
I N F S Y S

R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICHWISSENSBASIERTESYSTEME

QUERY ANSWERING IN DESCRIPTION

LOGICS WITH TRANSITIVE ROLES

Thomas Eiter Carsten Lutz Magdalena Ortiz

MantasŠimkus

INFSYS RESEARCHREPORT1843-09-02

APRIL 2009

INFSYS RESEARCH REPORT

INFSYS RESEARCHREPORT1843-09-02, APRIL 2009

QUERY ANSWERING IN DESCRIPTIONLOGICS WITH TRANSITIVE

ROLES

Thomas Eiter,1 Carsten Lutz,2 Magdalena Ortiz,3 MantasŠimkus4

Abstract.We study the computational complexity of conjunctive queryanswering w.r.t. ontologies
formulated in fragments of the description logicSHIQ. Our main result is the identification of
two new sources of complexity: the combination of transitive roles and role hierarchies which re-
sults in 2-EXPTIME-hardness, and transitive roles alone which result in coNEXPTIME-hardness.
These bounds complement the existing result that inverse roles make query answering inSHIQ
2-EXPTIME-hard. We also show that conjunctive query answering with transitive roles, but without
inverse roles and role hierarchies, remains in EXPTIME if the ABox is tree-shaped.

1Institute of Information Systems, Vienna University of Technology, Austria. E-mail: eiter@kr.tuwien.ac.at.
2Fachbereich Informatik,Universität Bremen, Germany. E-mail: clu@informatik.uni-bremen.de
3Institute of Information Systems, Vienna University of Technology, Austria. E-mail: ortiz@kr.tuwien.ac.at.
4Institute of Information Systems, Vienna University of Technology, Austria. E-mail: simkus@kr.tuwien.ac.at.

Acknowledgements: This work has been partially supported by the Austrian Science Fund (FWF) grant
P20840, the Mexican National Council for Science and Technology (CONACYT) grant 187697, and the EU
project OntoRule (IST-2009-231875).

Some of these results were published in the preliminary report 1843-08-09.
This report is an extended version of a paper that has appeared in Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-09), C. Boutilier (Ed.); pp. 759-764. Pasadena,
California. July 2009. AAAI Press 2009.

Copyright c© 2009 by the authors

Contents

1 Introduction 1

2 Preliminaries 1

3 Query Answering in SH 3
3.1 Building Computation Trees 6

3.1.1 Enforcing Configuration Nodes 6
3.1.2 Enforcing Computation Trees 7

3.2 Testing Properness of Computation Trees 9

4 Query Answering in S 11
4.1 A Lower Bound 11
4.2 CQs over Tree-shaped ABoxes 16

4.2.1 Markings for canonical models 17
4.2.2 A knot-elimination algorithm 24

5 Related Work and Conclusions 27

I

1 Introduction

One of the main applications of ontologies in computer science is in data access, where an ontology formal-
izes conceptual information about data stored in one or multiple data sources, and this information is used
to derive answers when querying the sources. This general setup plays a central role e.g. in the Semantic
Web, in ontology-based information integration, and in peer-to-peer data management. In all these areas,
Description Logics (DLs) and in particular those of the OWL standard by the W3C are popular ontology
languages, and conjunctive queries (CQs) are used as a fundamental querying mechanism, cf. [16, 4, 10]
and references therein and below.

Inspite of the prominent applications, the study of algorithms for and the computational complexity of
answering CQs over OWL ontologies has only recently gained momentum. In particular, it was shown that
inverse roles have an impact on complexity: (a) CQ entailment (the decisional variant of CQ answering)
over ontologies in the primary OWL fragmentSHIQ is 2-EXPTIME-complete [4, 8]; and (b) the com-
plexity drops to EXPTIME-complete if inverse roles are disallowed (SHIQ is replaced withSHQ) and,
additionally, the use of transitive roles in queries is disallowed or seriously restricted, cf. [8, 11].

From an application perspective, such restrictions are highly unsatisfactory, as transitive roles play a
crucial role in most ontologies and are used to represent fundamental relations such as “part of” [14]. A main
reason why they are often adopted is that that algorithms forCQ entailment with (unrestricted) transitive
roles in the query become much more intricate, see e.g. [3, 1]where algorithms establishing 2-EXPTIME

upper bounds forSHIQ were provided.
The aim of this paper is to study the computational complexity of CQ entailment in fragments ofSHIQ

with no restrictions on transitive roles in queries. Our main contribution is to identify two novel sources of
complexity: (1) the combination of transitive roles and role hierarchies and, to a lesser degree, (2) transitive
roles alone. More precisely, we first show that CQ entailmentin SH (SHIQ without inverse roles and
number restrictions, i.e.,ALC extended with transitive roles and role hierarchies) is 2-EXPTIME-hard, and
thus 2-EXPTIME-complete. Thus, inverse roles arenot the only reason why CQ entailment inSHIQ is
harder than standard reasoning tasks such as satisfiabilityand subsumption, which are EXPTIME-complete.
Interestingly, 2-EXPTIME-hardness is hit already with a single role inclusion, or alternatively with a single
left identity r ◦ t ⊑ t. Secondly, we prove that CQ entailment inS (SH without role hierarchies, i.e.,ALC
extended with transitive roles) is NEXPTIME-hard, and thus also harder than standard reasoning. The lower
bound applies already to the case where TBoxes (which contain the conceptual information) are empty.

On the other hand, we show that CQ entailment inS ontologies where the ABoxes (data parts) have a
tree-shaped relational structure is in EXPTIME, and thus EXPTIME-complete. This result is interesting for
three reasons. Firstly, it is the first EXPTIME result for CQ entailment in an expressive DL with unrestricted
transitive roles in queries. Secondly, to the best of our knowledge, this is the first case where CQ entailment
for tree-shaped ABoxes is easier than the general case: in all existing lower bounds for CQ entailment in
fragments ofSHIQ, the ABox containsno role assertions at all. Thirdly, EXPTIME membership may be
viewed as an indication that the complexity in the general case is likely to be below 2-EXPTIME; a tight
upper bound is currently open.

2 Preliminaries

Knowledge Bases.We assume standard notation for the syntax and semantics ofSH knowledge bases [4].
In particular,NC, NR, andNI are countably infinite and disjoint sets ofconcept names, role names, and
individual names. Conceptsare inductively defined: (a) eachA ∈ NC is a concept, and (b) ifC, D are

1

concepts andr ∈ NR is a role, thenC ⊓ D, C ⊔ D, ¬C, ∀r.C and∃r.C are concepts. ATBoxis a set of
concept inclusionsC ⊑ D, role inclusionsr ⊑ s, and transitivity statementstrans(r). An ABoxis a set of
assertionsC(a) andr(a, b). A knowledge base (KB)is a pair(T ,A) consisting of a TBoxT and an ABox
A. We useI to denote an interpretation for a KB,∆I for its domain, andCI andrI for the interpretation
of a conceptC and of a roler, respectively.

A role is transitive if there is somer′ with trans(r) ∈ K andr′ ⊑∗ r, where⊑∗ denotes the reflexive
transitive closure ofr′ ⊑ r ∈ K.

S is the fragment ofSH that disallows role hierarchies.
We use the following notation. ByInd(A) we denote the set of all individual names in an ABoxA; by

sub(K) we denote the set of all subconcepts of concepts occurring ina KB K, andTr(K) := {r ∈ NR |
trans(r) ∈ T }.

Conjunctive Query Answering. Let NV be a countably infinite set ofvariables. A conjunctive query(CQ)
over a KBK is a finite set of atoms of the formA(v) or r(v, v′), wherev, v′ ∈NV, A is a concept name and
r is a role, both occurring inK.1 For a CQq overK, let Var(q) denote the variables occuring inq. A match
for q in an interpretationI is a mappingπ : Var(q) → ∆I such that (i)π(v)∈AI for eachA(v)∈ q, and
(ii) (π(v), π(v′))∈ rI for eachr(v, v′)∈ q. We writeI |= q if there is a match forq in I. If I |= q for every
modelI of K, thenK entailsq, writtenK |= q. Thequery entailment problemis to decide, givenK andq,
whetherK |= q.

Forest Models. In many DLs, it suffices to concentrate on certain regular models of the input KBK when
deciding CQ entailment. We describe these models forSH. A forest base forK is an interpretationJ that
satisfies:

(i) ∆J is a prefix-closed subset ofω+; elements of∆J ∩ ω are called therootsof J .

(ii) If (d, e) ∈ rJ for somer, then eithere andd are roots ofJ , or e = d · c for somec ∈ ω; in the latter
case, there is nor′ 6= r with (d, e) ∈ r′J .

(iii) For everya ∈ Ind(A), aI is a root ofJ , and for every rootd of J , there is ana ∈ Ind(A) such that
aI = d.

An interpretationI is a forest modelof K if it is a model ofK and there is a forest baseJ for K such
thatI is identical toJ except that, for all transitive rolesr, rI = (rJ)+. Then, therootsof I are defined
as the roots ofJ .

Proposition 2.1 LetK be anSH-knowledge base andq a UCQ. IfK 6|= q, then there is a forest modelI of
K such thatI 6|= q.

Alternating Turing Machines. The 2-EXPTIME-hardness result of this paper relies on a reduction from
the word problem forAlternating Turing machines(ATMs) with exponential work space, whose definition
we briefly recall; see e.g., [2] for background and details.

An ATM is given by a tupleM = (Q,Σ, q0, δ), where

• Q = Q∃ ⊎ Q∀ ⊎ {qacc} ⊎ {qrej}, the set ofstates, consists ofexistential statesin Q∃, universal states
in Q∀, anaccepting stateqacc, and arejecting stateqrej;

• Σ is thealphabetthat additionally contains theblank symbol ;

1Individuals inq can be simulated and queries with answer variables can be reduced to the considered Boolean CQs as usual.

2

• q0 ∈ Q∃ ∪ Q∀ is thestartingstate; and

• δ ⊆ Q × Σ × Q × Σ × {+1,−1} is thetransition relation.

For later use, we defineδ(q, σ) := {(q′, σ′,M) | (q, σ, q′, σ′,M) ∈ δ}.
A configurationof M is a wordwqw′ with w,w′ ∈ Σ∗ andq ∈ Q, whose intended meaning is that

the one-side infinite tape contains the stringww′ with only blanks behind it, that the machine is in state
q, and that the head is on the symbol just afterw. Thesuccessor configurationsof a configurationwqw′

are defined in terms ofδ as usual; without loss of generality, we assume thatM is well-behaved and never
attempts to move left if the head is on the left-most position. A halting configurationis of the formwqw′

whereq ∈ {qacc, qrej}.
A computationof an ATMM on a wordw is a sequence of configurationsK0,K1, . . . such thatK0 =

q0w (the initial configuration) andKi+1 is a successor configuration ofKi, for all i ≥ 0. For our concerns,
we may assume that all computations are finite (on any input),and define acceptance only for this case.

A configurationwqw′ is accepting, if either (a)q = qacc, or (b)q ∈ Q∃ and at least one of its successor
configurations is accepting, or (c)q ∈ Q∀ and all of its successor configurations are accepting. The ATM
M acceptsthe inputw, if the initial configuration is accepting. Theword problem ofM is, givenM and
w, to decide whetherM acceptsw. We use the following lemma.

Lemma 2.2 ([2]) There is an ATMM for which the word problem is2-EXPTIME-hard and such thatM
works in exponential space, i.e., all configurationsw′qw′′ in computations onw fulfill |w′w′′| ≤ 2|w|.

3 Query Answering in SH

It follows from a number of existing results that CQ entailment in SH is in 2-EXPTIME [1, 3, 5, 11]. We
provide a matching lower bound.

