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Abstract. This report describes a new worst-case optimal tableau algorithm for reasoning with Forest
Logic Programs (FoLPs), a decidable fragment of Open Answer Set Programming. FoLPs are a
useful device for tight integration of the Description Logic and the Logic Programming worlds:
reasoning with the DL SHOQ can be simulated within the fragment. The algorithm improves on
previous results concerning reasoning with the fragment by decreasing the worst-case running time
with one exponential level. The decrease in complexity is mainly due to the usage of a new caching
rule, whose introduction is highly non-trivial: this has been made possible by employing a different
strategy for reducing an infinite model to a model of finite bounded size. The algorithm also reuses a
knowledge compilation technique introduced in previous work.
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1 Introduction

Forest Logic Programs (FoLPs) is a decidable fragment of Open Answer Set Programming (OASP) which
serves as a tight integration device for SHOQ ontologies and FoLPs themselves. The integrating formalism
is called f-hybrid knowledge bases. One salient feature of OASP and thus also of FoLPs, is that while its
syntax is typical ASP syntax (where unsafe rules are allowed), its semantics is a hybrid between the classical
Answer Set Programming semantics and the classical FOL semantics. From the ASP world it retains a stable
model based semantics, while from the FOL world it retains the possibility of having an infinite domain of
interpretation: the universe is a non-empty superset of the set of constants in the program.

Example 1.1. Consider the following program:

fail(X ) ← not pass(X )
pass(john) ←

Although the predicate fail is not satisfiable under the ordinary answer set semantics – the only answer set
being {pass(john)} – it is satisfiable under the open answer set semantics. If one considers, for example,
the universe {john, x}, with x some individual which does not belong to the Herbrand universe, there is an
open answer set {pass(john), fail(x )} which satisfies fail.

The fact that the universe of interpretation is not restricted to the Herbrand universe makes it possible to
simulate within the formalism, General Inclusion Axioms with an exists restriction on their right-hand side:
this is a feature which was identified as desirable in the Ontorule project1 during the analysis of requirements
from use cases. For a discussion about this, see the Analysis of the Steel Industry Use Case in the Appendix
B of Ontorule deliverable D3.3 [Feier et al., 2010].

FoLPs allow for the presence of only unary and binary predicates in rules which have a tree-like structure.
This makes the fragment decidable by ensuring that it has the forest model property: if a unary predicate
is satisfiable, than it is satisfied by a forest-shaped model. A forest shaped model is a model in which the
universe of interpretation can be seen as a forest, two nodes in the forest being connected iff there is a binary
atom in the model having as arguments the respective nodes.

A sound and complete algorithm for satisfiability checking of unary predicates w.r.t. FoLPs has been
described in [Feier and Heymans, 2009] and [Feier and Heymans, 2011]. The algorithm exploits the forest
model property of the fragment: it is essentially a tableau-based procedure which builds such a forest model
in a top-down fashion. It starts with a skeleton for a forest model which contains only one constraint: p,
the unary predicate checked to be satisfiable, has to appear in the label of a node in the forest. Then, in
order to satisfy existing constraints, it progressively introduces new ones by inserting (negated) predicates in
the contents of nodes/arcs of the forest based on the rules of the program. The forest model is constructed
by evolving a data structure called “completion structure” which contains a labeled forest, the model in
construction, together with additional information needed for the construction. When certain conditions are
met, like either there are no unsatisfied constraints, or the ones left can be satisfied similarly to previously
met constraints, the algorithm terminates successfully. We refer to this algorithm as A1.

[Feier and Heymans, 2010] presents an optimization of the first algorithm by means of a knowledge
compilation technique: the new algorithm computes in an initial step all possible building blocks of the model
using A1, and then matches and appends these blocks using similar conditions for termination as the original
algorithm. Such building blocks are restricted to completion structures, in which there is only one node fully

1http://ontorule-project.eu/
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expanded (i.e. all constraints associated to that node are satisfied), and are called unit completion structures.
We refer to this algorithm as A2.

BothA1 andA2 run in the worst case in double exponential time. The current report presents an algorithm
with improved running time by dropping the worst-case complexity one exponential level: it runs in the worst
case in exponential time in the size of the input program. This also settles a gap concerning the complexity of
FoLPs: it was known that FoLPs are EXPTIME-hard, but not known whether they are EXPTIME-complete.
The new algorithm shows that they are indeed EXPTIME-complete. We refer to the new algorithm as A3.
A3 takes over the idea of using unit complete structures from A2. Constraints regarding contents of

nodes are satisfied by finding appropriate unit completion structures and appending them. However, unlike
A2, it employs different termination techniques. In particular it employs a new technique for identifying
redundancy across a path and a caching technique.

The section is organized as follows: Section 2 introduces some technical preliminaries. Section 3
introduces formally Forest Logic Programs and the notions of forest model and forest satisfiability. Section 4
describes a simplified version of A2. Finally, Section 5 describes the new algorithm, while Section 6 draws
some conclusions and discusses future work.

2 Preliminaries

We recall the open answer set semantics [Heymans et al., 2008]. Constants a, b, c, . . ., variables X,Y, . . .,
terms s, t, . . ., and atoms p(t1, . . . , tn) are as usual. A literal is an atom L or a negated atom not L. We allow
for inequality literals of the form s 6= t, where s and t are terms. A literal that is not an inequality literal will
be called a regular literal. For a regular literal L, pred(L), and args(L) denote the predicate, and the (tuple
of) arguments of L2, respectively. By argsi(L), for a regular literal L, we understand the i-th argument of L.

For a set S of literals or (possibly negated) predicates, S+ = {a | a ∈ S} and S− = {a | not a ∈ S}.
For a set S of atoms, not S = {not a | a ∈ S}. For a set of (possibly negated) unary predicates S: S(X) =
{a(X) | a ∈ S}, and for a set of (possibly negated) binary predicates S: S(X,Y ) = {a(X,Y ) | a ∈ S}.
For a predicate p, ±p denotes p or not p, whereby multiple occurrences of ±p in the same context will refer
to the same symbol (either p or not p).

A program is a countable set of rules α← β, where α is a finite set of regular literals and β is a finite
set of literals. The set α is the head and represents a disjunction, while β is the body and represents a
conjunction. Rules can also be named, as in r : α ← β, where r is the name of the rule. If α = ∅, the
rule is called a constraint. A special type of rules with empty bodies, are so-called free rules which are
rules of the form: q(t1, . . . , tn) ∨ not q(t1, . . . , tn)←, for terms t1, . . . , tn; this kind of rules enables a
choice for the inclusion of atoms in the open answer sets. We call a predicate q free if there is a free rule:
q(X1, . . . , Xn) ∨ not q(X1, . . . , Xn)←, with variables X1, . . . , Xn. Atoms, literals, rules, and programs
that do not contain variables are ground. For a rule or a program R, let cts(R) be the constants in R, vars(R)
its variables, and preds(R) its predicates with upreds(R) the unary and bpreds(R) the binary predicates.
For every non-free predicate q and a program P , Pq is the set of rules of P that have q as a head predicate.
A universe U for P is a non-empty countable superset of the constants in P : cts(P ) ⊆ U . We call PU the
ground program obtained from P by substituting every variable in P by every element in U . Let BP (LP ) be
the set of regular atoms (literals) that can be formed from a ground program P .

