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Abstract. Answering conjunctive queries (CQs) has been recognized asan important task for the
widening use of Description Logics (DLs) in a number of applications. The problem has been
studied by many authors, who developed a number of differenttechniques for its solution. We
present a novel method for CQ answering based on knots, whichare schematic subtrees of depth
at most one. The method yields an algorithm for CQ answering in the DLSH which handles CQs
with distinguished (i.e., output) variables in a direct manner. It proceeds by first compiling the
knowledge base into a set of knots, and then constructing a set of simple knowledge bases, which
contain only assertional data, over which a given query is answered. Notably, the knot compilation
can be reused for varying queries and is amenable to an implementation in disjunctive Datalog.
The algorithm works in double exponential time in general but in single exponential time under
various restrictions on the occurrence of transitive rolesin queries, including CQ answering in the
DL ALCH. The results are worst-case optimal, given that CQ answering is 2EXPTIME-complete
for SH and EXPTIME-hard already for the core expressive DLALC. In particular, the result for
ALCH reconfirms Lutz’s result that adding inverse roles toALC causes an exponential jump in
complexity, while adding role hierarchies does not. Furthermore, a nondeterministic version of our
algorithm runs inCONP under data complexity, which is worst-case optimal in this setting as well.
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1 Introduction

In the last years, Description Logics (DLs) have increasingly received attention as a tool for representing
domain models in various application areas. Among these areas are data and information integration, peer-
to-peer data management, ontology-based data access, and the Semantic Web. The widening use of DLs
also raised the need for reasoning services beyond traditional services like satisfiability testing, determining
subsumption relationships, and instance checking. In particular, answering conjunctive queries (CQs) over
knowledge bases in DLs has been recognized as a primary such task. Indeed, CQs allow to join pieces of
information and are at the heart of database query languageslike SQL; for example, if a relationemp(e, d)
stores data about employeese that work in departmentsd, and a relationdept(d, a) stores data about de-
partmentsd and their addressesa, then the CQemp(x, y), dept (y, z) joins the information in the relations
and yields for each employeex her work addressz. Thus, supporting CQs over DL knowledge bases is, for
instance, important for the use of DLs as a formalism for richdata models.

Driven by this need, the problem has been studied in many papers, including [29, 19, 13, 14, 22, 6, 5,
2, 20, 28, 33], and a number of results have been derived for a range of DLs. In DLs that extend the core
expressive DLALC, like SHIQ andSRIQ (which correspond to the Web Ontology Language standard
of the W3C) andDLR, answering CQs is at least EXPTIME-hard as it subsumes the satisfiability problem
of ALC knowledge bases, which is well-known to be EXPTIME-complete. However, the problem is harder
for many DLs; e.g., it is 2EXPTIME-hard for all DLs containingALCI [22] or SH [10]. On the other
hand, 2EXPTIME upper bounds are known for these logics and the embracing DLSHIQ, cf. [6, 2, 19, 13],
which are thus tight. However, for other extensions ofALC, like ALCH andALCHQ, answering CQs is
still feasible in single exponential time [22, 23, 31],1 and thus the problem is not more expensive than the
satisfiability problem in these logics.

To design CQ answering algorithms in expressive DLs, various approaches have been used; they range
from incorporating the query into the knowledge base [6, 37,13, 14] over adapting tableaux procedures
[21, 29, 28, 33] and applying resolution-based techniques [19] to automata-based algorithms [2, 20]. In
this paper, we consider a different method, which is based onthe knot technique. Knots are schematic
trees of depth at most one that occur in the forest-shaped models of a DL knowledge base. They have been
introduced in the context of non-monotonic logic programming for FDNC programs [36] and can be seen
as a special instance of mosaics in modal logic [11, 9].

The main result of this paper is a novel algorithm for answering CQs overSH knowledge bases. It
extends a similar algorithm forALCH presented in [31] and works in double exponential time in general,
but in single exponential time for queries from large fragments of SH includingALCH, which emerge
by restricting the occurrence of transitive roles in queries. More precisely, the algorithm has the following
features:

• It is worst-case optimal for arbitrary CQs overSH as well as for CQs with restricted occurrence of
transitive roles, e.g. CQs containing only few (bounded by aconstant many) atoms involving transitive
roles; this restriction seems not to be severe in practice. In particular, the algorithm is thus worst-case
optimal also for answering CQs overALCH knowledge bases. This contrasts with several other
algorithms for CQ answering inSH which either do not have a double exponential upper bound, or
need double exponential time already for fragments likeALCH (see Section 7 for more details).

• Different from other algorithms, it handles CQs with answervariables (alias distinguished or output
variables) in a direct manner, rather than reducing such queries to ground (Boolean) CQs. In our

1Lutz announced his result in [22], and more details were given later in [23].
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example above, the variablesx andz, which intuitively return an employee with her work address, are
answer variables. Reducing the query to ground CQs is achieved by bindingx andz to all possible
employees and addresses, which might be rather inefficient (e.g., if it appears that each employee has
a unique work address).

• The algorithm provides a modularknowledge compilationof the DL knowledge base, which allows
for the reuse of intermediate results. This is because it compiles first a DL n knowledge base into a set
of knots, constructs then query answering tables from this set and the input query, and finally collects
the query answers from the tables using the data part (in DL jargon, the ABox) of the knowledge
base. The result of the first step may be reused for follow-up queries, i.e., only the query answering
tables need to be constructed and the query answers collected. For queries of small size (bounded
by a constant), the table construction is feasible in polynomial time in the size of the knot set, and
collecting the query answers is feasible inCONP (viewed as a decision problem); for a fixed ABox,
the latter is feasible in polynomial time. This is particularly useful for evaluating many such queries
over a rather static knowledge base.

• Similarly, for a fixed query and a DL knowledge base where the terminological component (the TBox)
is fixed but the ABox may change, i.e., in thedata complexitysetting, a non-deterministic version of
our algorithm runs in polynomial time. This means that the algorithm is also worst-case optimal under
data complexity, as answering CQs is known to beCONP-complete for a wide range of DLs fromAL
to SHIQ (cf. [5, 16, 28]).

• Finally, the compiled knowledge can be expressed as a disjunctive Datalog program (alternatively, a
Datalog program with unstratified negation), which is evaluated over an enhanced ABox. The program
can be designed to evaluate also non-ground queries, i.e, with answer variables directly. A Datalog
encoding may make the algorithm more amenable for efficient implementation than some of the pre-
vious automata- or tableaux-based approaches, given that efficient engines for disjunctive/unstratified
Datalog are available.

While we focus onSH, the method an be extended to richer DLs. Indeed, once we obtain the knot
representationof a terminology, the algorithm works on the knots and does not depend much on the con-
structs of the logic. The knot technique thus opens an interesting perspective that might be exploited for
other purposes as well.

The rest of this paper is organized as follows. The next section provides basic concepts and notation.
After that, we consider in Section 3 forest models on which wecan concentrate for our purposes. In Section 4
we introduce knots and discuss how forest-shaped models of aDL knowledge base can be represented using
knots. In Section 5, we present our algorithm for answering CQs using knots in the general case, while in
Section 6 we address complexity issues and restricted cases. In the final Section 7, we first discuss related
work and possible extensions of the approach, and then conclude with some open issues.

2 Preliminaries

In this section we introduce the DLSH and define the conjunctive query answering problem.
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⊤I = ∆I ⊥I = ∅ (¬C)I = ∆I\CI

(C ⊓D)I = CI ∩DI (C ⊔D)I = CI ∪DI

(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}

Figure 1: Semantics ofSH concepts.

2.1 Description LogicSH

We assume countably infinite setsC, R andI of concept names, roles, andindividuals respectively. Fur-
thermore, we assume an infinite setR

+ ⊆ R of transitive roles.
Concepts (inSH) are inductively defined as follows:

(a) ⊤,⊥ and every concept nameA ∈ C is a concept, and

(b) if C, D are concepts andR ∈ R is a role, thenC ⊓D, C ⊔D, ¬C, ∀R.C, ∃R.C are concepts.

LetC,D be concepts,R,S be roles anda, b be individuals. Then an expressionC⊑D is called ageneral
concept inclusion axiom (GCI), an expressionR⊑S is arole inclusion axiom (RI), while expressionsa : C

and〈a, b〉 : R areassertions.
An SH knowledge base(KB) is a pairK = 〈T ,A〉, where theTBoxT is a finite set of GCIs and RIs,

while theABoxA is a finite set of assertions. W.l.o.g. we assume thatA 6= ∅ and that all the concept names
and roles occurring inA also occur inT . By C(T ) andR(T ) we denote the sets of all concept names and
roles occurring in a TBoxT , respectively. Moreover, we letR+(T ) = R

+ ∩R(T ) and denote by⊑∗
T the

reflexive transitive closure of{(S,R) | S ⊑R∈T }. A role R is simple(in a TBoxT ), if no S ⊑∗
T R exists

such thatS ∈ R
+(T ). Finally, letI(A) denote the set individuals occurring in an ABoxA.

An interpretationI = (∆I , ·I) for a KB K = 〈T ,A〉 consists of a non-emptydomain∆I and a
valuation function·I that maps each individualc ∈ I(A) to an elementcI ∈ ∆I , each concept name
C ∈ C(T ) to a subsetCI of ∆I , and each roleR ∈ R(T ) to a subsetRI of ∆I ×∆I . The function·I is
extended to all concepts via the equations in Figure 1. We sayI is amodelof K (in symbols,I |= K) if (i)
for each GCIC ⊑D ∈ T , CI ⊆ DI ; (ii) for each RIR ⊑ S ∈ T , RI ⊆ SI ; (iii) for eachR ∈ R

+(T ),
RI = (RI)+, i.e.,RI is transitively closed; (iv) for each assertiona : C in A, aI ∈ CI ; and (v) for each
assertion〈a, b〉 : R in A, 〈aI , bI〉 ∈ RI . If K admits at least one model, thenK is satisfiable.

Example 1. Consider a simple genealogy knowledge baseK = 〈T ,A〉, whereC contains the concept
namesman, woman , person , androyal , andR the rolesfather , mother , parent , ancestor , andheir ,
whereancestor is transitive.

The TBoxT may contain the following GCIs:

man ⊑ ¬woman , which states disjointness of men and women;

man ⊔ woman ⊑ person , person ⊑ man ⊔ woman , which definesperson as men and women; and

person ⊑ ∃father .man , person ⊑ ∃mother .woman which state that every person has a father and a mother.

The TBox may further contain the RIs

father ⊑ parent , mother ⊑ parent , parent ⊑ ancestor , ancestor ⊑ heir .
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Thus,father , mother , andparent are simple roles, whileancestor andheir are non-simple.
The ABoxA contains the following assertions:

joe :man , jill :woman , jill : royal ,

〈joe, bob〉 : father , 〈bob, sue〉 : mother , 〈jill , sue〉 : mother , 〈jill , alice〉 : heir .

Note that the information about the individuals is incomplete (e.g.,joe ’s father is not known, nor whether
he is royal).

A conceptC is in negation normal form (NNF)if negation occurs in front of the atomic concepts only.
As well know, each conceptC can be transformed into an equivalent concept in NNF in linear time. We
assume that concepts in TBoxes are alway in NNF. As usual,∼C denotes the NNF of¬C. By clos(T )
we will denote theconcept closure ofT , which is the smallest set such that: (a)C,D ∈ clos(T ) for
eachC ⊑ D ∈ T , (b) if E is a subconcept ofC ∈ clos(T ), thenE ∈ clos(T ), (c) C ∈ clos(T ), then
∼C ∈ clos(T ), and (d)∀R.C ∈ clos(T ) andR′ ∈ R(T ), then∀R′.C ∈ clos(T ).

2.2 Conjunctive Query Answering

Let V be a countably infinite set of variables. Aconjunctive query(CQ, orquery) q over a KBK = 〈T ,A〉
is a finite set of atoms of the formA(x) or R(x, y), whereA ∈ C(T ), R ∈ R(T ) andx, y ∈ V; the set of
variables occurring inq is denoted byV(q). Each CQq is associated with a unique (possibly empty) tuple
~x = 〈x1, . . . , xn〉 of answer variablesfrom V(q).

A match forq in an interpretationI for K is a mappingθ : V(q) → ∆I such that (i)θ(x)∈AI for
eachA(x)∈ q, and (ii) 〈θ(x), θ(y)〉 ∈RI for eachR(x, y)∈ q. A tuple ~c = 〈c1, . . . , cn〉 of individuals
from I(A) (of the same arity as~x) is an answer ofq overI, if 〈cI1 , . . . , cIn〉 = 〈θ(x1), . . . , θ(xn)〉 for some
matchθ for q in I; ans(q,I) denotes the set of all answers ofq overI. Then theanswer ofq overK is
ans(q,K) =

⋂

I|=K ans(q,I), i.e., consists of all tuples~c that occur in the answer ofq for every modelI
of K.

