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1 Introduction

One of the main applications of ontologies in computer sm\dn in data access, where an ontology formal-
izes conceptual information about data stored in one oriphlltlata sources, and this information is used
to derive answers when querying the sources. This gendrg péays a central role e.g. in the Semantic
Web, in ontology-based information integration, and inrgeepeer data management. In all these areas,
Description Logics (DLs) and in particular those of the OWarslard by the W3C are popular ontology
languages, and conjunctive queries (CQs) are used as anfientkel querying mechanism, cf. [16, 4, 10]
and references therein and below.

Inspite of the prominent applications, the study of aldons for and the computational complexity of
answering CQs over OWL ontologies has only recently gainetchentum. In particular, it was shown that
inverse roles have an impact on complexity: (a) CQ entaitnfére decisional variant of CQ answering)
over ontologies in the primary OWL fragme&8tHZ Q is 2-ExPTIME-complete [4, 8]; and (b) the com-
plexity drops to KPTIME-complete if inverse roles are disalloweS8HZQ is replaced withSHQ) and,
additionally, the use of transitive roles in queries is liiseed or seriously restricted, cf. [8, 11].

From an application perspective, such restrictions arélyignsatisfactory, as transitive roles play a
crucial role in most ontologies and are used to represedgfmental relations such as “part of” [14]. A main
reason why they are often adopted is that that algorithm&@rentailment with (unrestricted) transitive
roles in the query become much more intricate, see e.g. [&hg&}e algorithms establishing 2xETIME
upper bounds fo6’HZ Q were provided.

The aim of this paper is to study the computational complexfitCQ entailment in fragments &fHZ Q
with no restrictions on transitive roles in queries. Ourmeontribution is to identify two novel sources of
complexity: (1) the combination of transitive roles ancerblerarchies and, to a lesser degree, (2) transitive
roles alone. More precisely, we first show that CQ entailmer®H (SHZQ without inverse roles and
number restrictions, i.e4ALC extended with transitive roles and role hierarchies) is@EME-hard, and
thus 2-EXPTIME-complete. Thus, inverse roles aret the only reason why CQ entailment 8HZ Q is
harder than standard reasoning tasks such as satisfiaititgubsumption, which arexBTIME-complete.
Interestingly, 2-&PTIME-hardness is hit already with a single role inclusion, ceralatively with a single
left identity » o ¢t C ¢. Secondly, we prove that CQ entailmentSr(SH without role hierarchies, i.eALC
extended with transitive roles) is METIME-hard, and thus also harder than standard reasoning. Tlee low
bound applies already to the case where TBoxes (which cotitaiconceptual information) are empty.

On the other hand, we show that CQ entailmen§iontologies where the ABoxes (data parts) have a
tree-shaped relational structure is iRFT IME, and thus EPTIME-complete. This result is interesting for
three reasons. Firstly, it is the firskBETIME result for CQ entailment in an expressive DL with unresgdct
transitive roles in queries. Secondly, to the best of oumitedge, this is the first case where CQ entailment
for tree-shaped ABoxes is easier than the general caset emigling lower bounds for CQ entailment in
fragments ofSHZ Q, the ABox containsio role assertions at all. Thirdly, ®TIME membership may be
viewed as an indication that the complexity in the generakada likely to be below 2-EPTIME; a tight
upper bound is currently open.

2 Preliminaries

Knowledge BasesWe assume standard notation for the syntax and semanti® ¢gdhowledge bases [4].
In particular,Nc, Ngr, andN, are countably infinite and disjoint sets adncept namesole names and
individual names Conceptsare inductively defined: (a) each € N¢ is a concept, and (b) i€, D are
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concepts ana € Ng is a role, therC' 1 D, C' U D, =C, ¥r.C' and3r.C are concepts. ABoxis a set of
concept inclusiong’ T D, role inclusions: C s, and transitivity statementsans(r). An ABoxis a set of
assertiong”(a) andr(a, b). A knowledge base (KB$ a pair(7,.4) consisting of a TBox and an ABox
A. We useT to denote an interpretation for a KB?Z for its domain, and>Z andrZ for the interpretation
of a conceptC and of a roler, respectively.

A role is transitiveif there is some”’ with trans(r) € K andr’ C* r, whereC* denotes the reflexive
transitive closure of’ C r € K.

S is the fragment o6H that disallows role hierarchies.

We use the following notation. Byd(.4) we denote the set of all individual names in an ABéxby
sub(K) we denote the set of all subconcepts of concepts occurriagkB /C, and Tr(K) := {r € Nr |
trans(r) € 7 }.

Conjunctive Query Answering. Let Ny be a countably infinite set ofariables A conjunctive queryCQ)
over a KBK is a finite set of atoms of the form(v) or r(v,v'), wherev, v' € Ny, A is a concept name and
r is a role, both occurring iiC.! For a CQq over K, let Var(q) denote the variables occuringdnA match
for ¢ in an interpretationZ is a mappingr : Var(q) — AZ such that (iyr(v) € AZ for eachA(v) € ¢, and
(i) (w(v),w(v")) € r? for eachr(v,v’) € q. We writeZ |= q if there is a match fog in Z. If Z |= ¢ for every
modelZ of I, thenK entailsq, written K = ¢. Thequery entailment problens to decide, giverkC andgq,
whetherK E q.

Forest Models. In many DLs, it suffices to concentrate on certain regular efedf the input KB when
deciding CQ entailment. We describe these modelsfdr A forest base fofC is an interpretatiory/ that
satisfies:

(i) A7 is a prefix-closed subset oft; elements ofAY N w are called theootsof 7.

(ii) If (d,e) € r7 for somer, then either andd are roots of7, ore = d - ¢ for somec € w; in the latter
case, there is nd # r with (d,e) € r'7.

(iii) For everya € Ind(A), a’ is a root of 7, and for every rootl of 7, there is ar: € Ind(.A) such that
at =d.

An interpretationZ is aforest modebf I if it is @ model of K and there is a forest bagsg for I such
thatZ is identical to.7 except that, for all transitive roles »* = (r7)*. Then, theroots of 7 are defined
as the roots of7 .

Proposition 2.1 Let K be anSH-knowledge base anga UCQ. IfK |~ ¢, then there is a forest modélof
K such thatZ = q.

Alternating Turing Machines. The 2-EXxPTIME-hardness result of this paper relies on a reduction from
the word problem foAlternating Turing machinefATMSs) with exponential work space, whose definition
we briefly recall; see e.q., [2] for background and details.

An ATM is given by a tupleM = (Q, 3, qo, 6), where

e Q =Q34YQvY {gac} W{ae}, the set otates consists okxistential states ()5, universal states
in Qv, anaccepting statg,.., and arejecting statey,;;

e Y is thealphabetthat additionally contains thelank symbo| ;

!Individuals inq can be simulated and queries with answer variables can headdo the considered Boolean CQs as usual.
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e ¢y € Q3 U Qy is thestarting state; and
e ) C QxXxQxXx{+1,—1} is thetransition relation

For later use, we definiq, o) := {(¢',0', M) | (¢,0,¢',0’, M) € 5}.

A configurationof M is a wordwqw’ with w,w’ € ¥* andq € @, whose intended meaning is that
the one-side infinite tape contains the string’ with only blanks behind it, that the machine is in state
q, and that the head is on the symbol just after The successor configurationsf a configurationwqgw’
are defined in terms af as usual; without loss of generality, we assume ihats well-behaved and never
attempts to move left if the head is on the left-most positidrhalting configurationis of the formwquw’
whereq € {QaCC7Qrej}-

A computationof an ATM M on a wordw is a sequence of configuratioh§, K1, ... such thatk, =
gow (theinitial configuratio) and K; 1 is a successor configuration af;, for all ¢ > 0. For our concerns,
we may assume that all computations are finite (on any inpot),define acceptance only for this case.

A configurationwqw’ is accepting if either ()¢ = gacc, Or (b) ¢ € Q3 and at least one of its successor
configurations is accepting, or (g)€ )y and all of its successor configurations are accepting. ThHd AT
M acceptshe inputw, if the initial configurationis accepting. Thevord problem ofM is, given M and
w, to decide whetheM acceptav. We use the following lemma.

Lemma 2.2 ([2]) There is an ATMM for which the word problem i2-ExPTIME-hard and such thai\
works in exponential space, i.e., all configuratian'gw” in computations om fulfill |w'w”| < 211,

3 Query Answering in SH

It follows from a number of existing results that CQ entaiimhan SH is in 2-EXPTIME [1, 3, 5, 11]. We
provide a matching lower bound.

Theorem 3.1 CQ entailment inSH is 2-EXPTIME-complete.

To prove the hardness part, we reduce the word problem foxaonentially space bounded ATM/ =
(Q,%, qo,0) and an input wordv (by Lemma 2.2, this shows 2 TIME-hardness).

Recall that the state sét of an ATM is partitioned intaexistential(?5) anduniversal(Qy) states. An
ATM with only existential states can be viewed as a standarddeterministic TM, which accepts a word
iff there exists a sequence of successive configurationstiduas in thenitial configuration with initial state
qo and the input wordv on the tape, and ends in an accepting siate For ATMs, these sequences become
treesof configurations, where branching is caused by universaést(there is a successive configuration
for each transition id (g, a) with ¢ € Q). Such a tree is aomputation tregand it isacceptingif gacc is
reached on all paths. For details, please see [2].

