programsKB =(L,P ) under the well-founded semantics.

L in SHIF(D) L in SHOIN (D)

General Complexity EXP-complete PNEXP-complete

Data Complexity PNP-complete PNP-complete

We close this section with a brief comment on dl-programs with nonmonotonic dl-atoms [Eiter et al.
2008]. The latter also have the form (2), butopi may be−∩, whereSi−∩ pi increases¬Si by thecomplement
of pi. This is equivalent toSi −∪ pi, given thatpi is the complement ofpi, which is expressible with a
rule pi(X) ← not DL[S′

i
−∪ pi;S

′
i](X), whereS′

i is a fresh concept resp. role name, provided that the DL
knowledge base is satisfiable. In this way, any dl-programKB =(L, P ) with satisfiableL can be rewritten
to the premier fragment that we consider here; for unsatisfiableL, the rewriting is also usable (thoughpi

may not be the complement ofpi).

6 Computation and Complexity

In this section, we show how the well-founded semantics of dl-programsKB can be computed by finite
sequences of finite fixpoint iterations, using the operatorγKB and the immediate consequence operator
TKB of positive dl-programsKB . We also analyze the general and the data complexity of reasoning from
dl-programs under the well-founded semantics. Our complexity results are compactly summarized in Ta-
ble 1. In detail, deciding literal entailment from a dl-programKB = (L,P ) with L in SHIF(D) (resp.,
SHOIN (D)) under the well-founded semantics is complete for EXP (resp., PNEXP) in general, and com-
plete for PNP (for both DLs) under data complexity. PNP-complete forSHIF(D) under data complexity
(for SHOIN (D), the same is believed). In fact, the PNP upper bound for data complexity extends to all
description logicsL for which literal inferenceI |=L a is decidable in polynomial time with an NP oracle
under data complexity.

6.1 Fixpoint Iteration

The well-founded semantics of dl-programsKB can be computed by two finite fixpoint iterations, via the
operatorγKB , using in turn finite fixpoint iterations for computing the least models of positivedl-programs,
via their immediate consequence operator.

More concretely, for any positive dl-programKB = (L,P ), the least model ofKB , denotedMKB ,
coincides with the least fixpoint of the immediate consequence operatorTKB [Eiter et al. 2004], which is
defined as follows for everyI ⊆HBP :

TKB (I) = {H(r) | r∈ ground(P ), I |=L ℓ for all ℓ∈B(r)} .

To compute the well-founded semantics of a normal dl-programKB = (L,P ), that is,WFS (KB) =
lfp(γ2

KB
) ∪ ¬(HBP − gfp(γ2

KB
)), we compute the least and the greatest fixpoint ofγ2

KB
as the limits of the
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two fixpoint iterations

lfp(γ2
KB

) = U∞ =
⋃

i>0 Ui, whereU0 = ∅, andUi+1 = γ2
KB

(Ui), for i > 0, and

gfp(γ2
KB

) = O∞ =
⋂

i>0Oi,whereO0 = HBP , andOi+1 = γ2
KB

(Oi), for i > 0,

respectively, which are both reached within|HBP | many steps. Recall that the operatorγKB is defined
by γKB (I)=M

KB
I (with KB I = (L, sP I

L)), for all I ⊆HBP . As argued above,M
KB

I coincides with
lfp(T

KB
I ), for all I ⊆HBP . To computeγKB (I), for all I ⊆HBP , we thus compute the least fixpoint of

T
KB

I as the limit of the fixpoint iteration

lfp(T
KB

I ) = S∞ =
⋃

i>0 Si, whereS0 = ∅, andSi+1 = T
KB

I (Si), for i > 0,

which is also reached within|HBP | many steps.

6.2 General Complexity

We recall that for a given ordinary normal program, computing the well-founded model needs exponential
time in general (measured in the program size [Dantsin et al. 2001]), and also reasoning from the well-
founded model has exponential time complexity. Furthermore, evaluating a ground dl-atoma of the form
(2) for KB =(L,P ) given an interpretationIp of its input predicatesp = p1, . . . , pm (that is, deciding
whetherI |=L a holds for eachI that coincides onp with Ip) is complete for EXP (resp., co-NEXP) forL in
SHIF(D) (resp.,SHOIN (D)) [Eiter et al. 2004], where EXP (resp., NEXP) denotes exponential (resp.,
nondeterministic exponential) time; this is inherited from the complexity of deciding whether a knowledge
base inSHIF(D) (resp.,SHOIN (D)) is satisfiable [Tobies 2001; Horrocks and Patel-Schneider 2004].

The following result shows that computing the well-founded semantics of a dl-programKB = (L,P )
overSHIF(D) can be done in exponential time, and that reasoning from such programs under the well-
founded semantics is EXP-complete; hardness holds even whenL is empty orP contains only one rule. That
is, the complexity of the well-founded semantics for such programs does notincrease over the one of ordi-
nary normal programs. The membership part follows from the above fixpoint characterization of the well-
founded semantics of dl-programs and the EXP-membership of decidingI |=L a for L in SHIF(D), while
the hardness part follows from the EXP-hardness of reasoning fromthe well-founded semantics of ordinary
normal programs as well as the EXP-hardness of deciding knowledge base satisfiability inSHIF(D).

Theorem 6.1 Given a vocabularyΦ and a dl-programKB = (L,P ) with L in SHIF(D), computing
WFS (KB) is feasible in exponential time. Furthermore, given additionally a literall∈LitP , deciding
whetherl∈WFS (KB) holds isEXP-complete. Hardness holds even in the cases where (a)L is empty or
(b) P contains only one rule.

For dl-programs overSHOIN (D), the computation of the well-founded semantics and reasoning from
it is expected to be more complex than for dl-programs overSHIF(D), since already evaluating a single
dl-atom is co-NEXP-hard. Computing the well-founded semantics can be done, in a similar manner as in
the case ofSHIF(D), in exponential time using an oracle for evaluating dl-atoms; to this end, an NP
oracle is sufficient. As for the reasoning problem, this means that deciding whetherl∈WFS (KB) holds
is in EXPNP. A more precise account reveals the following strict characterization of the complexity, show-
ing that reasoning from dl-programsKB = (L,P ) over SHOIN (D) under the well-founded semantics
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is complete for PNEXP, which is intuitively strictly contained in EXPNP,8 and hardness holds even when
P is stratified. The membership part follows from the above fixpoint characterization of the well-founded
semantics of dl-programs and the co-NEXP-membership of decidingI |=L a for L in SHOIN (D), using
a census technique, which essentially allows to evaluate all dl-atoms in advance in polynomial time with an
oracle for NEXP, while the hardness part follows from the PNEXP-hardness of strong answer set existence
for stratified dl-programs [Eiter et al. 2004].

Theorem 6.2 Given a vocabularyΦ, a dl-programKB = (L,P ) with L in SHOIN (D), and a literal
l∈LitP , deciding whetherl∈WFS (KB) holds isPNEXP-complete. Hardness holds even in the case where
P is stratified.

The results in Theorems 6.1 and 6.2 also show that, like for ordinary normal programs, inference under
the well-founded semantics is computationally less complex than under the answer set semantics for dl-
programs(L, P ) with L from SHIF(D), as cautious reasoning from the strong answer sets such a dl-
programs is complete for co-NEXP; withL from SHOIN (D), the complexity is the same. [Eiter et al.
2004;2008].

Analog complexity results for literal inference under the well-founded semantics can be derived forL
from other DLs; for the upcoming OWL2 proposal, an adjusted proof of Theorem 6.2 shows that the problem
is in P2NEXP (and presumably also complete for this class), and for the OWL2 profiles EL, QL, and RL, an
adjusted proof of Theorem 6.1 that it is EXP-complete. This is because deciding I |=L a for L in the DL
SROIQ underlying OWL2 is co-2NEXP-complete, as follows from [Kazakov 2008], and forL in EL, QL,
and RL is polynomial.9

6.3 Data Complexity

We now explore the data complexity of reasoning from dl-programsKB = (L,P ) under the well-founded
semantics. Here, only the constant symbols in the vocabularyΦ, the concept and role membership axioms
in L, and the facts inP may vary, while the rest ofΦ, L, andP is fixed. The following result, which
follows from the above fixpoint characterization of the well-founded semantics of dl-programs, shows that
the data complexity of dl-programs does not increase much compared to the one of query answering in the
description logic whereL is from.10

Proposition 6.3 Given a vocabularyΦ, a dl-programKB = (L,P ) with L from a description logicL
for which decidingI |=L a has data complexity in classC, and a literal l∈LitP , deciding whether
l∈WFS (KB) holds is inPC under data complexity.