Example 2. A possible CQ to the knowledge baseK from Example 1 is

q = {ancestor (x, z), ancestor (y, z), royal (z)}

with answer variables~x = 〈x, y〉, which retrieves the individuals that have a common royal ancestor. As
easily seen, the query has no answer overK (i.e.,ans(q,K) = ∅), as for each pair~c = 〈c1, c2〉 of individuals
from joe , jill , bob, sue, andalice , the KB K has some modelI in which q has no matchθ such that
〈cI1 , cI2 〉 = 〈θ(c1), θ(c2)〉.

Note that we do not allow for individuals or complex conceptsin queries. This is no restriction: ifq
is a query with individuals, for each individuala we can use a new concept nameCa, replacea in q by a
new variabley, and addCa(y) to q anda : Ca toA. Similarly, atomsD(x), whereD is complex, can be
simulated by adding a GCID ⊑CD toK for some fresh concept nameCD, and replacingD(x) by CD(x).

The query graph of a queryq is the directed graph with nodesV(q) and an arcx→ y for eachR(x, y) ∈
q. We sayq is connectedif its query graph is connected,

From now on, we make theUnique Name Assumption (UNA), i.e., in modelsI of K, for each pair of
individualsa 6= b fromK we haveaI 6= bI . This is not a limitation: as easily seen, UNA does not affectthe
set of query answers in the case ofSH KBs.



INFSYS RR 1843-09-03 5

3 Forest Models

It is well know that to answer queries over many known DLs it suffices to restrict the attention to a certain
class of models, and, in particular, toforest-shapedmodels. To discuss this, we adopt some notation and
naming from [16].

Definition 1 (Trees and Forests). Let N
∗ be the set of words over the setN of natural numbers. We say a

setT ⊆ N
∗ is a tree, if it is prefix closed, i.e., for each wordw·e ∈ T , wherew ∈ N

∗ ande ∈ N, we have
w ∈ T . The empty wordǫ is the root ofT , while for eachw ∈ T , the nodesw·e ∈ T with e ∈ N are
children of w.

Let {Ti}i∈I be a set of trees indexed byI, then the setF =
⋃

i∈I

{

(i, w) | w ∈ Ti

}

is called aforest
(with index setI). The notion of children is generalized to forests:(i′, w′) ∈ F is achild of (i, w) ∈ F if
i = i′ andw′ is a child ofw. Similarly, each node(i, ǫ) is a root ofF .

An interpretationI = (∆I , ·I) for a KBK = 〈T ,A〉 is forest-shaped, if

(a) the domain∆I is a forest with index setI(A),

(b) for eachd, e ∈ ∆I and roleR such that(d, e) ∈ RI , eithere is a child ofd, or bothd ande are root
nodes, and

(c) for each noded ∈ ∆I , the number of children ofd is bounded by|clos(T )|.

By children(I, e) we denote the set of children ofe ∈ ∆I . We sayI is tree-shapedif |I(A)| = 1. For a
tree-shapedI, let root(I) denote the unique root node ofI.

To ease presentation, as tree-shaped we also consider any interpretation that is isomorphic to a tree-shaped
interpretation defined above; the two functionschildren(·, ·) androot(·) are extended accordingly. We will
further useI|e to denote the tree-shaped interpretation obtained by restricting a forest-shapedI to e ∈ ∆I

and its descendants, i.e.,I|e is the subtree ofI rooted ate.
In presence of transitivity statements, we strictly speaking do not have forest-shaped models of anSH

KB in general. Indeed, by definition, forest-shaped models cannot have transitive arcs. In order to provide a
complete query answering algorithm, we impose additional constraints on forest-shaped models.

Definition 2 (Forest base and closure). A forest-basefor a KBK = 〈T ,A〉 is any forest-shaped interpreta-
tion I for K such that:

(a) for each GCIC ⊑D ∈ T , CI ⊆ DI ;

(b) for each RIR⊑ S ∈ T , RI ⊆ SI ;

(c) for each assertiona : A (resp.,〈a, b〉 : R) in A, we haveaI ∈ AI (resp.,〈aI , bI〉 ∈ RI);

(d) if e ∈ (∀R.C)I , then for allS ∈ R
+(T ) with S ⊑∗

T R we also havee ∈ (∀S.(∀S.C))I .

Theclosureof I is the interpretationJ = 〈∆J , ·J 〉 that is identical toI except that, for each roleR,

RJ = RI ∪
⋃

S⊑∗

T
R∧S∈R+(T )

(SI)+.
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Forest-bases ofK satisfy all the axioms and assertions ofK (conditions (a-c)). However, they are not
necessarily models ofK since the transitivity requirements may be violated. To deal with this, we require
(d) which emulates the effect of transitive roles on a model.The closure, which is obtained by closing a
forest-base under transitivity and role hierarchy, leads us to a model of a KB.

We can now state the following important proposition.

Proposition 1 ([16]). If J is the closure of a forest-baseI for a KBK, thenJ is a model ofK. Moreover,
given a KBK, a queryq and a tuple~c of individuals, if~c 6∈ ans(q,K), then there exists some forest-baseI
for K such that~c 6∈ ans(q,J ), whereJ is the closure ofI.

The proposition above implies that we can safely concentrate on closures of forest-bases for answering
CQs. In fact, we will look for query mappings in forest bases instead of their closures. This will not be a
limitation, as we just need a slightly relaxed version of matches.

Definition 3 (Prematches). Given a forest interpretationI andd1, dn ∈ ∆I , we calldn anR-successor of
d1 (in I), if there is someS ⊑∗ R and a sequenced1, . . . , dn such that(di, di+1) ∈ SI for each1 ≤ i < n,
and n > 2 implies thatS is transitive. We say a queryq has apre-match inI, if there is a mapping
π : V(q)→ ∆I such that:

(PM1) A(x) ∈ q impliesπ(x) ∈ AI , and

(PM2) R(x, y) ∈ q impliesπ(y) is anR-successor ofπ(x) in I.

The following is then a direct consequence of Proposition 1 and Definition 3 above.

Proposition 2. Given a KBK, a queryq with answer variables~x = 〈x1, . . . , xn〉, and a tuple~c =
〈c1, . . . , cn〉 of individuals, it holds that~c ∈ ans(q,K) iff in each forest-baseI for K there exists a pre-
matchπ for q such that〈cI1 , . . . , cIn〉 = 〈π(x1), . . . , π(xn)〉.

By the above proposition, to answer a query it suffices to lookat prematches in forest-bases only.

4 Model Representation via Knots

We deal here with model representation, and provide a methodto finitely represent the possibly infinite
forest-bases of anSH KB. This will be the basis of our query answering algorithm employing knowledge
compilation.

Before dealing with full forest-bases, we first we presentknots, which are special labeled trees of depth
≤ 1 used to represent the tree parts of forest-bases. For the rest of this section, we assume a fixedSH
terminologyT , and all ABoxes that we consider are ABoxes forT (i.e., over the signature ofT ).

Definition 4 (Knots). A type (for T ) is any setτ ⊆ clos(T ). A knot (for T ) is any tuple(r, S), where
r⊆ clos(T ) andS ⊆ 2R(T )× clos(T ), satisfying the following consistency conditions:

(a) ∼C ⊔D ∈ r for each GCIC ⊑D ∈ T ;

(b) if C ∈ r, then∼C 6∈ r;

(c) if C ⊓D ∈ r, thenC,D ∈ r;

(d) if C ⊔D ∈ r, thenC ∈ r or D ∈ r;
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B, C

P

k6

A, C

A, C

R

k5

C
k1

P, TT

A

B, C

T, Q

k2

A

A, B, CA, B, C

k4

P, TP

A
A, C

A, B, C

C

Q

k3

A, B, C

Figure 2: Example set of knots

(e) if ∀R.C ∈ r, then for each(α, β) ∈ S with R ∈ α, we haveC ∈ β;

(f) if ∀R.C ∈ r, then for eachR′ ⊑∗ R with R′ ∈ R
+(T ) and each(α, β) ∈ S with R′ ∈ α, we have

∀R′.C ∈ β;

(g) if ∃R.C ∈ r, then there exists(α, β) ∈ S with R ∈ α andC ∈ β;

(h) if R⊑R′ is a role inclusion inT , then for each(α, β) ∈ S with R ∈ α, we haveR′ ∈ α;

(i) |S| ≤ clos(T ).

We sayr is theroot and the elements inS are thechildren in the knot(r, S).

Knots are self-contained model building blocks for forest-bases ofK: a knot(r, S) can be viewed as an
abstract element of a forest-base forT that satisfies the concepts inr, and for each(α, β) ∈ S has a successor
linked by roles inα and satisfying concepts inβ. Such a knot(r, S) encodes a possible combination of
immediate successors for a node having typer in a forest-base. Note that|clos(T )| is polynomial in the
size ofT , and hence we can construct at most exponentially many different knots forT (we discuss this in
Section 6).

We need some global conditions onknot setsto ensure that trees can be built out of knots.

Definition 5 (Consistency). A setK of knots forT is consistent, if for each(r, S) ∈ K and each(α, β) ∈ S

there exists some(r′, S′) ∈ K such thatβ = r′. Such a knot(r′, S′) is called apossible successorof (r, S)
(in K).

Example 3. A consistent set of knots (for some KBK) is depicted in Figure 2. Graphically, we represent
a knotk = (r, S) as a tree where the root is labeledr, and that has an arc labeledα to a child labeledβ
for each(α, β) ∈ S; for simplicity, parentheses “{“ and “}” are omitted. Five different typesτX = {X} ⊆
{A,B,C} occur in these knots, viz.τA, τC , τA,C , τB,C , andτA,B,C . Observe thatk2 is a possible successor
of ({T}, τA) in k1, while ({P, T}, τA,B,C) has the possible successorsk3 andk4.

We can build trees by putting suitable knots together subsequently. Intuitively, consistency of a knot set
means that for each knot we have a possible successor knot, and hence the tree construction will not fail.
In order to deal with ABoxes, we will need knot sets that can beused to build trees starting at the ABox
individuals.

Definition 6 (Compatibility). Let Q be a set of types forT . Then a consistent setK of knots forT is
Q-compatible, if for eachτ ∈ Q there exists some(r, S) ∈ K with r = τ .

Intuitively, if K is Q-compatible, then for eachτ ∈ Q there exists a knot inK which can be used as a
“starting” knot for constructing a tree with rootτ . We can now turn to ABoxes.
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Definition 7 (ABox completions). An ABoxA′ is called acompletionof an ABoxA for T , if the following
holds:

(a) A ⊆ A′;

(b) a : ∼C ⊔D ∈ A′ for each concept inclusionC ⊑D ∈ T and individuala of K;

(c) if a : C ∈ A′, thena : ∼C 6∈ A′;

(d) if a : C ⊓ D ∈ A′ (resp.,a : C ⊔ D ∈ A′), thena : C ∈ A′ anda : D ∈ A′ (resp.,a : C ∈ A′ or
a : D ∈ A′);

(e) if a : ∀R.C ∈ A′ and(a, b) : R ∈ A′, thenb : C ∈ A′;

(f) if R⊑ S is a role inclusion inT and(a, b) : R ∈ A′, then(a, b) : S ∈ A′;

(g) if (a, b) : R ∈ A′, (b, c) : R ∈ A′ andR ∈ R
+(T ), then(a, c) : R ∈ A′.

The set of completions ofA is denoted bycomp(A). For any ABoxA let A(a) = {C | a : C ∈ A}
andCA = {A(a) | a ∈ I(A)}, i.e., the type ofa in A and the set of types of individuals inA, respectively.
Finally, we defineCT

A =
⋃

A′∈comp(A) CA′ , which is the set of types occurring in completions ofA.

An ABox completion corresponds to a possible explication ofthe constraints on its individuals given by
the terminology, where the existential restrictions are dispensed. The ABox completions provide us with the
graph parts of forest-bases, which can be characterized in terms of ABox completions and compatible knot
sets. We first give a construction of forest bases.

Definition 8 (Induced forest interpretations). LetA be an ABox and letK be aCA-compatible knot set. An
interpretationI = (∆I , ·I) is induced byA andK, if ∆I is a forest with index setI(A) and·I is such that:

(a) For each(a1, ǫ), (a2, ǫ) ∈ ∆I and roleR, we have((a1, ǫ), (a2, ǫ)) ∈ RI iff 〈a1, a2〉 : R ∈ A.

(b) There exists a mappingϕ : ∆I → K such that for each elemente ∈ ∆I the knotϕ(e) = (r, S)
satisfies:

- for each atomic conceptA, e ∈ AI iff A ∈ r, and

- there exists a bijectionf : S → children(I, e) such that for eachs = (α, β) in S and each roleR, we
have(e, f(s)) ∈ RI iff R ∈ α.