Theorem 3.1 CQ entailment inSH is 2-EXPTIME-complete.

To prove the hardness part, we reduce the word problem for an exponentially space bounded ATMM =
(Q,Σ, q0, δ) and an input wordw (by Lemma 2.2, this shows 2-EXPTIME -hardness).

Recall that the state setQ of an ATM is partitioned intoexistential(Q∃) anduniversal(Q∀) states. An
ATM with only existential states can be viewed as a standard non-deterministic TM, which accepts a word
iff there exists a sequence of successive configurations that starts in theinitial configuration, with initial state
q0 and the input wordw on the tape, and ends in an accepting stateqacc. For ATMs, these sequences become
treesof configurations, where branching is caused by universal states (there is a successive configuration
for each transition inδ(q, a) with q ∈ Q∀). Such a tree is acomputation tree, and it isacceptingif qacc is
reached on all paths. For details, please see [2].

For each inputw to M, we define a KBKw and a queryqw such thatM acceptsw iff Kw 6|= qw. In
fact, each forest modelI of Kw with I 6|= qw will represent an accepting computation ofM on w. More
precisely, such a model is an accepting computation tree in which each node is the root of aconfiguration
tree. The latter are binary trees of depthm := |w| (length ofw) that represent configurations using their2m

leaves to store the tape contents. This is illustrated in Figure 1; the initial configuration tree is existential and
thus has a single successor configuration tree. Its (magnified) successor is universal and has two successor
configuration trees.

3

r

r

r

r

. . .

depthm

r
r

rr

rr

Fh

Gh

Eh

t

t
Fp

tt

Gp

Ep

Figure 1: The structure of models.

To enforce this structure, we need some technical tricks. Inparticular, each configuration tree will
representtwo configurations: thecurrent configurationKh and thepreviousconfigurationKp. We useKw

to ensure locally at each configuration tree thatKh is indeed a successor configuration ofKp. The queryqw

is then used to globally guarantee that theKp value of each configuration tree is identical to theKh value
of the predecessor in the computation tree. We will call a computation treeproper, if it satisfies the latter
condition.

We now give a precise definition of how configuration trees andcomputation trees are represented as a
model. A single, non-transitive roler is used for the edges of computation trees and of configuration trees.
Observe that, as shown in Figure 1, we usetwo r-edges between two consecutive configuration trees. We
also use a transitive rolet, to be explained later. The alphabet symbolsΣ of M and the statesQ are used
as concept names. We also use the concept names fromB := {B1, . . ., Bm} to encode addresses of tape
cells in binary. For a noden of a forest modelI andi < 2m, we writeadrI(n) = i if the truth values of
BI

1 , . . . , BI
m at n encode the numberi. A tape cell with addressi and contenta ∈ Σ is represented by a

noden with valI(n) = i that satisfies the concept namea. If the head is currently on the cell andM’s state
is q, thenn also satisfiesq; otherwise,n satisfies the concept namenil.

To later on ensure properness using the query, we use additional nodes and concept names. The latter
areEh, Ep, Fh, Fp, Gh, andGp, used as markers; and the concept names fromZ := {Za,q | a ∈ Σ,
q ∈ Q ∪ {nil}}. The additional nodes are attached to the leaves of configuration trees, as indicated on the
left-hand side of Figure 1 and detailed in the subsequent definition. Intuitively, nodes labeledEh store the
current configuration and nodes labeledEp the previous.

Definition 3.2 [i-cell] Let I be an interpretation andi < 2m. We calln ∈ ∆I an i-cell if the following
hold:

(a) n hasr-successorsnp andnh with adrI(np) = adrI(nh) = i that satisfyEp respectivelyEh, and both
satisfy exactly onea ∈ Σ and exactly oneq ∈ Q ∪ {nil}.

(b) np (resp.,nh) has anr-successorn′
p (resp.,n′

h) satisfyingFp (resp.,Fh) and such thatadrI(n′
p) (resp.,

adrI(n′
h)) is the bit-wise complement ofi. Furthermore, for alla∈Σ andq ∈Q∪{nil}, we have:

(i) nh satisfiesZa,q iff nh does not satisfy botha andq;

(ii) n′
p satisfiesZa,q iff np does not satisfy botha andq;

(iii) n′
h andnp satisfyZa,q;

4

(c) n′
p (resp.,n′

h) has at-successorn′′
p satisfyingGp (resp.,n′′

h satisfyingGh) such thatn′′
p (resp.,n′′

h) is
also at-successor ofnp (resp.,nh).

We simply speak of a cell ifi is unimportant. Note that the ability ofSH to express (c) in Definition 3.2
via the axiomsr ⊑ t andtrans(t) is crucial for the reduction. The same condition can be expressed via a
so-calledleft identityr ◦ t ⊑ t.

We now define(q, a, i)-configuration nodes, which are the roots of configuration trees, and (models that
encode) computation trees. A noden′ is anrm-successor of a noden, if n′ is reachable fromn by travelling
m r-edges.

Definition 3.3 [(q, a, i)-configuration node, Computation tree] LetI be an interpretation. We calln ∈ ∆I

a(q, a, i)-configuration nodeif (1) it has anrm-successor that is aj-cell (calledj-cell ofn), for eachj < 2m

and (2) theEh-node of thei-cell of n satisfiesq anda, and all otherj-cells havenil in theirEh-nodes.
We callI acomputation treefor w if I is tree-shaped and

(I) the root ǫ of I has anr-successorn that is a(q0, a, 0)-configuration node whosei-cells describe the
initial configuration for inputw;

(II) for each(q, a, p)-configuration noden, if q ∈Q∃ (resp.,q ∈Q∀), then for some (resp., for each) tuple
(q′, a′,M) ∈ δ(q, a) there exists anr2-successor noden′ that is an(q′, a′′, p′)-configuration node with
p′ = p + M , whereM ∈ {−1,+1} is the executed move. Furthermore, theEh node of ap-cell of n′

satisfiesa′, and, for all remainingj-cells c of n′ with j 6= p, if the Ep node ofc satisfiesa ∈ Σ, then the
Eh node ofc also satisfiesa (i.e., ap-cell has the new symbol written, while for the remaining cells, theEh

nodes in the resulting configuration tree carry over the symbols from their respectiveEp nodes).2

We callI accepting, if q = qacc in each(q, a, i)-configuration for which there is no successor configuration.
Furthermore,I is proper, if for each pair of successive configuration nodesn, n′ as in Definition 3.3.II and
eachi < 2m, thei-cell of n has the same(q, a)-label in itsEh-node as thei-cell of n′ in its Ep-node.

It is not hard to see that there is a correspondence between accepting proper computation trees forw and
accepting computations ofM on w. The properness condition ensures that thepreviousconfiguration
encoded in theEp nodes of a configuration tree coincides with thecurrentconfiguration encoded in theEh

nodes of the previous configuration tree. Then, due to the condition (II) in the above Definition 3.3, we get
that each pair of successive configuration nodes encodes a correct transition ofM. On the other hand, given
an accepting run ofM onw, we can define an accepting computation tree.

Proposition 3.4 M acceptsw iff there exists an accepting proper computation tree forw.

In the next section, we define anSH knowledge base capturing (proper and improper) computation trees,
and in the subsequent section, we define a query for testing properness.

2The second part of condition (II) is not present in the submission, but is in fact needed for a complete argument. It realizes
the intuition stated in the beginning of the section, viz. that the configuration encoded in theEh nodes is a valid successor of the
configuration encoded in theEp nodes.

5

3.1 Building Computation Trees

Proposition 3.5 Givenw, we can build in polynomial time a KBKw whose forest models are exactly the
accepting computation trees forw.

In the following, by constructingKw, we provide a proof of the above proposition. We define

Kw = 〈{a : I},Tw〉

wherea is an individual,I is a concept name (that identifies the initial node), and the TBox Tw contains the
axioms described below.

3.1.1 Enforcing Configuration Nodes

Recall that configuration nodes are roots of binary trees of depthm whose leaves arei-cells corresponding to
tape cells ofM. We next provide axioms enforcing conditions (1) and (2) in the definition of configurations
nodes (see Definition 3.3). More precisely, nodes satisfying a special concept nameR are forced to be
configuration nodes. For technical reasons, them+1 levels of a tree rooted at a configuration node are
identified with concept namesL0, . . . , Lm. For two conceptsC andD, we useC → D as a shorthand for
the concept¬C ⊔ D. We introduce the following axioms, which generate a tree whose leaves cover the
address range0, . . . , 2m − 1:

R ⊑ L0

Li ⊑ ∃r.(Li+1 ⊓ Bi+1) ⊓ ∃r.(Li+1 ⊓ ¬Bi+1) for all 0 ≤ i < m
Li ⊓ Bj ⊑ ∀r.(Li+1 → Bj) for all 0 < j ≤ i < m

Li ⊓ ¬Bj ⊑ ∀r.(Li+1 → ¬Bj) for all 0 < j ≤ i < m

Recall that the leaves of configuration trees must bei-cells as prescribed by Definition 3.2, and hence
the properties (a)-(c) must be enforced. To enforce (a), we use the symbols fromΣ, the states fromQ and
nil as concept names. We label such nodes with exactly one concept from Σ (the content of a cellc), and
with exactly one concept fromQ+ := Q ∪ {nil}; intuitively, the labelq ∈ Q means that the head ofM is
on the tape cellc and thatM is in stateq, while the labelnil means that the head is not at positionj. The
above is realized as follows:

Lm ⊑ ∃r.(Ep ⊓ E) ⊓ ∃r.(Eh ⊓ E)

E ⊑ ⊔
a∈Σ

a ⊓ ⊓
a6=a′∈Σ

¬(a ⊓ a′)

E ⊑ ⊔
q∈Q+

q ⊓ ⊓
q 6=q′∈Q+

¬(q ⊓ q′).

To enforce the structures as prescribed in the remaining properties (b)-(c), we use the following axioms:

1. The existence of the required nodes is via the following axioms:

Ep ⊑ ∃r.(Fp ⊓ ∃t.Gp)
Eh ⊑ ∃r.(Fh ⊓ ∃t.Gh)

6

2. The address forEp andEh nodes, and its bitwise complement inFp andFh nodes is obtained by
adding for each1 ≤ i ≤ m the following axioms:

Lm ⊓ Bi ⊑ ∀r.Bi

Lm ⊓ ¬Bi ⊑ ∀r.¬Bi

E ⊓ Bi ⊑ ∀r.¬Bi

E ⊓ ¬Bi ⊑ ∀r.Bi

3. The conditions (b.i)-(b.iii) are enforced by the following axioms: for alla ∈ Σ, q ∈ Q+,

Eh ⊑ (a ⊓ q) ↔ ¬Za,q

Ep ⊑ (a ⊓ q) → ∀r.(¬Za,q ⊓ ⊓
(a,q)6=(a′,q′)

Za′,q′)

Eh ⊑ ∀r.Za,q

Ep ⊑ Za,q

4. Finally, to enforce (c), we addr ⊑ t andtrans(t).

It remains to ensure that each noden that satisfiesR also satisfies that for exactly one addressi < 2m,
the i-cell of n satisfies someq ∈ Q and allj-cells,j 6= i, satisfynil (cf. (2) in Definition 3.3). To achieve
this, we use a concept nameH (for the head position) and make sure that it occurs in the label of anLm

node iff its address isi, and that only anEh successor of such anLm node contains labels fromQ.

