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1 Introduction

Formal ontologies have gained significant importance in thelast decade and play an increasing role in a
growing number of application areas including the semanticweb, ontology-based information integration,
and peer-to-peer data management. As a result, ontology formalisms such as description logics (DLs) are
nowadays required to offer support for query answering thatgoes beyond simple taxonomic questions and
membership queries. In particular, conjunctive queries (CQs) over instance data play a central role in many
applications and have consequently received considerableattention, cf. [10, 5, 8] and references therein and
below.

A main aim of recent research has been to identify the potential and limitations of CQ answering in
various DLs by mapping out the complexity landscape of this reasoning problem. When concerned with
inexpressive DLs such as DL-Lite andEL, one is typically interested in data complexity and efficient im-
plementations based on relational database systems [2, 7].In expressive DLs, the data complexity is almost
alwaysCONP-complete and it is more interesting to study combined complexity. While 2-EXPTIME upper
bounds for expressive DLs of theALC family are known since 1998 [3], lower bounds except EXPTIME-
hardness (which is trivially inherited from satisfiability) have long been elusive. A first step was made in
[6], where inverse roleswere identified as a source of complexity: CQ answering in plain ALC remains
EXPTIME-complete, but goes up to 2-EXPTIME-completeness inALCI. When further extendingALCI to
the popular DLSHIQ, CQ answering remains 2-EXPTIME-complete [5].

Interestingly, inverse roles turn out not to be the only source of complexity inSHIQ. In [4], we
have shown that transitive roles, which play a central role in many ontologies and are used to represent
fundamental relations such as “part of” [9], also increase the complexity of CQ answering. More specifically,
CQ answering isCO-NEXPTIME-hard in the DLS, which isALC extended with transitive roles and the
basic logic of theSHIQ family, even with only a single transitive role and no other roles (and when the
TBox is empty). We have also shown in [4] that if we further addrole hierarchies and thus extendS to SH,
CQ answering even becomes 2-EXPTIME-complete.

However, the precise complexity of CQ answering inS has remained open betweenCO-NEXPTIME

and 2-EXPTIME. The only existing tight bound (also from [4]) concerns tree-shaped ABoxes, for which CQ
answering inS is only EXPTIME-complete (which is remarkable because previously known lower bounds
for CQ answering in DLs did not rely on the ABox structure). Inthis paper, we present ongoing work
on CQ answering inS and show that, in the presence of only a single transitive role and no other role,
CQ answering inS is in CO-NEXPTIME, thus CO-NEXPTIME-complete. This result is interesting for
two reasons. First,CO-NEXPTIME is an unusual complexity class for CQ answering in expressive DLs as
all previous extensions ofALC have turned out to be complete for a deterministic time complexity class;
the only exception is aCO-NEXPTIME result forALCI in [6] which is, however, entirely unsurprising
because it concerns a syntactically and semantically restricted case (“rooted CQ answering”) where aCO-
NEXPTIME bound comes naturally. And second, we believe that the presented upper bound can be extended
to the general case where an arbitrary number of roles is allowed, though at the expense of making it
considerably more technical.

As usual, we consider conjunctive query entailment insteadof CQ answering, i.e., we replace the search
problem by its decision problem counterpart. We use the following strategy to obtain aCO-NEXPTIME

upper bound for CQ entailment. First, we use a standard technique to show that CQ entailment over unre-
stricted ABoxes can be reduced to entailment of UCQs (unionsof conjunctive queries) over ABoxes that
contain only a single individual and no role assertions. More precisely, we use a Turing reduction that re-
quires an exponential number of UCQ entailment checks, where each UCQ contains exponentially many
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disjuncts in the worst case. Thus, it suffices to establish a co-NEXPTIME upper bound for each of the re-
quired UCQ entailments. Second, we show that if one of the UCQentailments does not hold, then there
is a tree-shaped counter-model with only polynomially manytypes on each path. Third, we characterize
counter-models in terms of tree-interpretations that are annotated in a certain way with subqueries of the
original CQ (so-calledQ-markings). Thus, we can decide UCQ-(non)-entailment by deciding the existence
of a Q-marked tree-interpretation. Fourth, we show that, additionally to the restriction on the number of
types, it suffices to considerQ-marked tree-interpretations in which there are only polynomially many dif-
ferent annotations on each path. Finally, we prove that the existence of aQ-marked tree-interpretation with
the mentioned restrictions on the number of types and annotations can be checked by guessing an initial part
of the annotated tree-interpretation that has only polynomial depth and thus exponential size, which gives
the desired co-NEXPTIME bound.

2 Preliminaries

We briefly introduce the description logicS, conjunctive queries, and conjunctive query entailment.

Knowledge Bases.We assume standard notation for the syntax and semantics ofS knowledge bases [5]. In
particular,NC andNI are countably infinite and disjoint sets ofconcept namesandindividual names. For the
purpose of this paper, we consider asingle transitive role, denoted throughout byr. Conceptsare defined
inductively: (a) eachA∈NC is a concept, and (b) ifC, D are concepts, thenC ⊓D, ¬C, and∃r.C are
concepts.1 A TBoxis a set of concept inclusionsC ⊑ D. An ABoxis a set ofassertionsC(a) andr(a, b).
A knowledge base (KB)is a pairK = (T ,A) consisting of a TBoxT and an ABoxA. We useI to denote
an interpretation,∆I for its domain, andCI andrI for the interpretation of a conceptC and the roler,
respectively. We denote byInd(A) the set of all individual names in an ABoxA.

Conjunctive Query Entailment. Let NV be a countably infinite set ofvariables. A conjunctive query
(CQ or query)over a KBK is a finite set of atoms of the formA(x) or r(x, y), wherex, y ∈NV, andA
is a concept name.2 For a CQq overK, let Var(q) denote the variables occurring inq. A match forq in
an interpretationI is a mappingπ : Var(q) → ∆I such that (i)π(x)∈AI for eachA(x)∈ q, and (ii)
(π(x), π(y))∈ rI for eachr(x, y)∈ q. We writeI |= q if there is a match forq in I. If I |= q for every
modelI of K, thenK entailsq, writtenK |= q. Thequery entailment problemis to decide, givenK andq,
whetherK |= q. We sometimes also considerunions of conjunctive queries (UCQs), which take the form⋃

i qi, where eachqi is a conjunctive query. The notionsI |= q andK |= q are lifted from CQs to UCQs in
the obvious way.