The set of all suchI is denotedF(A,K).

The following is a direct consequence of the above definitions.

Proposition 3. If A′ is a completion of an ABoxA andK is CA′-compatible, then eachI ∈ F(A′,K) is a
forest-base for the KBK = 〈T ,A〉.

We saw that we can generatesomeforest-bases. In fact, we want to capture all forest-bases of a given
terminology, and for this we introduce the notion of completeness.

Definition 9 (Completeness). For a knot setK and typeτ , let K|τ denote the smallest subset ofK such
that
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(a) (r, S) ∈ K|τ for each(r, S) ∈ K with r = τ , and

(b) if (r, S) ∈ K|τ , (α, β) ∈ S and(r′, S′) ∈ K is such thatβ = r′, then(r′, S′) ∈ K|τ , i.e., K|τ is
closed under the possible successors inK.

Let K be a consistent set of knots forT andQ a set of types forT . We sayK is Q-completeif for each
τ ∈ Q and each consistent setK ′ of knots forT we haveK ′|τ ⊆ K.

Intuitively, K|τ is the restriction ofK to knots that have rootτ , or are reachable from the former via the
possible successor relation. AQ-complete knot set contains all knots that can be used to build a tree starting
with a typeτ ∈ Q.

Definition 10 (Induced forest-bases). Let A be an ABox and letK be aCT
A -complete knot set. Then we

denote byFK(A) the set of forest-bases induced by a completion ofA and the knot setK.

It remains to see that in order to answer a query over a KB, it suffices to look at the induced forest-bases.

Proposition 4. SupposeA is an ABox,K a CT
A -complete knot set,q a query with answer variables~x =

〈x1, . . . , xn〉, and~c = 〈c1, . . . , cn〉 a tuple of individuals. Then~c ∈ ans(q, (T ,A)) iff in each forest-base
I ∈ FK(A) there exists a prematchπ for q such that〈cI1 , . . . , cIn〉 = 〈π(x1), . . . , π(xn)〉.

Proof. The ”→” direction follows directly from Proposition 2.
For the ”←” direction, assume~c 6∈ ans(q, (T ,A)). By Proposition 2, there exists a forest-baseJ for

(T ,A) that admits no prematchπ for q with 〈cJ1 , . . . , cJn 〉 = 〈π(x1), . . . , π(xn)〉. We just need to argue
thatJ ∈ FK(A). To this end, we decomposeJ into a completion ofA and a set of knots.

LetA′ be the smallest ABox such that: (a)A ⊆ A′, (b) if C ∈ clos(T ) andaJ ∈ CJ , thena : C ∈ A′,
(c) if (aJ , bJ ) ∈ RJ , then〈a, b〉 : R ∈ A′, (d) if (a, b) : R ∈ A′, (b, c) : R ∈ A′ andR ∈ R

+(T ), then
(a, c) : R ∈ A′, and (e) ifR⊑ S is a role inclusion inT and(a, b) : R ∈ A′, then(a, b) : S ∈ A′. It is easy
to see that sinceJ is a forest-base,A′ is a completion ofA.

We now “decompose” the tree parts ofJ into knots. Letϕ be a mapping that assigns to eache ∈ ∆J a
knotϕ(e) = (r, S), where

(a) r = {C ∈ clos(T ) | e ∈ CJ }, and

(b) S =
⋃

i∈I{(αi, βi)}, whereI = {e·x ∈ ∆I | x ∈ N}, αi = {R | (e, i) ∈ RJ } andβi = {C ∈
clos(T ) | i ∈ CJ }.

By the above mapping we assign to eache ∈ ∆J a knot extracted fromJ itself. By construction, the knot
setK ′ = {ϕ(e) | e ∈ ∆J } is consistent. Furthermore,K ′ is CA′-compatible andK ′ ⊆ K holds due to
CT
A -completeness ofK. Finally, the mappingϕ witnesses (see Definition 8) thatJ is a forest-base induced

byA′ andK, i.e.,J ∈ FK(A).

We finally note that given a given KBK = 〈T ,A〉 and a setQ of types forT , we can easily compute
a Q-complete knot set. We can do this via a simple procedure inspired by type-elimination [32]. We start
by computing the setK of all knots forT that have rootτ ∈ Q. In the second stage, we closeK under the
possible successor knots. Finally, we remove fromK one by one the knots that have a leaf for whichK does
not provide at least one successor knot. We elaborate on thiswith the algorithm presented in Figure 3. As
easily seen, the algorithm returns a desired knot set. Indeed, for any typeτ ∈ Q and a consistent knot setK,
the algorithm will includeK|τ , and none of the knots fromK|τ will be deleted in the second stage which
is designed to ensure consistency. We note that aQ-complete knot set can be obtained in single exponential
time in the size ofT (we elaborate on this in Section 6).
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Algorithm 1 : computeKnots

Data: a KBK = 〈T ,A〉, a setQ of types forT
Result: aQ-complete knot setK
begin

Build the setK of all knots(r, S) for T such thatr ∈ Q;
CloseK under the following rule:

if (r, S) ∈ K and(α, β) ∈ S, then add toK each knot(τ ′, S′) for T such thatτ ′ = β.
repeat

Let K ′ := K;
if (r, S) ∈ K and(α, β) ∈ S but there exists no knot(τ ′, S′) ∈ K s.t.τ ′ = β then

K := K \ {(r, S)};

until K ′ 6= K ;
return K

end

Figure 3: Building knot sets.

5 Query Answering with Knots

We now present our algorithm for answering conjunctive queries overSH knowledge bases. The method
relies on knot sets and is presented in three steps:

• We first consider the structure of aquery prematchin a forest-shaped interpretation, and based on this
structure define a notion ofsubqueriesand their matches.

• We then compile an input queryq and a terminologyT into a type-query table, which, informally
speaking, tells which subqueries ofq can be mapped in any tree generated from knots starting with a
particular root type.

• Finally, given an arbitrary ABoxA, we can answerq over a KB〈T ,A〉 by considering partial map-
pings ofq into completions ofA and by looking up the query remainders in the precomputed type-
query table.

To ease presentation, for the rest of this section we fix anSH KB K = 〈T ,A〉 and a CQq. Let us also
assume anyCT

A -complete knot setK, and lettypes(K) = {r | (r, S) ∈ K}.

5.1 Subqueries and Rooted Matches

We define a notion of subqueries and their matches in tree-shaped interpretations, which will allow us to
construct a full prematch for a query in a forest-base out of matches for subqueries in trees and a partial
query mapping into the graph part of the forest-base.

SupposeI is a forest-base forK in which a queryq has a prematchπ, ande ∈ ∆I is arbitrary but not
a root node inI. Let Ve ⊆ V(q) be the set of variables ofq that are mapped ate or inside the subtree of
I rooted ate. We can make the following observations about the variablesof q that must be mapped in the
latter subtree:
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(P1) If x ∈ Ve andq contains an atomR(x, y), theny ∈ Ve, i.e.,y must be mapped into the subtree ofI
rooted ate.

(P2) If q contains two atomsR(x, y) andR′(x′, y) whereR andR′ are simple (inK), andx, y ∈ Ve, then
x′ ∈ Ve, i.e.,x must also be mapped into the same subtree, and in particular at the same element asx.

(P3) If y ∈ Ve and there isR(x, y) ∈ q with simpleR and such thatx 6∈ Ve, theny must be mapped toe.

(P4) If y ∈ Ve and there isR(x, y) ∈ q whereR is not simple, andx 6∈ Ve, thenπ(y) = e or π(y) is an
R-successor ofe.

The above observations are reflected in the notions of subqueries and their matches in tree-shaped inter-
pretations.

Definition 11 (Subqueries). GivenX ⊆ V(q) andy ∈ X, let back(X, y) = {R | R(x, y) ∈ q ∧ x 6∈ X}.
We cally ∈ X openin X if back(X, y) 6= ∅. If in additionback(X, y) does not contain a simple role, then
y is free in X.

An f(orward)-subqueryof q is any a tuple(X,Σ) where

(a) X ⊆ V(q) is a set of variables obeying the following rules:

(i) If R(x, y) ∈ q andx ∈ X, theny ∈ X.

(ii) if R(x, y) ∈ q andR′(x′, y) ∈ q are two atoms whereR,R′ are simple, andx ∈ X, then we also
havex′ ∈ X.

(iii) The restriction of the query graph ofq to variables inX is connected and acyclic, i.e.,X induces
a connected acyclic subquery ofq.

(b) Σ is a mapping that assigns to every free variabley in X some setΣ(y) ⊆ R
+(K) containing some role

T ⊑∗ R for eachR ∈ back(X, y).

The set of f-subqueries ofq is denoted byF. Any setρ ∈ 2F of f-subqueries is called adisjunctive f-subquery
of q.

Example 4. We assume a knowledge baseK in whichR
+(K) = {T}, and whereK contains a role inclusion

axiomT ⊑R. For our examples, we consider the query

q = C(x1), T (x1, x2), Q(x2, x3), R(x3, x4), A(x4), C(x4), P (x1, x6), B(x5), R(x5, x6), Q(x6, x7), C(x7),

whose query graph, augmented with node labels{C ∈ C | C(x) ∈ q} and edge labels{R ∈ R |
R(x, y) ∈ Q}, is depicted in Figure 4. A largest f-subquery ofq is F = (V(q), ∅) (i.e., the full q). In
any f-subquery that contains all variables exceptx5, the variablex6 is open (the non-simpleR is the only
role in back(V(q) \ {x5}, x6)), and thereforeT ∈ Σ(x6) must hold;F1 = (V(q) \ {x5}, {(x6, {T})})
is such an f-subquery. Other f-subqueries with some free variable areF2 = ({x2, x3, x5}, {(x2, {T})}),
F3 = ({x6, x7}, {(x6, {T})}) and F4 = ({x4}, {(x4, {T})}). These f-subqueries are also graphically
represented in Figure 4, where theΣ-components are omitted.

In an f-subquery(X,Σ), the setX comprises variables that have to be mapped into a given tree-shaped
interpretation. The setΣ is designed to deal with the situation (P4) and stores the roles via which free
variables ofX must be reached from the root of the interpretation. Due to the observations (P1-P2), we can
safely requireX to be closed under the rules (a.i) and (a.ii). Open variablesthat are not free must be mapped
at the root of the tree due to (P3).

The formal definition of matches for subqueries is as follows:
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Figure 4: An example query and some of its f-subqueries

Definition 12 (Rooted prematches). Given (X,Σ) ∈ F and a tree-shaped interpretationI, we writeI |=
(X,Σ) if there exists a mappingπ : X → ∆I (a rooted prematch for(X,Σ) in I) that obeys the following
rules:

(RP1) Ifx ∈ X andA(x) ∈ q, thenπ(x) ∈ AI ;

(RP2) Ifx, y ∈ X andR(x, y) ∈ q, thenπ(y) is anR-successor ofπ(x) in I;

(RP3) Ify is open inX but it is not free, thenπ(y) = root(I);

(RP4) If y is a free variable inX andR ∈ Σ(y), thenπ(y) is either the root ofI or anR-successor of the
root ofI.

Additionally, we writeI |=d (X,Σ) if π is such that for everyy ∈ X, the depth ofπ(y) in I is≤ d, i.e., the
match is within depthd in I. Furthermore, given a disjunctive f-subqueryρ ∈ 2F, we writeI |= ρ (resp.,
I |=d ρ) if for some(X,Σ) ∈ ρ we haveI |= (X,Σ) (resp.,I |=d (X,Σ)).

5.2 Subquery Entailment at Knots and Types

In the following, we provide a method to test existence of rooted matches in tree-shaped interpretations
constructed out of knots starting with a particular knot or type. The formal definitions of such trees and the
entailment problem are as follows.

Definition 13 (k-trees andτ -trees). Let k ∈ K be a knot andτ ∈ types(K) a type. A tree-shaped inter-
pretationI is a called ak-tree (resp.,τ -tree), if there exists a mappingϕI : ∆I → K such that for each
e ∈ ∆I the knotϕI(e) = (r, S) satisfies:

(a) if e is the root ofI, then(r, S) = k (resp.,r = τ ),

(b) for each atomic conceptA, e ∈ AI iff A ∈ r, and

(c) there exists a bijectionb : S → children(I, e) such that for eachs = (α, β) in S and each roleR,
(e, b(s)) ∈ RI iff R ∈ α.

The sets of allk-trees andτ -trees are denoted byT(k) and byT(τ), respectively.

