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1 Introduction and Preliminaries

In this technical note we show that in every extension of the DL ALC that supports nominals, inverse roles,
counting constraints such as role functionality, and transitive closure of roles, the entailment problem for
unions of conjunctive queries is undecidable (provided that transitive closure is also allowed to occur in the
queries). It has been established that if only two among nominals, inverse roles and counting constraints are
allowed, then query answering is decidable even in more expressive logics such asZIQ, ZOQ, andZOI,
and for more expressive query languages such as2-way positive regular path queries[4]. The combination
of all three, however, is known to be challenging, and the algorithm in [5] is the only positive result for query
answering in such a logic. For logics that additionally support transitive closure, such as the DLALCOIF∗

that we consider here, even the decidability of standard reasoning tasks (like knowledge base satisfiability)
remains an open problem. It is known, however, that adding instead of transitive closure, one adds the full
power of least and greatest fixed-point operators, results makes standard reasoning undecidable [2].

We start by introducing the DLALCOIF∗ and the corresponding query entailment problem.

1.1 The Description LogicsALCOIF∗

We deal with the logicALCOIF∗ that extends the basic DLALC with nominals (O), inverse roles (I),
role functionality (F) and transitive closure of roles (∗). We briefly recall its syntax and semantics.

Syntax. Let NC, NR, andNI be fixed, countably infinite sets ofconcept, role, and individual names,
respectively. We assume thatNC contains⊤ and⊥, denoting respectively the universal and the empty
concept.ConceptsC androlesr obey the following EBNF grammar, wherea∈NI, A∈NC andp∈NR:

C ::= A | {a} | C ⊓ C | C ⊔ C | ∀r.C | ∃r.C
r ::= p | p− | r∗

A knowledge base(KB) is is a set ofconcept inclusion axioms (CIAs)of the formC ⊑C ′ whereC and
C ′ are concepts, andfunctionality assertionsfunc(p) andfunc(p−) wherep is a role name.1

Semantics. We rely on the usual notion ofinterpretationI = (∆I , ·I), consisting of adomain∆I 6= ∅
and avaluation function·I such thataI ∈∆I for all a∈NI; AI ⊆∆I for all A∈NC; pI ⊆∆I ×∆I for all
P ∈NR; ⊤I = ∆I , and⊥I = ∅. The function·I inductively extends to all roles and concepts in the standard
way, and the satisfaction of CIAs and functionality assertions is also standard. IfI satisfies all axioms and
assertions inK we call it amodel ofK and writeI |= K.

1.2 Query Entailment

A conjunctive role query(CRQ) is a formulaq = ∃~z.ϕ(~z), whereϕ(~z) is a conjunction of atomst(z, z′)
for z, z′ variables from~z andt a role. Note that CRQs are a special case of ordinaryconjunctive queries
(CQs), where in addition concepts may be used in atoms. Aunion of conjunctive role queries(UCRQ)q is
a disjunction of CRQs.

Given an interpretationI, a matchπ for I and q is an assignment of an elementπ(z) ∈ ∆I to each
variablez occurring inq that makes the formula true.I satisfiesq, denotedI |= q, if there is a matchπ for

1As nominal concepts{a} allow us to express ABox assertions as CIAs, we omit the distinction between the ABox and the
TBox part of KBs.
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I andq. Given a KBK and a UCRQq, query entailmentis the problem of deciding whetherI |= q for each
modelI of K, denotedK |= q.

1.3 Unbounded Tiling Problem

We show the undecidability of query entailment inALCOIF∗ by a reduction from the following undecid-
able tiling (or domino) problem [1].

Definition 1.1 [Tiling problem] A tiling systemT is a triple(T,H, V ) consisting of a finite set oftile types
T = {t1, . . . , tk}, k ≥ 0, a horizontal matchingrelation H ⊆ T × T and avertical matchingrelation
H ⊆ T × T . A solution for T is a functionf : IN × IN → T such that(f(x, y), f(x + 1, y)) ∈ H and
(f(x, y), f(x, y +1)) ∈ V for everyx, y ∈ IN. Thetiling problemis to decide whether a given tiling system
T has a solution.

