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Abstract. Value-based argumentation frameworks, as introduced by Bench-Capon, allow
the abstract representation of persuasive argumentation. This formalism takes into account
the relative strength of arguments with respect to some ordering which represents an audi-
ence. Deciding subjective or objective acceptance (i.e., acceptance with respect to at least
one or with respect to all orderings) are intractable computational problems.
In this paper we study the computational complexity of testing the subjective or objec-
tive acceptance for problem instances that obey certain restrictions. We consider structural
restrictions in terms of the underlying graph structure of the value-based argumentation
framework and in terms of properties of the equivalence relation formed by arguments with
the same relative strength. We identify new tractable fragments where subjective and objec-
tive acceptance can be tested in polynomial time. Furthermore we show the intractability
of some fragments that are located at the boundary to tractability. Our results disprove two
conjectures of Dunne (Artificial Intelligence 171, 2007).
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1 Introduction
The study of arguments as abstract entities and their interaction in form of attacks as introduced by
Dung [8] has become one of the most active research branches within Logic, Artificial Intelligence,
and Reasoning [4]. The key concept in this study is the notion of an abstract argumentation system
or argumentation framework that can be considered as a directed graph whose nodes represent
arguments, a directed edge that runs from an argument x to an argument y represents that “x
attacks y.”

Extending Dung’s concept, Bench-Capon [2] introduced value-based argumentation frame-
works (VAFs, for short) where arguments are ranked with respect to their strength, and an argu-
ment cannot attack another argument of higher rank. The ranking is specified by the combination
of an assignment of values to arguments, and a (total) ordering of the values; the latter is called
a (specific) audience. As explained by Bench-Capon [2], the role of arguments in this setting is
to persuade rather than to prove, demonstrate or refute. An argument is said to be subjectively
accepted in a value-based argumentation framework if it is accepted for at least one specific audi-
ence; it is objectively accepted if it is accepted for all specific audiences. Here acceptance refers
to the standard semantics of preferred extensions [8].

Most computational problems that arise in the context of abstract argumentation are in-
tractable [11]. In particular, as shown by Dunne and Bench-Capon [10], the problem SUBJECTIVE

ACCEPTANCE (deciding whether an argument is subjectively accepted in a VAF) is NP-complete,
and the problem OBJECTIVE ACCEPTANCE (deciding whether an argument is objectively accepted
in a VAF) is co-NP-complete. In view of the intractability of these problems, it is a natural and
relevant research question to ask for tractable fragments, and to carve out the boundaries between
tractability and intractability.

In this paper we study the computational complexity of the problems SUBJECTIVE/OBJECTIVE

ACCEPTANCE for VAFs that satisfy certain restrictions in terms of the following notions.

• Bounds on the largest number of arguments that share the same value; we call this parameter
the value-width of the VAF under consideration.

• Bounds on the number of attacks (x, y) such that x and y share the same value; we call this
parameter the attack-width of the VAF under consideration.

• Structural restrictions on the graph structure of the VAF under consideration; the graph
structure is the graph whose vertices are arguments and where two distinct arguments are
adjacent if and only if one attacks the other.

• Bounds on the treewidth of the extended graph structure of the VAF under consideration; the
extended graph structure is obtained from the graph structure by adding edges between any
two arguments that share the same value.

The parameters value-width and attack-width were first considered by Dunne [9] (using a different
terminology). VAFs with a bipartite graph structure generalize the VAFs whose graph structure
is a tree. To consider the treewidth of the extended graph structure is motivated by the fact that
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testing for subjective or objective acceptance is already intractable for VAFs whose graph structure
is a tree [9].

Dunne [9] showed that SUBJECTIVE ACCEPTANCE remains NP-hard for instances of value-
width 3 and whose graph structure is a tree. Furthermore, he stated the following two conjectures:

Conjecture 1 ([9]). SUBJECTIVE ACCEPTANCE is polynomial-time decidable for VAFs of value-
width 2.

Conjecture 2 ([9]). SUBJECTIVE ACCEPTANCE is fixed-parameter tractable when parameterized
by the attack-width.

A decision problem is called fixed-parameter tractable if an instance of size n and parameter k
can be decided in time O(f(k)nc) where f is an arbitrary computable function and c is a constant
independent of k [7]. Note that if a problem is fixed-parameter tractable, then each “slice” of the
problem (obtained by fixing k to a constant) is decidable in polynomial time [12].

New Results
We have obtained positive and negative complexity results for SUBJECTIVE/OBJECTIVE ACCEP-
TANCE.