Exploiting this, we derive that for bothL = SHIF(D) andL = SHOIN (D) the problem is PNP-
complete under data complexity; hardness holds even whenL is inALE andP is stratified. Indeed, unsat-
isfiability and instance checking inSHOIN (D) (andSROIQ(D)) are in co-NP under data complexity
(which follows from results in [Pratt-Hartmann 2008]); the hardness part is shown by a generic reduction

8In EXPNP, a NEXP oracle can be emulated, and computation trees with branching on the (emulated) oracle answers can
have double exponentially many paths and exponential depth; intuitively, finding the correct computation path in such a tree needs
exponentially many NEXP oracle calls. Still PNEXP = EXPNP is possible, e.g., if NEXP= EXP andNP = P.

9As follows fromhttp://www.w3.org/TR/2008/WD-owl2-profiles-20081202/.
10Note that a slightly modified construction can be used to derive the data complexity of deciding consistency and of cau-

tious/brave reasoning under strong/weak answer sets.
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from Turing machines, exploiting the co-NP-hardness proof for instance checking inALE by Donini et
al. [1994].

Theorem 6.4 Given a vocabularyΦ, a dl-programKB = (L,P ) withL in SHIF(D) and a literall∈LitP ,
deciding whetherl∈WFS (KB) holds isPNP-complete under data complexity. Hardness holds even in the
case where (i)L is inALE and (ii) P is stratified.

7 Data Tractability

We now delineate special cases where reasoning from dl-programs under the well-founded semantics can
be done in polynomial time and in LOGSPACE in the data complexity.

7.1 Polynomial Case

We first focus on the case where the evaluation of all dl-atoms in a dl-program can be done in polynomial
time. In this case, reasoning from dl-programs under the well-founded semantics is complete for P under
data complexity, and thus has the same data complexity as reasoning from ordinary normal programs under
the well-founded semantics. This result is formally expressed by the following theorem, whose membership
part follows immediately from Proposition 6.3 while the hardness part follows from the P-completeness of
reasoning from the well-founded semantics of ordinary normal programs.

Theorem 7.1 Given a vocabularyΦ, a dl-programKB = (L,P ), and a literal l∈LitP , where every dl-
atom inP can be evaluated in polynomial time, deciding whetherl ∈ WFS (KB) is complete forP under
data complexity.

Since there is a current trend towards highly scalable query answering and reasoning over ontologies,
there are many recent DLs that allow for evaluating dl-atoms in polynomial time. Among the most ex-
pressive ones is Horn-SHIQ [Hustadt et al. 2005], which is a fragment of the description logic behind
OWL Lite, and which allows for reasoning and conjunctive query answering in polynomial time under data
complexity [Eiter et al. 2008]. The following theorem shows that reasoningfrom dl-programsKB = (L,P )
under the well-founded semantics, whereL is defined in Horn-SHIQ, has the same data complexity as in
the ordinary case, when all concepts in dl-queries inP are atomic.

Theorem 7.2 Given a vocabularyΦ, a dl-programKB = (L,P ), and a literal l∈LitP , where (i)L is
defined in Horn-SHIQ, and (ii) all conceptsC andD in dl-queries of one of the forms amongC ⊑D,
¬(C ⊑D), C(t), and¬C(t) in P are atomic (including⊥ and⊤), deciding whetherl∈WFS (KB) is
complete forP under data complexity.

Similarly, under data complexity, literal inference under the well-founded semantics is P-complete for
dl-programs over knowledge bases in the OWL2 profiles EL, QL, and RL.

7.2 First-Order Rewritable Case

We next consider the case where the evaluation of every dl-query in a dl-programKB = (L,P ) is first-
order rewritable. In this case, if we make additional acyclicity assumptions aboutP , then reasoning from
dl-programs under the well-founded semantics is also first-order rewritable, which implies that reasoning
from dl-programs under the well-founded semantics can be done in LOGSPACE under data complexity.
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Here, a dl-queryQ(t) overL is first-order rewritableiff it can be expressed in terms of a first-order
formula φ(t) over the setLCR of all concept and role membership axioms inL, that is, for everyc, it
holds thatL |= Q(c) iff ILCR

|= φ(c), where for any set of atomsF , we denote byIF the total Herbrand
interpretation that satisfies exactly the atoms inF (i.e., under the closed world assumption onF ).11 The
dl-programKB is first-order rewritableiff the extension of every predicatep(x) in WFS (KB) can be
expressed in terms of a first-order formulaφ(x) over the setF of all concept and role membership axioms in
L and all database facts inP , that is, for everyc, it holds thatp(c)∈WFS (KB) iff IF |= φ(c). Informally,
such dl-atoms and predicates can be expressed in terms of SQL queries over a relational database. The
notion of acyclicity for dl-programs assures that they are first-order rewritable when all dl-atoms are so. It
is defined as follows. LetPP denote the set of all predicate symbols inP . We sayKB = (L,P ) is acyclic
iff a mappingκ : PP → {0, 1, . . . , n} exists such that for everyr∈P , the predicate symbolp of H(r), and
every predicate symbolq of some ordinaryb∈B(r) or of an input argument of some dl-atomb∈B(r), it
holdsκ(p)>κ(q).

The following result shows that reasoning from acyclic dl-programsKB = (L,P ) under the well-
founded semantics is first-order rewritable (and thus can be done in LOGSPACE under data complexity),
when (i) all dl-queries inP are first-order rewritable, and (ii) if the operator−∪ occurs inP , thenL is defined
over a description logic that (ii.a) isCWA-satisfiable(that is, for every description logic knowledge base
L′, the union ofL′ and all negations of concept and role membership axioms that are not entailed byL′ is
satisfiable) and (ii.b) allows for first-order rewritable concept and role memberships.

Theorem 7.3 Given a vocabularyΦ, an acyclic dl-programKB = (L,P ), and a literal l ∈ LitP , where
(i) every dl-query inP is first-order rewritable, and (ii) if the operator−∪ occurs inP , thenL is defined over
a description logic that (ii.a) is CWA-satisfiable, and (ii.b) allows for first-order rewritable concept and role
memberships, deciding whetherl ∈WFS (KB) is first-order rewritable.

In particular, reasoning from acyclic dl-programsKB =(L,P ) under the well-founded semantics is
first-order rewritable (and thus can be done in LOGSPACE under data complexity), when (i)L is defined in
a description logic of theDL-Lite family [Calvanese et al. 2007] (in which knowledge base satisfiability and
conjunctive queries are both first-order rewritable) and (ii) we assume suitable restrictions on dl-queries in
P .

Theorem 7.4 Given a vocabularyΦ, an acyclic dl-programKB = (L,P ), and a literal l∈LitP , where
(i) L is defined in a description logic of the DL-Lite family, and (ii) all dl-queries inP are of one of the
formsC ⊑D,¬(C ⊑D),C(t), andR(t, s), whereC is an atomic concept, andD is an atomic or a negated
atomic concept, deciding whetherl∈WFS (KB) is first-order rewritable.

Finally, we remark that the LOGSPACE feasibility generalizes from first-order rewritable dl-atoms to one
that can be evaluated in LOGSPACE, but omit further details.

8 Implementation

Based on the ideas of Section 6, we developed an experimental system forcomputing the well-founded
semantics of a given dl-programKB = (L,P ). It consists of three separate modules: the answer set solver

11Note that the notion of first-order rewritability here does not mean that every knowledge baseL in a description logicL can be
expressed as an equivalent first-order theory (which holds for most description logics). Note also that the first-order rewritability
here corresponds to the first-order reducibility in [Calvanese et al. 2007].
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DLV [Leone et al. 2006], the description logic reasoner RACER [Haarslev and M̈oller 2001], and a module
W that computesWFS (KB) by accessing DLV and RACER.

In a first step, a programPd is computed fromP by replacing every dl-atomDL[λ;Q](t) by an atom
pDL[λ;Q](t), wherepDL[λ;Q] is a fresh predicate. The programPd is then grounded using the grounding mod-
ule of the DLV system. For that, optimizations performed by that module are properly disabled (otherwise,
the result may not be sound for our purposes). After appropriately reintroducing the dl-atoms in the obtained
programgrd(Pd), the resulting programP ′′ = grd(Pd)

′ is returned to the moduleW , which then computes
lfp(γ2

(L,P ′′)) andgfp(γ2
(L,P ′′)) as defined in Section 6.1. Whenever the truth value of a given dl-atom has to

be determined,W invokes the RACER system; the latter performs reasoning onL and variants thereof.
It is worth mentioning that the RACER module has been embedded within a cachingmodule that short-

cuts multiple (time consuming) similar queries; e.g., the truth value ofDL[λ;C](a) can be quickly es-
tablished ifDL[C](a) is true and this information is cached; dually, ifDL[λ;C](a) is cached as false,
subsequent queriesDL[C](a) can be answered by a quick cache lookup.