L0 ⊑ H

(Li ⊓ H) ⊑ (∀r.((Li+1 ⊓ Bi) → H) ⊓ ∀r.((Li+1 ⊓ ¬Bi) → ¬H))
⊔ (∀r.((Li+1 ⊓ ¬Bi) → H) ⊓ ∀r.((Li+1 ⊓ Bi) → ¬H)) for all 0 ≤ i < m

(Li ⊓ ¬H) ⊑ (∀r.(Li+1 → ¬H) for all 1 ≤ i < m

Lm ⊓ H ⊑ ∀r.(Eh → ⊔
q∈Q

q)

Lm ⊓ ¬H ⊑ ∀r.(Eh → nil)

We remark here that for configurations represented byEp nodes we omit here adding similar axioms. Indeed,
the queryqw that we construct will, as a byproduct, also check whether a stateq ∈ Q is stored at exactly
one address forEp nodes.

3.1.2 Enforcing Computation Trees

To generate computation trees, we add axioms ensuring that tree-shaped models ofKw satisfy conditions
(I) and (II) in Definition 3.3. In the following, we use∀ri.C to denote thei-fold nesting∀r. · · · ∀r.C. In
particular,∀r0.C is C.

The initial configuration as described in (I) is ensured as follows. Letw =a0 · · · an be the initial word.
We will additionally keep track of the position of the R/W head of M. To this end, we use concept names
Q′

1, . . . , Q
′
m andQ1, . . . , Qm for the previous position and the current position resulting due to a transition.

7

We add the following:

I ⊑ ∃r.R

I ⊑ ∀rm+1.(pos = i → ∀r.(Eh → ai)) for all i < n

I ⊑ ∀rm+1.(pos = 0 → ∀r.(Eh → q0))

I ⊑ ∀rm+1.(pos ≥ n → ∀r.(Eh →))

I ⊑ ∀r.¬Qi for all 1 ≤ i ≤ m

where(pos = i) and(pos ≥ n) are the obvious (Boolean) concepts expressing that the value of the address
B1, . . . , Bm equalsi and is at leastn, respectively (recall that is the blank symbol).

We turn to the condition (II) in Definition 3.3. In detail, to represent that a configuration noden′ is a
successor of a configuration noden upon taking the transition(q′, a′,M) ∈ δ(q, a), we labeln′ with the
concept nameTq′,a′,M and we connectn to n′ via two consecutiver arcs. Furthermore, ifq is existential,
we enforce that somen′ exists with suitable labelTq′,a′,M , and if q is universal, we enforce that for each
(q′, a′,M) ∈ δ(q, a) somen′ exists with labelTq′,a′,M ; we exploit that the stateq and the symbola are
stored in anEh-node ofn, for one unique address. We also ensure that the address of R/W head is copied
to the follow-up configuration nodes.

R ⊓ ∃rm+1.(Eh ⊓ q ⊓ a) ⊑ ⊔
(q′,a′,M)∈δ(q,a)

∃r2.(R ⊓ Tq′,a′,M) for all q ∈ Q∃, a ∈ Σ,

R ⊓ ∃rm+1.(Eh ⊓ q ⊓ a) ⊑ ⊓
(q′,a′,M)∈δ(q,a)

∃r2.(R ⊓ Tq′,a′,M) for all q ∈ Q∀, a ∈ Σ.

Qi ⊑ ∀r2Q′
i for all 0 < i < m

¬Qi ⊑ ∀r2¬Q′
i for all 0 < i < m

Next we provide axioms that define the position of the R/W headresulting by transition. It is obtained
by applying addition or subtraction to the address encoded by Q′

i concepts. We useINV 1, . . . , INV m to
decide on the bits that need to be inverted:

Tq,a,+1 ⊑ PLUS for allq ∈ Q, a ∈ Σ,

Tq,a,−1 ⊑ MINUS for allq ∈ Q, a ∈ Σ,

R ⊓ PLUS ⊑ INV m

R ⊓ Q′
i ⊓ INV i ⊓ PLUS ⊑ INV i−1 for all 1 < i ≤ m

R ⊓ PLUS ⊓ (¬Q′
i ⊔ ¬INV i) ⊑ ¬INV i−1 for all 1 < i ≤ m

R ⊓ MINUS ⊑ INV m

R ⊓ ¬Q′
i ⊓ INV i ⊓ MINUS ⊑ INV i−1 for all 1 < i ≤ m

R ⊓ MINUS ⊓ (Q′
i ⊔ ¬INV i) ⊑ ¬INV i−1 for all 1 < i ≤ m

Q′
i ⊓ INV i ⊑ ¬Qi for all 1 ≤ i ≤ m

Q′
i ⊓ ¬INV i ⊑ Qi for all 1 ≤ i ≤ m

¬Q′
i ⊓ INV i ⊑ Qi for all 1 ≤ i ≤ m

¬Q′
i ⊓ ¬INV i ⊑ ¬Qi for all 1 ≤ i ≤ m

8

We also propagate the two addresses to the leaves by adding, for each0 < j ≤ m, the following axioms:

Li ⊓ Qj ⊑ ∀r.(Li+1 → Qj) for all 0 ≤ i < m
Li ⊓ ¬Qj ⊑ ∀r.(Li+1 → ¬Qj) for all 0 ≤ i < m
Li ⊓ Q′

j ⊑ ∀r.(Li+1 → Q′
j) for all 0 ≤ i < m

Li ⊓ ¬Q′
j ⊑ ∀r.(Li+1 → ¬Q′

j) for all 0 ≤ i < m.

To enforce the second part of condition (II), we make sure that for a configuration noden satisfyingTq′,a′,M ,
the symbol in the previous position of the R/W head is changedto a′, while the symbols in other positions
are transferred fromEp nodes toEh nodes. The first part is done by adding, for allq′ ∈ Q, a′ ∈ Σ,
M ∈ {+1,−1} the axioms:

Tq′,a′,M ⊑ ∀rm.(Lm → Tq′,a′,M),

Lm ⊓ Tq′,a′,M ⊓ ~Q′ = ~B ⊑ ∀r.(Eh → a′),

Lm ⊓ Tq′,a′,M ⊓ ~Q = ~B ⊑ ∀r.(Eh → q′),

where~Q = ~B stands for ⊓
0<i≤m

((Qi⊓Bi)⊔(¬Qi⊓¬Bi)) and ~Q′ = ~B for ⊓
0<i≤m

((Q′
i⊓Bi)⊔(¬Q′

i⊓¬Bi)).

All remaining tape cells do not change:

Lm ⊓ ∃r.(Ep ⊓ a ⊓ nil) ⊑ ∀r.(Eh → a) for all a ∈ Σ.

This concludes the definition of the TBoxTw, and hence of the KBKw. By construction, all forest-
shaped models ofKw satisfy the conditions in Definition 3.3, and hence are computation trees.

3.2 Testing Properness of Computation Trees

As already mentioned, we use the queryqw to test whether the tree is proper. More precisely,qw should have
a match in a computation tree iff that tree isnot proper. We start with a characterization of (im)properness
in terms of the auxiliary concept names from above. In the following, we say that two cellsn andn′ are
A-conspicuous, whereA is a concept name, if

(†) A is true at theEh-node ofn and theEp-node ofn′, or

(‡) A is true at theFh-node ofn and theFp-node ofn′.

Proposition 3.6 A computation treeI is not proper iff (⋆) there exist cellsn andn′ in successive configu-
rations ofI K such thatn andn′ areA-conspicuous for allA ∈ B ∪ Z.

Proof. The proposition holds due to the way auxiliary labels are defined. First note that ifn, n′ are cells
of two successive configurations inI, then the conditions imposed onadrI(·) in Definition 3.2 imply that
adrI(n) = adrI(n′) iff for all A ∈ B, n andn′ areA-conspicuous; this is because bit-wise complement is
used for the addresses ofFp- andFh-nodes.
(⇒) Suppose thatI is not proper. Then there exist twoi-cellsn andn′ of two successive configurations of
I such that theEh-node ofn and theEp-node ofn′ satisfy different pairs(q, a) and(q′, a′). As adrI(n) =
adrI(n′), n andn′ areA-conspicuous for allA ∈ B. By (b.iii) of Definition 3.2,Zq,a is true at theFh-node

9

.

.

.

.

.

.

.

.

.

.

.

.

xZnxZ1 · · ·

y
B1
0

r

xB1 xBm· · ·

r

y
Bm
0

y
Z1
0

y
Zn
0

.

.

.

.

.

.

.

.

.

.

.

.

y
B1
m+1

r

t

B1 Bm

y
Bm
m+1

y
Z1
m+1

y
Zn
m+1

ZnZ1

z
B1
0

z
Z1
0

z
Zn
0

z
Bm
0

z
B1
m+3

B1 Bm

z
Bm
m+3

z
Z1
m+3

z
Zn
m+3

ZnZ1

v

uGh

Gp

· · · · · ·

· · · · · ·

.

.

.

xA

Gh
u

A

.

.

.

Gp
v

A

(I) (II)

yA
0

yA
m+1

yA
m

yA
1

t

r

r

r r

r

r

t

zA
0

zA
1

zA
m+2

zA
m+3

Figure 2: The basic queryq(A,u, v) and the final queryqw.

of n; by (b.ii) and since(q, a) 6= (q′, a′), Zq,a is also true at theFp-node ofn′ (recall thatZq′,a′ is false for
at most one pairq′, a′). We can argue similarly thatza′,q′ is true at theEh-node ofn and theEp-node of
n′. For (q′′, a′′) /∈ {(q, a), (q′, a′)}, Za′′,q′′ holds at theEh-, Ep-, Fh-, andFp-nodes of bothn andn′. In
summary,n andn′ areA-conspicuous for allA ∈ Z. Hence,(⋆) is true.
(⇐) To show this, we prove the contrapositive. Suppose thatI is proper and letn andn′ be any cells of
two successive configurations inI. If n andn′ are notA-conspicuous for someA∈B then (⋆) is false;
otherwise,adrI(n) = adrI(n′) holds, and asI is proper, theEh-node ofn and theEp-node ofn′ satisfy
the sameq ∈ Q anda ∈ Σ. By (b.i) of Definition 3.2,Za,q is false at theEh-node ofn; by (b.ii), Za,q is
false at theFp-node ofn′. Hence,n andn′ are notZa,q-conspicuous, which means that also in this case (⋆)
is false.

It thus remains to find a queryqw that has a match iff (⋆) is satisfied. The structure ofqw is displayed in
Figure 2(II).

We obtainqw by taking, for eachA ∈ B ∪ Z, a copy of the basic queryq(A,u, v) in Figure 2(I) such
that the different copies share only the variablesu andv, and then taking the union. Intuitively,q(A,u, v)
deals withA-conspicuousness, and the shared variablesu, v ensure that the different component queries
speak about the same cellsn, n′. In more detail, letn, n′ be cells of two successive configurations that are
A-conspicuous for allA ∈ B ∪ Z. We can find a match forqw as follows: start with matchingu on the
Gh-node ofn andv on theGp-node ofn′. Now take anA ∈ B ∪ Z. If (†) applies, then matchyA

m+1

on theEh-node ofn andzA
m+1 on theEp-node ofn′; if (‡) applies, then matchyA

m+1 on theFh-node of
n andzA

m+1 on theFp-node ofn′. The matches of all other variables are now uniquely determined by the
(non-transitive) role edges in the query. In particular, the lengths of the role chains in the query ensure that
xA will be matched to the root of the configuration node in whichn occurs in case (‡) and to the predecessor
of this root node in case (†). Observe that the paths labeled withz-variables are exactly two steps longer
than those labeled withy-variables, and thus the query only relatesn andn′ if they belong to successor
configurations.