Theorem 1. (A) SUBJECTIVE ACCEPTANCE remains NP-hard for instances of value-width 2 and
attack-width 1.

(B) OBJECTIVE ACCEPTANCE remains co-NP-hard for instances of value-width 2 and attack-
width 1.

As a consequence of (A), Conjectures 1 and 2 do not hold unless P = NP. It is easy to see that
SUBJECTIVE/OBJECTIVE ACCEPTANCE become trivial if we further restrict the value-width to 1
or if we further restrict the attack-width to 0 [9], hence the bounds in Theorem 1 are tight.

On the positive side we show that Conjecture 1 is true if we restrict ourselves to VAFs with a
bipartite graph structure.

Theorem 2. (A) SUBJECTIVE ACCEPTANCE can be decided in polynomial time for instances with
a bipartite graph structure and of value-width 2.

(B) OBJECTIVE ACCEPTANCE can be decided in polynomial time for instances with a bipartite
graph structure and of value-width 2.

Since trees are bipartite, it follows that both problems can be decided in polynomial time for VAFs
of value-width 2 if the graph structure is a tree.

Finally, we consider VAFs with value-width ≥ 2 and an extended graph structure of bounded
treewidth.

Theorem 3. SUBJECTIVE/OBJECTIVE ACCEPTANCE can be decided in linear time for instances
whose extended graph structure has bounded treewidth. This remains true even for instances whose
value-width is greater than two.

We obtain this result by expressing the problems within the formalism of monadic second-order
(MSO) logic on finite structures, and using Courcelle’s meta-theorem [6, 12].
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2 Preliminaries

In this section we introduce the objects of our study more formally.
An abstract argumentation system or argumentation framework (AF, for short) is a pair (X,A)

where X is a finite set of elements called arguments and A ⊆ X × X is a binary relation called
the attack relation. If (x, y) ∈ A we say that x attacks y.

An AF F = (X,A) can be considered as a directed graph, and therefore it is convenient to
borrow notions and notation from graph theory. For example, if (x, y) ∈ A then we say that x is
an in-neighbor of y and that y is an out-neighbor of x. We write N−F (x) and N+

F (x) for the sets of
in- respectively out-neighbors of x in F , and we omit the subscript if F is clear from the context.

Next we define commonly used semantics of AFs as introduced by Dung [8] (for the discussion
of other semantics and variants, see e.g., Baroni and Giacomin’s survey [1]). Let F = (X,A) be
an AF and S ⊆ X .

1. S is conflict-free in F if there is no (x, y) ∈ A with x, y ∈ S.

2. S is acceptable in F if for each x ∈ S and y ∈ N−(x) we have N−(y) ∩ S 6= ∅.

3. S is admissible in F if it is conflict-free and acceptable.

4. S is a preferred extension of F if S is admissible in F and there is no admissible set S ′ of F
that properly contains S.

Let F = (X,A) be an AF and x1 ∈ X . The argument x1 is credulously accepted in F if x1 is
contained in some preferred extension of F , and x1 is skeptically accepted in F if x1 is contained
in all preferred extensions of F . In this paper we are especially interested in finding preferred
extensions in acyclic AFs. It is well known that every acyclic AF F = (X,A) has a unique
preferred extension SF , and that SF can be found in polynomial time (SF coincides with the
“grounded extension” [8]). In fact, SF can be found via a simple labeling procedure that repeatedly
applies the following two rules to the arguments inX until each of them is either labeled IN or OUT:
(1) An argument x is labeled IN if all in-neighbors of x are labeled OUT. (2) An argument x is
labeled OUT if there exists an in-neighbor of x with label IN. The unique preferred extension SF
is then the set of all arguments that are labeled IN.

A value-based argumentation framework (VAF) is a tuple F = (X,A, V, η) where (X,A) is
an argumentation framework, V is a set of values and η is a mapping X → V such that the graph
(η−1(v), { (x, y) ∈ A | x, y ∈ η−1(v) }) is acyclic for all v ∈ V . An audience ≤ for a VAF is a
partial ordering ≤ on the set of values of F . Given a VAF F = (X,A, V, η) and an audience ≤
for F , we define the AF F≤ = (X,A≤) by setting A≤ = { (x, y) ∈ A | ¬(η(x) < η(y)) }. An
audience ≤ is specific if it is a total ordering on V . For an audience ≤ we also define < in the
obvious way, i.e., x < y if and only if x ≤ y and x 6= y. Note that if ≤ is a specific audience, then
F≤ = (X,A≤) is an acyclic digraph and thus, has a unique preferred extension [4]. For a VAF
F = (X,A, V, η) and a value v ∈ V we denote by F − v the VAF obtained from F by deleting all
arguments with value v and all attacks involving these arguments.
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Let F = (X,A, V, η) be a VAF. We say that an argument x1 ∈ X is subjectively accepted
in F if there exists a specific audience ≤ such that x1 is in the unique preferred extension of F≤.
Similarly, we say that an argument x1 ∈ X is objectively accepted in F if x1 is contained in the
unique preferred extension of F≤ for every specific audience ≤.