For each inputv to M, we define a KBKC,, and a queryy,, such thatM acceptsw iff £, F~ gu. In
fact, each forest modél of IC,, with Z |~ ¢,, will represent an accepting computation.of on w. More
precisely, such a model is an accepting computation treehiohneach node is the root ofcanfiguration
tree The latter are binary trees of depth:= |w| (length ofw) that represent configurations using thzir
leaves to store the tape contents. This is illustrated iorgid; the initial configuration tree is existential and
thus has a single successor configuration tree. Its (magh#iecessor is universal and has two successor
configuration trees.



Figure 1: The structure of models.

To enforce this structure, we need some technical trickspalticular, each configuration tree will
representwo configurations: theurrent configuration/’;, and thepreviousconfigurationk’,. We uselC,,
to ensure locally at each configuration tree thgtis indeed a successor configuration/of. The queryg,,
is then used to globally guarantee that #ig value of each configuration tree is identical to #ig value
of the predecessor in the computation tree. We will call amatation tregoroper, if it satisfies the latter
condition.

We now give a precise definition of how configuration trees emputation trees are represented as a
model. A single, non-transitive roleis used for the edges of computation trees and of configuratses.
Observe that, as shown in Figure 1, we e r-edges between two consecutive configuration trees. We
also use a transitive role to be explained later. The alphabet symhdlsf M and the state§ are used
as concept names. We also use the concept namesBrom { B, ..., B,,} to encode addresses of tape
cells in binary. For a node of a forest modef andi < 2™, we writeadr? (n) = i if the truth values of
BE, ..., BE atn encode the number A tape cell with addressand contentz € X is represented by a
noden with val? (n) = i that satisfies the concept namelf the head is currently on the cell aid’s state
is ¢, thenn also satisfieg; otherwise; satisfies the concept namel.

To later on ensure properness using the query, we use additiodes and concept names. The latter
are By, E,, F, F,, Gy, andG), used as markers; and the concept names o= {Z,, | a € X,

g € QU {nil}}. The additional nodes are attached to the leaves of confignritees, as indicated on the
left-hand side of Figure 1 and detailed in the subsequentitiefi. Intuitively, nodes labeled;, store the
current configuration and nodes labelBgithe previous.

Definition 3.2 [i-cell] Let Z be an interpretation and< 2™. We calln € AT ani-cell if the following
hold:

(a) n hasr-successors,, andn; with adr? (ny) = adr?(ny) = i that satisfyE,, respectivelyE,, and both
satisfy exactly one € ¥ and exactly ong € Q U {nil}.

(b) n, (resp.,ny) has anr-successon;, (resp.,n},) satisfying £, (resp.,F,) and such thaadr? (ny,) (resp.,
adr?(n})) is the bit-wise complement af Furthermore, for alt € ¥ andq € Q U {nil}, we have:

(i) n, satisfiesZ, , iff n;, does not satisfy both andg;
(i) n;, satisfies?, , iff n, does not satisfy both andg;

(iii) nj, andn, satisfyZ, 4;



(c) n,, (resp.,n},) has at-successor,, satisfyingG,, (resp.,n;, satisfyingG}) such that; (resp.,ny ) is
also at-successor of,, (resp.,ny).

We simply speak of a cell ifis unimportant. Note that the ability & to express (c) in Definition 3.2
via the axioms- C ¢t andtrans(¢) is crucial for the reduction. The same condition can be esqa® via a
so-calledleft identityr o ¢t C ¢.

We now defin€q, a, i)-configuration nodes, which are the roots of configuratieegr and (models that
encode) computation trees. A nodés anr™-successor of a node if n’ is reachable from by travelling
m r-edges.

Definition 3.3 [(g, a, i)-configuration node, Computation tree] LEbe an interpretation. We call ¢ A?
a(q, a,i)-configuration nodé (1) it has anr"-successor that isjacell (calledj-cell ofn), for eachy < 2™
and (2) theE,-node of thei-cell of n satisfies; anda, and all otherj-cells havenil in their £-nodes.
We callZ acomputation tredor w if 7 is tree-shaped and

(1) the roote of Z has anr-successon that is a(qo, a, 0)-configuration node whosécells describe the
initial configuration for inputw;

(1) for each (g, a, p)-configuration node., if ¢ € Q5 (resp.,q € Qv), then for some (resp., for each) tuple
(¢',a',M) € 6(q,a) there exists an?-successor node’ that is an(q’, a”,p’)-configuration node with
p = p+ M, whereM € {—1,+1} is the executed move. Furthermore, thg node of ap-cell of n’
satisfiesa’, and, for all remainingi-cells ¢ of n’ with j # p, if the E,, node ofc satisfiesa € X, then the
E}, node ofc also satisfies (i.e., ap-cell has the new symbol written, while for the remaininggehe E),
nodes in the resulting configuration tree carry over the sysntoom their respectivé, nodesy

We callZ accepting if ¢ = gacc in €ach(q, a, i)-configuration for which there is no successor configuration
FurthermoreZ is proper, if for each pair of successive configuration nodes’ as in Definition 3.3.11 and
eachi < 2™, thei-cell of n has the saméy, a)-label in its E,-node as the-cell of n’ in its E,-node.

It is not hard to see that there is a correspondence betweeptatgy proper computation trees ferand
accepting computations o84 on w. The properness condition ensures that pheviousconfiguration
encoded in theZ, nodes of a configuration tree coincides with tugrentconfiguration encoded in the),
nodes of the previous configuration tree. Then, due to thditon () in the above Definition 3.3, we get
that each pair of successive configuration nodes encodesezicmansition ofM. On the other hand, given
an accepting run oM onw, we can define an accepting computation tree.

Proposition 3.4 M acceptsw iff there exists an accepting proper computation treeuor

In the next section, we define &% knowledge base capturing (proper and improper) computatees,
and in the subsequent section, we define a query for testopepress.

>The second part of condition (Il) is not present in the sulsiois but is in fact needed for a complete argument. It realiz
the intuition stated in the beginning of the section, viattthe configuration encoded in tl&, nodes is a valid successor of the
configuration encoded in th&, nodes.



3.1 Building Computation Trees

Proposition 3.5 Givenw, we can build in polynomial time a KE,, whose forest models are exactly the
accepting computation trees far.

In the following, by constructindC,,, we provide a proof of the above proposition. We define
Kw={a:1},T,)

whereq is an individual,/ is a concept name (that identifies the initial node), and BexT7,, contains the
axioms described below.

3.1.1 Enforcing Configuration Nodes

Recall that configuration nodes are roots of binary treegpftdn whose leaves arecells corresponding to
tape cells ofM. We next provide axioms enforcing conditions (1) and (2hie definition of configurations
nodes (see Definition 3.3). More precisely, nodes satigf@rspecial concept nanie are forced to be
configuration nodes. For technical reasons, rthel levels of a tree rooted at a configuration node are
identified with concept namek,, ..., L,,. For two concept€’ and D, we useC' — D as a shorthand for
the concept-C LI D. We introduce the following axioms, which generate a tre@sehleaves cover the
address range, ..., 2" — 1:

R C Ly
L; C HT.(LZ'_H M Bi+1) M HT.(LH_l M —|Bi+1) forall0 <i<m
LinB; T Vr(Li1 — Bj) forall0<j<i<m
L; M —|Bj C VT’.(LZ'_H — —|Bj) forall0<j<i<m

Recall that the leaves of configuration trees must-bells as prescribed by Definition 3.2, and hence
the properties (a)-(c) must be enforced. To enforce (a), seetive symbols fronx, the states frond) and
nil as concept names. We label such nodes with exactly one ddincapX: (the content of a celt), and
with exactly one concept fro@* := Q U {nil}; intuitively, the labely € Q means that the head @1 is
on the tape celt and thatM is in stateq, while the labelnil means that the head is not at positjpnThe
above is realized as follows:

L, C 3Ir(E,NE)N3r(E,NE)

E C Uan [1 =(and)
acx a#a' €Y

EC UWqgn T1 =(¢gng).
qeQt g#q'€Qt ( )

To enforce the structures as prescribed in the remaininggpties (b)-(c), we use the following axioms:

1. The existence of the required nodes is via the followingras:

E, T 3r(F,N3t.G,)
E, T 3r.(F,N3t.Gy)
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2. The address fof’, and £, nodes, and its bitwise complement i and I}, nodes is obtained by
adding for eachH < i < m the following axioms:

Lm M Bz L VTBZ
L,N-B, C Vr-B;
EnN Bz L VT._\BZ'

En-B;, C Vr.B;

3. The conditions (b.i)-(b.iii) are enforced by the follawjiaxioms: for al € ¥, ¢ € Q,

E, T (afgq) < ~Zy,

Ep E (CL 1 q) — V’f'.(_!qu M I_l Za’,q’)
(a,9)#(a’,q")

E, T VrZ,,

E, © Zug

4. Finally, to enforce (c), we addC ¢ andtrans(t).

It remains to ensure that each nodéhat satisfiesR also satisfies that for exactly one addréss 2,
thei-cell of n satisfies some € @ and allj-cells, j # 1, satisfynil (cf. (2) in Definition 3.3). To achieve
this, we use a concept nanté (for the head position) and make sure that it occurs in thellaban L,
node iff its address i§ and that only art’;, successor of such ah,, node contains labels froq.

