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Abstract. Answering conjunctive queries (CQs) has been recognizedh asportant task for the
widening use of Description Logics (DLs) in a number of apations. The problem has been
studied by many authors, who developed a number of diffalestiniques for its solution. We
present a novel method for CQ answering based on knots, vanéekchematic subtrees of depth
at most one. The method yields an algorithm for CQ answeririheé DL SH which handles CQs
with distinguished (i.e., output) variables in a direct man It proceeds by first compiling the
knowledge base into a set of knots, and then constructing @ sémple knowledge bases, which
contain only assertional data, over which a given query ssv@ned. Notably, the knot compilation
can be reused for varying queries and is amenable to an ineplation in disjunctive Datalog.
The algorithm works in double exponential time in generdl ibusingle exponential time under
various restrictions on the occurrence of transitive radegueries, including CQ answering in the
DL ALCH. The results are worst-case optimal, given that CQ ansgési@ EXPTIME-complete
for SH and ExPTIME-hard already for the core expressive DALC. In particular, the result for
ALCH reconfirms Lutz’s result that adding inverse roles4dC causes an exponential jump in
complexity, while adding role hierarchies does not. Furtimre, a nondeterministic version of our
algorithm runs incoNP under data complexity, which is worst-case optimal is Hatting as well.
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1 Introduction

In the last years, Description Logics (DLs) have incredgimgceived attention as a tool for representing
domain models in various application areas. Among thesesare data and information integration, peer-
to-peer data management, ontology-based data accesdiea@rantic Web. The widening use of DLs
also raised the need for reasoning services beyond tnadits@rvices like satisfiability testing, determining
subsumption relationships, and instance checking. Inqodeit, answering conjunctive queries (CQs) over
knowledge bases in DLs has been recognized as a primary asichlbhdeed, CQs allow to join pieces of
information and are at the heart of database query langu&geSQL; for example, if a relatiommp (e, d)
stores data about employeeshat work in departments, and a relationiept(d, a) stores data about de-
partments] and their addresses then the CQemp(z,y), dept(y, z) joins the information in the relations
and yields for each employeeher work address. Thus, supporting CQs over DL knowledge bases is, for
instance, important for the use of DLs as a formalism for data models.

Driven by this need, the problem has been studied in manyrpaipeluding [29, 19, 13, 14, 22, 6, 5,
2, 20, 28, 33], and a number of results have been derived fangerof DLs. In DLs that extend the core
expressive DLALC, like SHZQ andSRZQ (which correspond to the Web Ontology Language standard
of the W3C) andDLR, answering CQs is at leasXBTIME-hard as it subsumes the satisfiability problem
of ALC knowledge bases, which is well-known to beH IME-complete. However, the problem is harder
for many DLs; e.qg., it is 2EPTIME-hard for all DLs containingALCZ [22] or SH [10]. On the other
hand, 2KPTIME upper bounds are known for these logics and the embracingBLO, cf. [6, 2, 19, 13],
which are thus tight. However, for other extensionsddiC, like ALCH and ALCHQ, answering CQs is
still feasible in single exponential time [22, 23, 31&nd thus the problem is not more expensive than the
satisfiability problem in these logics.

To design CQ answering algorithms in expressive DLs, varapproaches have been used; they range
from incorporating the query into the knowledge base [6,13,14] over adapting tableaux procedures
[21, 29, 28, 33] and applying resolution-based techniqu&$ fo automata-based algorithms [2, 20]. In
this paper, we consider a different method, which is basetherknot technique. Knots are schematic
trees of depth at most one that occur in the forest-shape@lsiofla DL knowledge base. They have been
introduced in the context of non-monotonic logic programgnfor FDNC programs [36] and can be seen
as a special instance of mosaics in modal logic [11, 9].

The main result of this paper is a novel algorithm for ansmgiCQs overSH knowledge bases. It
extends a similar algorithm fod LCH presented in [31] and works in double exponential time inegain
but in single exponential time for queries from large fragitseof SH including ALCH, which emerge
by restricting the occurrence of transitive roles in queri®lore precisely, the algorithm has the following
features:

e |t is worst-case optimal for arbitrary CQs ow8#{ as well as for CQs with restricted occurrence of
transitive roles, e.g. CQs containing only few (bounded bgrastant many) atoms involving transitive
roles; this restriction seems not to be severe in practicpatticular, the algorithm is thus worst-case
optimal also for answering CQs ovetLCH knowledge bases. This contrasts with several other
algorithms for CQ answering i§H which either do not have a double exponential upper bound, or
need double exponential time already for fragments A& H (see Section 7 for more details).

¢ Different from other algorithms, it handles CQs with answariables (alias distinguished or output
variables) in a direct manner, rather than reducing suchiegiéo ground (Boolean) CQs. In our

Lutz announced his result in [22], and more details werergiaeer in [23].
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example above, the variablesandz, which intuitively return an employee with her work addrem®
answer variables. Reducing the query to ground CQs is amthiby bindingz andz to all possible
employees and addresses, which might be rather inefficemt (f it appears that each employee has
a unique work address).

e The algorithm provides a modulinowledge compilationf the DL knowledge base, which allows
for the reuse of intermediate results. This is because ipdemfirst a DL n knowledge base into a set
of knots, constructs then query answering tables from #tisusd the input query, and finally collects
the query answers from the tables using the data part (in Bjofa the ABox) of the knowledge
base. The result of the first step may be reused for followugrigs, i.e., only the query answering
tables need to be constructed and the query answers cdlleEtr queries of small size (bounded
by a constant), the table construction is feasible in patyiabtime in the size of the knot set, and
collecting the query answers is feasibledoNP (viewed as a decision problem); for a fixed ABox,
the latter is feasible in polynomial time. This is partialyauseful for evaluating many such queries
over a rather static knowledge base.

o Similarly, for a fixed query and a DL knowledge base wheredhminological component (the TBox)
is fixed but the ABox may change, i.e., in tHata complexitysetting, a non-deterministic version of
our algorithm runs in polynomial time. This means that thlgwdathm is also worst-case optimal under
data complexity, as answering CQs is known taikndN P-complete for a wide range of DLs frod.
to SHZQ (cf. [5, 16, 28]).

e Finally, the compiled knowledge can be expressed as a disjerDatalog program (alternatively, a
Datalog program with unstratified negation), which is ea#da over an enhanced ABox. The program
can be designed to evaluate also non-ground queries, tleawswer variables directly. A Datalog
encoding may make the algorithm more amenable for efficraptementation than some of the pre-
vious automata- or tableaux-based approaches, givenffité#m engines for disjunctive/unstratified
Datalog are available.

While we focus onSH, the method an be extended to richer DLs. Indeed, once weénatibknot
representatiorof a terminology, the algorithm works on the knots and dodsdepend much on the con-
structs of the logic. The knot technique thus opens an istieige perspective that might be exploited for
other purposes as well.

The rest of this paper is organized as follows. The next @egirovides basic concepts and notation.
After that, we consider in Section 3 forest models on whiclcargconcentrate for our purposes. In Section 4
we introduce knots and discuss how forest-shaped modelBbfk@owledge base can be represented using
knots. In Section 5, we present our algorithm for answerifs @sing knots in the general case, while in
Section 6 we address complexity issues and restricted.chs#®e final Section 7, we first discuss related
work and possible extensions of the approach, and thenudmelith some open issues.

2 Preliminaries

In this section we introduce the D&H and define the conjunctive query answering problem.
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TI=AT 1T=0 (-O)f =an\c?
(cnD)Yf =cTnD? (cubDyr =cTup?
(AR.C)F ={z | Jy.(x,y) € R Ay € CT}
(VR.C)' = {z | Vy.(z,y) € RT — y € CT}

Figure 1: Semantics &+ concepts.

2.1 Description LogicSH

We assume countably infinite s&f R andI of concept namesoles andindividuals respectively. Fur-
thermore, we assume an infinite 8t C R of transitive roles
Concepts (irS’H) are inductively defined as follows:

(&) T, L and every concept namg € C is a concept, and
(b) if C', D are concepts an® € R is arole, therC 1 D, C U D, -C,VR.C, dR.C are concepts.

LetC, D be conceptsR, S be roles and, b be individuals. Then an expressioiic D is called ageneral
concept inclusion axiom (GGlan expressioi C S is arole inclusion axiom (Rl)while expressions : C'
and(a,b) : R areassertions

An SH knowledge baséB) is a pairk = (7,.A), where theTBox7 is a finite set of GCls and RIs,
while theABoxA is a finite set of assertions. W.l.0.g. we assume that () and that all the concept names
and roles occurring itd also occur inZ7. By C(7) andR(7") we denote the sets of all concept names and
roles occurring in a TBo#, respectively. Moreover, we [®"(7) = R™ N R(7) and denote by_* the
reflexive transitive closure df(S, R) | S T R 7 }. Arole R is simple(in a TBoxT), if no S C% R exists
such thatS € R* (7). Finally, letI(.A) denote the set individuals occurring in an ABdx

An interpretationZ = (AZ,.7) for a KB X = (7,.A) consists of a non-emptgomain AZ and a
valuation function-Z that maps each individual € I(.A) to an element? € AZ, each concept name
C € C(T) to asubseC? of AZ, and each rolé&? € R(T) to a subseRR” of AT x AZ. The function is
extended to all concepts via the equations in Figure 1. W&sayamodelof K (in symbols,Z = K) if (i)
for each GCIC C D € T, CT C D7Z; (i) foreachRIRC S € T, R* C S7; (iii) for eachR € RT(7),
RT = (RH)*, i.e., R? is transitively closed; (iv) for each assertian C in A, a* € C%; and (v) for each
assertiona, b) : Rin A, (aZ,b7) € RZ. If K admits at least one model, th&his satisfiable

Example 1. Consider a simple genealogy knowledge b&se- (7, .A), whereC contains the concept
namesman, woman, person, androyal, andR the rolesfather, mother, parent, ancestor, and heir,
whereancestor is transitive.

The TBox7 may contain the following GCls:

man C —woman, which states disjointness of men and women;
man U woman C person, person = man U woman, which definegperson as men and women; and
person C dfather.man, person T dmother.woman which state that every person has a father and a mother.

The TBox may further contain the Rls

father T parent, mother C parent, parent T ancestor, ancestor C heir.
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Thus, father, mother, andparent are simple roles, whilencestor andheir are non-simple.
The ABox.A contains the following assertions:
joe :man, jill : woman, jill: royal,
(joe, bob) : father, (bob, sue): mother, (jill, sue): mother, (jill, alice): heir.
Note that the information about the individuals is inconi@lée.g.,joe’s father is not known, nor whether
he is royal).

A conceptC is in negation normal form (NNHJ negation occurs in front of the atomic concepts only.
As well know, each concepf’ can be transformed into an equivalent concept in NNF in finieae. We
assume that concepts in TBoxes are alway in NNF. As usuél,denotes the NNF of-C. By clos(7')
we will denote theconcept closure off, which is the smallest set such that: (@)D € clos(7") for
eachCC D € 7, (b) if E is a subconcept of’ € clos(7), thenE € clos(7), (c) C' € clos(7), then
~C' € clos(T), and (d)VR.C € clos(T) andR’ € R(7), thenVR'.C € clos(7).

2.2 Conjunctive Query Answering

Let V be a countably infinite set of variables.canjunctive queryCQ, orquery) g over a KBK = (7, A)

is a finite set of atoms of the fortA(z) or R(x,y), whereA € C(7), R € R(7) andz,y € V; the set of
variables occurring il is denoted byV (¢). Each CQy is associated with a unique (possibly empty) tuple
Z = (x1,...,zy,) of answer variablesrom V(q).