Note that for everyI ∈ T(k), at the root ofI we have a unique bijectionb in (c), and thus each nodee at
depth 1 (i.e., each child of the root) is uniquely identified by some leafs ∈ S of k = (τ, S); for convenience,
we will refer toe by bIs . We will also useIs to denoteI|bIs .
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Definition 14 (Entailment at knots and types). Givenρ ∈ 2F andk ∈ K, we writek |= ρ (resp.,k |=d ρ) if
for eachI ∈ T(k) we haveI |= ρ (resp.,I |=d ρ). Similarly, givenρ ∈ 2F and a typeτ ∈ types(K), we
write τ |= ρ (resp.,τ |=d ρ) if I |= ρ (resp.,I |=d ρ) for eachI ∈ T(τ).

We will usetype-queryandknot-querytables to store relevant pairs of types and disjunctive f-subqueries,
and pairs of knots and disjunctive f-subqueries for which the entailment relation above holds.

Definition 15 (kq-table and tq-table). a A knot-query table (kq-table)is an arbitrary relationR ⊆ K × 2F.
We sayR is (d-)complete, if (i) (k, ρ) ∈ R impliesk |=(d) ρ, and (ii) if k |=(d) ρ and there is noρ′ ⊂ ρ with
k |=(d) ρ′, then(k, ρ) ∈ R.

Similarly, atype-query table (tq-table)is any relationR′ ⊆ types(K)×2F, and we sayR′ is (d-)complete
if (i) (τ, ρ) ∈ R′ implies τ |=(d) ρ, and (ii) if τ |=(d) ρ and there is noρ′ ⊂ ρ with τ |=(d) ρ′, then
(τ, ρ) ∈ R′.

In the remainder of this section, we show how to compute ad-complete kq-table, ad-complete tq-table,
and, finally, a complete tq-table that will be used to answer queries over the full knowledge baseK. The
basic strategy is as follows:

(I) we show how to compute ad-complete tq-tableTQd from a givend-complete kq-tableKQd, and

(II) we provide a way to obtain, given ad-complete tq-tableTQd, ad+1-complete kq-tableKQd+1.

Note that we can easily build a 0-complete tq-tableTQ0, by looking at typesτ ∈ types(K): for every
variablex in q that has no successors inq and such that{A | A(x) ∈ q} ⊆ τ , take all subqueries(X,Σ)
whereX = {x} and, ifx is free inX, Σ assignsx some possible set as Definition 11.b (in fact, it is sufficient
to take only the single maximal such possible set). Hence, byiteratively applying the two steps above, we
can computed-complete tq-tables and kq-tables for anyd ∈ N. It will be easy to see that in this way we can
obtain a compete tq-table.

Example 5. The following tableTQ0 is an example of a 0-complete tq-table for the queryq given in
Example 4 and the set of knots given in Example 3, where as above F4 = ({x4}, {(x4, {T})}) andF5 =
({x7}, ∅). Note that in this case, it is enough to consider singleton disjunctivef -subqueries.

Type disjunctive f-subquery
τC {F5}
τA,C {F5}
τA,C {F4}
τB,C {F5}
τA,B,C {F5}
τA,B,C {F4}

The central notion for the computation is that of minimal hitting sets.

Definition 16 (Minimal hitting sets andk/τ -hits). Assumek ∈ K andτ ∈ types(K). Then a seth ⊆ F is
called ak-hit (resp.,τ -hit) of a kq-table (resp., tq-table)R, if h is a minimal (w.r.t. inclusion) set such that
h ∩ ρ 6= ∅ for each(k′, ρ) ∈ R with k′ = k (resp., for each(τ ′, ρ) ∈ R with τ ′ = τ ).

The following property of minimal hitting sets is important.
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Algorithm 2 : TQ from KQ

Data: ad-complete kq-tableKQ

Result: ad-complete tq-tableTQ

begin
R := ∅;
forall τ ∈ types(K) do

Compute the setH =
{

h ⊆ F | k ∈ K has rootτ andh is ak-hit of KQ
}

;
forall ρ ∈ 2F do

if for eachh ∈ H we haveh ∩ ρ 6= ∅ then
R := R ∪ {(τ, ρ)};

return R
end

Figure 5: From knot-query tables to type-query tables (for the knot setK and the queryq).

Lemma 1. Supposeh is ak-hit (resp., aτ -hit) of ad-complete kq-tableKQ (resp., of ad-complete tq-table
TQ). Then there exists someI ∈ T(k) (resp.,I ∈ T(τ)) such thatI |=d (X,Σ) iff (X,Σ) ∈ h.

Proof. We only consider the case ofk-hits, the proof forτ -hits is analogous.
Consider ak-hit h as above and considerρ = F \ h. Sinceρ ∩H = ∅, we have(k, ρ) 6∈ KQ. Hence,

k 6|=d ρ, i.e., there is aI ∈ T(k) such thatI 6|=d F for eachF ∈ ρ. It remains to show thatI is also such
thatI |=d F for all F ∈ h.

Consider an arbitraryF ∈ H. As easily seen, by minimality ofh there exists some(k, ρF ) ∈ S such
thatF ∈ ρF and|ρF ∩ h| = 1 (if not, h \ {F} would be a smaller hitting set). We know thatI 6|=d F ′ for
eachF ′ ∈ ρF \ {F}. Sincek |=d ρF , we getI |=d F .

Based on the above, we can now deal with step (I) discussed previously.

Theorem 1. Letτ ∈ types(K), letρ ∈ 2F be a disjunctive f-subquery, and letKQ be ad-complete kq-table.
Thenτ |=d ρ iff for each knotk ∈ K with root τ and eachk-hit h of KQ, we haveh ∩ ρ 6= ∅.

Proof. Supposeτ |=d ρ but there exists a knotk ∈ K with root τ and ak-hit h of KQ such thath ∩ ρ = ∅.
By Lemma 1 above, we haveI ∈ T(k) such thatI 6|=d F for eachF ∈ F \ h, henceI 6|=d F for each
F ∈ ρ. This contradictsτ |=d ρ.

Supposeτ 6|=d ρ but for each knotk ∈ K with root τ and eachk-hit h of KQ, we haveh ∩ ρ 6= ∅. As
τ 6|=d ρ, there exists someI ∈ T(τ) such thatI 6|=d F for eachF ∈ ρ. Let k be the knot at the root ofI
and consider the collectionC = {ρ′ \ ρ | (k, ρ′) ∈ KQ}. A simple consequence of thed-completeness of
KQ is that∅ 6∈ C. Hence, some minimal hitting set ofC exist. Take any such minimal hitting seth. Clearly,
h ∩ ρ = ∅ andh is ak-hit of KQ. Contradiction.

Using the above Theorem 1, we can compute ad-complete tq-tableTQd out of ad-complete kq-table
KQd. The procedure which exploits the theorem is presented in Figure 5.

We now show how to obtainKQd+1 from TQd. Intuitively, to make the step fromd to d + 1, we must
verify how each knot(r, S) in K can extend the mappings that exist in theβ-trees of its children(α, β) ∈ S,
which are captured by the minimal hitting sets ofTQd. This is formalized in the following notion of aρ-
fulfilling assignment.
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Definition 17. (assignment,ρ-fulfillment) Given a knotk = (r, S) from K, any functiong : S → 2F is
called a(f-subquery) assignment for k. We sayg is ρ-fulfilling, whereρ ∈ 2F, if there exist some(X,Σ) ∈ ρ

and a mappingφ : X → {r} ∪ S satisfying the following conditions:

(M1) For eachx ∈ X with φ(x) = r, we have{A|A(x) ∈ q} ⊆ r.

(M2) If R(x, y) ∈ q is an atom withφ(x) = r, thenφ(y) ∈ S.

(M3) If y is open but not free inX, thenφ(y) = r.

(M4) For eachs = (α, β) in S, there exist{(X1
s ,Σ1

s), . . . , (Xm
s ,Σm

s )} ⊆ g(s) such that:

• {x ∈ X | φ(x) = s} =
⋃

1≤i≤m(Xi
s),

• for everyy ∈ Xi
s that is free inX, (i) Σ(y) ⊆ α, and (ii ) if y is free inXi

s, Σ(y) ⊆ Σi
s(y).

• if y ∈ Xi
s is open inXi

s, then, for eachR ∈ back(Xi
s, y), there is someT ⊑∗ R such that: (i)

T ∈ α, and (ii ) if additionally y is free inXi
s, thenT ∈ Σi

s(y).

Note that ifg is ρ-fulfilling, then every assignmentg′ that containsg, i.e., with g′(s) ⊇ g(s) for all
s ∈ S, is ρ′-fulfilling for every ρ′ ⊇ ρ.

Example 6. For the knotk1 = (τB,C , {s1, s2}) in Figure 2, wheres1 = ({T}, τA) and s2 =
({P, T}, τA,B,C)}), each assignmentg with g(s2) = {F4} is {F6}-fulfilling, where as aboveF4 =
({x4}, {(x4, {T})}) and F6 = ({x3, x4}, ∅). This is witnessed by the mappingφ(x3) = τB,C and
φ(x4) = s2, which satisfies the conditions M1 to M4 (for M4, consider{(X1

s2
,Σ1

s2
)} ⊆ g(s2) where

(X1
s2

,Σ1
s2

) = F4; y = x4 is not free in{x3, x4}, but in X1
s2

= {x4}). The same assignment is also
{F4}-fulfilling; to see this, simply setφ(x4) = s2.

Intuitively, for a knotk = (r, S) from K, aρ-fulfilling assignmentg witnesses the existence of a rooted
prematch forρ within depthd + 1 in an arbitraryI ∈ T(k), provided that, for eachs ∈ S, the f-subqueries
in g(s) have rooted prematches in the subtreeIs of I rooted ats. Conversely, ifI |=d+1 ρ for someI,
the assignmentg that assigns to eachs ∈ S the set of(X,Σ) that are entailed atIs is ρ-fulfilling. More
precisely, we have:

Lemma 2. Letk = (r, S) be a knot inK and letρ ⊆ F. Further, letI ∈ T(k) and letg be an assignment
such that(X,Σ) ∈ g(s) iff Is |=d (X,Σ), for all s ∈ S. ThenI |=d+1 ρ iff g is ρ-fulfilling.

Proof. First we show (←). If g is ρ-fulfilling, by assumption there is someF0 = (X0,Σ0) ∈ ρ and a
mappingφ that satisfy M1 to M4 above. In particular, for eachs ∈ S, there exists some set

{(X1
s ,Σ1

s), . . . , (Xm
s ,Σm

s )} ⊆ g(s)

as described by M4. For each of theseF i
s = (Xi

s,Σ
i
s), Is |=

d (Xi
s,Σ

i
s) holds, so there is a rooted prematch

πi
s for F i

s in Is.
We construct a rooted prematch forρ in I, by combiningφ and the differentπi

s. The new mapping
π : X0 → ∆I is defined as follows:

π(x) =

{

root(I) if φ(x) = r,

bIs · π
i
s(x) if x ∈ Xi

s for somes andi

(recall thatbIs is the unique node ofI at depth 1 corresponding tos). Since{x ∈ X | φ(x) = s} =
⋃

1≤i≤m(Xi
s), π is well defined and total. It only remains to show thatπ is a rooted prematch forF0 in I.
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1. Consider anyA(x) ∈ q. If x ∈ Xi
s for somes andi, thenπi

s(x) ∈ AI becauseπi
s is a rooted pre-

match, and henceπ(x) ∈ AI . Otherwise,φ(x) = r and then M1 impliesA ∈ r androot(I) ∈ AI .
Hence RP1 holds.

2. To show RP2, consider a pairx, y ∈ X0 such thatR(x, y) ∈ q. The following cases are possible:

• If x ∈ Xi
s for somes, theny ∈ Xi

s (due to the closure properties of the setXi
s). Sinceπi

s is a
rooted prematch,πi

s(y) is anR-successor ofπi
s(x) in Is, and henceπ(y) is anR-successor of

π(x) in I.

• If φ(x) = r, then by M2 we haveφ(y) = s for somes = (α, β) ∈ S. Also, by M4,y ∈ Xi
s

for somei and, asx 6∈ Xi
s, we haveR ∈ back(Xi

s, y), and by the last item of M4, there is some
T ∈ α such thatT ⊑∗ R and, additionally,T ∈ Σi

s(y) whenevery is free inXi
s. Sinceπi is a

rooted prematch forF i
s in Is, it satisfies RP3 and RP4. This implies that eitherπi

s(y) is the root
of Is, or y is free inXi

s. In the former case,π(y) is anR-successor ofπ(x) as desired. In the
latter case,T ∈ Σi

s(y) andπi
s(y) is aT -successor of the root ofIs by RP4, which also implies

thatπ(y) is anR-successor ofπ(x).

3. RP3 follows directly from M3.

4. To show RP4, consider anyy that is free inX0 and an arbitraryR ∈ Σ(y). There are two cases:

• If φ(y) = r, thenπ(y) = root(I) and RP4 holds.