The directed graphGq associated with a queryq is defined as(V,E), whereV = Var(q) andE =
{(x, y) | r(x, y) ∈ q}. When deciding CQ entailment, we assume without loss of generality that the input
queryq (i.e., the graphGq) is connected. ForV ⊆ Var(q), we useq|V ↓ to denote the restriction ofq to the
set of variables that are reachable inGq starting from some element inV . We callq|V ↓ a proper subquery
of q if it is connected, and usesub(q) to denote the set of all proper subqueries ofq. Obviously,q ∈ sub(q).

1Concepts of the formC ⊔D and∀r.C are viewed as abbreviations.
2As usual, individuals inq can be simulated, and queries with answer variables can be reduced to the Boolean CQs considered

here.
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3 Reduction to Unary ABoxes

The objective of this section is to reduce CQ entailment overarbitrary knowledge bases to UCQ entailment
over knowledge bases whose ABoxes contain only a single concept assertion and no role assertions.

Let K = (T ,A) be a knowledge base andq a CQ for which we want to decide whetherK |= q. We
assume without loss of generality thatT = {⊤ ⊑ CT }. The announced reduction, which is similar to
one used in [4], makes use of the fact that if there is an interpretationI of K with I 6|= q, then there is
a forest-shaped such model, i.e., a model that consists of anABox part of unrestricted relational structure
and a tree-shaped part rooted at each ABox individual. To check for the existence of a countermodel of this
form, we consider all ways in which the query variables can bedistributed among the different parts of the
model. The query has no match if for each possible distribution, we can select an ABox individuala such
that some subquery assigned to the tree model belowa is not matched in that tree model. This leaves us
with the problem of determining the existence of certain tree models (one for each ABox individual) that
spoil a (worst-case exponential) set of subqueries.

To formally implement this idea, we require a few preliminary definitions. We usecl(K) to denote the
smallest set that containsCT , each conceptC with C(a) ∈ A, and is closed under single negation and
subconcepts. Atypeis a subsett ⊆ cl(K) that satisfies the following conditions:

1. ¬C ∈ t iff t /∈ C, for all ¬C ∈ cl(T );

2. C ⊓ D ∈ t iff C ∈ t andD ∈ t, for all C ⊓ D ∈ cl(T );

3. CT ∈ t.

We usetp(K) to denote the set of all types forK. A completionof A is an ABoxA′ such that

• A ⊆ A′ with Ind(A) = Ind(A′);

• for eacha ∈ Ind(A), we have{C | C(a) ∈ A′} ∈ tp(K);

• r(a, b), r(b, c) ∈ A′ impliesr(a, c) ∈ A′;

• ∃r.C ∈ cl(K), r(a, b) ∈ A, andC(b) ∈ A′ implies(∃r.C)(a) ∈ A′.

We usecpl(A) to denote the set of all completions forA. A match candidatefor a completionA′ ∈ cpl(A)
describes a way of distributing the query variables among the different parts of the model. Formally, it is a
mappingζ : Var(q) → {a, a↓ | a ∈ Ind(A)} such that

• if A(x) ∈ q andζ(x) = a, thenA(a) ∈ A′;

• if r(x, y) ∈ q, ζ(x) = a, andζ(y) = b, thenr(a, b) ∈ A′;

• if r(x, y) ∈ q, ζ(x) = a, ζ(y) = b↓, anda 6= b, thenr(a, b) ∈ A′;

• r(x, y) ∈ q andζ(x) = a↓ impliesζ(y) = a↓.

For everyr(x, y) ∈ q with ζ(x) = a andζ(y) = b↓ (where potentiallya = b), define a subsetV ⊆ Var(q)
as the smallest set such that

• y ∈ V ;
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• if r(x′, y′) ∈ q with x′ ∈ V , theny′ ∈ V ;

• if r(x′, y′) ∈ q with y′ ∈ V andζ(x′) = b↓, thenx′ ∈ V .

We useq|r(x,y) to denote the restriction ofq to the variables inV . Let Qζ denote the set of all queries
q|r(x,y) obtained in this way. It is straightforward to verify that all these queries are proper subqueries, i.e.,
Qζ ⊆ sub(q).

A query annotationfor A′ identifies the subqueries that do not have a match in the counter-model that
we construct. Formally, it is a mapα : Ind(A) → 2sub(q) that satisfies the following conditions:

1. for every match candidateζ for A′, there is a queryq|r(x,y) ∈ Qζ such thatq|r(x,y) ∈ α(a) where
ζ(y) = a↓;

2. q ∈ α(a) for all a ∈ Ind(A).

For eacha ∈ Ind(A), we useA′|a to denote the restriction ofA′ to assertions of the formC(a). The proof
of the following lemma is similar to that of a closely relatedresult in [5].

Lemma 3.1 K 6|= q iff there is a completionA′ of A and a query annotationα for A′ such that for all
a ∈ Ind(A), we haveKa 6|=

⋃
α(a), whereKa = (T ,A′|a).

Lemma 3.1 constitutes the announced reduction: to decide whetherK |= q, we can enumerate all comple-
tionsA′ of A and query annotationsα for A′, and then perform the required UCQ entailment checks.

4 Characterization of Counter-models

It remains to decide whetherKa |=
⋃

α(a) holds for eacha ∈ Ind(A). Sinceα(a) may contain expo-
nentially many different subqueries ofq (this is what actually happens in the lower bound proved in [4]),
it is challenging to do this inCO-NEXPTIME. We start with a characterization of counter-models. In the
remainder of the section, for readability, we fix somea ∈ Ind(A), and we useQ to denoteα(a) andCa to
denote⊓{C | C(a) ∈ A′}.

Many of the subsequent techniques and results will be concerned with trees and tree interpretations,
which we introduce next. LetΣ be an arbitrary set. Then atree (overΣ with rootp) is a setT = {p ·w |w ∈
S} wherep ∈ Σ∗ andS ⊆ Σ∗ is a prefix-closed set of words. Each nodew · c ∈ T , wherew ∈ T and
c ∈ Σ, is achild of w. For a nodew ∈ T , |w| denotes the length ofw, disregarding the prefixp (so that the
root ofT has length0). We saythe branching degree ofT is bounded byk if |{c ∈ Σ | w · c ∈ T}| ≤ k for
all w ∈ T . A path inT , is a (potentially infinite) sequencew0, w1, . . . of elements fromT such that (i)w0

is the root ofT , and (ii) for eachi > 0, wi is a child ofwi−1. If T is a tree andf : T → S is a function
with S finite, then we usemax(T, f) to denote the maximal number of distinct values thatf can take on an
arbitrary path inT .

