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1 Introduction

Formal ontologies have gained significant importance inldise decade and play an increasing role in a
growing number of application areas including the semamtb, ontology-based information integration,
and peer-to-peer data management. As a result, ontologyafisms such as description logics (DLs) are
nowadays required to offer support for query answering dgloas beyond simple taxonomic questions and
membership queries. In particular, conjunctive querig@g)over instance data play a central role in many
applications and have consequently received consideadtigletion, cf. [10, 5, 8] and references therein and
below.

A main aim of recent research has been to identify the patleatid limitations of CQ answering in
various DLs by mapping out the complexity landscape of te@soning problem. When concerned with
inexpressive DLs such as DL-Lite add’, one is typically interested in data complexity and efficien-
plementations based on relational database systems [, &}pressive DLs, the data complexity is almost
alwayscoNP-complete and it is more interesting to study combinedptexrity. While 2-ExPTIME upper
bounds for expressive DLs of th&LC family are known since 1998 [3], lower bounds exceptPEIME-
hardness (which is trivially inherited from satisfiabi)ithave long been elusive. A first step was made in
[6], whereinverse roleswere identified as a source of complexity: CQ answering itnpl&lC remains
ExPTIME-complete, but goes up to 2XBTIME-completeness iMLCZ. When further extendinglLCZ to
the popular DLSHZ Q, CQ answering remains 2xTIME-complete [5].

Interestingly, inverse roles turn out not to be the only seunf complexity inSHZQ. In [4], we
have shown that transitive roles, which play a central rolenany ontologies and are used to represent
fundamental relations such as “part of” [9], also incre&secomplexity of CQ answering. More specifically,
CQ answering io-NEXPTIME-hard in the DLS, which is ALC extended with transitive roles and the
basic logic of theSHZ Q family, even with only a single transitive role and no otheles (and when the
TBox is empty). We have also shown in [4] that if we further adie hierarchies and thus exte§do SH,

CQ answering even becomes X IME-complete.

However, the precise complexity of CQ answeringSirhas remained open betweewm-NEXPTIME
and 2-ExPTIME. The only existing tight bound (also from [4]) concerns tst@ped ABoxes, for which CQ
answering inS is only EXPTIME-complete (which is remarkable because previously knowetdoounds
for CQ answering in DLs did not rely on the ABox structure). this paper, we present ongoing work
on CQ answering ir5 and show that, in the presence of only a single transitive asld no other role,
CQ answering inS is in co-NEXPTIME, thusco-NExPTIME-complete. This result is interesting for
two reasons. Firsgo-NEXPTIME is an unusual complexity class for CQ answering in expresBivs as
all previous extensions oflLC have turned out to be complete for a deterministic time cemipyl class;
the only exception is @o-NEXPTIME result for ALCZ in [6] which is, however, entirely unsurprising
because it concerns a syntactically and semanticallyicesircase (“rooted CQ answering”’) wherea-
NExPTIME bound comes naturally. And second, we believe that the predeipper bound can be extended
to the general case where an arbitrary number of roles isvadlp though at the expense of making it
considerably more technical.

As usual, we consider conjunctive query entailment instd&2Q answering, i.e., we replace the search
problem by its decision problem counterpart. We use theviollg strategy to obtain ao-NEXPTIME
upper bound for CQ entailment. First, we use a standard igedrto show that CQ entailment over unre-
stricted ABoxes can be reduced to entailment of UCQs (unidre®njunctive queries) over ABoxes that
contain only a single individual and no role assertions. &/arecisely, we use a Turing reduction that re-
quires an exponential number of UCQ entailment checks, evkach UCQ contains exponentially many
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disjuncts in the worst case. Thus, it suffices to establisb-BIEXPTIME upper bound for each of the re-
quired UCQ entailments. Second, we show that if one of the @GQilments does not hold, then there
is a tree-shaped counter-model with only polynomially mames on each path. Third, we characterize
counter-models in terms of tree-interpretations that areotated in a certain way with subqueries of the
original CQ (so-called)-markings). Thus, we can decide UCQ-(non)-entailment lmydileg the existence
of a @Q-marked tree-interpretation. Fourth, we show that, adlditily to the restriction on the number of
types, it suffices to consid€p-marked tree-interpretations in which there are only poigrally many dif-
ferent annotations on each path. Finally, we prove thatxistemce of a)-marked tree-interpretation with
the mentioned restrictions on the number of types and atiogacan be checked by guessing an initial part
of the annotated tree-interpretation that has only polyabdepth and thus exponential size, which gives
the desired co-NEPTIME bound.

2 Preliminaries

We briefly introduce the description logi, conjunctive queries, and conjunctive query entailment.

Knowledge BasesWe assume standard notation for the syntax and semantit&mdwledge bases [5]. In
particular,Nc andN, are countably infinite and disjoint setsaincept nameandindividual namesFor the
purpose of this paper, we considesiagle transitive roledenoted throughout by. Conceptsare defined
inductively: (a) eachd € N¢ is a concept, and (b) i, D are concepts, the@'n D, -C, and3r.C' are
concepts. A TBoxis a set of concept inclusiors = D. An ABoxis a set ofassertionsC(a) andr(a, b).
A knowledge base (KB$ a pairC = (7, .A) consisting of a TBox, and an ABoxA. We useZ to denote
an interpretation AZ for its domain, and>? andrZ for the interpretation of a concegt and the roler,
respectively. We denote byd(.A4) the set of all individual names in an ABo.