For a term t, the exact replacement of ground term x with ground term y in t, denoted tx|y, is defined as

2If the literal L has just one argument, args(L) will return the argument itself.
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follows: tx|y=

{
y, if t = x;
t, otherwise

. The notation extends to tuples of terms, literals, rules, and programs. For a

tuple of terms T = (t1, . . . , tn), Tx|y = ((t1)x|y, . . . , (tn)x|y). For a regular literal L = (not )p(t1, . . . , tn),
Lx|y = (not ) p((t1)x|y, . . . , (tn)x|y). For a set of literals S, Sx|y = {Lx|y | L ∈ S}. For a named rule
r : α← β, its image under the exact replacement of x with y is rx |y : αx |y ← βx |y (where rx|y is the new
name of the rule, and does not involve any term replacement). For a ground program P , its image under the
exact replacement of x with y is Px|y = {rx|y | r ∈ P}.

An interpretation I of a ground P is a subset of BP . We write I |= p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I and
I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Also, for ground terms s, t, we write I |= s 6= t if s 6= t. For a
set of ground literals L, I |= L if I |= l for every l ∈ L. A ground rule r : α← β is satisfied w.r.t. I , denoted
I |= r, if I |= l for some l ∈ α whenever I |= β. A ground constraint ← β is satisfied w.r.t. I if I 6|= β.

For a positive ground program P , i.e., a program without not , an interpretation I of P is a model of P if
I satisfies every rule in P ; it is an answer set of P if it is a subset minimal model of P . For ground programs
P containing not , the GL-reduct [Gelfond and Lifschitz, 1988] w.r.t. I is defined as P I , where P I contains
α+ ← β+ for α← β in P , I |= not β− and I |= α−. I is an answer set of a ground P if I is an answer set
of P I .

A program is assumed to be a finite set of rules; infinite programs only appear as byproducts of grounding
with an infinite universe. An open interpretation of a program P is a pair (U,M) where U is a universe for
P and M is an interpretation of PU . An open answer set of P is an open interpretation (U,M) of P with M
an answer set of PU . An n-ary predicate p in P is satisfiable if there is an open answer set (U,M) of P s. t.
p(x1, . . . , xn) ∈M , for some x1, . . . , xn ∈ U .

We introduce notation for trees which extend those in [Vardi, 1998]. Let · be a concatenation operator
between sequences of constants or natural numbers. A tree T with root c (also denoted as Tc), where c is
a specially designated constant, is a set of nodes, where each node is a sequence of the form c · s, where
s is a (possibly empty) sequence of positive integers formed with the help of the concatenation operator
(we denote the set of all such sequences with 〈N∗〉, where N∗ is the set of positive integers); for x · d ∈ T ,
d ∈ N∗, we must have that x ∈ T . For example a tree with root c and 2 successors will be denoted as
{c, c · 1, c · 2} or {c, c1, c2} 3. By convention x · 0 = x and (x · c) · −1 = x (c−̇1 is undefined). The set
AT = {(x, y) | x, y ∈ T, ∃n ∈ N∗ : y = x · n} is the set of arcs of a tree T . For x, y ∈ T , we say that
x <T y iff x is a prefix of y and x 6= y. The predecessor of a node x in a tree T is denoted with prevT (x) and
it is the node y such that there exists ı ∈ N∗ such that x = y · i. The deepest common ancestor of two nodes
x and y in a tree T , denoted commonT (x, y) is the node z such that z <T x, z <T y, and there is no node
z′ ∈ T such that z′ >T z, z′ <T x, and z′ <T y. A node x ∈ T is said to be to the right of a node y ∈ T and
denoted with rightT (x, y) iff there exists a node z ∈ T , i, j ∈ N∗, and s1, s2 ∈ 〈N∗〉, such that x = z · i · s1,
y = z · j · s2, and i > j. The subtree of Tc at y, denoted Tc[y], is the set {x | x ∈ Tc, x = y · s, s ∈ 〈N∗〉}.
A path in a tree T from x to y is denoted with pathT (x, y) = {z | x 6 z 6 y}.

A forest F is a set of trees {Tc | c ∈ C}, where C is a set of distinguished constants. We denote with
NF = ∪T∈FT and AF = ∪T∈FAT the set of nodes and the set of arcs of a forest F , respectively. Let <F be
a strict partial order relationship on the set of nodes NF of a forest F where x <F y iff x <T y for some tree
T in F . An extended forest EF is a tuple (F,ES ) where F = {Tc | c ∈ C} is a forest and ES ⊆ NF × C.
We denote by NEF = NF the nodes of EF and by AEF = AF ∪ ES its arcs. So unlike a normal forest, an
extended forest can have arcs from any of its nodes to any root of some tree in the forest.

In the following, all terms in ground programs which we operate with are nodes in some extended forest,

3By abuse of notation, we consider that there are at most 9 successors for every node, so we can abbreviate a · b with ab
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and as such they are sequences formed with the help of the · operator. Taking into account the structure of
such terms, we introduce a finer grain (ground) term replacement operator which replaces the prefix of a
term with another term. This is simply called replacement of x with y in t, it is denoted with tx||y, and it is

defined as tx||y =

{
y · z, if t = x · z;
t, otherwise

. Similarly as for the exact replacement, the notion of replacement is

extended to (sets of) literals, tuples, rules, and programs.
When an extended forest EF = (F,ES ), is such that F is a set of trees {Tc | c ∈ C}, for C a set of

distinguished constants, and there exists d ∈ C such that Tc = {c}, for every c ∈ C\{d}, and ES ⊆ Td ×C,
we call the forest an extended tree with root d w.r.t. C: all trees but one are single-node trees and the nodes of
the distinguished tree Td can be interlinked with constants from C; no other links from elements of C are
allowed. The depth of an extended tree is the depth of its distinguished tree.

Finally, a directed graph G is defined as usual by its sets of nodes V and arcs A. We introduce some
graph-related notations: pathsG denotes the set of paths in G, where each path is a tuple of nodes from
V : pathsG = {(x1, . . . , xn) | ((xi, xi+1) ∈ A)16i<n}, pathsG(x, y) denotes the set of paths in G from x
to y: pathsG(x, y) = {(x1 = x, . . . , xn = y) | ((xi, xi+1) ∈ A)16i<n}, while connG denotes the set of
pairs of connected nodes from V : connG = {(x, y) | ∃Pt = (x1, . . . , xn) ∈ pathsG : x1 = x ∧ xn = y}.
As an extended forest is a particular type of graph, these notations apply also to extended forests. Cycles
and elementary cycles in directed graphs are defined as usually. In order to operate with paths in directed
graphs we also introduce some tuple operators: the concatenation of two tuples T1 = (x1, . . . , xn), and
T2 = (y1, . . . , ym), denoted T1ˆT2 is the tuple (x1, . . . , xn, y1, . . . , ym). A tuple T1 is part of another tuple
T2: T1 ⊆ T2, if there exists two (possibly empty) tuples T3 and T4 such that T2 = T3ˆT1ˆT4.