Lo

M

H

(vr'((Li-i-l M Bz) — H) ﬂv’f’.((Li+1 1 —|B2) — —|H))
U (Vr.((Ligr M —B;) — H)NVr.((Lis1 N B;) — —H)) forall0 <i<m

(Vr.(Liy1 — —H) foralll <i<m
Vr.(E LJ
(Bn— L)

M

(L; M —H)
L,MH

1M

1M

L,N—-H C Vr.(E,— ni)

We remark here that for configurations representeflpgodes we omit here adding similar axioms. Indeed,
the queryg,, that we construct will, as a byproduct, also check whethdatg < () is stored at exactly
one address foE, nodes.

3.1.2 Enforcing Computation Trees

To generate computation trees, we add axioms ensuringréeshaped models &, satisfy conditions
(1) and (I1) in Definition 3.3. In the following, we useér’.C' to denote the-fold nestingvr. - - - vr.C. In
particular,vr’.C'is C.
The initial configuration as described in (1) is ensured digdies. Letw =ay - - - a,, be the initial word.
We will additionally keep track of the position of the R/W ldeaf M. To this end, we use concept names
Lo, @, and@q, . .., Qyy, for the previous position and the current position resgltine to a transition.

7



We add the following:

I T 3Ir.R

I C Vrmtl(pos=i— Vr.(E, —a;)) foralli<n

I C vt (pos =0 — Vr.(E, — qo))

I C Vrmtl(pos >n — Vr.(E, — )

I C Vr-Q; foralll <i<m

where(pos = i) and(pos > n) are the obvious (Boolean) concepts expressing that the wdline address
By,..., B, equals; and is at least, respectively (recall that is the blank symbol).

We turn to the condition (Il) in Definition 3.3. In detail, tepresent that a configuration nodeis a
successor of a configuration nodeupon taking the transitioly’,a’, M) € d(q,a), we labeln’ with the
concept namé, ., ,; and we conneck to »’ via two consecutive arcs. Furthermore, if is existential,
we enforce that some’ exists with suitable label, ./ 5/, and if ¢ is universal, we enforce that for each
(¢',a',M) € (q,a) somen’ exists with labell} , »/; we exploit that the state and the symbok are
stored in ank,-node ofn, for one unique address. We also ensure that the addres$\ohé&dd is copied
to the follow-up configuration nodes.

RN 3rm+t (E,MqgMa) C LJ 2 (RNTy ) foralge Qaacy,
(¢',a’,M)€d(g,a)
RO Il (E,MgNa) C M 2 (RN Ty o) forallge Qu,acX.
(¢',a’,M)€d(g,a)
Qi C vrQ, forall0 <i<m
-Q; T Vr*-Q; forall0 <i<m

Next we provide axioms that define the position of the R/W heasdlting by transition. It is obtained
by applying addition or subtraction to the address encoge@’bconcepts. We uséNVy,...,INV , to
decide on the bits that need to be inverted:

Tha+1 & PLUS forallg € Q,a € X,
Tga—1 & MINUS forallgec @Q,ac X,
RMOPLUS C INV,,
RMOQ,MNINV,MPLUS C INV,; 4 foralll <i<m
RMPLUSN(-Q;U—INV;) C =INV,; foralll<i<m
RMMINUS C INV,,
RMN=Q,MNINV;NMMINUS T INV, foralll <i<m
RO MINUS M (Q,U—INV;) T =INV,_; foralll<i<m
Q,MINV, T -Q; foralll1 <i<m
Q;MN—-INV; C Qi foralll <i<m
—Q;MINV; T @ forall1 <i<m
~QiM-INV; E -Q; forall1 <i<m

(o]



We also propagate the two addresses to the leaves by adolimgd) < j < m, the following axioms:

LinQ; T Vr(Liy1— Q) forallo<i<m
L; M _'Qj C Vvr (Li+1 — _'Qj) forall0 <i<m
LinQ; T Vr(Li1— Q) forallo<i<m
L;n ﬁQ;. C Vr(Liy1 — ﬂQ;) forall 0 <i < m.

To enforce the second part of condition (Il), we make surefthraa configuration node satisfying7, .+ ar,
the symbol in the previous position of the R/W head is chartiged, while the symbols in other positions
are transferred fron, nodes toE};, nodes. The first part is done by adding, forglle Q, o’ € %,
M € {+1, -1} the axioms:

Tq’,a’,M C vrm(Lm - Tq’,a’,]\/f)a

—

Ly NTywnunQ =B C Vr(E, —d),

Ly, NIy o M Cj =B C Vr.(E, — q/)a

where@ = B stands for [1 ((QiMBi)U(=Qir1=By)) andQ’ = Bfor [ ((Q'NB;)L(~Q,M-By)).

< 0<i<m
All remaining tape cells do not change:

Ly, 3r(E,Nafni) CVr(E, —a) forallaeX.

This concludes the definition of the TBd,, and hence of the K& ,,. By construction, all forest-
shaped models df,, satisfy the conditions in Definition 3.3, and hence are cadatmn trees.

3.2 Testing Properness of Computation Trees

As already mentioned, we use the quegyto test whether the tree is proper. More precisglyshould have

a match in a computation tree iff that treenist proper. We start with a characterization of (im)properness
in terms of the auxiliary concept names from above. In thiofahg, we say that two cella andn’ are
A-conspicuouswhereA is a concept name, if

(f) Alis true at thel,-node ofn and theE,-node ofr’, or

(f) Ais true at thef,-node ofn and theF,-node ofn’.

Proposition 3.6 A computation tre€ is not proper iff ) there exist cells, and»’ in successive configu-
rations ofZ K such thatn andn’ are A-conspicuous for ald € B U Z.

Proof. The proposition holds due to the way auxiliary labels arengefi First note that ifi, n’ are cells

of two successive configurations 1 then the conditions imposed adr? (-) in Definition 3.2 imply that
adr?(n) = adr?(n’) iff for all A € B, n andn’ are A-conspicuous; this is because bit-wise complement is
used for the addresses Bf- and F},-nodes.

(=) Suppose that is not proper. Then there exist tweellsn andn’ of two successive configurations of
7 such that the?,-node ofn and theE,-node ofn’ satisfy different pairgq, a) and (¢, a’). Asadr? (n) =
adr?(n'), n andn’ are A-conspicuous for ald € B. By (b.iii) of Definition 3.2, 7, , is true at theF},-node
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Figure 2: The basic query( A, u, v) and the final query,,.

of n; by (b.ii) and sincgq, a) # (¢, '), Z,,q is also true at thé’,-node ofr’ (recall thatZ, , is false for
at most one paig’, a’). We can argue similarly that, . is true at theE}-node ofn and theE,-node of
n'. For(¢",ad") ¢ {(q,a),(d',a’)}, Zy 4 holds at theE)-, E,-, F-, and F},-nodes of bothn andn’. In
summary;: andn’ are A-conspicuous for alh € Z. Hence,(x) is true.

(<) To show this, we prove the contrapositive. Suppose Zhiatproper and let andn’ be any cells of
two successive configurations #n If n andn’ are notA-conspicuous for somd € B then ) is false;
otherwise,adr? (n) = adr*(n’) holds, and ag is proper, theF;,-node ofn and theF,-node ofn’ satisfy
the same; € Q anda € X. By (b.i) of Definition 3.2,Z, , is false at thefy,-node ofn; by (b.ii), Z, , is
false at theF),-node ofn’. Hence,n andn’ are notZ, ,-conspicuous, which means that also in this cage (
is false. O

It thus remains to find a quegy, that has a match iffx) is satisfied. The structure o, is displayed in
Figure 2(11).

We obtaing,, by taking, for eactd € B U Z, a copy of the basic query( A, u,v) in Figure 2(I) such
that the different copies share only the variahlesndv, and then taking the union. Intuitively( A, u,v)
deals with A-conspicuousness, and the shared variablesensure that the different component queries
speak about the same cellsn’. In more detail, let:, n’ be cells of two successive configurations that are
A-conspicuous for ald € B U Z. We can find a match faf,, as follows: start with matching on the
Gj-node ofn andv on theG),-node ofn’. Now take and € B U Z. If () applies, then matct)f,}b“
on the Ej,-node ofn andz;: ., on the E,-node ofr/; if (1) applies, then match;:,, on the F},-node of
n and z,f‘ﬁl on the F,-node ofn/. The matches of all other variables are now uniquely detegthby the
(non-transitive) role edges in the query. In particulag, fengths of the role chains in the query ensure that
«“ will be matched to the root of the configuration node in whiobccurs in casetf and to the predecessor
of this root node in caser). Observe that the paths labeled wittvariables are exactly two steps longer
than those labeled with-variables, and thus the query only relatesind ' if they belong to successor
configurations.
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In summary, it is possible to show that
Proposition 3.7 A computation tre€ is proper iffZ (- q,.

Together with Propositions 3.3 and 3.5, this yields therddsieduction, establishing the lower bound from
Theorem 3.1.

4 Query Answering in S

In the next section we show that query non-entailment ix NEME-hard for the DLS, if arbitrary ABoxes
are permited. We then show that for tree-shaped ABoxesamplexity drops to EPTIME-completeness.

4.1 A Lower Bound

We give a reduction from a NEPTIME-complete variant of the tiling problem to query non-emtesht in
S. Since the reduction does not require TBoxes, we will usex&anstead of knowlege bases.