An interpretationI is a tree interpretationif ∆I is a tree. We introduce the notationroot(I) to denote
the root of the tree∆I . A tree interpretationI is atree modelof Ka if

• I is a model ofT , androot(I) ∈ CI
a ,

• rI = {(w,w · c) | w,w · c ∈ ∆I ∧ c ∈ Σ}+, and

• for all ∃r.C ∈ cl(K) andw ∈ (∃r.C)I , there isc ∈ Σ such thatw ·c ∈ CI , i.e., all relevant existential
restrictions are satisfied in one step.
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Given a tree interpretationI andw ∈ ∆I , we useI|w to denote the restriction ofI to the subtree rooted at
w.

The following lemma shows that we can restrict our attentionto tree-shaped interpretations in which
only polynomially many types appear on any given path. As theproof of the lemma is surprisingly subtle,
we defer it to the appendix. Given an interpretationI, we usetI(w) to refer to the type ofw ∈ ∆I in I, i.e.
{C ∈ cl(K) | w ∈ CI}.

Lemma 4.1 If Ka 6|=
⋃

Q, then there is an interpretationI such that:

1. I is a tree model ofKa, andI 6|=
⋃

Q, and

2. max(∆I , tI) ≤ |cl(K)|.

To characterize counter-models, we employmarkingof interpretations, similar to that in [4]. A marking
simulates a top-down walk through a tree interpretationI greedily matching the variables of the queries in
Q. The marking fails if we arrive at a subquery that is fully matched along this walk. As we show next, the
existence of a marking for a tree interpretationI is a necessary and sufficient condition forI 6|=

⋃
Q.

For a queryp and a variablex ∈ Var(p), we say thatx is consumed (in p)by a typet if {A | A(x) ∈
p} ⊆ t and{y | r(y, x) ∈ p} = ∅. Given a typet ∈ tp(K) and a queryp ∈ sub(q), we denote bysubt(p)
the set of all proper subqueries ofpt, wherept is obtained fromp by removing all atoms involving a variable
that is consumed byt. In other words,subt(p) is the set of connected components in the reduced querypt.
Trivially, subt(p) = {p} if t does not consume any variable inp.

The following lemma describes a single step of the top-down walk through a tree interpretation.

Lemma 4.2 Assume a tree interpretationI, w ∈ ∆I and any setP of queries. ThenI|w 6|=
⋃

P iff there
is a setP ′ such that:

(i) P ′ contains some non-emptyp′ ∈ subtI(w)(p) for eachp ∈ P ;

(ii) I|w′ 6|=
⋃

P ′ for each childw′ of w in ∆I .

Proof. For the if direction, we show that ifI|w |=
⋃

P , then there is no setP ′ satisfying (i) and (ii). If
I|w |=

⋃
P , then there is a matchπ in I|w for somep ∈ P . We show that then, for eachp′ ∈ subtI(w)(p),

there exists a childw′ of w such thatI|w′ admits a match forp′. This implies that there is no setP ′, since
there is no possible choice of a subquery insubtI(w)(p) to be included.

Let π be a match forp in I|w, and letsubπ(w)(p) denote the set of all proper subqueries of the query
pπ(w) that results fromp by dropping each atom involving a variablex with π(x) = w. By definition of a
match, eachx ∈ Var(p) with π(x) = w is consumed bytI(w). This implies that all atoms removed from
p to obtainpπ(w) are also removed to obtainptI(w), and thus eachp′ ∈ subtI(w)(p) is contained in some
p′′ ∈ subπ(w)(p). Sinceπ is a match forp, eachp′′ ∈ subπ(w)(p) has a match inI|w′ for some childw′ of
w (in particular,π restricted to the domain ofI|w′ is such a match), and so does eachp′ ⊆ p′′. This shows
that, for eachp′ ∈ subtI(w)(p), there exists a childw′ of w such thatI|w′ |= p′.

For the other direction we show that if there does not exist a setP ′ as above, thenI|w |=
⋃

P . Assume
that there is noP ′ satisfying (i) and (ii). Then we can select somep ∈ P such that for each non-empty
p′ ∈ subtI(w)(p), there is a childw′ of w with I|w′ |= p′, and we can select a matchπp′ in I|w′ for eachp′.
Observe that eachx ∈ Var(p) that is not consumed bytI(w) occurs in somep′ and is in the scope of some
πp′ . It can be easily verified that a matchπ for p can be composed by taking the union of allπ′

p, and setting
π(x) = w for all remaining variablesx. This showsI|w |= p andI|w |=

⋃
P . ❏
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We can now formally define the notion of a marking, which describes a top-down walk through a whole
tree interepretation.

Definition 4.3 Let I be a tree interpretation. AQ-markingfor I is a mappingµ : ∆I → 2sub(q) such that:

1. µ(root(I)) = Q,

2. for eachw ∈ ∆I and each pairw · i, w · j ∈ ∆I , µ(w · i) = µ(w · j),

3. for eachw · i ∈ ∆I , µ(w · i) is a set containing a non-emptyp′ ∈ subtI(w)(p) for eachp ∈ µ(w).

Using Lemma 4.2, we can characterize query non-entailment as follows:

Lemma 4.4 There is aQ-marking for a tree interpretationI iff I 6|=
⋃

Q.

Proof. For the if direction, assumeI 6|=
⋃

Q. We define aQ-markingµ for I inductively:

• µ(root(I)) = Q,

• µ(w·c) = µ(w)′ for all w·c ∈ ∆I , whereµ(w)′ is a⊆-minimal set of subqueries satisfying conditions
(i) and (ii) of Lemma 4.2 (where we takeP = µ(w) andP ′ = µ(w)′).

Note that a suitable setµ(root(I))′ exists for the children of the root becauseI 6|=
⋃

Q. Then at each step
w · c, condition (ii) in Lemma 4.2 ensures thatI|w·c 6|=

⋃
µ(w · c). Applying the lemma again we ensure the

existence of a suitable setµ(w ·c)′ for the children ofw ·c. It is trivial to verify thatµ satisfies the conditions
in the definition ofQ-marking (in particular, for condition 3 we use condition (i) in Lemma 4.2).

The other direction follows easily from the first condition in Definition 4.3, which ensures that the root
is always marked withQ, and the following claim:

(∗) If µ is aQ-marking forI, thenI|w 6|=
⋃

µ(w) for everyw ∈ ∆I .