A match forg in an interpretationZ for K is a mapping? : V(q) — A7 such that (i)d(x) € AZ for
eachA(x) € q, and (i) (#(z),0(y)) € R for eachR(z,y) €q. Atupleé = (ci,...,c,) of individuals
from I(A) (of the same arity ag) is an answer ofy overZ, if (cf,... ct) = (§(z1),...,0(z,)) for some
match@ for ¢ in Z; ans(q,Z) denotes the set of all answersobverZ. Then theanswer ofq over K is
ans(q,K) = ﬂzg;c ans(q,Z), i.e., consists of all tuplegthat occur in the answer @ffor every modelZ
of K.

Example 2. A possible CQ to the knowledge bakserom Example 1 is
q = {ancestor(z, z), ancestor (y, z), royal (z) }

with answer variableg = (x,y), which retrieves the individuals that have a common royakator. As
easily seen, the query has no answer @vér.e.,ans(q, ) = (), as for each paif = (c1, ¢2) of individuals
from joe, jill, bob, sue, and alice, the KB K has some model in which ¢ has no matct¥ such that

<C%7 C%> = <9(Cl)7 9(02)>

Note that we do not allow for individuals or complex conceiptgjueries. This is no restriction: if
is a query with individuals, for each individualwe can use a new concept nadig, replacea in ¢ by a
new variabley, and add’,(y) to ¢ anda : C, to A. Similarly, atomsD(z), whereD is complex, can be
simulated by adding a GAD C C'p, to K for some fresh concept nanig,, and replacing)(x) by Cp(x).

The query graph of a quenyis the directed graph with noda&(q) and an ara — y for eachR(x, y) €
g. We sayyq is connectedf its query graph is connected,

From now on, we make theniqgue Name Assumption (UNAJ., in modelsZ of C, for each pair of
individualsa # b from K we havea” # bZ. This is not a limitation: as easily seen, UNA does not affeet
set of query answers in the caseSifl KBs.
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3 Forest Models

It is well know that to answer queries over many known DLs ffisas to restrict the attention to a certain
class of models, and, in particular, farest-shapednodels. To discuss this, we adopt some notation and
naming from [16].

Definition 1 (Trees and Forests) et N* be the set of words over the S8tof natural numbers. We say a
setT C N* is atreg if it is prefix closed, i.e., for each word-e € T, wherew € N* ande € N, we have
w € T. The empty word: is the root ofT’, while for eachw € T, the nodesv-e € T with e € N are
children of w.

Let {T;};cs be a set of trees indexed Wy then the se¥’ = J,; {(¢,w) | w € T;} is called aforest
(with index setl). The notion of children is generalized to forests; w') € F is achild of (i,w) € F'if
i =4’ andw’ is a child ofw. Similarly, each nodéi, ¢) is a root of .

An interpretatiorZ = (A%, %) fora KB K = (7, A) is forest-shapegif

(@) the domaim\? is a forest with index sei(A),

(b) for eachd,e € AT and roleR such that(d,e) € RZ, eithere is a child ofd, or bothd ande are root
nodes, and

(c) for each node € AZ, the number of children af is bounded byclos(T')|.

By children(Z, ) we denote the set of children efc AZ. We sayZ is tree-shapedf |I(A)| = 1. Fora
tree-shaped, letroot(Z) denote the unique root node Bf

To ease presentation, as tree-shaped we also considertargrétation that is isomorphic to a tree-shaped
interpretation defined above; the two functiamsldren(-, -) androot(-) are extended accordingly. We will
further useZ|, to denote the tree-shaped interpretation obtained byictsy a forest-shaped to e € AT
and its descendants, i.é1,3 is the subtree of rooted ate.

In presence of transitivity statements, we strictly spagikdo not have forest-shaped models ofSgr
KB in general. Indeed, by definition, forest-shaped modaisot have transitive arcs. In order to provide a
complete query answering algorithm, we impose additionabtraints on forest-shaped models.

Definition 2 (Forest base and closure) forest-basdor a KB K = (7, A) is any forest-shaped interpreta-
tion Z for K such that:

(@) foreachGCU'C D € T, C* C D?;

(b) foreachRIRC S € T, RT C S7;

(c) for each assertion : A (resp.,(a,b) : R)in A, we havea” € A (resp.,(a?,b?) € RY);
(d) if e € (VR.C)Z, then for allS € R*(T) with S C R we also have € (VS.(VS.C))~.

Theclosureof 7 is the interpretation7 = (A7, -7) that is identical t& except that, for each rolg,

R7 =R U U (SH)+.
SC% RASERH(T)
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Forest-bases of satisfy all the axioms and assertions/of(conditions (a-c)). However, they are not
necessarily models df since the transitivity requirements may be violated. Td deth this, we require
(d) which emulates the effect of transitive roles on a moddie closure, which is obtained by closing a
forest-base under transitivity and role hierarchy, leaxitola model of a KB.

We can now state the following important proposition.

Proposition 1 ([16]). If 7 is the closure of a forest-bagefor a KB K, then7 is a model ofC. Moreover,
given a KBKC, a queryq and a tuplec of individuals, if¢ ¢ ans(q, K), then there exists some forest-b&dse
for K such that? ¢ ans(q, J ), where7 is the closure of.

The proposition above implies that we can safely concentratclosures of forest-bases for answering
CQs. In fact, we will look for query mappings in forest basestéad of their closures. This will not be a
limitation, as we just need a slightly relaxed version of chas.

Definition 3 (Prematches)Given a forest interpretatiof andd,, d,, € A, we calld,, an R-successor of
dy (in 7), if there is someS C* R and a sequenaé, . . . , d,, such that(d;, d; 1) € S7 for eachl < i < n,
andn > 2 implies thatS is transitive. We say a query has apre-match inZ, if there is a mapping
7 : V(q) — AT such that:

(PM1) A(z) € qimpliesw(z) € A%, and
(PM2) R(z,y) € qimpliesn(y) is an R-successor of(x) in Z.
The following is then a direct consequence of Propositiond Refinition 3 above.

Proposition 2. Given a KBK, a queryq with answer variablest = (x1,...,z,), and a tuple¢ =
(c1,...,cn) Of individuals, it holds that € ans(q, K) iff in each forest-bas€ for K there exists a pre-
matchr for ¢ such that(c?, ..., cZ) = (m(z1),...,m(zn)).

By the above proposition, to answer a query it suffices to ltgikrematches in forest-bases only.

4 Model Representation via Knots

We deal here with model representation, and provide a methdithitely represent the possibly infinite
forest-bases of a8+ KB. This will be the basis of our query answering algorithmptoying knowledge
compilation.

Before dealing with full forest-bases, we first we prederdts which are special labeled trees of depth
< 1 used to represent the tree parts of forest-bases. Forshefréhis section, we assume a fixéa{
terminology7, and all ABoxes that we consider are ABoxesTofi.e., over the signature df).

Definition 4 (Knots). A type(for 7) is any setr C clos(7). A knot (for 7) is any tuple(r, S), where
rCclos(7) andS C 2R(T) x clos(T), satisfying the following consistency conditions:

(@ ~CuDerforeachGCICC D e T;
(b) if C € r,then~C & r;

(c) ifCnbDer,thenC,D €,

d) ifCcuDer,thenCerorD e,
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Figure 2: Example set of knots

(e) ifVR.C € r, then for eacl{a, 5) € S with R € «, we haveC' € j;

(f) if VR.C € r, then for each?’ C* R with R’ € R*(7) and each«, 3) € S with R’ € «, we have
VR'.C € j3;

(9) if 3R.C € r, then there exist&y, 3) € S with R € a andC € f3;

(h) if RC R'is arole inclusion i7", then for eacla, 5) € S with R € «, we haveR’ € «;
(i) |S| < clos(7).

We sayr is theroot and the elements i are thechildrenin the knot(r, S).

Knots are self-contained model building blocks for foreases ofC: a knot(r, S) can be viewed as an
abstract element of a forest-base Tothat satisfies the conceptsipand for eaclie, ) € S has a successor
linked by roles ina and satisfying concepts ii. Such a knot(r, S) encodes a possible combination of
immediate successors for a node having type a forest-base. Note thétlos(7)| is polynomial in the
size of 7, and hence we can construct at most exponentially manyreliftenots forZ (we discuss this in
Section 6).

We need some global conditions knot setdo ensure that trees can be built out of knots.

Definition 5 (Consistency) A set K of knots for7 is consistentif for each(r, S) € K and eacl{a, 3) € S
there exists some~', S’) € K such that? = r’. Such a knotr’, ") is called apossible successaf (r, S)
(in K).

Example 3. A consistent set of knots (for some KB) is depicted in Figure 2. Graphically, we represent
a knotk = (r,S) as a tree where the root is labeledand that has an arc labeledto a child labeled3

for each(a, 3) € S; for simplicity, parentheses{* and “}" are omitted. Five different typesy = {X} C
{A, B,C} occur in these knots, viz., 7¢, Ta,c, TB,c, and7y g c. Observe thak; is a possible successor
of ({T'},74) in ki, while ({P, T}, 74,8,c) has the possible successagsandk,.

We can build trees by putting suitable knots together subeaty. Intuitively, consistency of a knot set
means that for each knot we have a possible successor krnbhesce the tree construction will not fail.
In order to deal with ABoxes, we will need knot sets that carubed to build trees starting at the ABox
individuals.

Definition 6 (Compatibility) Let Q be a set of types fof’. Then a consistent sdt of knots for7 is
Q-compatible if for eachr € @ there exists some-, S) € K with r = 7.

Intuitively, if K is Q-compatible, then for each € () there exists a knot i’ which can be used as a
“starting” knot for constructing a tree with roet We can now turn to ABoxes.



8 INFSYS RR 1843-09-03

Definition 7 (ABox completions) An ABox A’ is called acompletionof an ABox.A for 7, if the following
holds:

(a) AC A,

(b) a: ~C U D e A’ for each concept inclusiof C D € 7 and individuala of £;

(c) ifa:C e A, thena: ~C g A,

(d)ifa:CnNDe A (resp.,a: CLUD e A), thena : C € A'anda : D € A’ (resp.,a: C € A or
a:DeA);

(e) ifa:VR.C € A and(a,b) : Re A, thenb: C € A';

(f) if RC Sisaroleinclusion ir? and(a,b) : R € A, then(a,b) : S € A’;

(9) if (a,b): Re A, (b,c): Re A andR € R*(T), then(a,c) : R€ A'.

The set of completions ofl is denoted byomp(.A). For any ABoxA let A(a) = {C' | a : C € A}
andCy = {A(a) | a € I(A)}, i.e., the type of: in A and the set of types of individuals i, respectively.
Finally, we defineCi = U (A) C 4, which is the set of types occurring in completions4f

€comp

An ABox completion corresponds to a possible explicatiothefconstraints on its individuals given by
the terminology, where the existential restrictions aspensed. The ABox completions provide us with the
graph parts of forest-bases, which can be characterizesmtritstof ABox completions and compatible knot
sets. We first give a construction of forest bases.

Definition 8 (Induced forest interpretations) et .4 be an ABox and leK be aC 4-compatible knot set. An
interpretatiorZ = (AZ,.7) isinduced byA4 and K, if A” is a forest with index seli(.A) and-Z is such that:

(@) Foreachas,e), (az,¢) € AT and roleR, we have((ay, €), (ag,€)) € RTiff (a1,a2) : R € A.

(b) There exists a mapping : A — K such that for each elementc AZ the knoty(e) = (r,9)
satisfies:

- for each atomic concept, e € A% iff A € r, and

- there exists a bijectioff : S — children(Z, e) such that for eackh = (a, 3) in S and each rol&k, we
have(e, f(s)) € RT iff R € a.