Conjunctive Query Entailment. Let Ny be a countably infinite set ofariables A conjunctive query
(CQ or query)over a KBK is a finite set of atoms of the form(x) or r(z,y), wherex,y € Ny, and A
is a concept name.For a CQq over K, let Var(¢) denote the variables occurring 4n A match forg in
an interpretationZ is a mappingr : Var(q) — AZ such that (i)yr(x) € A for eachA(x) € ¢, and (ii)
(m(x),n(y)) € r’ for eachr(x,y) € q. We writeZ = q if there is a match foy in Z. If Z |= ¢ for every
modelZ of I, thenkC entailsq, written K |= ¢. Thequery entailment problens to decide, giveriC andg,
whetherC = ¢q. We sometimes also considenions of conjunctive queries (UCQsyhich take the form
\U; i, where eacly; is a conjunctive query. The notiofis= ¢ andKC = ¢ are lifted from CQs to UCQs in
the obvious way.

The directed grapldz, associated with a query is defined agV, E), whereV = Var(q) andE =
{(z,y)|r(z,y) € q}. When deciding CQ entailment, we assume without loss of rgdityethat the input
querygq (i.e., the graptG,) is connected. Fov" C Var(q), we useq|;,, to denote the restriction @fto the
set of variables that are reachable(ip starting from some element . We callq|,,, aproper subquery
of ¢ if it is connected, and usib(q) to denote the set of all proper subquerieg.oDbviously,q € sub(q).

1Concepts of the forn®' LI D andVr.C are viewed as abbreviations.
2As usual, individuals iry can be simulated, and queries with answer variables cardoeed to the Boolean CQs considered
here.
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3 Reduction to Unary ABoxes

The objective of this section is to reduce CQ entailment avkitrary knowledge bases to UCQ entailment
over knowledge bases whose ABoxes contain only a singleepbrassertion and no role assertions.

Let £ = (7,.A) be a knowledge base apda CQ for which we want to decide whethir = ¢q. We
assume without loss of generality thHat= {T C C7}. The announced reduction, which is similar to
one used in [4], makes use of the fact that if there is an inméafionZ of IC with Z [~ ¢, then there is
a forest-shaped such model, i.e., a model that consists ABax part of unrestricted relational structure
and a tree-shaped part rooted at each ABox individual. Tolcfa the existence of a countermodel of this
form, we consider all ways in which the query variables cadis&ibuted among the different parts of the
model. The query has no match if for each possible distobytive can select an ABox individualsuch
that some subquery assigned to the tree model bel@wnot matched in that tree model. This leaves us
with the problem of determining the existence of certaim tmeodels (one for each ABox individual) that
spoil a (worst-case exponential) set of subqueries.

To formally implement this idea, we require a few prelimiaefinitions. We usel(K) to denote the
smallest set that containSy, each concep€ with C(a) € A, and is closed under single negation and
subconcepts. Aypeis a subset C cl(K) that satisfies the following conditions:

1. ~Cetiff t ¢ C,forall -C € cl(7T);
2.CnDetiff CetandD e t,foralCMD e c(T);
3. Cr et
We usetp(K) to denote the set of all types fé. A completionof A is an ABox.A’ such that
o AC A with Ind(A) = Ind(A");
e for eacha € Ind(A), we have{C | C(a) € A’} € tp(K);
e 7(a,b),r(b,c) € A'impliesr(a,c) € A;
e Ir.C € cl(K), r(a,b) € A, andC(b) € A" implies(3r.C)(a) € A'.

We usecpl(.A) to denote the set of all completions fdr A match candidatéor a completionA’ € cpl(A)
describes a way of distributing the query variables amoegdltfierent parts of the model. Formally, it is a
mapping( : Var(q) — {a,a' | a € Ind(A)} such that

o if A(z) € gand((z) = a, thenA(a) € A’;

o if r(z,y) € q,((x) = a,and((y) = b, thenr(a,b) € A’;

o if r(z,y) € q,((z) = a,((y) = b}, anda # b, thenr(a,b) € A’;
e 7(z,y) € gand((z) = a' implies¢(y) = a'.

For everyr(z,y) € g with {(z) = a and((y) = b' (where potentially, = b), define a subsét’ C Var(q)
as the smallest set such that

e ycV;
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o if r(2/,y') € qwith 2’ € V, theny’ € V;
o if r(2/,y) € qwithy' € V and((z') = b', thena’ € V.

We useq|,(,, to denote the restriction of to the variables i/. Let Q. denote the set of all queries
qlr(z,) Obtained in this way. It is straightforward to verify that tlese queries are proper subqueries, i.e.,
Q¢ < sub(q).

A query annotatiorfor A’ identifies the subqueries that do not have a match in the esomidel that
we construct. Formally, it is a map: Ind(A) — 25u0(@) that satisfies the following conditions:

1. for every match candidatgfor A’ there is a query|,(,,) € Q¢ such thatl,,) € a(a) where
((y) = a;
2. g€ afa) foralla € Ind(A).

For eachu € Ind(A), we useA’|, to denote the restriction ofl’ to assertions of the for'(a). The proof
of the following lemma is similar to that of a closely relatexult in [5].

Lemma 3.1 K £ ¢ iff there is a completiond” of A and a query annotatiom for A’ such that for all
a € Ind(A), we havelC, £ |Ja(a), whereK, = (7, A'],).

Lemma 3.1 constitutes the announced reduction: to decid¢hehC = ¢, we can enumerate all comple-
tions A’ of A and query annotations for A", and then perform the required UCQ entailment checks.