10

In summary, it is possible to show that

Proposition 3.7 A computation treeI is proper iffI 6|= qw.

Together with Propositions 3.3 and 3.5, this yields the desired reduction, establishing the lower bound from
Theorem 3.1.

4 Query Answering in S

In the next section we show that query non-entailment is NEXPTIME-hard for the DLS, if arbitrary ABoxes
are permited. We then show that for tree-shaped ABoxes, the complexity drops to EXPTIME-completeness.

4.1 A Lower Bound

We give a reduction from a NEXPTIME-complete variant of the tiling problem to query non-entailment in
S. Since the reduction does not require TBoxes, we will use ABoxes instead of knowlege bases.

Definition 4.1 [Domino System] Adomino systemD is a triple (T,H, V), whereT = {0, . . . , k − 1},
k ≥ 0, is a finite set oftile typesand H,V ⊆ T × T represent thehorizontal and vertical matching
conditions. LetD be a domino system andc = c0, . . . , cn−1 aninitial condition, i.e. ann-tuple of tile types.
A mappingτ : {0, . . . , 2n+1−1}×{0, . . . , 2n+1 −1} → T is asolutionfor D andc iff for all x, y < 2n+1,
the following holds (where⊕i denotes addition moduloi):

• if τ(x, y) = t andτ(x ⊕2n+1 1, y) = t′, then(t, t′) ∈ H

• if τ(x, y) = t andτ(x, y ⊕2n+1 1) = t′, then(t, t′) ∈ V

• τ(i, 0) = ci for i < n.

For a proof of NEXPTIME-hardness of this version of the domino problem, see e.g. Corollary 4.15 in [7].
We show how to translate a given domino systemD and initial conditionc = c0 · · · cn−1 into an ABox

AD,c and queryqD,c such that each canonical modelI of AD,c that satisfiesI 6|= qD,c encodes a solution
to D andc, and conversely each solution toD andc gives rise to a model ofAD,c with I 6|= qD,c. We
start with discussing (a part of) the ABoxAD,c. Among others, it contains an assertionCD,c(a), with CD,c a
conjunctionC1

D,c⊓· · ·⊓C7
D,c whose conjuncts we define in the following. For convenience,let m = 2n+2.

The purpose of the first conjunctC1
D,1 is to enforce a binary tree of depthm whose edges are labeled with

the transitive roler and whose leaves are labeled with the numbers0, . . . , 2m − 1 of a binary counterC
implemented by the concept namesT0, . . . , Tm−1 representing logical truth of a bit and concept names
F0, . . . , Fm−1 representing logical falsity. We use concept namesL0, . . . , Lm to distinguish the different
levels of the tree. This is necessary because we work with transitive roles.

C1
D,c := L0 ⊓ ∃r.(L1 ⊓ T1) ⊓ ∃r.(L1 ⊓ F1) ⊓

⊓
i<m

∀r.
(

Li →
(

∃r.(Li+1 ⊓ Ti) ⊓ ∃r.(Li+1 ⊓ ¬Fi)
))

⊓

⊓
i<m

∀r. ⊓
j<i

(

(Li ⊓ Tj) → ∀r.(Li+1 → Tj) ⊓

(Li ⊓ Fj) → ∀r.(Li+1 → Fj)
)

11

a

· · ·

Lm

L0

L2

L1

.

.

.

Lm

A
A2

A

A3

B B B

represents(i, j)

represents(i, j + 1)

A

A1

represents(i + 1, j)

Figure 3: The structure encoding the2n+1 × 2n+1-grid.

From now on, leafs in this tree are calledLm-nodes. Intuitively, eachLm-node corresponds to a position in
the2n+1×2n+1-grid that we have to tile: the counterCx realized by the concept namesT0, . . . , Tn, F0, . . . , Fn

binarily encodes the horizontal position, and the counterCy realized byTn+1, . . . , Tm, Fn+1, . . . , Fm en-
codes the vertical position. We now extend the tree with someadditional nodes. EveryLm-node gets three
successor nodes labelled withA, and each of theseA-nodes has a successor node labelledB. To distin-
guish the three differentA-nodes below eachLm-node, we additionally label them with the concept names
A1, A2, A3.

C2
D,c := ∀r.

(

Lm →
(

⊓
1≤i≤3

∃r.(A ⊓ Ai ⊓ ∃r.B)
))

We want that eachA1-node represents the grid position identified by its predecessorLm-node, the siblingA2

node represents the horizontal neighbor position in the grid, and the siblingA3-node represents the vertical
neighbor.

C3
D,c := ∀r.

(

Lm →
(

⊓
i≤n

(

(Ti → ∀r.(A1 ⊔ A3 → Ti)) ⊓

(Fi → ∀r.(A1 ⊔ A3 → Fi))
)

⊓

⊓
n<i<m

(

(Ti → ∀r.(A1 ⊔ A2 → Ti)) ⊓

(Fi → ∀r.(A1 ⊔ A2 → Fi))
)

⊓

E2 ⊓ E3

))

whereE2 is anALC-concept ensuring that theCx value at eachA2-node is obtained from theCx-value of its
Lm-predecessor by incrementing modulo2n+1; similarly, E3 expresses that theCy value at eachA3-node
is obtained from theCy-value of itsLm-node predecessor by incrementing modulo2n+1. It is not hard to
work out the details of these concepts, see e.g. [9] for more details. Thegrid representationthat we have
enforced is shown in Figure 3. To represent tiles, we introduce a concept nameDi for eachi ∈ T and put

12

A

vi

R

ui u′

i wi

x x′

B B

Ti Fi

A A
Ti

wiA
Fi

Figure 4: The queryqi
D,c.

C4
D,c := ∀r.

(

A →
(

⊔
i∈T

Di ⊓ ⊓
i,j∈T,i6=j

¬(Di ⊓ Dj)
))

The initial conditionc = c0 · · · cn−1 is easily guaranteed by

C5
D,c := ⊓

i<n
∀r.

((

A ⊓ ⊓
j≤n,bitj(i)=0

Fj ⊓ ⊓
j≤n,bitj(i)=1

Tj ⊓ ⊓
n<j<m

Fj

)

→ Tci

)

,

wherebitj(i) denotes the value of thej-th bit in the binary representation ofi. To enforce the matching
conditions, we proceed in two steps. First we ensure that they are satisfied locally, i.e., among the three
A-nodes below eachLm-node:

C6
D,c := ∀r.

(

Lm →
(

⊓
i∈T

(

∃r.(A1 ⊓ Di) → ∀r.(A2 → ⊔
(i,j)∈H

Dj)
)

⊓

⊓
i∈T

(

∃r.(A1 ⊓ Di) → ∀r.(A3 → ⊔
(i,j)∈V

Dj)
)))

Second, we enforce the following condition, which togetherwith local satisfaction of the matching condi-
tions ensures their global satisfaction:

(∗) if the Cx andCy-values of twoA-nodes coincide, then their tile types coincide.

In (∗), anA-node can by any of anA1-, A2-, or A3-node. Note that (∗) also ensures uniqueness of the tiling
in the sense that if there are twoA nodes with theCx andCy value, then they are labeled with the same tile
type. To enforce (∗), we use the query. Before we give details, let us finish the definition of the concept
CD,c. The last conjunctC7

D,c enforces a double labeling of tiles that will be exploited bythe query. We
introduce another concept nameD′

i for eachi ∈ T and put

C7
D,c := ∀r.

(

A → ⊓
i∈T

(Di ↔ D′
i)

)

We now construct the queryqD,c that doesnot match the grid representation iff (∗) is satisfied. In other
words,qD,c matches the grid representation if there are twoA-nodes that agree on the value of the counters
Cx andCy, but are labeled with different tile types. Because of Lemma2.1, we can concentrate on the grid
representation as shown in Figure 3 while constructingqD,c, and need not worry about models in which
domain elements that are different in Figure 3 are identified.

The construction ofqD,c is in several steps, starting with the queryqi
D,c in Figure 4, wherei ∈ {0, . . . ,m−

13

A

c c′
R

b

a

b′

R

T0, . . . , Tk−1 F0, . . . , Fk−1

A

Figure 5: The part ofAD,c used withqi
D,c.

1}. In the queriesqi
D,c, all the edges represent the roler andR is a concept name. Formally,

qi
D,c := { R(vi), r(vi, ui), r(vi, u

′
i), r(vi, wi), r(vi, w

′
i),

Ti(u), Fi(u
′), Ti(w), Fi(w

′),
A(u), A(u′), A(w), A(w′),
r(ui, x), r(u′

i, x), r(wi, x
′), r(w′

i, x
′),

B(x), B(x′) }

The purpose of the queryqi
D,c is to relate any twoA-nodes that agree on thei-th bit of the counterC. More

precisely,x andx′ are mapped to theB-node successors of two suchA-nodes. To make the query work, we
add some assertions to the ABoxAD,c, as shown in Figure 5. Note thata is the same individual as in the
assertionCD,c(a) discussed before. Formally, the added assertions are

R(c), R(c′),
r(c, b), r(c′, b′),
T0(b), . . . , Tk−1(b),
F0(b

′), . . . , Fk−1(b
′),

A(b), A(b′),
r(b, a), r(b′, a)

To understand the queryqi
D,c, assume thatπ is a match of this query in the model obtained by combining

Figure 3 and 5. Due to the concept nameR, π(vi) is eitherc or c′. First assume that it isc. Due to the
concept nameB, π(x) andπ(x′) areB-nodes, i.e., leaves in the tree belowa. We claim that, at theA-node
predecessors of bothπ(x) andπ(x′), the i-bit of the counterC is false (and thus has the same value). To
see this, first note that the use of the concept nameA ensures thatπ(ui) andπ(u′

i) can only beb or the
A-node predecessor ofπ(x). Sinceb does not satisfyFi, π(u′

i) must be the mentioned predecessor, which
thus satisfiesFi, but notTi. It follows thatπ(ui) is b. Argueing analogously, it can be shown thatπ(wi) is b
andπ(w′

i) is theA-node predecessor ofπ(x′). Since bothu′
i andw′

i have to mapped to nodes satisfyingFi,
we are done. Now assume thatπ(vi) is c′. We can argue dually to the previous case to show thatπ(x) and
π(x′) areB-nodes and, at theA-node predecessors of bothπ(x) andπ(x′), thei-bit of the counterC is true
(and thus has the same value).

Now setqcnt :=
⋃

i<m qi
D,c. Observe that all queriesqi

D,c, i < m, share the variablesx andx′. It is not
hard to verify that if there is a match ofqcnt in the model obtained by combining Figure 3 and 5, thenx and
x′ are mapped toB-nodes whoseA-predecessors agree on the value of all bits of the counterC. To achieve
(∗), it just remains to enforce that these predecessors are labeled with different tile types. To this end, we
further extend the query and the ABox.

14

v
R′

y3 y′

2

x x′

B B

D1

A

D′

0y′

1A
D′

1

Ay2y1 y′

3

D0

A
D2

A A

D′

2

Figure 6: The queryqtile.

R′

a

b1,0b0,1D′

0, D′

2

b1,2b0,2 b2,0 b2,1D′

0, D′

1 D′

1, D′

2

D1, D2

A
D0, D2

A A
D0, D2

A

D′

1, D′

2

D0, D1

A

D′

0, D′

2

D0, D1

A

D1, D2

D′

0, D′

1

c0,1

R′

c0,2

R′

c1,0 c1,2 c2,0 c2,1

R′ R′ R′

Figure 7: The part ofAD,c used withqtile.