To show (∗), we assume for a contradiction thatµ is a Q-marking and thatI|w |=
⋃

µ(w) for some
w ∈ ∆I . That is,I|w |= p for somep ∈ µ(w). Among all such pairs(w, p), we select one with minimal
|Var(p)|, i.e., such that|Var(p)| ≤ |Var(p′)| for everyw′ ∈ ∆I and everyp′ ∈ µ(w′) such thatI|w′ |= p′.
In the case wheretI(w) consumes no variable inp, we have that for every childw′ of w, µ(w) = µ(w′) and
I|w |= p iff I|w′ |= p. We can iteratively apply this argument to choose aw∗ ∈ ∆I|w (eitherw itself or a
first descendant where some variable is consumed) such thattI(w∗) consumes somex ∈ Var(p), I|w∗ |= p,
andµ(w∗) = µ(w). The fact thattI(w∗) consumes somex ∈ Var(p) ensures|Var(p′)| < |Var(p)| for every
p′ ∈ subtI(w∗)(p). Sinceµ is aQ-marking forI andp ∈ µ(w∗), by conditions 2 and 3 in Definition 4.3,
there must be some non-emptyp′ ∈ subtI(w∗)(p) such thatp′ ∈ µ(w′) for all children w′ of w∗. We
know from Lemma 4.2 thatI|w∗ |= {p} implies thatI|w′ |= {p′} for some childw′ of w∗. But as
|Var(p′)| < |Var(p)|, this is a contradiction. ❏

We have shown that UCQ non-entailment reduces to deciding the existence of a marking. The following
lemma will help us to show that the latter problem can be decided in NEXPTIME. It shows that, even though
there can be exponentially many queries inQ, the query set changes only a few times on each path of a
marked interpretation. More precisely:

Lemma 4.5 If I 6|=
⋃

Q, thenI admits aQ-markingµ with max(∆I , µ) ≤ |Var(q)|2 + 1.
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Proof. Let µ be theQ-marking defined in the proof of Lemma 4.4. We consider an arbitrary pathw1, w2, . . .
in I, and show thatl = |{µ(w1), µ(w2), . . .}| ≤ |Var(q)|2 +1. We letJ = {i | µ(wi) 6= µ(wi+1)}. We will
show that|J | ≤ |q|2. The desired bound will follow from this and the fact thatl ≤ |J | + 1. Let ti = tI(wi)
for all i ≥ 0. We say a queryq′ is i-matchedif q′ has a match inIi but not onIi−1, whereIk is defined by
setting (i)∆Ik = {(1, t1), . . . , (k, tk)}; (ii) rIk = {((i, ti), (j, tj)) | j > i}; (iii) AIk = {(i, ti) | A ∈ ti}
for all A ∈ NC. Note that, for any queryq′, there is at most one indexi such thatq′ is i-matched. For
each pairx, y ∈ Var(q), let q|x,y be the query that is obtained by restrictingq|{x}↓ to the variabley and the
variables that reachy in the graphGq. Let X = {q|x,y | x, y ∈ Var(q)}. Note that|X| ≤ |Var(q)|2. We
now show that for eachi ∈ J , there exists someq′ ∈ X such thatq′ is i-matched. Since there is at most one
i for eachq′, this implies|J | ≤ |X| ≤ |q|2 and the bound follows.

Consider an arbitraryi ∈ J . Thenµ(wi) 6= µ(wi+1) implies that for somep′ ∈ µ(wi), µ(wi+1) contains
somep′′ 6= p′ from subtI(w)(p′), and somex ∈ Var(p′) is consumed bytI(wi). By definition, the queryp′

is a proper subquery of somep ∈ Q. Observe that, if we restrict our attention top and its subqueries, the
markingµ ‘moves’ to a strictly smaller subquery at every type that consumes some variable. LetM be the
set of source variables in the query graphGp of this p, i.e. M = {y ∈ Var(p) | {y′ | r(y′, y) ∈ p} = ∅}.
It is not hard to see that, ifx ∈ Var(p′) is consumed bytI(wi), eachq|y,x with y ∈ M has a match inIi.
To see that there exists at least oney ∈ M such thatq|y,x is i-matched, assume towards a contradiction that
there is somej < i such that eachq|y,x has a match inIj, and take the smallest suchj. Then all variables
that reachx in Gq are consumed by some type on the path towj , andwj is marked with somep′′ ⊆ p where
{y | r(y, x) ∈ p′′} = ∅. As x is consumed bytI(wj), then the markings of all descendants ofwj contain
some subquery ofp′′ wherex does not occur. This contradicts the fact thatp′ ∈ µ(wi) andx ∈ Var(p′).

❏

As a direct consequence of Lemmas 4.1, 4.4 and 4.5, we obtain the following characterization of counter-
models; this is the basis of our UCQ entailment algorithm.

Theorem 4.6 Ka 6|=
⋃

Q iff there is a tree interpretationI such that:

(A) I is a model ofKa with max(∆I , tI) ≤ |cl(K)|;

(B) I admits someQ-markingµ andmax(∆I , µ) ≤ |Var(q)|2 + 1.

By removing domain elements not needed to satisfy existential restrictions fromcl(K), it is standard to show
that we can assume the interpretationI from Theorem 4.6 to have branching degree at most|cl(K)|.

5 Witnesses of Counter-models

By Theorem 4.6,Ka 6|=
⋃

Q can be decided by checking whether there is a tree interpretation that satisfies
conditions (A) and (B). As we show next, the existence of suchan interpretationI is guaranteed if we can
find an initial part ofI whose depth is bounded bydK,q := |cl(K)| × (|Var(q)|2 + 1). Since the branching
degree ofI is linear in the size ofK, this initial part is of at most exponential size. A nondeterministic
exponential time procedure for checkingKa 6|=

⋃
Q is then almost immediate. We represent initial parts of

countermodels as follows.

Definition 5.1 A witness for “Ka 6|=
⋃

Q” is a node-labeled treeW = (T, τ, ρ) whereτ : T → tp(K) and
ρ : T → 2sub(q), such that:
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1. The branching degree ofT is bounded by|cl(K)|.

2. For eachw ∈ T , |w| ≤ dK,q.

3. max(T, τ) ≤ |cl(K)| andmax(T, ρ) ≤ |Var(q)|2 + 1;

4. {C | C(a) ∈ A′} ⊆ τ(e) andρ(e) = Q for the roote of T .

