
I N F S Y S
R       
R     

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

I ̈ I

AW S

A R P Q 
E D L  A

T-A

Diego Calvanese Thomas Eiter Magdalena Ortiz

INFSYS R R 1843-09-04

D 2009

INFSYS R R

INFSYS R R 1843-09-04, D 2009

A R P Q  E D L 
A T-A

Diego Calvanese,1 Thomas Eiter,2 Magdalena Ortiz3

Abstract. Expressive Description Logics (DLs) have been advocated as formalisms for modeling
the domain of interest in various application areas, including the Semantic Web, data and infor-
mation integration, peer-to-peer data management, and ontology-based data access. An important
requirement there is the ability to answer complex queries beyond instance retrieval, taking into
account constraints expressed in a knowledge base. We consider this task for positive 2-way reg-
ular path queries (P2RPQs) over knowledge bases in the expressive DL ZIQ. P2RPQs are more
general than conjunctive queries, union of conjunctive queries, and regular path queries from the
literature. They allow regular expressions over roles and data joins that require inverse paths. The
DLZIQ extends the core DLALC with qualified number restrictions, inverse roles, safe Boolean
role expressions, regular expressions over roles, and concepts of the form ∃P.Self in the style of the
DL SRIQ. Using techniques based on two-way tree-automata, we first provide as a stepping stone
an elegant characterization of TBox and ABox satisfiability testing which gives us a tight ET
bound for this problem. We then establish a double exponential upper bound for answering P2RPQs
overZIQ knowledge bases; this bound is tight. Our result significantly pushes the frontier of 2E-
T decidability of query answering in expressive DLs, both with respect to the query language and
the considered DL. Furthermore, by reducing the well known DL SRIQ to ZIQ (with an expo-
nential blowup in the size of the knowledge base), we also provide a tight 2ET upper bound
for knowledge base satisfiability in SRIQ and establish the decidability of query answering for this
significant fragment of the new OWL 2 standard.

1KRDB Research Centre, Free University of Bozen-Bolzano, Italy. E-mail: calvanese@inf.unibz.it
2Institute of Information Systems, Vienna University of Technology, Austria. E-mail: eiter@kr.tuwien.ac.at
3Institute of Information Systems, Vienna University of Technology, Austria. E-mail: ortiz@kr.tuwien.ac.at

Acknowledgements: We are very grateful to Oliver Carton, Orna Kupferman, and Moshe Vardi for their
kind and valuable advise on automata-theoretic questions. We owe particular thanks to Yoad Lustig and Nir
Piterman for providing a proof sketch connected to Lemma 5.16.
This work has been partially supported by the Austrian Science Fund (FWF) grant P20840, the Mexican
National Council for Science and Technology (CONACYT) grant 187697, and the EU project OntoRule
(IST-2009-231875).

Some results of this paper have appeared, in preliminary form, in a conference paper in Proc. AAAI ’07 [16].

Copyright c© 2010 by the authors

INFSYS RR 1843-09-04 I

Contents

1 Introduction 1

2 Preliminaries 3
2.1 The Description LogicZIQ . 3
2.2 Query Answering . 4
2.3 Automata on Infinite Trees. 5

3 Normal Form and Canonical Models 7
3.1 Normalizing Knowledge Bases . 7
3.2 Syntactic Closure . 9
3.3 Canonical Model Property . 9

4 Deciding KB satisfiability via automata 11
4.1 Representing Canonical Models as Trees . 11

4.1.1 From Canonical Interpretations to Trees . 11
4.1.2 From Trees to Canonical Interpretations . 13

4.2 Constructing the Automaton . 13
4.2.1 Automaton AI verifying interpretation trees . 14
4.2.2 Automaton AA verifying ABox satisfaction . 14
4.2.3 Automaton AT verifying TBox satisfaction . 15
4.2.4 Automaton AK verifying KB satisfaction . 20

4.3 Soundness and Completeness . 20
4.4 Complexity . 20

5 Query answering via automata 21
5.1 Representing Query Matches . 22
5.2 Constructing the Automaton . 23
5.3 Deciding Query Entailment . 26
5.4 Complexity . 28

5.4.1 Data complexity . 29

6 Complex role inclusion axioms 29
6.1 Reducing SRIQ toZIQ . 30
6.2 Deciding KB satisfiability . 32
6.3 Query Answering in SRIQ . 33

7 Conclusion 33

8 Appendix 34

INFSYS RR 1843-09-04 1

1 Introduction

Description Logics (DLs) [4] are a well-established branch of logics for knowledge representation and rea-
soning, and today the premier logic-based formalisms for modeling concepts (i.e., classes of objects) and
roles (i.e., binary relationships between classes). They have gained increasing attention in different areas
including the Semantic Web, data and information integration, peer-to-peer data management, and ontology-
based data access. In particular, many of the standard Web ontologies from the OWL family are based on
DLs: the new OWL 2 standard [20] is based on a DL known as SROIQ [32], whose fragment SRIQ [31]
extends the DL SHIQ underlying OWL-Lite [5].

In DLs, reasoning tasks like classification and instance checking, which deal with taxonomic issues,
had been traditionally studied. However, the widening range of applications in which DLs are used has
motivated an increasing interest in query languages whose expressive power goes beyond that of DL concept
and role expressions. The aim of such languages is to allow one to join pieces of information in finding
the query answer, thus overcoming one of the most significant drawbacks of DLs as languages for data
management. Since the initial work of Calvanese et al. [8], many further works have addressed the problem
of evaluating complex queries over DL knowledge bases. Special attention has been devoted to conjunctive
queries (CQs) [2], which are the formal counterpart of the most widely used fragment of SQL (or relational
algebra) queries, namely select-project-join queries. CQs over over DL knowledge bases have been studied
for many DLs, ranging from weak ones that allow for efficient algorithms, like those of the EL [40, 49, 39]
and DL-Lite families [18], to the very expressive ones of theALCH and SH families, cf. [28, 29, 37, 48].

Another important language for querying knowledge bases is that of regular path queries (RPQs) [7, 1,
12], which allow one to ask for pairs of objects that are connected by a path conforming to a regular expres-
sion. Due to their ability to express complex navigations in graphs, RPQs are the fundamental mechanism
for querying semi-structured data. RPQs are particularly useful when inverse roles are allowed to occur in
the regular expression, since they can express complex conditions that require to navigate the data, with-
out being constrained by the direction initially chosen by the designer to represent relations between data
items. We consider the yet more expressive class of positive (existential) two-way regular path queries (in
short, P2RPQs), which are inductively built using conjunction and disjunction from atoms that are regular
expressions over direct and inverse roles and allow for testing the objects encountered during navigation for
membership in concepts. P2RPQs, which subsume CQs and unions thereof, are also a natural generalization
of several extensions of RPQs that have been studied by different authors, e.g. [15, 30, 14, 21, 13, 3, 26].
They are, to our knowledge, the most expressive query language considered so far over DL knowledge
bases [17, 16].

In this paper, we describe a technique, first presented in [16], for deciding the entailment problem for
P2RPQs expressed overZIQ knowledge bases. In query entailment, we are given a knowledge base and a
Boolean query, i.e., a query that in a given interpretation evaluates either to true or to false, expressed over
that knowledge base, and we are asked to determine whether the query evaluates to true in every model of
the knowledge base. The DLZIQ, also known asALCQIbSelf

reg , extends the well known DLALCQIb (to
which reasoning in SHIQ can be reduced [55]) with regular role expressions [10], Boolean role inclusion
axioms, and concepts of the form ∃S .Self [31]. By means of a translation that reduces the query entailment
problem over SRIQ KBs toZIQ KBs, we also obtain an algorithm for entailment of P2RPQs over SRIQ
knowledge bases. This is the first algorithm for query entailment (and hence for query answering) that
allows both for regular expressions and for conjunctions of atoms in the query, while considering, on the DL
side, a logic that extends ALC with inverses and counting and, notably, also supports the kind of complex
role inclusions that have been advocated in the new OWL standards [20].

2 INFSYS RR 1843-09-04

Previously, algorithms for query answering over expressive DLs had used a variety of techniques, rang-
ing from query rewriting [8, 28, 35], over modified tableaux techniques [48], to resolution [36]. We obtain
our results by exploiting techniques based on automata on infinite trees [53], which have been developed
initially in the context of modal logics and program logics [56, 58, 57, 41, 6]. While the application of
automata techniques in DLs is not novel, cf. [10, 9, 54], previous work was concerned with deciding satis-
fiability of a knowledge base consisting of a taxonomy part (TBox) only. Here we address the much more
involved task of query answering over a knowledge base, which also has a data part (an ABox). Specifically,
we extend previous automata-based algorithms for TBox satisfiability [10, 9] and incorporate the ABox part.
Then, to decide query entailment over DL knowledge bases, we build on the ideas of Calvanese et. al. [13],
which had been developed in the context of automata on finite words, and extend them to automata over in-
finite trees. For deciding query entailment, we implement automata operations that rely on transformations
between different kinds of automata, which, from a technical point of view, are more challenging in our case
than in the case of finite words. The technique we present here has been recently extended to some DLs that
support nominals [17].

In this paper, we make the following contributions:

• As a stepping stone to our main results, we first present an automata-based algorithm for checking the
satisfiability of an ZIQ knowledge base that comprises both a TBox and an ABox, and that runs in
ET, which is worst-case optimal.

• We then show that answering P2RPQs over ZIQ knowledge bases is feasible in 2ET. From
recent results for answering CQs overALCI [44] and SH [23] KBs, it follows that this is worst case
optimal. By the aforementioned reduction, the same bound holds for SHIQ. This shows that, once
either inverse roles or role hierarchies and transitivity are allowed, one can significantly extend both
the query language and the DL considered without further increasing the worst case complexity of the
query entailment problem.

• We provide a rewriting that, with an unavoidable exponential blow-up, translates a SRIQ KB into an
ZIQ one. In this way we obtain a relevant result: a new tight 2ET upper bound for knowledge
base satisfiability in SRIQ, the nominal free-fragment of OWL 2.

• Furthermore, we show that entailment for P2RPQs is decidable over SRIQ knowledge bases (in fact,
the problem is in 3ET); this is the first decidability result for query entailment in an expressive
DL with complex role hierarchies, and identifies the first expressive fragment of OWL 2 for which
decidability of query entailment has been established. For full OWL 2 (i.e., the DL SRIOQ), decid-
ability of query entailment remains open.

The rest of the paper is organized as follows. We first give some technical preliminaries in Section 2.
Then, in Section 3, we discuss in detail some properties ofZIQ KBs and present some transformations on
them that lie at the core of our automata algorithms. In Section 4, we describe the automata-based technique
for satisfiability of ZIQ KBs, and in Section 5 its extension to query entailment. In Section 6, we present
the rewriting from SRIQ to ZIQ, obtaining algorithms for KB satisfiability and query entailment in this
logic. In Section 7, we draw final conclusions. In order to increase readability, technical details of some
proofs have been moved to an appendix.

INFSYS RR 1843-09-04 3

2 Preliminaries

In this section, we define the main Description Logic (DL) and the query answering problem considered in
this work. We also provide some general preliminaries on automata on infinite trees. Throughout the paper,
we use |X| to denote the cardinality of a set X, and ||X|| to denote the length of some string encoding X. For
a word w, |w| denotes the length of w, i.e., the number of its symbols.

2.1 The Description LogicZIQ

ZIQ is the short name for the DL ALCQIbSelf
reg , which extends the well known DL ALCQIb [55] with

regular role expressions, Boolean role inclusion axioms, and concepts of the form ∃S .Self in the style of
SRIQ [31]. In turn,ALCQIb extends the basic DLALC with qualified number restrictions and inverses,
which are available in SHIQ, SRIQ and other well known DLs, and supports safe Boolean expressions
over simple roles. ZIQ is a slight extension ofALCQIbreg considered in [10, 16].

Definition 2.1 [Concepts and roles] We consider fixed, countably infinite alphabets C of concept names
(also called atomic concepts), R of role names, and I of individual names. We assume that C contains the
special concepts > (top) and ⊥ (bottom), while R contains the top (universal) role T and the bottom (empty)
role B.

Concepts C, C′, atomic roles P, simple roles S , S ′, and roles R, R′, are formed according to the following
syntax, where A ∈ C, p ∈ R and p , T.

C,C′ −→ A | ¬C | C uC′ | C tC′ | ∀R.C | ∃R.C | > n S .C | 6 n S .C | ∃S .Self

P −→ p | p−

S , S ′ −→ P | S ∩ S ′ | S ∪ S ′ | S \ S ′

R,R′ −→ T | S | R ∪ R′ | R ◦ R′ | R∗ | id(C)

AnZIQ expression is a concept or a role. The set of subconcepts (subroles) of a given concept (resp., role)
is defined in the natural way considering the syntactic structure of the concept (resp., role).

Definition 2.2 [Knowledge base] A concept inclusion axiom (CIA) is of the form C v C′, where C and C′

are arbitrary concepts, while a Boolean role inclusion axiom (BRIA) is of the form S v S ′ where S and S ′

are simple roles. A TBox is a set of CIAs and BRIAs. An assertion is of the form C(a), S (a, b), or a 6≈ b,
where C is a concept, S is a simple role and a, b ∈ I. An ABox is a set of assertions.

A knowledge base (KB) is a pair K = 〈A,T〉 where T is a TBox and A is a non-empty ABox.1

We denote by CK , RK , and IK the sets of concept names, role names, and individuals occurring in K ,
respectively. Furthermore, we let RK = RK ∪ {p− | p ∈ RK }.

Definition 2.3 [Semantics] An interpretation I = (∆I, ·I) consists of a non-empty domain ∆I and a val-
uation function ·I that maps each individual a ∈ I to an element aI ∈ ∆I, each concept name A ∈C to a
set AI ⊆ ∆I, and each role name p ∈R to a set pI ⊆ ∆I × ∆I, in such a way that >I = ∆I, ⊥I = ∅,
TI = ∆I × ∆I, and BI = ∅. The function ·I is inductively extended to all concepts and roles as follows:

1IfA = ∅, we can always add >(a) toA for some fresh individual name a.

4 INFSYS RR 1843-09-04

(¬C)I = ∆I \CI (p−)I = {(y, x) | (x, y) ∈ pI}
(C uC′)I = CI ∩C′I (S ∩ S ′)I = S I ∩ S ′I

(C tC′)I = CI ∪C′I (R ∪ R′)I = RI ∪ R′I

(∀R.C)I = {x | ∀y.(x, y) ∈ RI → y ∈ CI} (S \ S ′)I = S I \ S ′I

(∃R.C)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ CI} (R ◦ R′)I = RI ◦ R′I

(> n S .C)I = {x | |{y | (x, y) ∈ S I ∧ y ∈ CI}| ≥ n} (R∗)I = (RI)∗

(6 n S .C)I = {x | |{y | (x, y) ∈ S I ∧ y ∈ CI}| ≤ n} (id(C))I = {(x, x) | x ∈ CI}
(∃S .Self)I = {x | (x, x) ∈ S I}

where ◦ denotes composition and ·∗ the reflexive transitive closure of a binary relation. I satisfies (or, is a
model of)

• a CIA or BRIA E v E′, if EI ⊆ E′I;

• an assertion C(a), if aI ∈ CI, an assertion S (a, b), if (aI, bI) ∈ S I, and an assertion a 6≈ b, if aI , bI;

• an ABoxA, if it satisfies every assertion inA;2

• a TBox T , if it satisfies every CIA and BRIA in T ;

• a KB K = 〈T ,A〉, if it satisfies both T andA.

Satisfaction of a CIA, BRIA, assertion, ABox, etc. η is denoted by I |= η. Knowledge base satisfiability is
the problem of deciding, given a KB K , whether there exists an interpretation I such that I |= K .

2.2 Query Answering

We next introduce P2RPQs, which naturally generalize conjunctive regular path queries [13] and unions
thereof.

Definition 2.4 [P2RPQs] A positive 2-way regular path query (P2RPQ) is a formula ∃~v.ϕ(~v), where ~v is a
tuple of variables and ϕ(~v) is built using ∧ and ∨ from atoms of the form C(v) and R(v, v′), where v, v′ are
variables from ~v or individuals, C is a concept, and R is a role. If all atomic concepts and roles in ϕ occur in
a KB K , the query is over K .

Let q = ∃~v.ϕ(~v) be a P2RPQ, and let Vq and Iq respectively denote the sets of variables and individuals
in q. Given an interpretation I, let π : Vq ∪ Iq → ∆I be a total function such that π(a) = aI for each
individual a ∈ Iq. We write I, π |= C(v) if π(v) ∈ CI, and I, π |= R(v, v′) if (π(v), π(v′)) ∈ RI. Let γ be the
Boolean expression obtained from ϕ by replacing each atom α in ϕ with true, if I, π |= α, and with false
otherwise. We say that π is a match for I and q, denoted I, π |= q, if γ evaluates to true. We say that I
satisfies q, written I |= q, if there is a match π for I and q. A KB K entails q, denoted K |= q, if I |= q for
each model I of K .

Query entailment consists in verifying, given a KB K and a P2RPQ q, whether K |= q.