• If y ∈ Xi
s for somes andi, then by the second item of M4, we haveR ∈ α and either (i) y

is open but not free inXi
s, or (ii ) R ∈ Σi

s(y). Sinceπi
s is a rooted prematch forF i

s , it satisfies
Definition 12. In case (i), RP3 implies thatπi

s(y) is the root ofIs, and hence anR-successor of
root(I) in I as desired. In case (ii ), RP4 implies thatπi

s(y) is either the root ofIs as above, or
anR-successor of it. AsR ∈ α, again in both casesπi

s(y) is anR-successor ofroot(I) in I as
desired.

This shows thatπ is a rooted prematch forF0 and henceI |= ρ. Furthermore, since for eachx ∈ X0

the length ofπ(x) is 0 if φ(x) = r andπs(x) + 1 otherwise, and the length ofπs(x) is bounded byd, we
haveI |=d+1 ρ.

Now, to show (→), we assumeI |=d+1 ρ, and thatg is an assignment with(X,Σ) ∈ g(s) for each
(X,Σ) ∈ F and eachs ∈ S such thatIs |=d (X,Σ). To see thatg is ρ-fulfilling, we start by observing that,
by assumption, there is a(X,Σ) ∈ ρ and a rooted prematchπ for (X,Σ) in I. For eachs ∈ S, letXs contain
all variablesx ∈ X such thatπ(x) is in the treeIs. We partitionXs into sets of variablesX1

s , . . . , Xm
s

that are connected inq. We define a functionΣi
s that maps each freey ∈ Xi

s to a set of transitive roles as
follows: if π(y) is the root ofIs, thenΣi

s(y) = R
+(K). Otherwise,Σi

s(y) = {R ∈ R
+(K) | π(y) is an

R-successor of the root ofIs }. Clearly, eachXi
s is closed under the rules (a.i) and (a.ii) of Definition 11.

Hence, to see that each(Xi
s,Σ

i
s) is an f-subquery, it suffices to observe that, sinceπ is a rooted prematch,

π(y) is anR-successor ofroot(I) for eachR ∈ back(Xi
s, y), and hence condition (b) also holds.

It is also easy to see that, for eachs and eachi, Is |=d (Xi
s,Σ

i
s) (simply restrictπ to the corresponding

variables to obtain a rooted prematch inIs). So, by our assumption aboutg, (Xi
s,Σ

i
s) ∈ g(s).

Now we can define a mappingφ : X → {r} ∪ S that witnesses thatg is ρ-fulfilling as φ(x) = r if
π(x) is the root ofI, andφ(x) = s if x ∈ Xs. It is straightforward to verify thatφ satisfies M1 to M3 in
Definition 17. For M4, we can use for eachs ∈ S the(X1

s ,Σ1
s), . . . , (Xm

s ,Σm
s ) defined above, since they

are ing(s). Then the first item is trivial; the other two can be verified asfollows:
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• Consider anyy ∈ Xi
s that is free inX, and anyR ∈ Σ(y). Sinceπ is a rooted prematch and

π(y) 6= root(I), by RP4,π(y) is anR-successor ofroot(I). This implies that, ifs = (α, β), R ∈ α

and eitherπ(y) = bIs or π(y) is anR-successor ofbIs . If y is also free inXi
s then, in both cases,

R ∈ Σi
s(y) by construction ofΣi

s.

• Consider anyy ∈ Xi
s that is open inXi

s, and anR ∈ back(Xi
s, y) such thatR(x, y) ∈ q. Sinceπ is a

rooted prematch andx 6∈ Xs, either (a)π(x) = root(I) or (b) x 6∈ X. In case (a), by RP2,π(y) is a
T -successor ofroot(I). In case (b),y is open inX and, moreover, free inX (asy open but not free
would imply π(y) = root(I), contradictingy ∈ Xs). Hence, there is someT ⊑∗ R with T ∈ Σ(y)
and, by RP4, we also haveπ(y) a T -successor ofroot(I). In both cases (a) and (b), it thus follows
T ∈ α, wheres = (α, β). It also follows that eitherπ(y) = bIs , or π(y) is aT -successor ofbIs andT

is transitive. Ify is free inXi
s, then by construction in both casesT ∈ Σi

s.

The step fromTQd to KQd+1 computes the f-subqueriesρ for which theτ -hits ofTQd areρ-fulfilling.

Theorem 2. SupposeTQ is a d-complete tq-table,ρ ⊆ F is a disjunctive f-subquery, andk = (r, S) is a
knot inK. Furthermore, letC be the set of assignments fork that map each(α, β) ∈ S to a β-hit of TQ.
Thenk |=d+1 ρ iff every assignmentg ∈ C is ρ-fulfilling.

Proof. (→) Supposek |=d+1 ρ. Consider an arbitrary assignmentg ∈ C. By assumption, for eachs =
(α, β) ∈ S, g(s) is a β-hit of TQ. Hence, by Lemma 1, there is a treeIs ∈ T(β) that satisfies exactly
the f-subqueries ing(s). Let I ∈ T(k) be the tree that coincides with all theseIs. As I |=d+1 ρ, then by
Lemma 2,g is ρ-fulfilling.

(←). Now assume that eachg ∈ C is ρ-fulfilling, and consider an arbitraryI ∈ T(k). For each
s = (α, β) ∈ S, let Fs be the set of all f-subqueriesF such thatIs |=d F , and letg′ be the assignment
such thatg′(s) = Fs for all s ∈ S. Then,Fs ∩ ρ′ 6= ∅ must hold for each(τ, ρ) ∈ TQ such thatτ = β;
hence, there exists someβ-hit hs of TQ such thaths ⊆ Fs. By assumption, there exists someg ∈ C such
thatg(s) = hs for all s ∈ S. As g is ρ-fulfilling and g′ containsg, alsog′ is ρ-fulfilling. Thus by Lemma 2,
I |=d+1 ρ. Hence,k |=d+1 ρ.

Example 7. Reconsider the knotk1 = (τB,C , {s1, s2}) in Figure 2, wheres1 = ({T}, τA) and s2 =
({P, T}, τA,B,C)}), and the tq-tableTQ0 in Example 5. As fors1, the singleτA-hit of TQ0 is ∅ (by mini-
mality, as there is no entry forτA in TQ0), and fors2, the singleτA,B,C-hit of TQ0 is {F4, F5}. Hence, the
set of assignmentsC consists ofg whereg(s1) = ∅ andg(s2) = {F4, F5}. Since we know from Example
6 thatg is {F4}-fulfilling and {F6}-fulfilling, it follows that k1 |=

1 ρ for every disjunctive f-subqueryρ
that includes eitherF4 or F6 (or both); in particular,k1 |=

1 {F4} andk1 |=
1 {F6}, and thus(k1, {F4}) and

(k1, {F6}) are included inKQ1.
So far, we have only considered singleton disjunctive f-subqueries in tq- and kq-tables, but not always

complete such tables can be derived where only singleton f-subqueries occur. For example, if we continue
the computation above, we would eventually compute a 2-complete tq-tableTQ2 such that each of itsτABC -
hits contains eitherF6xX < or F2, and one can infer thatk1 |=

3 {F1, F2} although neitherk1 |=
3 {F2} nor

k1 |=
3 {F2} holds.

The algorithm based on the Theorem 2,compute TQ, is shown in Figure 6. Using the two algorithms
presented so far, we can compute ad-completeTQ for any d > 0. A 0-complete tq-tableTQ0 can be
constructed as described above. Due to monotonicity, we canobtain one TQ that is complete for any
d ∈ N , the computation reaches a fixpoint. And in fact, this happens within finitely many steps.
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Algorithm 3 : KQ from TQ

Data: ad-complete tq-tableTQ

Result: ad+1–complete kq-tableKQ

begin
R := ∅;
forall k ∈ K do

C := ∅;
Add toC eachg : S → 2F such that for each(α, β) ∈ S, g((α, β)) is aβ-hit of TQ;
forall ρ ⊆ F do

if eachg ∈ C is ρ-fulfilling then
R := R ∪ {(k, ρ)};

return R
end

Figure 6: From type-query tables to knot-query tables (for the knot setK and the queryq).

Proposition 5. For each typeτ , if τ |= ρ, then there exists somed ∈ N such thatτ |=d ρ.

Proof. To give a boundd, we construct a tree of interpretations which captures parts of trees inT(τ) that
are relevant for the mappings ofρ. For an integern ≥ 0, let I↑n be the restriction of a tree-shapedI up to
depthn. Define a treeT = (V,E) where

(i) the vertex set isV = {I↑n | I ∈ T(τ) ∧ n ≥ 0}, and

(ii) the child relation isE = {〈I↑n,I↑n+1〉 | I ∈ T(τ) ∧ n ≥ 0}.

Intuitively, each pair inE represents an expansion of the levels 0, 1,. . . ,n − 1 of I by another level using
the knots inK. Hence each path inT corresponds to an interpretation inT(τ). Observe thatT is finitely
branching. Consider now the setP of all nodesI↑n ∈ V such thatI↑n |= ρ andI↑n−1 6|= ρ (the latter in
case wheren > 0). As τ |= ρ, by construction ofT each path in it contains some node fromP . Let T ′

result fromT by removing all successors of nodes inP . SinceT ′ does not have infinite branches and is
finitely branching, by König’s LemmaT ′ is finite. Hence for eachI ∈ T(τ) the match forρ occurs within
finite depthd, whered is the length of the longest branch inT ′.

Naturally, the question is whichd witnessesτ |= ρ for sure. As the complexity analysis of our algorithm
will reveal (see Section 6), a number double exponential in the size of the query and the knowledge base is
sufficient.

5.3 Query Entailment over full KBs

Assume an arbitrary ABoxA. We now show how to use the knot setK and a complete type-query table to
answer queries over the full knowledge baseK = 〈T ,A〉. The underlying principle is the same as above,
but we need some technical machinery. Roughly speaking, theidea is to reduce answeringq overK to
answeringq over a set of ABoxes. To this end, we construct the setexp(A,TQ) which contains ABoxes
obtained by expanding completions ofA with one layer of knots (resulting, intuitively, in a forestof depth
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Algorithm 4 : compute TQ

Result: a complete tq-tableTQ

begin
Construct a0-complete tq-tableTQ0 for K andq;
d = 0;
repeat

KQd+1 := KQ from TQ(TQd);
TQd+1 := TQ from KQ(KQd+1);
d := d + 1;

until TQd−1 6= TQd ;
return R

end

Figure 7: Computing a complete type-query table (for the knot setK and the queryq).

1), and then attaching to each leaf ABoxes representing f-subqueries fromTQ. The answer toq overK is
then given by the tuples that belong to the answer ofq overA′ for everyA′ ∈ exp(A,TQ).

To query ABoxes, we define the following:

Definition 18 (querying ABoxes). Given any ABoxA′, ans(q,A′) consists of individual tuples~c such that
~c ∈ ans(q,A′) iff ~c ∈ ans(q,I), whereI is the interpretation such that:

(a) ∆I = I(A′),

(b) for eacha ∈ I(A′), we haveaI = a,

(c) for each atomicA, aI ∈ AI iff a : A ∈ A′, and

(d) for each roleR, (aI , bI) ∈ RI iff 〈a, b〉 : R ∈ A′.

The interpretationI representsA′.

We describe howexp(A,TQ) is constructed, and the first step is to represent f-subqueries as ABoxes.

Definition 19. Given an individualb and an f-subqueryF = (X,Σ) ∈ F, let abox(b, F ) be an ABox
consisting of:

(a) b : C for each open variablex ∈ X andC(x) ∈ q.

(b) bF,x : C for each closed (i.e., non-open) variablex ∈ X andC(x) ∈ q.

(c) 〈b, bF,y〉 : R for each pair of an openx ∈ X and closedy ∈ X with R(x, y) ∈ q.

(d) 〈bF,x, bF,y〉 : R for each pair of closed variablesx, y ∈ X with R(x, y) ∈ q.

Note thatabox(b, F ) does not depend onΣ in F = (X,Σ); indeed,Σ only serves for the back-
propagation of subqueries which does not play a role here. Wenow make one step further and construct
an ABox using a knot and an assignment, where the queries given by the latter induce a set of ABoxes as
above.
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Definition 20. Given an individuala, a knotk = (r, S) and an assignmentg for k, let abox(a, k, g) =
A1 ∪ A2, where:

(a) The ABoxA1 consists of:

(i) a : C for eachC ∈ r;

(ii) 〈a, a
k,g
s 〉 : R for eachs = (α, β) in S andR ∈ α;

(iii) a
k,g
s : C for eachs = (α, β) in S andC ∈ β;

(b) The ABoxA2 is defined asA2 =
⋃

s∈S

⋃

F∈g(s) abox(ak,g
s , F ).

Before we present the algorithm, we look at the correspondence between constructed ABoxes and tree-
shaped interpretations generated by knots.