5. For allw ∈ T with |w|< dK,q and∃r.C ∈ τ(w), there is a childw′ of w with C ∈ τ(w′).

6. For eachw ∈ T and each childw′ of w, ¬∃r.D ∈ τ(w) implies{¬D,¬∃r.D} ⊆ τ(w′).

7. For each pairw1, w2 of children ofw, ρ(w1) = ρ(w2) is a set containing some nonemptyp′ ∈ subt(p)
for eachp ∈ ρ(w).

An initial part of a tree interpretation represented by a witness can be unravelled into a tree interpretation
that satisfies (A) and (B) of Theorem 4.6, thus witnessingKa 6|=

⋃
Q.

Theorem 5.2 Ka 6|=
⋃

Q iff there exists a witnessW for “ Ka 6|=
⋃

Q”.

Proof. For the ‘only if’ direction, by Theorem 4.6 there exists a tree-modelI of Ka and aQ-markingµ for
I such thatmax(∆I , tI) ≤ |cl(K)|, max(∆I , µ) ≤ |Var(q)|2 + 1, and the branching degree ofI is at most
|cl(K)|. We can obtain a witness by restrictingI andµ to the firstdK,q levels. More precisely,W = (T, τ, ρ)
is obtained by setting:

- T = {w ∈ ∆I | |w| ≤ dK,q};

- τ(w) = tI(w) andρ(w) = µ(w) for all w ∈ T .

For the other direction, observe that a witnessW = (T, τ, ρ) is almost aQ-marked model ofKa, except
a nodew ∈ T with |w| = dK,q may not have the children it needs to satisfy the existentialrestrictions.
However, since the path from the root tow hasdK,q + 1 nodes and due to (3) in Definition 5.1, there exists a
pair of nodes on this path that share the same type and query set. This allows us to obtain a tree-model and
aQ-marking by unravelingW as follows.

For each nodew ∈ T , let s(w) be the shortest prefix ofw such thatτ(s(w)) = τ(w) andρ(s(w)) =
ρ(w). Let D ⊆ T ∗ be the smallest set of such that:

- the root ofT belongs toD, and

- if w0 · · ·wn ∈ D, thenw0 · · ·wnw ∈ D for all childrenw of s(wn).

Consider the following interpretationI and markingµ:

- ∆I = D;

- AI = {w0 · · ·wn ∈ ∆I | A ∈ τ(vn)} for all concept namesA;

- rI = {(w0 · · ·wn−1, w0 · · ·wn) | w0 · · ·wn ∈ ∆I};

- µ(w0 · · ·wn) = ρ(wn) for all w0 · · ·wn ∈ ∆I .

It is easy to check thatµ is aQ-marking forI. To see thatI is model ofKa, observe that for each node
w ∈ T with |w| = dK,q, there is a proper prefixw′ of w such thats(w′) 6= w′. This means that such aw will
never be added to a path in∆I . This implies that eachw0 · · ·wn ∈ ∆I has|wn| < dK,q and hence satisfies
all the existential restrictions. ❏
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We can check for the existence of a witness by nondeterministically guessing an (exponential size) candidate
structureW = (T, τ, ρ) and then verifying conditions (1-7) in Definition 5.1. The latter is feasible in time
exponential in|K| and|q|. Hence,Ka 6|=

⋃
Q can be decided nondeterministically in time exponential in

|K| and|q|.

For the overall algorithm, observe that each completionA′ of A is of size polynomial in|K| and |q|,
while the size ofα(a) is at most exponential in|K| and|q| for eacha ∈ Ind(A). Thus, using Lemma 3.1,
checkingK 6|= q is trivially in NEXPTIME provided that checkingKa 6|=

⋃
α(a) is NEXPTIME. By

combining this with the matching lower bound in [4], we get:

Theorem 5.3 CQ entailment overS KBs with one transitive role, and no other roles, isCO-NEXPTIME-
complete.

6 Conclusion

We believe that Theorem 5.3 can be extended to the case where there is an arbitrary number of roles, both
transitive and unrestricted ones. This requires the combination of the techniques presented in this paper with
the ones developed in [4]. In particular, different roles used in a queryp ∈ Q induce a partitioning ofp into
different “clusters”, and each cluster can be treated in a similar way as an entire, unpartitioned queryp ∈ Q
in the current paper. Since the technical details, which we are currently working out, can be expected to
become somewhat cumbersome, we believe that it is instructive to first concentrate on the case of a single
transitive role as we have done in this paper.

It is interesting to note that the techniques from this papercan be used to reprove in a transparent way
the EXPTIME upper bound for CQ answering overS knowledge bases that contain only a single concept
assertion and no role assertions from [4]—restricted to a single transitive role, of course. In the case of such
ABoxes, we do not need the machinery from Sections 3 and 5, northe (subtle to prove) Lemma 4.1. The
essential technique isQ-markings, which can be simplified to maps from∆I to sub(q) instead of to2sub(q)

becauseQ is a singleton that consists only of the input query. By Lemma4.4, it suffices to check for the
existence of a tree-shaped interpretationI along with aQ-marking forI. This can be done by a standard
type-elimination procedure.
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A Proof of Lemma 4.1

We show that for any counter-modelI for Q, whereQ is a set of queries, we can build a counter-modelI ′

for Q with only polynomially many distinct types on each path.

Definition A.1 An adorned tree interpretationis of the formI = (∆I , ·I , δ) where(∆I , ·I) is a tree
interpretation andδ : ∆I → cl(K) a map such that the following holds for allw ∈ ∆I :

1. w ∈ δ(w)I ;

2. for all ∃r.C ∈ cl(K) with w ∈ (∃r.C)I , there is a childw′ of w such thatδ(w′) = C.

We say thatI is anadorned tree modelof T if (∆I , ·I) is a tree model ofT ; it is an adorned tree model of
Ka if additionally δ(root(I)) = Ca (where as before,root(I) denotes the root of∆I). For a CQq, we have
I |= q iff (∆I , ·I) |= q.

Lemma A.2 If there is a modelI of Ka with I 6|=
⋃

Q, then there is an adorned tree modelJ of Ka with
J 6|=

⋃
Q.