We consider the following decision problems.

SUBJECTIVE ACCEPTANCE

Instance: A VAF F = (X,A, V, η) and an argument x1 ∈ X .

Question: Is x1 subjectively accepted in F ?

OBJECTIVE ACCEPTANCE

Instance: A VAF F = (X,A, V, η) and an argument x1 ∈ X .

Question: Is x1 objectively accepted in F ?

Considering an instance (F, x1) of SUBJECTIVE/OBJECTIVE ACCEPTANCE, we shall refer to the
argument x1 as the initial argument.

Let F = (X,A, V, η) be a VAF. We define the value-width of F as the largest number of
arguments with the same value, i.e., maxv∈V |η−1(v)|, and the attack-width as the cardinality of the
set { (x, y) ∈ A | η(x) = η(y) }. The graph structure of F is the undirected graph GF = (X,E)
where E := { {u, v} | (u, v) ∈ A }. We say that a VAF F is a tree if GF is a tree. Similarly we
say that F is bipartite if GF is a bipartite graph.

3 Certifying Paths
In this section we introduce the notion of a certifying path that is key for the proofs of Theorems 1
and 2.

Let F = (X,A, V, η) be a VAF of value-width 2. We call an odd-length sequence C =
(x1, z1, . . . , xk, zk, t), k ≥ 0, of distinct arguments a certifying path for x1 ∈ X in F if it satisfies
the following conditions:

C1 For every 1 ≤ i ≤ k it holds that η(zi) = η(xi).

C2 For every 1 ≤ i ≤ k there exists a 1 ≤ j ≤ i such that (zi, xj) ∈ A.

C3 For every 2 ≤ i ≤ k it holds that (xi, zi−1) ∈ A and N+
F (xi) ∩ {zi, x1, . . . , xi−1} = ∅.

C4 (t, zk) ∈ A and N+
F (t) ∩ {x1, . . . , xk} = ∅.

C5 If there exists a z 6= twith η(z) = η(t) then either (t, z) ∈ A orN+
F (z)∩{x1, . . . , xk, t} = ∅.

Lemma 1. Let F = (X,A, V, η) be a VAF of value-width 2 and x1 ∈ X . Then x1 is subjectively
accepted in F if and only if there exists a certifying path for x1 in F .
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Proof. Let C = (x1, z1, . . . , xk, zk, t) be a certifying path for x1 in F . Take a specific audience ≤
such that η(x1) < · · · < η(xk) < η(t) and all other values in V are smaller than η(x1). We claim
that the unique preferred extension P of F≤ includes {x1, . . . , xk, t} and excludes {z1, . . . , zk},
which means that x1 is subjectively accepted in F . It follows from C5 that t is not attacked by any
other argument in F≤ and hence t ∈ P (see also Section 2 for a description of an algorithm to find
the unique preferred extension of an acyclic AF). From C4 it follows that zk /∈ P . Furthermore,
if there exists an argument z 6= t, η(t) = η(z) then either (t, z) ∈ A≤ or there is no arc from z to
an argument in {x1, . . . , xk, t}. In the first case z /∈ P and does not influence the membershship
in P for any other arguments in X . In the second case z ∈ P but there are no arcs to any argument
in {x1, . . . , xk, t}. In both cases it follows that xk ∈ P . Using C3 it follows that zk−1 /∈ P and
since we already know that zk /∈ P it follows that xk−1 ∈ P . A repeated application of the above
arguments establishes the claim, and hence x1 ∈ P follows.

Conversely, suppose that there exists a specific audience ≤ such that x1 is contained in the
unique preferred extension P of F≤. We will now construct a certifying path C for x1 in F .
Clearly, if there is no z1 ∈ X \ {x1} with η(z1) = η(x1) and (z1, x1) ∈ A, then (x1) is a certifying
path for x1 in F . Hence, it remains to consider the case where such a z1 exists. Since x1 ∈ P it
follows that z1 /∈ P . The sequence (x1, z1) clearly satisfies properties C1–C3. We now show that
we can always extend such a sequence until we have found a certifying path for x1 in F . Hence, let
S = (x1, z1, . . . , xl, zl) be such a sequence satisfying conditions C1–C3, and in addition assume S
satisfies the following two conditions:

S1 It holds that η(x1) < · · · < η(xl).