Definition 21. Given a knotk and an assignmentg for k = (τ, S), we say an interpretationI ∈ T(k)
representsk andg, if for eache ∈ ∆I at depth 1, it holds that{F ∈ F | I|e |= F} = g(s) wheree = bIs
(the unique element at depth 1 identified by the leafs ∈ S of k).

Informally, the above means that if we look at the subtree rooted at a child of the root ofI, then the set of
queries for which it has a prematch is exactly the one given bythe assignment.

A straightforward application of Lemma 1 yields the following:

Proposition 6. Supposek = (r, S) is a knot inK andg is an assignment fork such thatg(α, β) is aβ-hit
of a complete tq-tableTQ for each(α, β) ∈ S. Then someI ∈ T(k) exists that representsk andg.

Intuitively, if I ∈ T(k) representsk andg, thenabox(a, k, g) can be viewed as “compact” structure that
is equivalent toI w.r.t. query prematches. We are now ready to define the ABox expansions.

Definition 22 (ABox expansions). Given a complete tq-tableTQ, aTQ-expansionof A is any ABox

A′ = Ac ∪
⋃

a∈I(A)

Aa,

whereAc ∈ comp(A) and, for each individuala ∈ I(A),Aa = abox(a, ka, ga) for someka = (r, S) in K

with root typeAc(a) and assignmentga for ka such thatga(α, β) is aβ-hit of TQ for each(α, β) ∈ S. We
denote withexp(A,TQ) the set of allTQ-expansions ofA.

Now we can formally state the main result of this section, which shows that we can reduce CQ answering
overK to CQ answering over expanded ABoxes.

Theorem 3(Main result). If TQ is a complete tq-table, then

ans(q,K) =
⋂

A′∈exp(A,TQ)

ans(q,A′).

Proof. “→”. Suppose~c ∈ ans(q,K), where~c = 〈c1, . . . , cn〉, and consider anyA′ ∈ exp(A,TQ). By
definition, A′ = Ac ∪

⋃

a∈I(A)Aa, whereAc ∈ comp(A) and, for each individuala ∈ I(A), Aa =
abox(a, ka, ga) for someka = (r, S) in K with root typeAc(a), and some assignmentga for ka such that
ga(α, β) is aβ-hit of TQ for each(α, β) ∈ S.
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Algorithm 5 : computeAnswers

Data: KB K = 〈T ,A〉, CQq

Result: ans(q,K)
begin

Compute aCT
A -complete knot setK for T ;

Compute a complete tq-tableTQ for q from K;
Compute the setexp(A,TQ) of TQ-expansions of the ABoxA;
Let R :=

⋂

A′∈exp(A,TQ) ans(q,A′);
return R

end

Figure 8: Computing the answers to the queryq over the KBK.

We simply “expand”Ac to a full forest-baseI ∈ FK(A) forK. We do this by taking an interpretationIc
representingAc and, for each individuala, attaching toaI a treeIa that representska andga. By assump-
tion, q has some prematchπ in I such that〈cI1 , . . . , cIn〉 = 〈π(~x1), . . . , π(~xn)〉, where~x = 〈x1, . . . , xn〉 are
the answer variables ofq. Consider a decomposition ofπ into several functions. LetπI be the restriction of
π to variables mapped to (the interpretation of) individuals. Furthermore, for each elemente at depth 1 inI,
i.e., a child of a root node, letπe be the restriction ofπ to elements thatπ maps in the subtree ofI rooted at
e. Clearly,πe induces a (possibly empty) set of f-subqueriesQ ∈ 2F which all have a rooted prematch in the
subtree ofI rooted ate. Assumee is insideIa. SinceIa representska andga, for all F = (X,Σ) ∈ Q in
theabox(e, F ) we will have a prematch for the subquery ofq induced byX. By composingπI with the pre-
matches for the latter subqueries ofq, we can obtain a prematchπ′ for q in the interpretationI ′ representing
A′ such that〈cI

′

1 , . . . , cI
′

n 〉 = 〈π′(~x1), . . . , π
′(~xn)〉. Hence,~c ∈ ans(q,A′).

“←”. Suppose~c ∈ ans(q,A′) for eachA′ ∈ exp(A,TQ). Let I be an arbitrary forest-base forK. Due
to CT

A -completeness ofK, we haveI ∈ FK(A), i.e.,I can be constructed from some completionAc of
A and from knots inK. For each individuala ∈ I(A), let ka = (ra, Sa) be the knot at the root of the
subtree rooted ataI . Consider an assignmentg′a for ka such that for eachs = (α, β) in Sa, g′a(s) is the set
of all f-subqueries that have a rooted prematch in the subtree of I rooted ates, wherees is the child ofaI

corresponding to the leafs of ka. Clearly, the subtree ofI rooted ates is aβ-tree. Due to completeness
of TQ, there exists someβ-hit h of TQ such thath ⊆ g′(s). Thus we can define an assignmentga for ka

such that for eachs = (α, β) in Sa, ga(s) is aβ-hit of TQ. Now consider an expansionA′ ∈ exp(A,TQ)
built fromAc and ABoxesabox(a, ka, ga) for each individuala whereka andga are as described. Then the
modelI ′ that representsA′ coincides withI on all individualsa ∈ I(A) and by Proposition 6, the subtree
of I ′ rooted ata representska andga. As ~c ∈ ans(q,A′), there exists a prematchπ′ for q in I ′ such that
〈cI

′

1 , . . . , cI
′

n 〉 = 〈π′(~x1), . . . , π
′(~xn)〉. As ga(s) ⊆ g′a(s) holds for alla ∈ I(A) ands ∈ S, it follows thatq

has a prematchπ in I such that〈cI1 , . . . , cIn〉 = 〈π(~x1), . . . , π(~xn)〉.

6 Computational Complexity

We analyze now the complexity of our algorithm for CQ answering overSH knowledge bases. Recall that
the method consists of three main steps: (1) computing aCT

A -complete knot set for an input KBK = 〈T ,A〉,
(2) computing a complete tq-tableTQ for the computed knot setK and an input CQq, and (3) collecting
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answers toq by traversingTQ-expansions ofA. The method is worst-case optimal forSH, and, in fact,
also forALCH. In order to see this, we first state the following theorem.

Theorem 4. LetK = 〈T ,A〉 be anSH KB, letq be a conjunctive query, and letF be the set of f-subqueries
of q. Then, given a tuple~c of individuals, deciding whether~c ∈ ans(q,K) is feasible in time exponential in
|K| + |q|+ |F|.

Proof. We will analyze the three steps of the procedure. To this end,let c := |clos(T )|, and observe that the
number of distinct typesτ for T is bounded bytm := 2c, while the number of distinct knots forT is bounded
by km := 2c·(2c·2c)c = 2c+2c2. Hence, the number of distinct types resp. knots is single exponential in|K|.

For step 1, observe that aCT
A -complete knot setK can be obtained in time exponential in|K| via

the elimination algorithm from Figure 3. Indeed, constructing the setK in the first step is feasible in time
exponential in|T |. In the subsequent “fill-up” stage that closesK, the procedure may add only exponentially
many knots, while in the final “clean-up” stage each removed knot cannot be introduced again.

For the step 2, we make sure that using the procedure from Figure 7 we can compute a complete type-
query tableTQ for K andq in time exponential ins := |K|+ |q|+ |F|. This follows from the next observa-
tions:

i) At each iteration, by construction, the algorithm computes ad+1-complete tq-tableTQd+1 (via ad+1-
complete kq-tableKQd+1) from a d-complete tq-tableTQd. Furthermore, the computed tables are
“full” in the sense thatall entailed disjunctive f-subqueries queries are included inthe tables.2 More
precisely, for eachd, we have(τ, ρ) ∈ TQd iff τ |=d ρ. Sinceτ |=d ρ impliesτ |=d+1 ρ, we get that
the computation is monotonic, i.e., each computedTQd+1 includesTQd.

ii) The largest possible tq-table forT andq is clos(T )× 2F, which is clearly of size exponential ins.
Hence, and given the monotonicity, the algorithm terminates within a number of steps that is exponen-
tial in s.

iii) Each iteration, which consists of a call toKQ from TQ and then a call toTQ from KQ, takes time at
most exponential ins. For the call toKQ from TQ, pairsk, ρ of knotsk and disjunctive f-subqueries
ρ are traversed. The number of such pairs is exponential ins. Furthermore, for each pair(k, ρ) its
inclusion in the resulting table is decided by checking the conditions prescribed in Theorem 1, and
this takes time at most exponential ins. The call toTQ from KQ is analogous: there are at most
exponentially (ins) many pairs(τ, ρ) of types and disjunctive f-subqueries, and the inclusion test via
the conditions in Theorem 2 is also feasible in exponential time.

For the final step 3, which is based on Theorem 3, note that the number ofTQ-expansion ofA is the
number of ways of choosing a completionAc of A, expandingAc for each individuala of A with a knot
k and then choosing a set of f-subqueries for each leaf of the resulting forest (yielding an assignmentg);
this is again bounded by an exponential ins. Finally, checking whether~c ∈ ans(q,A′) is true for a given
expansionA′ ∈ exp(A,TQ) is also feasible in time exponential ins.

We can now easily infer the upper bound for the query answering problem inSH. Indeed, for a given
CQ q, the size of the setF of f-forward subqueries ofq is bounded by2V(q), which is exponential in|q|.
Therefore, by the above theorem, the procedure can be run in time double exponential in the size of the input
KB K and the queryq. This is worst-case optimal due to the2EXPTIME-hardness of the problem, which
was shown in [10].

2In fact, only the subset minimal subqueries would need to be stored. However, the worst case complexity remains unchanged.
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Theorem 5. Given a KBK in SH, a CQq and a tuple of individuals~c, deciding whether~c ∈ ans(q,K) is
2EXPTIME-complete.

We finally note that computingans(K, q) for an SH KB K and a queryq is also feasible in double
exponential in|K|+ |q|. This is because the number of candidate answer tuples~c is only exponential in|K|.

6.1 Syntactic Restrictions

We discuss here some syntactic restrictions to obtain classes of CQs for which query answering is feasible
in single exponential time. To this end, it is sufficient to ensure that a query can be decomposed into only
polynomially many f-subqueries; the complexity drop follows then from Theorem 4.

We assume an arbitrarySH KB K, and define next some notions to measure the structural complexity a
query (w.r.t.K).

Definition 23 (fork degree, non-trivial forks). For any queryq, we define

R
q
+(x) = {xn | R1(x, x1) ∈ q,R2(x1, x2) ∈ q, . . . , Rn(xn−1, xn) ∈ q ∧ n ≥ 1 },

i.e., R
q
+(x) denotes the set of variables reachable fromx in the query graph ofq in one or more steps.

Furthermore, letRq
∗(x) = {x} ∪ R

q
+(x) and, for any setX of variables, letRq

+(X) =
⋃

x∈X R
q
+(x) and

R
q
∗(X) =

⋃

x∈X R
q
∗(x).

A setX ⊆V(q) is called afork set(of q) if the following are true:

(a) for eachx 6= y ∈X, it holds thaty 6∈R
q
+(x) andx 6∈R

q
+(y);

(b) the setRq
∗(X), i.e., the closure ofX under reachable variables, induces a connected subquery ofq;

(c) there exists no variablex ∈ X such that, for somey ∈ V(q), we havey ∈ R
q
+(x) andy ∈ R

q
+(y), i.e.,

none of the variables inX reaches a cycle inq.

Then thefork degree ofq, denotedfd(q), is defined as the size of the largest fork set ofq.
Thenumber of non-trivial forksin a queryq is the number of variablesx ∈ V(q) satisfying the follow-

ing:

(a) there exist two atomsR(z, x) ∈ q andR′(z′, x) ∈ q such thatz 6= z′ andR′ is not simple inK,

(b) there exists noy ∈ V(q) such thaty ∈ R
q
+(x) andy ∈ R

q
+(y).

Example 8. For the queryq in Example 4,X = {x1, x5} is the only fork set ofq which contains more
than one variable; any other such candidate fork set violates either condition (a) or condition (b). Hence,
fd(q) = 2.

Note that for fork setsX of size larger than one, each variablex ∈ X has a common successor with
some other variabley ∈ X (in the previous example,x1 has a common successor withx5). Intuitively, the
fork degree ofq tells us how many “incomparable” variables we can pick so that they induce a connected
acyclic subquery ofq. Given this, we can formulate a syntactic condition ensuring lower complexity of
query answering.

Theorem 6. If Q is a class of CQs such that for anyq ∈ Q:
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(a) the number of non-trivial forks inq is bounded by some constantc,

(b) fd(q) is bounded byc, and

(c) for each pairx, y ∈ V(q), |{R | R(x, y) ∈ q ∧R is not simple inK}| ≤ c,

then the setF of f-subqueries ofq is polynomial in|q|. Hence, answering a queryq ∈ Q over the KBK is
feasible in single exponential time in|q|+ |K|.