3 FoLPs

Forest Logic Programs are a subset of Open Answer Set Programming (OASP) which allows one to simulate
the DL SHOQ, underpinning the tightly-coupled combination of rules and ontologies f-hybrid knowledge
bases.

Definition 3.1. A forest logic program (FoLP) is a program with only unary and binary predicates, and such
that a rule is either:

• a free rule:

a(s) ∨ not a(s)← or f (s, t) ∨ not f (s, t)← (1)

where s and t are terms;

• a unary rule:

a(s)← β(s), (γm(s, tm), δm(tm))16m6k , ψ (2)

with ψ ⊆
⋃

16i 6=j6k{ti 6= tj} and k ∈ N, or a binary rule:

f (s, t)← β(s), γ(s, t), δ(t) (3)

where a ∈ upreds(P ) and f ∈ bpreds(P ), s, t, and (tm)16m6k are terms, β, δ, (δm)16m6k ⊆
upreds(P )∪not (upreds(P )) (sets of (possibly negated) unary predicates), γ,(γm)16m6k ⊆ bpreds(P )∪
not (bpreds(P )) (sets of (possibly negated) binary predicates), and
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1. inequality does not appear in any γ: {6=} ∩ γm = ∅, for 1 6 m 6 k, and {6=} ∩ γ = ∅;
2. there is a positive atom that connects the head term s with any successor term which is a variable:
γ+

m 6= ∅, if tm is a variable, for 1 6 m 6 k, and γ+ 6= ∅, if t is a variable;

• a constraint: ← a(s) or ← f (s, t), where s and t are terms.

In every rule, all terms which are variables are distinct4.

Example 3.2. The following program5 P is a FoLP which says that an individual is a special member of
an organization (smember) if it has the support of another special member: rule r1, or if it has the support
of two regular members of the organization (rmember): rule r2. The binary predicate supportedBy which
describes the ‘has support’ relationship is free: rule r3. No individual can be at the same time both a special
member and a regular member: constraint r4. Somebody is a regular member if it is involved in some project:
rule r5. The binary predicate involvedIn which describes the ‘involved in a project’ relationship is free: rule
r6. There is a project j: fact r7.

r1 : smember(X ) ← supportedBy(X ,Y ), smember(Y )
r2 : smember(X ) ← supportedBy(X ,Y ), rmember(Y ),

supportedBy(X,Z), rmember(Z),
Y 6= Z

r3 : supportedBy(X ,Y ) ∨ not supportedBy(X ,Y ) ←
r4 : ← smember(X ), rmember(X )
r5 : rmember(X ) ← involvedIn(X ,Y ), project(Y )
r6 : involvedIn(X ,Y ) ∨ not involvedIn(X ,Y ) ←
r7 : project(j ) ←

As already mentioned, FoLPs have the forest model property.

Definition 3.3. Let P be a program. A predicate p ∈ upreds(P ) is forest satisfiable w.r.t. P if there is an
open answer set (U,M) of P and there is an extended forest EF ≡ ({Tε} ∪ {Ta | a ∈ cts(P )},ES ), where
ε is a constant, possibly one of the constants appearing in P 6, and a labeling function L : {Tε} ∪ {Ta | a ∈
cts(P )} ∪AEF → 2preds(P ) such that

• p ∈ L(ε),

• U = NEF , and

• M = {L(x)(x) | x ∈ NEF} ∪ {L(x, y)(x, y) | (x, y) ∈ AEF}, and

• for every (z, z · i) ∈ AEF : L(z, z · i)+ 6= ∅.

We call such a (U,M) a forest model and a program P has the forest model property if the following
property holds:

If p ∈ upreds(P ) is satisfiable w.r.t. P then p is forest satisfiable w.r.t. P .

4This restriction precludes the presence in rules of literals of the form f(X, X) or not f(X, X) which would break the forest
model property.

5The example is a variation of an example described in [Feier and Heymans, 2010].
6Note that in this case Tε ∈ {Ta | a ∈ cts(P )}. Thus, the extended forest contains for every constant from P a tree which has

as root that specific constant and possibly, but not necessarily, an extra tree with unidentified root node.
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x{smember}

y{smember}

z{rmember} t{rmember}

j{project}

{supportedBy}

{supportedBy}{supportedBy}

{involvedIn}

{involvedIn}

Figure 1: A forest model for P .

Proposition 3.4 ([Heymans et al., 2007]). FoLPs have the forest model property.

Example 3.5. Consider the FoLP P introduced in Example 3.2.
The unary predicate smember is forest satisfiable w.r.t. P : there is a forest model ({j, x, y, z, t},

{smember(x), supportedBy(x, y), smember(y), rmember(z), rmember(t), supportedBy(y, z), supportedBy(y, t),
involvedIn(z, j), involvedIn(t, j), project(j)}) in which smember appears in the label of the (anony-
mous) root of one of the trees in the forest (see Figure 1).

4 Previous Algorithm for Reasoning with FoLPs using Unit Completion
Structures

As mentioned in the introduction, all algorithms developed so far for reasoning with FoLPs have the same
underlying principle: they try to construct a forest model in a tableau-like fashion. All algorithms share the
same data structure, called completion structure, which is a representation of a forest model in construction.
In section 4.1 we describe this data structure and recall how it can be evolved using so-called expansion rules
introduced in [Feier and Heymans, 2009] and described in more detail in [Feier and Heymans, 2011]. These
expansion rules are used by A2, the algorithm which precomputes the set of unit completion structures [Feier
and Heymans, 2010]. The new version of the algorithm, A3 reuses the knowledge compilation technique
introduced by A2. As such, section 4.2 recalls A2.

4.1 Completion Structures

The main data structure used by all three algorithms is a so-called completion structure. A completion
structure describes a forest model in construction. It contains an extended forest EF , whose set of nodes
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constitutes the universe of the model in construction, and a labeling function ct (content), which assigns
to every node, resp. arc of EF , a set of possibly negated unary, resp. binary predicates. The presence of a
predicate symbol p/not p in the content of some node or arc x indicates the presence/absence of the atom
p(x) in the open answer set. Note that unlike the labeling function L in Definition 3.3, that describes which
atoms are in the forest model, the labeling function ct keeps track also of which atoms are not in the forest
model. This is needed as the completion structure is updated by justifying both the presence or the absence of
a certain atom in the model.

There is a difference in how a completion structure is updated by A1 as opposed to how it is updated
by A2 and A3. The original algorithm A1 updates a completion structure by means of so-called expansion
rules which justify or assert the presence/absence in the model of one atom at a time. The ‘local status’
function lst assigns the value unexp to pairs of nodes/arcs and possibly negated unary/binary predicates
which have not yet been ‘expanded’, i.e. justified, and the value exp to such pairs which have already been
considered. However, A2 and A3, update the structure by considering one node at a time and trying to
satisfy all constraints imposed by that node in a single step. So, in this case, the local status function has
been replaced by a ‘status’ function st which assigns one the values exp or unexp to nodes of the forest,
depending whether their content has been justified or not. Based on this difference concerning the status
function, we distinguish between A1- and A2- completion structures.