The moduleW is also exploited for computing the answer set semantics ofKB . In virtue of Theorem
5.7, one can indeed, providedKB is consistent, computeWFS (KB) and exploit this information for con-
straining atoms inlfp(γ2

(L,Pd)) as true in any answer set, while atomsgfp(γ2
(L,Pd)) can be constrained to not

appear in any answer set. One can exploitconstraints(i.e., rules with empty head) in DLV programs for this,
which allow to prune models. An intermediate ordinary programP ′ obtained fromP can be enriched with
the constraint← not a for any atoma such thata∈WFS (KB), and with a constraint← a for any atoma
such that¬a∈WFS (KB). Notice that such constraints may also be added only for a subset ofWFS (KB)
(e.g., the subset obtained after some steps in the least/greatest fixpoint iteration of γ2

KB
). This technique

proves to be useful for helping the answer-set programming solver to converge to solutions faster.
The prototype system12 in fact supports both the answer set semantics and the well-founded semantics

of dl-programs. More details about the architecture and the algorithms, as well as optimization techniques,
can be found in [Eiter et al. 2005; Schindlauer 2006; Eiter et al. 2008].

9 Related Work

In this section, we discuss related work on combining rules and ontologies, and also consider related work
on logic programs with aggregates.

9.1 Combinations of Rules and Ontologies

A number of proposals to integrate rules and ontologies have been made in thelast years; we refer to [Eiter
et al. 2008; Drabent et al. 2009; Rosati 2006; Motik and Rosati 2007a] which also give (slightly different)
taxonomies to distinguish different types of combinations, for recent surveys.

As for this paper, we confine our discussion to combinations of rules and ontologies, where ontologies
are expressed in description logics, and rules and ontologies are combined into a native formalism rather
than a common fragment (like DLPs [Grosof et al. 2003]), or one where rules have an inherent classical
(implicational) semantics, like in SWRL [Horrocks et al. 2004] and its fragments(e.g., [Motik et al. 2005;
Krötzsch et al. 2008]). Moreover, we focus on important approaches from the perspective of well-founded
semantics.

12https://www.mat.unical.it/ianni/swlp/
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Donini et al. [1998] combined Datalog with the DLALC intoAL-log . A rule may have atomsC(X)
whereC is a concept in the body, which act as “constraints”; the variableX must however also occur in
an ordinary body atom (DL-safety). Levy and Rousset [1998] similarly combined Horn rules with the DL
ALCNR into CARIN, allowing also role atomsR(X,Y ) in rule bodies; this leads to undecidability already
in very simple settings.

Rosati’sDL+log [2006] distinguishesDL andDatalog predicates; DL and Datalog atoms may occur
in both the head and the body of a rule, butnotis restricted to Datalog atoms; in addition, each occurring
variableX must occur in some unnegated atom in the body; the latter must be a Datalog atom, ifX occurs
in a dl-atom in the head (weak DL-safety). Rosati defined an answer set (stable model) semantics for a KB
(T , P ) in a two step process by handling first the classical partT and then the rulesP (see Section 9.1.1
and [Rosati 2006] for details), which faithfully generalizes the semantics of T andP .

Rosati and Motik’s [2007b] hybrid MKNF KBs(T , P ) treat DL and Datalog predicates homogeneously,
thus allowing thatnot is applied to dl-atoms. They resort to the logic of Minimal Knowledge and Negation
as Failure [Lifschitz 1991], lifting in a senseDL+log KBs to a more general and elegant framework. Two
modal operators can change the interpretation of an atom (or a formula in general):Kφ, which intuitively
means thatφ is necessarily known to be true, andnotφ, which intuitively means thatφ is not true, i.e., false
in some scenario. Rosati and Motik’s semantics of(T , P ), which is based, in S5-style, on (pairs of) sets of
possible worlds, captures naturally the answer set semantics ofP .

The approaches above give semantics to a hybrid KB in terms of two-valued(classical) models resp.
sets of such models in case of MKNF, wherenot is handled similarly as in answer set semantics. They
informally give a canonical semantics to programs without recursion through negation, where for ordinary
logic programs answer set and well-founded semantics do coincide. Well-founded semantics beyond such
programs is a natural and important issue. In the following, we consider twosuch approaches.

9.1.1 Hybrid Programs

Drabent and Maluszynski [2007] consideredhybrid programs(T , P ) whereT is an ontology specified as a
set of DL axioms (in first-order logic) andP is a normal logic program where the rules may have constraint
expressionsC1, . . . , Cm in the bodies, where eachCi is a disjunctive normal form over literal constraints
p(X) and¬p(X), wherep is an ontology predicate. In some sense, hybrid programs can be viewed as a
variant ofDL+log where the stable model semantics forP is replaced with the well-founded semantics; in
fact, as ontology predicates can only occur in rule bodies, hybrid programs are closer in spirit toAL-log
[Donini et al. 1998].

The well-founded semantics for hybrid programs(T , P ) is defined by a reduction to ordinary logic pro-
gramming similar as inDL+log . Given a modelM for T , the programP/M consists of all groundings of
rules inP that satisfy all constraints inM , from which all constraints are removed. The well-founded model
of P w.r.t.M is then the (unique) well-founded model of the ordinary logic programP/M . Semantically,
this model approximates the answer sets ofP/M according toDL+log . A ground literala (resp.,¬a) is
true in the well-founded semantics of(T , P ), if a is true (resp., false) in the well-founded model ofP w.r.t.
every model ofT . Thus, it can be viewed as an approximation of the skeptical answer set semantics of
(T, P ) in DL+log , similar as the well-founded semantics of dl-programs is an approximation of its answer
set semantics.

The declarative semantics has been complemented with an operational semantics for query answering,
which is based on an extension of SLD-resolution handling negation and constraints; an implementation
of a prototype for Datalog programs with negation, which uses XSB and via astandardized interface a
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DL-reasoner (e.g., RacerPro) has been described in [Drabent et al. 2007].
Compared to dl-programs, hybrid programs seem more query-oriented than model-oriented. The re-

striction that ontology predicates cannot occur in rule heads means that hybrid programs(T, P ) allow only
a unidirectional flow of information from the ontologyT to the rulesP , while dl-programs enable a bidi-
rectional flow of information between the rules and the ontology. Query answering from positive hybrid
programs is thus, like for positive ordinary programs, reducible to (un)provability in classical logic; the
same holds only for a fragment of the corresponding class of positive dl-programs. On the other hand, hy-
brid programs share withDL+log the possibility to express reasoning by cases from the ontology via simple
rules. For dl-programs, this is not possible, but such reasoning may be shifted to dl-atoms or supported by
more expressive dl-atoms like cq-atoms (cf. the example below and the discussion forDL+log in [Eiter
et al. 2008]).

Every modelM of T gives rise to a well-founded model ofP/M and influences the well-founded
consequences. On the other hand, ifT has no model, the inconsistency spreads to the rules and all ground
queries are true. For example, ifP consists of the rulesq ← p(a), q ← ¬p(a), andr ← not q, wherep is an
atomic concept, andT is unsatisfiable, then bothr andq are concluded under hybrid programs semantics;
however, intuitively one may expect thatr is false, as it can never be true regardless of the contents ofT .
The corresponding dl-program, with reasoning by cases ofp(a) expressed byq ← DL[p ⊔ ¬p](a), would
conclude this under the well-founded semantics.

Due to the quantification over the models ofT , also a nice model-based interpretation of the well-
founded semantics for hybrid programs is non-obvious. Indeed, while our well-founded semantics yields a
partial model of the dl-program with a simple totalization (cf. Theorem 5.2), thisis not the case for hybrid
programs. In connection with this, well-founded semantics of our dl-programs is directly defined on the
intuitive and constructive notion of unfounded set (which results in a fixpoint), while an appealing notion of
unfounded set for hybrid programs is unclear.

9.1.2 Hybrid MKNF Knowledge Bases under the Well-Founded Semantics

Knorr et al. [2008] gave a well-founded semantics for hybrid MKNF KBsK = (T , P ) whereP amounts to
a normal logic program, and more precisely consists of rules of the form

Kh← Kb1, . . .Kbm,not bm+1, . . . ,not bn ,

whereh and allbi are atoms. The KB is transformed into the MKNF formulaπ(K) = Kπ(T ) ∧ π(P ),
whereπ(T ) =

∧

φ∈T φ, π(P ) =
∧

r∈P π(r) andπ(r) is the universal closure ofr read as material impli-
cation (assuming thatT andP are finite). As we aim here to give the flavor of the approach, we omit for
simplicity further technical assumptions (safety of rules, treatment of equality, etc) and give just a superficial
description.