P2RPQs are a generalization of Conjunctive Queries (CQs), a well known query language widely studied
in databases [19, 2] and, more recently, in DLs [43, 11, 48, 28]. A CQ is a P2RPQ not containing ∨, and
where no regular role expressions occur. The presence of regular expressions in the query atoms of P2RPQs

INFSYS RR 1843-09-04 5

mortalv¬deity
>vmale t female

male≡¬female
>v∃HasFather.male u ∃HasMother.female

HasParent≡HasMother ∪ HasFather
∀HasParent.mortalvmortal

deityv∀HasParent∗.deity

HasParent (Heracles,Zeus)
HasParent (Heracles,Alcmene)
HasParent (Alcmene,Electryon)
HasParent (Electryon,Perseus)
HasParent (Perseus,Zeus)

male (Zeus)
female (Alcmene)

deity (Zeus)
mortal (Alcmene)

Figure 1: The genealogy KB used in Example 2.5

allow to express complex navigations in the models of the given KB, similar to (conjunctive) regular path
queries [13].

Example 2.5 We consider a genealogy KBKg = 〈T ,A〉, where T contains the CIAs and BRIAs in the left
column of Figure 1, while A contains the assertions in the right column. We use E ≡ E′ as a shortcut for
E v E′ and E′ v E.

The following query qg is a P2RPQ over Kg:

qg = ∃v1, v2, v3. HasParent∗◦HasParent−∗(v1, v2) ∧ HasParent−(v1, v3) ∧ HasParent−(v2, v3) ∧
male(v1) ∧ female(v2) ∧ (¬deity(v1) ∨ ¬deity(v2))

Informally, qg asks whether there are two individuals (represented by v1 and v2) who are relatives (i.e.,
related by the expression HasParent∗◦HasParent−∗) that are not both deities, and who have a common child
v3. Note that K |= q, since π(v1) = ZeusI, π(v2) = AlcmeneI and π(v3) = HeraclesI is a match for q in
every model I of K .

Note that we have restricted out attention to queries that are formulas without free variables, i.e., so
called Boolean queries. We can consider w.l.o.g. the entailment problem for Boolean queries, since query
answering for non-Boolean queries is polynomially reducible to query entailment.3 Note that the problem
of deciding whether a given KB has a model can be trivially reduced to query non-entailment. Indeed, a KB
K is satisfiable iff K 6|= ∃v.⊥(v).

2.3 Automata on Infinite Trees.

In the rest of this section, we recall the definitions of infinite labeled trees and of two way alternating
automata over such trees [57].

Definition 2.6 An (infinite) tree is a prefix-closed set T ⊆ IN∗ of words over the natural numbers IN; if
T ⊆ {1, . . . , k}∗ for some k ≥ 0, we call it a k-tree. The elements of T are called nodes, the empty word ε is

2We do not make the unique name assumption, which can be simulated using assertions of the form a 6≈ b.
3Here we refer to the associated decision problem, i.e., whether a given tuple is in the query answer.

6 INFSYS RR 1843-09-04

its root. For every x ∈ T , the nodes x·c with c ∈ IN are the successors of x, and x is the predecessor of each
x·c; the ancestor relation is the transitive closure of predecessor. By convention, x·0 = x, and (x·i)·−1 = x.
The branching degree d(x) of a node x is the number of its successors, and T has branching degree bounded
by b if d(x) ≤ b for each node x of T . If T = {1, . . . , k}∗ (i.e., T is a k-tree and each node has exactly k
successors), we say that T is k-ary. An infinite path π of T is a prefix-closed set π ⊆ T where for every i ≥ 0
there exists a unique node x ∈ P with |x| = i. A labeled tree over an alphabet Σ (or simply a Σ-labeled tree)
is a pair (T, L), where T is a tree and L : T → Σ maps each node of T to an element of Σ.

Now we define two-way alternating tree automata (2ATAs) over infinite trees as introduced in [57],
which generalize the standard non-deterministic (one-way) automata on infinite trees (1NTAs) in two ways.
First, alternation is a generalization of non-determinism that allows for an elegant and compact encoding
of decision problems in several logics [45]. Second, two-way automata are better suited for logics that have
‘backward’ operators, like inverse roles, since they may move up on the input tree or stay at the current
position. In contrast, one-way automata navigate (infinite) trees in a strictly top-down manner, moving
always to the successors of the current node.

Definition 2.7 Given a finite set I, let B(I) be the set of positive Boolean formulas built inductively using
∧ and ∨ from true, false and atoms from I. A set J ⊆ I satisfies a formula ϕ ∈ B(I), if assigning true
to the atoms in J and false to those in I \ J makes ϕ true. A two-way alternating tree automaton (2ATA)
running over k-ary trees is a tuple A = 〈Σ,Q, δ, q0, F〉, where Σ is the input alphabet; Q is a finite set of
states; δ : Q × Σ → B([k] × Q), where [k] = {−1, 0, 1, . . . , k}, is the transition function; q0 ∈ Q is the initial
state; and F = (G1, . . . ,Gn) with G1 ⊆ G2 ⊆ · · · ⊆ Gn = Q is a (parity) acceptance condition, whose length
n is called the index of A and denoted ind(A). We refer to each component Σ, Q, etc. of A by Σ(A), Q(A),
etc., respectively.

The transition function δ maps a state q ∈ Q and an input letter σ ∈ Σ to a positive Boolean formula
ϕ over the atoms in [k] × Q. Intuitively, if δ(q, σ) =ϕ, then each atom (c, q′) in ϕ corresponds to a new
copy of the automaton going in the direction given by c and starting in state q′. For example, let k = 2 and
δ(q1, σ) = (1, q2) ∧ (1, q3) ∨ (−1, q1) ∧ (0, q3). If A is in the state q1 and reads the node x labeled with σ, it
proceeds by sending off either (i) two copies, in the states q2 and q3 respectively, to the first successor of x
(i.e., x·1), or (ii) one copy in the state q1 to the predecessor of x (i.e., x·−1) and one copy in the state q3 to x
itself (i.e., x·0).

Standard non-deterministic (one-way) automata on infinite trees can be defined as particular 2ATAs, in
which the transitions cannot use the directions 0 and −1, but instead the automaton always moves to the
k successors of the current node and to a tuple of k states, one for each successor. Such a choice can be
expressed as a formula in conjunctive form:

Definition 2.8 A one-way non-deterministic automaton (1NTA) running over k-ary trees is a 2ATA A =

〈Σ,Q, δ, q0, F〉 such that for every q ∈ Q and every σ ∈ Σ, δ(q, σ) is of the form ((1, q1
1) ∧ · · · ∧ (k, q1

k)) ∨
· · · ∨ ((1, q j

1) ∧ · · · ∧ (k, q j
k)), with j ≥ 0, and qi

`
∈ Q for each 1 ≤ i ≤ j and each 1 ≤ ` ≤ k.

Acceptance of 2ATAs is defined in terms of runs. Informally, a run of a 2ATA A over a Σ labeled tree
(T, L) is a labeled tree (Tr, r) in which each node n is labeled by an element r(n) = (x, q) ∈ T ×Q and
describes a copy of A that is in the state q and reads the node x of T ; the labels of adjacent nodes must
satisfy the transition function of A. Formally, we define:

INFSYS RR 1843-09-04 7

Definition 2.9 Let A = 〈Σ,Q, δ, q0, F〉 be a 2ATA running over k-ary trees. A run (Tr, r) of A over a
Σ-labeled k-ary tree (T, L) is a (T×Q)-labeled tree satisfying:

1. ε ∈ Tr and r(ε) = (ε, q0).

2. Each y ∈Tr satisfies δ, i.e., if r(y) = (x, q) and δ(q, L(x)) =ϕ, then there is a (possibly empty) set W =

{(c1, q1) , . . . , (cn, qn)} ⊆ [k] × Q such that:

• W satisfies ϕ, and

• for every 1 ≤ i ≤ n, it holds that y·i ∈ Tr, x·ci is defined and r(y·i) = (x·ci, qi).

An infinite path π of Tr satisfies the acceptance condition F of A, if there is an even i ≥ 0 such that
Inf(π) ∩Gi , ∅ and Inf(π) ∩Gi−1 = ∅, where Inf(π) = {q ∈ Q | r(n) = (x, q) for infinitely many n ∈ π}. The
run (Tr, r) is accepting, if all its infinite paths satisfy F.

A 2ATA A accepts a Σ-labeled tree T, if there is an accepting run of A over T; L(A) denotes the set of
all trees that A accepts. The nonemptiness problem is to decide whether L(A) , ∅ for a given A.

The following result is well-known.

Theorem 2.10 ([57]) Nonemptiness of a given 2ATA A running on k-ary trees is decidable in time single
exponential in |Q(A)| and polynomial in |Σ(A)|. Furthermore, it is possible to construct a 1NTA A1 with
|Q(A1)| ≤ 2O(|Q(A)|c) for some constant c and ind(A1) = O(ind(A)) such that L(A1) = L(A).

We will often take intersections of 2ATAs, relying on the fact that this operation is trivial.

Lemma 2.11 Given any set of 2ATAs A1, . . . , An, it is possible to construct a 2ATA A with |Q(A)| =∑n
i=1 |Q(Ai)| + 1 and ind(A) = maxn

i=1 ind(Ai) such that L(A) =
⋂n

i=1L(Ai).

Automata on infinite trees provide elegant solutions for decision problems in temporal and program
logics [24], and have been widely exploited for the satisfiability problem of many variants of PDL, the µ-
calculus, and similar logics [57, 58]. They have also been explored in DLs, but mostly for deciding concept
satisfiability [54, 10], given that in many DLs, concepts have tree-shaped models.

3 Normal Form and Canonical Models

In this section we prove some properties of KBs and define key notions that allow us to develop then the
automata algorithm for reasoning inZIQ.

3.1 Normalizing Knowledge Bases

First of all, we will prove a quite simple property of KBs that will be useful later: that they have connected
models, in which every node can be reached from the interpretation of some ABox individual by a sequence
of roles.

LetK be a KB. We say that an element d ∈ ∆I is connected to an element d0 ∈ ∆I in an interpretation I
ofK , if there is some sequence d0, . . . , dn such that d = dn and for each 0 ≤ i < n we have (di, di+1) ∈ PI for
some P ∈ RK . An interpretation I is called connected, if each d ∈ ∆I is connected to aI for some a ∈ IK .

8 INFSYS RR 1843-09-04

Lemma 3.1 [Connected model property] Let K be an ZIQ KB. Then, for every P2RPQ q, K 6|= q implies
that there is a connected model I of K with I 6|= q.

Proof. [Sketch] We simply take some model I of K with I 6|= q and restrict it to the elements d for
which the individual a required by the definition above exists; the resulting interpretation I′ is connected by
construction. It is trivial to verify that I′ |= K . Indeed, for each d ∈ ∆I, removing elements not reachable
from d does not alter the satisfaction of any concept at d, nor the participation of d in the extension RI of
any role R occurring inK . Hence no CIA or BRIA is violated in I′. The ABox also remains satisfied, since
in I′ all domain elements interpreting some ABox individual remain unchanged, and they participate in the
same concepts and roles as in I. Finally, since any query match in I′ would also be a query match in I,
I 6|= q implies I′ 6|= q.

Now we present some simple reductions to rewrite a KB K = 〈T ,A〉 into a normal form in which the
TBox contains only CIAs, negation appears only at the atomic level, and >, ⊥, B, T do not appear.

1. ABox reduction. A is transformed into an extensionally reduced ABox, i.e., an ABox in which only
concept and role names are used:

• Each assertion C(a), where C is not a concept name, is replaced by AC(a) for a fresh AC ∈ C,
and AC v C is added to T .

• Each assertion S (a, b), where S is not a role name, is replaced by pS (a, b) for a fresh pS ∈ R,
and pS v S is added to T .

2. BRIA Elimination. Each BRIA S v S ′ in T is replaced by ∃(S \ S ′).> v ⊥ (cf. [50]).

3. Elimination of >, ⊥ and B. The empty role B is simulated by a fresh role name pB, by adding
> v ∀pB.⊥ to T . The concepts > and ⊥ are simulated via fresh concept names A> and A⊥, by adding
to T A t ¬A v A> and A> v ¬A⊥, for an arbitrary concept name A.

4. Elimination of T. We add assertions pU(a, b) to A, for all a, b ∈ IK , where pU is a fresh role name,
and replace in K each occurrence of T by the role U = (pU ∪ {R | R ∈ RK })∗. The rewriting
preserves query entailment, since whenever K 6|= q, there is a connected model I of K such that
I 6|= q (cf. Lemma 3.1); as pU < RK , we can assume w.l.o.g. that (aI, bI) ∈ pIU for all a, b ∈ IK . This
and the connectedness of I imply that UI = ∆I × ∆I, hence I is a model of the rewritten KB such
that I 6|= q.

5. Negation Normal Form. Finally, it is well known that an ZIQ concept C can be efficiently trans-
formed into negation normal form (NNF), i.e., one where ¬ is applied only to atomic concepts, and \
only to atomic roles.

Definition 3.2 [Normal knowledge bases] An ZIQ knowledge base K = 〈T ,A〉 is normal, if A is exten-
sionally reduced, T contains only CIAs, >, ⊥, T, and B do not occur in K , and all concepts in K are in
NNF.

Each of the above transformations is linear and preserves all the properties enforced by the preceding
transformations. Since they also preserve query entailment, we obtain:

Proposition 3.3 Given anZIQ KB K , it is possible to construct in time linear in ||K|| a normal knowledge
base K ′ such that for every P2RPQ q, K |= q iff K ′ |= q.

INFSYS RR 1843-09-04 9

if C ∈ Cl(D) then ∼C ∈ Cl(D)
if C �C′ ∈ Cl(D) then C, C′ ∈ Cl(D)
if S ∈ Cl(D) then ∼S ∈ Cl(D)
if S ∈ Cl(D) then Inv(S) ∈ Cl(D)
if S © S ′ ∈ Cl(D) then S , S ′ ∈ Cl(D)
if ∃S .Self ∈ Cl(D) then S ∈ Cl(D)
if ≷ n S .C ∈ Cl(D) then S , C ∈ Cl(D)

if ∃S .C ∈ Cl(D) then > 1 S .C ∈ Cl(D)
if ∀S .C ∈ Cl(D) then 6 0 S .∼C ∈ Cl(D)
if Q(R ∪ R′).C ∈ Cl(D) then QR.C, QR′.C ∈ Cl(D)
if Q(R ◦ R′).C ∈ Cl(D) then QR.QR′.C ∈ Cl(D)
if QR∗.C ∈ Cl(D) then QR.QR∗.C ∈ Cl(D)
if Qid(C).C′ ∈ Cl(D) then C, C′ ∈ Cl(D)

Table 1: Syntactic closure (Q ∈ {∀,∃}, � ∈ {t,u},© ∈ {∩,∪})

3.2 Syntactic Closure

Now we introduce the notion of syntactic closure of a concept, which contains all concepts and simple
roles that are relevant for deciding its satisfiability. It contains D, it is closed under subconcepts and simple
subroles, as well as under negations in NNF, and it is also Fischer-Ladner closed in the style of a similarly
defined closure for PDL [25].

We define here the closure for the DL ALCQIBSelf
reg , which is like ZIQ but instead of role difference

S \ S ′, it has negation ¬S as a simple role constructor. Semantically, ¬S I = (∆I × ∆I) \ S I, hence S \ S ′

can be expressed as S ∩ ¬S ′. We call an ALCQIBSelf
reg expression safe, if it is equivalent to one in ZIQ;

unsafe Boolean roles are convenient for a simple definition of syntactic closure.
In what follows, ∼E denotes the NNF of ¬E, for E a concept or simple role. The symbol ≷ is generic

for > or 6; Q for ∀ and ∃, � for u and t, and © for ∩ and ∪. For a role name p ∈ R, the inverse of p is p−

and the inverse of p− is p; the inverse of an atomic role P is denoted Inv(P). For any simple role S , Inv(S)
denotes the role obtained by replacing each atomic role P occurring in S by its inverse Inv(P). As usual, C
and C′, S and S ′, and R and R′ respectively stand for concepts, simple roles, and arbitrary roles.

Definition 3.4 The closure Cl(D) of an ALCQIBSelf
reg concept D is the smallest set D′ ⊇ {D} closed under

the rules of Table 1.

Note that Cl(D) may contain unsafe expressions even if D is anZIQ concept, and that |Cl(D)| is linear
in the length of D.

3.3 Canonical Model Property

Like many DLs, ZIQ enjoys some form of forest model property. In fact, every satisfiable concept C has
a model that can be seen as a tree, possibly having loops at some nodes. This extends to TBoxes. For
knowledge bases, we need to suitable extend tree-shaped to forest-shaped models.4

First, we observe that in ZIQ every TBox T can be internalized into an equivalent concept CT , such
that the satisfiability of T can be established by obtaining a model of CT [51].

Definition 3.5 [TBox internalization, CT] Given a normalZIQ knowledge base K = 〈A,T〉, let

CT = ∀(
⋃

P∈RK P)∗.
�

C1vC2∈T

(¬C1 tC2).

4Unlike the results of the previous subsection, these results do not hold forALCQIBSelf
reg ; see [47] for discussion.

10 INFSYS RR 1843-09-04

If CT holds everywhere in an interpretation I, then I |= T . Furthermore, if a domain element satisfies
CT , then the same holds for every element that is connected to it in I.

Proposition 3.6 Let I be an interpretation. If each element d ∈ ∆I is connected to some d0 ∈ CI
T

, then
I |= T .