S2 For every 1 ≤ i ≤ l we have xi ∈ P and zi /∈ P .

Clearly, the sequence (x1, z1) satisfies S1 and S2, hence we can include these conditions in our
induction hypothesis. It remains to show how to extend S to a certifying path. Let Z := {x′ ∈
P | (x′, zl) ∈ A ∧ η(x′) > η(xl) = η(zl) }. Then Z 6= ∅ because z` /∈ P by condition S2 and the
assumption that P is a preferred extension. If there is a t ∈ Z such that (x1, z1, . . . , xl, zl, t) is a
certifying path for x1 in F we are done. Hence assume there is no such t ∈ Z.

We choose xl+1 ∈ Z arbitrarily. Note that C ′ satisfies the condition C4; (xl+1, zl) ∈ A (as
xl+1 ∈ Z) and (xl+1, xi) /∈ A for 1 ≤ i ≤ l (as xl+1, xi ∈ P and P is conflict-free). Since we
assume that C ′ is not a certifying path, C ′ must violate C5.

It follows that there exists some zl+1 ∈ X with η(zl+1) = η(xl+1) such that (xl+1, zl+1) /∈ A
and (zl+1, xi) ∈ A for some 1 ≤ i ≤ l + 1. We conclude that S ′ = (x1, z1, . . . , xl, zl, xl+1, zl+1)
satisfies conditions C1–C3 and S1–S2. Hence, we are indeed able to extend S and will eventually
obtain a certifying path for x1 in F .

Lemma 2. Let F = (X,A, V, η) be a VAF of value-width 2 and x1 ∈ X . Then x1 is objectively ac-
cepted in F if and only if for every p ∈ N−F (x1) it holds that η(p) 6= η(x1) and p is not subjectively
accepted in F − η(x1).

Proof. Assume that x1 is objectively accepted in F . Suppose there is a p ∈ N−F (x) with η(p) =
η(x1). If we take a specific audience ≤ where η(x1) is the greatest element, then x1 is not in the
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unique preferred extension of F≤, a contradiction to the assumption that x1 is objectively accepted.
Hence η(p) 6= η(x1) for all p ∈ N−F (x1). Next suppose there is a p ∈ N−F (x1) that is subjectively
accepted in F −η(x1). Let≤ be a specific audience such that p is in the unique preferred extension
of (F − η(x1))≤. We extend ≤ to a total ordering of V ensuring η(x1) ≤ η(p). Clearly x1 is not in
the unique preferred extension of F≤, again a contradiction. Hence indeed for all p ∈ N−F (x1) we
have η(p) 6= η(x1) and p is not subjectively accepted in F − η(x1)

We establish the reverse direction by proving its counter positive. Assume that x1 is not objec-
tively accepted in F . We show that there exists some p ∈ N−F (x1) such that either η(p) = η(x1) or
p is subjectively accepted in F − η(x1). Let≤ be a specific audience of F such that x1 is not in the
unique preferred extension P of F≤. In view of the labeling procedure for finding P as sketched
in Section 2, it follows that there exists some p ∈ N−F (x1)∩P with η(x1) ≤ η(p). If η(x1) = η(p)
then we are done. On the other hand, if η(p) 6= η(x1), then p is in the unique preferred extension
of (F − η(x1))≤, and so p is subjectively accepted in F − η(x1).

4 Proof of Hardness Results

z1 x1

x11 z11 x
2
1 z21 x

3
1 z31

z2 x2

x12 z12 x
2
2 z22 x

3
2 z32

z3 x3

x13 z13 x
2
3 z23 x

3
3 z33

t

Figure 1: The instance F in the proof of Theorem 1 for the 3-CNF Formula (x1∨x2∨x3)∧ (¬x1∨
x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3).

Proof of Theorem 1(A). We devise a polynomial reduction from 3-SAT. Let Φ be a 3-CNF formula
with clauses C1, . . . , Cm and Cj = xj,1 ∨ xj,2 ∨ xj,3 for every 1 ≤ j ≤ m. We construct a VAF
F = (X,A, V, η) of value-width 2 and attack-width 1 such that the initial argument x1 ∈ X is
subjectively accepted in F if and only if Φ is satisfiable. See Figure 1 for an example.