4 Characterization of Counter-models

It remains to decide whethd€, = |Ja(a) holds for eachu € Ind(.A). Sincea(a) may contain expo-
nentially many different subqueries gf(this is what actually happens in the lower bound proved ] [4
it is challenging to do this ito-NEXPTIME. We start with a characterization of counter-models. In the
remainder of the section, for readability, we fix some Ind(.A), and we use&) to denotex(a) andC, to
denotel I{C | C(a) € A’}

Many of the subsequent techniques and results will be coedewith trees and tree interpretations,
which we introduce next. Let be an arbitrary set. Thenteee (overX with rootp) isasetl’ = {p-w|w €
S} wherep € ¥* andS C ¥* is a prefix-closed set of words. Each nade ¢ € T, wherew € T and
c € 3, is achild of w. For a nodev € T', |w| denotes the length af, disregarding the prefix (so that the
root of 7" has lengttp). We saythe branching degree df is bounded by: if [{c € X | w-c € T}| < k for
allw e T. A pathinT, is a (potentially infinite) sequenagy, w1, . .. of elements fromi" such that (i)wq
is the root ofT", and (i) for eachi > 0, w; is a child ofw; ;. If T'isatree andf : T"— S is a function
with S finite, then we usenax(7’, f) to denote the maximal number of distinct values thaan take on an
arbitrary path irf".

An interpretationZ is atree interpretationif AZ is a tree. We introduce the notatiesot(Z) to denote
the root of the tree\”. A tree interpretatiorf is atree modebf K, if

e 7 is amodel of7, androot(Z) € CZ,
o vl = {(w,w-c)|w,w-ce AT Ace X}, and

e forall 3r.C € cl(K) andw € (3r.C)%, there isc € ¥ such thatw- ¢ € CZ, i.e., all relevant existential
restrictions are satisfied in one step.
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Given a tree interpretatiof andw € A%, we useZ |, to denote the restriction @f to the subtree rooted at
w.

The following lemma shows that we can restrict our attentmitree-shaped interpretations in which
only polynomially many types appear on any given path. Asifoef of the lemma is surprisingly subtle,
we defer it to the appendix. Given an interpretatigiwe uset7(w) to refer to the type ofv € AT inZ, i.e.
{C ed(K)|we CT}.

Lemma 4.1 If K, ~ |J @, then there is an interpretatiol such that:
1. Zis atree model ok,, andZ = |J @, and
2. max(AZ,t7) < [cl(K)].

To characterize counter-models, we emptogrkingof interpretations, similar to that in [4]. A marking
simulates a top-down walk through a tree interpretafiagreedily matching the variables of the queries in
(. The marking fails if we arrive at a subquery that is fully ofad along this walk. As we show next, the
existence of a marking for a tree interpretatibrs a necessary and sufficient condition 1ot~ Q.

For a queryp and a variabler € Var(p), we say thatr is consumed (in ppy a typet if {A | A(z) €
p} Ctand{y | r(y,x) € p} = (. Given a typet € tp(K) and a query € sub(q), we denote byub’(p)
the set of all proper subqueries;sf wherep! is obtained fronp by removing all atoms involving a variable
that is consumed by In other wordssub’(p) is the set of connected components in the reduced cuiery
Trivially, sub’(p) = {p} if t does not consume any variablepin

The following lemma describes a single step of the top-dowtkwhrough a tree interpretation.

Lemma 4.2 Assume a tree interpretatidf, w € AZ and any sef” of queries. Thef|,, [~ |J P iff there
is a setP’ such that:

(i) P’ contains some non-empty e sub’z(“)(p) for eachp € P;
(i) Z|. ¥ |J P for each childw’ of win AZ.

Proof. For the if direction, we show that i|,, = (J P, then there is no s’ satisfying (i) and (ii). If
Z|w [= U P, then there is a matchin Z|,, for somep € P. We show that then, for eagh € sub>(®) (p),
there exists a childs’ of w such thatZ|,» admits a match fop’. This implies that there is no sét, since
there is no possible choice of a subquergih’>(“)(p) to be included.

Let 7 be a match fop in Z|,, and letsub™®) (p) denote the set of all proper subqueries of the query
p™ () that results fromp by dropping each atom involving a variablewith m(x) = w. By definition of a
match, eachr € Var(p) with 7(z) = w is consumed byz(w). This implies that all atoms removed from
p to obtainp™™®) are also removed to obtajiz(*), and thus each’ € sub'Z(*)(p) is contained in some
p” € sub™™)(p). Sincer is a match fop, eachp” e sub™™)(p) has a match it |, for some childw’ of
w (in particular, restricted to the domain df|, is such a match), and so does eatkc p”. This shows
that, for eachy’ € sub’”(“)(p), there exists a child’ of w such thafZ|,, = p'.

For the other direction we show that if there does not exist #5as above, thefi|,, = | J P. Assume
that there is naP’ satisfying (i) and (ii). Then we can select some= P such that for each non-empty
P’ € subz(®)(p), there is a childs’ of w with Z|, |= p/, and we can select a mataty in Z|, for eachy’.
Observe that each € Var(p) that is not consumed by (w) occurs in some’ and is in the scope of some
7. It can be easily verified that a matetfor p can be composed by taking the union oﬁegl and setting
m(x) = w for all remaining variables. This showsZ|,, = p andZ|,, = | P. 0
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We can now formally define the notion of a marking, which dides a top-down walk through a whole
tree interepretation.

Definition 4.3 Let 7 be a tree interpretation. 8-markingfor Z is a mapping: : AZ — 25ub(4) sych that:

1. u(root(2)) = Q,
2. for eachw € A” and each paiw - i,w - j € AT, p(w - i) = p(w - j),

3. for eachw - i € AZ, u(w - i) is a set containing a non-empty € sub’z(*) (p) for eachp € p(w).

Using Lemma 4.2, we can characterize query non-entailneefdllaws:
Lemma 4.4 There is aQ-marking for a tree interpretatiod iff Z (~ | Q.

Proof. For the if direction, assume (= | Q. We define a)-marking for Z inductively:
e p(root(Z)) = @,

o p(w-c) = pu(w) forallw-c € AT, whereu(w)' is aC-minimal set of subqueries satisfying conditions
(i) and (ii) of Lemma 4.2 (where we tak@ = p(w) and P’ = p(w)’).