Now we define a canonical model of a normalZIQ KBK = 〈A,T〉, in which each ABox individual is
the root of a tree and satisfies CT .

Definition 3.7 For k ≥ 0, an interpretation I = (∆I, ·I) for an ZIQ KB K = 〈T ,A〉 is k-canonical, if
there is a non-empty finite set Roots(I) ⊆ ∆I such that:

(1) {ε} ∪ ∆I is a tree. (Note that this implies ∆I ⊆ IN∗.)

(2) Roots(I) = {aI | a ∈ IK } ⊆ IN.

(3) Each element of ∆I is of the form i·x with i ∈ Roots(I) and x ∈ {1, . . . , k}∗.

(4) For every pair x, y ∈ ∆I with y of the form x · i, there is some atomic role P such that (x, y) ∈ PI.

(5) If (x, y) ∈ pI for some role name p and some x, y ∈ ∆I, then either (a) x, y ∈ Roots(I), or (b) for some
i ∈ Roots(I), x is of form i·w, y of form i·w′, and either w = w′, or w′ is a successor of w, or w′ is the
predecessor of w.

The elements of Roots(I) are called the roots of I.

Since every node in a canonical interpretation is connected to a root, by Proposition 3.6, satisfaction of
CT at the roots ensures satisfaction of T .

Proposition 3.8 Let I be a k-canonical interpretation for K = 〈T ,A〉, for some k ≥ 0. Then I |= K iff
I |= A and Roots(I) ⊆ CI

T
.

Now we can establish the canonical model property ofZIQ, by straightforward adaptation of the similar
property of related logics [58, 54]. It states that, to decide query entailment, it suffices to consider the canon-
ical models of the given KB K . For a concept D, let kD = |Cl(D)| · nmax, where nmax = max({n | > n S .C ∈
Cl(D)} ∪ {0}).

Theorem 3.9 (canonical model property) Let K = 〈T ,A〉 be a normal ZIQ KB, and let q be a P2RPQ.
If K 6|= q, then there is a kCT -canonical model I of K such that I 6|= q.

Proof. [Sketch] Following [6, 57], with minor adaptations to properly handle ABoxes, Boolean role
constructs and Self, one can show that any model I of K that admits no match for a P2RPQ q can be
unraveled into a canonical model I′ that also admits no match. See the Appendix for details.

By Theorem 3.9, and since KB satisfiability reduces to query non-entailment, K has a kCT -canonical
model whenever it is satisfiable. Hence we can restrict to canonical forest-shaped models for deciding KB
satisfiability and query entailment. To solve these problems using tree automata, we represent canonical
interpretations as infinite labeled trees, as described in the next sections.

INFSYS RR 1843-09-04 11

4 Deciding KB satisfiability via automata

The lack of tree-shaped models complicates a straight use of tree automata for KB reasoning, and adaptations
are needed to exploit the weaker canonical model property of Section 3.3. An example of such an adaptation
is the pre-completion technique [54], in which after a reasoning step on the ABox, automata are used to
verify the existence of a tree-shaped model of the TBox rooted at each ABox individual. We follow a
different approach, introduced in [16], namely to represent forest-shaped canonical interpretations as trees,
and to encode K into an automaton AK that accepts exactly the set of trees that represent canonical models
of K . To the best of our knowledge, this is the first approach handling ABox assertions and individuals
directly in the automaton; importantly, the resulting automata-based algorithm can be extended to query
answering, which we do in Section 5.

4.1 Representing Canonical Models as Trees

In the following, let K = 〈A,T〉 be a normal ZIQ KB, and let bK = max(kCT , |IK |). To represent inter-
pretations for K we define interpretation trees, which are labelled bK -ary trees. Each node is labelled with
a (possibly empty) set of atomic concepts and roles, and special symbols pi j (used to indicate that the pair
(i, j) of roots is in the extension of the role p) and pSelf (to indicate that a pair (x, x) is in the extension of p).
The label of the root ε contains the special identifier r, and its children may contain individual names from
IK in their labels; if the latter holds we call them individual nodes.

Definition 4.1 Given K , let PIK = {pi j | p ∈ RK and i, j ∈ {1, . . . , bK }}, and PSK = {pSelf | p ∈ RK }. An
interpretation tree for K is a labeled bK -ary tree T = (T, L) over the alphabet

ΣK = 2CK ∪RK ∪ IK ∪ {r} ∪PIK ∪PSK

such that:

(t1) r ∈ L(ε) and r < L(x) for every node x ∈ T with x , ε,

(t2) for every a ∈ IK there is exactly one node x ∈ T with 1 ≤ x ≤ bK and a ∈ L(x),

(t3) IK ∩ L(x· j) = ∅ for every node x , ε and j > 0 such that x· j ∈ T .

4.1.1 From Canonical Interpretations to Trees

For a canonical interpretation I, we now define its tree representation TI, which informally is built as
follows. Since the domain of I is always contained in a bK -ary tree, we only need to add a root ε and
enough ‘dummy’ nodes to ensure the correct branching.

The interpretations of individuals, concepts and roles are represented using node labels from the alphabet
ΣK . Roughly, each element x ∈ ∆I is labeled with a set L(x) that contains (i) the atomic concepts A such
that x ∈ AI; (ii) the atomic roles P connecting the predecessor of x to x, and (iii) a special symbol pSelf for
each p such that (x, x) ∈ pI. The label L(i) of each root i of I contains the names of the individuals in IK it
interprets and the atomic concepts to which i belongs, but it contains no basic roles. The relations p between
individual nodes are stored in the root label L(ε) via symbols pi j. Formally,

Definition 4.2 Let I be a canonical interpretation for K with n roots. The tree representation of I is the
interpretation tree TI = (T, L) where

12 INFSYS RR 1843-09-04

L3

male

L3

L3

L3

L5

L5

L5

L2 L5

L4

L4L4

L1 L2

L2 L1L1

L1 L4

L5.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

L1

L1

L2

Perseus
Zeus

Heracles

male Electryon
Alcmene

male
female maledeity
mortal mortal

L′1

L′1 L′2

L′1 L′2

L′2

.

.

.

L′1

L′1L′1 L′2

deity}
{Z,male,

LR

L′5 L′3

L′5 L′3

L′3

L′4

L′4

{E,male,
mortal }{H,male}

L′4 L′5

L′3

{P,male}mortal,
female}

{A,

L′4 L′5L′5

Figure 2: A canonical model and its tree representation

• T = {1, . . . , bK }∗,

• L(ε) = {r} ∪ {pi j | i, j ∈ Roots(I), p ∈ RK and (i, j) ∈ pI},

• for each 1 ≤ x ≤ bK , L(x) = {a ∈ IK | aI = x} ∪ {A ∈ CK | x ∈ AI},

• for all other nodes x of T (i.e., those with length |x| > 1), L(x) = {A ∈ CK | x ∈ AI} ∪ {p ∈ RK |
(x · −1, x) ∈ pI } ∪ {pSelf | p ∈ RK and (x, x) ∈ pI}.

Note that L(x) = ∅ for every dummy node x ∈ T \ (∆I ∪ {ε}) not representing a domain element.

Example 4.3 The left part of Figure 2 depicts part of a canonical model Ig ofKg. Its roots are 1 = ZeusIg ,
2 = HeraclesIg , 3 = AlcmeneIg , 4 = ElectryonIg , and 5 = PerseusIg . They are depicted as large dots,
and each of them is labelled with the name of the individual it interprets as well as with the concept names
from CK to whose interpretation it belongs. Other domain elements are represented by smaller dots, and
are also labelled with the concept names to whose interpretation they belong. For readability, we use the
following label names: L1 = {male, deity}, L2 = {female, deity}, L3 = {female,mortal}, L4 = {male},
and L5 = {female}. The interpretation represented here is infinite, but only some of its domain elements
are depicted. Every non-root element has two successors, which are the fulfillers of the HasMother and
HasFather relations, respectively. The HasFather relation is represented by solid arrows, while HasMother
is represented by dashed arrows. HasParent is the union of HasMother and HasFather and is not depicted
explicitely.

The right part of the figure depicts the tree representation of Ig. For readability, we use only the initial
letter of each individual name in the labels. The label of the root is LR = {r, HasFather21, HasFather34,
HasFather45, HasFather51, HasMother23, HasParent21, HasParent34, HasParent45, HasParent51, HasParent23}.
The labels of the level one nodes are given explicitely in the figure, while for the other nodes we use the labels
L′1 = L1∪{HasFather,HasParent}, L′2 = L2∪{HasMother,HasParent}, L′3 = L3∪{HasMother,HasParent},
L′4 = L4 ∪ {HasFather,HasParent}, and L′5 = L5 ∪ {HasMother,HasParent}.

INFSYS RR 1843-09-04 13

4.1.2 From Trees to Canonical Interpretations

With each interpretation tree T, we can in turn associate a canonical interpretation IT. Informally, its domain
∆IT is given by (i) the set I of all the nodes x in T having some individual a in their label L(x), and (ii) the
nodes in T reachable from any such x through the roles in K . Note that each node with an empty label and
all nodes below it are not included in the interpretation IT.

The extensions of individuals, concepts and roles are determined by the node labels in T. We build the
extension of each role name p as the union of two sets of pairs R1

p and R2
p, which respectively contain (i) the

pairs (x, y) of p-neighbours x, y in the tree where at least one of x, y is not an individual node, and (ii) the
pairs i, j of individual nodes related by p (which is represented by the special label pi j at the root). Formally,

Definition 4.4 Let T = (T, L) be an interpretation tree. For each role name p ∈ RK , we define:

R1
p = {(x, x·i) | p ∈ L(x·i)} ∪ {(x·i, x) | Inv(p) ∈ L(x·i)} ∪ {(x, x) | pSelf ∈ L(x)}

R2
p = {(i, j) | pi j ∈ L(ε)}

Then we let IT = {i ∈ {1, . . . , bK } | a ∈ L(i) for some a ∈ IK } and, for each i ∈ IT,

Di = { x′ | (i, x′) ∈ (
⋃

p∈RK

(R1
p ∪ (R1

p)−))∗ },

where (R1
p)− denotes the inverse of relation R1

p.
The interpretation IT represented by T is:

∆IT = IT ∪
⋃

i∈IT Di,

aIT = x ∈ IT such that a ∈ L(x), for each a ∈ IK ,
AIT = ∆IT ∩ { x | A ∈ L(x) }, for each concept name A ∈ CK ,
pIT = (∆IT × ∆IT) ∩ (R1

p ∪ R
2
p), for each role name p ∈ RK .

Note that, by (t2), for each a there is exactly one x such that aIT = x. The set IT contains the roots of
IT, and {ε} ∪ ∆IT is a bK -tree. It is not hard to verify that IT satisfies the conditions of Definition 3.7.

Lemma 4.5 If T is an interpretation tree, then IT is a canonical interpretation, and TIT = T.

4.2 Constructing the Automaton

In this section, we show how to construct from K an automaton AK that accepts the ΣK -labeled trees that
are tree representations of canonical models of K . We thus can decide the satisfiability of K by testing AK
for emptiness.

To simplify the technical details, we construct AK in four steps. First, we construct from K a 2ATA
AI that accepts a given tree T iff it is an interpretation tree for K . In a second step, we construct another
2ATA AA that accepts T iff the represented interpretation satisfied all assertions in A. We then construct a
third 2ATA AT that verifies whether each individual in IK satisfies CT . Finally, by intersecting these three
2ATAs, we obtain AK . We note that all these automata run over bK -ary trees labeled with the alphabet ΣK ,
given in Definition 4.1.

14 INFSYS RR 1843-09-04

4.2.1 Automaton AI verifying interpretation trees

We start with the automaton AI that verifies whether an input tree is an interpretation tree.

Definition 4.6 Let AI = 〈ΣI,QI, δI, qI0 , FI〉, where ΣI = ΣK and

• The set of states is QI = {qI0 , s1} ∪ {s,¬s | s ∈ IK ∪ {r}}.

• The transition function δI : QI × ΣK → B([bK] × QI) contains:

1. for each σ ∈ΣK with r ∈σ, a transition

δI(qI0 , σ) = B1 ∧ B2 ∧ B3,

where
B1 =

∧
a∈IK

∨
1≤ j≤bK (j, a),

B2 =
∧

1≤i< j≤bK
∧

a∈IK ((i,¬a) ∨ (j,¬a)),

B3 =
∧

1≤i≤bK ((i,¬r) ∧ (i, s1)),

and for each σ ∈ ΣK , a transition

δI(s1, σ) =
∧

1≤i≤bK ((i,¬r) ∧ (
∧

a∈IK (i,¬a)) ∧ (i, s1));

2. for each σ ∈ ΣK and each s ∈ IK ∪ {r}, transitions

δI(s, σ) =

true, if s ∈ σ
false, if s < σ

, δI(¬s, σ) =

true, if s < σ
false, if s ∈ σ

;

• the acceptance condition is FI = (∅,QI).

The transitions in 2 simply verify whether the node label σ contains the symbol s. Overall, the definition
of δI ensures that every tree accepted by AI satisfies conditions (t1)–(t3) in Definition 4.2:

• B1 verifies that the label identifying each individual a occurs in some node of the first level.

• B2 verifies that a label identifying an individual does not occur in two different first level nodes.

• B3 checks that the labels of the nodes of the first level do no contain r, and switches from such states
to the state s1. From s1 it further checks that r and all a ∈ IK do not appear anywhere below the first
level in the whole tree.

Lemma 4.7 L(AI) = {T | T is an interpretation tree for K}.

4.2.2 Automaton AA verifying ABox satisfaction

Next, we define the automaton AA verifying whether the interpretation represented by a given input ΣK -
labeled bK -ary tree T satisfies all assertions in A, assuming that T is indeed an interpretation tree. In what
follows, we use CA and RA to denote the sets of concept and role names occurring inA, respectively.

Definition 4.8 Let AA = 〈ΣA,QA, δA, qA0 , FA〉, where ΣA = ΣK and

INFSYS RR 1843-09-04 15

• The set of states is QA = {qA0 } ∪ {s,¬s | s ∈ IK } ∪ CA ∪ {pi j | p ∈ RA and i, j ∈ {1, . . . , bK }}.

• The transition function δA : QA × ΣK → B([bK] × QA) contains the following transitions:

1. for each σ ∈ΣK with r ∈σ, a transition

δA(qA0 , σ) = B4 ∧ B5 ∧ B6,

where
B4 =

∧
a6≈b∈A

∧
1≤k≤bK ((k,¬a) ∨ (k,¬b)),

B5 =
∧

A(a)∈A
∨

1≤i≤bK ((i, a) ∧ (i, A)),

B6 =
∧

p(a,b)∈A
∨

1≤i≤bK ,1≤ j≤bK ((0, pi j) ∧ (i, a) ∧ (j, b));

2. for each σ ∈ ΣK , each s ∈ IK and each t ∈ CA∪{pi j | p ∈ RA and i, j ∈ {1, . . . , bK }}, transitions

δA(s, σ) =

true, if s ∈ σ
false, if s < σ

, δA(¬s, σ) =

true, if s < σ
false, if s ∈ σ

, δA(t, σ) =

true, if t ∈ σ
false, if t < σ

.

• The acceptance condition is FA = (∅,QA).

Similarly as for AI, the transitions in item 2 verify the presence of atomic symbols in the node labels.
The rest of the transitions verify the following conditions, starting from the root of the input tree:

• B4 checks, for each assertion a 6≈ b inA, that a and b do not occur both in the label of the same node.

• B5 ensures that each assertion A(a) inA is satisfied by verifying that the node labeled a is also labeled
A.

• B6 verifies that each assertion p(a, b) is satisfied, by finding the individual nodes i and j that represent
the individuals a and b, and checking pi j at the root.

Hence, assuming that T is an interpretation tree, the transition function verifies that all the ABox assertions
are satisfied in the corresponding interpretation.

Lemma 4.9 If T is an interpretation tree for a KB K = 〈T ,A〉, then T ∈ L(AA) iff IT |= A.

4.2.3 Automaton AT verifying TBox satisfaction

Finally, we define the automaton AT that ensures the satisfaction of the TBox T . Recall that T is satisfied
by a canonical interpretation T iff i ∈ CI

T
for each root i (see Proposition 3.6). This will be verified by the

2ATA AT for the interpretation IT represented by an input tree T. The definition of AT is rather involved,
given that CT might be complex.