Furthermore, all algorithms have to ensure that the constructed forest model is a well-supported one
[Fages, 1991], or in other words, no atom in the model is circularly justified (does not depend on itself) or
infinitely justified (does not depend on an infinite chain of other atoms). As such, a graphG which keeps track
of dependencies between atoms in the model is maintained both by a A1- and a A2- completion structure.
The formal definition is given below.

Definition 4.1. An A1-/A2- completion structure for a FoLP P is a tuple 〈EF , ct, lst/st, G〉 where:

• EF = 〈F,ES 〉 is an extended forest,

• ct : NEF ∪AEF → 2preds(P )∪not (preds(P )) is the ‘content’ function,

• lst : NEF ×2upreds(P )∪not upreds(P )∪AEF ×2bpreds(P )∪not bpreds(P ) → {exp, unexp}/st : NEF →
{exp, unexp} is the ‘local status’/‘status’ function,

• G = 〈V,A〉 is a directed graph which has as vertices atoms in the answer set in construction:
V ⊆ BPNEF

.

A1-/A2- completion structures are constructed by starting with a skeleton for a model of a FoLP P which
satisfies a unary predicate p, which is called A1-/A2- initial completion structure for checking satisfiability of
a unary predicate p w.r.t. P and then progressively updating such a structure.

An A1-/A2- initial completion structure for checking satisfiability of a unary predicate p w.r.t. a FoLP P
imposes a single constraint on the model in construction: that some atom p(ε) has to be part of the model,
where ε is an anonymous individual or one of the constants in the program. As every model of P has as part
of its universe the set cts(P ), the extended forest EF is initialized with a set of single-node trees, one tree
for each constant appearing in P (having the respective constant as a root) and possibly a new single-node
tree with an anonymous root (in case ε, the node where p is asserted to be satisfied, is anonymous)7. The
content of ε is initialized with {p}, while the contents of the other nodes (roots) are initialized with ∅. G is
initialized to the graph with a single vertex p(ε). Formally:

7Note that this complies with the generic shape of a forest model described in section 3.
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Definition 4.2. AnA1-/A2- initial completion structure for checking satisfiability of a unary predicate p w.r.t.
a FoLP P is a completion structure 〈EF , ct, st, G〉, where:

• EF = (F, ∅), F = {Tε} ∪ {Ta | a ∈ cts(P )}, where ε is a constant, possibly in cts(P ),

• Tx = {x}, for x ∈ {ε} ∪ cts(P ),

• lst(ε, p) = unexp/st(x) = unexp, for x ∈ {ε} ∪ cts(P ),

• G = 〈V, ∅〉, V = {p(ε)}, and

• ct(ε) = {p}.

Note that the extended forest EF in an A1-/A2- initial completion structure for checking satisfiability of
a unary predicate p w.r.t. a FoLP P is an extended tree.

The original algorithm, A1, expands an A1-completion structure by means of so-called expansion rules
which justify or assert the presence/absence in the model of one atom at a time. Expansion rules satisfy
current constraints in the structure, or in other words, they justify the presence/absence of certain atoms in
the constructed model, by making true the body of a ground rule which has the atom in the head (in case the
atom is in the model) or making false all bodies of ground rules which have the atom in the head (in case
the atom is not in the model). Concretely, expansion rules may introduce new successors for the node under
consideration in order to obtain successful groundings for unary rules, and may assert predicate symbols
or their negation to the contents of nodes/arcs in the completion structure in order to make the body of the
corresponding ground rule satisfiable/unsatisfiable. The expansion rules which take care of this are called
expand unary/binary positive/negative rules and they are formally described in [Feier and Heymans, 2011] as
the expansion rules (i), (iii) and (iv), (vi), respectively.

Newly introduced domain elements give rise to new ground atoms and rules and some of these rules
might render the program inconsistent. In order to be sure that the partially constructed model is a complete
one every ground atom which can be formed with unary/binary predicates from the program and nodes/arcs
in the forest model in construction has to be proved to be either part or not part of the forest model. As
such, if for a unary/binary atom, neither the atom nor its negation appear in the content of some node/arc
in the forest, either the unary/binary atom or its negation is inserted in the content of such a node/arc. The
expansion rules which take care of this are called choose unary/binary rules and they are formally described
in in [Feier and Heymans, 2011] as the expansion rules (ii) and (v).

For an extended example regarding A1, and thus the application of the expansion rules, see [Feier and
Heymans, 2011].

Before describing A2, the knowledge compilation method, we recall one more notation introduced in
[Feier and Heymans, 2009] (as part of the applicability rule (vii) Saturation): a node x ∈ NEF is said to
be saturated if every unary predicate or its negation appear in its content with status exp and every binary
predicate or its negation appear in the content of each of its outgoing arcs with status exp.

4.2 Unit Completion Structures

A unit completion structure (UCS) is a completion structure in which EF is an extended tree of depth 1
having as roots of the trees the constants in the program and possibly an additional node standing for an
anonymous individual: if there is such an anonymous individual, it is the root of the distinguished tree in
the extended tree. The root of the distinguished tree, ε, is saturated: every unary predicate appears (either
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in a positive or a negated form) in ct(ε) and every binary predicate appears (either positive or negated) in
the content of every outgoing arc of ε. As the distinguished tree has depth 1, we call the nodes which are
direct successors of ε in EF simply successor nodes (in the UCS). Note that successor nodes can be either
anonymous individuals or constants from the program.

Unit completion structures can be used as building blocks of a forest model. A UCS describes how the
literals formed with the (possibly negated) unary/binary predicates in the content of ε and its outgoing arcs
are justified by the presence of some other (possibly negated) predicates in the contents of the nodes/arcs
of the structure. No predicate in the contents of successor nodes is expanded. At an abstract level a UCS
captures the process of justifying the constraints imposed by a node in a completion structure by introducing
new constraints in the form of successors of that node.

4.2.1 Constructing the Set of Unit Completion Structures

In order to construct a unit completion structure one starts with a skeleton, an initial unit completion structure
which is similar to an A1-initial completion structure for checking the satisfiability of a unary predicate p
w.r.t. a FoLP P . An initial unit completion structure has the same extended tree skeleton like an A1-initial
completion structure, but it does not impose any constraints regarding membership of predicates to nodes/arcs.
This is because UCSs have to be more generic if they are to be reused as building blocks of the model. It also
employs a ‘local status function’ as a UCS is constructed from an initial UCS by using the expansion rules
previously mentioned. So, an initial unit completion structure is actually an A1-completion structure.

Definition 4.3. An initial unit completion structure with root ε for a FoLP P is an A1-completion structure
〈EF , ct, st, G〉 where:

• EF = (F,ES ), F = {Tε} ∪ {Ta | a ∈ cts(P )}, where ε is a constant, possibly in cts(P ), and
ES = ∅,

• Tx = {x} for every x ∈ {ε} ∪ cts(P ),

• ct(x) = ∅, for every x ∈ {ε} ∪ cts(P ),

• G = 〈V,A〉, V = ∅, A = ∅.