The queryqtile is given in Figure 6 for the case of three tiles, i.e.,T = {0, 1, 2}. It shares the variables
x andx′ with qcnt. In general, forT = {1, . . . , k − 1}, we define

qtile := {R(v),
r(v, y0), . . . , r(v, yk−1), . . . , r(v, y′0), . . . , r(v, y′k−1)
D0(y0), . . . ,Dk−1(yk−1),D0(y

′
0), . . . ,Dk−1(y

′
k−1),

A(y0), . . . , A(yk−1), A(y′0), . . . , A(y′k−1),
r(y0, x), . . . , r(yk−1, x), . . . , r(y′0, x

′), . . . , r(y′k−1, x
′)

B(x), B′(x′) }

To useqtile, we further extend the ABoxAD,c as shown in Figure 7 for the case of three tiles and where all
individuals excepta are fresh. Formally, we add the following assertions:

• R(ci,j), r(ci,j , bi,j), A(bi,j), r(bi,j , a) for all i, j ∈ {0, . . . , k − 1} with i 6= j;

• Dℓ(bi,j) for all ℓ, i, j ∈ {0, . . . , k − 1} with i 6= j andi 6= ℓ;

• D′
ℓ(bi,j) for all ℓ, i, j ∈ {0, . . . , k − 1} with i 6= j andj 6= ℓ.

Observe the similarity betweenqtile andqi
D,a, and between the ABox extension forqtile and that forqi

D,a.
Let π be a match ofqtile in in the model obtained by combining Figure 3 and 7. Due to theconcept nameR′,
π(v) = ci,j for somei, j with i 6= j. Moreover,x andx′ are mapped to aB-node in the tree belowa, each
yℓ is mapped either tobi,j or to theA-node predecessor ofπ(x), and eachy′i either tobi,j or to theA-node
predecessor ofπ(x′). Sincebi,j does not satisfyDi, π(yi) must be theA-node predecessor ofπ(x), which
thus satisfiesDi, but none ofD0, . . . ,Di−1,Di+1, . . . ,Dk−1. We can use the concept namesD′

0, . . . ,D
′
k−1

to argue analogously thatπ(y′j) is theA-node predecessor ofπ(x′), and that it satisfiesD′
j . Sincei 6= j, the

A-node predecessors ofπ(x) andπ(x′) are labeled with different tile types.

15

Now, the desired queryqD,c is simply the union ofqcnt andqtile. From what was already said aboutqcnt

andqtile, it is easily derived thatqD,c does not match the grid representation iff Property (∗) is satisfied. It is
possible to show that there is a solution forD andc iff (∅,AD,c) 6|= qD,c. We have thus proved that query
entailment inS is co-NEXPTIME-hard.

Theorem 4.2 Query entailment inS is co-NEXPTIME-hard. This holds even for knowledge bases in which
the TBox is empty.

4.2 CQs over Tree-shaped ABoxes

In this section, we show that the hardness of the query answering drops to EXPTIME-hard if we restrict the
shape of the ABox.

An ABox A is tree-shaped, if the directed graph with nodesInd(A) and edges{(a, b) | r(a, b)∈A} is a
tree, andr(a, b) r′(a, b) ∈ A impliesr = r′. We aim to show the following.

Theorem 4.3 In S, CQ entailment isEXPTIME-complete if ABoxes are tree-shaped.

It is well-known that CQ entailment inS is EXPTIME-hard even with empty ABoxes (which follows
from the EXPTIME-completeness of knowledge base satisfiability inALC [15]) and thus it remains to show
the upper bound. We start with a simple observation.

Proposition 4.4 For a KBK= (T ,A), whereA is tree-shaped, we can build in polynomial time a KBK′ =
(T , {CA(a)}) such thatK |= q iff K′ |= q for every CQq.

It thus suffices to give an EXPTIME algorithm for CQ entailment inS with ABoxes of the form{C0(a)}.
From now on, letK = (T , {C0(a)}) be a KB andq a CQ for which we decideK |= q.

We assume w.l.o.g. thatC0 is in negation normal form(NNF), i.e. negation is only applied to concept
names, and thatT contains a single concept inclusion axiom of the form⊤ ⊑ CT with CT in NNF. We may
also assume w.l.o.g. thatq is connected (a disconnected query can be answered by separately posing each
connected subquery).

We can limit our attention to certain canonical models and a certain kind of query that we call apseudo-
tree query.

Definition 4.5 [Canonical Model] Acanonical modelfor K is a modelI of A such that

• I satisfies all concept inclusions inT (but not necessarily the transitivity axioms);

• (∆I ,
⋃

r∈NR
rI) is a tree with rootaI and whose out-degree is bounded by the cardinality ofsub(K);

• rI ∩ sI = ∅ wheneverr 6= s;

• for all ∀t.C ∈ sub(K) with t ∈ Tr(K) and all(d, e) ∈ tI , d ∈ (∀t.C)I impliese ∈ (∀t.C)I .

Due to the non-transitivity of transitive roles in canonical modelsI, we have to work with a relaxed version
of a match that becomes a match when, for everyr ∈ Tr(K), rI is replaced with its transitive closure.

Definition 4.6 [Pre-match] LetI be a canonical model ofK. We call a mappingπ : Vars(q)→∆I a
pre-matchfor q in I, if (a) π(u)∈AI for eachA(u)∈ q, (b) (π(u), π(v))∈ rI for eachr(u, v)∈ q with
r 6∈Tr(K), and (c) for eacht(u, v)∈ q with t∈Tr(K) there is a sequenced0, . . . , dn ∈∆I , n ≥ 1, such that
d0 = π(u), dn = π(v) and(di, di+1)∈ tI for all i < n. We writeI |=pre q, if there is a pre-match forq in I.

16

We now define pseudo-tree queries, based on role clusters.

Definition 4.7 [Role Cluster, Pseudo-tree Query] Letq be a CQ. For eacht ∈ Tr(K), ∼t denotes the
smallest equivalence relation overVar(q) such thatt(v, v′) ∈ q impliesv ∼t v′. An equivalence classct of
∼t is called a(transitive) clusterof q. For each non-transitive roles, a (non-transitive) clusterof q is a set
cs = {u, v} with s(u, v) ∈ q.

Now, a connected CQq is apseudo-tree queryif it satisfies:

(a) if cr is a cluster ofq ands(u, v), s′(u′, v′)∈ q with v, v′ ∈ cr ands, s′ 6= r, thens = s′, u= u′, v = v′;

(b) q is acyclic, i.e., it does not contain atomsr0(v0, v1), . . . , rn(vn, vn+1) with vn+1 = v0.

A clustercr of q is initial , if no v ∈ cr has an incoming edger′(v′, v)∈ q with r 6= r′.

Intuitively, a pseudo-tree can be viewed as a tree of clusters with an additional root; the root is a predecessor
of every initial cluster (there can be more than one) and there is an edge between two clusters if they share
an element. Each transitive cluster in a pseudo-tree query describes a subquery that is an acyclic directed
graph.

Over an interpretationJ whose domain is a tree, the existence of a pre-match for any query can be
reduced to the existence of a pre-match for a pseudo-tree query, which is obtained fromq by identifying any
two variablesu, u′ such thatπ(u)= π(u′) for every pre-matchπ for q in J .

Definition 4.8 A CQ q′ is obtained from a CQq by fork elimination, if q′ results fromq by one of the
following operations:

• selectr(u, v), r(u′, v) ∈ q with u 6= u′ andr 6∈Tr(K), and identifyu andu′;

• selectr(u, v), r(u′, v′) ∈ q with v 6= v′ andv, v′ in a clustercs of q wheres 6= r, and identifyv and
v′;

We say thatq′ is amaximal fork rewritingof q, if q′ is obtained fromq by exhaustive fork elimination.

The entailment of a CQq over the canonical models ofK is invariant under fork-rewriting, andq can be
entailed only if it can be turned into a pseudo-tree query by (maximal) fork rewriting.

It can be shown that the maximal fork rewriting is unique and computable in polynomial time. More-
over, it can be checked in polynomial time whether a query is apseudo-tree query. Hence, the following
proposition allows us to restrict our attention to canonical models and pseudo-tree queries.

Proposition 4.9 Let q be a CQ, and letq′ be the maximal fork rewriting ofq. ThenK 6|= q iff (i) q′ is not a
pseudo-tree query, or (ii)I 6|=pre q′ for some canonical modelI of K.

In what follows, assume that the input queryq is a pseudo-tree query. We want to decide whether there
is a canonical modelI of K such thatI 6|=pre q.

4.2.1 Markings for canonical models

In this subsection, we considermarkingswhich witness the non-existence of pre-matches in canonical mod-
els. They are a stepping-stone to obtain the knot elimination algorithm in the short version of this paper.
This ‘technical step’ was omitted from the latter due to the space restrictions, and is linked to the material
in the submission in the next subsection.

First, we define some notions and notation for later use.

17

Definition 4.10 ForV ⊆ Vars(q), we denote byq|V the restriction ofq to the variables inV .
By reachq(V) we denote the variables that are reachable inq from some variable ofV , i.e., the smallest

subset ofVars(q) with V ⊆ reachq(V) and such thatr(v, v′) ∈ q andv ∈ reachq(V) imply v′ ∈ reachq(V).
We say that a variablev ∈ V is minimal in V ⊆ Vars(q), if v /∈ reachq(V); we denote bymin(V) the

set of all variables that are minimal inV .

We consider some special subqueries of the queryq. We also consider a restricted form of pre-matches
for these subqueries, which require the minimal variables to be matched at some particular domain element.

Definition 4.11 [cluster part; pseudo-tree subqueryq(P)] A cluster part(of q) is a pairP = 〈cr, V 〉 where
cr is a cluster ofq andV is a nonempty subset ofcr. The subquery ofq induced byP , denotedq(P), is
given byq(P) = q|reachq(V).

Note that for a pseudo-tree queryq, alsoq(P) is a pseudo-tree query.

Definition 4.12 [rooted pre-match] LetJ be a canonical model forK, and leto, o′ ∈ ∆J . For a transitive
role r, we say thato′ is r-reachablefrom o, if there is a sequenceo1, . . . , on, n ≥ 1, such thato1 = o,
on = o′ and(oi, oi+1) ∈ rJ for each1 ≤ i < n.

A pre-matchπ for q(P) is rootedato ∈ ∆J , if the following hold:

1. If r 6∈ Tr(K), thenπ(v) = o for the uniquev that is minimal inV .

2. If r ∈ Tr(K), then (a) for eachv ∈ min(V), π(v) is r-reachable fromo; and (b) for everyr′(v′, v) ∈ q
such thatv ∈ V andr′ 6= r, π(v) = o.

To conveniently describe rooted pre-matches for a pseudo-tree subqueryq′, we employ thedepartsrela-
tion between a variable and (cluster parts of) subqueries rooted at it, as well as local notions of matchability
at a domain element.

Definition 4.13 [departs; label-matched] Given a a clustercr and a variablev ∈ cr such thatq contains an
atoms(v, v′) with s 6= r, we say that the cluster part〈cs, cs〉 departs fromv, wherecs is thes-cluster with
v, v′ ∈ cs.

LetJ be an interpretation and leto ∈ ∆J . We say that the variablev is label-matchedato if B(v) ∈ q
implies o ∈ BJ . For a set of variablesV , we denote bylabelMatcho(V) the set of allv ∈ V that are
label-matched ato, and by letMo(V) := min(V) ∩ labelMatcho(V). Finally, we denote byDo(V) the set
of all v ∈ Mo(V) such that there is a pre-match rooted ato for eachq(P ′) such thatP ′ departs fromv.

Now we characterize rooted pre-matches for a subqueryq′ in terms of local conditions and rooted pre-
matches for subqueries ofq′.