2 Query Entailment is undecidable inALCOIF ∗

We show that from a given tiling systemT we can obtain aALCOIF∗ KB KT and a UCRQq such that
KT 6|= q iff there is a solution forT. It is well known that in all extensions ofALC we can write a knowledge
base whose models can be seen as tiled pseudo-grids, where every domain element is associated to one tile
type and has a matching right and up successor. Furthermore,in the presence of functionality and inverses
we can make the up and right successors unique, and enforce every node to be the right or up successor of
at most one node. As we will see below, the additional presence of nominals and roles of the formr∗ allows
us to ensure in the models ofKT the existence of a unique right-up path and a unique up-rightpath to every
noden. That is, to given a unique horizontal coordinatex and a unique vertical coordinatey. The only
reason why such an structure need not be a grid, is that a node(x, y) may have as right a successor a node
different from(x + 1, y), or as up successor a node different from(x, y + 1). However, such ‘errors’ can
easily be detected with the queryq: we defineq in such a way that it has a match in a model ofKT iff there
is some node whose right or up successor is wrong. Hence a model of KT whereq has no match represents
a properly tiled infinite grid, which is a solution forT.

The reduction uses one concept nameTi for each tile typeti ∈ T , as well as a nominal{o} for theorigin
of the planeIN × IN (i.e., the point(0, 0)), the conceptsX andY for the horizontal and vertical axes (i.e.,
the points of the form(x, 0) and(0, y)), respectively, and the rolesx andy to relate each point(x, y) with
its horizontal successor(x + 1, y) and its vertical successor(x, y + 1), respectively.

Defining the KB KT. We first defineKT, which contains four functionality assertions forx, y, and their
respective inverses:

func(x) func(x−)
func(y) func(y−)

Now we list the CIAs inKT. As we want each domain element to represent one point in the grid, we make
sure it is associated to exactly one tile type:

⊤ ⊑
⊔

ti∈T (Ti ⊓ ⊓
tj∈T,j 6=i

¬Tj)

Furthermore, every element must have onex and oney successor, whose respective tile types are compatible
with theH andV matching relations.

Ti ⊑ ∃x.(
⊔

(ti,tj)∈H Tj) ⊓ ∃y.(
⊔

(ti,tj)∈V Tj)
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Next, we define the horizontal and vertical axesX andY as the set of all domain elements reachable from
the origin by only right and up successorsx andy, respectively.

X ≡ ∃x−
∗.{o}

Y ≡ ∃y−
∗.{o}

The only node that is in both axes is the origin, the nodes in the horizontal axis do not have incoming up
arcs, and the nodes in the vertical axis do not have incoming right arcs.

X ⊓ Y ⊑ {o}
X ⊑ ∀y−.⊥
Y ⊑ ∀x−.⊥

This already ensures that both axes are infinite, acyclic chains of objects. Finally, we make sure that every
node in the grid is reachable from the horizontal axis by a sequence ofy steps, and from the vertical axis by
a sequence ofx steps.

⊤ ⊑ ∃y−
∗.X ⊓ ∃x−

∗.Y

Due to the functionality ofx andy, we can now ensure that every domain element not in the borders is
reachable from exactly one element of the horizontal borderby only x steps, and from exactly one element
of the vertical border by onlyy steps.

Hence in every modelI of KT we can assign to every noden ∈ ∆I a unique coordinatec(n) = (x, y)
as follows:

• c(oI) = (0, 0),

• If n ∈ XI and there existn0, . . . , nx ∈ ∆I , x ≥ 0, with n0 = oI andnx = n, such thatni 6= nj and
(ni, ni+1) ∈ xI for every0 ≤ i < j ≤ x, thenc(nI) = (x, 0).

• If n ∈ Y I and there existn0, . . . , ny ∈ ∆I , y ≥ 0, with n0 = oI andny = n such thatni 6= nj and
(ni, ni+1) ∈ yI for every0 ≤ i < j ≤ y, thenc(nI) = (0, y).

• If n 6∈ XI ∪ Y I , thenc(nI) = (cx, cy), wherenx ∈ XI is the single such node for which(nx, n) ∈
(y∗)I , c(nx) = (cx, 0) ny ∈ Y I is the single such node for which(ny, n) ∈ (x∗)I , andc(ny) =
(0, cy).

We say thatI has anerror if there existn, n′ ∈ ∆I with c(n) = (x, y) andc(n′) = (x′, y′) for which one
of the following holds:

(HE) (n, n′) ∈ (x)I andx′ > x + 1, or

(VE) (n, n′) ∈ (y)I andy′ > y + 1.

A model ofKT where there are no errors is isomorphic to properly tiledIN × IN grid, and thus represents a
solution ofT. Hence we have:

Lemma 2.1 If I |= KT and there are no errors inI, thenT has a solution.