Next we specify when a unit completion structure is ‘fully’ expanded.

Definition 4.4. A unit completion structure 〈EF , ct, lst, G〉 with root ε for a FoLP P , with EF =
({Tε},ES ), is an A1-completion structure derived from an initial unit completion structure with root ε for
P by application of the expansion rules (i)-(vi) from [Feier and Heymans, 2011], which has the following
properties:

• for all p ∈ upreds(P ), either p ∈ ct(ε) and lst(p, ε) = exp, or not p ∈ ct(ε) and lst(not p, ε) =
exp;

• for all c ∈ N∗ s.t. ε · c ∈ T , and for all f ∈ bpreds(P ), either f ∈ ct(ε, ε · c) and lst(p, (ε, ε · c)) =
exp, or not f ∈ ct(ε, ε · c) and lst(not p, (ε, ε · c)) = exp;

• for all c ∈ cts(P ) s.t. (ε, c) ∈ ES and for all f ∈ bpreds(P ) either f ∈ ct(ε, c) and lst(p, (ε, c)) =
exp, or not f ∈ ct(ε, c) and lst(not p, (ε, c)) = exp ;

• for all c s.t. ε · c ∈ T and for all ±p ∈ ct(ε · c), lst(±p, ε · c) = unexp;
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• for all c s.t. (ε, c) ∈ ES and for all ±p ∈ ct(c), lst(±p, c) = unexp.

For examples of unit completion structures for a FoLP P , see [Feier and Heymans, 2010].

Proposition 4.5. There is a deterministic procedure which computes all unit completion structures for a
FoLP P in the worst-case scenario in exponential time in the size of P .

Proof Sketch. The result follows from the fact that there is an exponential number of unit completion
structures for a FoLP P in the worst case scenario. 2

Once a unit completion structure is constructed, the local status function is no longer relevant. As such,
from now on we will refer to unit completion structures as triples 〈EF,ct, G〉, leaving the local status
function apart.

4.2.2 Using Unit Completion Structures

As mentioned previously, in a unit completion structure, the contents of the root and of the arcs are fully
justified while no constraint associated with one of the successor nodes is satisfied. An A2-completion
structure is evolved by starting with an A2-initial completion structure and repeatedly appending new unit
completion structures to the structure such that every new added UCS justifies the constraints imposed by
some unexpanded node in the structure. Leaf nodes of the completion structure in construction (successor
nodes of previously added UCS) are matched with new UCS-s and are eventually replaced by these. The
notion of matching will be made clear later.

We introduce next the notion of local satisfiability for a unit completion structure.

Definition 4.6. A unit completion structure UC for a FoLP P with root ε locally satisfies a (possibly negated)
unary predicate p iff p ∈ ct(ε). Similarly, UC locally satisfies a set S of (possibly) negated unary predicates
iff S ⊆ ct(ε).

It is easy to observe that if a unary predicate p is not locally satisfied by any unit completion structure UC
for a FoLP P (or equivalently not p is locally satisfied by every unit completion structure), p is unsatisfiable
w.r.t. P . However, local satisfiability of a unary predicate p in every unit completion structure for a FoLP P
does not guarantee ’global’ satisfiability of p w.r.t. P .

A node of a completion structure can be matched with a unit completion structure if the unit completion
structure locally satisfies the content of the node and the constraints imposed by the UCS on nodes which are
constants from P are not in contradiction with the current contents of those nodes.

Definition 4.7. Let CS = 〈EF,ct, st, G〉 be an A2-completion structure. A node x ∈ NEF is matchable
with a unit completion structure UC = 〈EF ′,ct′, G′〉 with root ε, with EF ′ = (F ′, ES′), iff:

• st(x) = unexp,

• x = ε, if8 ε ∈ cts(P ),

• UC locally satisfies ct(x), and

• for every arc (x, c) ∈ ES′, and for every ±p ∈ ct′(c): ∓p 6∈ ct(c).

We say that UC matches x.
8Unit completion structures with roots constants can only be matched with the corresponding constant nodes.
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Next we define the operation which expands an A2-completion structure by adding a new UCS which
matches an unexpanded node in the structure. Suppose that x is such an unexpanded node in anA2-completion
structure CS = 〈EF , ct, st, G〉, with G = (V,A), and that x is matchable with a unit completion structure
UC = 〈EF

′
, ct

′
, G′〉, with root ε, EF = (F ′, ES

′
), and G

′
= (V

′
, A

′
) . Suppose also that x ∈ Tc ∈ EF .

Node x can then be expanded by replacing it with UC using an operation called expandCS(x, UC) which
updates CS as follows:

• st(x) = exp,

• Tc = Tc ∪ (Tε)ε||x;

• ES = ES ∪ {(x, v) | (ε, v) ∈ ES′};

• if u ∈ Tε and v ∈ succEF ′(u): ct(uε||x) = ct′(u) and ct(uε||x, vε||x) = ct′(u, v);

• if u ∈ Tc[x] (the new Tc[x]) and v ∈ NEF : st(uε||x) = st′(u) and st(uε||x, vε||x) = st′(u, v);

• for all c ∈ cts(P ): ct(c) = ct(c) ∪ ct′(c);

• V = V ∪ {aε||x | a ∈ V ′};

• A = A ∪ {(aε||x, bε||x) | (a, b) ∈ A′}.

Rule. Match. For a node x ∈ NEF : if st(x) = unexp, non-deterministically choose a unit completion
structure UC which matches x and perform expandCS(x, UC).

Now that we have a way to evolve a completion structure some conditions regarding termination are in
order. The algorithm uses two rules for this: the first one, blocking, describes a condition for successful
termination of expansion of a branch of a completion structure, while the other, redundancy, describes a
condition for unsuccessful termination - if this condition is met, the algorithm backtracks.

Rule. (viii) Blocking. A node x ∈ NEF is blocked if there is an ancestor y of x in F , y <F x, y 6∈ cts(P ),
s. t.:

• ct(x) ⊆ ct(y), and

• the set connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty.

We call (y, x) a blocking pair. No expansions can be performed on a blocked node.

Unlike the typical case for tableau algorithms for DLs [Baader et al., 2003], subset blocking is not enough
for pruning the expansion of a path in the extended forest. To understand why, we recall the intuition behind
using blocking techniques in tableau algorithms: the idea is that a completion structure which contains a
blocking pair (y, x) is unfolded to a model by justifying the content of the blocked node x similarly to the
way the content of its corresponding blocking node y has been already justified. This can be done either by
copying the subtree Ty at x or by reusing the successors of y as successors of x. The first case is described by
Figure 2: in this case one obtains an infinite forest shaped model, as the new copy of Ty contains a new copy
of x, which again will be justified by copying there Ty, and so on. In the second case, the resulted model is
no longer forest-shaped: this is the way we construct models from completion structures in our Soundness
proof and it is depicted in Figure 7.
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x

y

x · 1 . . . x · i . . . x · n

x · 1 . . . x · i . . . x · n

c

Figure 2: Justifying a blocked node y by replicating the justification of its corresponding blocking node x

The particularity in dealing with FoLPs consists in the fact that unraveling the completion by applying
one of the two operations described above can potentially introduce infinite paths in G (in the first case) or
cycles in G (in the second case). This would contradict the fact that every atom in the open answer set has to
be finitely motivated [Heymans et al., 2006, Theorem 2]. In order to avoid this, the blocking rule verifies also
that there is no path from a p(y) to a q(x). The extra condition makes the blocking rule insufficient to ensure
the termination of the algorithm. The following applicability rule ensures termination.