The set X contains: (i) two vertices xj, zj for every clause Cj; (ii) two vertices xij, z
i
j for every

clause Cj and 1 ≤ i ≤ 3; (iii) one vertex t.
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The set A contains: (i) one arc from z1 to x1; (ii) one arc from xij to zj and one arc from zij to
xj for every 1 ≤ j ≤ m and 1 ≤ i ≤ 3; (iii) one arc from xj+1 to zij and one arc from zj+1 to xij for
every 1 ≤ j < m and 1 ≤ i ≤ 3; (iv) one arc from t to zim for every 1 ≤ i ≤ 3; (v) one arc from
xij to xi′j′ for every 1 ≤ j′ < j ≤ m and 1 ≤ i, i′ ≤ 3 such that xj,i and xj′,i′ are complementary
literals.

Let V = { vj | 1 ≤ j ≤ m } ∪ { vij | 1 ≤ j ≤ m ∧ 1 ≤ i ≤ 3 } ∪ {vt} be the set of
values, |V | = 4m + 1, and let x1 be the initial argument. The mapping η is defined such that
η(xj) = η(zj) = vj , η(xij) = η(zij) = vij for every 1 ≤ j ≤ m and 1 ≤ i ≤ 3, and η(t) = vt.
It is easy to see that F has attack-width 1 and value-width 2 and can be constructed from Φ in
polynomial time. It remains to show that Φ is satisfiable if and only if x1 is subjectively accepted
in F .

To see this note that every certifying path for x1 in F must have the form
(x1, z1, x

i1
1 , z

i1
1 , x2, z2, x

i2
2 , z

i2
2 , x3, z3, . . . , xm, zm, x

im
m , z

im
m , t) such that ij ∈ {1, 2, 3} for every

1 ≤ j ≤ m and for every pair 1 ≤ j < j′ ≤ m there is no arc from a vertex x
ij′

j′ to a vertex
x
ij
j . Hence there exists a certifying path for x1 in F if and only if there exists a set L of literals that

corresponds to a satisfying truth assignment of Φ (i.e., L contains a literal of each clause of Φ but
does not contain a complementary pair of literals).

Proof of Theorem 1(B). Let F be the VAF as constructed in the proof of part (A) of this theorem.
Let F ′ = (X ′, A′, V ′, η′) be the VAF such that X ′ := X ∪ {x0}, A′ := A ∪ {(x1, x0)}, V ′ :=
V ∪ {v0}, η′(x0) = v0 and η′(x) = η(x) for every x ∈ X . Then it is easy to see that x0 is
objectively accepted in F ′ if and only if Φ is not satisfiable.

5 Polynomial-Time Algorithm for Bipartite VAFs
This subsection is devoted to prove Theorem 2. Throughout this section, we assume that we are
given a bipartite VAF F = (X,A, V, η) together with an initial argument x1. Furthermore, letXeven

and Xodd be the subsets of X containing all arguments x such that the length of a shortest directed
path in F from x to x1 is even respectively odd.

Lemma 3. Let C = (x1, z1, . . . , xk, zk, t) be a certifying path for x1 in F . Then ({xi | 1 ≤ i ≤
k } ∪ {t}) ⊆ Xeven and { zi | 1 ≤ i ≤ k } ⊆ Xodd.

Proof. The claim follows easily via induction on k by using the properties of a certifying path and
the fact that F is bipartite.

Based on the observation of Lemma 3, we construct an auxiliary directed graph HF := (V,E)
as follows. The vertex set of HF is the set of values V of F and there is an arc from vi ∈ V to
vj ∈ V if there is an argument x ∈ Xeven with η(x) = vi and an argument z with η(z) = vj such
that (x, z) ∈ A. Note that z ∈ Xodd since F is bipartite.

Lemma 4. If C = (x1, z1, . . . , xk, zk, t) is a certifying path for x1 in F , then
(η(t), η(xk), . . . , η(x1)) is a directed path from η(t) to η(x1) in HF .
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Proof. By the definition of a certifying path, we have (t, zk) ∈ A and for every 2 ≤ i ≤ k it holds
that (xi, zi−1) ∈ A. Lemma 3 implies that t and xi for every 1 ≤ i ≤ k are contained in Xeven and
hence (η(t), η(xk)) ∈ E and (η(xi), η(xi−1)) ∈ E for every 1 < i ≤ k.