Note that a suitable set(root(Z))’ exists for the children of the root because“ | J Q. Then at each step
w - ¢, condition (ii) in Lemma 4.2 ensures tHaf,.. = |J u(w - ¢). Applying the lemma again we ensure the
existence of a suitable sefw - ¢)’ for the children ofw - ¢. Itis trivial to verify thaty satisfies the conditions
in the definition of)-marking (in particular, for condition 3 we use conditiohifi Lemma 4.2).

The other direction follows easily from the first conditionDefinition 4.3, which ensures that the root
is always marked wittd), and the following claim:

(*) If uis aQ-marking forZ, thenZ|,, j~= | pu(w) for everyw € AZ.

To show ), we assume for a contradiction thats a @-marking and thaf|,, = |J u(w) for some
w € AL, Thatis,Z|, = p for somep € u(w). Among all such pairgw, p), we select one with minimal
|Var(p)|, i.e., such thatVar(p)| < |Var(p')| for everyw’ € A and everyy’ € pu(w') such thatZ|,, = p'.
In the case whergz(w) consumes no variable i we have that for every child’ of w, pu(w) = p(w’) and
T|w E piff Z|, = p. We can iteratively apply this argument to choose*ac A%l (eitherw itself or a
first descendant where some variable is consumed) suctythet) consumes some € Var(p), Z|,« = p,
andu(w*) = p(w). The fact thatz(w*) consumes some € Var(p) ensuresVar(p')| < |Var(p)| for every
P’ € sub(W)(p). Sincey is aQ-marking forZ andp € p(w*), by conditions 2 and 3 in Definition 4.3,
there must be some non-empty € sub™>(“")(p) such thaty’ e p(w') for all childrenw’ of w*. We
know from Lemma 4.2 thaf|,- = {p} implies thatZ|,, = {p'} for some childw’ of w*. But as
[Var(p')| < |Var(p)|, this is a contradiction. 0

We have shown that UCQ non-entailment reduces to decidmgxistence of a marking. The following
lemma will help us to show that the latter problem can be a&tid NEXPTIME. It shows that, even though
there can be exponentially many queriejnthe query set changes only a few times on each path of a
marked interpretation. More precisely:

Lemma 4.5 If Z [~ |J Q, thenZ admits aQ-marking x with max(AZ, 1) < |Var(q)|? + 1.
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Proof. Let i, be theQ-marking defined in the proof of Lemma 4.4. We consider artiantyi pathw, , wo, . . .
in Z, and show that = |{p(w1), p(ws), ...} < [Var(q)|* +1. We let] = {i | p(w;) # p(wiy1)}. We will
show that.J| < |¢|?. The desired bound will follow from this and the fact that |J| + 1. Lett; = tz(w;)
for all : > 0. We say a query’ is i-matchedf ¢’ has a match iff; but not onZ;_;, whereZ, is defined by
setting (VA% = {(Lt1),..., (k. tx)}; () 7% = {((i,1:), (4, 1)) | J > i}; (i) A% = {(i,t;) | A € t;}
for all A € N¢. Note that, for any query’, there is at most one indexsuch thaty’ is i-matched. For
each pairr, y € Var(q), letq|™? be the query that is obtained by restrictifg, | to the variabley and the
variables that reach in the graphG,. Let X = {¢|*¥ | z,y € Var(q)}. Note that| X| < |Var(q)[*. We
now show that for eache J, there exists somg € X such that; isi-matched. Since there is at most one
i for eachq/, this implies|.J| < | X| < |¢|? and the bound follows.

Consider an arbitrary € .J. Thenu(w;) # u(w;+1) implies that for some’ € p(w;), u(w;41) contains
somep” # p/ from sub’> () ('), and some: € Var(p') is consumed byz(w;). By definition, the query’
is a proper subquery of somee (. Observe that, if we restrict our attentiong@nd its subqueries, the
marking . ‘moves’ to a strictly smaller subquery at every type thatstones some variable. L&f be the
set of source variables in the query graghof thisp, i.e. M = {y € Var(p) | {¢/ | r(¢¥',y) € p} = 0}.
It is not hard to see that, if € Var(p') is consumed byz(w;), eachq|¥* with y € M has a match if;.
To see that there exists at least gne M such thay|¥* is i-matched, assume towards a contradiction that
there is somg < i such that each|¥* has a match if;, and take the smallest sugh Then all variables
that reach: in G, are consumed by some type on the pattvfpandw; is marked with some” C p where
{y | r(y,z) € p"} = 0. Asz is consumed byz(wj;), then the markings of all descendantsugfcontain
some subquery qf” wherex does not occur. This contradicts the fact thlat 1(w;) andz € Var(p').

O

As adirect consequence of Lemmas 4.1, 4.4 and 4.5, we oh&afoltowing characterization of counter-
models; this is the basis of our UCQ entailment algorithm.

Theorem 4.6 K, ~ | Q iff there is a tree interpretatiof such that:

(A) T is a model ofC, with max(AZ,t7) < |cl(K)

(B) Z admits som&)-markingu and max(AZ, i) < [Var(q)|> + 1.

By removing domain elements not needed to satisfy existiengtstrictions frontl(K), it is standard to show
that we can assume the interpretatibfrom Theorem 4.6 to have branching degree at mo&t)|.

5 Witnesses of Counter-models

By Theorem 4.6/C, I~ |J @Q can be decided by checking whether there is a tree intetjprethat satisfies
conditions (A) and (B). As we show next, the existence of sarlinterpretatiorf is guaranteed if we can
find an initial part ofZ whose depth is bounded Iy , := |cI(K)| x (|Var(q)|? + 1). Since the branching
degree ofZ is linear in the size ofC, this initial part is of at most exponential size. A nondsatgristic
exponential time procedure for checkifg [~ | @ is then almost immediate. We represent initial parts of
countermodels as follows.