Proof. First unravel. Then decorate withδ by choosing appropriate successors. To guarantee injectivity,
duplicate subtrees as needed. ❏
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Lemma A.3 Let I = (∆I , ·I , δI) be an adorned tree model ofT . Then there is an adorned tree model
J = (∆J , ·J , δJ ) of T such that

(i) For any setP of queries, ifI 6|=
⋃

P, thenJ 6|=
⋃

P;

(ii) For all w ∈ ∆J with δJ (w) = δJ (root(J )), we havetJ (w) = tJ (root(J ));

(iii) There exists a homomorphismf : ∆J → ∆I satisfying:

(a) f(root(J )) = root(I)

(b) tJ (w) = tI(f(w)) for all w ∈ ∆J

(c) δJ (w) = δI(f(w)) for all w ∈ ∆J

(d) (w1, w2) ∈ rJ implies(f(w1), f(w2)) ∈ rI

Proof. For readability, throughout the proof, we useε in place ofroot(I). SetΓ = {w ∈ ∆I | δ(w) =
δ(ε)}. Forw ∈ ∆I , we useDesc(w) to denote the set of all descendants ofw in I. If there is aw0 ∈ Γ such
thatDesc(w0) ∩ Γ = ∅, then it is easy to see thatI|w0

is the desired interpretation. Thus, assume that

(∗) there is now0 ∈ Γ with Desc(w0) ∩ Γ = ∅.

I.e., everyw ∈ Γ has a descendant inΓ. For allw ∈ Γ, set

Inf(w) = {t ∈ tp(K) | {w′ ∈ Desc(w) ∩ Γ | tI(w′) = t} is infinite}.

There is aw0 ∈ Γ such thattI(w0) ∈ Inf(w0) and for allw ∈ Desc(w0) ∩ Γ, we haveInf(w) = Inf(w0):

• by (∗), there is aw ∈ Γ with tI(w) ∈ Inf(w);

• while there is anv ∈ Desc(w) with Inf(v) ( Inf(w), do the following: by (∗), there is anv′ ∈ Desc(v)
such thatv′ ∈ Inf(v′); replacew with v′ (clearly,Inf(v′) ( Inf(w));

• sinceInf(w) decreases in each step, eventually no further step is possible and the node reached is the
desiredw0.

Since we can replaceI by Iw0
, we can thus assume that

(∗∗) tI(ε) ∈ Inf(ε) and for allw ∈ Desc(ε) ∩ Γ, we haveInf(w) = Inf(ε).

Thus, there is a functions : Γ → Γ that maps eachw ∈ Γ to anv ∈ Desc(w) ∩ Γ with tI(v) = tI(ε).
A normalized pathis a wordw0 · · ·wn ∈ (∆I)∗ such thatw0 = ε and for alli < n, one of the following
holds:

• wi+1 is a child ofwi andwi+1 6∈ Γ,

• wi+1 = s(w) for a childw of wi with w ∈ Γ.

Then the desired adorned tree modelJ is built as follows:

∆J = the set of all normalized paths

AJ = {w0 · · ·wn ∈ ∆J | wn ∈ AI} for all concept namesA

rJ = {(w0 · · ·wn−1, w0 · · ·wn) | w0, · · · , wn ∈ ∆J }

δ(w0 · · ·wn) = δ(wn) for all w0 · · ·wn ∈ ∆J .
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It is easy to verify thatJ satisfies (i): any matchπ of ap ∈ P in J can be reproduced as a matchπ′ of p in
I by settingπ′(x) = dn wheneverπ(x) = d1 · · · dn. It thus remains to show (ii) and (iii) and thatJ is an
adorned tree model forT . This is based on the following claim:

Claim. For allC ∈ cl(K) and allw0 · · ·wn ∈ ∆J , we havewn ∈ CI iff w0 · · ·wn ∈ CJ .

The proof is by induction on the structure ofC. The induction start, whereC is a concept name, is trivial.
So are the cases for the Booleans in the induction step. Hencewe concentrate on the case whereC = ∃r.D.

First, letwn ∈ (∃r.D)I . Then there is a childv of wn with δ(v) = D andv ∈ DI . If v /∈ Γ, then
w0 · · ·wnv ∈ ∆J . The construction ofJ and IH yields(w0 · · ·wn, w0 · · ·wnv) ∈ rI andw0 · · ·wnv ∈
DJ , thusw0 · · ·wn ∈ (∃r.D)J by the semantics. Now assumev ∈ Γ. Thenw0 · · ·wns(v) ∈ ∆J and
(w0 · · ·wn, w0 · · ·wns(v)) ∈ rI . By definition ofs, we haveδ(s(v)) = δ(v), thusδ(s(v)) = D which
impliess(v) ∈ DI . By IH, w0 · · ·wns(v) ∈ DJ and we are done.

Conversely, letw0 · · ·wn ∈ (∃r.D)J . Then there is a wordv0 · · · vm ∈ (∆I)∗ with w0 · · ·wnv0 · · · vm ∈
DJ . By construction ofJ , vm ∈ Desc(wn), thus(wn, vm) ∈ rI . By IH, vm ∈ DI . Thus,wn ∈ (∃r.D)I

as required.

Now (ii) is an immediate consequence of the construction ofJ and the claim. For (iii), we define the
homomorphismf as follows:f(w0 . . . wn) = wn. Condition (iii)(b) holds because of the claim; conditions
(iii)(a), (iii)(c), and (iii)(d) follow easily from the definition of J . To see thatJ satisfies Condition 1 of
adorned tree interpretations, fix aw0 · · ·wn ∈ ∆J . Thenδ(w0 · · ·wn) = δ(wn). Sincewn ∈ δ(wn)I ,
the claim yieldsw0 · · ·wn ∈ δ(w0 · · ·wn)J . Now for Condition 2 of adorned tree interpretations. Let
∃r.C ∈ cl(K) andw0 · · ·wn ∈ (∃r.C)J . By the claim,wn ∈ (∃r.C)I . Thus there is a childv of wn with
δ(v) = C. If v ∈ Γ, thenw0 · · ·wnv is the required child ofw0 · · ·wn in J with δ(w0 · · ·wnv) = C.
Otherwise,w0 · · ·wns(v) is the required child. It follows from the claim and the fact that (∆I , ·I) is a
model ofT . ❏

Lemma A.3 shows how one can ensure that all nodes which are decorated with the same concept as the
root of the tree share the same type. The following lemma goesone step further by ensuring that any two
nodes on the same path which are decorated with the same concept must have the same type. The basic idea
underlying the lemma is to apply the normalization procedure from Lemma A.3 to each point in the model.