Lemma 4 tells us that we can limit ourselves in searching for a directed path in HF in order
to find a certifying path for x1 in F . We want to know exactly what kind of directed path will
correspond to a certifying path. To this end, we consider a subgraph H−viF of HF for each vi ∈ V
obtained as follows: if there is an argument zi ∈ Xodd with η(zi) = vi and there is no argument
xi ∈ η−1(vi) \ {zi} with (xi, zi) ∈ A, then remove every vertex η(yi) from HF such that yi ∈
N+
F (zi) and yi ∈ Xeven. Note that if there is a yi ∈ N+

F (zi) with η(yi) = η(zi), then we remove the
vertex vi itself from HF .

Lemma 5. Consider an odd-length sequence C = (x1, z1, . . . , xk, zk, t) of distinct arguments of a
bipartite VAF F of value width 2. ThenC is a certifying path for x1 in F if and only if the following
conditions hold:

(1) η(xi) = η(zi) for 1 ≤ i ≤ k.

(2) (η(t), η(xk), . . . , η(x1)) is a directed path from η(t) to η(x1) in H−η(t)F .

(3) None of the sub-sequences η(xi), . . . , η(x1) is a directed path from η(xi) to η(x1) in H−η(xi)F

for 1 ≤ i ≤ k.

Proof. Assume C = (x1, z1, . . . , xk, zk, t) is a certifying path for x1 in F . Property (1) follows
from condition C1 of a certifying path, property (2) follows from condition C5 and Lemma 4.
Property (3) follows from conditions C2 and C3.

To see the reverse assume that C satisfies properties (1)–(3). Condition C1 follows from prop-
erty (1). Conditions C3, C4 and C5 follow from property (2) and the assumption that F is bipartite.
Condition C2 follows from property (3). Hence C is a certifying path for x1 in F .

Lemma 5 suggests a simple strategy to find a certifying path for x1 in F , if one exists. If for
some vt ∈ V there exists a directed path P from vt to η(x1) in H−vtF and vt is the closest value to
η(x1) with this property, then the sequence of arguments in X whose values form P is a certifying
path for x1 in F . On the other hand, if there is no such value, then there is no certifying path for
x1 in F .

We call this algorithm DETECT CERTIFYING PATH, summarized below.

1. For each v ∈ V , we check whether there is a directed path from v to v1 = η(x1) in H−vF .
Find a shortest path, if one exists.

2. If there exists a vertex v which has a shortest directed path v, vk, . . . , v1 in H−vF , then among
such vertices choose one with minimum k. Take the total ordering < as v1 < · · · < vk < v
and v′ < v1 for every v′ ∈ V \ {v, v1, . . . , vk}.

3. If there is no such vertex, return NO.
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Proposition 1. The algorithm DETECT CERTIFYING PATH correctly returns a certifying path for
x1 if one exists and returns NO otherwise in time O(|V | · (|V |+ |E|)).

Proof. The correctness of DETECT CERTIFYING PATH follows from Lemma 5. For each v ∈
V , building H−vF and finding a shortest directed path from v to v1 = η(x1), if one exists, takes
O(|V |+ |E|) time. As we iterate over all vertices of V , the claimed running time follows.

Proof of Theorem 2. Statement (A) of the theorem follows from Lemma 1 and Proposition 1.
Statement (B) follows from Statement (A) and Lemma 2.

6 Linear-Time Algorithm for VAFs of Bounded Treewidth
As mentioned above, it is known that SUBJECTIVE/OBJECTIVE ACCEPTANCE are intractable even
when the given VAF is a tree. This is perhaps not surprising since two arguments of a tree-like
VAF can be considered as linked with each other because they have the same value. In fact,
such links may form cycles in an otherwise tree-like VAF. Therefore we propose to consider the
extended graph structure of a VAF that takes such links into account. We show that SUBJEC-
TIVE/OBJECTIVE ACCEPTANCE are easy for VAFs whose extended graph structure is a tree, and
more generally, the problem can be solved in linear-time for VAFs with an extended graph struc-
ture of bounded treewidth (treewidth is a popular graph parameter that indicates in a certain sense
how similar a graph is to a tree; we give a definition of treewidth below).

Let F = (X,A, V, η) be a VAF. We define the extended graph structure of F as the graph
G = (X,E) where E contains an edge between two distinct arguments x, y ∈ X if and only if
(x, y) ∈ A or (y, x) ∈ A or η(x) = η(y). We define the treewidth of a VAF as the treewidth of its
extended graph structure.