Definition 5.1 A witness for ‘KC,, = |J Q" is a node-labeled treéd” = (T, 7, p) wherer : T' — tp(K) and
p: T — 25ub(@) sych that:
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The branching degree @fis bounded bycl(K)|.

Foreachw € T', |w| < di 4.

max(T,7) < |cl(K)| andmax(T, p) < |Var(q)|*> + 1;

{C]C(a) € A’} C 7(e) andp(e) = Q for the roote of T'.

For allw € T with |w| < d , and3r.C € 7(w), there is a childy’ of w with C' € 7(w').

For eachuv € T and each childy’ of w, =3r.D € 7(w) implies{—D,-3r.D} C 7(w').

N o g M 0 bd P

For each paitvy, wo of children ofw, p(w1) = p(ws) is a set containing some nonemptyc sub’(p)
for eachp € p(w).

An initial part of a tree interpretation represented by anedis can be unravelled into a tree interpretation
that satisfies (A) and (B) of Theorem 4.6, thus witnesding~ | @.

Theorem 5.2 K, i~ | Q iff there exists a witnesd” for “ IC,, = |J Q.

Proof. For the ‘only if’ direction, by Theorem 4.6 there exists aetmodelZ of K, and aQ-marking . for
7 such thaimax(AZ, t7) < [cl(K)], max(AZ, 1) < |Var(q)|? + 1, and the branching degree Bfis at most
|cI(KC)|. We can obtain a witness by restrictifigaindy. to the firstdx , levels. More preciselyy = (T, 7, p)
is obtained by setting:

- T={we AT ||w] < dcgh;

- 7(w) = tz(w) andp(w) = p(w) forallw € T

For the other direction, observe that a witn&8s= (7', 7, p) is almost a)-marked model ofC,, except
a nodew € T with |w| = dx , may not have the children it needs to satisfy the existengistrictions.
However, since the path from the rootitchasdy , + 1 nodes and due to (3) in Definition 5.1, there exists a
pair of nodes on this path that share the same type and querjss allows us to obtain a tree-model and
a(Q-marking by unravelingV as follows.

For each nodev € T, let s(w) be the shortest prefix af such thatr(s(w)) = 7(w) andp(s(w)) =
p(w). Let D C T be the smallest set of such that:

- the root ofT" belongs taD, and

- if wy---w, € D, thenwy - - - w,w € D for all childrenw of s(wy,).
Consider the following interpretatidh and markingu:

- AT =D;

- AT = {wy - w, € AT | A € 7(v,)} for all concept named;

- 0L = {(wp - Wne1,wo - wy) | wo - wy € ALY

- p(wg - wy) = plwy,) for all wy - - - w, € AL,

It is easy to check that is a@-marking forZ. To see thaf is model ofC,, observe that for each node
w € T with |w| = dk 4, there is a proper prefix’ of w such thats(w’) # w'. This means that suchawill
never be added to a path . This implies that eachy - - - w,, € A has|w,| < di , and hence satisfies
all the existential restrictions. O
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We can check for the existence of a withess by nondeterrnaalist guessing an (exponential size) candidate
structureW = (7', 7, p) and then verifying conditions (1-7) in Definition 5.1. Thétéa is feasible in time
exponential in/C| and|q|. Hence K, [~ |J @ can be decided nondeterministically in time exponential in
|| and|q|.

For the overall algorithm, observe that each completibrof A is of size polynomial ink| and|q|,
while the size ofx(a) is at most exponential ifiC| and|q| for eacha € Ind(.A). Thus, using Lemma 3.1,
checkingC (= ¢ is trivially in NEXPTIME provided that checkindC, = |Ja(a) is NEXPTIME. By
combining this with the matching lower bound in [4], we get:

Theorem 5.3 CQ entailment oveS KBs with one transitive role, and no other roles,de-NEXPTIME-
complete.

6 Conclusion

We believe that Theorem 5.3 can be extended to the case wiezeei$ an arbitrary number of roles, both
transitive and unrestricted ones. This requires the coatiloim of the techniques presented in this paper with
the ones developed in [4]. In particular, different rolesdig a query € () induce a partitioning op into
different “clusters”, and each cluster can be treated imalai way as an entire, unpartitioned querg Q

in the current paper. Since the technical details, which kgecarrently working out, can be expected to
become somewhat cumbersome, we believe that it is insteutdifirst concentrate on the case of a single
transitive role as we have done in this paper.

It is interesting to note that the techniques from this pagaer be used to reprove in a transparent way
the EXPTIME upper bound for CQ answering ov&rknowledge bases that contain only a single concept
assertion and no role assertions from [4]—restricted toglsitransitive role, of course. In the case of such
ABoxes, we do not need the machinery from Sections 3 and Stheofsubtle to prove) Lemma 4.1. The
essential technique @-markings, which can be simplified to maps fraf to sub(q) instead of tesb(@)
because&) is a singleton that consists only of the input query. By Lemt it suffices to check for the
existence of a tree-shaped interpretatioalong with aQ)-marking forZ. This can be done by a standard
type-elimination procedure.
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A Proof of Lemma 4.1

We show that for any counter-modglfor Q, where( is a set of queries, we can build a counter-mafel
for Q with only polynomially many distinct types on each path.

Definition A.1 An adorned tree interpretatioris of the formZ = (AZ, -2 §) where (A%, 7) is a tree
interpretation and : A7 — cl(K) a map such that the following holds for allc AZ:

1. w e §(w)t;
2. forall 3r.C € cl(K) with w € (3r.C)%, there is a childv’ of w such that (w') = C.