Definition 4.1 [Domino System] Adomino systen® is a triple (7', H,V'), whereT = {0,...,k — 1},
k > 0, is a finite set oftile typesand H,V C T x T represent thdworizontal and vertical matching
conditions Let® be a domino system and= ¢, ..., ¢,—1 aninitial condition, i.e. ann-tuple of tile types.
A mappingr : {0,...,2"" —1} x {0,...,2"*! —1} — T is asolutionfor ® andc iff for all z,y < 2"*+1,
the following holds (wherep; denotes addition moduld:

o if 7(z,y) =tandr(x Dont1 1,y) =/, then(t,t') € H
o if 7(z,y) =tandr(z,y ®oni1 1) =t/, then(t,t') e V
o 7(i,0) = ¢; fori < n.

For a proof of NEXPTIME-hardness of this version of the domino problem, see e.@ll@oy 4.15 in [7].

We show how to translate a given domino syst®mand initial conditionc = ¢ - - - ¢,,—1 into an ABox
As . and querygp . such that each canonical modebf Ay . that satisfies (= ¢o . encodes a solution
to © andc¢, and conversely each solution ® and ¢ gives rise to a model aflp . with 7 (= ¢o .. We
start with discussing (a part of) the ABokp .. Among others, it contains an assertiog .(a), with Cp . a
conjunctionC1 |‘|C7 . Whose conjuncts we define in the following. For conveniefeten = 2n+-2.
The purpose of the first conjunCt@ 1 is to enforce a binary tree of depth whose edges are labeled with
the transitive role- and whose leaves are labeled with the numigers. ,2™ — 1 of a binary countel”
implemented by the concept namés ..., 7T,,_1 representing logical truth of a bit and concept names
Iy, ..., F,_4 representing logical faIS|ty. We use concept narmhgs. .., L, to distinguish the different
levels of the tree. This is necessary because we work witisitree roles.

C’)ID = L0|_|E|T.(L1|_|T1)|_|E|T.(L1|_|F1) M

,C

(1 V(L — (3r.(Ligs M) N3 (Ligr N =F))) 1

<m
<m 1<t

(LZ' 1 Fj) — VT.(LH_l — ,F]))
11
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Figure 3: The structure encoding th&t! x 2n+1-grid.

From now on, leafs in this tree are callég,-nodes. Intuitively, eacli.,,-node corresponds to a position in
the2"*+1 x 27+1-grid that we have to tile: the countét, realized by the concept nam@&s . .., T, Fo, ..., F,
binarily encodes the horizontal position, and the couttgrealized by7), 1, ..., T, Frt1, ...,y €0-
codes the vertical position. We now extend the tree with saduitional nodes. Every,,,-node gets three
successor nodes labelled with and each of thesd-nodes has a successor node labeledTo distin-
guish the three differend-nodes below each,,-node, we additionally label them with the concept names
Ay, Ag, As.
2 . _
Co. = Vr(Lm— (1S|:|S3 Ir(AMA;M3r.B)))
We want that eachl;-node represents the grid position identified by its prestsmd.,,,-node, the siblingis
node represents the horizontal neighbor position in the gnd the siblingds-node represents the vertical
neighbor.
C%,c = Vr.(Lm — ( |<_| ((TZ —Vr. (AU A3 — T;))
(B — YR (A U Ay — F)))
<|1 ((Tz —Vr. (AU Ay —T;
(F; = Vr (A1 U Ay — F;
E5M Es ))

.
M
) 1
) M

whereFEs is anALC-concept ensuring that the, value at eacti;-node is obtained from th&,-value of its
L.,-predecessor by incrementing modafo!; similarly, E5 expresses that th€, value at eacts-node
is obtained from the”, -value of itsL,,-node predecessor by incrementing modeild!. It is not hard to

work out the details of these concepts, see e.g. [9] for metaild. Thegrid representatiorthat we have
enforced is shown in Figure 3. To represent tiles, we intcedaiconcept nam®; for eachi € T and put
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4 . , (D). .
Co. = Vr. (A— (iel_lT D; N i,jel;!i;éj (D; M Dy)))

The initial conditionc = ¢y - - - ¢,,—1 IS easily guaranteed by

Co. = vr((AN M En M nn M F)—T,),

i<n §<n,bit; ({)=0 j<n,bit;(i)=1 n<j<m

wherebit; (i) denotes the value of thgth bit in the binary representation af To enforce the matching
conditions, we proceed in two steps. First we ensure that dhe satisfied locally, i.e., among the three
A-nodes below each,,,-node:

C%C = Vr.(Lm — (2€|_|T (EIT.(Al nD;) — Vr.(As — (z’,ng|eHDj)) M

[ (3r.(A; N D; Vr.(A LI D,
0.GrAnD) = ve(4s— U D))
Second, we enforce the following condition, which togetiwéth local satisfaction of the matching condi-
tions ensures their global satisfaction:

(x) ifthe C;, andC,-values of twoA-nodes coincide, then their tile types coincide.

In (x), an A-node can by any of ad-, As-, or Az-node. Note that{) also ensures uniqueness of the tiling
in the sense that if there are twbnodes with the”, andC), value, then they are labeled with the same tile
type. To enforcex), we use the query. Before we give details, let us finish tHmitien of the concept
Cp,.. The last conjuncC%’c enforces a double labeling of tiles that will be exploitedtbg query. We
introduce another concept nam for each: € 7" and put

Ch.=Vr.(A— ieﬂT(Di « D))

We now construct the quenryp . that doesnot match the grid representation if)(is satisfied. In other
words,gp . matches the grid representation if there are #vnodes that agree on the value of the counters
C, andCy, but are labeled with different tile types. Because of Len2yiawe can concentrate on the grid
representation as shown in Figure 3 while constructing, and need not worry about models in which
domain elements that are different in Figure 3 are identified

The construction ofg . is in several steps, starting with the quety . in Figure 4, where € {0,...,m—

13
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Figure 5: The part ofdp . used Withquc.

1}. In the queries/,, ., all the edges represent the reland R is a concept name. Formally,

(UZ)J‘(UMUZ) 7 (v, uf), r(vi, w;), r(vi, wy),
(u'), Ti(w), Fy(w'),
u'), A(w), A(w'),
i (ul, ), r(wi, ), r(wh, '),
B(z),B(z') }

To. =1

1x5x
OIS

The purpose of the que% . Is to relate any twod-nodes that agree on thieh bit of the counteC’. More
precisely,z andz’ are mapped to th8-node successors of two sudhnodes. To make the query work, we
add some assertions to the ABgl ., as shown in Figure 5. Note thatis the same individual as in the
assertionC'p .(a) discussed before. Formally, the added assertions are

To understand the query, ., assume that is a match of this query in the model obtained by combining
Figure 3 and 5. Due to the concept naer(v;) is eitherc or ¢/. First assume that it is. Due to the
concept namé3, 7(z) and~(«’) are B-nodes, i.e., leaves in the tree belawWe claim that, at thel-node
predecessors of both(xz) andx ('), thei-bit of the counterC is false (and thus has the same value). To
see this, first note that the use of the concept namensures that(u;) and7(u}) can only beb or the
A-node predecessor af(x). Sinceb does not satisfyF;, m(u,) must be the mentioned predecessor, which
thus satisfied;, but not7;. It follows thatm(u;) is b. Argueing analogously, it can be shown thétv;) is b
andr(w;) is the A-node predecessor afz’). Since both., andw) have to mapped to nodes satisfyiAg
we are done. Now assume thal;) is ¢. We can argue dually to the previous case to showstlaj and
7(z") are B-nodes and, at thé-node predecessors of batliz) andr(z’'), thei-bit of the countelC' is true
(and thus has the same value)

Now setgent := U, o .- Observe that all querieg, ., i < m, share the variables andz’. It is not
hard to verify that if there is a match ¢f,; in the model obtained by combining Figure 3 and 5, themd
«’ are mapped td3-nodes whosel-predecessors agree on the value of all bits of the codntdio achieve
(%), it just remains to enforce that these predecessors aggethlwith different tile types. To this end, we
further extend the query and the ABox.

14
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Figure 7: The part ofdp . used withgiie.

The queryge is given in Figure 6 for the case of three tiles, iE.= {0, 1,2}. It shares the variables
x anda’ with gcnt. In general, fofl’ = {1,...,k — 1}, we define

gie = {R(v),
(v, Y0), -, (U, Yk=1)s - (0, 0)s - (U, Y )
D()(y()), s 7Dk—1(yk—1)a Do(y(/)), cee ’Dk_l(y]/g—l)ﬂ
A(Yo), - -+ Alyr-1), AWYH)s - -+ AWg_1)s
(Yo, )y (Y1, %), (Y, &), (Y, @)
B(z),B'(2") }

To useg:ie, we further extend the ABoxp . as shown in Figure 7 for the case of three tiles and where alll
individuals except: are fresh. Formally, we add the following assertions:

° R(C@j),?“(C@j, b@j),A(b@j),T(b@j, a) for all Z,j S {O, - ,k‘ — 1} with ¢ 75 ],
o Dy(b; ;) forall £,4,5 € {0,...,k — 1} with i # j andi # ¢;
e Djy(b;;)forall ¢,4,5 € {0,...,k— 1} withi # jandj # ¢.