The treewidth of a graph is defined using the following notion of a tree decomposition [5]: a
tree decomposition of G = (V,E) is a pair (T, χ) where T is a tree and χ is a labeling function
with χ(t) ⊆ V for every tree node t such that the following conditions hold: (i) Every vertex of G
occurs in χ(t) for some tree node t. (ii) For every edge {u, v} of G there is a tree node t such that
u, v ∈ χ(t). (iii) For every vertex v of G, the tree nodes t with v ∈ χ(t) induce a connected subtree
of T . The width of a tree decomposition (T, χ) is the size of a largest set χ(t) minus 1 among all
nodes t of T . A tree decomposition of smallest width is optimal. The treewidth of a graph G is the
width of an optimal tree decomposition of G.

We are going to show Theorem 3 which states that the problems SUBJECTIVE/OBJECTIVE

ACCEPTANCE can be decided in linear time for VAFs of bounded treewidth. The proof of this
theorem requires some preparation. Let S denote a finite relational structure and ϕ a sentence in
monadic second-order logic (MSO logic) on S. That is, ϕ may contain quantification over atoms
(elements of the universe) of S and over sets of atoms of S. Furthermore, we associate with the
structure S its Gaifman graph G(S), whose vertices are the atoms of S, and where two distinct
vertices are joined by an edge if and only if they occur together in some tuple of a relation of S.
The treewidth of S is the treewidth of its Gaifman graph G(S).

We shall use Courcelle’s celebrated result [6] that for a fixed MSO sentence ϕ and a fixed
integer w, one can check in linear time whether ϕ holds for a graph (or more generally, for a
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relational structure) of treewidth at most w. We use Courcelle’s result as laid out in Flum and
Grohe’s book [12].

First we explain how we represent an instance (F, x1) of SUBJECTIVE/OBJECTIVE ACCEP-
TANCE as a relational structure SF . Let F = (X,A, V, η) be a VAF, x1 ∈ X , and < an arbitrary
but fixed linear ordering of V . For every pair of values (u, v) such that u < v and A contains an
arc (x, x′) with η(x) = u and η(x′) = v or η(x) = v and η(x′) = u, we take a new atom w(u,v); let
R< be the set of all such atoms. The universe of SF is the set X ∪ V ∪ R<. Furthermore, SF has
one unary relation U∗a and four binary relations HR< , TR< , Ba and Bη that are defined as follows:

1. U∗a(x) if and only if x = x1 (used to “mark” the initial argument).

2. TR<(t, w(u,v)) if and only if t = u (used to represent the tail relation for R<)

3. HR<(h,w(u,v)) if and only if h = v (used to represent the head relation for R<)

4. Ba(x, y) if and only if (x, y) ∈ A (used to represent the attack relation).

5. Bη(x, v) if and only if η(x) = v (used to represent the mapping η).

We shall define two MSO sentences ϕs and ϕo such that ϕs is true for SF if and only if x1 is
subjectively accepted in F , and ϕo is true for SF if and only if x1 is objectively accepted in F .

Before doing so, we establish that the treewidth of SF is bounded in terms of the treewidth of F .
Note that the Gaifman graph for SF is the graph G(SF ) = (VSF

, ESF
) with VSF

= X ∪ V ∪ R<

and ESF
= { {u, v} | (u, v) ∈ TR< ∪HR< ∪Ba ∪Bη }.

Lemma 6. The treewidth of SF is at most twice the treewidth of F plus 1.

Proof. Let G′(SF ) be the graph obtained from G(SF ) after replacing every path of the form
(t, w(t,h), h) by an edge {t, h}; i.e., G′(SF ) = (X ∪ V, (ESF

∩ { {u, v} | u, v ∈ (X ∪ V ) }) ∪
{ {t, h} | (t, h) ∈ R< }. Conversely one can obtain G(SF ) from G′(SF ) by sub-dividing all edges
of the form {t, h} with a vertex w(t,h). However, subdividing edges does not change the treewidth
of a graph [5], hence it suffices to show that the treewidth of G′(SF ) is at most twice the treewidth
of F plus 1. Let T = (T, χ) be a tree decomposition of the extended graph structure of F . We
observe that T ′ = (T, χ′) where χ′(t) = χ(t) ∪ { η(v) | v ∈ χ(t) } is a tree decomposition for
G′(SF ) where |χ′(t)| ≤ 2 · |χ(t)| for all nodes t of T ; hence the width of T ′ is at most twice the
width of T plus 1.

For our subsequent considerations it is convenient to introduce the following concepts and
notation. Let D< = (V,E<) be the directed graph where V is the set of values of F and E< :=
{ (u, v) | w(u,v) ∈ R< }. Furthermore, for a subset Q ⊆ E< let D<

Q = (V,E<
Q) be the directed

graph obtained from D< by reversing all arcs in Q, i.e., E<
Q := { (u, v) | (u, v) ∈ E< \ Q) } ∪

{ (v, u) | (u, v) ∈ E< ∩ Q }. We also define the AF F<
Q := (X,A<Q) as the AF obtained from F

such that A<Q := { (u, v) ∈ A | (η(u), η(v)) /∈ E<
Q) }.