Lemma 4.14 Let P = 〈cr, V 〉 be a cluster part, letJ be a canonical model forK and leto ∈ ∆J . There
exists a pre-match forq(P) rooted ato iff the following hold:

1. if r is not transitive,V = {v, v′} andr(v, v′) ∈ q, thenv is label-matched ato and there exists a rooted
pre-match forq(〈cr, {v

′}〉) rooted at someo′ ∈ ∆J with (o, o′) ∈ rJ ;

2. if r is not transitive andV = {v}, thenv is label-matched ato and there is a pre-match forq(P ′) rooted
at o for everyP ′ that departs fromv.

18

3. if r is transitive, then for each maximal connected componentV ′ of V \ Do(V) (i.e.,V ′ contains some
v↓ that does not reach any otherv′ ∈ cr, and it contains all variables that are connected tov↓ in
q|(V \Do(V))), there exists a pre-match forq(〈cr, V

′〉) rooted at someo′ with (o, o′) ∈ rJ .

Proof. If r is not transitive, then both directions are trivial. Ifr is transitive, then one direction is
straightforward: item 3 implies the existence of a pre-match as desired. To show the other direction, it
suffices to observe that if there is some pre-match forq(P) rooted ato, then there is one such pre-matchπ
such thatπ(v) = o for everyv ∈ Do(V). Such aπ can be obtained by taking any rooted pre-matchπ′,
pulling up the match of eachv ∈ Do(V) that was not matched ato, and setting the match of all variables
that are in someq′ = q(P ′) such thatP ′ departs fromv, to coincide with the existing pre-match forq′ rooted
ato.

Clearly, all atoms of the formA(u) ∈ q(P) are satisfied after this. As for the role atoms, recall that
v is minimal inV and hence it has no incoming arcss(v′, v) ∈ q(P). By this and the fact thatq(P) is a
pseudo-tree query, each atoms(u, u′) in q(P) is of one of the following three forms: (1)u = v, u′ ∈ cr

andr = s, (2) u′ ∈ cr andu, u′ are both in someq′ = q(P ′) such thatP ′ departs fromv, (3) s(u, u′) is not
as in cases 1 or 2 above, which implies thatu, u′ 6= v and neitheru nor u′ is in anyq′. All outgoing edges
r(v, u′) with u′ ∈ cr (case 1) are satisfied, sinceπ′(u′) = π(u′) is r-reachable fromπ′(v) and hence from
o. Satisfaction ofs(u, u′) as in case 2 is straightforward by the construction ofπ. For all other variablesπ
andπ′ coincide, hence the satisfaction of all atoms in case 3 is also ensured.

The pre-matchπ, which maps eachv ∈ Do(V) to o and induces rooted matches for each maximal
connected component ofV \ Do(V), witnesses item 3.

We definemarkingsthat witness the non-existence of rooted pre-matches for pseudo-tree subqueries
in a canonical model. The negation of the statement of the lemma above provides the basis for defining
conditions that correctly capture the non-existence of pre-matches.

In the following, we denote byCP(q) (or simplyCP) the set of all cluster parts ofq.

Definition 4.15 [(spoiling) markings] LetJ be a canonical model ofK. A marking (for J and q) is a
relationµ ⊆ ∆J × CP(q); we useµ(o) to denote the set of cluster partsP with (o, P) ∈ µ.

For o ∈ ∆J andP a cluster part ofq, µ is q(P)-spoiling ato, if P ∈ µ(o) andµ is spoiling, i.e., for
every(o, P) ∈ µ with P = 〈cr, V 〉, the following hold:

(S1) If r 6∈Tr(K), V = {v, v′} andr(v, v′) ∈ q, then either (a)v is not label-matched ato, or (b)〈cr, {v
′}〉 ∈

µ(o′) for all o′ with (o, o′)∈ rJ .

(S2) If r 6∈Tr(K) andV = {v}, then either (a)v is not label-matched ato, or (b) P ′ ∈ µ(o) for someP ′

that departs fromv.

(S3) If r∈Tr(K), then there is someconsumed setS ⊆ min(V) such that:

• for eachv ∈ min(V) \S, either (a)v is not label-matched ato, or (b)P ′ ∈ µ(o) for someP ′ that
departs fromv, and

• there is aV ′ ⊆ V \ S that contains (a) somev↓ that does not reach any otherv′ ∈ cr, and (b) all
variables that are connected tov↓ in q|(V \S), such that〈cr, V

′〉 ∈ µ(o′) for all o′ with (o, o′)∈ rJ .

Next we show that there exists a markingµ for a canonical modelJ that isq(P)-spoiling at someo iff
there exists no pre-match forq(P) rooted ato.

We do this by induction, using a suitable notion of subquery size.

19

Definition 4.16 Thescope sizeof a cluster partP = 〈cr, V 〉, denoted#s(P), is defined as|V |+|reachq(V)|−
1. Observe that#s(P) = 1 iff P = 〈cr, {v}〉 andv has no outgoing edgess(v, v′) in q.

For the only if direction, we can actually prove something stronger and impose restrictions onµ, which
ensure that the consumed setS in (S3) in Definition 4.15 is always as small as possible and that only relevant
cluster parts appear in the markers of the nodes.

Definition 4.17 Let J be a canonical model forK. Let o ∈ ∆J , and letP be a cluster part ofq. We say a
markingµ is (o, P)-austere, if it is q(P)-spoiling ato and

1. for everyo′ ∈ ∆J and every〈cr, V 〉 ∈ µ(o′) with r∈Tr(K), (S3) in Definition 4.15 is satisfied by
takingDo′(V) as the consumed setS;

2. for everyo′ ∈ ∆J , {〈c, V 〉, 〈c′, V ′〉} ∈ µ(o) impliesc 6= c′;

3. noµ′ (µ is q(P)-spoiling ato, hence each cluster part occurring inµ is justified, i.e.,〈V, c〉 ∈ µ(o′)
implies thato′ is inside the subtree ofJ rooted ato and one of the following holds:

• c is the initial cluster ofq(P), or

• c is anr-cluster and there is someV ⊆ V ′ such that〈c, V ′〉 ∈ µ(o′′), or

• V = c and there is somer-clusterc′, someV ′ (c′, and somev ∈ V ′ such that〈c, V 〉 departs
from v and〈c′, V ′〉 ∈ µ(o′),

whereo′′ is the parent ofo′ in J and(o′′, o′) ∈ rJ .

Now we show that the non-existence of a rooted pre-match forq(P) is always witnessed by a(o, P)-
austere marking.

Lemma 4.18 LetJ be a canonical model forK, let o ∈ ∆J and letP be a cluster part ofq. If there is no
pre-match forq(P) rooted ato, then there is an(o, P)-austere marking forJ .

Proof. Let P = 〈cr, V 〉 and assume that there is no pre-match forq(P) rooted ato. We prove the claim
by induction on#s(P).

(Basis) Suppose that#s(P) = 1. ThenV = {v} holds. If r is not-transitive, by Lemma 4.14v is not
label-matched ato, and thusµ = {(o, P)} is (o, P)-austere. Ifr is transitive, we simply setµ(o′) = {P}
for everyo′ that isr-reachable fromo and wherev is not matched, as well as for the firsto′ on each branch
that isr-reachable fromo and wherev is matched (if any). Note we may encounter an infiniter-branch
wherev is never matched, and all its nodes are marked withP .

(Induction step) Suppose that#s(P) > 1. We are in one of the following cases:

1. r is not transitive,V = {v, v′} andr(v, v′) ∈ q. By Lemma 4.14, either (i) v is not label-matched ato,
or (ii) v is label-matched ato and there exists no pre-match forq(〈cr, {v

′}〉) rooted at someo′ ∈ ∆J

with (o, o′) ∈ rJ .

If (i), we can define an(o, P)-austere markingµ as{(o, P)}.

If (ii), by the induction hypothesis, for eacho′ ∈ ∆J with (o, o′) ∈ rJ there is an(o′, 〈cr, {v}〉)-
austere markingµ′. To obtain an(o, P)-austereµ, setµ(o) = {P} andµ(o′′) = µ′(o′′) for eacho′′

that is below someo′.

20

2. r is not transitive andV = {v}. By Lemma 4.14, either (i) v is not label-matched ato, or (ii) v is
label-matched ato and there is someP ′ that departs fromv such that there is no pre-match forq(P ′)
rooted ato.

If (i), then we proceed as above and defineµ = {(o, P)}.

If (ii), then by the induction hypothesis, there is an(o, P ′)-austere markingµ′. We extend it to an
(o, P)-austereµ by settingµ(o) = {P} ∪ µ′(o) andµ(o′) = µ′(o′) for eacho′ that is belowo.

3. r is transitive. According to Definition 4.17, we setS = Do(V) as the consumed setS. We must
ensure that (S3) in Definition 4.15 is satisfied.

First, observe that for eachv ∈ min(V) \ S, either (a)v 6∈ Mo(V), i.e., v is not label-matched at
o, or (b) v ∈ Mo(V) \ S. In case (b), there is somePv that departs fromv and such that no rooted
pre-match forq(Pv) exists, and hence by the induction hypothesis there is an(o, Pv)-austere marking
µv. We can include theseµv in the(o, P)-austereµ to satisfy the first item of (S3) in Definition 4.15.

As for the second item of (S3), by Lemma 4.14, there is aV ′ ⊆ V \ S such that:

(a) V ′ contains somev↓ that does not reach any otherv′ ∈ cr,

(b) V ′ contains all the variables that are connected tov↓ in q|(V \S), and

(c) for eacho′ with (o, o′) ∈ rJ , there exists no pre-match forq(〈cr, V
′〉) rooted ato′.

By the induction hypothesis, for each sucho′ an (o′, 〈cr, V
′〉)-austere markingµo′ exists. We can

also include theseµo′ in the (o, P)-austere markingµ in order to satisfy the second item of (S3) in
Definition 4.15.

Hence the desiredµ can be defined as

{(o, P)} ∪
⋃

(o,o′)∈rJ

µo′ ∪
⋃

v∈Mo(V)\S

µv.

It can be easily verified thatµ is (o, P)-austere.

The converse also holds, even if we drop the austerity restriction.

Lemma 4.19 LetJ be a canonical model forK, let o ∈ ∆J and letP = 〈cr, V 〉 be a cluster part ofq. If
there is a pre-match forq(P) rooted ato, then no marking forJ is q(P)-spoiling ato.

Proof. Let P = 〈cr, V 〉 and assume that there is a pre-match forq(P) rooted ato. We prove the claim
by induction on#s(P).

(Basis) Suppose#s(P) = 1. HereV = {v} andv ∈ Mo({v}). If r 6∈ Tr(K), then it is clearly not possible
to satisfyP ∈ µ(o) and (S2) in Definition 4.15. Ifr ∈ Tr(K), thenv ∈ S can not hold since there is noV ′

as required by (S3) in Definition 4.15. But ifv 6∈ S, the first item of (S3) is not satisfied. This shows that
there is noµ that isq(P)-spoiling ato.

(Induction step) We are in one of the following cases:

21

1. r is not transitive,V = {v, v′} andr(v, v′) ∈ q. Let P ′ = 〈cr, {v
′}〉. By Lemma 4.14,v is label-

matched ato and there exists a rooted pre-match forq(P ′) rooted at someo′ ∈ ∆J with (o, o′) ∈ rJ .
Any µ, to beq(P)-spoiling ato, must haveP ∈ µ(o). Given thatv is label-matched ato, to satisfy
(S1) in Definition 4.15,P ′ ∈ µ(o′) must hold at everyo′ with (o, o′) ∈ rJ . Thus,µ must also be
q(P ′)-spoiling ato′; but as#s(P ′) < #s(P), such aµ does not exist by the induction hypothesis.