In order to formalize the construction, we will require someadditional notation. We will usert(H) and
rc(H) to refer respectively to the type and concept decoration ofroot(H). Also, given any adorned tree
modelH of T , we letnorm(H) refer to an adorned tree model ofT obtained by the procedure outlined in
the proof of Lemma A.3, and which thus satisfies conditions (i)-(iii) of the lemma.

Lemma A.4 LetI = (∆I , ·I , δI) be an adorned tree model ofT . Then there exists an adorned tree model
J = (∆J , ·J , δJ ) of T such that:

(i) For any setP of queries, ifI 6|= ∪P, thenJ 6|= ∪P;

(ii) For any pathw1, w2, w3, . . . in J , if δ(wi) = δ(wj), thentJ (wi) = tJ (wj);

(iii) tI(root(I)) = tJ (root(J )).

Proof. We build the domain∆J of the requiredJ level by level. To this end, we define a sequence of sets
∆0,∆1,∆2, . . ., where each∆i consists of finite wordsH0 . . .Hn, where eachHj is an adorned tree inter-
pretation. We use the functiontail to pick out the final interpretation in such a word, i.e.tail(H0 . . .Hn) =
Hn. We set∆0 = {norm(I)}, and we define the remaining∆i inductively as follows:
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∆i+1 = ∆i ∪ {w · norm(H|v) | |d| = i, tail(w) = H, andv is a child ofroot(H)}

We can now define the interpretationJ = (∆J , ·J , δJ ):

∆J =
⋃

i≥0 ∆i

AJ = {w ∈ ∆J |A ∈ rt(tail(w))}

rJ = {(w,w′) ∈ ∆J × ∆J | ∃ H such thatw′ = w · H}

δJ (w) = rc(tail(w))

It remains to be shown that the tree interpretationJ satisfies the conditions of the lemma. We begin by
establishing the following claim:

Claim 1. For allC ∈ cl(K) and allw ∈ ∆J , root(tail(w)) ∈ Ctail(w) iff w ∈ CJ .

The proof is by induction on the structure ofC. The base case, whereC is a concept name, is obvious, as
are the cases concerning the Boolean connectives. Hence we concentrate on the∃r.D case.

For the first direction, supposew = H1 . . .Hn ∈ (∃r.D)J . Then from the definition ofrJ , it follows
that there existsw′ = H1 . . .Hn . . .Hm ∈ ∆J such thatw′ ∈ DJ . Choose a shortest suchw′. We first
consider the case wherem = n + 1. Thenw′ must be of the formH1 . . .Hn norm(H|v), for some child
v of root(Hn). Using the induction hypothesis and the fact thatw′ ∈ DJ , we obtainroot(norm(H|v)) ∈
Dnorm(H|v). By points (ii)-(iii) of Lemma A.3, normalization preserves the type of the root, sov ∈ DHn . It
follows thatroot(Hn) ∈ ∃r.DHn , henceroot(tail(w)) ∈ ∃r.Dtail(w).

Now suppose for a contradiction thatm > n + 1. Using the induction hypothesis and the fact that
w′ ∈ DJ , we obtainroot(Hm) ∈ DHm. The interpretationHm must be of the formnorm(Hm−1|v)
for some childv of root(Hm−1). By point (iii) of Lemma A.3, we must havev ∈ DHm−1 , hence
root(Hm−1) ∈ ∃r.DHm−1 . We next considerHm−1, which must be of the formnorm(Hm−2|v′) for
some childv′ of root(Hm−2). Again using Lemma A.3, the fact that∃r.D ∈ cl(K), and transitivity
of r, we getv′ ∈ ∃r.DHm−2 , henceroot(Hm−2) ∈ ∃r.DHm−2 . By iterating this argument, we obtain
root(Hn) ∈ ∃r.DHn . Now sinceHn is an adorned tree interpretation, all existential restrictions must be
satisfied in one step, so there must exist some childw∗ of root(Hn) satisfyingw∗ ∈ DHn . But then by
settingHn+1 = norm(Hn|w∗), we obtainH1 . . .HnHn+1 ∈ DJ , contradicting the minimality ofm. It
follows that we must havem = n + 1, and hence by the preceding paragraph,root(tail(w)) ∈ ∃r.Dtail(w).

For the second direction, supposeroot(H) ∈ ∃r.DH whereH = tail(w). Then sinceH is a tree inter-
pretation forT , existentials are satisfied in one step, so there is some child v of root(H) such thatv ∈ DH.
But that means thatw′ = w · norm(H|v) will be a child ofw in J . Moreover, by point (iii) of Lemma A.3

and the fact thatD ∈ cl(K), v ∈ DH implies thatroot(norm(H|v)) ∈ Dnorm(H|v). Using the induction
hypothesis and the fact thattail(w′) = norm(H|v), we find thatw′ ∈ DJ . It follows thatw ∈ ∃r.DJ , as
desired. (end of proof of claim)

We next define a family of functionsgHi,Hj
: ∆Hj → ∆Hi for each pair of adorned tree interpretations

Hi,Hj satisfyingH1 . . .Hi . . .Hj ∈ ∆J . First, for each adorned tree interpretationH such thatH =
norm(G|v), we letfH : ∆H → ∆G be a function satisfying the conditions of Lemma A.3. We use these
functions in order to define the functiongHi,Hj

as follows:

gHi,Hj
(w) = fHi+1

◦ . . . ◦ fHj
(w)

The following claim establishes some useful properties of the functionsgHi...Hj
.
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Claim 2. Let H1 . . .Hj ∈ ∆J , and let1 ≤ i < j. Then the functiongHi,Hj
satisfies the following

properties:

1. gHi,Hj
is a function from∆Hj to ∆Hi

2. tHj
(w) = tHi

(gHi,Hj
(w)) for all w ∈ ∆Hj

3. δHj (w) = δHi(gHi,Hj
(w)) for all w ∈ ∆Hj

4. (w1, w2) ∈ rHj implies(gHi,Hj
(w1), gHi,Hj

(w2)) ∈ rHi

The claim is proved by induction on the difference betweeni andj. The base case is whenj = i + 1,
in which case we havegHi,Hj

= fHj
. Then properties 1-4 all follow directly from part (iii) of Lemma

A.3. Next suppose the claim holds wheneverj − i ≤ k, and consider the case wherej − i = k + 1.
According to the induction hypothesis, the functiongHi+1,Hj

satisfies properties 1-4 of the claim, i.e. it is a
function from∆Hj to ∆Hi+1 such that for allw ∈ ∆Hj bothtHj