We say thafl is anadorned tree modedf 7 if (AZ,.7) is a tree model of; it is an adorned tree model of
K, if additionally d(root(Z)) = C, (where as beforepot(Z) denotes the root ah?). For a CQg, we have

T qiff (A%, 7) .

Lemma A.2 If there is a modeX of I, withZ |~ | @, then there is an adorned tree modglof K, with

JFUQ.

Proof. First unravel. Then decorate withby choosing appropriate successors. To guarantee infgctiv
duplicate subtrees as needed. O
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LemmaA.3 LetZ = (A%, .2 57) be an adorned tree model Gf. Then there is an adorned tree model
J = (AY,-9,59) of T such that

(i) Forany setP of queries, ifZ |~ | J P, thenJ = JP;
(i) Forall we A with 7 (w) = §7 (root(J)), we havet 7(w) = t7(root(JT));
(i) There exists a homomorphisih: AV — A7 satisfying:
(@) f(root(J)) = root(Z)
(b) t7(w) = tz(f(w)) forall w € AT
() 07 (w) = 62(f(w)) forall w € AT
(d) (w1, ws) € r7 implies(f(w1), f(ws)) € r*

Proof. For readability, throughout the proof, we usén place ofroot(Z). Setl' = {w € A% | §(w) =
§(e)}. Forw € AT, we useDesc(w) to denote the set of all descendantsudh Z. If there is awg € T' such
thatDesc(wy) N T = (), then it is easy to see that,,, is the desired interpretation. Thus, assume that

(¥) there is nawy € T with Desc(wy) N T = 0.
l.e., everyw € I' has a descendant Inh For allw € T, set
Inf(w) = {t € tp(K) | {w’ € Desc(w) NT | tz(w') = t} is infinite}.
There is awy € I" such thatz(wy) € Inf(wg) and for allw € Desc(wy) N T', we havelnf(w) = Inf(wo):
e by (x), there is av € T" with t7(w) € Inf(w);

e while there is am € Desc(w) with Inf(v) C Inf(w), do the following: by §), there is an’ € Desc(v)
such that’ € Inf(v'); replacew with v’ (clearly, Inf(v") C Inf(w));

e sincelnf(w) decreases in each step, eventually no further step is p@ssill the node reached is the
desiredwy.

Since we can replacg by Z,,,,, we can thus assume that
(x%) tz(e) € Inf(e) and for allw € Desc(e) N T', we havelnf(w) = Inf(e).

Thus, there is a functios : I' — I' that maps eachy € I to anv € Desc(w) N T with tz(v) = tz(e).
A normalized paths a wordwy - - - w,, € (A%)* such thatwy = ¢ and for alli < n, one of the following
holds:

® Wiyt] is a child ofw; andel Q T,
e w;t1 = s(w) for a childw of w; with w € I".

Then the desired adorned tree mogdeis built as follows:

A7 = the set of all normalized paths
AT = Hwy---w, € AT | w, € AT} for all concept named

S(wo---wy) = 6(wy)forallwg---w, € A7,



INFSYS RR 1843-10-01 13

It is easy to verify that7 satisfies (i): any match of ap € P in 7 can be reproduced as a matchof p in
T by settingr’(z) = d,, wheneverr(x) = d; - - - d,,. It thus remains to show (ii) and (iii) and that is an
adorned tree model faf . This is based on the following claim:

Claim. For allC € cl(K) and allwg - - - w, € A7, we havew,, € CTiff wg---w, € C7.

The proof is by induction on the structure @f The induction start, wher€' is a concept name, is trivial.
So are the cases for the Booleans in the induction step. Hemcencentrate on the case whéte= 3r.D.

First, letw, € (3r.D)%. Then there is a chilaé of w, with §(v) = D andv € D%. If v ¢ T, then
wo - --w,v € AY. The construction of7 and IH yields(wy - - - w,, wo - - - w,v) € r7 andwg - - - wyv €
DY, thuswy - --w, € (Ir.D) by the semantics. Now assumec I'. Thenwy - --w,s(v) € A7 and
(wo - wn, wo - - - wys(v)) € r2. By definition of s, we haved(s(v)) = &(v), thusd(s(v)) = D which
impliess(v) € DZ. By IH, wq - - - w,s(v) € DY and we are done.

Conversely, letvg - - -w,, € (3r.D)7. Thenthereisaword, - - - v, € (AL)* with wg - - - wpvg - - - vy €
DY By construction of7, v, € Desc(w,), thus(w,,,v,,) € r*. By IH, v,, € DX. Thus,w, € (Ir.D)*
as required.

Now (i) is an immediate consequence of the constructioy aind the claim. For (iii), we define the
homomorphismy as follows: f (wy . . . w,) = w,. Condition (iii)(b) holds because of the claim; conditions
(ii)(a), (iii)(c), and (ii))(d) follow easily from the defiition of 7. To see that7 satisfies Condition 1 of
adorned tree interpretations, fix@ ---w, € A7. Thend(wq---w,) = d(w,). Sincew, € &(wy,)?,
the claim yieldswg - - -w,, € d(wp---w,)Y. Now for Condition 2 of adorned tree interpretations. Let
3r.C € c(K) andwyg - - -w,, € (Ir.C)7. By the claimw,, € (3r.C)%. Thus there is a child of w,, with
d(v) = C. If v € T, thenwy - - - wy,v is the required child ofvg - - - wy, in J with §(wg - - - wyv) = C.
Otherwise,wy - - - w,s(v) is the required child. It follows from the claim and the falat(AZ, %) is a
model of 7. O

Lemma A.3 shows how one can ensure that all nodes which aceated with the same concept as the
root of the tree share the same type. The following lemma goesstep further by ensuring that any two
nodes on the same path which are decorated with the sameptomgst have the same type. The basic idea
underlying the lemma is to apply the normalization procedusm Lemma A.3 to each point in the model.