Definition 4.10 Let AT = 〈ΣT ,QT , δT , qT0 , FT 〉, where ΣT = ΣK and

16 INFSYS RR 1843-09-04

Clext = Cl(CT) ∪ {s,¬s | s ∈ IK }

QSelf = {S Self | S a simple role in Cl(CT)}

QA role = {S i j | i, j ∈ {1, . . . , bK } and S a simple role in Cl(CT)}

Qnum = {〈> n S .C, i, j〉 | > n S .C ∈ Cl(CT), 0 ≤ i ≤ bK+1, 0 ≤ j ≤ n} ∪
{〈6 n S .C, i, j〉 | 6 n S .C ∈ Cl(CT), 0 ≤ i ≤ bK+1, 0 ≤ j ≤ n+1}

QA num = {〈a,> n R.C, i, j〉 | a ∈ IK , > n R.C ∈ Cl(CT), 1 ≤ i ≤ bK , 0 ≤ j ≤ n} ∪
{〈a,6 n R.C, i, j〉 | a ∈ IK , 6 n R.C ∈ Cl(CT), 1 ≤ i ≤ bK , 0 ≤ j ≤ n+1}

Table 2: State set QT = {qT0 } ∪ Clext ∪ QSelf ∪ QA role ∪ Qnum ∪ QA num

• The set of states QT is shown in Table 2. Intuitively, the ‘basic’ states of AT correspond to the con-
cepts in the closure of T , and the automaton moves to a state C and a node x in order to check whether
x represents an instance of C. To this aim, C is recursively decomposed and the resulting formula tree
navigated. For number restrictions, the automaton must navigate and count the neighbours of x, for
which auxiliary states Qnum are used. Furthermore, due to the encoding of the ABox at the root,
special states QA num are used to navigate the neighbours of an individual node. When during the
decomposition a simple role S is reached and the automation must verify whether S holds between
x and its predecessor, it moves to the state S and S is recursively decomposed (note that S and all
its subroles are in Clext and thus states of AT). If it must verify S between individuals nodes i, j, it
proceeds similarly but uses the states in QA role; and if it must verify whether S connects a node to
itself, it uses the states in QSelf. Finally, atomic concepts and roles, the special symbols in PIK ∪PSK ,
and the individual names are checked locally at the node labels, using corresponding states. The role
played by each state in QT will be detailed in the description of the transitions.

• The transition function δT : QT ×ΣK → B([bK]×QT) consists of five groups of transitions: 1. initial-
ization, 2. concept checking, 3. role checking, 4. number restriction checking, and 5. atomic checks.
Here, in 2 and 3, recursive decomposition happens, using states in Cl(CT) and in Cl(CT) ∪ QA role ∪

QSelf, respectively, while in 4 the automaton uses auxiliary states in Qnum and QA num for counting. In
detail, the groups of transitions are as follows:

1. For each σ ∈ΣK with r ∈σ, there is a transition from the initial state:

δT (q0, σ) =
∧

1≤i≤bK ((
∧

a∈IK (i,¬a)) ∨ (i, nnf (CT))).

This transition verifies that each individual node is the root of a tree representing a model of CT .

2. The automaton moves to a node x and a state corresponding to a concept C in Cl(CT) if it wants
to verify whether x represents an instance of C. This is achieved with transitions that recursively
decompose C and its subconcepts, as well as the non-simple roles inside the existential and
universal restrictions, shown on the left side of Table 3. Concepts of the form ∃S .C and ∀S .C
with S a simple role are replaced by the equivalent > 1 S .C and 6 0 S .∼C, while ∀R∗.C and
∃R∗.C, are decomposed into the equivalent C u ∀R.∀R∗.C and C t ∃R.∃R∗.C, respectively.

3. The automaton moves to a node x and a state for a simple role S in Cl(CT) in order to verify S
between the predecessor of x and x. For simple roles S between individual nodes i, j, we use

INFSYS RR 1843-09-04 17

δT (C uC′, σ) = (0,C) ∧ (0,C′)
δT (C tC′, σ) = (0,C) ∨ (0,C′)
δT (∃P.Self, σ) = (0, PSelf)

δT (∀(R ∪ R′).C, σ) = (0,∀R.C) ∧ (0,∀R′.C)
δT (∀(R ◦ R′).C, σ) = (0,∀R.∀R′.C)

δT (∀R∗.C, σ) = (0,C) ∧ (0,∀R.∀R∗.C)
δT (∀id(C).C′, σ) = (0,∼C) ∨ (0,C′)

δT (∃(R ∪ R′).C, σ) = (0,∃R.C) ∨ (0,∃R′.C)
δT (∃(R ◦ R′).C, σ) = (0,∃R.∃R′.C)

δT (∃R∗.C, σ) = (0,C) ∨ (0,∃R.∃R∗.C)
δT (∃id(C).C′, σ) = (0,C) ∧ (0,C′)

δT (∀S .C, σ) = (0,6 0 S .∼C)
δT (∃S .C, σ) = (0,> 1 S .C)

δT (S ∩ S ′, σ) = (0, S) ∧ (0, S ′)
δT (S ∪ S ′, σ) = (0, S) ∨ (0, S ′)
δT (P \ P′, σ) = (0, P) ∧ (0,¬P′)

δT ((S ∩ S ′)Self, σ) = (0, S Self) ∧ (0, S ′Self)
δT ((S ∪ S ′)Self, σ) = (0, S Self) ∨ (0, S ′Self)
δT ((P \ P′)Self, σ) = (0, PSelf) ∧ (0,¬P′Self)

δT (p−Self, σ) = (0, pSelf)
δT ((¬p−)Self, σ) = (0, (¬p)Self)

δT ((S ∩ S ′)i j, σ) = (0, S i j) ∧ (0, S ′i j)
δT ((S ∪ S ′)i j, σ) = (0, S i j) ∨ (0, S ′i j)
δT ((P \ P′)i j, σ) = (0, Pi j) ∧ (0, (¬P′)i j)

δT (p−i j, σ) = (0, p ji)
δT ((¬p−)i j, σ) = (0, (¬p) ji)

Table 3: Transitions in AT from groups 2 (left) and 3 (right), where σ ∈ ΣK and C ∈ Cl(CT) is a non-atomic
concept, while a, b are individual names, and S , P and p in Cl(CT) are a simple role, an atomic role, and a
role name, respectively.

the state S i j in QA role, and for reflexive S -loops the state S Self in the set QSelf; see right side of
Table 3.

4. For verifying the satisfaction of a number restriction, we need to navigate all nodes to which the
current node can be connected via some role. We say a node y is a potential neighbor of a node
x , ε, if either (a) y = x, (b) y is a successor of x, (c) y , ε is the predecessor of x, or (d) both
x and y are individual nodes. We say that a node y is a (S ,C)-neighbor of a node x, if (x, y) is in
S IT and y is in CIT .
To verify that a node x satisfies a number restriction, the automaton traverses all potential neigh-
bors of x, and this requires us to encode counters into the automaton. Intuitively, in a state
〈≷ n S .C, i, j〉 of Qnum, the number i stores how many potential neighbors have been navigated,
and j how many of them are actually (S ,C)-neighbors. More precisely, when the automaton is
in a state ≷ n S .C and visits a node x, it changes to the state 〈≷ n S .C, 0, 0〉, and then navigates
the potential neighbors of x, increasing the counters; it will be in state 〈≷ n S .C, i, j〉, if j among
the first i − 1 potential neighbors of x are (S ,C)-neighbors of x.
For each concept ≷ n S .C in Cl(CT) and σ ∈ ΣK , we have:

δT (≷ n S .C, σ) = (0, 〈≷ n S .C, 0, 0〉)

Once the counters are set to 0 by this transition, the automaton starts navigating the successors
of the node, which are at most kCT . This is done with a set of transitions of the form

δT (〈≷ n S .C, i, j〉, σ) = (((i+1,∼S) ∨ (i+1,∼C)) ∧ (0, 〈≷ n S .C, i+1, j〉)) ∨
((i+1, S) ∧ (i+1,C) ∧ (0, 〈≷ n S .C, i+1, j+1〉))

for all states in Qnum, with the counters i and j ranging over the following values:

18 INFSYS RR 1843-09-04

– 0 ≤ i < bK stores how many successors have been counted, and checks the (i + 1)-th;
– if ≷ is >, then 0 ≤ j < n: we stop counting if we reach n, as we already know the at-least

restriction is satisfied;
– Otherwise, if ≷ is 6, then 0 ≤ j ≤ n: similarly, we can stop counting if we reach n + 1, as

we know that the at-least restrictions is not satisfied.

After navigating the successors, the following transitions check whether the current node is its
own (S ,C)-neighbor, where j is as above (i.e., 0 ≤ j < n if ≷ is >, and 0 ≤ j ≤ n otherwise):

δT (〈≷ n S .C, bK , j〉, σ) = (((0,∼S Self) ∨ (0,∼C)) ∧ (0, 〈≷ n S .C, bK+1, j〉)) ∨
((0, S Self) ∧ (0,C) ∧ (0, 〈≷ n S .C, bK+1, j+1〉))

If we are at a node that is not an individual node, we finally only have to consider its predecessor.
Thus, for each σ ∈ ΣK with σ ∩ IK = ∅, we let

δT (〈≷ n S .C, bK+1, j〉, σ) = (((0,∼Inv(S)) ∨ (−1,∼C)) ∧ (0, 〈≷ n S .C, bK+2, j〉)) ∨
((0, Inv(S)) ∧ (−1,C) ∧ (0, 〈≷ n S .C, bK+2, j+1〉))

with j as above (i.e., 0 ≤ j < n if ≷ is >, and otherwise 0 ≤ j ≤ n).
Otherwise, if the current node is an individual node, we need to navigate all the individual nodes
at the first level to count its (S ,C)-neighbours. This is done using the states in QA num of the form
〈a,≷ n Q.C, i, j〉. From an individual node `, the automaton moves to some state 〈a,≷ n Q.C, 0, j〉
for some a represented by `. From this state, it uses the counter i to navigate all the level one
nodes looking for (S ,C)-neighbours of `, and stores in j how many it has found. Note that a can
be any individual represented by `, since we only use it to identify it. At each i the automaton
verifies whether the root is labelled S `i and i is labeled C. It increases the value of i and j if this
is the case, and only the value of i otherwise. Hence, for each σ ∈ ΣK such that σ ∩ IK , ∅, we
have a transition:

δT (〈≷ n S .C, bK+1, j〉, σ) =
∨

a∈σ(−1, 〈a,≷ n S .C, 0, j〉)

and for all states in QA num and all σ ∈ ΣK with r ∈ σ:

δT (〈a,≷ n S .C, i, j〉, σ) =
(∨

1≤`≤bK (0, S `i) ∧ (`, a) ∧ (i,C) ∧ (0, 〈a,≷ n S .C, i+1, j+1〉)
)
∨(∧

1≤`≤bK ((0,∼S `i) ∨ (`,¬a) ∨ (i,¬C)) ∧ (0, 〈a,≷ n S .C, i+1, j〉)
)

with 1 ≤ i ≤ bK and, similarly as above, 0 ≤ j < n if ≷ is > and 0 ≤ j ≤ n if ≷ is 6.
Once all the necessary nodes have been navigated, the (un)satisfaction of the number restrictions
can be established as in Table 4.

5. The above transitions decompose all concepts and roles until they reach states corresponding
to possibly negated atomic expressions and symbols in PIK ∪ PSK ∪ IK ; it is then checked
whether the expression is contained in the node label σ. Thus, for each σ ∈ ΣK and each
s ∈ CK ∪ RK ∪ IK ∪ PIK ∪ PSK , there are transitions:

δT (s, σ) =

true, if s ∈ σ
false, if s < σ

δT (¬s, σ) =

true, if s < σ
false, if s ∈ σ

INFSYS RR 1843-09-04 19

δT (〈> n S .C, i, n〉, σ) = true, for 0 ≤ i ≤ bK+2
δT (〈> n S .C, bK+2, j〉, σ) = false, for 0 ≤ j ≤ n−1
δT (〈6 n S .C, i, n+1〉, σ) = false, for 0 ≤ i ≤ bK+2

δT (〈6 n S .C, bK+2, j〉, σ) = true, for 0 ≤ j ≤ n

δT (〈a,> n S .C, i, n〉, σ) = true, for 1 ≤ i ≤ bK
δT (〈a,> n S .C, bK+1, j〉, σ) = false, for 0 ≤ j ≤ n−1
δT (〈a,6 n S .C, i, n+1〉, σ) = false, for 1 ≤ i ≤ bK+1

δT (〈a,6 n S .C, bK+1, j〉, σ) = true, for 0 ≤ j ≤ n

Table 4: Testing the unsatisfiability of number restrictions

• The acceptance condition is FT = (∅, {∀R∗.C | ∀R∗.C ∈ Cl(CT)},QT). It ensures that there are no
paths where satisfaction of ∃R∗.C is indefinitely postponed in accepting runs (cf. [10]).

The transition of groups 2–4 enable AT to verify whether a node in the input tree satisfies the concepts
in the closure of CT ; more precisely, an accepting run of AT over an interpretation tree T can have a node
labelled (x,C) iff x is an instance of C in the interpretation IT.

Lemma 4.11 For every interpretation tree T for K , the following holds:

1. If (Tr, r) is an accepting run of AT over T and y ∈ Tr with r(y) = (x,C) for C ∈ Cl(CT), then x ∈ CIT .

2. If for some x ∈ T and some C ∈ Cl(CT), there does not exist an accepting run (Tr, r) of AT over T
such that r(y) = (x,C) for some y ∈ Tr, then x < CIT .

Proof. (Sketch) Item 1 can be shown by structural induction on C; the proof is straightforward but
tedious, as it must respect the encoding of assertions between individuals and self loops, as well as the
correctness of counters for the number restrictions. The only interesting cases are when C = ∀R∗.D or
C = ∃R∗.D. In the former case, the transitions ensure that for r(y) = (x,∀R∗.D), the run continues with
nodes labeled (x,D) and (x,∀R.∀R∗.D), which ensures that ∀R∗.D is propagated to each x′ reachable from
x via R. This clearly implies x ∈ (∀R∗.D)IT . In the latter case, the transitions propagate ∃R∗.D by either
choosing (x,D) or (x,∃R.∃R∗.D), which in turn propagates ∃R∗.D to some x′ reachable from x via R. To
satisfy ∃R∗.D, the concept D must be eventually satisfied on some finite R-path starting at x. Towards a
contradiction, suppose that D is unsatisfied along every infinite R-path starting at x. As x < DIT , every run
compliant with the transition function δT must have successive nodes y′, y′′ labeled r(y′) = (x,∃R.∃R∗.D)
and r(y′′) = (x′,∃R∗.D) for some x′ that is reachable from x via R. As x′ < DIT , to satisfy ∃R∗.D at
x′ the disjunct ∃R.∃R∗.D must be chosen, and the path must continue with nodes z and z′ labeled r(z) =

(x′,∃R.∃R∗.D) and r(z′) = (x′′,∃R.∃R∗.D) for some x′ that is reachable from x via R, etc. Consequently, Tr

has an infinite path π such that Inf(π) = {∃R∗.D,∃R.∃R∗.D}. Clearly, π does not satisfy FT ; this contradicts
that Tr is an accepting run over T . Hence, r(y) = (x,∃R.∃R∗.D) implies x ∈ (∃R∗.D)IT , as desired.

Item 2 is also shown by structural induction on C. Roughly, one can show that if a node y in a partial run
has r(y) = (x,C) with x ∈ CIT , then it is possible to choose a suitable set W as required by Definition 2.9 to
satisfy δT at y. Again, the proof is straightforward but tedious because of the large number of constructors
and the encodings of assertions between individuals at the root label and of self loops. If C = ∃R∗.D or
C = ∀R∗.D, the run can require repeatedly generating successors labeled with (x′,C). For C = ∀R∗.D, this

20 INFSYS RR 1843-09-04

may be infinitely repeated, but the resulting branch is accepting as Inf(π) = {∀R∗.D,∀R.∀R∗.D}, and FT is
satisfied. For ∃R∗.D, this will happen only finitely often: as x ∈ (∃R∗.D)IT , D must be eventually reached
on some finite path, and some x′ ∈ DIT will be encountered; we then can add (x′,D) to the run.

AT starts its run over an interpretation tree T at the root ε in state q0. It then moves to each successor i
and switches to the state CT if i represents some ABox individual a (which is the case if i has some a in its
label; otherwise, no further steps from i are made). By Lemma 4.11, it will succeed in completely decom-
posing CT at i iff a is in the interpretation of CT (more precisely, aIT ∈ CIT

T
). Thus using Proposition 3.6,

we obtain:

Lemma 4.12 If T is an interpretation tree for K , then T ∈ L(AT) iff IT |= T .

4.2.4 Automaton AK verifying KB satisfaction

Finally, by intersecting the automata defined above, we obtain the desired automaton AK .

Definition 4.13 Given K , let AK be an automaton such that L(AK) = L(AI) ∩ L(AA) ∩ L(AT), as in
Lemma 2.11.

4.3 Soundness and Completeness

The following proposition states soundness and completeness of AK with respect to canonical models ofK .

Proposition 4.14 For a given K , L(AK) = {TI | I is a canonical model of K}.

Proof. (⊆). By definition, T ∈ L(AK) implies T ∈ L(AI) ∩ L(AA) ∩ L(AT). As T ∈ L(AI), by
Lemma 4.7 IT is a canonical interpretation for K . Hence, by Lemma 4.9, T ∈ L(AA) implies IT |= A,
and by Lemma 4.12, T ∈ L(AT) implies IT |= T . Consequently, IT is a canonical model of K ; as by
Lemma 4.5 T = TIT , the left-to-right inclusion holds.

(⊇). If I is a canonical model of K , then TI is an interpretation tree. By Lemma 4.7, AI accepts TI.
As I |= A, Lemma 4.9 implies that AA accepts TI. Finally, I |= T and Lemma 4.12 imply that AT accepts
TI. Consequently, TI ∈ L(AK) as desired.

From Proposition 4.14 and the canonical model property ofZIQ in Theorem 3.9, we obtain:

Theorem 4.15 AnZIQ KB K is satisfiable iff L(AK) , ∅.

Thus, satisfiability of anZIQ KB K reduces to testing the automaton AK for emptiness.