Using an S5-style approach,K andnot are evaluated over setsM of 2-valued (Herbrand) interpretations
(or possible worlds)I; in fact,pairsM = (M1,M2) of such sets are used for the 3-valued logic, whereM1

serves for truth valuetrue andM2 for false. Three-valued MKNF structures are of the form(I,M,M′),
where

⋂

M1 ⊆
⋂

M2 and where
⋂

M ′
1 ⊆

⋂

M ′
2, over which formulas are inductively evaluated, where

M is used forKφ andM′ for notφ. A pairM = (M1,M2), whereM1 ⊇ M2, satisfies a closed MKNF
formulaφ, if φ evaluates totrue on (I,M,M) for eachI ∈M1;M is a(partial) MKNF modelof φ, if in
addition for everyM′ = (M ′

1,M
′
2) such thatM ′

i ⊇ Mi for i = 1, 2 and one of the inclusions is proper,φ
does not evaluate totrue on (I,M′,M) for someI ′ ∈M ′

1.
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In order to select a particular MKNF modelwf (K) of π(K) as the semantics ofK, Knorr et al. single
out subsetsPK andNK of the setKA(K) of all ground atomsKξ such that eitherKξ or not ξ occurs in
the grounding ofP ; intuitively, PK andNK state ground atoms that evaluate totrue respectivelyfalse.
They are obtained by an alternating fixpoint construction, similar to the one for ordinary logic programs
(cf. Section 5), using a monotonic consequence operatorTK′ for not-free (“positive”) KBsK′ on subsets
of KA(K′) (in fact,K is slightly rewritten in order to correlate falsity of atomsξ in the first-order partT to
notξ in P ); general KBs are reduced to positive KBs using a Gelfond-Lifschitz style reduction.

Most of the properties of the traditional well-founded model are preserved; given that the first-order part
T is consistent,wf (K) is unique, and moreover, it is the least MKNF model ofK according to a natural
knowledge ordering. Ifwf (K) is total, i.e., of form(M,M), then it coincides with the unique MKNF model
of K as in [Motik and Rosati 2007b]; ifT = ∅, thenwf (K) corresponds to the well-founded model ofP .
Furthermore, computingwf (K) is polynomial in data complexity if entailment in the DL underlyingT has
such complexity.

The approach of Knorr et al. bears some similarity to ours as it builds on a monotonic consequence oper-
ator. However, the alternating fixpoint construction has a strong technical flavor and may be less persuasive
than a construction that works from first principles with unfounded sets.Similar as with hybrid programs
above,wf (K) may not exist ifT itself or its interaction with the rules partP is not consistent. The latter
can be detected in the iterated fixpoint construction, while inconsistency ofT is not expressible at the object
level of the semantics; in dl-programs, this is trivial (use e.g. a ruleincons ← DL[⊤ ⊑ ⊥]() ) and can
be exploited for expressing paraconsistent behavior. Finally, the interfacing approach of dl-programs makes
them more amenable for incorporating variants of entailment from the ontologyand (possibly heterogenous)
other knowledge bases, which seems more difficult for the tight integration realized by the hybrid MKNF
approach.

We remark that several other interesting formalisms have potential for combining logic programs and
DLs under the well-founded semantics. Among these are FO(ID) logic [Denecker and Vennekens 2007],
which extends first-order logic with inductive definitions, quantified equilibrium logic [de Bruijn et al. 2007],
and first-order autoepistemic logic [de Bruijn et al. 2007]; for the latter two,a well-founded semantics
remains to be developed.

9.2 Logic Programming with Aggregates

Our dl-programs are related to extensions of logic programs with aggregates, for which also a well-founded
semantics has been developed independently, e.g., [Calimeri et al. 2005; Pelov et al. 2007]. Such programs
allow aggregate atoms in rule bodies, which in [Calimeri et al. 2005] are roughly of the formf(S) θ k,
wheref(S) is an aggregate functionf such asmin, max, sum, or count, applied to a set of elementsS that
is specified using a conjunction of ordinary atoms,θ is a comparison operator, andk a value. An example
is #count{X : h(X), p(X, a)} < 2, which evaluates to true if less than two ground values forX satisfy
the given conjunction. Pelov et al. [2007] considered a notion of aggregate wheref andθ are abstracted to
aggregate functions and aggregate relations.

Intuitively, aggregate atoms work similarly as dl-atoms over some given input from the program, even
though the underlying evaluation domain is completely different. Noticeably, Calimeri et al. [2005] defined
a well-founded semantics of non-monotonic logic programsP with aggregates (assuming each is either
monotone or anti-monotone) based on a notion of unfounded set, in the usual way [van Gelder et al. 1991].
According to their definition, a set of (ordinary) ground atomsX is unfounded w.r.t. a given (partial) in-
terpretationI, if for each ruler from the grounding ofP that has some atom fromX in the head, either
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(a) some anti-monotone literal in the body ofr is false w.r.t.I, or (b) some monotone body literal ofr is
false w.r.t.(I − X) ∪ ¬.X; here, falsity of an aggregate atom in a partial interpretation amounts to falsity
in all its totalizations. The condition (a) corresponds to our conditions (ii) and(iv) in Definition 4.1, while
(b) corresponds to (i) and (iii). Note that the two notions of unfoundedness coincide ifI ∩ X = ∅. This
is the relevant case forWFS (KB), as in the least fixpoint-construction ofWKB , UKB (I) andI (which is
contained inTKB (I)) will be always disjoint. Thus, Calimeri et al.’s notion of unfounded set results in the
same well-founded semantics as our notion.

The notion of unfounded set was extended later by Faber [2005] to arbitrary aggregates, by changing
(a) and (b) to falsity of some literal in the body ofr w.r.t. I and w.r.t.(I − X) ∪ ¬.X, respectively. To
accommodate non-monotonic dl-atoms like those in [Eiter et al. 2004;2008], we can to the same effect
change (iv) in Definition 4.1 to (iv′) for some dl-atomb∈B−(r), S+|=Lb for every consistentS ⊆ LitP
with I ∪¬.U ⊆S, and generalize (b) ofTKB (I) to (b′) S+ |=L b, for all consistentS ⊆ LitP with I ⊆ S
and allb ∈ B+(r). The properties in Section 5 then naturally carry over to the extended setting(where
strong answer sets do not allow non-monotonic dl-atoms in positive rule bodies).

On the other hand, Pelov et al. defined well-founded semantics for logic programs with aggregates on a
purely algebraic basis without unfounded sets, using operators on bilattices in the theory of approximating
operators [Denecker et al. 2004]. Studying dl-programs and their properties in an analog framework would
be an interesting issue for further research.

10 Conclusion

In this paper, we presented a well-founded semantics for non-monotonic dl-programs [Eiter et al. 2004;2008],
which combine logic programs and description logic knowledge bases in a loose coupling by an interfacing
approach. The semantics faithfully generalizes the canonical well-founded semantics for ordinary normal
logic programs [van Gelder et al. 1991], and is, like the latter, defined via greatest unfounded sets for dl-
programs. The proposal is distinct from other proposals of well-founded semantics for combinations of rules
and description logics, such as [Drabent and Maluszynski 2007] and[Knorr et al. 2008], which provide a
heterogenous but tight integration and a homogenous integration, respectively, and which are not based on
unfounded sets. By its nature, it is amenable to realize non-monotonic rules over ontologies by combining
existing reasoning engines which may be modularly replaced.

As we have shown, the proposed semantics retains a number of propertiesof the well-founded semantics
for ordinary logic programs in the generalized context, including an equivalent characterization in terms
of a generalized Gelfond-Lifschitz transform, and that the well-foundedsemantics is a partial model that
approximates the (strong) answer set semantics, while in the positive and stratified case, it is a total model
that coincides with the answer set semantics for dl-programs. Furthermore, we provided a complexity
analysis, which shows that our proposal also retains the good computational properties of the well-founded
semantics. In particular, it is polynomial under data complexity provided that the access to the description
logic part is polynomial (as e.g. with the profiles EL, QL, and RL in the upcomingOWL2 standard13);
depending on the structure of the program and the description logic class,one has even lower complexity
and, in case of acyclic programs andDL-Lite ontologies, one even achieves first-order rewritability.

There are several directions for further work. One direction is optimization and efficient implementation
of the well-founded semantics, but also of restricted fragments like those weconsidered, in particular the
ones where ontology reasoning is first-order expressible. To this end,tightly integrated non-monotonic

13http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/
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logic programming and relational databases engines, like the DLVDB system [Terracina et al. 2008], may
be fruitfully exploited for evaluating programs with recursion. On the other hand, top-down evaluation
methods for efficient query answering, as well as developing magic sets are intriguing issues.