The set of all suclt is denoted§(A, K).
The following is a direct consequence of the above defirgtion

Proposition 3. If A’ is a completion of an ABaX and K is C 4.-compatible, then each € F(A', K) is a
forest-base for the KR = (7, A).

We saw that we can generatemeforest-bases. In fact, we want to capture all forest-bagesgoven
terminology, and for this we introduce the notion of comgfetss.

Definition 9 (Completeness)For a knot setX’ and typer, let K|r denote the smallest subset &f such
that
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(@) (r,S) € K|t for each(r, S) € K withr = 7, and

(b) if (r,S) € K|r, (a, ) € Sand(+',5") € K is such that3 = +/, then(+',S") € K|r, i.e.,, K|T is
closed under the possible successorKin

Let K be a consistent set of knots f@rand (@ a set of types foZ . We sayK is (Q-completeif for each
7 €  and each consistent s&t of knots for7 we haveK'|r C K.

Intuitively, K| is the restriction of to knots that have roat, or are reachable from the former via the
possible successor relation.c&complete knot set contains all knots that can be used td builee starting
with a typer € Q.

Definition 10 (Induced forest-bases) et .4 be an ABox and lefs be aC’;{—compIete knot set. Then we
denote by§x (A) the set of forest-bases induced by a completiod @ind the knot sek .

It remains to see that in order to answer a query over a KBffites to look at the induced forest-bases.

Proposition 4. SupposeA is an ABox,K a Cj—complete knot set; a query with answer variableg =
(x1,...,2p), @andé = (c1,...,c,) a tuple of individuals. Then € ans(q, (7 ,.A)) iff in each forest-base
T € 3k (A) there exists a prematehfor ¢ such that(c?, ..., cZ) = (m(z1),...,m(zn)).

Proof. The "—" direction follows directly from Proposition 2.

For the "—" direction, assume ¢ ans(q, (7,.A)). By Proposition 2, there exists a forest-bagdor
(7, A) that admits no prematch for ¢ with (¢ ..., ¢7) = (n(x1),...,7(x,)). We just need to argue
that7 € §x(A). To this end, we decomposg into a completion of4 and a set of knots.

Let A’ be the smallest ABox such that: (d)C A’, (b) if C € clos(7) anda” € C7, thena : C € A,
() if (a7,b7) € R7, then(a,b) : R € A, (d)if (a,b) : R € A, (b,c) : R € A andR € R*(7), then
(a,c) : Re A',and (e) ifRC S is arole inclusion ir7 and(a,b) : R € A, then(a,b) : S € A'. Itis easy
to see that sincg/ is a forest-based’ is a completion of4.

We now “decompose” the tree parts@finto knots. Lety be a mapping that assigns to each A7 a
knotp(e) = (r, S), where

(@ r={C¢eclos(T) | ec C7}, and

(b) S = U,c{(ci, 8:)}, wherel = {ex € AT | z € N}, ; = {R | (e,i) € R7}and3; = {C €
clos(T) | i€ CY}.

By the above mapping we assign to each A7 a knot extracted frony/ itself. By construction, the knot
setK’ = {p(e) | e € A7} is consistent. Furthermords’ is C y-compatible ands’ C K holds due to
C’z-completeness oK. Finally, the mapping> witnesses (see Definition 8) thdtis a forest-base induced
by A’ andK, i.e.,J € §x(A). O

We finally note that given a given KR = (7, A) and a sety of types for7, we can easily compute
a Q-complete knot set. We can do this via a simple proceduraragtspy type-elimination [32]. We start
by computing the sek of all knots for7 that have root € @. In the second stage, we clo&eunder the
possible successor knots. Finally, we remove fildrone by one the knots that have a leaf for whicldoes
not provide at least one successor knot. We elaborate owithighe algorithm presented in Figure 3. As
easily seen, the algorithm returns a desired knot set. thdeeany typer € (Q and a consistent knot sét,
the algorithm will includeK |, and none of the knots froft |~ will be deleted in the second stage which
is designed to ensure consistency. We note tligtcmmplete knot set can be obtained in single exponential
time in the size off (we elaborate on this in Section 6).
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Algorithm 1: computeKnots
Data: a KB K = (T, A), a setQ of types forT
Result a @-complete knot sel’
begin
Build the set/ of all knots(r, S) for 7 such that- € Q;
Close K under the following rule:
if (r,S) € K and(a, 8) € S, then add tak each knot’, S’) for 7 such that”’ = £.
repeat
Let K" := K;
if (r,S) e K and(«,3) € S but there exists no kngt’, S') € K s.t.7/ = /3 then
L K= K\{(r,5)}
until K’ # K ;
return K

end

Figure 3: Building knot sets.

5 Query Answering with Knots

We now present our algorithm for answering conjunctive mseoverSH knowledge bases. The method
relies on knot sets and is presented in three steps:

e We first consider the structure ofyaery prematclin a forest-shaped interpretation, and based on this
structure define a notion subqueriesand their matches.

e We then compile an input quekyand a terminologyZ into atype-query tablewhich, informally

speaking, tells which subqueriesptan be mapped in any tree generated from knots starting with a
particular root type.

e Finally, given an arbitrary ABox4, we can answeq over a KB(7,.4) by considering partial map-

pings ofq into completions of4 and by looking up the query remainders in the precomputee-typ
query table.

To ease presentation, for the rest of this section we fi KB K = (7,.A) and a CQy. Let us also
assume any'% -complete knot sek’, and lettypes(K) = {r | (r,S) € K}.

5.1 Subqueries and Rooted Matches

We define a notion of subqueries and their matches in treggeshimterpretations, which will allow us to
construct a full prematch for a query in a forest-base out afchmes for subqueries in trees and a partial
query mapping into the graph part of the forest-base.

Supposél is a forest-base fok in which a queryg has a prematch, ande € A7 is arbitrary but not
aroot node irZ. LetV, C V(q) be the set of variables @fthat are mapped ator inside the subtree of
7 rooted ate. We can make the following observations about the variat@sthat must be mapped in the
latter subtree:
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(P1) Ifz € V, andq contains an atonR(z,y), theny € V., i.e.,y must be mapped into the subtreeZof
rooted ate.

(P2) If ¢ contains two atom®(x,y) andR'(z’,y) whereR and R’ are simple (in), andz,y € V,, then
x' € V., i.e.,xz must also be mapped into the same subtree, and in partidula same element as

(P3) Ify € V. and there isR(z,y) € g with simple R and such that ¢ V., theny must be mapped te

(P4) Ify € V. and there iR(z,y) € g whereR is not simple, and: ¢ V, thenn(y) = e or n(y) is an
R-successor of.

The above observations are reflected in the notions of suleguend their matches in tree-shaped inter-
pretations.

Definition 11 (Subqueries) Given X C V(q) andy € X, letback(X,y) = {R | R(z,y) € qANz & X}.
We cally € X openin X if back(X,y) # 0. If in addition back(X, y) does not contain a simple role, then
yisfreein X.

An f(orward)-subquenof ¢ is any a tuplg X, ) where

(a) X C V(q) is a set of variables obeying the following rules:

() If R(x,y) € gandz € X, theny € X.

(i) if R(z,y) € gandR'(2,y) € q are two atoms wher&, R’ are simple, and: € X, then we also
haver’ € X.

(iif) The restriction of the query graph gfto variables inX is connected and acyclic, i.eX, induces
a connected acyclic subquery @f

(b) X is a mapping that assigns to every free variapile X some sek(y) C R*(K) containing some role
T C* R for eachR € back(X,y).

The set of f-subqueries gfis denoted byF. Any setp € 2F of f-subqueries is calleddisjunctive f-subquery
of q.

Example 4. We assume a knowledge basén whichR* (K) = {T'}, and where contains a role inclusion
axiomT C R. For our examples, we consider the query

q=C(21),T(z1,22), Q(x2,23), R(23,24), A(T4), C(24), P(1, 76), B(5), R(5, 76), Q(6, 27), C(27),

whose query graph, augmented with node ladels € C | C(z) € ¢} and edge label§R € R |
R(z,y) € Q}, is depicted in Figure 4. A largest f-subqueryfs FF = (V(q),0) (i.e., the fullg). In
any f-subquery that contains all variables exceptthe variablezg is open (the non-simpl& is the only
role in back(V(q) \ {x5}, x6)), and therefordl’ € X (zg) must hold; F1 = (V(¢) \ {5}, {(z6,{T})})

is such an f-subquery. Other f-subqueries with some freaeararefy, = ({2, x3, 25}, {(z2,{T})}),

Fs = ({zg, 27}, {(x6,{T})}) and Fy = ({z4},{(x4,{T})}). These f-subqueries are also graphically
represented in Figure 4, where thecomponents are omitted.

In an f-subquery( X, ), the setX comprises variables that have to be mapped into a giverstraped
interpretation. The seX is designed to deal with the situation (P4) and stores thesrela which free
variables ofX must be reached from the root of the interpretation. Duedmtiservations (P1-P2), we can
safely requireX to be closed under the rules (a.i) and (a.ii). Open variablasare not free must be mapped
at the root of the tree due to (P3).

The formal definition of matches for subqueries is as foltows
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g=F I Iy I3 Iy

T T2 T3 Ta 1 T2 T3 T4 To T3 T4 Te 7 T4
—_————-——— P — P oO———0— >0 O—>

CT Q "R "AC COXT Q "R CAC Q"R ‘AC Q 'C CAC
P \}%\\
6 X7 Z6 X7
Q

Figure 4: An example query and some of its f-subqueries

Definition 12 (Rooted prematches)Given (X, ) € F and a tree-shaped interpretatidnwe writeZ =
(X,¥) if there exists a mapping : X — A (arooted prematch fofX, 3) in Z) that obeys the following
rules:

(RP1) Ifz € X andA(x) € ¢, thenn(x) € AL,
(RP2) Ifz,y € X andR(z,y) € ¢, thenrw(y) is anR-successor of(z) in Z;
(RP3) Ifyis open inX but it is not free, themr (y) = root(Z);

(RP4) Ify is a free variable inX andR € X(y), thenn(y) is either the root of or an R-successor of the
root of Z.

Additionally, we writeZ =¢ (X, X)) if 7 is such that for every € X, the depth ofr(y) inZis < d, i.e., the
match is within depthl in Z. Furthermore, given a disjunctive f-subquery: 2%, we writeZ = p (resp.,
T =4 p) if for some(X, ) € p we haveZ |= (X, ¥) (resp.,.Z =4 (X, X)).

5.2 Subquery Entailment at Knots and Types

In the following, we provide a method to test existence oftedomatches in tree-shaped interpretations
constructed out of knots starting with a particular knotyget. The formal definitions of such trees and the
entailment problem are as follows.

Definition 13 (k-trees andr-trees) Let k € K be a knot and- € types(K) a type. A tree-shaped inter-
pretationZ is a called ak-tree (resp.,7-tree), if there exists a mapping” : AZ — K such that for each
e € AT the knoty? (e) = (r, S) satisfies:

(a) if eis the root ofZ, then(r, S) = k (resp.,r = 7),
(b) for each atomic concept, e € AT iff A € r, and

(c) there exists a bijectioh : S — children(Z, e) such that for eack = («,3) in S and each roleR,
(e,b(s)) € R iff R € a.

The sets of alk-trees and--trees are denoted (k) and by (7), respectively.