Rule. (ix) Redundancy. A node x ∈ NEF is redundant iff:

• x is saturated and not blocked, and

• there are k ancestors of x in F , (yi)16i6k, with k = 2p(2p2 − 1) + 3, and p = |upreds(P )|, s. t.
ct(x) = ct(yi).

In other words, a node is redundant if it is not blocked and it has k ancestors with content equal to its
content: any forest model of a FoLP P which satisfies p can be reduced to another forest model which
satisfies p and has at most k + 1 nodes with equal content on any branch of a tree from the forest model, and
furthermore the (k + 1)th node, in case it exists, is blocked [Feier and Heymans, 2009]. One can thus search
for forest models only of the latter type. As such the detection of a redundant node indicates a failure in the
expansion process and stops the expansion.

Next we define when the expansion of a completion structure is complete, and when the completion
structure is a ‘good one’, i.e. it is clash-free.

Definition 4.8. An A2-complete completion structure for a FoLP P and a unary predicate p ∈ upreds(P ),
is a completion structure that results from repeated applications of the rule Match to an initial completion
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structure for p and P , taking into account the applicability rules (viii) and (ix),s. t. no further rules can be
further applied.

The local clash conditions regarding contradictory structures or structures which have cycles in the
dependency graph G are no longer relevant: if among the first k+ 1 nodes on a path with equal content, there
is no blocking node, the last node on the path is redundant.

Definition 4.9. An A2-complete completion structure CS = 〈EF , ct, st, G〉 is clash-free if (1) EF does
not contain redundant nodes (2) there is no node x ∈ NEF , x unblocked, s.t. st(x) = unexp.

4.2.3 Termination, Soundness, Completeness

The termination of the algorithm follows immediately from the usage of the blocking and of the redundancy
rule:

Proposition 4.10. An initial completion structure for a unary predicate p and a FoLP P can always be
expanded to an A2-complete completion structure in a finite number of steps.

The algorithm is sound and complete:

Proposition 4.11. A unary predicate p is satisfiable w.r.t. a FoLP P iff there is an A2-complete clash-free
completion structure.

Proof Sketch. The soundness of A2 follows from the soundness of A1: any completion structure
computed using A2 could have actually been computed using A1 by replacing every usage of the Match rule
with the corresponding rule application sequence used by A1 to derive the unit completion structure which is
currently appended to the structure.

The completeness of A2 derives from the completeness of A1: any clash-free complete A1-completion
structure can actually be seen as a complete clash-free A2-completion structure.

As we still employ the redundancy rule in this version of the algorithm, an A2-complete completion
structure has in the worst case a double exponential number of nodes in the size of the program. As such:

Proposition 4.12. A2 runs in the worst-case in double exponential time.

5 Optimized/Optimal Reasoning with FoLPs

In this section we describe A3, th new worst-case optimal algorithm. Like in the case of A2, a structure is
constructed by appending UCSs using the Match rule, but a different strategy is employed for termination.

Firstly, the algorithm employs a technique that identifies when some redundant computation has been
performed during the expansion of a path and stops the expansion of that path, much earlier than the
redundancy rule in A1 did. This led to the replacement of the redundancy rule with a new rule with the same
name. This rule is described in Section 5.1.

Secondly, A3 is able to identify when some computation on a path can be reused during the expansion of
another path: if a node which is currently selected for expansion is similar to a non-ancestor node which has
been already been expanded, the justification of the latter is reused when dealing with the original node. The
new rule which deals with this is called caching. This rule is described in Section 5.2.
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Section 5.3 introduces the usual notions of complete and clash-free A3-completion structure, while
Section 5.4 shows that the algorithm terminates by computing a bound on the size of an A3-completion
structure: a structure has a maximum number of nodes which is exponential in the size of the input program.

Further on, Sections 5.5 and 5.6 show that the algorithm is sound and complete. While the two new
applicability rules are at a first glance not that much different to previous applicability rules they rely on
different proof strategies, especially on a different strategy to reduce an infinite model to a finite one (which
is part of the completeness proof). As such we consider these proofs to be a main contribution of this work
and reproduce them inline.

The usage of the caching rule has improved the worst case running time of the algorithm by one
exponential level. The formal complexity analysis can be found in section 5.7.

5.1 Failure: Redundancy

As discussed in section 4.2 the blocking condition is complex enough to not always be fulfilled when
exploring a finite number of nodes. The previous algorithm used an extra condition to ensure termination: if
a certain number of nodes with equal content had already been explored on a path, there was a failure and the
algorithm aborted. Now we introduce a more refined strategy for aborting expansion of a path which is based
on the idea that the set of oldest paths running between two nodes with similar content should decrease. While
before failure was detected only when reaching a node with exponential depth, the new strategy identifies
failure much earlier.

The idea is to keep track of the oldest path in G (’oldest’ refers to its starting level w.r.t. the forest) from
which every atom makes part and to try to minimize the set of oldest paths running along a path of the forest.
Nodes with identical content are allowed on the same path only if every subsequent occurrence of such a
node shrinks the set of oldest paths.

A new notation is introduced: by rank of an atom a one understands the shallowest depth of a node x
such that there exists a unary/binary p/f where (p(x)/f(x, y), a) ∈ pathsG.

Formally:
rank(p(x)) = min({|x|} ∪ {rank(a)|(a, p(x)) ∈ AG})

rank(f(x, y)) = min({|y|} ∪ {rank(a)|(a, f(x, y)) ∈ AG})

rank(x) = min
p∈ct(x)

rank(p(x))

Example 5.1. Consider again the forest model depicted in Figure 1. Every atom in the model can be reached
by a path starting with smember(x). As smember(x) is not reached by any other atom, its rank is equal to
its depth, 1. Thus, all atoms in the model have rank 1.

Example 5.2. Figure 3 shows an extract from a completion structure in which every predicate p in the content
of a node x is augmented with the rank of p(x). The arcs between predicates in the content of some node
are arcs in the dependency graph: thus, G contains arcs from b(x) to a(y), b(y), and c(y), respectively. As
rank(b(x)) = 1 we have that also: rank(a(y)) = rank(b(y)) = rank(c(y)) = 1.

We will denote with in(k, x) the set of incoming paths from level k to node x (presuming |x| > k):

in(k, x) = {p|rank(p, x) = k}

Example 5.3. For the completion structure depicted in Figure 3 we have that: in(x, 1) = {a, b}, in(x, 2) =
{c}, and in(1, y) = {a, b, c}.
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x {(a, 1), (b, 1)} (c, 2)}

y {(a, 1), (b, 1), (c, 1)}

Figure 3: Redundancy: y is redundant as the set of paths coming from the ancestor at depth 1 increases

Formally:

Rule. (ix’) Redundancy. A node x ∈ NEF is redundant if there is an ancestor y of x in F , y <F x,
y 6∈ cts(P ), s. t.:

• ct(x) ⊆ ct(y),

• rank(x) = rank(y) = r, and in(r, x) ⊇ in(r, y).