Proof. Consider an arbitrary f-subquery(X,Σ) of q ∈ Q. By definition,X induces a connected acyclic
subquery ofq. Let Mx be the set of allx ∈ X that have no predecessor inX, i.e., for which there exists no
R(z, x) ∈ q with z ∈ X. Clearly,Mx is a fork set ofq (see Definition 23), and hence by (b)|Mx| ≤ c. We
get that the number of differentMx over all possibleX is bounded by|V(q)|c, and is polynomial in|q|. It
is not hard to see that given two f-subqueries(X1,Σ1) and(X2,Σ2) of q with Mx1

= Mx2
we also have

X1 = X2. Hence, the number of distinctX that can be chosen is bounded by|V(q)|c, and is polynomial in
|q|.

We consider the possibilities of choosingΣ. Observe thatΣ is defined only for the free variables ofX.
The number of variablesy ∈ X that are in free inX is bounded by2·c because of the bounded number of
non-trivial forks inq (condition (a)). For each suchy, we have|back(X, y)| ≤ d for some constantd because
of the conditions (a) and (c). Hence, the number of choices for Σ(y) is bounded by|{R|R(x, y) ∈ q}|d, and
is thus polynomial in|q|.

The second part of the claim follows then from Theorem 4.

Note that when computing the fork degree of a query, we do not ignore forksR(x, y), R′(x′, y) where
x 6= x′ andR,R′ are simple; the variablesx andx′ in this case are treated as incomparable. However, such
forks aresimplein the sense that they do not increase the number of distinct f-subqueries because (a.ii) of
Definition 11 enforces that either bothx andx′ or neitherx norx′ belong to a f-subquery. To deal with this,
we eliminate such forks from the query.

Definition 24 (fork rewriting [23]). For a CQq, a fork rewriting of q is a query obtained fromq by ex-
haustively applying the following rule: if the query contains atomsR(x, y) andR′(x′, y) wherex 6= x′ and
R,R′ are simple, then replace every occurrence ofx with x′, By fw(q) we denote an arbitrary fork rewriting
of q.

Example 9. Reconsider the query in Example 4 (Figure 4). Fork elimination is applicable toP (x1, x6),
R(x5, x6); after that, no further elimination is possible and we have the result

fw(q)= Q(x2, x3),R(x3, x4), A(x4),C(x4),B(x5),C(x5),T (x5, x2),P (x5, x6),R(x5, x6),Q(x6, x7),C(x7).

Note that fork rewritings ofq coincide up to a renaming of variables. We can now state the slightly
relaxed conditions which diminish the impact of simple forks to the fork degree.

Theorem 7. LetQ be a class of CQs such that for anyq ∈ Q:

(a) the number of non-trivial forks infw(q) is bounded by some constantc,

(b) fd(fw(q)) is bounded byc, and

(c) for each pairx, y ∈ V(q), |{R|R(x, y) ∈ q ∧R is not simple inK}| ≤ c.

Then deciding~c ∈ ans(q,K) for a givenq ∈ Q and tuple~c, is EXPTIME-complete in|q|+ |K|.
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Proof. To prove the upper bound, by Theorem 4, it suffices to show thatthe number of f-subqueries ofq is
polynomial in|q|. As argued in the proof of Theorem 6, the conditions (a) and (c) ensure that the number of
ways to chooseΣ for an f-subquery(X,Σ) of q is polynomial in|q|.

The number of choices forX is also polynomial in|q|. To see this, for any conjunctive queryq′ define
Xq′ = {X | 〈X,Σ〉 is an f-subquery ofq′}, and observe that (i) |Xfw(q)| is polynomial in|q|, and (ii ) |Xq| =
|Xfw(q)|. The former follows from (b) and Theorem 6 (as|fw(q)| ≤ |q|). For the latter, note that a rewrite step
in fork rewriting preserves the number of variable sets satisfying (a.ii) of Definition 11. More precisely, if
q′′ is obtained fromq′ by the rewrite rule in Definition 24, then|Xq′ | = |Xq′′ | (as easily seen by establishing
a bijection fromXq′ toXq′′).

The lower bound easily follows from the EXPTIME-hardness of satisfiability testing inALC [35].

Based on the above theorem we can obtain further query classes of lower computational complexity. In
particular, the conditions (a-c) of Theorem 7 are satisfied for the class of queries that allow for simple roles
only. Indeed, given such a queryq, (a) and (c) are trivially satisfied. For (b), observe that for any variable
x of fw(q) there are two possibilities. The variablex occurs in a cycle in the query graph offw(q), and
hencex is not included in any fork set and does not contribute to the fork degree. Alternatively,x and its
successors induce a subquery offw(q) whose graph is a tree. In this case,{x} is the single fork set wherex
may occur. Therefore,fw(q) = 1.

Importantly, the above can be generalized to the case where only a bounded number of atomsR(x, y),
whereR is non-simple, occur in a query. This is a consequence of the next result, for which we use a more
refined query complexity measure.

Definition 25 (counting transitive arcs). For any queryq, let t(q) denote the number of all pairs of variables
x, y ∈ V(q) such that:

(1) q contains some atomR(x, y) whereR is not simple inK,

(2) q contains no atomR′(x, y) whereR′ is simple inK,

(3) y does not reach a cycle in the query graph ofq, i.e., noz ∈ R
q
∗(y) exists such thatz ∈ R

q
+(z), and

(4) some variablez ∈ R
q
∗(y) has more than one predecessor inq, i.e., |{u | R(u, z) ∈ q}| > 1.

Note that (3) eliminates pairs of variables that do not matter for the fork degree due to cyclicity (see
(b) in Definition 23). Condition (4) refines this, by further eliminating cases whereRq

∗(y) induces a query
subgraph ofq that is tree-shaped and disconnected to the remainder of thequery graph ofq. We remark that
t(q) can be easily computed.

Proposition 7. For each CQq it holds thatfd(fw(q)) ≤ t(fw(q)) + 1 ≤ t(q) + 1.

The proof of this proposition, which does not give particular insight into the techniques of this section,
is given in Appendix A.

Assume a queryq and observe that the number of non-trivial forks infw(q) is ≤ t(q). Indeed, due to
the rewrite rule, for each variabley of fw(q) there exists at most one variablex such that{R | R(x, y) ∈ q}
contains a simple role. In other words, for each other variable z 6= x, all roles in{R | R(z, y) ∈ q}must be
non-simple. This means that ifx is a variable counted in as a non-trivial fork (i.e., satisfies the conditions in
Definition 23), then forx there exists at least onez such that the pairz, x is counted int(q) (i.e.,z, x satisfy
the conditions in Definition 25). Hence, and given Proposition 7, we reshape Theorem 7 as follows.
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Theorem 8. If Q is a class of CQs andc is a constant such that for anyq ∈ Q:

(a) t(q) ≤ c, and

(b) for each pairx, y ∈ V(q), |{R | R(x, y) ∈ q ∧R is not simple inK}| ≤ c,

then deciding~d ∈ ans(q,K) for a givenq ∈ Q and tuple~d, is EXPTIME-complete in|q|+ |K|.

Corollary 1. (Full) query answering inALCH is feasible in single exponential time in the size of the input.

From the EXPTIME-hardness of consistency testing inALC [35], it follows that the presented query
answering procedure is also worst-case optimal forALCH.

6.2 Data Complexity and Encoding into Datalog

The query answering procedure presented here can be easily adjusted to be worst-case optimal in the data
complexity. We analyze next the complexity of verifying~c ∈ ans(q, 〈T ,A〉) where the terminologyT and
the queryq are fixed, and only the ABoxA with assertions over roles and atomic concepts is considered as
an input. TheCONP-hardness of the problem is well-known (see, e.g., [5] formore details), and we argue
here that the method provides a tightCONP upper bound.

Proposition 8. Algorithm computeAnswers, adapted to a nondeterministic version, runs inCONP data
complexity.

Proof. Fix a terminologyT and a queryq. As argued already, for a setQ of types forT we can obtain a
Q-complete knot setK for T via the algorithm in Figure 3. To be capable of dealing with any possible input
ABox A, we setQ to the set of all possible types forT , and compute a complete type-queryTQ for K and
q. Note the difference from the algorithm in Figure 8 where only the restricted setCT

A of types occurring in
completions of an input ABoxA is considered. In other words, we compute a knot setK and a tq-tableTQ

that are good for any possible input ABoxA.
GivenK andTQ, the result follows from the fact that deciding~c 6∈ ans(q, 〈T ,A〉) is feasible in non-

deterministic polynomial time in the size of|A|. Indeed, this can be done in a guess-and-check manner as
follows:

• Build nondeterministically an expansionA′ ∈ exp(A,TQ). More precisely, guess an ABox com-
pletionAc and, for each individuala ∈ I(A), addabox(a, ka, ga) according to a nondeterministic
choice of some knotka = (r, S) from K with root typeAc(a), and some proper assignmentga for
ka w.r.t. TQ (see Definition 22). Observe that sinceT andq are fixed, such an expansionA′ can be
nondeterministically computed in polynomial time in|A| (Ac has polynomial size then, and checking
the conditions (a)-(g) of Definition 7 is simple;abox(a, ka, ga) has size bound by a constant, and only
constantly many differentabox(a, ka, ga) exist).

• Verify ~c 6∈ ans(q,A′). There are|I(A′)||V(q)| different candidate query mappingsπ for q in A′. As
|V(q)| is fixed and|I(A′)| is linear in|A|, the number of such candidates is polynomial in|A|. Testing
whetherπ witnesses~c ∈ ans(q,A′) is also polynomial in|A|. Hence, the verification step is feasible
in polynomial time in|A|.
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We get an analogousCONP result for answering varying CQs of small size (bounded bya constant) over
a knowledge baseK with static (fixed) TBox, if its compilation into a suitableQ-complete knotK set is
available; this may be due to off-line pre-compilation, or to cachingK after the first query. In this setting,
the tq-tableTQ is constructible in polynomial time (only constantly many subqueries exist), and deciding
whether~c 6∈ ans(q, 〈T ,A〉) is still feasible in NP. In fact, if also the ABox is fixed, the last step is feasible
in polynomial time (only constantly many expansionsA′ of A and constantly many candidate mappings of
V(q) into eachA′ exist, which can be easily traversed).

The guess-and-check procedure in the proof of Proposition 8can easily be simulated in a disjunctive
Datalog program [7], which consist of rules of the form

A1 ∨ · · · ∨Am ← B1, . . . , Bn m + n > 0 (1)

where theAi andBj are function-free first-order atoms and each variable occurring in Ai also occurs in
someBj. The semantics of such a programP is given by the minimal (w.r.t.⊆) sets of ground (variable-
free) atoms that are closed under the rules ofP (called minimal models or answer sets); a ground atomA is
a cautious consequence ofP , if A occurs in all answer sets ofP .

Using disjunctive rules, it is possible to generate the expansionsA′ of an input ABoxA (with as-
sertions over roles and atomic concepts only) in the answer sets of a ground programP (A), such that
ans(q, 〈T ,A〉) corresponds to the set of cautious consequencesq(~c) of P (A). In more detail, viewing
concepts and roles as predicates, and thus assertionsa :C, 〈a, b〉 : R as atomsC(a), R(a, b), we can
“guess” for each possible atomC(a) resp.R(a, b) with a ruleC(a) ∨ C̄(a) ← resp.R(a, b) ∨ R̄(a, b) ←,
where C̄ and R̄ are fresh predicates, whether the atom belongs to an ABox completion Ac of A, and
ensure with rules of form (1) that for the so guessedAc the conditions (a)-(g) of Definition 7 are satis-
fied. Furthermore, for each individuala ∈ I(A), we can guess someAa = abox(a, ka, ga) using a rule
abox(a, k1, g1) ∨ · · · ∨ abox(a, kna , gna) ← , where theabox(a, ki, gi) are all possible choices fora (here
k andg are viewed as constant symbols). Facts forabox(a, k, g) according to Definitions 20 and 19 are
generated with rulesC(a) ← abox(a, k, g), R(a, a

k,g
s ) ← abox(a, k, g) etc. Finally, for each possible

mappingπ of V(q) into I(A′), the ruleq(π(x1), . . . , π(xn)) ← P1(~y1π), . . . , Pm(~ymπ) is added, given
thatq = {P1(~y1), . . . , Pm( ~ym)} andq has answer variables~x = 〈x1, . . . , xn〉; here~yiπ denotes the substi-
tution ofπ(xj) for xj in the arguments~yi of Pi, for j = 1, . . . , n.

Overall, the programP (A) is constructible in polynomial time fromA, and since cautious inference
from ground disjunctive Datalog programs isCONP-complete, this reduction is also worst-case optimal.