Observe the similarity betweep;. and q% .» and between the ABox extension f@fi. and that forq% o
Let 7 be a match of; e in in the model obtained by combining Figure 3 and 7. Due tactreept name?’,
7(v) = ¢;; for somei, j with i # j. Moreover,z andz’ are mapped to 8-node in the tree below, each
ye is mapped either t; ; or to the A-node predecessor afx), and eachy; either tob; ; or to the A-node
predecessor af(z’). Sinceb; ; does not satisfyD;, 7(y;) must be thed-node predecessor afx), which
thus satisfieD;, but none ofDy, ..., D;_1, D; 41, ..., Di_1. We can use the concept nanie§, ..., D) _,
to argue analogously tha(y;-) is the A-node predecessor afz’), and that it satisfie@g.. Sincei # 7, the
A-node predecessors ofx) andr () are labeled with different tile types.
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Now, the desired querys . is simply the union ofj.,: andg. From what was already said abapt:
andgie, it is easily derived thagp . does not match the grid representation iff Proper)yi satisfied. It is
possible to show that there is a solution #randc iff (0, Ao .) [~ ¢o... We have thus proved that query
entailment inS is co-NExPTIME-hard.

Theorem 4.2 Query entailment it is coNEXPTIME-hard. This holds even for knowledge bases in which
the TBox is empty.

4.2 CQs over Tree-shaped ABoxes

In this section, we show that the hardness of the query airsgverops to XpTiIME-hard if we restrict the
shape of the ABox.

An ABox A is tree-shapedif the directed graph with nodédsd(.A) and edgeg(a, b) | 7(a,b)eA} is a
tree, and-(a, b) 1’'(a,b) € Aimpliesr = r’. We aim to show the following.

Theorem 4.3 In §, CQ entailment i€XPTIME-complete if ABoxes are tree-shaped.

It is well-known that CQ entailment i is EXPTIME-hard even with empty ABoxes (which follows
from the ExPTIME-completeness of knowledge base satisfiabilityliiC [15]) and thus it remains to show
the upper bound. We start with a simple observation.

Proposition 4.4 ForaKBK = (7, .A), whereA is tree-shaped, we can build in polynomial time a KB=
(7,{C4(a)}) such thatC |= ¢ iff K’ |= g for every CQy.

It thus suffices to give an@TIME algorithm for CQ entailment i with ABoxes of the form{Cy(a)}.
From now on, letC = (7, {Cy(a)}) be a KB and; a CQ for which we decid& = q.

We assume w.l.0.g. thdf, is in negation normal fornr{NNF), i.e. negation is only applied to concept
names, and thaf contains a single concept inclusion axiom of the forni C'7 with C'7 in NNF. We may
also assume w.l.0.g. thatis connected (a disconnected query can be answered by s&#pg@sing each
connected subquery).

We can limit our attention to certain canonical models andrgatn kind of query that we callseudo-
tree query

Definition 4.5 [Canonical Model] Acanonical modefor K is a modelZ of A such that
e 7 satisfies all concept inclusions i (but not necessarily the transitivity axioms);
o (A%,U,en, ") is atree with root” and whose out-degree is bounded by the cardinalityibfiC);
e 1 N st = () whenever # s;
e forall V¢.C' € sub(K) with t € Tr(K) and all(d, e) € tZ, d € (vt.C)T impliese € (vt.C)Z.

Due to the non-transitivity of transitive roles in canomnigedelsZ, we have to work with a relaxed version
of a match that becomes a match when, for evegyTr(KC), rZ is replaced with its transitive closure.

Definition 4.6 [Pre-match] LetZ be a canonical model of. We call a mappingr: Vars(q) — A% a
pre-matchfor ¢ in Z, if (a) 7(u) € A% for eachA(u) € ¢, (b) (7(u),n(v)) € v for eachr(u,v) € g with
r & Tr(K), and (c) for eacti(u, v) € ¢ with ¢ € Tr(K) there is a sequene®, . .. , d,, € A%, n > 1, such that
do =7(u), d, =m(v) and(d;, d;,1) € t* for all i < n. We writeZ |=P" q, if there is a pre-match fayin Z.
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We now define pseudo-tree queries, based on role clusters.

Definition 4.7 [Role Cluster, Pseudo-tree Query] Letbe a CQ. For each € Tr(K), ~; denotes the
smallest equivalence relation owésr(q) such that(v,v’') € ¢ impliesv ~; v'. An equivalence class of
~ is called a(transitive) clusterof ¢q. For each non-transitive roke a (non-transitive) clustenof ¢ is a set
cs ={u,v} with s(u,v) € q.

Now, a connected CQis apseudo-tree query it satisfies:

(a) if ¢, is a cluster of; ands(u, v), s'(u/,v") € g with v,v" € ¢, ands, s’ # r, thens=s', u=u', v="1/;
(b) ¢ is acyclic, i.e., it does not contain atomgvg, v1), - - . , n (Vny Vpp1) With v, = 0.
A clustere, of ¢ isinitial, if no v € ¢, has an incoming edgé(v’, v) € ¢ with r #£ 7.

Intuitively, a pseudo-tree can be viewed as a tree of clsistéh an additional root; the root is a predecessor
of every initial cluster (there can be more than one) ancetieean edge between two clusters if they share
an element. Each transitive cluster in a pseudo-tree quesgritbes a subquery that is an acyclic directed
graph.

Over an interpretatior;y whose domain is a tree, the existence of a pre-match for aagyaqian be
reduced to the existence of a pre-match for a pseudo-trag, quigich is obtained frong by identifying any
two variablesu, v’ such thatr(u) = 7(u’) for every pre-matchr for ¢ in 7.

Definition 4.8 A CQ ¢’ is obtained from a CQ by fork elimination if ¢’ results fromg by one of the
following operations:

e selectr(u,v),r(u',v) € gwith u#u" andr ¢ Tr(K), and identifyu andv’;

e selectr(u,v),r(u’,v") € ¢ with v#£v" andv,v’ in a clustercs of ¢ wheres # r, and identifyv and

v’

We say that’ is amaximal fork rewritingof ¢, if ¢’ is obtained fromy; by exhaustive fork elimination.

The entailment of a CQ over the canonical models &f is invariant under fork-rewriting, anglcan be
entailed only if it can be turned into a pseudo-tree queryng{imal) fork rewriting.

It can be shown that the maximal fork rewriting is unique anchputable in polynomial time. More-
over, it can be checked in polynomial time whether a query pseudo-tree query. Hence, the following
proposition allows us to restrict our attention to canohmadels and pseudo-tree queries.

Proposition 4.9 Letq be a CQ, and let’ be the maximal fork rewriting af. Thenk |~ ¢ iff (i) ¢’ is not a
pseudo-tree query, or (ilf P ¢’ for some canonical modél of K.

In what follows, assume that the input queris a pseudo-tree query. We want to decide whether there
is a canonical modé of IC such thatZ [P gq.

4.2.1 Markings for canonical models

In this subsection, we considerarkingswhich witness the non-existence of pre-matches in canbmiod-
els. They are a stepping-stone to obtain the knot eliminatigorithm in the short version of this paper.
This ‘technical step’ was omitted from the latter due to thace restrictions, and is linked to the material
in the submission in the next subsection.

First, we define some notions and notation for later use.
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Definition 4.10 For V' C Vars(q), we denote by;|y the restriction of; to the variables ir.
By reach, (V') we denote the variables that are reachablgfiom some variable oV, i.e., the smallest
subset oWars(q) with V' C reach, (V') and such that(v, v") € g andv € reach, (V) imply v" € reach, (V).
We say that a variable € V' is minimalin V' C Vars(q), if v ¢ reach,(V'); we denote bynin(V') the
set of all variables that are minimal In.

We consider some special subqueries of the queklye also consider a restricted form of pre-matches
for these subqueries, which require the minimal varialddsetmatched at some particular domain element.

Definition 4.11 [cluster part; pseudo-tree subqueiy?)] A cluster part(of ¢) is a pairP = (c,, V') where
¢, is a cluster ofy andV is a nonempty subset ef. The subquery of induced byP, denotedy(P), is

given byQ(P) = q|reachq(V)'
Note that for a pseudo-tree queryalsoq(P) is a pseudo-tree query.

Definition 4.12 [rooted pre-match] Ley/ be a canonical model fd€, and leto, o’ € A, For a transitive
role r, we say that' is r-reachablefrom o, if there is a sequence, ... , 0,, n > 1, such thab; = o,
0, = o and(o;, 0;41) € r7 for eachl < i < n.

A pre-matchr for ¢(P) is rootedato € A7, if the following hold:

1. If r € Tr(K), thenw(v) = o for the uniquev that is minimal inV.
2. Ifr € Tr(K), then (a) for each € min(V'), w(v) is r-reachable from; and (b) for every”(v/,v) € ¢
such thaw € V andr’ # r, 7(v) = o.

To conveniently describe rooted pre-matches for a psenegosubquery’, we employ thedepartsrela-
tion between a variable and (cluster parts of) subquerigedaat it, as well as local notions of matchability
at a domain element.

Definition 4.13 [departs; label-matched] Given a a clusteland a variable) € ¢, such thaty contains an
atoms(v,v') with s # r, we say that the cluster pajt,, c;) departs fromw, wherec; is the s-cluster with
v,V € cs.

Let 7 be an interpretation and letc A7. We say that the variableis label-matchedato if B(v) € ¢
implieso € BY. For a set of variable¥”, we denote byabelMatch, (V) the set of allv € V that are
label-matched at, and by letM, (V') := min(V') N labelMatch, (V). Finally, we denote byD, (V) the set
of allv € M,(V') such that there is a pre-match rooted &r eachq(P’) such thatP’ departs fromy.

Now we characterize rooted pre-matches for a subqefeiryterms of local conditions and rooted pre-
matches for subqueries ¢f.