4.4 Complexity

Recall that CK and RK denote the atomic concepts and roles occurring in K , respectively, and IK the
ABox individuals; bK denotes max(kCT , |IK |) where kCT = |Cl(CT)| · max({n | > n S .C ∈ Cl(CT)} ∪ {0}).
Furthermore, let n′max = max({n | ≷ n S .C ∈ Cl(CT)} ∪ {0}). K is represented as a string of length ||K||, and
|CK |, |RK |, |IK | and |Cl(CT)| are linear in ||K||; under unary number coding in the number restrictions, this
holds also for bK and n′max. We thus obtain:

Lemma 4.16 For AK , we have |Σ(AK)| ≤ 2O(||K||3), |Q(AK)| ≤ O(||K||4), and ind(AK) = 3.

INFSYS RR 1843-09-04 21

Proof. Recall that Σ(AK) = ΣK and Q(AK) = QK . The result is a consequence of the following simple
estimates:

• |ΣK | = 2M(K), where M(K) = |CK | + |RK | + |IK | + |PI| + |PS| + 1, and we have |PI| = |RK | · |bK |2 and
|PS| = |RK |. Clearly, M(K) = O(||K||3).

• |QK | ≤ |QT | + |QA| + |QI| + 1, where

|QA| ≤ 1 + 2|IK | + |CA| + |RA| · |IK |2,
|QI| ≤ 2 + 2(|IK | + 1)

|QT | ≤ 1 + |Clext| + |QSelf| + |QA role| + |Qnum| + |QA num|

|Clext| ≤ |Cl(CT)| + 2|IK |,
|QSelf| ≤ |Cl(CT)|,

|QA role| ≤ |Cl(CT)| · |bK |2,

|Qnum| ≤ |Cl(CT)| · (bK + 1) · (n′max + 1),

|QA num| ≤ |IK | · |Cl(CT)| · bK · (n′max + 1).

Hence, it is easy to see that |QK | = O(||K||4) (cf. |QA num|).

• ind(A) = max(ind(AI), ind(AA), ind(AT)) = max(2, 2, 3) = 3.

Thus, by Theorems 2.10 and 4.15, we get an optimal upper bound for KB satisfiability.

Corollary 4.17 Deciding whether a given KB inZIQ is satisfiable is in ET.

This is worst-case optimal, since a matching hardness result holds already for much weaker DLs, e.g.ALC
[4].

5 Query answering via automata

We now turn to entailment of P2RPQs in KBs. As follows from Theorem 3.9, to decide whether K |= q
for a P2RPQ q and a KB K in this DL, it is sufficient to decide whether K has a canonical model in which
q has no match. We show how to do this using tree automata. Specifically, we build an automaton AK6|=q
that accepts all trees that represent a canonical model of K in which q has no match; hence, deciding query
entailment reduces to checking L(AK6|=q) = ∅.

Roughly, AK6|=q is obtained by intersecting two automata: AK from Section 4.2 (which accepts the trees
representing a canonical model of K), and A¬q, which accepts the trees representing an interpretation that
admits no match for q. We construct A¬q in this section. As a preliminary step, we construct an automaton
Aq that accepts a tree if q has a match in the interpretation it represents; we then show how to obtain from
Aq the desired A¬q. Figure 3 gives a general overview of the query answering technique; each of the steps
will be discussed in detail below.

22 INFSYS RR 1843-09-04

Accepts interpretation trees

that represent a model of the KB

Accepts extended interpretation

trees where the query has a match

Accepts interpretation trees

where the query has no match

Accepts interpretation trees that
represent models where the query has no match

Project match away

and complement

Intersect

AK

Aq A¬q

AK6|=q

Figure 3: Overview of the automata algorithm for Query Entailment

5.1 Representing Query Matches

In what follows, let q = ∃~v.ϕ(~v). We assume w.l.o.g. that only role atoms of the form R(v, v′) occur q, since
each atom C(v) can be equivalently replaced with id(C)(v, v). Let At(q) be the set of all atoms occurring in q,
and let Vq = {v1, . . . , v`} be the variables in ~v. We denote by Cq, Rq, Iq the sets of atomic concepts, atomic
roles, and individuals that occur in q, respectively.

Prior to defining Aq, we introduce extended interpretations.

Definition 5.1 An extended interpretation is a pair (I, π) consisting of an interpretation I and a function
π : Vq ∪ Iq → ∆I such that π(a) = aI for each a ∈ Iq.

Intuitively, π is a possible match for the query. Extended interpretations are represented by extended
interpretation trees labeled over the alphabet ΣK ,q, which enriches ΣK with the variables in Vq and allows
us to include the symbol v in the label of the node π(v), for each v ∈ Vq. We construct below an automaton
Aq that accepts a ΣK ,q-labeled tree iff it represents an extended interpretation (I, π) such that I, π |= q.

Definition 5.2 For Σ = 2Φ and Σ′ = 2Φ′ where Φ′ ⊆ Φ, and for any Σ-labeled tree T = (T, L), the Σ′-
restriction of T is the Σ′-labeled tree T′ = (T, L′), where L′ is obtained by restricting L to Σ′.

We let ΣK ,q = {σ∪σ′ | σ ∈ ΣK and σ′ ∈ 2Vq}. An extended interpretation tree is a ΣK ,q-labeled bK -ary
tree T = (T, L) such that

1. its ΣK -restriction is an interpretation tree, and

2. for each v ∈ Vq∪ Iq there is exactly one x ∈ T with v ∈ L(x), called the candidate match for v; further,
x is of the form x = ε· j · · · with L(ε· j) ∩ IK , ∅ (i.e., either x itself or its level-one ancestor is an
individual node).

By πT we denote the function Vq ∪ Iq → T that maps each v ∈ Vq ∪ Iq to its candidate match.

We associate extended interpretation trees with extended interpretations and vice versa, as follows.

Definition 5.3 The extended interpretation represented by an extended interpretation tree T isJT = (IT, πT).
The tree representation TJ of an extended interpretationJ = (I, π) is the extended interpretation tree (T, L)
whose ΣK -restriction is TI and such that, for each v ∈ Vq and each x ∈ T , v ∈ L(x) iff x = π(v) .

INFSYS RR 1843-09-04 23

L′1

L′1 L′2

L′1 L′2

L′2

.

.

.

L′1

L′1L′1 L′2

deity}
{v1,Z,male,

LR

L′5 L′3

L′5 L′3

L′3

L′4

L′4

{E,male,
mortal }{v3,H,male}

L′4 L′5

L′3

{P,male}mortal,
female}

{v2, A,

L′4 L′5L′5

Figure 4: The tree representation of an extended interpretation

Analogously to Lemma 4.5, we have:

Lemma 5.4 If T is an extended interpretation tree, then JT is an extended interpretation and TJT = T.

Example 5.5 Recall the interpretation Ig given in Example 4.3, and the match π(v1) = ZeusIg , π(v2) =

AlcmeneIg and π(v3) = HeraclesIg for the query qg in Example 2.5. The tree representation of the extended
interpretation Ig, π is shown in Figure 4. It extends the tree representation of Figure 2 with the variable
names v1, v2 and v3.

5.2 Constructing the Automaton

Now we construct the automaton Aq that accepts a ΣK ,q-labeled tree T iff (i) T is an extended interpretation
tree and (ii) the map πT represents a match for the query q in the associated interpretation IT. We define Aq

as the intersection of automata AT and Aπ for (i) and (ii), respectively.
As for AT, we can easily define a 2ATA AV that verifies whether a given tree satisfies condition 2 of

Definition 5.2 We obtain the desired AT by intersecting AV with AI from Section 4.2, after adapting AI so
that its alphabet is ΣK ,q and it accepts all trees whose ΣK -restrictions are interpretation trees.

In detail, the 2ATA AV = 〈ΣV ,QV , δV , qV
0 , FV〉 over ΣV -labeled bK -ary trees is defined as follows:

• ΣV = ΣK ,q;

• QV = {qV
0 } ∪ {v,¬v, v+, v− | v ∈ Vq}; v and ¬v check the label of the current node, and respectively

verify the presence or absence of v in it, while v+ and v− are used for checking whether the tree rooted
at the current node contains the node labeled with v.

• FV = (∅, {v− | v ∈ Vq},QV).

• The transition function δV : QV × ΣK ,q → B([bK] × QV) contains three groups of transitions:

1. For each σ ∈ΣK ,q with r ∈σ, a transition from the initial state:

δV (qV
0 , σ) =

∧
v∈Vq

(∨
1≤ j≤bK

((
∨
a∈IK

(j, a)) ∧ (j, v+) ∧
∧

1≤ j′≤bK , j′, j

(j′, v−))
)
.

24 INFSYS RR 1843-09-04

2. For each v ∈ Vq and each σ ∈ ΣK ,q, transitions to the subtrees:

δV (v+, σ) = ((0, v) ∧
∧

1≤ j≤bK (j, v−)) ∨ ((0,¬v) ∧
∨

1≤ j≤bK ((j, v+) ∧
∧

1≤ j′≤bK , j′, j(j′, v−))),

δV (v−, σ) = (0,¬v) ∧
∧

1≤ j≤bK (j, v−).

3. For each σ ∈ ΣK and each v ∈ Vq, transitions that check the labeling with v:

δV (v, σ) =

true, if v ∈ σ
false, if v < σ

, δV (¬v, σ) =

true, if v < σ
false, if v ∈ σ

.

The automaton AI in Definition 4.6 is modified to A′
I

= 〈ΣK ,q,QI, δ′I, q
I
0 , FI〉, by changing ΣI to ΣK ,q

and setting, for each σ ∈ ΣK ,q and q ∈ QI, δ′
I

(σ, q) = δI(σ′, q) whenever σ \ Vq = σ′. Then, AT is an
automaton that accepts the intersection of AV and A′

I
, as in Lemma 2.11.

Lemma 5.6 AT accepts a ΣK ,q-labeled bK -ary tree T iff T is an extended interpretation tree for K .

Now we define the 2ATA Aπ. We use the individuals in Iq and the variables in Vq as atomic concepts,
and use a q-concept Cα for each query atom α = R(v, v′), such that Cα is satisfied at some root of an extended
interpretation (I, π) iff I, π |= α.

Definition 5.7 A q-concept C is defined as a regularZIQ concept, but allows also the elements of Vq ∪ Iq

in place of atomic concepts. For each α= R(v, v′) in q, we let Cα = ∃U.(v u ∃R.v′), where U = (
⋃

P∈RK P)∗.
The semantics of a q-concept C in a extended interpretation J = (I, π) is as follows:

• if C = A for some A ∈ C, then CJ = AI;
• if C = v for some v ∈ Vq ∪ Iq, then CJ = { π(v) }.

This inductively extends to complex q-concepts as in Definition 2.3 (i.e., like for a regular interpretation).

The q-concepts correctly capture the semantics of the query atoms:

Lemma 5.8 For every extended interpretation J = (I, π) and atom α= R(v, v′) occurring in q, we have
I, π |= α iff there is some root i ∈ ∆I such that i ∈ CJα .

By this Lemma, we only need to verify that Cα1 , . . . ,Cαk hold at some root for query atoms α1, . . . , αk

that make the query q true. The satisfaction of the concepts Cαi is verified by an automaton Aπ that decom-
poses them via transitions analogous to those of AT . Modulo the initial transition from the root node, Aπ

and AT are very similar.

Definition 5.9 Let Clq =
⋃
α∈At(q) Cl(Cα).We define the 2ATA Aπ = (Σπ,Qπ, δπ, qπ0, Fπ) as follows.

• Σπ = ΣK ,q;

• Qπ is like QK in AK , but defined using Clq instead of Cl (see Table 5).

• Fπ = (∅, {∀R∗.C | ∀R∗.C ∈ Clq},Qπ), analogously as in AT .

INFSYS RR 1843-09-04 25

Cl q
ext = Clq ∪ {s,¬s | s ∈ IK ∪ Vq}

Qq,Self = {S Self | S a simple role in Clq}

Qq,A role = {S i j | i, j ∈ {1, . . . , bK } and S a simple role in Clq}

Qq,num = {〈> n S .C, i, j〉 | > n S .C ∈ Clq, 0 ≤ i ≤ bK+1, 0 ≤ j ≤ n} ∪
{〈6 n S .C, i, j〉 | 6 n S .C ∈ Clq, 0 ≤ i ≤ bK+1, 0 ≤ j ≤ n+1}

Qq,A num = {〈a,> n S .C, i, j〉 | a ∈ IK , > n S .C ∈ Clq, 1 ≤ i ≤ bK , 0 ≤ j ≤ n} ∪
{〈a,6 n S .C, i, j〉 | a ∈ IK , 6 n S .C ∈ Clq, 1 ≤ i ≤ bK ; 0 ≤ j ≤ n+1}

Table 5: State set Qπ = {qπ0} ∪ Cl q
ext ∪ Qq,Self ∪ Qq,A role ∪ Qq,num ∪ Qq,A num

• The transitions from the initial state are defined for each label σ containing r (identifying the root
node) as

δπ(q0, σ) = Bϕ,

where Bϕ results from ϕ(~v) by replacing each atom α with (0,Cα).

When Aπ is at the root node and in a state Cα for some α ∈At(q), it checks that the concept Cα is
satisfied at some individual node, via the following transitions, for each σ containing r:

δπ(Cα, σ) =
∨

1≤i≤bK ((i,Cα) ∧
∨

a∈IK (i, a)).

To further check that Cα is satisfied, Aπ has transitions similar to those of AT , viz. for each σ ∈ ΣK ,

1. transitions that recursively decompose complex concepts and non-simple roles in Clq, as in item
2 of δT ;

2. transitions that handle all simple roles in Clq and the states in Qq,Self and Qq,A role, as in item 3
of δT ;

3. transitions δπ(s, σ) for each s ∈ Clq of the form ≷ n S .C, and for each s ∈ Qq,num ∪ Qq,A num to
verify the satisfaction of the number restrictions, as in item 4 of δT ;

4. transitions δπ(s, σ) for each s ∈ CK ∪ RK ∪ IK ∪ PIK ∪ PSK as in item 5 of δT , and for each
s ∈ Vq, as in item 3 of δI, to check symbol occurrences in node labels.

Given an extended interpretation tree, Aπ correctly checks the satisfaction of complex concepts in Clq.

Lemma 5.10 (Cf. Lemma 4.11) For every extended interpretation tree T, the following holds.

1. If (Tr, r) is an accepting run of Aπ over T, then r(y) = (x,C) for y ∈ Tr and C ∈ Clq implies x ∈ CIT .

2. If for some x ∈ T and some C ∈ Cl(CT) there does not exist an accepting run (Tr, r) of Aπ over T
such that r(y) = (x,C) for some y ∈ Tr, then x < CIT .

Hence a run of Aπ on an extended interpretation tree that visits a state Cα correctly verifies the existence
of a match for the atom α. By this and Lemma 5.8, the initial transition from the root is sufficient to verify
whether this holds for a set of atoms that makes q true:

26 INFSYS RR 1843-09-04

Lemma 5.11 An extended interpretation tree T = (T, L) is accepted by Aq iff there exists some A ⊆ At(q)
such that

• for every α ∈ A, there is some root i ∈ ∆I such that i ∈ CJα , and

• by assigning true to the atoms in A and false to all others, ϕ evaluates to true.

Finally, Aq is the intersection of AT and Aπ, which accepts the trees representing interpretations where
q has a match:

Proposition 5.12 For given K and q, L(Aq) = {TJ | J = (I, π) is a an extended interpretation for K and
I, π |= q}.

5.3 Deciding Query Entailment

Our algorithm for deciding K |= q roughly works as follows. The automaton Aq accepts a tree over the
extended alphabet ΣK ,q, if it represents an extended interpretation for K in which π is a match for q. We
project the query variables Vq from Aq’s alphabet and obtain an automaton that accepts the same trees,
but restricted to ΣK ; they correspond to the interpretation trees for K in which q has a match, no matter
where it is. The next step is to complement this automaton, such that it accepts an interpretation tree exactly
when there is no match for q in it. Finally, we intersect this automaton with the automaton AK to obtain an
automaton AK6|=q that accepts the trees that represent a canonical model of K in which q has no match. By
Theorem 3.9 K 6|= q iff such a model exists. Hence deciding K |= q reduces to testing the automaton AK6|=q
for emptiness.

We recall some results on 1NTA. The following bounds for automata complementation are given in [46].

Proposition 5.13 For every 1NTA A running over k-ary trees, k ≥ 1, it is possible to construct a 1NTA A
that accepts a k-ary Σ-labeled tree (T, L) iff (T, L) < L(A), and such that |Q(A)| ≤ 2O(f (A)) and ind(A) =

O(f (A)), where f (A) = ind(A)·|Q(A)|· log |Q(A)|.

For Σ = 2Φ and Σ′ = 2Φ′ where Φ′ ⊆ Φ, let the Σ′-projection of a set L of Σ-labeled trees be the set
containing the Σ′-restrictions of all trees in L.

Lemma 5.14 For Σ and Σ′ as above, for every 1NTA A running over k-ary Σ-labeled trees, k ≥ 1, it
is possible to construct a 1NTA AΣ′ with |Q(AΣ′)| ≤ |Q(A)| and ind(AΣ′) ≤ ind(A) that accepts the Σ′-
projection of L(A).