It is possible to lift this encoding to a fixed non-ground program P T
q such that, for each input ABox

A, ans(q,A) corresponds to the cautious consequencesq(~c) of P T
q ∪ A ∪NA, whereNA consists of facts

name
k,g
s (a, a

k,g
s ) andnameX,x(a, aX,x) that introduce the new individualsak,g

s andaX,x in the expansion
A′ (cf. Definitions 20 and 19) in the program; note thatNA has size linear in|I(A)| and is easily constructed
fromA. Again, this is worst-case optimal.

We finally note that instead of disjunction, also (unstratified) negation may be used for the encoding.
Thus, a range of reasoning engines for disjunctive/unstratified Datalog (e.g., DLV, smodels, clasp) can be
used for implementation.

7 Discussion and Conclusion

The novel algorithm for CQ answering over knowledge bases inSH which we presented above has some
nice features; it is worst case optimal forSH in general but also for important fragments includingALC
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andALCH, both with respect to the size ofK plusq (the combined complexity) and the size of the ABox
of K (the data complexity). Noticeably, the algorithm handles CQs with distinguished (output) variables
directly and makes a customary grounding step unnecessary,in which an input query is reduced to (possibly
exponentially many) Boolean queries, one for each possibleoutput tuple~c. The underlying knot technique
is different from previous query answering approaches yet not completely unrelated.

7.1 Related Work

Our knot technique can be seen as a special instance of the well-known mosaic method in Modal Logic
(cf. [27, 26]) and is related to type elimination [32]. Mosaics are small “blocks” for building models that
involve a bounded number of elements, and possibly infinite models are represented by finite sets of such
blocks; types are roughly speaking “small mosaics” that involve at most two elements. The mosaic and
type techniques have been applied in various contexts, including in DLs, cf. [24, 25, 34]. However, these
works targeted deciding satisfiability of a knowledge base,i.e., existence of some model. We instead have
applied and extended the mosaic technique to the more involved problem of CQ answering, which implicitly
requires considering all models, or to find a suitable countermodel of the query. While in principle, one
could use types as well, we feel that knots are better suited than types because of their more comprehensive
representation of the local model structure.

Many different approaches for CQ answering have been developed that adapt known techniques for
standard reasoning, including reduction to concept satisfiability (e.g., rolling up [17, 13]), resolution-based
techniques [18], modified tableaux [21, 29], and tree-automata based algorithms [2, 3].

In the rolling up technique [17, 13, 16], CQ answering is reduced to deciding concept satisfiability by
compiling the query into the knowledge base, using ideas of [6]. Roughly, in order to showK 6|= q, one con-
siders all possible ways in which a CQq can be mapped to a canonical model ofK, i.e., all homomorphisms
π of q into a tree- resp. forest-shaped model. Each such tree/forest mappingπ is represented as a DL concept
Cπ, possibly in an extensionL′ of the DLL considered. Finally, one checks whetherK′ = K ∪ {Cπ ⊑ ⊥ |
π} is satisfiable. Here, important aspects are thatK′ can be exponentially larger thanK, that the construction
of Cπ might not be easy, and thatL′ might have higher complexity thanL. For answering CQs and unions
thereof in the DLSHIQ, Glimm et al. [13, 16] applied rolling up in combination withextensive query
rewriting, in order to arrive at a reduction to satisfiability in the DL SHIQ⊓, which extendsSHIQ with
role intersection. Satisfiability ofSHIQ⊓ KBs is then decided using suitable tree automata. Overall, their
algorithm runs in double exponential time and is thus worst-case optimal. However, since it behaves like
traditional algorithms in absence of transitive roles, it is not single exponential forALCH. Lutz [22, 23]
showed that a single exponential time bound is obtainable for ALCH using the rolling up and rewriting ap-
proach. We remark that with a similar approach as in [13, 16],Glimm et al. [14, 15] showed that answering
CQs and unions thereof in the DLSHOQ is feasible in double exponential time (again this is worst-case
optimal).

The resolution-based method by Hustadt et al. [19] is perhaps most closely related to ours. Similar as
in our approach, their method first “compiles” the knowledgebase and the query into a special form, and
then exploits the possibility to answer the query by means ofa disjunctive Datalog program. However,
this is done on different grounds: the knot technique is model-theoretic in nature, while Hustadt et al.’s
method is proof-theoretic, cleverly exploiting resolution and superposition machinery. Furthermore, the
knot technique handles transitive roles in the query, whichare not allowed in [19].

The tableaux method for satisfiability testing has been extended to CQ answering in [21, 29], with the
aim to proveK |= q by showing that there is no countermodel to the query, i.e., no model ofK in which q
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is false. To this end, the tableaux blocking conditions are generalized to take the queryq into account and
depend on its size. A major drawback of the tableaux method isthat, like for the resolution-based approach,
handling transitive roles in the query seems to be difficult.It is not clear how to adapt the algorithms in [29],
which work for queries with non-transitive roles in the DLsSHIQ, SHOQ, andSHOI. Furthermore, the
algorithms have nondeterministic triple exponential timecomplexity in general, which is far from worst-case
optimal.

Finally, the tree-automata based approach to CQ answering [2, 3] exploits the tree- resp. forest-shaped
model property of suitable DLs to solve the problem by combining automata for subproblems. It has been
used to show that CQ answering for expressive DLs beyondSHIQ is feasible in double exponential time.
To this end, forest-shaped interpretations ofK are encoded into trees, and automata for recognizing models
of K and ofq are combined using intersection and complementation operations. Like the knots approach,
tree-automata operate on small local parts of a model. However, while knots preserve the relational struc-
ture of these parts and can be extended to the needs of query answering, in tree-automata—which operate
merely on strings—this structure is lost, and coding to the automata alphabet and state set is necessary. This
in particular makes it hard to single out the impact of different components ofK andq in the overall com-
plexity, e.g. to derive results on data complexity. Furthermore, the algorithms in [2, 3] do not run in single
exponential time forALCH.

For further comparison and discussion, see [11, 9].

7.2 Extensions and Further Work

The knot method we presented is extendible to richer DLs beyondSH. Number restrictions can be accom-
modated by adapting the knot representation of knowledge bases. To this end, knots(τ, S) may be gen-
eralized such thatS is a multi-set of types from2R(T ) × clos(T ) that obeys numerical constraints. These
constraints have to be suitably respected when composing knots, while no major change to the machinery
of subqueries is necessary.

Inverse roles, which allow to relate an object to its parent and lead to upward arcs in tree-shaped models,
can also be accommodated. To this end, the method of treeification can be applied to subqueries, which
informally converts a query into ones whose query graphs aretree-shaped, by replacing atoms and renaming
variables (see [9] for a detailed description). While this does not cause an exponential complexity increase
in case ofSH, it causes one forALC, leading to a double exponential time algorithm forALCI; by Lutz’s
result [22], this is still worst-case optimal.

Also joint number restrictions and inverse roles can be handled by knots, but their possible interaction
needs care and makes the extension of the technique more involved. On the other hand, it is unclear how to
incorporate nominals into knots; the reason is that the forest-shaped model property gets lost.

We remark that [9] discusses a dual approach for CQ answeringusing knots: there, knots are associated
with sets of subqueries and an elimination algorithm similar to the one in Figure 3 is used to test the existence
of a model which falsifies each subquery at each knot. This is in contrast to the algorithm here, where the
entailed disjunctions of subqueries are computed for each knot. While the dual approach is more compact,
it seems to be less suited to handle CQs with answer variables~x by encodings to languages like disjunctive
Datalog. Intuitively, this is because one needs to ground the query to separate Boolean queries, one for each
tuple~c of individuals for~x, to find those~c where no counterexample to the query can be found.

Finally, knot-shaped mosaics have also been fruitfully applied for CQ answering in restricted DLs, eg.
in Horn-SHIQ [8] where they have been enriched with further structural information.

In the light of the results in this and other papers, it appears that the knot approach is a useful tool to
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analyze CQ answering in DLs which allows to obtain sharp complexity characterizations, both for general
and data complexity.

7.3 Open Issues

Several issues remain for future work. One issue concerns implementation of the approach and optimization
of the algorithms, which has not been done yet. Another issueis the application and extension of the knot
technique to new DLs, like those in the OWL2 family, as well asa refinement to fragments ofSH and
query classes where the algorithm we presented does not yield optimal bounds. This includes, for example,
the unrestricted case ofS, for which the best bounds currently known are aCONEXPTIME-hardness lower
bound and a 2-EXPTIME upper bound [10]. Finally, it would be interesting to extendthe current technique
to more expressive queries, such as unions of CQs and positive existential queries, or to queries with regular
role expressions.

A Appendix: Proof of Proposition 7

Proposition 7. For each CQq it holds thatfd(fw(q)) ≤ t(fw(q)) + 1 ≤ t(q) + 1.

Proof. It is easy to verify thatt(fw(q)) ≤ t(q): a fork elimination step preserves cycles inR
q
∗(y) for

every variabley (but might introduce new ones). Furthermore, it can not increase the number of different
predecessors ofy; hence, items (3) and (4) of Definition 25 hold forq′ if they hold forq. The same holds
for the conjunction of (1) and (2).

Let q′ result fromfw(q) by removing all atomsR(x, y) wherex reaches a cycle in the query graph of

fw(q), i.e., somez ∈ R
fw(q)
+ (x) exists such thatz ∈ R

fw(q)
+ (z). Note thatfd(q′) = fd(fw(q)). Without loss

of generality, we assume thatq′ contains a single unary atomC(x) for each variablex ∈ V(q′).
Sinceq′ is acyclic, we can constructq′ along a topological sortx1 < x2 < · · · < xn of its variables, i.e.,

R(xj , xi) ∈ q′ impliesj < i, starting fromx1 with C(x1) and adding variablexi with C(xi) and all atoms
R(xj , xi) for i > 1.

We show now by induction onn ≥ 1 that

fd(q′) ≤ t(q′) + 1. (2)

Base case.Hereq′ = {C(x1)} andfd(q′) = 1; thus (2) holds forq′.

Induction Step.Suppose we join a variablexn with C(xn) and atomsR1(xn1
, xn), . . . ,Rn(xnkn

, xn) to q′

of the assumed form, which yields a queryq′′ of similar form, and letA = {xn1
, . . . , xnkn

}. We consider
two cases.

Case 1. Suppose first that|A| ≤ 1, i.e., xn is connected to at most one variable inq′. Then, clearly
t(q′′) = t(q′) (condition 4 is violated for the pairxn1

, xn) andfd(q′′) = fd(q′), which means that (2) holds
for q′′.

Case 2. Suppose that|A| = m > 1, i.e.,y is connected to multiple distinct variablesxn1
, . . . , xnm in

q′′. In this case,
t(q′) + (m− 1) ≤ t(q′′) (3)

holds, as each pairx, y in V(q′) that satisfies the conditions 1-4 fort(q′) satisfies them fort(q′′), and at least
m− 1 pairsxn,i, xn satisfy them fort(q′′), given that fork elimination is not applicable to anyR(xni

, xn),
R′(xnj

, xn).
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Let X ⊆ V(q′′) be a fork set forq′′ such that|X| = fd(q′′). LetX = {X1, . . . ,Xk} be the set of all

maximalXi ⊆ X (w.r.t.⊆) that are fork sets forq′. Then forXi 6= Xj ∈ X , the setsRq′

∗ (Xi) andR
q′

∗ (Xj)
are disjoint and

⋃

X = X. Furthermore,k ≤ m must hold: asXi 6= Xj ∈ X must be connected inq′′ via

y, we haveRq′′

∗ (Xi)∩R
q′′

∗ (Xj) = {y}. On the other hand,Rq′′

∗ (Xi)∩A 6= ∅ andR
q′′

∗ (Xj)∩A 6= ∅. Hence,
at mostm differentXi exist.

Now consider for the queryq′i ⊆ q′ that contains all atoms fromqi on the variablesRq′

∗ (Xi). ThenXi is
a fork set forq′i; hence by the induction hypothesis forq′i,

|Xi| ≤ fd(q′i) ≤ t(q′i) + 1.

As each pairxi, xj ∈ V(q′i) satisfies conditions 1-4 fort(q′) if it satisfies them fort(q′i), and since theXi

are pairwise disjoint and the queriesq′i are pairwise disconnected, we conclude

|X| =
k

∑

i=1

|Xi| ≤
k

∑

i=1

(t(q′i) + 1) ≤ t(q′) + k ≤ t(q′) + m.

Thus using (3),
fd(q′′) = |X| ≤ t(q′) + m ≤ t(q′′) + 1,

and the induction statement (2) holds forq′′; this completes the proof.
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[34] S. Rudolph, M. Krötzsch, and P. Hitzler. Terminological reasoning inSHIQ with ordered binary
decision diagrams. In Fox and Gomes [12], pages 529–534.

[35] K. Schild. A correspondence theory for terminologicallogics: Preliminary report. InIJCAI, pages
466–471, 1991.
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