Note that for everyZ € T(k), at the root ofZ we have a unique bijectionin (c), and thus each nodeat
depth 1 (i.e., each child of the root) is uniquely identifigcsbme leak € S of & = (7, .S); for convenience,
we will refer toe by bZ. We will also useZ, to denoteZ ;.
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Definition 14 (Entailment at knots and typesBivenp € 2F andk € K, we writek |= p (resp..k =2 p) if
for eachZ € T(k) we haveZ = p (resp.,Z =% p). Similarly, givenp € 2 and a typer € types(K), we
write 7 |= p (resp.,m =% p) if 7 |= p (resp..Z =2 p) for eachZ € Z(7).

We will usetype-quernyandknot-querytables to store relevant pairs of types and disjunctivebyseries,
and pairs of knots and disjunctive f-subqueries for whi@ehtailment relation above holds.

Definition 15 (kg-table and tg-table)a A knot-query table (kg-tableés an arbitrary relatiol? C K x 2F.
We sayR is (d-)completeif (i) (k,p) € Rimpliesk =4 p, and (ii) if k =9 p and there is n@’ C p with
k=@ o then(k, p) € R.

Similarly, atype-query table (tg-tableg any relation?’ C types(K)x 2, and we say?’ is (d-)complete
if () (r,p) € R impliest = p, and (i) if 7 =@ p and there is ngp/ C p with 7 =@ /| then
(r,p) € R.

In the remainder of this section, we show how to compuiecamplete kg-table, d-complete tg-table,
and, finally, a complete tg-table that will be used to answerigs over the full knowledge ba& The
basic strategy is as follows:

(I) we show how to compute é&complete tg-tabld Q? from a givend-complete kg-tablé&Q?, and

(1) we provide a way to obtain, given&complete tg-tabld Q?, ad+1-complete kg-tabl&KQ? .

Note that we can easily build a 0-complete tg-tab@’, by looking at types- € types(K): for every
variablez in ¢ that has no successorsgdrand such thafA | A(x) € ¢} C 7, take all subquerie§X, X))
whereX = {z} and, ifz is free inX, X assignst some possible set as Definition 11.b (in fact, itis sufficient
to take only the single maximal such possible set). Hencdtebgtively applying the two steps above, we
can computel-complete tg-tables and kg-tables for ahg N. It will be easy to see that in this way we can
obtain a compete tg-table.

Example 5. The following tableTQ is an example of a 0-complete tg-table for the quergiven in
Example 4 and the set of knots given in Example 3, where aseabipv= ({z4}, {(z4,{T})}) and F5 =
({z7},0). Note that in this case, it is enough to consider singletsjudective f-subqueries.

Type | disjunctive f-subquery
C {F5}
TAC {Fs}
TA,C {Fu}
TB,C {Fs}
TA,B,C {F5}
TAB,C {Fy}

The central notion for the computation is that of minimatihg sets.

Definition 16 (Minimal hitting sets and:/7-hits). Assumek € K andr € types(K). Thenaset C F is
called ak-hit (resp.,7-hit) of a kg-table (resp., tg-tabley, if 4 is a minimal (w.r.t. inclusion) set such that
h N p # O for each(k’, p) € R with k' = k (resp., for eaclir’, p) € R with 7' = 7).

The following property of minimal hitting sets is important
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Algorithm 2: TQ_from_KQ
Data: ad-complete kg-tabl&Q
Result ad-complete tg-tabld Q
begin
R :={;
forall 7 € types(K) do
Compute the sel = {h C F | k € K has rootr andh is ak-hit of KQ};
forall p € 2F do
L if for eachh € H we haveh N p # () then

L R:=RU{(r,p)};

return R
end

Figure 5: From knot-query tables to type-query tables (ferknot set’ and the query)).

Lemma 1. Supposeék is a k-hit (resp., ar-hit) of ad-complete kg-tabl&Q (resp., of ad-complete tg-table
TQ). Then there exists sordec (k) (resp.,Z € T(7)) such thatZ =% (X, ¥) iff (X, %) € h.

Proof. We only consider the case bfhits, the proof forr-hits is analogous.

Consider &-hit h as above and consider= T \ h. Sincep N H = (), we have(k, p) ¢ KQ. Hence,
k 7 p,i.e., there is & € T(k) such thatZ }£? F for eachF < p. It remains to show thaf is also such
thatZ =¢ F for all F € h.

Consider an arbitrary” € H. As easily seen, by minimality of there exists somé, pr) € S such
that ' € pr and|pr N k| = 1 (if not, h \ {F} would be a smaller hitting set). We know that~? F’ for
eachF’ € pr \ {F}. Sincek =% pr, we getZ = F. O

Based on the above, we can now deal with step (I) discussetpsty.

Theorem 1. LetT € types(K), letp € 2F be a disjunctive f-subquery, and € be ad-complete kg-table.
Thenr =¢ p iff for each knotk € K with root 7 and eachk-hit 4 of KQ, we haveh N p # ().

Proof. Supposer =¢ p but there exists a kndt € K with root T and ak-hit 4 of KQ such thath N p = 0.
By Lemma 1 above, we havg € T (k) such thatZ }£? F for eachF € F \ h, henceZ [£¢ F for each
F € p. This contradicts =4 p.

Supposer ~? p but for each knok € K with root and eachk-hit 1 of KQ, we haveh N p # (. As
7 4 p, there exists som& € T(7) such thatZ £¢ F for eachF € p. Letk be the knot at the root of
and consider the collectioff = {p' \ p | (k,p’) € KQ}. A simple consequence of tlilecompleteness of
KQ is that)) ¢ C. Hence, some minimal hitting set 6f exist. Take any such minimal hitting et Clearly,
h N p=0andh is ak-hit of KQ. Contradiction. O

Using the above Theorem 1, we can computeamplete tg-tablel Q? out of ad-complete kg-table
KQ?. The procedure which exploits the theorem is presentedgurgis.

We now show how to obtaikQ?*' from TQ. Intuitively, to make the step frond to d + 1, we must
verify how each knotr, S) in K can extend the mappings that exist in th&rees of its childreria, 5) € S,
which are captured by the minimal hitting setsTe®?. This is formalized in the following notion of a-
fulfilling assignment.
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Definition 17. (assignmentp-fulfillment) Given a knotk = (r, S) from K, any functiong : S — 2F is
called a(f-subquery) assignment for We sayy is p-fulfilling, wherep < 2, if there exist soméX, %) € p
and a mapping : X — {r} U S satisfying the following conditions:

(M1) For eachr € X with ¢(z) = r, we have{A|A(z) € ¢} Cr.

(M2) If R(z,y) € ¢ is an atom withp(x) = r, theng(y) € S.

(M3) If yis open but not free iX, theng(y) = r.

(M4) For eachs = (a, 3) in S, there exist{ (X!, %!), ..., (X7, ™)} C g(s) such that:

o {z€X|p(x)=s}= U1§i§m(X§)v

e foreveryy € X! thatis free inX, (i) £(y) C o, and (i) if y is free inX?, £(y) C Ti(y).

e if y € X! is open inX!, then, for each? € back(X?,y), there is som& C* R such that: i
T € «, and (i) if additionally y is free in X?, thenT € % (y).

Note that if g is p-fulfilling, then every assignmenyf' that containg, i.e., with ¢’(s) 2 g(s) for all
s € S, is p/-fulfilling for every p’ 2 p.

Example 6. For the knotk; = (7, {s1,s2}) in Figure 2, wheres; = ({T'},74) and sy =
({P,T},7a.B,c)}), each assignmerg with g(s2) = {Fi} is {Fg}-fulfilling, where as aboveFy =
({za}, {(z4,{T})}) and Fs = ({z3,24},0). This is witnessed by the mappingzs;) = 75, and
¢(x4) = s2, which satisfies the conditions M1 to M4 (for M4, considgiX} ,>1 )} € g(s2) where
(XL,.2L) = Fy; y = x4 is not free in{as, x4}, but in X!, = {z4}). The same assignment is also
{F4}-fulfilling; to see this, simply seb(z4) = sa.

Intuitively, for a knotk = (r, .S) from K, ap-fulfilling assignmenty witnesses the existence of a rooted
prematch forp within depthd + 1 in an arbitraryZ € T (k), provided that, for eachk € S, the f-subqueries
in g(s) have rooted prematches in the subtigeof Z rooted ats. Conversely, ifZ =%t p for someZ,
the assignmeny that assigns to each < S the set of( X, ) that are entailed &f; is p-fulfilling. More
precisely, we have:

Lemma 2. Letk = (r, S) be a knot inK and letp C F. Further, letZ € T(k) and letg be an assignment
such that( X, X)) € g(s) iff Z, = (X, %), for all s € S. ThenZ 4+1 piff g is p-fuffilling.

Proof. First we show {). If g is p-fulfilling, by assumption there is somi&, = (Xy,>y) € p and a
mappinge that satisfy M1 to M4 above. In particular, for eacke S, there exists some set

{(X5, 20, - (XL BT} C g(s)
as described by M4. For each of thége= (X!, %%), Z, =¢ (X!, %) holds, so there is a rooted prematch
7t for F¥in Z,.
We construct a rooted prematch forin Z, by combiningé and the differentr. The new mapping
7 Xo — AT is defined as follows:

r(z) = {root(I) if o(z) =r,

v - 7i(z) if x € X! for somes andi

s

(recall thatb? is the unique node of at depth 1 corresponding t). Since{r € X | ¢(z) = s} =
U1gigm(X§)v m is well defined and total. It only remains to show thdat a rooted prematch fafy in Z.
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1. Consider anyd(z) € ¢. If z € X! for somes andi, thenr!(x) € AT becauser’ is a rooted pre-
match, and hence(r) € AZ. Otherwiseg(x) = r and then M1 impliesA € r androot(Z) € AZ.
Hence RP1 holds.

2. To show RP2, consider a pairy € X, such thatR(z,y) € ¢. The following cases are possible:

e If z € X! for somes, theny € X! (due to the closure properties of the S&). Sincer’ is a
rooted prematchy’(y) is an R-successor of(z) in Z,, and hencer(y) is an R-successor of
m(x)inZ.

e If ¢(x) = r, then by M2 we have)(y) = s for somes = (o, 3) € S. Also, by M4,y € X!
for somei and, asr ¢ X', we haveR € back(X!,y), and by the last item of M4, there is some
T € a such thatl’ C* R and, additionally,l” € %i(y) whenever is free inX:. Sincer' is a
rooted prematch foF?! in Zy, it satisfies RP3 and RP4. This implies that eithgy) is the root
of Z,, ory is free in X’. In the former cases(y) is an R-successor of-(x) as desired. In the
latter case7’ € X% (y) and~(y) is aT-successor of the root a; by RP4, which also implies
thatn(y) is an R-successor of ().

3. RP3 follows directly from M3.

4. To show RP4, consider agphat is free inX, and an arbitrary? € >(y). There are two cases:

o If ¢(y) = r, thent(y) = root(Z) and RP4 holds.

e If y € X! for somes andi, then by the second item of M4, we haiec « and either i} y
is open but not free i¢, or (i) R € X%(y). Sincer! is a rooted prematch faf?, it satisfies
Definition 12. In casei}, RP3 implies thatr (y) is the root ofZ,, and hence afk-successor of
root(Z) in Z as desired. In casé), RP4 implies thatr’ (y) is either the root of ; as above, or
an R-successor of it. Af € «, again in both cases! (y) is an R-successor ofoot(Z) in Z as
desired.

This shows thatr is a rooted prematch fafy and henc& = p. Furthermore, since for eache X
the length ofr(z) is 0 if ¢(z) = r andn,(z) + 1 otherwise, and the length af,(z) is bounded byl, we
haveZ =4+1 p.