Proof. To obtain AΣ′ from A, simply change Σ to Σ′ and the transition function to δ′ as follows. For
each σ ∈ Σ′ and each q ∈ Q(A), δ′(q, σ) =

∨
σ′∈Ξ(σ) δ

′(q, σ′), where Ξ(σ) = {σ′ ∈ Σ | σ′ ∩ Φ′ = σ}.

Using this Lemma and Theorem 2.10, we can construct a 1NTA that accepts exactly the set of trees
that either do not represent an interpretation, or represent an interpretation where q has no match. More
precisely, we have:

Lemma 5.15 Given q, it is possible to construct a 1NTA A¬q such that IT 6|= q for every interpretation tree

T ∈ L(A¬q), and with |Q(A¬q)| ≤ 22O(nc
q)

and ind(A¬q) ≤ 2O(nc
q) for nq = |Q(Aq)| and some constant c, i.e.,

with double exponentially many states and with index single exponential in the number of states of Q(Aq).

INFSYS RR 1843-09-04 27

Proof. Let A0 = Aq and nq = |Q(Aq)|. By Theorem 2.10, we can transform A0 into an 1NTA A1 with
L(A1) = L(A0) such that |Q(A1)| ≤ 2O(nc0

q) for some constant c0 and ind(A1) = O(ind(A0)) = O(1). By
Lemma 5.14, we can transform A1 into a 1NTA A2 which accepts the ΣK -projection of L(A1) such that
|Q(A2)| ≤ |Q(A1)| ≤ 2O(|Q(A0)|c0) and ind(A2) ≤ ind(A1) = O(1). By Lemma 5.13, we can construct from A2
an automaton A3 = A¬q accepting the complement of L(A2) such that |Q(A3)| ≤ 2O(f (A2)) and ind(A3) =

O(f (A2)), where f (A2) = ind(A2)·|Q(A2)|· log |Q(A2)| ≤ 2O(|Q(A0)|c2)·O(|Q(A0)|c2), for some constant c2. It
follows that |Q(A¬q)| ≤ 22O(nc

q)
and ind(A¬q) ≤ 2O(nc

q) for some constant c.
We know that L(Aq) = L(A1) = {TJ | J = (I, π) is a an extended interpretation for K and I, π |= q}.

By construction, A2 accepts the ΣK -projection of L(A1), namely L(A2) = {TI | for some π,J = (I, π) is
a an extended interpretation for K and I, π |= q}. Its complement is L(A3) = {T | there exist no I and no
π such that T = TI, J = (I, π) is a an extended interpretation for K and I, π |= q}, i.e., L(A3) accepts an
interpretation tree T only if IT 6|= q. Then A3 = A¬q is the desired automaton.

To obtain the automaton AK6|=q, we intersect AK , after transforming it into an 1NTA, with A¬q. The
following bounds for the intersection of two 1NTAs are known:5

Lemma 5.16 Given 1NTAs A1 and A2, it is possible to construct a 1NTA A such thatL(A) = L(A1)∩L(A2)
with ind(A) = O(f (A1,A2)) and |Q(A)| ≤ 2O(f (A1,A2)2) · f (A1,A2)·|Q(A1)|·|Q(A2)|, where f (A1,A2) =

ind(A1) + ind(A2) + 1.

Finally, we can prove the existence of the automaton AK6|=q that accepts exactly the canonical models of
K where there is no match for q as desired:

Lemma 5.17 Given K and q, it is possible to construct a 1NTA AK6|=q with |Q(AK6|=q)| ≤ 22O((nK+nq)c)
and

ind(AK6|=q) ≤ 2O(nc
q) for some constant c where nK = |Q(AK)| and nq = |Q(Aq)|, i.e., with double exponen-

tially many states in the number of states of AK and Aq, and with index single exponential in the number of
states of Aq, such that L(AK6|=q) = {T | IT |= K and IT 6|= q }.

Proof. By Theorem 2.10, AK is convertible into a 1NTA A1 with |Q(A1)| ≤ 2O(|Q(AK)|c1) for some
constant c1 and ind(A1) = O(ind(AK)) = O(1) such that L(AK) = L(A1). We then construct a 1NTA
A3 = AK6|=q as the intersection of A1 and A2 = A¬q, which by Lemma 5.16 has ind(A3) = O(f (A1,A2))
and |Q(A3)| ≤ 2O(f (A1,A2)2) · f (A1,A2)·|Q(A1)|·|Q(A2)|, where f (A1,A2) = ind(A1) + ind(A2) + 1. As by

Lemma 5.15, |Q(A2)| ≤ 22O(n
c2
q)

and ind(A2) ≤ 2O(nc2
q) for some constant c2, it follows that ind(A3) ≤ 2O(nc2

q) +

O(1), and |Q(A3)| ≤ 2O(f (A1,A2)2)· f (A1,A2)·2O(|Q(AK)|c1)·22O(n
c2
q)

, where f (A1,A2) = ind(A1) + ind(A2) + 1 ≤
2O(nc2

q) + O(1) + 1. It follows from this that |Q(AK6|=q)| ≤ 22O((nK+nq)c)
and ind(AK6|=q) ≤ 2O(nc

q) for some
constant c. Suppose T ∈ L(AK6|=q). Then T ∈ L(AK), which means that IT is a canonical model of K , and
T ∈ L(A¬q), which means that q has no match in IT. Conversely, if T < L(AK6|=q), then either T < L(AK),
which means IT is not a model of K , or T < L(A¬q), which means that q has a match in IT.

Therefore, AK6|=q accepts some input tree if and only if K has some canonical model in which q has no
match. Combined with Theorem 3.9, we thus obtain:

Theorem 5.18 For every P2RPQ q over a knowledge base K in ALCQIbreg, it holds that K |= q iff
L(AK6|=q) = ∅.

5To our knowledge, these bounds have not been published. A tighter bound of ind(A) = ind(A1) + ind(A2) and |Q(A)| =

f ′(A1,A2)!· f ′(A1,A2)·|Q(A1)|·|Q(A2)|, where f ′(A1,A2) = (ind(A1) + ind(A2))/2 + 1, was confirmed through personal communi-
cation with Yoad Lustig and Nir Piterman, to whom we are very grateful.

28 INFSYS RR 1843-09-04

5.4 Complexity

We now show that the reduction of query entailment to automata emptiness as in Theorem 5.18 gives a
tight upper complexity bound for the problem. Recall that ||K|| and ||q|| respectively denote the size of some
representation (as strings) of K and q, and let ||K , q|| = ||K|| + ||q|| denote their combined size.

It is not difficult to show that Aq has polynomially many states in ||K , q||.

Lemma 5.19 |Q(Aq)| = O(||K , q||c), for some constant c, and ind(Aq) = 3.

Proof. Recall that ind(Aq) = max(ind(Aπ), ind(AV), ind(AI)) = 3. Let n′max = max({n | ≷ n S .C ∈
Cl(CT)} ∪ {0}) (resp., nq

max = max({n | ≷ n S .C ∈ Clq)} ∪ {0}).
Recall that |CK |, |RK |, |IK |, |Cl(CT)|, nmax and bK are linear in ||K|| under the assumptions on the

encoding ofK (cf. Section 4.4). Under similar assumptions for q, we have that |Clq|, |Vq| and nq
max are linear

in ||q||. Then |Q(Aq)| ≤ |Qπ| + |QV | + |QI| + 2, where

|QI| ≤ 2 + 2(|IK | + 1),
|QV | ≤ 1 + 4|Vq|,

|Qπ| ≤ 1 + |Cl q
ext| + |Qq,Self| + |Qq,A role| + |Qq,num| + |Qq,A num|,

|Cl q
ext| ≤ |Clq| + 2(|IK | + |Vq|),

|Qq,Self| ≤ |Clq|,
|Qq,A role| ≤ |Clq| · |bK |2

|Qq,num| ≤ |Clq| · (bK + 1) · (nq
max + 1),

|Qq,A num| ≤ |IK | · |Clq| · bK · n
q
max.

Hence, |Q(Aq)| = O(||K , q||4) (in fact, |Q(Aq)| = O(||K , q||3) for fixed K and |Q(Aq)| = O(||K , q||2) for fixed
q).

Lemma 5.20 |Q(AK6|=q)| = 22O(||K ,q||c)
and ind(AK6|=q) = 2O(||K ,q||c) for some constant c. Furthermore, AK6|=q

can be constructed in time double exponential in ||K , q||.

Proof. The first part follows directly from Lemmas 4.16, 5.17, and 5.19. The second part is also
straightforward, since in all the automata constructions given in Section 5.3 the time required to construct
an automaton is polynomial in its size plus the input.

Testing a 1NTA for emptiness is feasible within the following bounds.

Proposition 5.21 ([42]) Given a 1NTA A, the nonemptiness problem is decidable in time O(|Q(A)|ind(A)).

We thus obtain the main result of this section.

Theorem 5.22 Given a P2RPQ q over a KB K inALCQIbreg, deciding whether K |= q is in 2ET.

This bound is worst case optimal. As shown in [44], answering conjunctive queries over KBs inALCI
(i.e., P2RPQs built only with ∧ and where no regular role expressions, but only concepts and roles as in
ALCI, are allowed in the query) is 2ET-hard. More recently, the same lower bound was established
for SH [23].

Note that the P2RPQs we consider are more expressive than CQs inALCI andSH ; however, we obtain
the following result.

Theorem 5.23 Let LK ⊆ ZIQ be a DL, Lq ⊆ P2RPQs a query language, q in Lq, and K in LK . If
either (a)ALCI ⊆ LK and Lq contains conjunctive queries inALCI, or (b) SH ⊆ LK and Lq contains
conjunctive queries in SH , then deciding K |= q is 2ET-complete.

INFSYS RR 1843-09-04 29

5.4.1 Data complexity

A brief remark on the impact of K to the overall complexity of the algorithm is in order. Most of the
existing query answering algorithms in expressive DLs are double exponential in ||K|| + ||q||, but just single
exponential in ||K||. However, this is not the case for our algorithm. The definition of P2RPQs allows
for arbitrary concepts in query atoms. It is common practice to restrict the queries and allow only atomic
concepts instead. If we adopt this restriction (but allow for arbitrary roles), then Aq does not have to deal with
number restrictions (as they do not occur in the concepts Cα representing the query atoms). Consequently,
its set of states would be simpler (Q(Aq) = {q0} ∪ Cl q

ext ∪ Qq,A role ∪ Qq,A quant) and the construction can
easily be modified so that it would depend only on ||q|| and |IK |. This means that if IK is bounded by a
constant, |Q(AK6|=q)| and ind(AK6|=q) are single exponential and constant in ||K|| respectively, which leads to
a decision procedure that is single exponential in ||K||. In the general case, the cardinality of Q(Aq) and the
size of F(Aq) are already double and single exponential in |IK |, respectively. This implies that our decision
procedure is double exponential in the size of the ABox in the worst case, i.e., it has doubly exponential
data complexity. Although the data complexity of query answering inZIQ has not been studied so far, this
bound is not likely to be optimal. In fact, for the related description logic SHIQ, a much lower NP lower
bound for data complexity is known [27]. It is unclear whether Aq could be designed in such a way that its
size does not depend on ||K||, which would yield an exponentially better upper bound on data complexity.

6 Complex role inclusion axioms

The DL SRIQ was introduced in [31] as an extension of RIQ [33], which in turn extends the well known
DL SHIQ [34] underlying OWL-Lite. SRIQ has gained considerable attention in the last years as the
‘Lite’ fragment of the DL SROIQ underlying the new OWL 2 standard. In this section, we show that our
algorithm can also be utilized for query answering in SRIQ by means of a suitable reduction to the logic
ZIQ.

The most prominent feature of SRIQ are role inclusion axioms of the form R1 ◦ · · · ◦ Rn v R subject
to some regularity restrictions. The latter, which are necessary to guarantee decidability of reasoning, make
it also possible to simulate such axioms with regular expressions. SRIQ also allow one to explicitly state
certain properties of roles, including (ir)reflexivity, symmetry, and disjointness, which can be simulated in
ZIQ using BRIAs and CIAs. To recall SRIQ KBs, we follow [31] and [38].

Definition 6.1 [SRIQ knowledge bases] A SRIQ role inclusion axiom (SRIA) is an expression of the form
R1 ◦ · · · ◦ Rn v R, where n > 1, {R1, . . . ,Rn,R} ⊆ R, and R = R ∪ {R− | R ∈ R}.

A set R of SRIAs is regular, if there exists a partial order ≺ on R such that Inv(R) ≺ R′ iff R ≺ R′

for every R,R′ ∈ R, and such that every SRIA in R is of one of the forms (i) R ◦ R v R, (ii) Inv(R) v R,
(iii) w v R, (iv) w◦R v R, or (v) R◦w v R, where w = R1 ◦ · · · ◦ Rn and Ri ≺ R for each 1 ≤ i ≤ n.

For a given set of SRIAs R, the relation vR is the smallest relation such that (i) R vR R for every R ∈ R
such that R or Inv(R) occurs in R, and (ii) R1 ◦ · · · ◦Rn vR R for each R1 ◦ · · · ◦Ri−1 ◦R′ ◦R j+1 ◦ · · · ◦Rn vR R
such that Ri ◦ · · · ◦ R j v R′ ∈ R or Inv(R j) ◦ · · · ◦ Inv(Ri) v R′ ∈ R, for some R′ ∈ R and 1 ≤ i ≤ j ≤ n. A
role is simple in R if there are no roles R1, . . . ,Rn with n ≥ 2 such that R1 ◦ · · · ◦ Rn vR R.

An assertion about roles is an expression of the form Sym(R), Ref(R) Irr(R), or Dis(R,R′), for roles
R,R′ ∈ R. 6 An assertion about roles is simple w.r.t. to a set R of SRIAs, if all roles occurring in it are

6We use the term assertion about roles instead of role assertions used in [31], since the latter is often used to refer to ABox
assertions of the form R(a, b). In [31] also Tra(R), asserting that R is transitive, is allowed. We omit this as it is equivalently

30 INFSYS RR 1843-09-04

simple in R or it is of the form Sym(R).
A SRIQ RBox is a finite set R = Ri ∪ Ra of SRIAs Ri and assertions about roles Ra such that Ri is

regular and each assertion in Ra is simple w.r.t. to Ri.
To define SRIQ TBoxes and ABoxes, we assume a given SRIQ RBox R containing the set Ri of

SRIAs. Then SRIQ concepts C,C′ obey the following syntax:

C,C′ −→ A | ¬C | C uC′ | C tC′ | ∀R.C | ∃R.C | > n S .C | 6 n S .C | ∃S .Self,

where A ∈ C, R, S ∈ R and S is simple in Ri. A SRIQ concept inclusion axiom (SCIA) is an expression
C v C′ for arbitrary SRIQ concepts C and C′; a SRIQ TBox is a set of SCIAs. A SRIQ assertion is an
expression C(a), R(a, b), ¬S (a, b) or a 6≈ b, where C is a SRIQ concept, S ,R are SRIQ roles, S is simple
in Ri, and a, b ∈ I; a SRIQ ABox is a set of SRIQ assertions. Given a SRIQ RBox R as above, a SRIQ
knowledge base is a triple K = 〈A,T ,R〉 whereA is a non-empty ABox and T is a TBox.7

The semantics of SRIQ TBoxes and ABoxes is defined as for ZIQ. An interpretation I satisfies an
assertion about roles Sym(R), Ref(R), or Irr(R), if RI is symmetric, reflexive, or irreflexive, respectively; I
satisfies Dis(R,R′) if the relations RI and R′I are disjoint, i.e., RI∩R′I = ∅; I satisfies a SRIA R1◦· · ·◦Rn v

R if RI1 ◦· · ·◦R
I
n ⊆ RI, where again we override the symbol ◦ and use it to denote binary role composition. An

interpretation I is a model of an RBox R if it satisfies all SRIAs and all assertions about roles in R, written
I |= R. Modelhood of a KB is restricted in the natural way to the models of the RBox, i.e., I |= 〈A,T ,R〉
iff I |= A, I |= T , and I |= R.

6.1 Reducing SRIQ toZIQ

We describe a rewriting that transforms a SRIQ KB K into anZIQ KB Ψ(K), in a way that will allow us
to exploit our automata based algorithms for reasoning in SRIQ.

The rewriting builds on the following property. The restriction to regular sets of SRIAs, which is cru-
cial for the decidability of SRIQ, ensures that all implications between roles can be described by regular
language. More precisely:

Lemma 6.2 ([33]) If R is a regular set of SRIAs, then for each R ∈ R occurring in K , the set LR(R) =

{R1 · · · · · Rn | R1 ◦ · · · ◦ Rn vR R} is a regular language.

Further, the authors of [33] show how to construct a finite state automaton representing LR(R). This
automaton is equivalent to a regular expression ρR(R) over the language R, i.e. to anZIQ role. In particular,
if a role S is simple in R, the resulting expression is the simple ZIQ role

⋃
(S ′vRS)∈R S ′. Since R ∈ LR(R)

holds for every R, and since w vR R implies wI ⊆ RI in each model of R, we easily obtain the following
corollary:

Corollary 6.3 Given a regular set of SRIAs R, we can construct, for each R ∈ R, an ZIQ role ρR(R) such
that, for every interpretation I, RI ⊆ (ρR(R))I, and I |= R implies (ρR(R))I ⊆ RI. Moreover, ρR(R) is a
simple role whenever R is simple in R.