Lemma 4.14 Let P = (c,, V) be a cluster part, let7 be a canonical model foi and leto € AY. There
exists a pre-match fay(P) rooted ato iff the following hold:

1. if r is not transitive,V = {v, v’} andr(v,v’) € ¢, thenv is label-matched at and there exists a rooted
pre-match forg({c,, {v'})) rooted at some’ € A7 with (0,0') € r7;

2. if r is not transitive and” = {v}, thenv is label-matched ab and there is a pre-match fa( P’) rooted
at o for every P’ that departs from.
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3. if r is transitive, then for each maximal connected compoméraf V' \ D,(V) (i.e., V' contains some
v that does not reach any othef < ¢,, and it contains all variables that are connectedpin
ql(v\ b, (v): there exists a pre-match fgf(c,, V’)) rooted at some’ with (o0, 0’) € 7.

Proof. If r is not transitive, then both directions are trivial. rifis transitive, then one direction is
straightforward: item 3 implies the existence of a pre-hais desired. To show the other direction, it
suffices to observe that if there is some pre-matchy{@t) rooted ato, then there is one such pre-match
such thatr(v) = o for everyv € D,(V). Such ar can be obtained by taking any rooted pre-matth
pulling up the match of each € D,(V') that was not matched at and setting the match of all variables
that are in some’ = ¢(P’) such thatP’ departs fromy, to coincide with the existing pre-match f@rrooted
ato.

Clearly, all atoms of the formi(u) € ¢(P) are satisfied after this. As for the role atoms, recall that
v is minimal inV and hence it has no incoming are@’, v) € ¢(P). By this and the fact thaj(P) is a
pseudo-tree query, each atoifu, v’) in ¢(P) is of one of the following three forms: (1) = v, v’ € ¢,
andr = s, (2) v’ € ¢, andu, v’ are both in some’ = ¢(P’) such thatP’ departs fromv, (3) s(u, ) is not
as in cases 1 or 2 above, which implies that’ # v and neithen: nor«’ is in any¢q’. All outgoing edges
r(v,u’) with v’ € ¢, (case 1) are satisfied, sinegu’) = w(u’) is r-reachable fromr’(v) and hence from
o. Satisfaction ofs(u, ') as in case 2 is straightforward by the constructiomr ofor all other variables
andn’ coincide, hence the satisfaction of all atoms in case 3 saisured.

The pre-matchr, which maps each € D,(V') to o and induces rooted matches for each maximal
connected component &f \ D,(V), witnesses item 3. O

We definemarkingsthat witness the non-existence of rooted pre-matches feudustree subqueries
in a canonical model. The negation of the statement of thenl@rabove provides the basis for defining
conditions that correctly capture the non-existence ofnpatéches.

In the following, we denote by'P(q) (or simply CP) the set of all cluster parts qf

Definition 4.15 [(spoiling) markings] Let7 be a canonical model d€. A marking (for 7 andg) is a
relationy € AY x CP(q); we useyu(o) to denote the set of cluster pafswith (o, P) € .

Foro € A7 and P a cluster part of;, 11 is q(P)-spoiling ato, if P € u(o) andy is spoiling i.e., for
every(o, P) € pwith P = (¢, V), the following hold:

(S1) Ifr ¢ Tr(K), V ={v,v'} andr(v,v’) € ¢, then either (a) is not label-matched at or (b) (c,, {v'}) €
p(a) for all o with (o,0") € r7.

(S2) Ifr £ Tr(K) andV = {v}, then either (a) is not label-matched at, or (b) P’ € u(o) for someP’
that departs from.

(S3) Ifr € Tr(K), then there is someonsumed sef C min(V') such that:

e for eachv € min(V)\ S, either (a) is not label-matched at or (b) P’ € (o) for someP”’ that
departs fromy, and

e thereis a/’ C V' \ S that contains (a) some that does not reach any othé€re ¢,, and (b) all
variables that are connecteditoin ¢|(\ 5, such thatc,, V') € (o) for all o’ with (0, 0') € 7.

Next we show that there exists a markindor a canonical model/ that isq(P)-spoiling at some iff
there exists no pre-match fo(P) rooted ab.
We do this by induction, using a suitable notion of subquérg.s
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Definition 4.16 Thescope sizef a cluster parP = (c,, V'), denotedis(P), is defined a$V|+|reach, (V)| —
1. Observe thagts(P) = 1iff P = (¢, {v}) andv has no outgoing edgegv, v’) in gq.

For the only if direction, we can actually prove somethimgstier and impose restrictions gnwhich
ensure that the consumed $ah (S3) in Definition 4.15 is always as small as possible aatidhly relevant
cluster parts appear in the markers of the nodes.

Definition 4.17 Let 7 be a canonical model fd€. Leto € A7, and letP be a cluster part of. We say a
markingu is (o, P)-austere if it is ¢(P)-spoiling ato and

1. for everyo’ € AY and every(c,, V') € pu(o) with r € Tr(K), (S3) in Definition 4.15 is satisfied by
taking D/ (V') as the consumed s&t

2. foreveryo’ € A7, {{c,V),{c/,V')} € u(o) impliesc # ¢/;

3. noy’ < pis q(P)-spoiling ato, hence each cluster part occurringuris justified i.e., (V,¢) € u(o)
implies thato’ is inside the subtree @f rooted at and one of the following holds:

e cis the initial cluster of;(P), or
e cis anr-cluster and there is somé C V' such thatc, V') € u(o”), or

e V = cand there is some-clusterc’, someV’ C ¢, and some € V' such that(c, V') departs
fromv and(c’, V') € u(o),

whereo” is the parent o’ in 7 and(o”, ') € r7.

Now we show that the non-existence of a rooted pre-match (fB) is always witnessed by @, P)-
austere marking.

Lemma 4.18 Let 7 be a canonical model fot, leto € A7 and letP be a cluster part of. If there is no
pre-match forg(P) rooted ato, then there is arfo, P)-austere marking for7.

Proof. Let P = (c,, V') and assume that there is no pre-matchyfd?) rooted at. We prove the claim
by induction on#s(P).
(Basis) Suppose thats(P) = 1. ThenV ={v} holds. Ifr is not-transitive, by Lemma 4.14 is not
label-matched at, and thus: = {(o, P)} is (o, P)-austere. Ifr is transitive, we simply set(o’) = {P}
for everyo’ that isr-reachable fron» and wherev is not matched, as well as for the firton each branch
that isr-reachable fromv and wherev is matched (if any). Note we may encounter an infimiteranch
wherew is never matched, and all its nodes are marked With

(Induction step) Suppose théts(P) > 1. We are in one of the following cases:
1. risnot transitive) = {v,v'} andr(v,v’) € q. By Lemma 4.14, eitheii v is not label-matched af
or (i) v is label-matched at and there exists no pre-match fgi(c,, {v'})) rooted at some’ € A7
with (0,0') € 7.
If (i), we can define afv, P)-austere marking as{(o, P)}.

If (i), by the induction hypothesis, for each<c A7 with (0,0") € 7 there is and’, (c,, {v}))-
austere marking/. To obtain ano, P)-austereu, setu(o) = {P} andu(o”) = u/(0") for eacho”
that is below some’.
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2. ris not transitive and” = {v}. By Lemma 4.14, eitheri v is not label-matched at, or (i) v is
label-matched at and there is som&” that departs fromv such that there is no pre-match fgP’)
rooted afb.

If (i), then we proceed as above and define {(o, P)}.
If (ii), then by the induction hypothesis, there is(anP’)-austere marking’. We extend it to an
(o, P)-austereu by settingu(o) = {P} U i/(0) andu(o’) = 1/(o') for eacho’ that is belowo.

3. r is transitive. According to Definition 4.17, we s€t= D,(V) as the consumed st We must
ensure that (S3) in Definition 4.15 is satisfied.

First, observe that for each € min(V') \ S, either (a)v ¢ M,(V), i.e., v is not label-matched at
o,or (b)v € M,(V)\ S. In case (b), there is sont, that departs from and such that no rooted
pre-match foi (P, ) exists, and hence by the induction hypothesis there {®ah,)-austere marking
1. We can include these, in the (o, P)-austereu to satisfy the first item of (S3) in Definition 4.15.

As for the second item of (S3), by Lemma 4.14, there¥ & V' \ S such that:

(a) V' contains some, that does not reach any othere ¢,,

(b) V' contains all the variables that are connected,tm ¢/ sy, and

(c) for eacho’ with (0, 0’) € 77, there exists no pre-match fof(c,, V') rooted ab'.

By the induction hypothesis, for each sue¢han (o', (¢, V'))-austere marking:, exists. We can
also include thesg,, in the (o, P)-austere marking: in order to satisfy the second item of (S3) in
Definition 4.15.

Hence the desired can be defined as

{(o, P)} U U Mot U U Mo -

(0,0 )erd veM,(V)\S

It can be easily verified that is (o, P)-austere.

The converse also holds, even if we drop the austerity césini

Lemma 4.19 Let J be a canonical model fok, leto € A7 and letP = (c,, V') be a cluster part of. If
there is a pre-match fog(P) rooted ato, then no marking fot7 is ¢(P)-spoiling ato.

Proof. Let P = (¢, V) and assume that there is a pre-matchgfd?) rooted ato. We prove the claim
by induction on#s(P).

(Basis) Supposé:s(P) = 1. HereV = {v} andv € M,({v}). If » € Tr(K), then it is clearly not possible
to satisfyP € u(o) and (S2) in Definition 4.15. If € Tr(K), thenv € S can not hold since there is ¢

as required by (S3) in Definition 4.15. Butif¢ S, the first item of (S3) is not satisfied. This shows that
there is nqu that isq(P)-spoiling ato.