2. r is not transitive andV = {v}. By Lemma 4.14,v is label-matched ato and for everyP ′ that departs
from v, there is a pre-match forq(P ′) rooted ato.

To beq(P)-spoiling ato, anyµ must haveP ∈ µ(o), and asv is label-matched ato, to satisfy (S2)
in Definition 4.15,P ′ ∈ µ(o) must hold for someP ′ that departs fromv. By definition,µ must be
q(P ′)-spoiling ato, but as#s(P ′) < #s(P), such aµ does not exist by the induction hypothesis.

3. r is transitive. By Lemma 4.14, for each maximal connected componentV ′ of V \Do(V), there exists
a pre-match forq(〈cr, V

′〉) rooted at someo′ with (o, o′) ∈ rJ .

To beq(P)-spoiling ato, anyµ must haveP ∈ µ(o), and there must be some consumed setS ⊆
min(V) as required by condition (S3) in Definition 4.15.

We show thatDo(V) ⊆ S. Towards a contradiction, suppose that somev ∈ Do(V) \ S exists. Then
P ′ ∈ µ(o) must hold for someP ′ that departs from thisv in order to satisfy the first item (note thatv
is label-matched ato as there is a pre-math forq(P)). However, the definition ofDo(V) implies that
there is a pre-match rooted ato for every suchP ′; as#s(P ′) < #s(P), such aµ does not exist by
the induction hypothesis, which is a contradiction. This showsDo(V) ⊆ S.

Forµ to beq(P)-spoiling ato, the second item of condition (S3) implies that there must exists some
maximalV ′ ⊆ V \ S that contains (a) somev↓ that does not reach any otherv′ ∈ cr, and (b) all
variables that are connected tov↓ in q|(V \S), such that〈cr, V

′〉 ∈ µ(o′) for all o′ with (o, o′)∈ rJ .
Clearly, this maximal connected componentV ′ of V \ S is contained in some maximal connected
componentV ′′ of V \ Do(V). The existence of a pre-matchπ for q(〈cr, V

′′〉) rooted at someo′

with (o, o′) ∈ rJ implies the existence of a pre-matchπ′ for q(〈cr, V
′〉). To see thatπ′ is also

rooted ato′, observe thatv ∈ Do(V) holds for everyv ∈ V with s(v′, v) ∈ q ands 6= r (by the
assumption that there is a pre-match forq(〈cr, V 〉) rooted ato) and hence there is no suchv in V ′. As
#s(〈cr, V

′〉) < #s(〈cr, V 〉), the induction hypothesis implies thatµ can not beq(〈cr, V
′〉)-spoiling

ato′. This is a contradiction; it follows that a markingµ which isq(P)-spoiling ato does not exist.

We have shown that the non-existence of a pre-match forq(P) rooted at some specifico is correctly char-
acterized by the existence of a marking that isq(P)-spoiling at thiso. Now we introduceglobal markings
to capture the non-existence of pre-matches at everyo of J .

Definition 4.20 A spoiling markingµ for J andq is global, if for eacho ∈ J , µ(o) contains some cluster
part〈cr, V 〉 wherecr is an initial cluster ofq.

An easy consequence of the above is thatJ admits a global marking iff it is a countermodel ofq.

Proposition 4.21 I 6|=pre q iff there exists a global marking forJ andq.

22

Finally, we show that for each countermodel there is a globalmarkingµ, which can be obtained by
suitably composing austere markings, that does not assign to anyo different parts of the same cluster. The
latter is crucial for obtaining the desired complexity bounds.

Proposition 4.22 There exists a global marking for a modelJ and a queryq iff there exists a global
marking forJ andq that assigns to each node at most one part for each cluster ofq.

Proof. Supposeµ is a global marking forq. We gather a collection of austere markings that spoil a part
of an initial cluster at each node. More precisely, for a nodeo, let so ⊆ ∆J × CP be a marking that is
q(P)-spoiling ato for some partP of an initial cluster ofq. For each nodeo, such anso trivially exists and
can be extracted fromµ. Then by Lemmas 4.18 and 4.19, for eacho there exists apo ⊆ ∆J × CP which
is (o, P)-austere for some part of an initial cluster ofq. We define inductively a new markingν =

⋃

i≥0 νi,
where

1. ν0 = poR
andoR is the root ofJ , and

2. for i > 0,
νi = νi−1 ∪

⋃

o∈γ(i,νi−1)

po,

whereγ(i, νi−1) contains allo ∈ ∆J such that|o| = i (i.e., o is at leveli of the tree∆J) andνi−1

contains no(o, P) whereP = 〈cr, V 〉 andcr is an initial cluster ofq.

By construction,ν is a global marking forJ andq. We verify thatν assigns eacho ∈ ∆J at most one part
per cluster ofq.

Consider the treeT whose nodes are the clusters ofq with an additional root; the root is a predecessor of
every initial cluster (there can be more than one) and there is an edge between two clusters if they share an
element. Intuitively, each iterationi in the construction ofν adds an austere marking for some initial cluster,
but only inside a subtree ofJ rooted at some element where no parts of initial clusters occur. Hence, it is
‘delayed’ on the treeT w.r.t. all the markings that started higher inJ , and for each part〈c, V 〉 of q that is
associated to a nodeo, c is at a strictly higher level in the treeT than all other clusters for whicho had been
assigned a part in any previous iterationi′ < i.

Formally, we denote by≤T the partial order over the clusters ofq induced byT , and usec �T c′,
c + 1 =T c′ and c ≶T c′ to denote thatc is, respectively, strictly smaller thanc′, a direct predecessor
of c′, or incomparable toc′. We show the following:(⋆) for every i and for every cluster part〈c, V 〉, if
〈c, V 〉 ∈ νi(o) \ νi−1(o) is added in the construction ofνi, then for every cluster part〈c′, V ′〉 ∈ νi−1(o),
eitherc �T c′ or c ≶T c′. This property is seen by induction. It is true fori = 0: aspoR

is (oR, P)-austere
for some partP of an initial cluster, it assigns at most one part per clusterto eacho.

For i > 0 assume, towards a contradiction, thatj is the leasti for which (⋆) fails at some element of
∆J . Let o∗ be a shortest such element (i.e., minimal w.r.t. to its depthin the tree∆J), and leto′ be its
parent. By assumption,(⋆) holds foro′. Assume〈c∗, V ∗〉 ∈ νj(o

∗) \ νj−1(o
∗), and that there is some

〈c−, V −〉 ∈ νj−1(o
∗) such thatc− ≤T c∗. Let po be the restriction ofνj \ νj−1 to the subtree ofJ rooted

at thej-th level that containso∗, i.e.,o is the unique ancestor ofo∗ in γ(j, νj−1), andpo is an(o, P)-austere
marking for some partP of an initial cluster ofq. First we note thato∗ 6= o, aspo(o) contains a part of an
initial cluster butνj−1(o) does not, whilepo(o

∗) contains a part of some clusterc∗ that has a predecessor
c− for which there is a part inνj−1(o

∗). Sincepo is (o, P)-austere,〈c∗, V ∗〉 ∈ po(o
∗) implies that there

is somec such thatc = c∗ or c + 1 =T c∗, and〈c, V 〉 ∈ po(o
′), i.e., sincec∗ must be justified inpo(o

∗),

23

a part of itself or of its direct predecessor must occur inpo(o
′). Similarly, sinceνj−1 is a union of austere

markings,〈c−, V −〉 ∈ νj−1(o
∗) implies that there is somec′ with c′ = c− or c′ + 1 =T c−, and such that

〈c′, V ′〉 ∈ νj−1(o
′) for someV ′ ⊆ c′.

The existence of either a part ofc∗ in po(o
′), or a part of the direct predecessorc′ of c− in νj−1(o

′), is
enough to contradict the fact thato′ satisfies(⋆), i.e., if c = c∗ or c′ + 1 =T c− we getc′ ≤T c. Otherwise,
there is no part ofc∗ in po(o

′), 〈c, V 〉 ∈ po(o
′) for the direct predecessorc of c∗, and〈c−, V −〉 ∈ νj−1(o

′).
As c∗ has the unique direct predecessorc andc− ≤ c∗, eitherc− ≤ c or c− = c∗. The former clearly
contradicts the satisfaction of(⋆) at o′. We only have to analyze the case wherec− = c∗, i.e., there are
markings〈c∗, V ∗〉 ∈ po(o

∗), 〈c∗, V −〉 ∈ νj−1(o
∗), and〈c∗, V ′〉 ∈ νj−1(o

′), as well as〈c, V 〉 ∈ po(o
′)

for the unique direct predecessorc of c∗. Let r be the role with(o′, o∗) ∈ rJ . As there is no part ofc∗

in po(o
′) and〈c∗, V ∗〉 ∈ po(o

∗), thenc is anr-cluster, there is a part ofc in po(o
∗), andV ∗ = c∗. Also

〈c∗, V ′〉 ∈ νj−1(o
′) together with〈c∗, V −〉 ∈ νj−1(o

∗) implies thatc∗ is an r-cluster. Hencer is not
transitive (as by definition there are no adjacentcr, cr′ with r = r′ transitive), andV ′ = c∗ follows. We
have〈c∗, c∗〉 ∈ νj−1(o

′), and the presence of this cluster part must be justified. Asc is the predecessor of
c∗, there must be some〈c,W 〉 ∈ νj−1(o

′) with W ⊆ c. But this together with〈c, V ′〉 ∈ po(o
′) contradicts

the assumption thato′ satisfies(⋆).

4.2.2 A knot-elimination algorithm

We present an algorithm which tests the existence of models that admit a global marking. It is based on
knots [12].

Definition 4.23 [Knot] A T -typeis a setτ ⊆ sub(T) that satisfies, for allC,D ∈ sub(T): (a)C ∈ τ implies
¬C 6∈ τ , (b) if C ⊓D∈ τ , then{C,D}⊆ τ , (c) if C ⊔D∈ τ , thenC ∈ τ or D∈ τ , and (d)CT ∈ τ . A knot
for T is a pairκ= (τ, S) with τ aT -type andS a set of pairs(r, τ ′) such thatr is a role name that occurs
in T , τ ′ is aT -type, and in addition:

(1) if ∃r.C ∈ τ , thenC ∈ τ ′ for some(r, τ ′)∈S;

(2) if ∀r.C ∈ τ , thenC ∈ τ ′ for all (r, τ ′)∈S;

(3) if ∀r.C∈ τ ∧ r∈Tr(K), then∀r.C∈ τ ′ for all (r, τ ′)∈S;

(4) |S| ≤ |sub(K)|.

A knot κ= (τ, S) can be viewed as describing a fragment of a canonical model that consists of a node which
satisfies the concepts inτ and its successors, as described byS. Our algorithm will represent canonical
models as a set of knots. In fact, it is not hard to come up with conditions which guarantee that a given
set of knots can be assembled into a canonical model. By transferring the marking conditions for canonical
models (see Definition 4.15) to the setting of knots, we obtain conditions ensuring that a given knot set can
be used to assemble a canonical model where there is a global marking forq.

Definition 4.24 [Marked Knot] Amarked knotis a pair(κ, ν), whereκ= (τ, S) is a knot andν : S∪{ε} →
2PC is a mapping such that, for anye ∈ S ∪ {ε}, ν(e) contains no more than one part of each cluster ofq.

As a convention,ν(ε) is the marking of the root ofκ. The marking of a single knot must mimic a
spoiling marking of a domain element and its immediate successors as given in Definition 4.15.