The rewriting Ψ exploits this lemma. In what follows, we assume a fixed given regular set of SRIAs R,
and for each R ∈ R, ρR(R) denotes an arbitrary but fixed regular expression as described above.

expressed with a SRIA R ◦ R v R.
7As in Definition 2.2, we only consider w.l.o.g. non-empty ABoxes.

INFSYS RR 1843-09-04 31

Reducing concepts and TBoxes Since SRIAs are not supported in ZIQ, we need to ensure that the
interpretation of concepts in Ψ(K) respect the restrictions that arise from them. This can be achieved by
replacing each role R by the regular expression ρR(R).

Definition 6.4 For any SRIQ concept C, we denote by ΨR(C) theZIQ concept that results from replacing
each role R in C with ρR(R). For a SRIQ TBox T , we define ΨR(T) = {ΨR(C) v ΨR(D) | C v D ∈ T }.

In the models of R, this transformation is equivalence preserving.

Lemma 6.5 Let I be an interpretation such that I |= R. Then CI = (ΨR(C))I for each SRIQ concept C,
and I |= T iff I |= ΨR(T) for each SRIQ TBox T .

Reducing ABoxes We replace each concept C in an assertion of the form C(a) by the corresponding
ZIQ concept Ψ(C). We also need to remove the negated role membership assertions ¬S (a, b), which are
not allowed in ZIQ. We simulate them using a fresh role name for each assertion, together with a BRIA
that ensures that the fresh symbol is interpreted as the desired role negation.

Definition 6.6 Given a SRIQ ABoxA, we define the following:

• ΨR(A) is theZIQ ABox obtained by replacing inA (i) each assertion C(a) by Ψ(C)(a), and (ii) each
assertion ¬S (a, b) by P¬S (a, b) for a fresh role name P¬S .

• TA
R

is the TBox containing P¬S ∩ S v B for each ¬S (a, b) inA.

Similarly as above, we obtain:

Lemma 6.7 Let I be an interpretation such that I |= R. Then, for every SRIQ ABox A, I |= A iff
I |= ΨR(A) and I |= TA

R
.

Reducing Assertions about Roles Finally, the assertions about roles in the RBox will be rewritten as part
of the TBox, using BRIAs and CIAs.

Definition 6.8 For every set Ra of assertions about roles, Ψ(Ra) is the followingZIQ TBox:

Ψ(R) = {Inv(R) v R | Sym(R) ∈ R} ∪ {> v ∃R.Self | Ref(R) ∈ R} ∪
{∃R.Self v ⊥ | Irr(R) ∈ R} ∪ {R ∩ R′ v B | Dis(R,R′) ∈ R}.

Lemma 6.9 Let Ra be a set of assertions about roles. Then, for every interpretation I, I |= Ra iff I |=
Ψ(Ra).

32 INFSYS RR 1843-09-04

Reducing KBs Now we are ready to define the rewritten KB Ψ(K).

Definition 6.10 For every SRIQ KB K = 〈A,T ,R〉, let Ψ(K) = 〈ΨRi(A),T ′〉, where T ′ = ΨRi(T) ∪
TA
Ri ∪Ψ(Ra), and Ri and Ra respectively denote the set of SRIAs and the set of assertions about roles in R.

From Lemmas 6.5, 6.7, and 6.9, we easily get:

Lemma 6.11 For every interpretation I, I |= K implies I |= Ψ(K).

The converse holds only in a slightly weaker form, as the SRIAs of K need not be satisfied in every
model I of Ψ(K). However, each I can be transformed into a model of the SRIAs by adding all implied
pairs of individuals to the extension of the roles. Using Lemmas 6.5, 6.7, and 6.9, we can then easily prove
the following.

Lemma 6.12 Let I be an interpretation such that I |= Ψ(K), and let I′ be the interpretation that has
RI

′

= (ρR(R))I for each role R ∈ R occurring in K , and that is identical to I otherwise. Then I′ |= K .

Lemmas 6.11 and 6.12 provide a reduction from KB satisfiability in SRIQ to KB satisfiability inZIQ.

Proposition 6.13 Let K = 〈A,T ,R〉 be a SRIQ KB. Then K is satisfiable iff Ψ(K) is satisfiable.

An alternative translation from SRIQ toZIQ can be defined, for example, by considering some normal
form of KBs that only allows for universal concepts in GCIs of the form C v ∀R.A with A a concept name,
and that does not allow complex concepts in ABox assertions (such normal forms are well known; see,
e.g. [38]). A normal KB 〈A,T ,R〉 is rewritten as 〈A′,T ′〉, where A′ is obtained by removing the negated
ABox assertions as in Definition 6.6 and adding the corresponding BRIAs to T , while additionally replacing
R with ρR(R) in each universal concept ∀R.A, and adding CIAs and BRIAs for the assertions about roles as
in Definition 6.8 to obtain T ′.

6.2 Deciding KB satisfiability

Due to Proposition 6.13, the automata algorithm in Section 4 can be used to decide the satisfiability of
SRIQ knowledge bases. Assuming that the number restrictions are coded in unary, the resulting algorithm
is worst-case optimal. Let ρ∗

R
be a longest regular expression ρR, R ∈ RR. All steps of the rewriting Ψ are

clearly polynomial in the size ofA, T , and ρ∗
R

. However, the size of ρ∗
R

can be exponential in the size of R
[33].

Theorem 6.14 The satisfiability of a given SRIQ knowledge base K = 〈A,T ,R〉 is decidable in time
exponential in the combined size of T ,A, and ρ∗

R
, and double exponential in the size of K .

As shown in [38], SRIQ is 2ET-hard. Hence our bound is optimal.

Corollary 6.15 Deciding whether a given KB in SRIQ is satisfiable is 2ET-complete.

Note that the blowup in complexity w.r.t. ZIQ is due to the size of ρ∗
R

, and that the algorithm is single
exponential whenever ρ∗

R
has size polynomial in R, e.g., for the so-called simple role hierarchies defined in

[33]. This compares well to the SRIQ algorithm given in [31] which, even for these restricted cases, may
require time that is non-deterministic double exponential in K .

INFSYS RR 1843-09-04 33

6.3 Query Answering in SRIQ

We also have an algorithm to decide query entailment in SRIQ. To this end, we rewrite a P2RPQ q over
K = 〈A,T ,R〉 into a query ΨR(q) over Ψ(K), in such a way that query entailment is preserved.

Definition 6.16 For every P2RPQ q over a SRIQ knowledge baseK = 〈A,T ,R〉, let ΨR(q) be the P2RPQ
that results from substituting in q every occurrence of each role R by ρR(R).

Note that ΨR(q) may contain regular expression while q does not, i.e., our technique reduces positive
(resp. conjunctive) queries over SRIQ to positive (resp. conjunctive) regular path queries overZIQ.

Lemma 6.17 Let q be a P2RPQ over a SRIQ knowledge base K = 〈A,T ,R〉. Then K |= q iff Ψ(K) |=
ΨR(q).

Proof. First observe that in every interpretation I such that I |= R, a match for Ψ(q) is a match for q.
For the converse, let I′ denote the modified version of the interpretation I in which each R is interpreted as
(ρR(R))I (c.f. Lemma 6.12). Then every match for q in I′ is a match for q in ΨR(q),.

Now suppose K |= q, and consider an interpretation I such that I |= Ψ(K). Then I′ |= K by
Lemma 6.12, thus I′ |= q and I |= ΨR(q); hence, Ψ(K) |= ΨR(q). Conversely, suppose Ψ(K) |= ΨR(q).
Consider an arbitrary I such that I |= K . By Lemma 6.11 we know that I |= Ψ(K). Therefore I |= ΨR(q),
and since I |= R, it follows I |= q.

Again, longest regular expression ρ∗
R

may exponentially influence the overall complexity of the algo-
rithm.

Theorem 6.18 Query entailment K |= q for a given SRIQ KB K and a P2RPQ q over K is decidable
(a) in double exponential time in the combined size of q, CK , IK , and ρ∗

R
, and (b) in triple exponential time

in the combined size of q and K .

7 Conclusion

In this paper, we have substantially pushed the frontier of decidable query answering over expressive De-
scription Logics (DLs), which is an active area of research driven by the growing interest in deploying DLs
to various application areas. Exploiting automata-theoretic results and methods, we have shown that query
entailment for a very rich class of queries beyond the popular (union of) conjunctive queries, namely the
positive (existential) two-way regular path queries (P2RPQs), is decidable over knowledge bases in the DL
ALCQIbreg. Making use of this result, we also show decidability of query entailment over knowledge
bases in the DL SRIQ, which underlies the nominal-free fragment of the new OWL 2 ontology standard by
the W3C.

More precisely, we have shown that forALCQIbreg, the query entailment problem is 2ET-complete,
while for SRIQ it is in 3ET. Given that conjunctive query entailment is 2ET-hard already for the
DLsALCI [44] and SH [23], our results show that both on the query and the knowledge base side, one can
increase the expressiveness substantially without a further increase in worst-case complexity. In particular,
this applies to queries that allow one to navigate the models of a knowledge base in order to connect distant
elements of the model, which is desired for instance in semistructured data models.

The automata-based technique we apply is, in a sense, more accessible than previous ones that are based
on tableaux or resolution-based transformations to disjunctive datalog. It is computational in nature and

34 INFSYS RR 1843-09-04

works directly on models of a knowledge base, processing them with flexible local operations; furthermore,
subtasks can be modularly combined. Thanks to the technique, we are also able to obtain more general
results, which seems more difficult using the other approaches. Indeed, this has been confirmed by [17],
where along the lines and ideas of this paper, but using different automata models the decidability frontier
for entailment of P2RPQs has been extended to ALCQObreg and ALCOIbreg as well as to SROQ and
SROI. Furthermore, also decidability results for query containment are given there, which are obtained
by a reduction to query answering, extending well-known relationships between query containment and
conjunctive query answering to the richer setting of P2RPQs.

Our results thus indicate that automata-techniques have high potential for advancing the decidability
frontier of query answering over expressive DLs, and are a useful tool for analyzing the complexity of
this problem. However, these kind of techniques have so far resisted implementation, even for simpler
problems, such as KB satisfiability. Hence, we do not expect the results presented here to lead to practicable
algorithms in the near future. It now becomes interesting to look for alternative techniques that are better
suited for implementation. We are confident that the tight complexity bounds that we have established will
provide a valuable guidance in this direction, and may provide interesting insights to exploit, for instance,
tableaux as done in [48], or knots as in [22].

8 Appendix

In this section, we provide a proof of the canonical model property ofZIQ stated in Theorem 3.9.
In what follows, we denote by K = 〈A,T〉 an arbitrary but fixed normalZIQ KB. To show that K has

a kCT -canonical model, we will follow the lines of similar proofs for the µ-calculus in [6, 57] (which in turn,
are adaptations of the original proof in [52]), and adapt them to the syntax of ZIQ, while accommodating
the ABox, Booleans over roles, and Self. We will show that if K has a model, then it has a well-founded
adorned pre-model. Roughly, the latter is a model enhanced with additional information that allows us to
‘trace’ the satisfaction of the ∃R∗.C concepts. Then we show that an adorned well-founded pre-model can
be unraveled into an adorned well-founded pre-model that is kCT -canonical, and that we can easily extract a
kCT -canonical model of K from it.

We start by defining concept and role atoms, which are consistent sets of concepts and roles from the
syntactic closure of CT . In what follows, we denote by ClC(CT) and ClR(CT) the set of concepts and the
set of roles in Cl(CT), respectively. A concept atom of K is a set At ⊆ ClC(CT) of concepts closed under
the rules of Table 6, while a role atom of K is a set AtR ⊆ ClR(CT) of simple roles closed under the rules
of Table 7. The set of all concept and the set of all role atoms of K are respectively denoted by atC(K) and
atR(K).

A pre-model is an interpretation I in which each object is mapped to a concept atom and each pair of
objects to a role atom. Formally, a pre-model ofK is a pair 〈I, θ〉 where I = (∆I, ·I) is an interpretation for
K and θ is a function that maps each d ∈ ∆I to a concept atom θ(d) ∈ atC(K) and each (d, d′) ∈ ∆I × ∆I to
a role atom θ((d, d′)) ∈ atR(K) such that

(1) CT ∈ θ(aI) for each a ∈ IK ,

(2) A(a) ∈ A implies A ∈ θ(aI), and p(a, b) ∈ A implies p ∈ θ(aI, bI),

(3) for each d, d′ ∈ ∆I and p ∈ Cl(CT), p ∈ θ((d, d′)) implies (d, d′) ∈ pI, and ¬p ∈ θ((d, d′)) implies
(d, d′) < pI,

INFSYS RR 1843-09-04 35

if A is a concept name in ClC(CT), then A ∈ At iff ¬A < At
if C uC′ ∈ ClC(CT), then C uC′ ∈ At iff {C,C′} ⊆ At
if C tC′ ∈ ClC(CT), then C tC′ ∈ At iff {C,C′} ∩ At , ∅
if ∃S .C ∈ ClC(CT), then ∃S .C ∈ At iff > 1 S .C ∈ At
if ∀S .C ∈ ClC(CT), then ∀S .C ∈ At iff 6 0 S .∼C ∈ At
if ∃(R ∪ R′).C ∈ ClC(CT), then ∃(R ∪ R′).C ∈ At iff {∃R.C, ∃R′.C} ∩ At , ∅
if ∃(R ◦ R′).C ∈ ClC(CT), then ∃(R ◦ R′).C ∈ At iff ∃R.∃R′.C ∈ At
if ∃R∗.C ∈ ClC(CT), then ∃R∗.C ∈ At iff {C,∃R.∃R∗.C} ∩ At , ∅
if ∃id(C).C′ ∈ ClC(CT), then ∃id(C).C′ ∈ At iff {C, C′} ⊆ At
if ∀(R ∪ R′).C ∈ ClC(CT), then ∀(R ∪ R′).C ∈ At iff {∀R.C, ∀R′.C} ⊆ At
if ∀(R ◦ R′).C ∈ ClC(CT), then ∀(R ◦ R′).C ∈ At iff ∀R.∀R′.C ∈ At
if ∀R∗.C ∈ ClC(CT), then ∀R∗.C ∈ At iff {C,∀R.∀R∗.C} ⊆ At
if ∀id(C).C′ ∈ ClC(CT), then ∀id(C).C′ ∈ At iff {∼C, C′} ∩ At , ∅

Table 6: Concept atom At ⊆ ClC(CT)

if p is a role name in ClR(CT), then p ∈ AtR iff ¬p < AtR
if S ∩ S ′ ∈ ClR(CT), then S ∩ S ′ ∈ AtR iff {S , S ′} ⊆ AtR
if S ∪ S ′ ∈ ClR(CT), then S ∪ S ′ ∈ AtR iff {S , S ′} ∩ AtR , ∅

Table 7: Role atom AtR ⊆ ClR(CT)

(4) for each d, d′ ∈ ∆I and p ∈ Cl(CT), p ∈ θ((d, d′)) iff p− ∈ θ((d′, d)), and

(5) for each d ∈ ∆I

(a) A ∈ θ(d) implies d ∈ AI and ¬A ∈ θ(d) implies d < AI, for each concept name A ∈ Cl(CT),

(b) ∃S .Self ∈ θ(d) implies S ∈ θ((d, d)),

(c) if > n S .C ∈ θ(d), then there is some V ⊆ neighI,θ(S , d) such that |V | ≥ n and C ∈ θ(d′) for every
d′ ∈ V , and

(d) if 6 n S .C ∈ θ(d), then there is some V ⊆ neighI,θ(S , d) such that |V | ≤ n and ∼C ∈ θ(d′) for every
d′ ∈ neighI,θ(S , d) \ V ,

where neighI,θ(S , d) = {d′ ∈ ∆I | S ∈ θ((d, d′))}.

Intuitively, 〈I, θ〉 is almost a model ofK , except that it is not ensured that concepts of the form ∃R∗.C are
satisfied. Instead, if ∃R∗.C must hold at some element d, we only require that some R neighbour of d satisfies
∃R∗.C, and the satisfaction of C may be infinitely postponed. To trace the evaluation of ∃R∗.C concepts
and to distinguish pre-models that represent models of K , we introduce adorned pre-models 〈I, θ, ch〉 that
extend pre-models 〈I, θ〉 with a choice function.

A choice function for a pre-model 〈I, θ〉 of K is a partial function ch such that:

• for each pair (d,C tC′) with d ∈ ∆I and C tC′ ∈ θ(d), ch(d,C tC′) is a concept in {C,C′} ∩ θ(d);

• for each pair (d,> n S .C) with d ∈ ∆I and > n S .C ∈ θ(d), ch(d,> n S .C) is a subset V of neighI,θ(S , d)
such that |V | ≥ n and C ∈ θ(d′) for every d′ ∈ V; and

36 INFSYS RR 1843-09-04

• for each pair (d,6 n S .C) with d ∈ ∆I and 6 n S .C ∈ θ(d), ch(d,6 n S .C) is a subset V of neighI,θ(S , d)
such that |V | ≤ n and ∼C ∈ θ(d′) for every d′ ∈ neighI,θ(S , d) \ V .