Now, to show (), we assum@ =1 p, and thatg is an assignment withX,X) € ¢(s) for each
(X,¥) € Fand eachs € S such thatZ, =¢ (X, X). To see thay is p-fulfilling, we start by observing that,
by assumption, there is(&’, 3) € p and a rooted prematehfor (X, 3) in Z. For eachs € S, let X contain
all variablesz € X such thatr(x) is in the treeZ,. We partition X into sets of variablest!, ... , X™
that are connected ip We define a functiort? that maps each freg € X' to a set of transitive roles as
follows: if 7(y) is the root ofZ,, thenXi(y) = RT(K). OtherwiseXi(y) = {R € R*(K) | 7(y) is an
R-successor of the root df, }. Clearly, eachX? is closed under the rules (a.i) and (a.ii) of Definition 11.
Hence, to see that ea¢iX?, ¥%) is an f-subquery, it suffices to observe that, sinds a rooted prematch,
7(y) is anR-successor ofoot(Z) for eachR € back(X!, y), and hence condition (b) also holds.

It is also easy to see that, for eachnd each, Z, =% (X, %) (simply restrictr to the corresponding
variables to obtain a rooted prematctZi). So, by our assumption abogt(X:, %) € g(s).

Now we can define a mapping : X — {r} U S that witnesses that is p-fulfilling as ¢(x) = r if
w(z) is the root ofZ, and¢(x) = s if z € X,. Itis straightforward to verify thap satisfies M1 to M3 in
Definition 17. For M4, we can use for eaghe S the (X!, %!), ..., (X7, £™) defined above, since they
are ing(s). Then the first item is trivial; the other two can be verified@®pws:
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e Consider anyy € X! that is free inX, and anyR € X(y). Sincer is a rooted prematch and
7(y) # root(Z), by RP4,r(y) is an R-successor ofoot(Z). This implies that, ifs = («, §), R € «
and eitherr(y) = b or n(y) is an R-successor obZ. If y is also free inX! then, in both cases,
R € Y (y) by construction of:%.

e Consider any € X! that is open inX?, and anRk € back(X?,y) such thatR(x,y) € q. Sincer is a
rooted prematch and ¢ X, either (a)r(z) = root(Z) or (b)x ¢ X. In case (a), by RPZ(y) is a
T-successor ofoot(Z). In case (b)y is open inX and, moreover, free iX (asy open but not free
would imply 7(y) = root(Z), contradictingy € X;). Hence, there is sonfE C* R with T' € X(y)
and, by RP4, we also havgy) a T-successor ofoot(Z). In both cases (a) and (b), it thus follows
T € a, wheres = (a, 3). It also follows that either-(y) = b7, or 7 (y) is aT-successor off andT
is transitive. Ify is free in X, then by construction in both cas&sc X%. O

The step fromrQ? to KQ?*! computes the f-subquerigsfor which ther-hits of TQ? are p-fulfilling.

Theorem 2. Suppose€rQ is a d-complete tg-tablep C F is a disjunctive f-subquery, and= (r,S) is a
knot in K. Furthermore, let”' be the set of assignments fothat map eachia, 5) € S to a s-hit of TQ.
Thenk =941 piff every assignment € C is p-fuffilling.

Proof. (—) Supposek ="' p. Consider an arbitrary assignment= C. By assumption, for each =
(o, B) € S, g(s) is ap-hit of TQ. Hence, by Lemma 1, there is a trég € <(3) that satisfies exactly
the f-subqueries ig(s). LetZ € (k) be the tree that coincides with all theEg AsZ = p, then by
Lemma 2,4 is p-fulfilling.

(«<-). Now assume that eagh € C'is p-fulfilling, and consider an arbitrar§ € ¥(k). For each
s = (a, B) € S, letF, be the set of all f-subquerieg such thatZ, = F, and letg’ be the assignment
such thaty’(s) = F, for all s € S. Then,Fs N p’ # () must hold for eacl{r, p) € TQ such thatr = g;
hence, there exists songehit h of TQ such thath, C F,. By assumption, there exists somes C such
thatg(s) = hs forall s € S. As g is p-fulfilling and ¢’ containsg, alsog’ is p-fulfilling. Thus by Lemma 2,
T =1 p. Hencek =71 p. O

Example 7. Reconsider the knot; = (75, {s1,s2}) in Figure 2, wheres; = ({T'},74) andsy =
({P,T},7a.5.c)}), and the tg-tabld Q® in Example 5. As fors, the singler-hit of TQ" is ¢ (by mini-
mality, as there is no entry fary in TQ"), and fors,, the singler g c-hit of TQis {F4, F5}. Hence, the
set of assignments' consists ofy whereg(s1) = () andg(s2) = {Fy, F5}. Since we know from Example
6 thatg is { Fy }-fulfilling and {F}-fulfilling, it follows that k; =! p for every disjunctive f-subquery
that includes eitheF or Fi (or both); in particulark;, =' {F;} andk; =' {Fg}, and thugky, {F,}) and
(ky, {Fs}) are included irkKQ'.

So far, we have only considered singleton disjunctive fgsidies in tg- and kg-tables, but not always
complete such tables can be derived where only singletoibdtseries occur. For example, if we continue
the computation above, we would eventually compute a 2-tetag-tableT Q? such that each of itsy ¢ -
hits contains eitheFsz X < or F», and one can infer that =3 {Fy, F»} although neithek; =3 {F,} nor
ky ’:3 {FQ} holds.

The algorithm based on the Theorenc@mpute_TQ, is shown in Figure 6. Using the two algorithms
presented so far, we can computé-aompleteTQ for anyd > 0. A 0-complete tg-tablérQ" can be
constructed as described above. Due to monotonicity, weobtain one TQ that is complete for any
d € N, the computation reaches a fixpoint. And in fact, this happeithin finitely many steps.
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Algorithm 3: KQ_from_TQ
Data: ad-complete tg-tabld Q
Result ad+1-complete kg-tabl&Q
begin
R :={;
forall k € K do
C:=0;
Add to C eachg : S — 2F such that for eacho, 3) € S, g((«, 8)) is aB-hit of TQ;
forall p C Fdo
L if eachg € C'is p-fulfilling then

L R:=RU{(k.p)};

r(;[urn R
end

Figure 6: From type-query tables to knot-query tables (ferknot set’ and the query)).

Proposition 5. For each typer, if 7 = p, then there exists somaec N such thatr =7 p.

Proof. To give a boundi, we construct a tree of interpretations which capturesspafrtrees in¥(7) that
are relevant for the mappings pf For an integer > 0, letZ,, be the restriction of a tree-shap&dip to
depthn. Define a tred” = (V, E) where

(i) the vertex setid” = {7, | Z € T(7) An > 0}, and
(i) the child relation isE = {(Z1,,, Z1n+1) | Z € T(1) An > 0}.

Intuitively, each pair inE represents an expansion of the levels 0, 1,2.— 1 of Z by another level using
the knots inK. Hence each path i corresponds to an interpretation@ir). Observe thaf’ is finitely
branching. Consider now the sBtof all nodesZ;,, € V such thatZ;, = p andZ;,—; [~ p (the latter in
case wherev > 0). As T [= p, by construction ofl” each path in it contains some node frdm Let 7’
result fromT" by removing all successors of nodes/m SinceT” does not have infinite branches and is
finitely branching, by Konig’'s Lemma” is finite. Hence for eaci € ¥(7) the match forp occurs within
finite depthd, whered is the length of the longest branch. O

Naturally, the question is whicthiwitnesses = p for sure. As the complexity analysis of our algorithm
will reveal (see Section 6), a number double exponentidhénsize of the query and the knowledge base is
sufficient.

5.3 Query Entailment over full KBs

Assume an arbitrary ABoX. We now show how to use the knot 96tand a complete type-query table to
answer queries over the full knowledge b&Se-= (7, A). The underlying principle is the same as above,
but we need some technical machinery. Roughly speakingid#eeis to reduce answeringover K to
answeringg over a set of ABoxes. To this end, we construct theesgf.A, TQ) which contains ABoxes
obtained by expanding completions.dfwith one layer of knots (resulting, intuitively, in a foresitdepth
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Algorithm 4 compute TQ
Result a complete tg-tablé Q
begin
Construct @-complete tg-tabldQ® for K andg;
d=0;
repeat
KQ! := KQ_from_TQ(TQ?);
TQH! .= TQ_from_KQ(KQ™1);
d=d+1;
until TQ?! £ TQ?;

return R
end

Figure 7. Computing a complete type-query table (for thet lsed/ and the query)).

1), and then attaching to each leaf ABoxes representindpdiseries froml Q. The answer tg over K is
then given by the tuples that belong to the answer @fer A’ for every A’ € exp(A, TQ).
To query ABoxes, we define the following:

Definition 18 (querying ABoxes) Given any ABoxA’, ans(q, .A’) consists of individual tupleg such that
¢ € ans(q, A') iff ¢ € ans(q,Z), whereZ is the interpretation such that:

(@) AT =1(A'),
(b) for eacha € I(A’), we haven = a,
(c) for each atomic4, o € AL iff a: A € A, and
(d) for each roler, (a%,b?) € RTiff {a,b) : R€ A
The interpretatior? represents4’.
We describe howexp (A, TQ) is constructed, and the first step is to represent f-subegias ABoxes.

Definition 19. Given an individualb and an f-subquery” = (X,X) € F, let abox(b, F') be an ABox
consisting of:

(@) b : C for each open variable € X andC(z) € g.

(b) bp, : C for each closed (i.e., non-open) variable X andC(x) € g.

(c) (b,bry) : R for each pair of an open € X and closed; € X with R(xz,y) € q.
(d) (br,bry) : R for each pair of closed variablasy € X with R(z,y) € q.

Note thatabox(b, F') does not depend ol in F' = (X,3); indeed,X only serves for the back-
propagation of subqueries which does not play a role herendWemake one step further and construct
an ABox using a knot and an assignment, where the queriea giv¢he latter induce a set of ABoxes as
above.
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Definition 20. Given an individuala, a knotk = (r,S) and an assignment for k, let abox(a, k, g) =
A U Ay, where:

(a) The ABoxA; consists of:

() a: C foreachC € r;
(i) (a,af?) : Rforeachs = (a,3) in S andR € a;
(iii) a9 : C for eachs = (a, 3) in S andC € 3;

(b) The ABoxA; is defined asts = U, s Upcy(s) abox(al?, F).

Before we present the algorithm, we look at the corresparelbetween constructed ABoxes and tree-
shaped interpretations generated by knots.

Definition 21. Given a knotk and an assignment for £ = (7, 5), we say an interpretatiod € T (k)
representst and g, if for eache € AT at depth 1, it holds thafF € F | Z|e = F'} = g(s) wheree = bt
(the unigue element at depth 1 identified by the leaf S of k).

Informally, the above means that if we look at the subtreg¢embat a child of the root df, then the set of
gueries for which it has a prematch is exactly the one givetihbyassignment.
A straightforward application of Lemma 1 yields the followi

Proposition 6. Suppose: = (r,.S) is a knot inK andg is an assignment fat such thatg(a, 3) is a 5-hit
of a complete tg-tabl@ Q for each(«, 3) € S. Then som& € T (k) exists that representsandg.

Intuitively, if Z € T(k) representé andg, thenabox(a, k, g) can be viewed as “compact” structure that
is equivalent t&Z w.r.t. query prematches. We are now ready to define the ABparsions.

Definition 22 (ABox expansions) Given a complete tg-tabl€éQ, aTQ-expansiorof A is any ABox

A =AU | A,
a€I(A)

where A, € comp(A) and, for each individuat € I(A), A, = abox(a, k4, ga) for somek, = (r,S) in K
with root typeA.(a) and assignmeny, for k, such thaty,(«, ) is ag-hit of TQ for each(a, 3) € S. We
denote withexp(.A, TQ) the set of allT Q-expansions of4.