(Induction step) We are in one of the following cases:
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1. ris not transitive,V = {v,v'} andr(v,v’) € q. Let P’ = (¢, {v'}). By Lemma 4.14p is label-
matched ab and there exists a rooted pre-match§oP’) rooted at some’ € A7 with (o,0") € 7.
Any ., to beq(P)-spoiling ato, must haveP € u(o). Given thatv is label-matched at, to satisfy
(S1) in Definition 4.15,P" € (o) must hold at every’ with (o,0) € 7. Thus,u must also be
q(P’)-spoiling ato’; but as#s(P’) < #s(P), such au does not exist by the induction hypothesis.

2. ris not transitive and’ = {v}. By Lemma 4.14y is label-matched at and for everyP’ that departs
from v, there is a pre-match far( P’) rooted atbo.

To beq(P)-spoiling ato, any u must haveP € u(o), and asv is label-matched at, to satisfy (S2)
in Definition 4.15,P" € u(o) must hold for some”’ that departs from. By definition, u must be
q(P")-spoiling ato, but as#s(P’) < #s(P), such au does not exist by the induction hypothesis.

3. ristransitive. By Lemma 4.14, for each maximal connectedmamentV’’ of V'\ D,(V'), there exists
a pre-match fog({(c,, V')) rooted at some’ with (o,0’) € r7.

To be ¢(P)-spoiling ato, any u must haveP € p(o), and there must be some consumed$et
min(V') as required by condition (S3) in Definition 4.15.

We show thatD, (V') C S. Towards a contradiction, suppose that sane D, (V') \ S exists. Then
P’ € u(o) must hold for somé’ that departs from this in order to satisfy the first item (note that
is label-matched ai as there is a pre-math fgf P)). However, the definition oD, (V') implies that
there is a pre-match rooted @for every suchP’; as#s(P’) < #s(P), such au does not exist by
the induction hypothesis, which is a contradiction. ThisvesD,(V) C S.

For 1 to beq(P)-spoiling ato, the second item of condition (S3) implies that there musttexome
maximal vV’ C V' \ S that contains (a) some, that does not reach any other € ¢,, and (b) all
variables that are connecteddpin ¢\ s, such that(c,, V') € u(o’) for all o with (0,0') 7.
Clearly, this maximal connected componéntof V \ S is contained in some maximal connected
componentV” of V' \ D,(V). The existence of a pre-matehfor ¢({c,, V")) rooted at some’
with (0,0) € r7 implies the existence of a pre-matet for ¢({c.,V’)). To see thatr’ is also
rooted ato’, observe that € D,(V') holds for everyv € V with s(v',v) € ¢ ands # r (by the
assumption that there is a pre-matchd6fc,, V')) rooted ab) and hence there is no suchn V'. As
#s((c,, V")) < #s({cr, V)), the induction hypothesis implies thatcan not be;({c,, V’))-spoiling
ato’. This is a contradiction; it follows that a markingwhich is ¢(P)-spoiling ato does not exist.

O

We have shown that the non-existence of a pre-matci(#y rooted at some specificis correctly char-
acterized by the existence of a marking thag(i$)-spoiling at thiso. Now we introduceglobal markings
to capture the non-existence of pre-matches at everfy7 .

Definition 4.20 A spoiling markingu for 7 andgq is global, if for eacho € 7, (o) contains some cluster
part(c,, V) wherec, is an initial cluster of;.

An easy consequence of the above is tliadmits a global marking iff it is a countermodel pf

Proposition 4.21 7 [£P™ ¢ iff there exists a global marking fQf andg.
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Finally, we show that for each countermodel there is a globatking 11, which can be obtained by
suitably composing austere markings, that does not assignyto different parts of the same cluster. The
latter is crucial for obtaining the desired complexity bdsn

Proposition 4.22 There exists a global marking for a modél and a queryq iff there exists a global
marking for. 7 andq that assigns to each node at most one part for each clustgr of

Proof. Supposeu is a global marking for,. We gather a collection of austere markings that spoil a part
of an initial cluster at each node. More precisely, for a nodet s, C A7 x CP be a marking that is
q(P)-spoiling ato for some partP of an initial cluster of;. For each node, such ars, trivially exists and
can be extracted from. Then by Lemmas 4.18 and 4.19, for eacthere exists @, C A7 x C'P which
is (o0, P)-austere for some part of an initial clusterqofWWe define inductively a new marking= J,~, v,
where

1. vy = p,, andog is the root of 7, and

2. for: > 0,

v =v; 1 U U Dos
OE’Y(i,l/Z‘,l)

wherey(i,v;_1) contains allo € A7 such thato| = i (i.e., o is at leveli of the treeA”) andv;_;
contains ndo, P) whereP = (¢, V') andc, is an initial cluster of;.

By constructiony is a global marking fot7 andq. We verify thatv assigns each € A7 at most one part
per cluster of;.

Consider the tre@ whose nodes are the clustersyafith an additional root; the root is a predecessor of
every initial cluster (there can be more than one) and tleam iedge between two clusters if they share an
element. Intuitively, each iteratiann the construction of adds an austere marking for some initial cluster,
but only inside a subtree ¢f rooted at some element where no parts of initial clustersiroddence, it is
‘delayed’ on the tred@” w.r.t. all the markings that started higherJjf and for each parc, V') of ¢ that is
associated to a nodge c is at a strictly higher level in the treéE than all other clusters for whichhad been
assigned a part in any previous iteratior< i.

Formally, we denote by, the partial order over the clusters @finduced byT', and usec < ¢,
c+ 1 =p ¢ andc <7 (¢ to denote that is, respectively, strictly smaller thar, a direct predecessor
of ¢/, or incomparable te’. We show the following:(x) for everyi and for every cluster pak, V), if
(e, V) € v;(0) \ vi—1(0) is added in the construction of, then for every cluster patt’, V') € v;_1 (o),
eitherc <r ¢ orc <7 . This property is seen by induction. Itis true foe 0: asp,,, is (or, P)-austere
for some partP of an initial cluster, it assigns at most one part per clusteracho.

Fori > 0 assume, towards a contradiction, thias the least for which (x) fails at some element of
A7 . Leto* be a shortest such element (i.e., minimal w.r.t. to its dépthe treeA7), and leto’ be its
parent. By assumptior(x) holds foro’. Assume(c*,V*) € v;(0o*) \ v;—1(0*), and that there is some
(¢=,V7) € vj_1(0o*) such that™ < ¢*. Letp, be the restriction of; \ v;_; to the subtree off rooted
at thej-th level that contains*, i.e.,o is the unique ancestor of in v(j,v;_1), andp, is an(o, P)-austere
marking for some parP of an initial cluster ofg. First we note thab* # o, asp,(0) contains a part of an
initial cluster butv;_; (o) does not, whilep,(0o*) contains a part of some cluster that has a predecessor
¢~ for which there is a part im;_; (0*). Sincep, is (o, P)-austere(c*, V*) € p,(0*) implies that there
is somec such thate = ¢* orc + 1 =7 ¢*, and(c, V) € p,(0), i.e., sincec* must be justified irp,(o*),
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a part of itself or of its direct predecessor must occup fv’). Similarly, sincer;_; is a union of austere
markings,(c~, V™) € vj_1(o*) implies that there is somé with ¢ = ¢~ or ¢ + 1 =7 ¢, and such that
(V') € vj_1(d") for someV’ C (.

The existence of either a part &f in p,(o’), or a part of the direct predecessoof ¢~ in v;_1(0'), is
enough to contradict the fact theltsatisfiesx), i.e., ifc = ¢* or ¢ + 1 =1 ¢~ we getc’ <r c. Otherwise,
there is no part of* in p, (o), (¢, V') € po(0') for the direct predecessorof ¢*, and(c—, V™) € v,;_1 ().
As ¢* has the unique direct predecessaindc~ < c*, eitherc™ < corc¢™ = ¢*. The former clearly
contradicts the satisfaction ¢%) ato’. We only have to analyze the case where= c¢*, i.e., there are
markings(c*, V*) € p,(0*), (¢*, V™) € vj_1(0*), and(c*, V') € v;_1(d'), as well as(c,V) € py(0)
for the unique direct predecessoof c¢*. Letr be the role with(o’,0*) € r7. As there is no part of*
in po(0') and (c*,V*) € p,(0*), thenc is anr-cluster, there is a part afin p,(0*), andV* = ¢*. Also
(", V") € v;_1(d) together with(c*,V~) € v;_1(0*) implies thatc* is anr-cluster. Hence- is not
transitive (as by definition there are no adjacentc,» with » = 7’ transitive), andi’’ = ¢* follows. We
have(c*, ¢*) € v;_1(¢'), and the presence of this cluster part must be justifiedc ithe predecessor of
c*, there must be some, W) € v;_1(o") with W C ¢. But this together withc, V') € p,(o’) contradicts
the assumption that satisfieg(x). O

4.2.2 A knot-elimination algorithm

We present an algorithm which tests the existence of motatsatdmit a global marking. It is based on
knots [12].