Every audience ≤ can be represented by some subset Q ⊆ E< for which the directed graph
D<
Q is acyclic, and conversely every set Q ⊆ E< such that D<

Q is acyclic represents a specific
audience≤. This is made precise in the following lemma whose easy proof is omitted due to space
limitations.
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Lemma 7. An argument x1 is subjectively accepted in F if and only if there exists a set Q ⊆ E<

such that D<
Q is acyclic and x1 is in the unique preferred extension of F<

Q . An argument x1 is
objectively accepted in F if and only if for every set Q ⊆ E< such that D<

Q is acyclic it holds that
x1 is in the unique preferred extension of F<

Q .

We are now in the position to state the main lemma of this section.

Lemma 8. There exists an MSO sentence ϕs such that ϕs is true for SF if and only if x1 is subjec-
tively accepted in F . Similarly, there exists an MSO sentence ϕo such that ϕo is true for SF if and
only if x1 is objectively accepted in F .

Proof. In order to define ϕs and ϕo we need the following auxiliary formulas:
The formula TH(t, h, a) holds if and only if t is the tail and h is the head of a ∈ R<:

TH(t, h, a) := TR<(t, a) ∧ HR<(h, a)

The formula E(t, h,Q) holds if and only if the arc (t, h) is contained in E<
Q :

E(t, h,Q) := ∃a [(¬Qa ∧ TH(t, h, a)) ∨ (Qa ∧ TH(h, t, a))]

The formula ACYC(Q) checks whether D<
Q is acyclic1:

ACYC(Q) := ¬∃C (∃xCx ∧ ∀t∃h[Ct→ (Ch ∧ E(t, h,Q))])

The formula B′a(t, h,Q) holds if and only if t attacks h in F<
Q :

B′a(t, h,Q) := Ba(t, h) ∧ ∃vh∃vt [Bη(t, vt) ∧ Bη(h, vh) ∧ ¬E(vh, vt, Q)]

The formula ADM(S,Q) checks whether a set S ⊆ X is admissible in F<
Q :

ADM(S,Q) := ∀x∀y [(B′a(x, y,Q) ∧ Sy)→ (¬Sx ∧ ∃z(Sz ∧ B′a(z, x,Q)))]

Now ϕs can be defined as follows:
ϕs := ∃Q [ACYC(Q) ∧ (∃S(∀x(U∗a(x)→ Sx) ∧ ADM(S,Q)))]

It follows from Lemma 7 that ϕs is true for SF if and only if x1 is subjectively accepted in F . A
trivial modification of ϕs gives us the desired sentence ϕo as follows:

ϕo := ∀Q [ACYC(Q)→ (∃S(∀x(U∗a(x)→ Sx) ∧ ADM(S,Q)))]

It follows from Lemma 7 that ϕo is true for SF if and only if x1 is objectively accepted in F and
the result follows.

Proof of Theorem 3. In view of Lemmas 6 and 8 the result now follows by Courcelle’s Theorem.

7 Conclusion
We have studied the computational complexity of persuasive argumentation for value-based ar-
gumentation frameworks under structural restrictions. We have established the intractability of
deciding subjective or objective acceptance for VAFs with value-width 2 and attack-width 1, dis-
proving conjectures stated by Dunne. It might be interesting to note that our reductions show that

1We use the well-known fact that a directed graph contains a directed cycle if and only if there is a nonempty set
C of vertices each having an out-neighbor in C.
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intractability even holds if the attack relation of the VAF under consideration forms a directed
acyclic graph. On the positive side we have shown that VAFs with value-width 2 whose graph
structure is bipartite are solvable in polynomial time. These results establish a sharp boundary
between tractability and intractability of persuasive argumentation for VAFs with value-width 2.
Furthermore we have introduced the notion of the extended graph structure of a VAF and have
shown that subjective and objective acceptance can be decided in linear-time if the treewidth of
the extended graph structure is bounded (that is, the problems are fixed-parameter tractable when
parameterized by the treewidth of the extended graph structure). This result suggests that the ex-
tended graph structure is indeed an appropriate graphical model for studying the computational
complexity of persuasive argumentation. It might be interesting for future work to extend this
study to other graph-theoretic properties or parameters of the extended graph structure.
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