As anticipated, we use the queryq to verify whether such anI exists.
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Figure 1: The queriesqH (left) andqV (right)

Defining the query q. To conclude our reduction, we define the queryq such thatI |= q iff there is an
error inI. The query has the following form:

q = qH ∨ qV

whereqH andqV are CRQs such thatqH has a match inI if there is horizontal error (HE) inI, andqV has
a match if there is vertical error (VE), which are defined as follows:

qH = ∃v1, . . . , v6 . x(v1, v6) ∧ y∗(v2, v1) ∧ x(v2, v3) ∧ x(v3, v4) ∧ x∗(v4, v5) ∧ y∗(v5, v6)

qV = ∃v′1, . . . , v
′
6 . y(v′1, v

′
6) ∧ x∗(v′2, v

′
1) ∧ y(v′2, v

′
3) ∧ y(v′3, v

′
4) ∧ y∗(v′4, v

′
5) ∧ x∗(v′5, v

′
6)

The queries are depicted in Figure 1. Each arrow correspondsto one atom. The variable names are omitted,
but the variables are ordered counterclockwise, starting from the upper left corner forv1 in qH , and from the
bottom left corner forv′1 in qV .

Now we show how the queriesqH and qV detect horizontal and vertical errors, respectively. First
considerqH , and an arbitraryI such thatI |= KT. Suppose there is a horizontal error, i.e., there exist
n, n′ ∈ ∆I such that (HE):c(n) = (x, y), c(n′) = (x′, y′), (n, n′) ∈ (x)I andx′ > x+1. Letnx,mx, n′

x ∈
XI be such thatc(nx) = (x, 0), c(mx) = (x+1, 0), andc(n′

x) = (x′, 0); i.e.,nx, mx, andn′
x are the nodes

on the horizontal axis with the right-coordinatesx, x + 1 andx′, respectively. Note that(nx, n) ∈ (y∗)I

and (n′
x, n′) ∈ (y∗)I . As x′ > x + 1, there exists somem′

x ∈ XI with c(m′
x) = (xm, 0) such that

xm > x + 1 andxm ≥ x′ (intuitively, m′
x can ben′

x or any node on theX axis betweenmx andn′
x). Since

(nx,mx) ∈ (x)I , (mx,m′
x) ∈ (x)I , and(m′

x, n′
x) ∈ (x∗)I , there is a matchπ for qH that hasπ(v1) = n,

π(v6) = n′, π(v2) = nx, π(v3) = mx, π(v4) = m′
x, andπ(v5) = n′

x.
One can similarly show that if there aren, n′ ∈ ∆I for which (VE) holds, then there is a matchπ′ for

qV in I (with π(v′1) = n andπ(v′6) = n′). Hence there is a match forq = qH ∨ qV in everyI that has an
error, and we obtain the desired reduction:

Theorem 2.2 KT 6|= q iff there is a solution forT.

Since the existence of a solution forT is undecidable, we get:

Theorem 2.3 K |= q for aALCOIF∗ KBK and a UCRQq is undecidable.

Finally, we note that each CRQ in the queryq is a simple cycle, which can be expressed with one variable
only in every query language that allows for composition of roles. In fact, if we consider conjunctive regular
path queries [3], that allow full regular expressions over roles, then the query can be expressed as follows:

q = ∃v . (y−
∗
· x · x · x∗ · y∗ · x−) ∪ (x−

∗
· y · y · y∗ · x∗ · y−) (v, v)
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This shows that conjunctive regular path queries are undecidable inALCOIF∗, even if only one atom and
one variable are allowed in the queries. It also shows the undecidability of standard reasoning tasks (such as
knowledge base satisfiability) in any extention ofALCOIF∗ that allows to enforce the irreflexivity of the
regular role expressionsy−∗

· x · x · x∗ · y∗ · x− andx−
∗
· y · y · y∗ · x∗ · y−.

References

[1] R. Berger. The undecidability of the dominoe problem.Mem. Amer. Math. Soc., 66:1–72, 1966.

[2] P. A. Bonatti and A. Peron. On the undecidability of logics with converse, nominals, recursion and
counting. 158(1):75–96, 2004.

[3] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. pages 176–185, 2000.

[4] D. Calvanese, T. Eiter, and M. Ortiz. Regular path queries in expressive description logics with nomi-
nals. pages 714–720, 2009.

[5] B. Glimm and S. Rudolph. Status qio: Conjunctive query entailment is decidable. InProceedings of the
12th International Conference on the Principles of Knowledge Representation and Reasoning (KR-10).
AAAI Press, 2010.

5