In order to formalize the construction, we will require soauglitional notation. We will uset(+) and
rc(H) to refer respectively to the type and concept decoratioroof(7{). Also, given any adorned tree
modelH of 7, we letnorm(H) refer to an adorned tree model Bfobtained by the procedure outlined in
the proof of Lemma A.3, and which thus satisfies conditiojii() of the lemma.

LemmaA.4 LetZ = (AZ, 2 §7) be an adorned tree model @f. Then there exists an adorned tree model
J = (A7,.9 57) of T such that:

(i) Forany setP of queries, ifZ = UP, thenTJ = UP;
(i) Forany pathw;,ws, ws,...inJ,if 6(w;) = é(w;), thent 7 (w;) = t7(w;);
(i) tz(root(Z)) =t (root(J)).

Proof. We build the domaim\” of the required7 level by level. To this end, we define a sequence of sets
Ao, A1, Ag, ..., where each\; consists of finite word%{, . .. H,,, where eaclt; is an adorned tree inter-
pretation. We use the functianil to pick out the final interpretation in such a word, iteil(Hy ... H,) =

H,. We setAy = {norm(Z)}, and we define the remaininy; inductively as follows:
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A1 =A;U{w- norm(H|,)||d| = i, tail(w) = H,andwv is a child ofroot(H)}

We can now define the interpretatigh= (A7, -7, §7):

AT = Uiso A
AT = {we AT | A€ rt(tail(w))}
r? = {(w,w') € AT x AT |IH such thatw’ = w - H}

0 (w) = rc(tail(w))

It remains to be shown that the tree interpretatiprsatisfies the conditions of the lemma. We begin by
establishing the following claim:

Claim 1. For allC € cl(K) and allw € A7, root(tail(w)) € C*1W) iff w € C7.

The proof is by induction on the structure ©f The base case, wheféis a concept name, is obvious, as
are the cases concerning the Boolean connectives. Henceneerdrate on thér.D case.

For the first direction, suppose = H; ... H, € (3Ir.D)7. Then from the definition of, it follows
that there exists’ = H; ... Hy ... Hm € A7 such thatw’ € DY. Choose a shortest suatt. We first
consider the case where = n + 1. Thenw’ must be of the forn¥{; ... H,, norm(H|,), for some child
v of root(H,). Using the induction hypothesis and the fact twatce D7, we obtainroot(norm(H|,)) €
Drorm(Hlv) - By points (ii)-(iii) of Lemma A.3, normalization preservéhe type of the root, se € D™~ It
follows thatroot(H,,) € 3r.D™», henceroot (tail(w)) € Jr. D),

Now suppose for a contradiction that > n + 1. Using the induction hypothesis and the fact that
w' € D7, we obtainroot(H,,) € D’=. The interpretatiort,, must be of the forrmorm(H,,_1|,)
for some childv of root(H,,_1). By point (iii) of Lemma A.3, we must have ¢ D71, hence
root(H,,—1) € Ir.DMm-1. We next considefH,, 1, which must be of the forrmorm(H,,_»|./) for
some childv’" of root(H,,—2). Again using Lemma A.3, the fact thar.D € cl(K), and transitivity
of r, we getv’ € Ir.Dm-2  henceroot(H,, o) € Ir.Dm—2 By iterating this argument, we obtain
root(H,) € Ir.D™~. Now since,, is an adorned tree interpretation, all existential rettis must be
satisfied in one step, so there must exist some ahilabf root(,,) satisfyingw* € D', But then by
settingH,,+1 = norm(H,|,*), we obtainH; ... H,Hp+1 € D7, contradicting the minimality ofn. It
follows that we must have: = n + 1, and hence by the preceding paragraphbt(tail(w)) € Jr.D®il(w),

For the second direction, suppaset(#) € 3r.D™ whereH = tail(w). Then sincel is a tree inter-
pretation for7, existentials are satisfied in one step, so there is somg«bil root(H) such that € D™,
But that means that’ = w - norm(7H,,) will be a child ofw in 7. Moreover, by point (jii) of Lemma A.3

and the fact thaD € cl(K), v € D™ implies thatroot(norm(H},)) € prom(w) - Using the induction

hypothesis and the fact thedil(w’) = norm(H,), we find thatw’ € D7. It follows thatw € 3r.D7, as
desired. (end of proof of claim)

We next define a family of functiong, 3, : A — A™: for each pair of adorned tree interpretations
H;, H; satisfyingHy ... H;... H; € A7, First, for each adorned tree interpretatibhsuch thatH =
norm(Gl,), we let f5; : A7 — AY be a function satisfying the conditions of Lemma A.3. We e
functions in order to define the functigny, 7, as follows:

gr; 1, (W) = frg, 0.0 fry, (w)

The following claim establishes some useful propertiesieffunctionsgs; . ;.
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Claim 2. LetH;...H; € AY, and letl < i < j. Then the functiory, », satisfies the following
properties:

1. g1, ., is a function fromA™i to A

2. 1y, (w) = tr, (9w, m, (w)) for all w € AM

3. 0™ (w) = 6" (gy, , (w)) for all w € A™

4. (w1, wy) € r’ implies (gy;, 3, (w1), gy, 1, (w2)) € r'hi

The claim is proved by induction on the difference betweemd j. The base case is when= i + 1,

in which case we havey, », = f,;. Then properties 1-4 all follow directly from part (iii) ofdmma
A.3. Next suppose the claim holds wheneyer i < k, and consider the case wheje- i = k£ + 1.
According to the induction hypothesis, the functign, , , 7, satisfies properties 1-4 of the claim, i.e. itis a
function fromA™ to A7+ such that for alkw € A™ bothis, (w) = t3,,, (91,1, (w)) andé™ (w) =
641 (gay,, 1, (w)) and such thatwy, wy) € v implies gy, , 1, (w1), gy, (w2)) € rHi+. Also,
we know from Lemma A.3 that the functiofy,, , takes elements oA+ to elements ofA™: and is
such thaty,, , (w') = ty, (fr,., (w')) ands™i+1 (w') = 6™ (fy,,, (w')) for all w’ € A™i+1 and such that
(wi,ws) € rMi+rimplies (fy,, (w1), fr,., (w2)) € r% Combining the properties @y, , 3, and fx,. ,,
and using the fact thak, 7, = fx,,, © 9n;..1,1,» We immediately obtain satisfaction of points 1-4 by the
function g3, 7¢,. (end of proof of claim)