Definition 4.23 [Knot] A 7 -typeis a setr C sub(7') that satisfies, for all’, D € sub(7'): (a) C € 7 implies
-Cdr,(b)ifCnDer, then{C,D}Cr7,(c)if CUDer,thenCerorDer,and (d)Cr€7. Aknot
for 7 is a pairk = (7, S) with 7 a7 -type andS a set of pairgr, ') such that- is a role name that occurs
in 7, 7" is a7 -type, and in addition:

(1) if 3Ir.C € 7, thenC € 7’ for some(r, ') € S;

(2) if Vr.C €7, thenC e 7' forall (r,7') € S;

() if vr.Cer AreTr(K), thenvr.Ce 7' for all (r, 7')€S;
(@) 15| < [sub(K)|.

Aknot s = (,.5) can be viewed as describing a fragment of a canonical modettimsists of a node which
satisfies the concepts inand its successors, as describedSyOur algorithm will represent canonical
models as a set of knots. In fact, it is not hard to come up wetidiions which guarantee that a given
set of knots can be assembled into a canonical model. Byféraimg) the marking conditions for canonical
models (see Definition 4.15) to the setting of knots, we obtainditions ensuring that a given knot set can
be used to assemble a canonical model where there is a glalkilhg for q.

Definition 4.24 [Marked Knot] Amarked knots a pair(x, v), wherex = (7, S) isaknotand : Su{e} —
2P is a mapping such that, for amyc S U {¢}, v(e) contains no more than one part of each clustey. of

As a conventiony(e) is the marking of the root ok. The marking of a single knot must mimic a
spoiling marking of a domain element and its immediate ssgmes as given in Definition 4.15.
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Definition 4.25 [g-avoiding] For & -typer and a variable, we say thav is label-matchedtr if A(v) € g
implies A € 7 for any A. Then a marked kndtx, v) is g-avoiding (for ), if (a) v(¢) contains a part of an
initial cluster ofg, and (b) the following conditions hold for ea¢h., V') € v(e):

(K1) If r & Tr(K), V = {v,v'} andr(v,v') € ¢, then (a)v is not label-matched at, or (b) (¢, {v'}) €
v({r,7")) forall (r,7") € S;

(K2) If r ¢ Tr(K) andV ={v}, then either (a) is not label-matched at, or (b) P’ € v(e) for someP’
that departs from.

(K3) If r e Tr(K), then there is someonsumed seéf C min(V') such that:

e for eachv € min(V) \ S, either (a)v is not label-matched at, or (b) P’ € v(e) for someP’
that departs fromy, and

o there is somé”’ that contains some, that does not reach any othére c,, and all variables
that are connected tg in g/ s, and{c,, V') € v((r,7)) for all {r,7’) € S.

The following conditions ensure that sets of marked knoitefinrepresent marked canonical models.

Definition 4.26 A setR of g-avoiding knots ionsistentif the following are true:

1. foreachs,v) € Awith k = (7, 5), and for eaclir, 7’) € S, there exist$x, vs) € Awith ks = (75, Ss)
such thatr; = 7" andv,(e) = v(r, 7).

2. there is dr,v) € R with k = (7, 5) such thaiCy € 7 (recall that the ABox is of the forniCy(a)}).

Proposition 4.27 There exists a global marking for a canonical modglof /C and ¢ iff there exists a
consistent set af-avoiding knots foikC.

Proof. (<) Let R be a consistent set gfavoiding knots and lei = max{|S| | (7, S) € &}. To obtain
a canonical model/ for K and a global marking: for 7 andq, we take the treé\ = 1-{1, ..., b}*. Let
0 : A — R be a partial function inductively defined as follows:

e (1) = (k,v) for some(k,v) € Rwith k = (7,5) andCy € T;

e if 5(0) = ((r,5),v) has been defined, then for eaghr’) € S, we choose some- i € A and set
d(o i) = (ks,vs) for some(ks, vs) € R with ks = (75, Ss) such thats = 7" andv,(e) = v(r, 7).

Such & exists by the consistency &f (Definition 4.26). LetA’ = dom/(§) (C A) be the domain of.

We can now define a canonical moggi for K, by taking7 = (A/,-%), a5 = 1 and:

1. for each concept nant@ € sub(K), C% = {o € A’ | §(0) = ((7,5),v) andC € 7},

2. for each roler, 775 = {(0,0-i) € A’ x A" | §(0) = ((1,9),v), (r,7") €S, 6(0- 1) = ((7s,55),Vs),

Ts=7"vs(e) =v(r,7')}.

To define a global markings for Js andg, we simply sefus(o) = v(e) for eacho with (o) = (k, v).
(=) Let J be a canonical model fd€ and let;: be a global marking fof7 andq. Due to Proposition 4.22
we can assume that assigns to each domain element no more than one part of easfercbfq. For
o € A7, we definetype(o) = {C € sub(K) | 0o € C7}.

We define a marked knetk (o) = ((7o,5,), v) for eacho € A7 as follows:
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Algorithm Knot-Elim(KC, q)
Input: KB K = (7,{Cy(a)}), (pseudo-tree) query
Output: “Yes” iff a consistent-avoiding knot set for KB exists

Compute the se, of markedg-avoiding knots for7

1:=0

repeat
t:=1+4+1
R =R \ {(FL, V) € R ’ (li, V) bad inﬁi_l}

until 8; = &,_1

if there exists somex, v) € K; with x = (7,.5) andCj € 7 then
return “Yes”

else return “No”

Figure 8: The knot elimination algorithm.
® Tp = type(o)
* vo(€) = plo),
e S, ={(r,7) | 3(0,0) €17, type(d') = 7/, vo(r, ") = p(ad)}.

It can be easily verified that = {mk(o) | 0 € A7} is a consistent set gtavoiding knots.
O

We now provide an algorithm for checking existence of cdesisg-avoiding knot sets. It is a kind
of type elimination as first used by Pratt [13] in the contexpmpositional dynamic logic, but works on
marked knots instead of types. In a nutshell, we start wighsiit of all marked-avoiding knots, and then
repeatedly eliminate knots that cannot be part of any mackednical model. In the end, we check whether
there is a surviving knot that contains the concéptfrom the ABox (cf. Definition 4.26). The following
definition formalizes the condition for elimination.

Definition 4.28 [Bad] Let R be a set of marked knots and (et ) € R with k = (7,.5). We say thatx, v)
isbadin &, if there is somér, 7') € S for which there is ndx, v,) € & with x5 = (75, Ss) such thatry =7/
andv,(e)=v(r, 7).

The algorithm is given in Figure 8. It is readily checked thderminates, as there is only a finite set of
marked knots fof7 . If it answers “Yes,” then the computed set of marked knotissistent; furthermore,
we can construct from it a canonical modebf I in which ¢ has no pre-match (Proposition 4.27). Con-
versely, if  has a canonical modé&l such thatZ [~P™ g, then we can generate a set of markeaoiding
knots fromZ and show that none of them is eliminated by the algorithm. hssalgorithm terminates and
one of the generated knots conta{tisin the root type, it returns “Yes.”

Proposition 4.29 The algorithmKnot-Elim is sound, complete, and terminates.

To establish Theorem 4.3, it remains to show that Knot-Elimsrin exponential time. Let be the size
of IC andm the size of;. It suffices to show that the number of marked knots is singgmeential inn+m;
note thaty-avoidance of a marked knot is easily checked nondetertitially in polynomial time inn+m.
The number of/ -types is bounded b3/* and the number of knots QPW) (note condition (4.23.4)). There
are at mostn clusters forg, and each cluster has less th#h parts. A marking assigns to each node of a
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knot at most one part per cluster, thus we have at &y} = 2m” candidate markings per node. As the
number of nodes in a knot is bounded ®yn), we have for each knot at maz?(m*n) candidate markings.
It follows that there are at mo8f™(»+m*) marked knots, which is bounded B§®*m*).

5 Related Work and Conclusions

We showed that deciding CQ non-entailmentSii, which supports transitive roles and role hierarchies,
is 2-ExPTIME-hard, and therefore provably harder (by one exponential) the standard reasoning tasks,
like satisfiability and instance checking, in a number of Dduswhich the latter problems arexBTIME-
complete. We also showed that the problem is¥PEIME for S for knowledge bases that have tree-shaped
ABoxes, but is NEPTIME-hard in general.

In the light of this, a natural question is under which othestrictions CQs non-entailment ov&#{
knowledge bases has lower complexity. BOLCZ, where CQ non-entailment is as hard asSiK, the
complexity drops to NEPTIME-complete if at least one variable must be mapped to the ABhx As
already remarked there, this does not reduce the worst cagglexity in presence of role hierarchies and
transitivity. In fact, the query,, in our reduction above can be easily adapted, by adding la f@sablez”
and atomg(z", z*) that connect:” to the rootsc* of all the components af,,..

In [12], the order-freeness degree (OF)as introduced as a measure of the structural complexity of
CQs, which roughly is the maximum number of query varialthes teach in the query graph a common sink
via a transitive role, but mutually not each other. As shohere, entailment of CQs with OFD bounded
by a constant is EPTIME-complete forSH (note that the query,, has unbounded OFD). As a simple
consequence, all queries with at most constantly manyhlasan transitive role atoms are decidable in
ExpPTIME. This contrasts the result that CQ entailmensiHZ Q is 2-ExPTIME-hard even for queries with
only two variables of [6].

Finally, the 2-ExPTIME hardness of CQ entailment f6fH and for ALCZ [8] matches the known upper
bounds forunions of CQ®verSHZI Q KBs [4] and the even more expressiveo-way positive regular path
queriesover ALC QTb,., KBs from [1]. This shows that, once either inverse roles ¢ foerarchies and
transitivity are allowed, one can significantly extend btith query language and the Description Logic
without further increase of the worst case complexity.
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