Another direction are language extensions. The language we considered can be readily extended to use
cq-atoms [Eiter et al. 2009], which allow to query the ontology also with conjunctive queries and unions
thereof. In contrast, an extension to rules with disjunctive heads seems less straightforward; many proposals
for well-founded semantics of disjunctive logic programs exist (see, e.g.,[Wang and Zhou 2005] and [Knorr
and Hitzler 2007] for discussion), but none is ultimately acknowledged andthey have limited significance
in practice. An extension to rules with explicit negation [Pereira and Alferes1992] may be targeted, which
then also may use three-valued dl-atoms, in line with the underlying logic.

Finally, an interesting direction would be to establish a similar formalism over multiple ontologies,
possible even in heterogeneous formats (e.g., RDF and OWL).
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A Appendix: Proofs for Section 4

Proof of Lemma 4.5. SupposeU1, U2⊆HBP are both unfounded sets ofKB w.r.t. I. We now show
that (∗) holds forU =U1 ∪U2. Consider anya∈U1 and r∈ ground(P ) with H(r)= a. Then, one of
(i)-(iv) holds forU =U1, and thus one of (i)-(iv) holds forU =U1 ∪U2. Similarly, for anya∈U2 and any
r∈ ground(P ) with H(r)= a, one of (i)-(iv) holds forU =U1 ∪U2. In summary, for anya∈U1 ∪U2

and anyr∈ ground(P ) with H(r)= a, one of (i)-(iv) holds forU =U1 ∪U2. That is, (∗) holds for
U =U1 ∪U2. 2

Proof of Lemma 4.7. It is sufficient to show thatTKB andUKB are monotonic. LetJ1 ⊆ J2 ⊆ LitP be
consistent. We first show thatTKB is monotonic. If somer ∈ ground(P ) exists such that conditions (a)–(d)
in the definition ofTKB hold for I = J1, then somer∈ ground(P ) exists such that (a)–(d) hold forI = J2.
That is,TKB (J1) ⊆ TKB (J2). We next prove thatUKB is monotonic. If(∗) holds forI = J1, then(∗) holds
for I = J2. Hence, every unfounded set ofKB w.r.t. J1 is also an unfounded set ofKB w.r.t. J2. Thus,
UKB (J1) ⊆ UKB (J2). 2

B Appendix: Proofs for Section 5

Proof of Theorem 5.2. Let KB = (L,P ). We have to show that there exists some total interpretation
M ⊇WFS (KB) such thatM+ is a model ofKB , that is, satisfies all instantiated rules ofP .

LetM =WFS (KB)∪ (HBP−(WFS (KB)∪¬.WFS (KB))). That is,M is obtained fromWFS (KB)
by assigning true to all ground atoms whose value is unknown inWFS (KB). We now show thatM+ is a
model ofKB .

Each rule inground(P ) such thatH(r)∈M is clearly satisfied inM+. Consider thus any ground rule
r∈ ground(P ) such thatH(r) /∈M . Then,¬.H(r)∈WFS (KB) and thusH(r)∈UKB (WFS (KB)), and
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one of (i)–(iv) in (∗) holds forI =WFS (KB) andU = UKB (WFS (KB)) there. Note thatI ∪ ¬.U = I.
Thus, if (i) or (ii) holds, clearly some literal inB(r) is false inM+, and hencer is satisfied byM+. If (iii)
holds, thenS+ 6|=L b for every consistentS ⊆ LitP such thatM ⊆ S. Hence, in particularM+ 6|=L b, and
thusb is false inM+. Sinceb ∈ B+(r), this means thatr is satisfied byM+. Finally, if (iv) holds, then
WFS (KB)+ |=L b for someb ∈ B−(r). By monotonicity,M+ |=L b, and thusb is true inM+. Again,r
is satisfied byM+. Sincer was arbitrary, it follows thatM+ is a model ofKB . 2

Proof of Proposition 5.4. Let I ⊆J ⊆HBP . Since every dl-atom inP is monotonic, it holdssP J
L ⊆ sP

I
L.

Hence, every model of(L, sP I
L) is also a model of(L, sP J

L ). Thus, the least model of(L, sP J
L ) is a subset

of every model of(L, sP I
L), and thus in particular also of the least model of(L, sP I

L). That is,γKB is
anti-monotonic.2

Proof of Theorem 5.5 (sketch). The proof can be carried out by generalizing the proof in [Van Gelder
1989] that the alternating fixpoint partial model coincides with the well-founded partial model. One new
aspect is to show thatγKB (I) is the set of all atomsa∈HBP that logically follow fromKB and the negated
atoms in¬.(HBP − I). The operatorSP (J) on allJ ⊆¬.HBP in [Van Gelder 1989] then coincides with
γKB (I), whereI =HBP −¬.J . Another new aspect is to show that our notion of unfounded set is complete
in the sense that no other atom outside the greatest unfounded set can beassumed false. This corresponds to
showing that

W ?⊆ γKB (W+), (3)

whereW = lfp(WKB ) andW ? =W − (W+ ∪ (¬.W )+). Roughly, (3) can be proved as follows. It can be
shown thatW+⊆ γKB (W+) ⊆W+ ∪W ?. Towards a contradiction, suppose thatU =W ?−γKB (W+) 6= ∅.
Hence, for everya∈U and everyr∈ ground(P ) with H(r)= a, it holds that either (i)¬b∈W ∪¬.U
for some ordinary atomb∈B+(r), or (ii) b∈W for some ordinary atomb∈B−(r), or (iii) for some dl-
atomb∈B+(r), we have thatγKB (W+) 6|=L b, and thusS+ 6|=L b for every consistentS⊆LitP with
W ∪¬.U ⊆S, or (iv)W+ |=L b for some dl-atomb∈B−(r). Hence,U is an unfounded set ofKB relative
toW . But this contradictsW = lfp(WKB ). This shows that (3) holds.2

Proof of Theorem 5.7.For anyI ⊆HBP , it holds thatI is a strong answer set ofKB iff I is a fixpoint of
γKB . Sincelfp(γ2

KB
)⊆ I ⊆ gfp(γ2

KB
) for every fixpoint ofγKB , it thus follows thatlfp(γ2

KB
)⊆ I ⊆ gfp(γ2

KB
)

for every strong answer setI of KB . Thus, every suchI includes every well-founded and no unfounded
atoma∈HBP relative toKB . 2

Proof of Theorem 5.9.If everya∈HBP is either well-founded or unfounded relative toKB , thenlfp(γ2
KB

)
= gfp(γ2

KB
). Hence,lfp(γ2

KB
)= I = gfp(γ2

KB
), for every fixpointI ⊆HBP of γKB . That is,lfp(γ2

KB
)= I =

gfp(γ2
KB

) for every answer setI of KB . That is, the set of all well-foundeda∈HBP relative toKB is the
only answer set ofKB . 2

Proof of Theorem 5.10 (sketch).We use the characterization ofWFS (KB) given in Theorem 5.5. Assume
first KB is positive. Then, for everyI ⊆HBP , it holds thatsP I

L =P and thusγKB (I) is the least model
of KB . Thus, the only fixpoint ofγKB (and thus also the least and the greatest fixpoint ofγKB ) is the
least model ofKB , which in turn is the unique answer set ofKB . Suppose nextKB is stratified. Since
lfp(γ2

KB
)⊆ I ⊆ gfp(γ2

KB
) holds for the unique answer setI of KB , it is sufficient to show that neither

(a) lfp(γ2
KB

)⊂ I nor (b) I ⊂ gfp(γ2
KB

) holds for the unique answer setI of KB . This can be proved by
contradiction along a stratificationλ of KB . 2
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Proof of Theorem 5.12.GivenKB = (L,P ), the correspondingKBdl = (L,P dl), and an interpretationI
overLitP , we will denoteIdl asI∪{pa(c) | I |=L a(c) for each ground dl-atom appearing inground(P )}.
Also, defineG(I) = γKB (I) andGdl(I) = γ

KB
dl(I). The proof relies on the following intermediate results.

Lemma B.1 Let I be any interpretation, and letJ = Gdl(I). Then,J = Jdl.

The above follows from the fact thatpa(c)← a(c) appears insP dlI
L, for each ground dl-atom appearing

in ground(P ); so if J |=L a(c), then we will havepa(c) ∈ J .

Lemma B.2 For every interpretationI overLitP ,G(I)dl = Gdl(Idl).