(w) = tHi+1
(gHi+1,Hj

(w)) andδHj (w) =
δHi+1(gHi+1,Hj

(w)) and such that(w1, w2) ∈ rHj implies (gHi+1,Hj
(w1), gHi+1,Hj

(w2)) ∈ rHi+1 . Also,
we know from Lemma A.3 that the functionfHi+1

takes elements of∆Hi+1 to elements of∆Hi and is
such thattHi+1

(w′) = tHi
(fHi+1

(w′)) andδHi+1(w′) = δHi(fHi+1
(w′)) for all w′ ∈ ∆Hi+1 and such that

(w1, w2) ∈ rHi+1 implies(fHi+1
(w1), fHi+1

(w2)) ∈ rHi Combining the properties ofgHi+1,Hj
andfHi+1

,
and using the fact thatgHi,Hj

= fHi+1
◦ gHi+1,Hj

, we immediately obtain satisfaction of points 1-4 by the
functiongHi,Hj

. (end of proof of claim)

We need one final claim in order to show point (ii) of the lemma:

Claim 3. There exists a functionh : ∆J → ∆I such that:

1. tJ (w) = tI(h(w)) for all w ∈ ∆J

2. δJ (w) = δI(h(w)) for all w ∈ ∆J

3. (w1, w2) ∈ rJ implies(h(w1), h(w2)) ∈ rI

The desired functionh is defined as follows. We letfI : ∆norm(I) → ∆I be as in Lemma A.3, and we let
the functionsgH1,Hn : ∆Hn → ∆H1 be as defined above. Then we defineh as follows:h(H1 . . .Hn) =
fI ◦ gH1,Hn(root(Hn)). Note that by definition of∆J , we must haveH1 = norm(I), soh is indeed a
function from∆J to ∆I . The satisfaction of properties 1 and 2 of the claim follows from the satisfaction
of the analogous properties byfI and the functionsgH1,Hn (cf. Lemma A.3 and Claim 2 above) and the
fact thattJ (H1 . . .Hn) = tHn(root(Hn)) andδJ (H1 . . .Hn) = δHn(root(Hn)). In order to show point
3 of the claim, suppose that(w1, w2) ∈ rJ . Then if w2 = H1 . . .Hm, w1 must be a prefix ofw2, i.e.
w1 = H1 . . .Hn for somen < m. Then

h(w2) = fI ◦ fH1
◦ . . . ◦ fHn−1

(fHn ◦ . . . ◦ fHm(root(Hm)))

Now sinceHm = norm(Hm−1|v) for some childv of root(Hm−1), it follows from part (iii) of Lemma A.3
thatfHm(root(Hm)) = v for some childv of root(Hm−1), and hence that(root(Hm−1), fHm(root(Hm))) ∈
rHm−1 . Iterating this argument and leveraging transitivity ofr, we get(root(Hn), fHn◦. . .◦fHm(root(Hm))) ∈
rHn . Then by applying item 4 of Claim 2 and item (iii) of Lemma A.3,we get(fI ◦gH1,Hn(root(Hn)), fI ◦
gH1,Hn(fHn+1

◦ . . . ◦ fHm(root(Hm)))) ∈ rI and hence(h(w1), h(w2)) ∈ rI , as desired. (end proof of
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claim)

Using Claim 3, it is easy to prove (i). Suppose there is a matchπ of ap ∈ P inJ . Then leth : ∆J → ∆I

be as in Claim 3, and defineπ′ by settingπ′(x) = h(π(x)). Then every atomA(x) must be satisfied byπ′

sinceπ(x) ∈ AJ andπ(x) andh(π(x)) share the same type. Each role atomr(x, y) must also be satisfied
by π′ since(π(x), π(y)) ∈ rJ , hence(h(π(x)), h(π(y))) ∈ rI . Soπ′ is a match forp in I, contradicting
our assumption thatI 6|=

⋃
P.

We now prove condition (ii) of the lemma. Consider somew = H1 . . .Hn ∈ ∆J and a successor
nodew′ = H1 . . .Hn . . .Hm such thatδJ (w′) = δJ (w) = C. Then by Claim 2, there exists a function
g : ∆Hm → ∆Hn such thattHm(v) = tHn(g(v)) andδHm(v) = δHn(g(v)) for all v ∈ ∆Hm. It follows
that

δHn(root(Hn)) = δJ (w) = δJ (w′) = δHm(root(Hm)) = δHn(g(root(Hm)))

i.e. root(Hn) andg(root(Hm)) have the same concept decoration inHn. But we also know thatHn is of
the formnorm(Hn−1|v), so according to Lemma A.3, it must be the case that these points share the same
type, yieldingtHn(root(Hn)) = tHn(g(root(Hm))). As we know thatg satisfies the conditions of Claim
2, we must havetHn(g(root(Hm))) = tHm(root(Hm)). As by definition,tJ (w′) = tHm(root(Hm)) and
tJ (w) = tHn(root(Hn)), we obtaintJ (w) = tJ (w′), as desired.

To show condition (iii) of the lemma, we note that because of the definition ofJ and Claim 1, we have
tJ (root(J )) = tJ (norm(I)) = tnorm(I)(root(norm(I))). We can then use item (iii) from Lemma A.3 to
infer thattnorm(I)(root(norm(I))) = tI(root(I)), which gives ustJ (root(J )) = tI(root(I)).

To see thatJ satisfies Condition 1 of adorned tree interpretations, leth be as in Claim 3, and fix a
w ∈ ∆J . Then δJ (w) = δI(h(w)). As I is an adorned tree interpretation, we must haveh(w) ∈
(δI(h(w)))I . As tI(h(w)) = tJ (w), we obtainw ∈ (δJ (w))J . For Condition 2, supposetail(w) =
H, and let∃r.C ∈ cl(K) and w ∈ (∃r.C)J . Then by Claim 1, we must haveroot(H) ∈ (∃r.C)H.
SinceH is an adorned tree interpretation, there must exist a childv of root(H) such thatδH(v) = C. It
follows thatδH|v (root(H|v)) = C, and hencew · norm(H|v) is such that(w,w · norm(H|v)) ∈ rJ and
δJ (w · norm(H|v)) = C. Thus,J is a proper adorned tree interpretation. Moreover, becauseof Claim 1, it
must be an adorned tree model ofT , and thus satisfies all of the requirements of the lemma. ❏

Lemma 4.1 follows as a consequence of Lemma A.4.