Now we can formally state the main result of this section,clitshows that we can reduce CQ answering
over K to CQ answering over expanded ABoxes.

Theorem 3(Main result) If TQ is a complete tg-table, then

ans(q,K) = m ans(q, A").
A’cexp(A,TQ)

Proof. “—". Supposec € ans(q, K), whereé = (¢1,...,¢,), and consider anyl’ € exp(A, TQ). By

definition, A" = A U U,er(a) Aa, Where A, € comp(A) and, for each individuak € I(A), A, =

abox(a, k4, g,) for somek, = (r,S) in K with root type.A.(a), and some assignment for k, such that
ga(av, B) is ap-hit of TQ for each(a, B) € S.



INFSYS RR 1843-09-03 21

Algorithm 5: computeAnswers

Data: KB K = (7, .A), CQq

Result ans(g, )

begin
Compute aC';{—complete knot sek for 7
Compute a complete tg-tableQ for ¢ from K;
Compute the seixp(A, TQ) of TQ-expansions of the ABox;
Let R := () ycexp(aTq) 2NS(q; A);

return R
end

Figure 8: Computing the answers to the quegver the KBK.

We simply “expand”A, to a full forest-bas@ € §x (.A) for K. We do this by taking an interpretatidp
representing4. and, for each individuat, attaching tau” a treeZ, that represents, andg,. By assump-
tion, ¢ has some prematehin Z such thatc?, ..., cZ) = (n(#),...,7(Z,)), whereZ = (z1,...,z,) are
the answer variables gf Consider a decomposition afinto several functions. Lety be the restriction of
« to variables mapped to (the interpretation of) individu&lsrthermore, for each elemenat depth 1 iriZ,
i.e., a child of a root node, let. be the restriction ofr to elements that maps in the subtree @frooted at
e. Clearly, . induces a (possibly empty) set of f-subqueligs 2" which all have a rooted prematch in the
subtree off rooted ate. Assumee is insideZ,. SinceZ, represents, andg,, forall F' = (X,X) € Qin
theabox(e, F') we will have a prematch for the subqueryghduced byX . By composingry with the pre-
matches for the latter subqueriesgofve can obtain a premateti for ¢ in the interpretatior?’ representing
A'suchthatc?’', ... L'y = (z/(&}),..., 7' (Z,)). Henceg € ans(q, A').

“«". Suppose” € ans(q, A’) for eachA’ € exp(A, TQ). LetZ be an arbitrary forest-base f&ir. Due
to Cz—completeness of(, we haveZ € §x(A), i.e.,Z can be constructed from some completidp of
A and from knots inK. For each individuak € I(A), letk, = (r,,S,) be the knot at the root of the
subtree rooted at’. Consider an assignmegl for k, such that for eack = («a, 3) in Sy, g, (s) is the set
of all f-subqueries that have a rooted prematch in the seluf& rooted ate,, wheree, is the child ofa”
corresponding to the leafof k,. Clearly, the subtree df rooted ate, is a 5-tree. Due to completeness
of TQ, there exists somg-hit 4 of TQ such that, C ¢(s). Thus we can define an assignmeptfor &,
such that for each = (a, 3) in Sg, g4(s) is as-hit of TQ. Now consider an expansiof’ € exp(A, TQ)
built from 4. and ABoxesabox(a, k4, g,) for each individuak wherek, andg, are as described. Then the
modelZ’ that representsl’ coincides withZ on all individualsa € I(A) and by Proposition 6, the subtree
of Z' rooted ata represents, andg,. As ¢ € ans(q, A’), there exists a premateH for ¢ in Z’ such that
(. Yy = (x(&1),..., 7 (Zn)). Asga(s) C g.(s) holds for alla € I(.A) ands € S, it follows thatg
has a prematch in Z such that'c?, ..., cZ) = (n(Z1),...,m(Zn)). O

6 Computational Complexity

We analyze now the complexity of our algorithm for CQ answgiverSH knowledge bases. Recall that
the method consists of three main steps: (1) computifig @omplete knot set for an input KB = (7', A),
(2) computing a complete tg-tableQ for the computed knot sét’ and an input CQy, and (3) collecting
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answers tgy by traversingT Q-expansions of4. The method is worst-case optimal {8f+, and, in fact,
also forALCH. In order to see this, we first state the following theorem.

Theorem 4. LetK = (7, .A) be anSH KB, letq be a conjunctive query, and [Btbe the set of f-subqueries
of ¢. Then, given a tupl€ of individuals, deciding whethef € ans(q, K) is feasible in time exponential in
K[ + lq| + [F.

Proof. We will analyze the three steps of the procedure. To this letd;= |clos(7")|, and observe that the
number of distinct types for 7 is bounded bym := 2¢, while the number of distinct knots f@r is bounded
by km = 2¢.(2¢.2¢)¢ = 2¢+2¢*  Hence, the number of distinct types resp. knots is singb@rential in||.

For step 1, observe that(ai—complete knot sef’ can be obtained in time exponential |iK| via
the elimination algorithm from Figure 3. Indeed, constingtthe setk in the first step is feasible in time
exponential if7|. In the subsequent “fill-up” stage that clog€sthe procedure may add only exponentially
many knots, while in the final “clean-up” stage each remowvaat kannot be introduced again.

For the step 2, we make sure that using the procedure fromd=igwe can compute a complete type-
query tableT Q for IC andgq in time exponential ins := |KC| + |¢| + |F|. This follows from the next observa-
tions:

i) Ateach iteration, by construction, the algorithm congsuad+1-complete tg-tabld Q?*! (via ad+1-
complete kg-tablekQ?*!) from a d-complete tg-tableTQ?. Furthermore, the computed tables are
“full” in the sense thatll entailed disjunctive f-subqueries queries are includethéntables. More
precisely, for eachl, we have(r, p) € TQ? iff 7 |=4 p. Sincer =4 p impliesT =41 p, we get that
the computation is monotonic, i.e., each compuf€f ! includesTQ?.

i) The largest possible tg-table f6F andq is clos(7) x 2%, which is clearly of size exponential in
Hence, and given the monotonicity, the algorithm termimnatéhin a number of steps that is exponen-
tial in s.

iiiy Each iteration, which consists of a call KQ_from_TQ and then a call td Q_from_KQ, takes time at
most exponential is. For the call toKQ_from_TQ, pairsk, p of knotsk and disjunctive f-subqueries
p are traversed. The number of such pairs is exponential iRurthermore, for each paik, p) its
inclusion in the resulting table is decided by checking tbaditions prescribed in Theorem 1, and
this takes time at most exponential én The call toTQ_from_KQ is analogous: there are at most
exponentially (ins) many pairs(r, p) of types and disjunctive f-subqueries, and the inclusish &
the conditions in Theorem 2 is also feasible in exponeritiad t

For the final step 3, which is based on Theorem 3, note thatuhebar of TQ-expansion of4 is the
number of ways of choosing a completigh. of A, expandingA. for each individuak of .A with a knot
k and then choosing a set of f-subqueries for each leaf of thdtieg forest (yielding an assignmeqy;
this is again bounded by an exponentialsinFinally, checking whethef € ans(q,.A’) is true for a given
expansiond’ € exp(A, TQ) is also feasible in time exponential n O

We can now easily infer the upper bound for the query ansgeayinblem inSH. Indeed, for a given
CQ ¢, the size of the seF of f-forward subqueries of is bounded by2V(@), which is exponential ing|.
Therefore, by the above theorem, the procedure can be rimérdbuble exponential in the size of the input
KB K and the query;. This is worst-case optimal due to tRExPTIME-hardness of the problem, which
was shown in [10].

2In fact, only the subset minimal subqueries would need tadred. However, the worst case complexity remains unchénge
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Theorem 5. Given a KBK in SH, a CQq and a tuple of individualg, deciding whethef € ans(q, K) is
2EXPTIME-complete.

We finally note that computingns(/C, ¢) for an SH KB K and a query; is also feasible in double
exponential inC| + |¢|. This is because the number of candidate answer tapgesnly exponential ink|.

6.1 Syntactic Restrictions

We discuss here some syntactic restrictions to obtainedassCQs for which query answering is feasible
in single exponential time. To this end, it is sufficient tsere that a query can be decomposed into only
polynomially many f-subqueries; the complexity drop felkothen from Theorem 4.

We assume an arbitratyH KB KC, and define next some notions to measure the structural eaitypa
query (w.r.t.K).

Definition 23 (fork degree, non-trivial forks)For any query;, we define
R (z) = {zn | Ri(z,21) € ¢, Ra(z1,22) € q, ..., Rp(zp—1,2n) EqAN > 1},

i.e., R% (z) denotes the set of variables reachable frerim the query graph of; in one or more steps.
Furthermore, leR!(z) = {2} U R (x) and, for any sefX of variables, leR? (X) = |J,.y R%(z) and

RUX) = Upex Ri(@).
A setX C'V(q) is called afork set(of ¢) if the following are true:

(a) for eachr #y € X, it holds thaty ¢ R% (x) andz ¢ R% (y);
(b) the seR{(X), i.e., the closure ok under reachable variables, induces a connected subquery of

(c) there exists no variable € X such that, for somg € V(q), we havey € R% (z) andy € RL(y), i.e.,
none of the variables iX reaches a cycle iq.

Then thefork degree of;, denotedd(q), is defined as the size of the largest fork seg.of
Thenumber of non-trivial forkén a queryq is the number of variables € V(q) satisfying the follow-

ing:
(a) there exist two atomB(z,z) € g andR/(2', x) € g such that: # 2’ and R’ is not simple ink,
(b) there exists ng € V(gq) such thaty € R% (z) andy € R% (y).

Example 8. For the queryy in Example 4,X = {z1,z5} is the only fork set of; which contains more
than one variable; any other such candidate fork set v®leither condition (a) or condition (b). Hence,
fd(q) = 2.

Note that for fork setsX of size larger than one, each variable= X has a common successor with
some other variable € X (in the previous example;; has a common successor witk). Intuitively, the
fork degree ofy tells us how many “incomparable” variables we can pick s¢ they induce a connected
acyclic subquery of;. Given this, we can formulate a syntactic condition engutower complexity of
guery answering.

Theorem 6. If Q is a class of CQs such that for agye O:
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(@) the number of non-trivial forks igis bounded by some constant
(b) fd(q) is bounded by, and
(c) for each pairz,y € V(q), { R | R(z,y) € ¢ A Ris not simple inC}| < ¢,

then the seF of f-subqueries of is polynomial in|g|. Hence, answering a querye Q over the KBK is
feasible in single exponential time fig + |KC|.

Proof. Consider an arbitrary f-subquefyX, ¥) of ¢ € Q. By definition, X induces a connected acyclic
subquery of;. Let M, be the set of alk € X that have no predecessorih i.e., for which there exists no
R(z,x) € qwith z € X. Clearly, M, is a fork set ofy (see Definition 23), and hence by (BY,.| < c. We
get that the number of differedt/,, over all possibleX is bounded byV(q)|¢, and is polynomial irjq|. It

is not hard to see that given two f-subquer{gs,, ;) and (X, ¥5) of ¢ with M,,, = M,, we also have
X1 = X,. Hence, the number of distinéf that can be chosen is bounded|§¥(¢)|¢, and is polynomial in
lql.