The expansion stops when a redundant node is identified.

Intuition: Both strategies for identifying redundant nodes are related to techniques for reducing an infinite
forest model to a finite one (used in the completeness proof of the algorithm). In the general case this can
be done by considering nodes in the infinite model which are on the same path and have equal content and
collapsing the two nodes onto each other by deleting the path between the two nodes (together with all the
paths which start with nodes on this path). However, nodes with equal content cannot be indiscriminately
collapsed: some extra conditions have to be met in order for the remaining structure to still remain a model.

In the original algorithm, the technique used for reducing a model was to first identify blocking pairs
(nodes with equal content with no path running between them) and then collapse nodes with equal content
if the set of paths between a ’reference’ node and the first node is included or equal within the set of paths
between the reference node and the second node. Some extra conditions had to be met for collapsing the two
nodes, like there is no blocking node between them. Such conditions can only be checked at ’proof time’, but
not at ’construction time’. That’s why at construction time one could only use the bound established by this
technique, but not the technique itself.

The new technique for reducing models using the set of oldest paths traversing a node does not use any
reference point when comparing nodes with equal content. Also, except for checking subset inclusion of the
set of oldest paths, no extra condition has to be met before collapsing a node into another. This is due to the
fact that when reducing a model and scanning a path, first such redundant nodes are identified and collapsed,
and then eventually a blocking pair is found. This is guaranteed by the fact that, for infinite paths, by always
chasing the set of oldest paths (and exhausting them in a finite number of steps) we reach a point where there
are no running paths between two nodes (within finite distance of each other), and due to the infinity of the
path we reach two nodes with equal content with this property (within finite distance of each other).

Example 5.4. Nodes x and y in Figure 3 are such that ct(y) ⊂ ct(x), and the set of oldest paths is
expanding when traversing y: in(1, y) ⊃ in(1, x). Thus, y is redundant.

Example 5.5. Consider the FOLP P in example 3.2 and the open answer set depicted in Figure 6. That
particular open answer would never be constructed by our algorithm: if one constructs a completion structure
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x{(smember, 1),not rmember,not project}

{(supportedBy, 1),not . . .)}

y{(smember, 1),not rmember,not project}

Figure 4: x and y form a redundancy pair

for checking satisfiability of smember w.r.t. P , in the style of that particular forest model, one encounters a
redundancy node, y. The situation is depicted in Figure 4 (negative predicates do not have ranks): ct(x) =
ct(y) = {smember,not rmember,not project}, rank ( smember (x)) = rank(smember(y)) = 1 and
in(1, x) = in(1, y) = {smember}, and thus, node y is redundant.

5.2 Caching

Blocking can be generalized to the so-called anywhere blocking or caching where a node reuses the jus-
tification/expansion of another node which is not on the same path as itself. Again, the typical condition
regarding subset inclusion of the contents of the nodes has to be fulfilled. Additionally, a condition regarding
sets of paths running between the common ancestor of the nodes and the nodes themselves has to be fulfilled.
Formally:

Rule. (x) Caching. A node y ∈ T ∈ NEF is said to be cached if there is a node x ∈ T ∈ NEF , y 6<T x,
x 6<T y, x 6∈ cts(P ), s. t.:

• rightT (y, x),

• ct(y) ⊆ ct(x), and

• connprG(z, y) ⊆ connprG(z, x), where z is the common ancestor of x and y: z = commonT (x, y).

We call (y, x) a caching pair and y a caching node. A cached node is no longer expanded: st(x) = exp

Intuition. Similarly to dealing with blocking pairs, the cached node will be expanded similarly to the
caching node. One prerequisite for this is that the content of the cached node is a subset of the content of the
caching node.

Like in the case of blocking, the content of the cached node can be justified in two different ways: either
by copying the subtree Tx at y or by reusing the successors of x as successors of y. In the first case (depicted
in Figure 5), it has to hold that if (u, v) is a blocking pair, with u being a leaf node in Tx, and v >T z, where
z = commonT (x, y), then (u, v′) is still a blocking pair, where v′ is the copy of v in the new subtree Ty (1).
In the second case, the obtained model is no longer forest shaped and one has to check that no cycles are
introduced in G (2): this is the approach we take in the Soundness proof and it is described in Figure 5 in
Section 5.5. The extra condition connprG(z, y) ⊆ connprG(z, x) ensures that (1) and (2) hold.

In order for the cached node to not have to reuse its own justification by having a successor of the caching
node to be at its turn a cached node, we impose that cached nodes always have to be ’at the right’ in the tree
of the corresponding caching nodes. Together with this requirement, we enforce the following expansion
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u

z

x y

x · 1 . . . x · i . . . x · n y · 1 . . . y · i . . . y · n

v v′

c

Figure 5: Justifying a cached node y by replicating the justification of its corresponding caching node x

strategy for the completion structure: a node x ∈ T ∈ F can be expanded iff every node y s.t.: rightT (y, x)
is expanded. The Match rule becomes:

Match’. For a node x ∈ NEF : if st(x) = unexp and for every node y s.t. rightT (y, x): st(y) = exp,
non-deterministically choose a unit completion structureUC which matches x and perform expandCS(x, UC).

There is an exponential number of structures of the type ((x1, r1), (x2, r2), . . .), where x1, x2, . . . ∈
upreds(P ) ∪ not upreds(P ), r1, r2, . . . ∈ 0, n, xi-s are distinct, and n is the maximum length of a path
(exponential in the size of P - see Proposition 5.9). Any node x can be annotated by such a structure, where
for every p/not p ∈ ct(x): (p, rank(p(x))/0) is a tuple in the structure.

Example 5.6. Figure 6 shows a completion structure for P from example 3.2 in which every node except t is
expanded: note that the completion structure contains no redundancy pair. We have that y = commonT (z, t),
ct(t) ⊂ ct(z), and connprG(y, z) = connprG(y, t) = (smember, rmember), and thus z and t form a
caching pair: t will be expanded similar to z either by reusing the successors of z or replicating the expansion
of z: note that in this case the two types of justification give the same result as the only successor of z is a
constant j (thus, also when replicating the expansion of z, a new successor is not introduced, but j is reused).

5.3 Complete/Clash-free Completion structures

In this section we redefine the notions of complete completion structure and clash-free completion structure
to reflect on the changes introduced by the new applicability rules.

Definition 5.7. An A3-complete completion structure for a FoLP P and a p ∈ upreds(P ), is an A3-
completion structure that results from the repeated application of the rule Match to an initial A3-completion
structure for p and P , taking into account the applicability rules (viii) Blocking, (ix’) Redundancy, and (x)
Caching s. t. no rules can be further applied.