24

Definition 4.25 [q-avoiding] For aT -typeτ and a variablev, we say thatv is label-matchedatτ if A(v) ∈ q
impliesA ∈ τ for anyA. Then a marked knot(κ, ν) is q-avoiding(for K), if (a) ν(ε) contains a part of an
initial cluster ofq, and (b) the following conditions hold for each〈cr, V 〉 ∈ ν(ε):

(K1) If r 6∈ Tr(K), V = {v, v′} andr(v, v′) ∈ q, then (a)v is not label-matched atτ , or (b) (cr, {v
′}) ∈

ν(〈r, τ ′〉) for all 〈r, τ ′〉 ∈ S;

(K2) If r 6∈ Tr(K) andV = {v}, then either (a)v is not label-matched atτ , or (b) P ′ ∈ ν(ε) for someP ′

that departs fromv.

(K3) If r∈Tr(K), then there is someconsumed setS ⊆ min(V) such that:

• for eachv ∈ min(V) \ S, either (a)v is not label-matched atτ , or (b) P ′ ∈ ν(ε) for someP ′

that departs fromv, and

• there is someV ′ that contains somev↓ that does not reach any otherv′ ∈ cr, and all variables
that are connected tov↓ in q|(V \S), and〈cr, V

′〉 ∈ ν(〈r, τ ′〉) for all 〈r, τ ′〉 ∈ S.

The following conditions ensure that sets of marked knots finitely represent marked canonical models.

Definition 4.26 A setK of q-avoiding knots isconsistentif the following are true:

1. for each(κ, ν) ∈ K with κ = (τ, S), and for each(r, τ ′)∈S, there exists(κs, νs)∈K with κs = (τs, Ss)
such thatτs = τ ′ andνs(ε)= ν(r, τ ′).

2. there is a(κ, ν) ∈ K with κ = (τ, S) such thatC0 ∈ τ (recall that the ABox is of the form{C0(a)}).

Proposition 4.27 There exists a global marking for a canonical modelJ of K and q iff there exists a
consistent set ofq-avoiding knots forK.

Proof. (⇐) Let K be a consistent set ofq-avoiding knots and letb = max{|S| | (τ, S) ∈ K}. To obtain
a canonical modelJ for K and a global markingµ for J andq, we take the tree∆ = 1·{1, . . . , b}∗. Let
δ : ∆ → K be a partial function inductively defined as follows:

• δ(1) = (κ, ν) for some(κ, ν) ∈ K with κ = (τ, S) andC0 ∈ τ ;

• if δ(o) = ((τ, S), ν) has been defined, then for each(r, τ ′)∈S, we choose someo · i ∈ ∆ and set
δ(o · i) = (κs, νs) for some(κs, νs)∈K with κs = (τs, Ss) such thatτs = τ ′ andνs(ε)= ν(r, τ ′).

Such aδ exists by the consistency ofK (Definition 4.26). Let∆′ = dom(δ) (⊆ ∆) be the domain ofδ.
We can now define a canonical modelJδ for K, by takingJ = (∆′, ·Jδ), aJδ = 1 and:

1. for each concept nameC ∈ sub(K), CJδ = {o ∈ ∆′ | δ(o) = ((τ, S), ν) andC ∈ τ},

2. for each roler, rJδ = {(o, o · i) ∈ ∆′×∆′ | δ(o) = ((τ, S), ν), (r, τ ′)∈S, δ(o · i) = ((τs, Ss), νs),
τs = τ ′, νs(ε)= ν(r, τ ′)}.

To define a global markingµδ for Jδ andq, we simply setµδ(o) = ν(ε) for eacho with δ(o) = (κ, ν).

(⇒) Let J be a canonical model forK and letµ be a global marking forJ andq. Due to Proposition 4.22
we can assume thatµ assigns to each domain element no more than one part of each cluster ofq. For
o ∈ ∆J , we definetype(o) = {C ∈ sub(K) | o ∈ CJ }.

We define a marked knotmk(o) = ((τo, So), νo) for eacho ∈ ∆J as follows:

25

Algorithm Knot-Elim(K, q)
Input: KBK = (T , {C0(a)}), (pseudo-tree) queryq
Output: “Yes” iff a consistentq-avoiding knot set for KB exists

Compute the setK0 of markedq-avoiding knots forT
i := 0
repeat
i := i + 1
Ki := Ki−1 \ {(κ, ν) ∈ Ki−1 | (κ, ν) bad inKi−1}

until Ki = Ki−1

if there exists some(κ, ν) ∈ Ki with κ = (τ, S) andC0 ∈ τ then
return “Yes”

else return “No”

Figure 8: The knot elimination algorithm.

• τo = type(o)

• νo(ε) = µ(o),

• So = {(r, τ ′) | ∃(o, o′) ∈ rJ , type(o′) = τ ′, νo(r, τ
′) = µ(o′)}.

It can be easily verified thatK = {mk(o) | o ∈ ∆J } is a consistent set ofq-avoiding knots.

We now provide an algorithm for checking existence of consistent q-avoiding knot sets. It is a kind
of type elimination as first used by Pratt [13] in the context of propositional dynamic logic, but works on
marked knots instead of types. In a nutshell, we start with the set of all markedq-avoiding knots, and then
repeatedly eliminate knots that cannot be part of any markedcanonical model. In the end, we check whether
there is a surviving knot that contains the conceptC0 from the ABox (cf. Definition 4.26). The following
definition formalizes the condition for elimination.

Definition 4.28 [Bad] LetK be a set of marked knots and let(κ, ν) ∈ K with κ = (τ, S). We say that(κ, ν)
is bad in K, if there is some(r, τ ′)∈S for which there is no(κs, νs)∈K with κs = (τs, Ss) such thatτs = τ ′

andνs(ε)= ν(r, τ ′).

The algorithm is given in Figure 8. It is readily checked thatit terminates, as there is only a finite set of
marked knots forT . If it answers “Yes,” then the computed set of marked knots isconsistent; furthermore,
we can construct from it a canonical modelI of K in which q has no pre-match (Proposition 4.27). Con-
versely, ifK has a canonical modelI such thatI 6|=pre q, then we can generate a set of markedq-avoiding
knots fromI and show that none of them is eliminated by the algorithm. As the algorithm terminates and
one of the generated knots containsC0 in the root type, it returns “Yes.”

Proposition 4.29 The algorithmKnot-Elim is sound, complete, and terminates.

To establish Theorem 4.3, it remains to show that Knot-Elim runs in exponential time. Letn be the size
of K andm the size ofq. It suffices to show that the number of marked knots is single exponential inn+m;
note thatq-avoidance of a marked knot is easily checked nondeterministically in polynomial time inn+m.
The number ofT -types is bounded by2n and the number of knots by2O(n2) (note condition (4.23.4)). There
are at mostm clusters forq, and each cluster has less than2m parts. A marking assigns to each node of a

26

knot at most one part per cluster, thus we have at most(2m)m = 2m2

candidate markings per node. As the
number of nodes in a knot is bounded byO(n), we have for each knot at most2O(m2n) candidate markings.
It follows that there are at most2O(n(n+m2) marked knots, which is bounded by2O(n2m2).

5 Related Work and Conclusions

We showed that deciding CQ non-entailment inSH, which supports transitive roles and role hierarchies,
is 2-EXPTIME-hard, and therefore provably harder (by one exponential) than the standard reasoning tasks,
like satisfiability and instance checking, in a number of DLsfor which the latter problems are EXPTIME-
complete. We also showed that the problem is in EXPTIME for S for knowledge bases that have tree-shaped
ABoxes, but is NEXPTIME-hard in general.

In the light of this, a natural question is under which other restrictions CQs non-entailment overSH
knowledge bases has lower complexity. ForALCI, where CQ non-entailment is as hard as inSH, the
complexity drops to NEXPTIME-complete if at least one variable must be mapped to the ABox [8]. As
already remarked there, this does not reduce the worst case complexity in presence of role hierarchies and
transitivity. In fact, the queryqw in our reduction above can be easily adapted, by adding a fresh variablexr

and atomst(xr, xA) that connectxr to the rootsxA of all the components ofqw.
In [12], theorder-freeness degree (OFD)was introduced as a measure of the structural complexity of

CQs, which roughly is the maximum number of query variables that reach in the query graph a common sink
via a transitive role, but mutually not each other. As shown there, entailment of CQs with OFD bounded
by a constant is EXPTIME-complete forSH (note that the queryqw has unbounded OFD). As a simple
consequence, all queries with at most constantly many variables in transitive role atoms are decidable in
EXPTIME. This contrasts the result that CQ entailment inSHIQ is 2-EXPTIME-hard even for queries with
only two variables of [6].

Finally, the 2-EXPTIME hardness of CQ entailment forSH and forALCI [8] matches the known upper
bounds forunions of CQsoverSHIQ KBs [4] and the even more expressivetwo-way positive regular path
queriesoverALCQIbreg KBs from [1]. This shows that, once either inverse roles or role hierarchies and
transitivity are allowed, one can significantly extend boththe query language and the Description Logic
without further increase of the worst case complexity.

References

[1] D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics:
An automata-theoretic approach. InProc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI2007),
pages 391–396, 2007.

[2] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133,
1981.

[3] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence(IJCAI 2007), pages 399–404,
2007.

[4] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
shiq. Journal of Artificial Intelligence Research, 31:157–204, 2008.

27

[5] B. Glimm, I. Horrocks, and U. Sattler. Conjunctive queryentailment forSHOQ. In Proc. of the 2007
Description Logic Workshop (DL 2007), volume 250 ofCEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-250/, pages 65–75, 2007.

[6] B. Glimm and Y. Kazakov. Role conjunctions in expressivedescription logics. Technical report,
Oxford University Computing Laboratory, 2008.

[7] C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis, LuFG Theoretical Com-
puter Science, RWTH Aachen, 2002.

[8] C. Lutz. The complexity of conjunctive query answering in expressive description logics. In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors,Proceedings of the 4th International Joint Conference
on Automated Reasoning (IJCAR2008), number 5195 in LNAI, pages 179–193. Springer, 2008.

[9] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete domains.Journal of
Artificial Intelligence Research (JAIR), 23:667–726, 2005.

[10] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity ofquery answering in expressive de-
scription logics via tableaux.J. of Automated Reasoning, 41(1):61–98, 2008.doi:10.1007/
s10817-008-9102-9. Preliminary version available as Tech.Rep. INFSYS RR-1843-07-07, In-
stitute of Information Systems, TU Vienna, Nov. 2007.

[11] M. Ortiz, M. Šimkus, and T. Eiter. Conjunctive query answering inSH using knots. In F. Baader,
C. Lutz, and B. Motik, editors,Proceedings of the 21st International Workshop on Description Logics
(DL2008), May 13-16, Dresden, Germany, volume 353 ofCEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[12] M. Ortiz, M. Šimkus, and T. Eiter. Worst-case optimal conjunctive queryanswering for an expressive
description logic without inverses. In D. Fox and C. P. Gomes, editors,AAAI, pages 504–510. AAAI
Press, 2008.

[13] V. R. Pratt. Models of program logics. InFOCS, pages 115–122. IEEE, 1979.

[14] U. Sattler. Description logics for the representationof aggregated objects. In W. Horn, editor,ECAI,
pages 239–243. IOS Press, 2000.

[15] K. Schild. A correspondence theory for terminologicallogics: Preliminary report. InProc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1991), pages 466–471, 1991.

[16] S. Tessaris.Questions and Answers: Reasoning and Querying in Description Logic. PhD thesis,
University of Manchester, Department of Computer Science,Apr. 2001.

28