For an adorned pre-model 〈I, θ, ch〉 of K , the derivation relation ` ⊆ (∆I × Cl(CT)) × (∆I × Cl(CT))
is the smallest relation such that for every d ∈ ∆I:

• C tC′ ∈ θ(d) implies (d,C tC′) ` (d, ch(d,C tC′)),

• C uC′ ∈ θ(d) implies (d,C uC′) ` (d,C) and (d,C uC′) ` (d,C′),

• > n S .C ∈ θ(d) implies (d,> n S .C) ` (d′,C) for every d′ ∈ ch(d,> n S .C),

• 6 n S .C ∈ θ(d) implies (d,6 n S .C) ` (d′,C) for every d′ ∈ neighI,θ(S , d) \ ch(d,6 n S .C),

• ∃R∗.C ∈ θ(d) implies (d,∃R∗.C) ` (d,C t ∃R.∃R∗.C), and

• ∀R∗.C ∈ θ(d) implies (d,∀R∗.C) ` (d,C u ∀R.∀R∗.C).

A concept ∃R∗.C is regenerated from d to d′ in 〈I, θ, ch〉, if there is a sequence (d1,C1), . . . , (dk,CK)
with k > 1 such that d1 = d, dk = d′, C1 = Ck = ∃R∗.C, ∃R∗.C is a subconcept of every Ci and (di,Ci) `
(di+1,Ci+1) for each 1 ≤ i < k. We say that 〈I, θ, ch〉 is well-founded, if there is no ∃R∗.C ∈ Cl(CT) and
infinite sequence d1, d2, . . . such that ∃R∗.C is regenerated from di to di+1 for every i ≥ 1. Then one can
show:

Lemma 8.1 For every normalZIQ KB K , the following holds.

1. If K 6|= q for some q, then K has a well-founded adorned pre-model 〈I, θ, ch〉 such that I 6|= q.

2. If 〈I, θ, ch〉 is a well-founded adorned pre-model of K , then I is a model of K .

Proof. [Sketch] The proof is essentially and adaptation of the ones in [6, 57], which extend the original
proof for the µ-calculus in [52]. The absence of alternating fixpoints makes our setting somehow simpler,
and the presence of the ABox and the additional constructs are not hard to accommodate.

For the first item, if K 6|= q for some q, then there is some I such that I |= K and I 6|= q. The existence
of a θ such that 〈I, θ〉 is a pre-model is straightforward: we simply set θ(d) = {C ∈ ClC(CT) | d ∈ CI} and
θ(d, d′) = {S ∈ ClR(CT) | (d, d′) ∈ S I} for every d, d′ ∈ ∆I. The existence of a choice function ch that
makes 〈I, θ, ch〉 a well-founded adorned pre-model is also proved in the standard way. Roughly, while a
choice function trivially exists, to prove well foundedness one observes that for every formula ∃R∗.C such
that d ∈ ∃R∗.CI there is some finite sequence of elements reachable via R that lead to some d′ ∈ CI;
selecting such a path for the choice function avoids infinite regeneration of ∃R∗.C.

For the second item, one can show that: (†) if 〈I, θ, ch〉 is a well-founded adorned pre-model, then
d ∈ CI for every C ∈ θ(d) and (d, d′) ∈ S I for every S ∈ θ(d, d′); this can be shown by structural induction.
We remark that Boolean role expressions are handled analogously as concept ones, while items 4 and 5b
ensure the correct interpretation of inverse roles and Self concepts, respectively. For concepts of the form
∃R∗.C, we rely on the well-foundedness, which ensures that ∃R∗.C is not infinitely regenerated and that C
is eventually satisfied. Once (†) has been shown, it is easy to see that I |= K : item 1 ensures the satisfaction
of the TBox, and item 2 of the ABox.

Now we are ready to prove Theorem 3.9, i.e., that for K a normal ZIQ KB and q a P2RPQ, if K 6|= q,
then there is a kCT -canonical model of K that admits no pre-match for q.

INFSYS RR 1843-09-04 37

Proof of Theorem 3.9. Assume K 6|= q. By item 1 of Lemma 8.1, there is some well-founded adorned
pre-model 〈I, θ, ch〉 of K such that I 6|= q. We unravel 〈I, θ, ch〉 into an adorned pre-model 〈I′, θ′, ch′〉
that is also well founded, such that I′ is a kCT -canonical interpretation, and such that I′ 6|= q. By item 2 of
Lemma 8.1, this implies that I is a kCT -canonical model of K with I′ 6|= q, which proves the result.

We will inductively build the domain ∆I
′

of I′ as a tree, and define a mapping τ : ∆I
′

→ ∆I that keeps
track of the correspondence between nodes of the tree and elements of I, which we use for defining the
interpretation of concepts and roles in I′. The functions θ′ and ch′ are defined simultaneously.

Let R(I) = {aI | a ∈ IK }. Intuitively, to build the tree ∆I
′

, we start with the roots 1, . . . , |R(I)|, and then
continue building trees rooted at these roots, by inductively adding new levels.

For the base case, we let ∆I
′

:= {1, . . . , |R(I)|} and let τ : {1, . . . , |R(I)|} → R(I) be an arbitrary
bijection. Then we set, for each j, j′ ∈ ∆I

′

:

• θ′(j) = θ(τ(j)),

• θ′((j, j′)) = θ((τ(j), τ(j′))), and

• for each C tC′ ∈ θ′(j), ch′(j,C tC′) = ch(τ(j),C tC′).

Choices for > n S .C and 6 n S .C concepts are defined in the induction step.
For the induction step, consider an x ∈ ∆I

′

of maximal length, and let (> n1 S 1.C1, e1), . . . , (> nm S m.Cm, em)
be all pairs of a formula > ni S i.Ci ∈ θ

′(x) and an ei ∈ ch(τ(x),> ni S i.Ci). For each 1 ≤ i ≤ m, we define:

φ(ei) =

y, if ei = τ(y) for y = x or y = x·−1,
x·i otherwise.

Then we set ∆I
′

:= ∆I
′

∪ {φ(e1), . . . , φ(em)} and τ(x·i) = ei for each x·i ∈ ∆I
′

. To extend θ′, set for each
x·i ∈ ∆I

′

• θ′(x·i) = θ(τ(x·i)),

• θ′(y, x·i) = θ(τ(y), τ(x·i)) if y = x or y = x·i,

• θ′(x·i, x) = θ(τ(x·i), τ(x)), and

• θ′(y, x·i) = t∅ for every other y, where t∅ is a type such that ¬p ∈ t∅ for every p ∈ R.

Finally, we extend the choice to concepts of the form C tC′ in the new θ′(x·i), and to concepts > n S .C
and 6 n S .C in θ′(x):

• for each x·i ∈ ∆I
′

and each C tC′ ∈ θ′(x·i), ch′(x·i,C tC′) = ch(τ(x·i),C tC′);

• for each > n S .C ∈ θ′(x), ch′(x,> n S .C) = {φ(e) | e ∈ ch(τ(x),> n S .C)}; and

• for each 6 n S .C ∈ θ′(x), ch′(x,6 n S .C) = {φ(e) | e ∈ ch(τ(x),6 n S .C) ∩ {e1, . . . , en}}.

The interpretation I′ is defined using the mapping τ:

• for each A ∈ CK , AI
′

:= {x ∈ ∆I
′

| τ(x) ∈ AI}, and

• for each p ∈ RK , pI
′

:= {(x, y) ∈ ∆I
′

× ∆I
′

| (τ(x), τ(y)) ∈ pI}.

38 INFSYS RR 1843-09-04

Clearly, (1) {ε} ∪ ∆I
′

is a tree and (2) Roots(I) = {aI | a ∈ IK } ⊆ IN of Definition 3.7 hold. Next, m is
bounded by kCT for every sequence φ(e1), . . . , φ(em) above. Hence by the induction hypothesis, each y ∈ ∆I

′

is of the form i·x with i ∈ Roots(I′) and x ∈ {1, . . . , kCT }
∗, and (3) holds. Also, for each x ∈ ∆I

′

, each new
element added to ∆I

′

as a child of x is of the form x · i = φ(ei) with ei ∈ ch(τ(x),> ni S i.Ci) ⊆ neighI,θ(S i, x),
hence (x, x·i) ∈ (S i)I

′

. Since S i is safe, this implies the existence of some atomic P such that (x, x·i) ∈ PI
′

as required by (4). For (5), it only remains to observe that for every pair (x, y) such that neither (a) x = y, nor
(b) y is a successor of x, nor (c) x is the predecessor of y, the construction above ensures that θ′(x, y) = t∅
is such that, for every p ∈ R, ¬p ∈ θ′(x, y) and hence (x, y) < pI

′

. Therefore, I′ is a kCT -canonical
interpretation of K . Furthermore, as 〈I, θ, ch〉 is an adorned pre-model of K , it is readily checked that
〈I′, θ′, ch′〉 is also an adorned pre-model of K . Finally, if a concept ∃R∗.C is regenerated from x to y
in 〈I′, θ′, ch′〉, then ∃R∗.C is also regenerated from τ(x) to τ(y) in 〈I, θ, ch〉. As a consequence, well-
foundedness of 〈I, θ, ch〉 implies well-foundedness of 〈I′, θ′, ch′〉.

Finally, it is easy to observe that if I′, π |= q for some π, then the composition π∗ = π ◦ τ would be a
match for q in I, and I, π∗ |= q would contradict the assumption that I 6|= q. Hence I′ 6|= q.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to Semistructured Data
and XML. Morgan Kaufmann, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley Publ. Co., 1995.

[3] S. Abiteboul and V. Vianu. Regular path queries with constraints. J. of Computer and System Sciences,
58(3):428–452, 1999.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL Web Ontology Language reference – W3C recommendation. Technical report,
World Wide Web Consortium, Feb. 2004. Available at http://www.w3.org/TR/owl-ref/.

[6] P. Bonatti, C. Lutz, A. Murano, and M. Y. Vardi. The complexity of enriched µ-calculi. Logical
Methods in Computer Science, 4(3:11):1–27, 2008.

[7] P. Buneman. Semistructured data. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’97), pages 117–121, 1997.

[8] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment under
constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description logics with fix-
points based on automata on infinite trees. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence
(IJCAI’99), pages 84–89, 1999.

INFSYS RR 1843-09-04 39

[10] D. Calvanese, G. De Giacomo, and M. Lenzerini. 2ATAs make DLs easy. In Proc. of the 15th Int.
Workshop on Description Logic (DL 2002), pages 107–118. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-53/, 2002.

[11] D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment and answering under
description logics constraints. ACM Trans. on Computational Logic, 9(3):22.1–22.31, 2008.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting regular expressions in semi-
structured data. In Proc. of ICDT’99 Workshop on Query Processing for Semi-Structured Data and
Non-Standard Data Formats, 1999.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of conjunctive regular
path queries with inverse. In Proc. of the 7th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2000), pages 176–185, 2000.

[14] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of regular expressions and
regular path queries. J. of Computer and System Sciences, 64(3):443–465, 2002.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular path queries.
SIGMOD Record, 32(4):83–92, 2003.

[16] D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics:
An automata-theoretic approach. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007),
pages 391–396, 2007.

[17] D. Calvanese, T. Eiter, and M. Ortiz. Regular path queries in expressive description logics with nom-
inals. In C. Boutilier, editor, Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009),
pages 714–720, 2009.

[18] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and effi-
cient query answering in description logics: The l-lite family. J. of Automated Reasoning, 39(3):385–
429, 2007.

[19] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pages 77–90, 1977.

[20] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, , and P. P.-S. U. Sattler. OWL 2: The next step for
OWL. Journal of Web Semantics, 6(4):309–322, 2008.

[21] A. Deutsch and V. Tannen. Optimization properties for classes of conjunctive regular path queries. In
G. Ghelli and G. Grahne, editors, Proc. of the 8th Int. Workshop on Database Programming Languages
(DBPL 2001), volume 2397 of Lecture Notes in Computer Science, pages 21–39. Springer, 2001.

[22] T. Eiter, C. Lutz, M. Ortiz, and M. Simkus. Query answering in description logics: The knots approach.
In H. Ono, M. Kanazawa, and R. J. G. B. de Queiroz, editors, Logic, Language, Information and
Computation, 16th International Workshop, WoLLIC 2009, volume 5514 of Lecture Notes in Computer
Science, pages 26–36. Springer, 2009.

[23] T. Eiter, C. Lutz, M. Ortiz, and M. Šimkus. Query answering in description logics with transitive roles.
In C. Boutilier, editor, Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pages
759–764, 2009.

40 INFSYS RR 1843-09-04

[24] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proc. of the 32nd
Annual Symp. on the Foundations of Computer Science (FOCS’91), pages 368–377, 1991.

[25] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. of Computer and
System Sciences, 18:194–211, 1979.

[26] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries with regular expres-
sions. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’98), pages 139–148, 1998.

[27] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), pages 399–404,
2007.

[28] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Research, 31:151–198, 2008.

[29] B. Glimm and S. Rudolph. Conjunctive query entailment: Decidable in spite of O, I, and Q. In Proc.
of the 22nd Int. Workshop on Description Logic (DL 2009), 2009.

[30] G. Grahne and A. Thomo. Query containment and rewriting using views for regular path queries under
constraints. In Proc. of the 22nd ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2003), pages 111–122, 2003.

[31] I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. In Proc. of the 1st Int. Workshop on OWL:
Experiences and Directions (OWLED 2005), 2005.

[32] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos,
and C. A. Welty, editors, Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 57–67. AAAI Press, 2006.

[33] I. Horrocks and U. Sattler. Decidability of shiq with complex role inclusion axioms. Artif. Intell.,
160(1):79–104, 2004.

[34] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic SHIQ.
In D. McAllester, editor, Proc. of the 17th Int. Conf. on Automated Deduction (CADE 2000), volume
1831 of Lecture Notes in Computer Science, pages 482–496. Springer, 2000.

[35] I. Horrocks and S. Tessaris. A conjunctive query language for description logic ABoxes. In Proc. of
the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 399–404, 2000.

[36] U. Hustadt, B. Motik, and U. Sattler. A decomposition rule for decision procedures by resolution-
based calculi. In Proc. of the 11th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2004), pages 21–35, 2004.

[37] U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very expressive description
logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 466–471,
2005.

[38] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2008), pages 274–284, 2008.

INFSYS RR 1843-09-04 41

[39] A. Krisnadhi and C. Lutz. Data complexity in the EL family of description logics. In Proc. of the 20th
Int. Workshop on Description Logic (DL 2007), volume 250 of CEUR Electronic Workshop Proceed-
ings, http://ceur-ws.org/Vol-250/, 2007.

[40] M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable fragment of OWL 1.1. In
a. Karl Aberer et. editor, The Semantic Web, 6th Int. Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, volume 4825 of Lecture Notes in Computer Science,
pages 310–323. Springer, 2007.

[41] O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the graded µ-calculus. In A. Voronkov,
editor, Proc. of the 18th Int. Conf. on Automated Deduction (CADE 2002), volume 2392 of Lecture
Notes in Computer Science, pages 423–437. Springer, 2002.

[42] O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata emptiness. In Proc. of
the 30th ACM SIGACT Symp. on Theory of Computing (STOC’98), pages 224–233. ACM Press, 1998.

[43] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artificial
Intelligence, 104(1–2):165–209, 1998.

[44] C. Lutz. Inverse roles make conjunctive queries hard. In Proc. of the 20th Int. Workshop on Description
Logic (DL 2007), volume 250 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/
Vol-250/, pages 100–111, 2007.

[45] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical Computer Science,
54:267–276, 1987.

[46] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by nondeterministic automata:
new results and new proofs of the theorems of Rabin, McNaughton and Safra. Theoretical Computer
Science, 141(1-2):69–107, 1995.

[47] M. Ortiz. An automata-based algorithm for description logics aroundSRIQ. In Proc. of LANMR 2008,
volume 408 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-408/, 2008.

[48] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in expressive description
logics via tableaux. J. of Automated Reasoning, 41(1):61–98, 2008.

[49] R. Rosati. On conjunctive query answering in EL. In Proc. of the 20th Int. Workshop on Description
Logic (DL 2007), volume 250 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/
Vol-250/, 2007.

[50] S. Rudolph, M. Krötzsch, and P. Hitzler. Cheap Boolean role constructors for description logics. In
Proc. of the 11th Eur. Conference on Logics in Artificial Intelligence (JELIA 2008), volume 5293 of
Lecture Notes in Computer Science, pages 362–374, 2008.

[51] K. Schild. A correspondence theory for terminological logics: Preliminary report. In Proc. of the 12th
Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 466–471, 1991.

[52] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the propositional µ-
calculus. Information and Computation, 81:249–264, 1989.

42 INFSYS RR 1843-09-04

[53] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, volume B, chapter 4, pages 133–192. Elsevier Science Publishers, 1990.

[54] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD
thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany, 2001.

[55] S. Tobies. PSPACE reasoning for graded modal logics. J. of Logic and Computation, 11(1):85–106,
2001.

[56] M. Y. Vardi. The taming of converse: Reasoning about two-way computations. In R. Parikh, editor,
Proc. of the 4th Workshop on Logics of Programs, volume 193 of Lecture Notes in Computer Science,
pages 413–424. Springer, 1985.

[57] M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. of the 25th Int. Coll. on
Automata, Languages and Programming (ICALP’98), volume 1443 of Lecture Notes in Computer
Science, pages 628–641. Springer, 1998.

[58] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. J. of Com-
puter and System Sciences, 32:183–221, 1986.