The above holds since one can observe thatsP I
L andsP dlI

dl

L have the same rules, with the only difference

that each (positive) dl-atoma(c) in sP I
L is replaced withpa(c) in sP dlI

dl

L , and a rule of the formpa(c) ←
a(c) is added; one can then easily observe thatG(I)dl andGdl(Idl) coincide.

Proposition B.3 lfp(G2)dl = lfp((Gdl)2) andgfp(G2)dl = gfp((Gdl)2).

Let I0 = ∅. One shows first by induction onk > 0 that for thek-th powers ofG(I0) andGdl(Idl
0 ),

denoted byGk(I0) and(Gdl)
k
(Idl

0 ), we have

Gk(I0)
dl

= (Gdl)
k
(Idl

0 ). (4)

The equality obviously holds fork = 0. Given (4) holds fork, then fork + 1, we have

Gk+1(I0)
dl

= (G(Gk(I0)))
dl
.

Now, letI = Gk(I0). Then, by Lemma B.2, we have

G(I)dl = Gdl(Idl),

since by the induction hypothesis,Gk(I0)
dl

= (Gdl)
k
(Idl

0 ), we get

G(Gk(I0))
dl

= Gdl((Gdl)
k
(Idl

0 )) = (Gdl)k+1(Idl
0 ),

which proves (4) for eachk > 0. Furthermore, we have that

Idl
0 ⊆ (Gdl)2k(I0), for eachk > 0 . (5)

Observe indeed thatGdl(I0) containsIdl
0 , as well as(Gdl)

2
(I0), and that(Gdl)

2
is monotonic. From (5) we

conclude that((Gdl)
2k

)(Idl
0 ) and((Gdl)

2k
)(I0) converge to the same limit, which islfp((Gdl)

2
). On the

other hand,G2k(I0)
dl

converges tolfp(G2)dl. Thus, we getlfp(G2)dl = lfp((Gdl)
2
).

In a similar way, one can show that the greatest fixpoints ofG2 and(Gdl)
2

are related: indeed, by letting

I0 = HBP , we haveG2k(HBP )
dl

= (Gdl)
2k

(HBdl
P ), whereHBdl

P ⊇ (Gdl)
2k

(HBP ), thus(Gdl)
2k

(HBdl
P )

converges togfp((Gdl)
2
). 2
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C Appendix: Proofs for Section 6

Proof of Theorem 6.1. We first show that, givenKB = (L,P ) and I ⊆ HBP , computingγKB (I) is
feasible in exponential time, which then implies that computinglfp(γ2

KB
) and gfp(γ2

KB
) (and thus also

WFS (KB)) is feasible in exponential time.
The reductKB I = (L, sP I

L) is constructible in exponential time, since (i)ground(P ) is computable in
exponential time and (ii)I |=L a for each dl-atoma in ground(P ) can be decided in exponential time, by
the complexity of deciding knowledge base satisfiability inSHIF(D). Furthermore, computing the least
model ofKB I is feasible in exponential time by computinglfp(T

KB
I ) =

⋃n
i=0 T

i
KB

I (∅) with n = |HBP |,
which requires at most exponentially many applications ofT

KB
I , each of which is computable in exponential

time (decidingI |=L a for any dl-atoma in ground(P ) is feasible in exponential time, by the complexity
of deciding knowledge base satisfiability inSHIF(D)).

Therefore, we can computelfp(γ2
KB

) = U∞, by computingU0, U1, . . . until Ui = γ2i
KB

(∅) =
γ2i+2
KB

(∅) = Ui+1 holds for somei. Sincei is bounded by|HBP | and the latter is exponential in the
size ofΦ andKB , the positive part ofWFS (KB), that is,lfp(γ2

KB
), is computable in exponential time. The

negative part ofWFS (KB) is easily obtained fromgfp(γ2
KB

) = O∞, which can be similarly computed in
exponential time. Therefore, computingWFS (KB) is feasible in exponential time.

Hence, deciding whetherl∈WFS (KB) holds is in EXP. The EXP-hardness of the problem is immedi-
ate from the EXP-hardness of deciding whether a given positive Datalogprogram logically implies a given
ground atom [Dantsin et al. 2001] as well as from the EXP-hardness ofdeciding whether a knowledge base
in SHIF(D) is satisfiable.2

Proof of Theorem 6.2. For membership in PNEXP, an algorithm is not allowed to use exponential work
space (only polynomial one). Thus, differently from the situation in the proof of Theorem 6.1, we cannot
simply compute the powersγj

KB
(∅) andγj

KB
(HBP ), becauseground(P ) is exponential. The idea is to

move this problem inside an oracle call.
It is easy to see that we can computeWFS (KB) and decidel∈WFS (KB) in exponential time, if the

answers for all dl-atom evaluationsIp |=L a that we encounter during the computation of the powersγj
KB

(∅)

andγj
KB

(HBP ) would be known. However, decidingIp |=L a is co-NEXP-complete for aSHOIN (D)
knowledge baseL, and thus these answers cannot be computed by a recursive call insidea NEXP oracle
call itself. To surmount this problem, we apply a census technique that provides enough information to the
oracle for verifying a correct guess for all the answers.

If Ip 6|=L a, then there is an exponential size “proof” witnessing this fact which can be checked in time
polynomial in its size. Therefore, given a ground dl-atoma and an integerk > 0, deciding whether there
are at leastk different inputsI1

p , . . . , I
k
p such thatIj

p 6|=L a is in NEXP. As easily seen, the maximumk for
which this holds is given by a numberna which is exponential in the size ofKB andΦ.

In order to decide whetherl∈WFS (KB) holds, we can thus proceed as follows:

1. For each ground dl-atoma in ground(P ), compute with binary search on[0, . . . , na], using the NEXP
oracle, the exact number of inputsIp such thatIp 6|= a, denotedfa.

2. Ask the oracle whether (a) there arefa different inputsI1
p , . . . , I

fa
p for each dl-atoma such that

Ip 6|=L a, and (b) such that for the computation of the powersγi
KB

(∅) resp.γi(HBP ) where for each
Ip |=L a the value compliant withI1

p , . . . , I
fa
p is taken, it holds thatl is contained in the limitU∞ of

the sequenceγ2k(∅) if l is a positive literal resp. thatb is not contained in the limitO∞ of the sequence
γ2k(HBP ) if l = not b.
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3. If the oracle answers yes, return yes, otherwise no.

Note that for the answer “yes”, (b) is only relevant if the guess in (a) is correct. Hence, Step 3 correctly
decides whetherl∈WFS (KB) holds.

Step 1 is feasible in polynomial time modulo the NEXP oracle calls, since the number of ground dl-
atomsa in ground(P ) is polynomial and the binary search takesO(log na) many steps, which is polyno-
mial in the size ofKB andΦ. The oracle query in Step 2 is in NEXP, since for (a) the proper (unique)
inputsI1

p , . . . , I
fa
p together with their witnesses can be guessed and verified in exponential time,and (b) is

feasible in exponential time; In summary, this algorithm correctly decides whether l∈WFS (KB) holds in
polynomial time with a NEXP oracle. This proves the membership part.

The PNEXP-hardness is easily derived from Theorem 5.10 and the result that deciding whether a stratified
KB in which classical negation¬ may occur has some strong answer set is PNEXP-complete [Eiter et al.
2004]. Replace in a stratifiedKB classical negative literals¬p(t) by positive literalsp(t), wherep is a
fresh predicate, and add rulesf ← p(t), p(t), wheref is a fresh propositional atom. Then, for the resulting
dl-programKB ′, we have¬f ∈WFS (KB) iff KB has some strong answer set.2

Proof of Proposition 6.3.We show that, forKB =(L,P ) whereL is in a DL such that evaluatingI |=L a
for given I ⊆HBP and ground dl-atoma has a data complexity in classC, computingγKB (I) is feasible
in polynomial time with aC-oracle in the data complexity. This then implies that computinglfp(γ2

KB
) and

gfp(γ2
KB

) (and thus alsoWFS (KB)) is feasible in polynomial time with aC-oracle in the data complexity.
The reductKB I = (L, sP I

L) is constructible in polynomial time with aC-oracle, since (i)ground(P )
is computable in polynomial time and (ii)I |=L a for each dl-atoma in ground(P ) is decidable using the
C-oracle. Furthermore, computing the least model ofKB I is feasible in polynomial time with aC-oracle
by computinglfp(T

KB
I ) =

⋃n
i=0 T

i
KB

I (∅) with n= |HBP |, which requires at most polynomially many
applications ofT

KB
I , each of which is computable in polynomial time with aC-oracle.