We consider the possibilities of choosillg Observe thak is defined only for the free variables &f.
The number of variableg € X that are in free inX is bounded by2-c because of the bounded number of
non-trivial forks ing (condition (a)). For each sugh we havgback(X, y)| < d for some constant because
of the conditions (a) and (c). Hence, the number of choiceEfg) is bounded by{R|R(z,y) € ¢}|¢, and
is thus polynomial irjq|.

The second part of the claim follows then from Theorem 4. O

Note that when computing the fork degree of a query, we dogmaire forksR(z,y), R'(z,y) where
x # 2/ andR, R’ are simple; the variablesandz’ in this case are treated as incomparable. However, such
forks aresimplein the sense that they do not increase the number of distisighdueries because (a.ii) of
Definition 11 enforces that either bathandz’ or neitherz nor 2’ belong to a f-subquery. To deal with this,
we eliminate such forks from the query.

Definition 24 (fork rewriting [23]). For a CQgq, afork rewriting of ¢ is a query obtained from by ex-
haustively applying the following rule: if the query contaiatomsR(x,y) and R'(z’, y) wherex # 2’ and
R, R’ are simple, then replace every occurrence wiith 2/, By fw(q) we denote an arbitrary fork rewriting
of q.

Example 9. Reconsider the query in Example 4 (Figure 4). Fork elimarais applicable taP(x1, x¢),
R(x5,xz6); after that, no further elimination is possible and we héneeresult

fW(Q) = Q(x27 w3)7R(w37 x4)’ A(x4)7C(x4)7B(w5)’C(x5)7T(w57 x2)’P(‘T57 x6),R(x5, w6)7Q(‘T67 x7),C(x7).

Note that fork rewritings of; coincide up to a renaming of variables. We can now state igbtisi
relaxed conditions which diminish the impact of simple ®tk the fork degree.

Theorem 7. Let Q be a class of CQs such that for agye Q:

(@) the number of non-trivial forks ifw(q) is bounded by some constant
(b) fd(fw(q)) is bounded by, and

(c) for each pairz,y € V(q), [{R|R(z,y) € ¢ A Ris not simple inC}| < c.

Then deciding’ € ans(q, K) for a giveng € Q and tuplec, is EXPTIME-complete ing| + |K|.
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Proof. To prove the upper bound, by Theorem 4, it suffices to showtllgahumber of f-subqueries ofis
polynomial in|g|. As argued in the proof of Theorem 6, the conditions (a) ahérisure that the number of
ways to choosé& for an f-subquery X, ) of ¢ is polynomial in|q|.

The number of choices faX is also polynomial irjg|. To see this, for any conjunctive quefydefine
Xy ={X | (X, %) is an f-subquery of'}, and observe that)(| X, | is polynomial inq[, and {i) |X,| =
| Xfw(q)|- The former follows from (b) and Theorem 6 (&8(q)| < |q|). For the latter, note that a rewrite step
in fork rewriting preserves the number of variable setssgatig (a.ii) of Definition 11. More precisely, if
¢" is obtained fromy’ by the rewrite rule in Definition 24, thefit/ | = | X~ | (as easily seen by establishing
a bijection from&, to X;).

The lower bound easily follows from thexBTIME-hardness of satisfiability testing dLC [35]. O

Based on the above theorem we can obtain further query slasswver computational complexity. In
particular, the conditions (a-c) of Theorem 7 are satisfigdtfe class of queries that allow for simple roles
only. Indeed, given such a quegy (a) and (c) are trivially satisfied. For (b), observe thatdny variable
x of fw(q) there are two possibilities. The variableoccurs in a cycle in the query graph ©¥(q), and
hencez is not included in any fork set and does not contribute to thk flegree. Alternativelyy and its
successors induce a subquenywfg) whose graph is a tree. In this ca$e} is the single fork set where
may occur. Thereforew(q) = 1.

Importantly, the above can be generalized to the case wimyeadounded number of aton#¥ z, y),
whereR is non-simple, occur in a query. This is a consequence oféRerasult, for which we use a more
refined query complexity measure.

Definition 25 (counting transitive arcs)For any query;, let¢(q) denote the number of all pairs of variables
x,y € V(q) such that:

(1) ¢ contains some atorR(z, y) whereR is not simple inC,

(2) ¢ contains no atonk’(z,y) whereR’ is simple inkC,

(3) y does not reach a cycle in the query graply dfe., noz € Ri(y) exists such that € R (z), and
(4) some variable € R(y) has more than one predecessog,ine., |{u | R(u,z) € ¢}| > 1.

Note that (3) eliminates pairs of variables that do not nndtiethe fork degree due to cyclicity (see
(b) in Definition 23). Condition (4) refines this, by furthdinginating cases wherB{(y) induces a query
subgraph of that is tree-shaped and disconnected to the remainder gligrg graph of;. We remark that
t(q) can be easily computed.

Proposition 7. For each CQy it holds thatfd(fw(q)) < ¢t(fw(q)) + 1 < t(q) + 1.

The proof of this proposition, which does not give particutesight into the techniques of this section,
is given in Appendix A.

Assume a query and observe that the number of non-trivial forksfwy(q) is < ¢(¢). Indeed, due to
the rewrite rule, for each variableof fw(q) there exists at most one variablesuch that R | R(z,y) € ¢}
contains a simple role. In other words, for each other végial~ x, all roles in{R | R(z,y) € ¢} must be
non-simple. This means thatifis a variable counted in as a non-trivial fork (i.e., satsfige conditions in
Definition 23), then forr there exists at least onesuch that the pait, = is counted int(q) (i.e., z, z satisfy
the conditions in Definition 25). Hence, and given Proposiff, we reshape Theorem 7 as follows.
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Theorem 8. If Q is a class of CQs andis a constant such that for anye Q:

(@) t(q) <c¢,and

(b) for each pairx,y € V(q), |[{ R | R(z,y) € ¢ A Ris not simple inC}| < ¢,

then decidingl € ans(q, K) for a giveng € Q and tupled, is ExpTIME-complete ing| + ||.
Corollary 1. (Full) query answering inALCH is feasible in single exponential time in the size of thetnpu

From the EXPTIME-hardness of consistency testingACC [35], it follows that the presented query
answering procedure is also worst-case optimal4dCH.

6.2 Data Complexity and Encoding into Datalog

The query answering procedure presented here can be edjsibtel to be worst-case optimal in the data
complexity. We analyze next the complexity of verifyige ans(q, (7, .A)) where the terminolog¢” and
the queryg are fixed, and only the ABoxX with assertions over roles and atomic concepts is considese
an input. ThecoNP-hardness of the problem is well-known (see, e.g., [5hiore details), and we argue
here that the method provides a tigfttNP upper bound.

Proposition 8. Algorithm computeAnswers, adapted to a nondeterministic version, runsadoNP data
complexity.

Proof. Fix a terminology7 and a query;. As argued already, for a sét of types for7 we can obtain a
Q-complete knot sek for 7 via the algorithm in Figure 3. To be capable of dealing with possible input
ABox A, we set() to the set of all possible types f@r, and compute a complete type-quér§ for K and
q. Note the difference from the algorithm in Figure 8 whereydhk restricted se(tﬁ of types occurring in
completions of an input ABox is considered. In other words, we compute a knotfSeind a tg-tabl& Q
that are good for any possible input ABgk

Given K andTQ), the result follows from the fact that decidirge ans(q, (7, .A)) is feasible in non-
deterministic polynomial time in the size pfl|. Indeed, this can be done in a guess-and-check manner as
follows:

e Build nondeterministically an expansio#’ € exp(A, TQ). More precisely, guess an ABox com-
pletion A, and, for each individuak € I(.A), addabox(a, k,, g,) according to a nondeterministic
choice of some knot, = (r,.S) from K with root type.4.(a), and some proper assignmeptfor
k., w.r.t. TQ (see Definition 22). Observe that sinfeandq are fixed, such an expansiotf can be
nondeterministically computed in polynomial time|id| (A, has polynomial size then, and checking
the conditions (a)-(g) of Definition 7 is simplebox(a, k4, g,) has size bound by a constant, and only
constantly many differentbox(a, kq, g,) exist).

o Verify & ¢ ans(q, A’). There ardI(.4’)|'V(@! different candidate query mappingsfor ¢ in A’. As
|V (q)|is fixed andI(A")| is linear in|.A|, the number of such candidates is polynomialdn Testing
whetherr witnesses’ € ans(q, A’) is also polynomial irl.A|. Hence, the verification step is feasible
in polynomial time in|.A|. O
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We get an analogousoNP result for answering varying CQs of small size (bounded bgnstant) over
a knowledge bas& with static (fixed) TBox, if its compilation into a suitablg-complete knotK set is
available; this may be due to off-line pre-compilation, @cachingK after the first query. In this setting,
the tg-tableTQ is constructible in polynomial time (only constantly mamjpgueries exist), and deciding
whetheré ¢ ans(q, (7, .A)) is still feasible in NP. In fact, if also the ABox is fixed, thesk step is feasible
in polynomial time (only constantly many expansiaAsof A and constantly many candidate mappings of
V(q) into eachA’ exist, which can be easily traversed).

The guess-and-check procedure in the proof of Propositioan8easily be simulated in a disjunctive
Datalog program [7], which consist of rules of the form

AV VA, —B,...,B, m-+n>0 (1)

where theA; and B; are function-free first-order atoms and each variable ooguin A; also occurs in
someB;. The semantics of such a prograis given by the minimal (w.r.tC) sets of ground (variable-
free) atoms that are closed under the rule®dtalled minimal models or answer sets); a ground atbis
a cautious consequence Bf if A occurs in all answer sets éf.

Using disjunctive rules, it is possible to generate the exjums.A’ of an input ABox.4 (with as-
sertions over roles and atomic concepts only) in the anse#sr af a ground progran?(.A), such that
ans(q, (7,.A)) corresponds to the set of cautious consequep¢@sof P(A). In more detail, viewing
concepts and roles as predicates, and thus assewiofis (a,b): R as atomsC(a), R(a,b), we can
“guess” for each possible ato6i(a) resp.R(a,b) with aruleC(a) vV C(a) « resp.R(a,b) V R(a,b) «—,
whereC' and R are fresh predicates, whether the atom belongs to an ABoxpletion A. of A, and
ensure with rules of form (1) that for the so guessédthe conditions (a)-(g) of Definition 7 are satis-
fied. Furthermore, for each individual € I(A), we can guess somé, = abox(a, k4, gs) USING & rule
abox(a, k1,g1) V -+ - V abox(a, ky,, gn,) < , Where theabox(a, k;, g;) are all possible choices far (here
k andg are viewed as constant symbols). Factsdioox(a, k, g) according to Definitions 20 and 19 are
generated with rule€’(a) «— abox(a,k,g), R(a,a¥) — abox(a, k,g) etc. Finally, for each possible
mappingr of V(q) into I(A’), the ruleq(n(z1),...,7(xy)) < Pi(th7),..., Pn(¥nmm) is added, given
thatg = {P1(#1), ..., Pn(ym)} andg has answer variableg= (x4, ..., z,); hereg;w denotes the substi-
tution of (x;) for z; in the argumentg; of P, forj =1,...,n.

Overall, the progranP(.A) is constructible in polynomial time fromi, and since cautious inference
from ground disjunctive Datalog programsaeNP-complete, this reduction is also worst-case optimal.

It is possible to lift this encoding to a fixed non-ground paog PqT such that, for each input ABox

A, ans(q, A) corresponds to the cautious consequeng¢esof PqT U AU N4, whereN 4 consists of facts

nameﬁ’g(a, aﬁ’g) andnamex ,(a,ax ) that introduce the new individuatg? anday . in the expansion

A’ (cf. Definitions 20 and 19) in the program; note thgj has size linear ifil(.A)| and is easily constructed
from A. Again, this is worst-case optimal.