We need one final claim in order to show point (ii) of the lemma:

Claim 3. There exists a functioh : A7 — A7 such that:
1. t7(w) = tz(h(w)) for all w € AT
2. 87 (w) = §* (h(w)) forallw € AT
3. (wy,ws) € r7 implies (h(wy), h(ws)) € r*

The desired functiom is defined as follows. We lef; : A"™™@) — AZ be as in Lemma A.3, and we let
the functionsgy, 7, : A" — A™: be as defined above. Then we definas follows: h(H; ... H,) =

fz © g1, 1, (root(Hy,)). Note that by definition oA7, we must havet{; = norm(Z), soh is indeed a
function fromA7 to AZ. The satisfaction of properties 1 and 2 of the claim followsi the satisfaction
of the analogous properties k¢ and the functiong, 1, (cf. Lemma A.3 and Claim 2 above) and the
fact thatt 7 (Hy ... Hy,) = ty, (root(H,)) andd? (Hy ... H,) = 6" (root(H,)). In order to show point
3 of the claim, suppose thétvy, ws) € 7. Then ifws = H; ... H,,, wi must be a prefix ofv,, i.e.
wy = Hq...H, for somen < m. Then

hwe) = fro fr, 0.0 fr, (fr, ©...0 fr,, (root(H,)))

Now sinceH,,, = norm(H,,—1|,) for some childv of root(H,,—1), it follows from part (iii) of Lemma A.3
that f4,, (root(H,,)) = v for some childv of root(H,,—1), and hence thdtoot(H,,,—1), fx,, (root(H.,))) €
rHm—1_ |terating this argument and leveraging transitivity-pfve get(root(H,, ), fx,,o. . .ofn,, (root(Hm))) €
r*n. Then by applying item 4 of Claim 2 and item (iii) of Lemma Av@e get(fz o gx, 7, (root(H,)), fr o
91y Ho ([Hois © -+ © fr,, (root(H:)))) € rZ and hencéh(w:), h(ws)) € rZ, as desired. (end proof of
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claim)

Using Claim 3, itis easy to prove (i). Suppose there is amattap € Pin 7. Thenleth : A7 — AT
be as in Claim 3, and defin€ by settingn’(x) = h(w(x)). Then every atomd (z) must be satisfied by’
sincenr(z) € A7 andr(z) andh(r(z)) share the same type. Each role atof, y) must also be satisfied
by 7’ since(n(z),n(y)) € r7, hence(h(r(z)), h(r(y))) € rf. Sox’ is a match forp in Z, contradicting
our assumption that £ (J P.

We now prove condition (i) of the lemma. Consider some= H,...H, € AJ and a successor
nodew’ = H;...H, ... H,, such that’ (vw') = §7 (w) = C. Then by Claim 2, there exists a function
g : AMm — AMn such thatty,, (v) = ty, (g(v)) andd™= (v) = M (g(v)) for all v € A%m. It follows
that

6™ (root(Hy,)) = 07 (w) = 67 (w') = 6™ (root(H,y,)) = 67" (g(root(H,n)))

i.e. root(H,) andg(root(H,,)) have the same concept decoratiortHp. But we also know thatt,, is of
the formnorm(*H,,—1|,), SO according to Lemma A.3, it must be the case that thesespsiiare the same
type, yieldingty,, (root(Hy,)) = tw, (g(root(H,,))). As we know thaty satisfies the conditions of Claim
2, we must havey, (g(root(H,,))) = tn,, (root(Hy,)). As by definition,t s (w') = t,, (root(H,,)) and
tg(w) = ty, (root(H,)), we obtaint 7 (w) = t7(w'), as desired.

To show condition (iii) of the lemma, we note that becausénefdefinition of 7 and Claim 1, we have
tg(root(J)) = tg(norm(Z)) = tnorm(r)(root(norm(Z))). We can then use item (iii) from Lemma A.3 to
infer thatt,,om(r) (root(norm(Z))) = tz(root(Z)), which gives ug 7(root(J)) = tz(root(Z)).

To see that7 satisfies Condition 1 of adorned tree interpretationsjlée as in Claim 3, and fix a
w € A7, Thends’ (w) = 6 (h(w)). AsZ is an adorned tree interpretation, we must haye) <
(6% (h(w)))t. Astz(h(w)) = tz(w), we obtainw € (67 (w))Y. For Condition 2, supposeil(w) =
H, and letIr.C € cl(K) andw € (Ir.C)7. Then by Claim 1, we must haveot(H) € (Ir.C)".
Since is an adorned tree interpretation, there must exist a ehflroot(?) such that’™(v) = C. It
follows thaté”* (root(*#[,)) = C, and hencew - norm(*|,) is such thatw,w - norm(H|,)) € r7 and
87 (w - norm(H|,)) = C. Thus,J is a proper adorned tree interpretation. Moreover, becal/Séaim 1, it
must be an adorned tree model®fand thus satisfies all of the requirements of the lemma. O

Lemma 4.1 follows as a consequence of Lemma A.4.