Hence, we can computelfp(γ2
KB

)=U∞, by computing the setsU0, U1, . . . until Ui = γ2i
KB

(∅) =
γ2i+2
KB

(∅)=Ui+1 holds for somei. As i is polynomially bounded by|HBP |, the positive part ofWFS (KB),
that is, lfp(γ2

KB
), is computable in polynomial time with aC-oracle. The negative part ofWFS (KB) is

easily obtained fromgfp(γ2
KB

)=O∞, which can be similarly computed in polynomial time with aC-oracle.
Therefore, computingWFS (KB) is feasible in polynomial time with aC-oracle in the data complexity, and
thus deciding whetherl∈WFS (KB) is in PC in the data complexity.2

Proof of Theorem 6.4. As for membership in PNP, observe first that instance checking inSHIF(D) is
in co-NP under data complexity. This follows from the results in [Glimm et al. 2008], which showed that
the data complexity of answering conjunctive queries inSHIQ is co-NP-complete, where the knowledge
bases are also allowed to contain negated role assertions. Thus, for suitable datatypes, the same data com-
plexity holds forSHIQ(D). Hence, deciding whetherI |=L a for interpretationsI, knowledge basesL
in SHIF(D), and dl-atomsa is clearly in co-NP in the data complexity fora with queries of the form
C(b), ¬C(b), R(b, c), ¬R(b, c), U(b, v), and¬U(b, v). Furthermore, it is also in co-NP in the data com-
plexity for all other types of dl-atoms, since (i)L′ |=C ⊑D iff L′ ∪{(C ⊓ ¬D)(e), A(d)} |=¬A(d); (ii)
L′ |=¬(C ⊑D) iff L′∪{C ⊑D, A(d)} |=¬A(d); (iii) L′ |= =(b, c) iff L′ ∪{ 6=(b, c), A(d)} |=¬A(d); and
(iv) L′ |= 6=(b, c) iff L′ ∪{=(b, c), A(d)} |=¬A(d), whered ande are fresh individuals, andA is a fresh
atomic concept. The PNP-membership follows then by Proposition 6.3.

Hardness for PNP of literal entailment from a stratified dl-programKB = (L,P ) with L in ALE is
proved by a generic reduction from Turing machinesM , exploiting the co-NP-hardness proof for instance
checking inALE by Donini et al. [1994]. Informally, the main idea behind the proof is to use adl-atom to
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decide the result of thej-th oracle call made by a polynomial-time boundedM with access to a NP oracle,
where the results of the previous oracle calls are known and input to the dl-atom. By a proper sequence of
dl-atom evaluations, the result ofM ’s computation on inputv can then be obtained.

More concretely, letM be a polynomial-time bounded deterministic Turing machine with access to a
NP oracle, and letv be an input forM . Since every oracle call can simulateM ’s computation onv before
that call, once the results of all the previous oracle calls are known, we can assume that the input of every
oracle call is given byv and the results of all the previous oracle calls. SinceM ’s computation after all
oracle calls can be simulated within an additional oracle call, we can assume thatthe result of the last oracle
call is the result ofM ’s computation onv. Finally, since any input to an oracle call can be enlarged by
“dummy” bits, we can assume that the inputs to all oracle calls have the same lengthn= 2 · (k + l), where
k is the size ofv, andl= p(k) is the number of all oracle calls: We assume that the input to them+1-th
oracle call (withm∈{0, . . . , l−1}) has the form

vk 1 vk−1 1 . . . v1 1 c0 1 c1 1 . . . cm−1 1 cm 0 . . . cl−1 0 ,

wherevk, vk−1, . . . , v1 are the symbols ofv in reverse order, which are all marked as valid by a subsequent
“1”, c0, c1, . . . , cm−1 are the results of the previousm oracle calls, which are all marked as valid by a
subsequent “1”, andcm, . . . , cl−1 are “dummy” bits, which are all marked as invalid by a subsequent “0”.

By the co-NP-hardness proof for instance checking inALE in [Donini et al. 1994], for the NP oracleM ′

and any inputb∈Σ∗, there exists a knowledge baseL′ ∪Lb inALE , a conceptD inALE , and an individual
f such thatM ′ acceptsb iff L′ ∪Lb 6|= D(f), andL′, Lb, D, andf can be constructed in polynomial time
from b. More concretely,L′, Lb, andD are given as follows:

L′ = {A(true), ¬A(false)} ,

Lb = {Cl(f, c1),Cl(f, c2), . . . ,Cl(f, cn),

P1(c1, l
1
1+), P2(c1, l

1
2+), N1(c1, l

1
1−), N2(c1, l

1
2−), . . . ,

P1(cn, l
n
1+), P2(cn, l

n
2+), N1(cn, l

n
1−), N2(cn, l

n
2−)} ,

D = ∃Cl .((∃P1.¬A) ⊓ (∃P2.¬A) ⊓ (∃N1.A) ⊓ (∃N2.A)) .

Note that the entailment problemL′ ∪Lb 6|= D(f) inALE encodes the satisfiability problem for a 2+2-CNF
formulaF =C1 ∧ C2 ∧ · · · ∧ Cn, whereCi =Ai

1+ ∨ A
i
2+ ∨ ¬A

i
1− ∨ ¬A

i
2− and theAi

j ’s are propositional
symbols includingtrue and false, which has been shown to be NP-hard by a reduction from 3-SAT in
[Donini et al. 1994].

Let the stratified dl-programKB = (L,P ) now be defined as follows:

L = L′ ,

P =
⋃l

j=0 P
j ,

whereP j =P j
v ∪P

j
q ∪P

j
b for everyj ∈{0, . . . , l}. Informally, every set of dl-rulesP j generates the input

of the j+1-th oracle call, which includes the results of the firstj oracle calls. Here,P l prepares, for
simplicity, the input of a “dummy” (non-happening)l+1-th oracle call which contains the result of thel-th
(that is, the last) oracle call. More concretely, the bitstringa−2k · · · a2l−1 is the input of thej+1-th oracle
call iff bj

−2k(a−2k), . . . , b
j
2l−1(a2l−1) are in the canonical model ofKB . The componentsP j

v , P j
q , andP j

b

of P j , with j ∈{0, . . . , l}, are defined as follows:
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1. P 0
v writesv into the input of the first oracle call, and everyP j

v copiesv into the input of thej+1-th
oracle call, forj ∈{1, . . . , l}:

P 0
v = {b0−2i(vi)← | i∈{1, . . . , k}}∪ {b

0
−2i+1(1)← | i∈{1, . . . , k}} ,

P j
v = {bj

−i(x)← bj−1
−i (x) | i∈{1, . . . , 2k}} .

2. P 0
q initializes the rest of the input of the first oracle call with “dummy” bits, and every P j

q with
j ∈{1, . . . , l} writes the result of thej-th oracle call into the input of thej+1-th oracle call and
carries over all the other result and dummy bits from the input of thej-th oracle call (where we have
D=∃Cl .((∃P1.¬A) ⊓ (∃P2.¬A) ⊓ (∃N1.A) ⊓ (∃N2.A))):

P 0
q = {b0i (0)← | i∈{0, . . . , 2l−1} ,

P j
q = {bji (x)← bj−1

i (x) | i∈{0, . . . , 2l−1}, i 6∈ {2j−2, 2j−1}}∪

{bj2j−2(0)←DL[Cl⊎clj−1, P1⊎p
j−1
1 , P2⊎p

j−1
2 , N1⊎n

j−1
1 , N2⊎n

j−1
2 ;D](f);

bj2j−2(1)←not bj2j−2(0);

bj2j−1(1)←} .

3. EveryP j
b with j ∈{0, . . . , l} realizes the polynomial-time reduction, which transforms any inputbj of

the Turing machineM ′ into the knowledge baseLbj in ALE , represented as facts over the predicate
symbolsclj , pj

1, pj
2, nj

1, andnj
2.