We finally note that instead of disjunction, also (unstradifi negation may be used for the encoding.
Thus, a range of reasoning engines for disjunctive/urig@tDatalog (e.g., DLV, smodels, clasp) can be
used for implementation.

7 Discussion and Conclusion

The novel algorithm for CQ answering over knowledge base$Hnhwhich we presented above has some
nice features; it is worst case optimal 18#{ in general but also for important fragments includidgC
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and ALCH, both with respect to the size &f plus ¢ (the combined complexity) and the size of the ABox
of IC (the data complexity). Noticeably, the algorithm handl€dsGvith distinguished (output) variables
directly and makes a customary grounding step unnecessavipich an input query is reduced to (possibly
exponentially many) Boolean queries, one for each possiltiieut tuplec. The underlying knot technique
is different from previous query answering approaches getampletely unrelated.

7.1 Related Work

Our knot technique can be seen as a special instance of tiéxrvagin mosaic method in Modal Logic
(cf. [27, 26]) and is related to type elimination [32]. Massiare small “blocks” for building models that
involve a bounded number of elements, and possibly infinibelets are represented by finite sets of such
blocks; types are roughly speaking “small mosaics” thablver at most two elements. The mosaic and
type technigues have been applied in various contextajdimgy in DLs, cf. [24, 25, 34]. However, these
works targeted deciding satisfiability of a knowledge base, existence of some model. We instead have
applied and extended the mosaic technique to the more eng@roblem of CQ answering, which implicitly
requires considering all models, or to find a suitable caombelel of the query. While in principle, one
could use types as well, we feel that knots are better sulitd types because of their more comprehensive
representation of the local model structure.

Many different approaches for CQ answering have been desdlthat adapt known techniques for
standard reasoning, including reduction to concept salidify (e.g., rolling up [17, 13]), resolution-based
techniques [18], modified tableaux [21, 29], and tree-aatanbased algorithms [2, 3].

In the rolling up technique [17, 13, 16], CQ answering is @Ulto deciding concept satisfiability by
compiling the query into the knowledge base, using idea§loRoughly, in order to show [~ ¢, one con-
siders all possible ways in which a GZan be mapped to a canonical modek®fi.e., all homomorphisms
7 of ¢ into a tree- resp. forest-shaped model. Each such trestior@opingr is represented as a DL concept
C, possibly in an extensiod’ of the DL £ considered. Finally, one checks wheth&r=C U {C,; C L |
7} is satisfiable. Here, important aspects are ktfatan be exponentially larger tha®) that the construction
of C; might not be easy, and that might have higher complexity thafi. For answering CQs and unions
thereof in the DLSHZ Q, Glimm et al. [13, 16] applied rolling up in combination widxtensive query
rewriting, in order to arrive at a reduction to satisfialgilih the DL SHZQ"', which extendsSHZ Q with
role intersection. Satisfiability a$7Z Q"' KBs is then decided using suitable tree automata. Ovehali; t
algorithm runs in double exponential time and is thus woaste optimal. However, since it behaves like
traditional algorithms in absence of transitive rolessihbt single exponential fadLCH. Lutz [22, 23]
showed that a single exponential time bound is obtainablel#xCH using the rolling up and rewriting ap-
proach. We remark that with a similar approach as in [13, Ginm et al. [14, 15] showed that answering
CQs and unions thereof in the DEHOQ is feasible in double exponential time (again this is waeste
optimal).

The resolution-based method by Hustadt et al. [19] is permapst closely related to ours. Similar as
in our approach, their method first “compiles” the knowledgese and the query into a special form, and
then exploits the possibility to answer the query by meana disjunctive Datalog program. However,
this is done on different grounds: the knot technique is mtidsretic in nature, while Hustadt et al.’s
method is proof-theoretic, cleverly exploiting resolutiand superposition machinery. Furthermore, the
knot technique handles transitive roles in the query, whrehnot allowed in [19].

The tableaux method for satisfiability testing has beenneldd to CQ answering in [21, 29], with the
aim to provekC = ¢ by showing that there is no countermodel to the query, i@mndel of/C in which ¢
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is false. To this end, the tableaux blocking conditions aneegalized to take the quegyinto account and
depend on its size. A major drawback of the tableaux methtthis like for the resolution-based approach,
handling transitive roles in the query seems to be diffiduls not clear how to adapt the algorithms in [29],
which work for queries with non-transitive roles in the DE#Z Q, SHOQ, andSHOZ. Furthermore, the
algorithms have nondeterministic triple exponential tooenplexity in general, which is far from worst-case
optimal.

Finally, the tree-automata based approach to CQ answeZir}] pxploits the tree- resp. forest-shaped
model property of suitable DLs to solve the problem by conmgrautomata for subproblems. It has been
used to show that CQ answering for expressive DLs bey$Hd O is feasible in double exponential time.
To this end, forest-shaped interpretationg(oére encoded into trees, and automata for recognizing models
of K and ofq are combined using intersection and complementation tipesa Like the knots approach,
tree-automata operate on small local parts of a model. Hexvexhile knots preserve the relational struc-
ture of these parts and can be extended to the needs of quamgiang, in tree-automata—which operate
merely on strings—this structure is lost, and coding to thtemata alphabet and state set is necessary. This
in particular makes it hard to single out the impact of défercomponents of andgq in the overall com-
plexity, e.g. to derive results on data complexity. Fumhere, the algorithms in [2, 3] do not run in single
exponential time fordLCH.

For further comparison and discussion, see [11, 9].

7.2 Extensions and Further Work

The knot method we presented is extendible to richer DLshey3<. Number restrictions can be accom-
modated by adapting the knot representation of knowledgeshaTo this end, knotg-, S) may be gen-
eralized such tha$ is a multi-set of types from@R(7) x clos(7") that obeys numerical constraints. These
constraints have to be suitably respected when composioig.kwhile no major change to the machinery
of subqueries is necessary.

Inverse roles, which allow to relate an object to its pareidtlaad to upward arcs in tree-shaped models,
can also be accommodated. To this end, the method of trdiificean be applied to subqueries, which
informally converts a query into ones whose query graphtraeeshaped, by replacing atoms and renaming
variables (see [9] for a detailed description). While thogsl not cause an exponential complexity increase
in case ofSH, it causes one farl LC, leading to a double exponential time algorithm #£C7; by Lutz's
result [22], this is still worst-case optimal.

Also joint number restrictions and inverse roles can be leahldy knots, but their possible interaction
needs care and makes the extension of the technique mobreadva@n the other hand, it is unclear how to
incorporate nominals into knots; the reason is that thesfeskaped model property gets lost.

We remark that [9] discusses a dual approach for CQ answasiing knots: there, knots are associated
with sets of subqueries and an elimination algorithm simdahe one in Figure 3 is used to test the existence
of a model which falsifies each subquery at each knot. This eontrast to the algorithm here, where the
entailed disjunctions of subqueries are computed for eaoh KVhile the dual approach is more compact,
it seems to be less suited to handle CQs with answer variagtdgsencodings to languages like disjunctive
Datalog. Intuitively, this is because one needs to grouadjtrery to separate Boolean queries, one for each
tuple ¢ of individuals forz, to find thosez' where no counterexample to the query can be found.

Finally, knot-shaped mosaics have also been fruitfullyliappfor CQ answering in restricted DLs, eg.
in Horn-SHZ Q [8] where they have been enriched with further structurrimation.

In the light of the results in this and other papers, it appéiaat the knot approach is a useful tool to
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analyze CQ answering in DLs which allows to obtain sharp derify characterizations, both for general
and data complexity.

7.3 Open Issues

Several issues remain for future work. One issue concerpieimentation of the approach and optimization
of the algorithms, which has not been done yet. Another isstlee application and extension of the knot
technique to new DLs, like those in the OWL2 family, as wellaasefinement to fragments &fH and
query classes where the algorithm we presented does ndtopémal bounds. This includes, for example,
the unrestricted case &, for which the best bounds currently known are@NExXPTIME-hardness lower
bound and a 2-EPTIME upper bound [10]. Finally, it would be interesting to extehd current technique
to more expressive queries, such as unions of CQs and goskistential queries, or to queries with regular
role expressions.

A Appendix: Proof of Proposition 7

Proposition 7. For each CQy it holds thatfd(fw(q)) < t(fw(q)) + 1 < t(q) + 1.

Proof. It is easy to verify that(fw(q)) < t(q): a fork elimination step preserves cyclesRfi(y) for
every variabley (but might introduce new ones). Furthermore, it can notaase the number of different
predecessors af, hence, items (3) and (4) of Definition 25 hold fgrif they hold forq. The same holds
for the conjunction of (1) and (2).

Let ¢’ result fromfw(q) by removing all atoms(x, y) wherex reaches a cycle in the query graph of
fw(q), i.e., somez € RT(q) (x) exists such that € RT(q)(z). Note thatfd(q') = fd(fw(q)). Without loss
of generality, we assume thgtcontains a single unary ato@i(z) for each variable: € V(¢').

Sinceq’ is acyclic, we can construgt along a topological sort; < 25 < --- < z,, of its variables, i.e.,
R(z;,z;) € ¢’ impliesj < i, starting fromz; with C(z;) and adding variable; with C'(z;) and all atoms
R(xj,z;) fori > 1.

We show now by induction on > 1 that

fd(q") < t(¢') +1. (2)

Base caseHereq’ = {C(z1)} andfd(¢’) = 1; thus (2) holds fog/'.

Induction StepSuppose we join a variable, with C(x,,) and atomsy (z,,, T ), - - -, Ry (Tn,, , Tn) 1O q
of the assumed form, which yields a quefyof similar form, and letA = {z,,,...,z,,, }. We consider
two cases.

Case 1. Suppose first thet| < 1, i.e., z,, is connected to at most one variablegin Then, clearly
t(¢") = t(¢’) (condition 4 is violated for the pair,,, , z,,) andfd(q”) = fd(¢’), which means that (2) holds
for ¢".

Case 2. Suppose thpt| = m > 1, i.e.,y is connected to multiple distinct variables,, ..., x,,, in
q". In this case,

t(q') + (m—1) <t(q") (3)

holds, as each pair, y in V(¢’) that satisfies the conditions 1-4 fqy’) satisfies them fot(¢”), and at least
m — 1 pairsz,, ;, z,, satisfy them fort(¢”), given that fork elimination is not applicable to aR(x,,,, x),
R (xn;, Tn).
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Let X C V(q”) be a fork set fory” such that X | = fd(¢”). LetX = {Xy,..., X} be the set of all
maximalX; C X (w.r.t. C) that are fork sets fog’. Then forX; # X; € X, the setsRZ’(XZ—) andR? (X;)
are disjoint andJ X = X. Furthermorefk < m must hold: asX; # X; € X must be connected i’ via
y, we haveR? (X;)n RZ"(XJ») = {y}. Onthe other han®R? (X;)NA # 0 ande{”(Xj) N A # (). Hence,
at mostm different X; exist.

Now consider for the query, C ¢’ that contains all atoms from on the variablesRZ'(Xi). ThenX;is
a fork set forg/; hence by the induction hypothesis fgr

| Xi| < fd(q)) < t(q;) + 1.

As each pait;, z; € V(q;) satisfies conditions 1-4 far¢’) if it satisfies them for(¢}), and since theX;
are pairwise disjoint and the querig¢sare pairwise disconnected, we conclude

k

k
X = S0 < S + 1) < ) + k< H) +m.
=1 i=1

Thus using (3),
fd(q¢") = | X| < t(¢') +m < t(¢") + 1,

and the induction statement (2) holds &4t this completes the proof. O
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