Observe then thatM acceptsv iff the last oracle call returns “yes”. The latter is equivalent to the condition
thatbl2l−2(1)∈WFS (KB). In summary,M acceptsv iff bl2l−2(1)∈WFS (KB). 2

D Appendix: Proofs for Section 7

Proof of Theorem 7.1.Membership in P follows from Proposition 6.3 and the assumption that all dl-atoms
can be evaluated in polynomial time, asPP = P. Hardness for P follows from theP -completeness of literal
inference from ordinary normal programs under the well-founded semantics (cf. [Dantsin et al. 2001]).2

Proof of Theorem 7.2. The statement of the theorem follows from Theorem 7.1 and the result that con-
junctive query answering from a knowledge base in Horn-SHIQ can be done in polynomial time in the
data complexity [Eiter et al. 2008], since all evaluations of dl-atoms can be reduced to this problem. Ob-
serve first that, forL in Horn-SHIQ, any negated concept (resp., role) membership axiom¬C(b) (resp.,
¬R(b, c)) in the input argument of a dl-atom can be ignored in the actual evaluation ofthe dl-query, and
handled by evaluating an additional dl-queryC(b) (resp.,R(b, c)): if any of these (polynomially many)
additional dl-queries evaluates to true, then the original dl-query evaluates to true (since the description
logic knowledge base along with the input of the dl-atom is unsatisfiable), otherwise the original dl-query
is simply evaluated ignoring¬C(b) (resp.,¬R(b, c)). This is due to the fact that knowledge bases in Horn-
SHIQ have canonical universal models [Eiter et al. 2008]. Observe then that dl-queriesC(b) andR(b, c)
are clearly conjunctive queries. Moreover, axioms=(b, c) and 6=(b, c) are disallowed in Horn-SHIQ and
thus also cannot occur as dl-queries. Furthermore, all other dl-queries can be reduced to knowledge base
unsatisfiability: (i)L′ |=¬C(b) iff L′ ∪{C(b)} is unsatisfiable; (ii)L′ |=¬R(b, c) iff L′ ∪{R(b, c)} is un-
satisfiable; (iii)L′ |=C ⊑D iff L′ ∪{C(e), D′(e), D ⊓D′⊑⊥} is unsatisfiable; and (iv)L′ |= ¬(C ⊑D)
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iff L′ ∪ {C ⊑D} is unsatisfiable, wheree is a fresh individual, andD′ is a fresh atomic concept. This can
in turn be reduced to conjunctive queries:L′ is unsatisfiable iffL′ ∪ {A′(d), A ⊓ A′⊑⊥} |= A(d), where
d is a fresh individual, andA andA′ are fresh atomic concepts.2

Proof of Theorem 7.3.SinceKB is acyclic, there is a mappingκ : PP → {0, 1, . . . , n} such that for every
dl-rule r∈P , the predicate symbolp of H(r), and every predicate symbolq of some ordinaryb∈B(r) or
of an input argument of some dl-atomb∈B(r), it holds thatκ(p)>κ(q). We callκ(p) the rank of p. By
assumption, every dl-query inP can be expressed in terms of a first-order formula over the setA of all
concept and role membership axioms inL. We now show by induction onκ(p)∈{0, 1, . . . , n} that each
predicate symbolp∈PP can be expressed in terms of a first-order formula over the setF of all concept and
role membership axioms inL and thedatabase factsin P , constructed from predicate symbols of rank0.

Basis:Each predicatep∈PP of rank0 can trivially be expressed in terms of a first-order formula overF .

Induction: We have to consider the evaluation of a dl-atomDL[λ;Q](c) and the definition of a predi-
catep∈PP via the set of all rules inP with p in their head:

(i) Consider the dl-atomDL[λ;Q](c) with λ=λ+, λ−, whereλ+ =S1 ⊎ p1, . . . , Sl ⊎ pl, λ− =Sl+1 −∪ pl+1,
. . . , Sm −∪ pm, andm> l> 0. The dl-queryQ(c) can be expressed in terms of a first-order formulaα(x)
overA, that is,L |=Q(c) iff IA |=α(c). Since the underlying DL allows for first-order rewritable concept
and role memberships, everySi in λ−, l < i6m, can be expressed in terms of a first-order formulaψSi

(y)
overA, that is,L |=Si(c) iff IA |=ψSi

(c) for everyc. By the induction hypothesis, every input predicate
pj in λ can be expressed in terms of a first-order formulaψj(x) overF , that is,pj(c)∈WFS (KB) iff
IF |=ψj(c). We define the first-order formulaδ(x) for DL[λ;Q](x) overF as follows:

δ(x) = αλ+

(x) ∨
m
∨

j=l+1

∃y (ψλ+

Sj
(y) ∧ ψj(y)) , (6)

whereβλ+

is obtained fromβ by replacing everySi(s) such thatSi occurs inλ+ by Si(s) ∨ ψi1(s) ∨ · · · ∨
ψiki

(s), whereSi1 , . . . , Siki
are all occurrences ofSj in λ+.

For example, supposeL= {C(a)} and

P = { p(c); q(b); r← p(x); r←DL[C ⊎ p;C](x); s←not DL[C ⊎ p, C −∪ q;C](x) }.

Then, both dl-atoms inP have the same queryQ(x) (= C(x)) overLwhich can be expressed by the formula
α(x)=C(x) overA= {C(a)}, and the predicatesp and q can be expressed by the formulasψp(x) =
p(x) andψq(x) = q(x), respectively, overF = {C(a), p(c), q(b)}. The dl-atomDL[C ⊎ p;C](x) is thus
translated intoδ1(x) = αλ+

(x) = C(x) ∨ p(x) overF (note thatm = l), while the dl-atomDL[C ⊎
p, C −∪ q; C](x) is translated intoδ2(x) = C(x) ∨ p(x) ∨ ∃y ((C(y) ∨ p(y)) ∧ q(y)) overF .

Note thatIF |=Si(c) iff Si(c) ∈ L, for all 1 6 i6 l. Hence,

IF |=Si(c) ∨ ψi1(c) ∨ · · · ∨ ψiki
(c)

iff Si(c)∈L or pij (c) ∈WFS (KB), for some1 6 j6 ki

iff Si(c)∈L ∪
⋃l

i=1Ai(WFS (KB)) (recallAi(I) from Section 3.2)

iff IA′ |=Si(c), whereA′ = A ∪
⋃l

i=1Ai(WFS (KB)).

It follows from this that
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IF |=αλ+

(c) iff IA′ |=α(c) and IF |=ψλ+

Sj
(c) iff IA′ |=ψSj

(c), for all l < j6m.

This in turn implies that

IF |= δ(c) iff (i) L ∪A′ |=Q(c), or
(ii) L ∪A′ |=Sj(d) andpj(d)∈WFS (KB) for somel < j6m andd.

LetA′′ = A′∪
⋃m

j=l+1Aj(WFS (KB)). If L∪A′′ 6|=Q(c), then clearly both (i) and (ii) are false; conversely,
if L∪A′ 6|=Q(c) andL∪A′ 6|=Sj(d) for everypj(d) ∈WFS (KB) wherel < j6m, thenL∪A′′ 6|=Q(c)
holds since the underlying DL is CWA-satisfiable.

In summary, this shows thatIF |= δ(c) iff L∪A′′ |=Q(c) iff WFS (KB) satisfiesDL[λ;Q](c). That is,
δ(x) is a first-order formula forDL[λ;Q](x) overF .

(ii) Consider next the set of all rules inP with p in their head. W.l.o.g., the headsp(x) of all these rules
coincide. Letα(x) denote the disjunction of the existentially quantified bodies of these rules, where the
default negations in the rule bodies are interpreted as classical negations. By the induction hypothesis, every
body predicate inα(x) can be expressed in terms of a first-order formula overF , and the same holds for
every dl-atom inα(x). Let α′(x) be obtained fromα(x) by replacing all but the predicates of rank0 by
these first-order formulas. Then,α′(x) is a first-order formula overF for p.

Continuing our example, the rules forr in P are translated into the first-order formula

∃x p(x) ∨ ∃xδ1(x) = ∃x p(x) ∨ ∃x (C(x) ∨ p(x)) ≡ ∃x (C(x) ∨ p(x))

and the rule fors into

∃x¬δ2(x) = ∃x¬(C(x) ∨ p(x) ∨ ∃y ((C(y) ∨ p(y)) ∧ q(y)))

over{C(a), p(c), q(b)}.

Proof of Theorem 7.4. We apply Theorem 7.3. Observe first thatL is defined in a description logic
of the DL-Lite family in which knowledge base satisfiability and conjunctive queries are bothfirst-order
rewritable. Observe also thatL is defined in a CWA-satisfiable description logic [Calvanese et al. 2007]
(and thus Theorem 7.3 also allows the operator−∪ to occur inP ). Hence, all dl-atoms with dl-queries of
the formC(t) andR(t, s) are immediately first-order rewritable. Furthermore, all other dl-atoms are also
first-order rewritable, since their dl-queries can be reduced to conjunctive queries as follows: (i)L′ |=C ⊑D
iff L′ ∪{C(e), D′(e), D′⊑¬D,A′(d), A′⊑¬A} |=A(d), and (ii)L′ |=¬(C ⊑D) iff L′ ∪ {C ⊑D, A′(d),
A′⊑¬A} |=A(d), whered ande are fresh individuals, andA, A′, andD′ are fresh atomic concepts. By
Theorem 7.3, it thus follows that deciding whetherl∈WFS (KB) is first-order rewritable.2
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