As regards clash conditions, the presence of redundant nodes as defined by rule (ix’) Redundancy
constitutes also in this case a clash. Another clash condition is the impossibility to expand an unexpanded
node (by finding an appropriate matchable unit completion structure):
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y{smember,not rmember,not project}

z{rmember,not smember,not project} t{rmember}

j{project,not smember,not rmember}

{supportedBy,
not involvedIn}

{supportedBy,
not involvedIn}{involvedIn,

not supportedBy}

Figure 6: A completion structure in which (z, t) is a caching pair

Definition 5.8. A A3-completion structure CS = 〈EF , ct, st, G〉 is clash-free if there is no redundant
node in EF and for every x ∈ NEF : st(x) = exp.

An overview of the algoritm A3 for checking satisfiability of p w.r.t. a FoLP P is provided by Algorithm
1.

5.4 Termination

In this section we show that the algorithm A3 terminates: first we compute a bound on the path length in any
A3-completion structure, and then, using this result, we compute a bound in the total number of nodes in any
A3-completion structure. Both bounds are exponential in the size of the input FoLP P . The latter result is a
direct consequence of employing the caching rule.

Proposition 5.9. Every path in an A3-completion structure for a unary predicate p and a FoLP P has at
most an exponential number of nodes in the size of P .

Proof. We show that any path has at most n22n nodes, where n = |upreds(P )|.
There is a finite amount of nodes with different contents: 2n, on any path in the completion structure

and in the completion structure itself. As such, there are at least n2n nodes with equal content on any path
which contains n22n nodes. Let x1 < . . . < xn2n be a sequence of such nodes and let (rl)16l6n be the
ordered sequence of ranks of unary predicates in ct(x1): rl ∈ {k | p ∈ ct(x1) ∧ rank(p, x1) = k}|,
for 1 6 l 6 n, and rl > rl+1, for 1 6 l < n. As some predicates might have equal ranks, and thus
r = |{k | p ∈ ct(x1) ∧ rank(p, x1) = k}| < n, we take ri = |x1|, for every i > r. We show that
rank(xj2n) > rj , for every 1 6 j 6 n by induction.

Base case: j = 1. We have that rank(xi) > rank(x1) = r1, for 1 6 i 6 2n, and (xi, xk) is neither a
blocking nor a caching pair, for any 1 6 i < k 6 2n. Assume that rank(x2n) = r1. Then rank(xi) = r1,
for 1 6 i 6 2n, and in(x1, r) 6⊆ in(xk, r), for any 1 6 i < k 6 2n. But |{S | S = in(xi, r), for some xi ∈
NEF and r ∈ N}| = 2n, which contradicts with the previous statement. Thus, the original assumption was
false and rank(x2n) > r1.

Induction case: if rank(x2j ) > rj , for a certain 1 6 j < n, one can bring a similar argument to the one
from the base case to show that rank(x2j+1) > rj+1.
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input : FoLP P , unary predicate p;
output: checks satisfiability of p w.r.t.P ;

1) Construct the set of Unit Completion Structures (UCSs) for P (if not constructed already):;

To construct a UCS: a) Construct an initial unit completion structure for p w.r.t. P as in Definition
4.3;
b) Apply expansion rules (i)-(vi) introduced in [Feier and Heymans, 2009] until the conditions in
Definition 4.4 are met.;

2) Construct an A2-initial completion structure for p w.r.t. P as in Definition 4.2;

3) For every x ∈ NEF apply one of the followings rules (in decreasing order of priority) (we assume
EF is explored in a depth-first fashion): ;

a) if there is an ancestor y of x: y <F x, y 6∈ cts(P ), s. t. ct(x) ⊆ ct(y), and
connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty then

x is blocked;
end
b) if there is an ancestor y of x in F , y <F x, y 6∈ cts(P ), s. t. ct(x) ⊆ ct(y),
rank(x) = rank(y) = r, and in(r, x) ⊇ in(r, y) then

x is redundant: return false;
end
c) if there is a node y ∈ T ∈ NEF , y 6<T x, x 6<T y, y 6∈ cts(P ), s. t. rightT (x, y), and
ct(x) ⊆ ct(y), and connprG(z, x) ⊆ connprG(z, y), where z = commonT (x, y) then

x is cached;
end
d) if st(x) = unexp and for every node y s.t. rightT (y, x): st(y) = exp then

non-deterministically choose a unit completion structure UC which matches x and perform
expandCS(x, UC) (Match’);

end

4) if for every node x ∈ NEF : st(x) = exp then
return true

end
return false.

Algorithm 1: Overview of A3.
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As such, rank(xj2n) > rj , for every 1 6 j 6 n, and in particular, rank(xn2n) > rn, for every
1 6 j 6 n. As rank(p, x1) 6 rn, for every p ∈ ct(x1), it results that rank(p, x1) < rank(xn2n), for
every p ∈ ct(x1). This translates in the fact that the set of oldest paths in G traversing xn2n started at a
node below x1, and thus there are no paths in G running between x1 and xn2n . As ct(x1) = ct(xn2n), this
implies that (x1, xn2n) is a blocking pair and thus xn2n , being a blocked node is the last node on the path.
This reasoning applies to every possible content for a node, thus in case n > 1, we achieve that there have to
be less than n22n nodes on every path: otherwise, there is a blocking node for every possible type of content
for a node, which contradicts the fact that a path has at most one blocking node.

Furthermore, one can show that after an exponential number of steps, one always reaches a complete
completion structure. Note that in the previous version of the algorithm a complete completion structure had
in the worst case a double exponential number of node in the size of the program. Now, due to caching, the
complexity drops one exponential level.

Proposition 5.10. A complete A3-completion structure for a unary predicate p and a FoLP P has at most
an exponential number of nodes in the size of P .

Proof. Interestingly, the additional condition concerning paths running between the common ancestor and
the two nodes in a caching pair can be reformulated in a condition regarding inclusion of the intersections of
sets of paths running through the tree with the two nodes ordered by their ranking.

connprG(z, x) ⊆ connprG(z, y) iff in(r, x) ⊆ in(r, y), for every r 6 rank(z)

This property enables us to obtain an exponential bound on the number of nodes in any complete
completion structure using the three applicability rules. To do this we overestimate the number of nodes, by
making caching even harder by imposing an even stricter condition: in(r, x) ⊆ in(r, y), for every r > 0.

We count how many structures of the type ((x1, r1), (x2, r2), . . .) are, where x1, x2, . . . ∈ upreds(P ) ∪
not upreds(P ), r1, r2, . . . ∈ 0, n, xi-s are distinct, and n is a natural number exponential in the size of
P (the maximum length of a path in a completion structure - see Proposition 5.9), or, in other words, the
number of possible node contents annotated with the rank of every predicate in the content (predicates which
appear negated in the content of some node are annotated with 0). This is equal to the number of functions
f : 2upreds(P )→ 0, n ∪ 0, n2 ∪ . . . 0, n|upredsP | such that f(x) ∈ 0, n|x|, which at its turn is exponential in
the size of P .

Assume there are two distinct nodes with identical annotation structures as described above. If they are
on the same path, they form a redundant pair, otherwise they form a caching pair.

5.5 Soundness

Proposition 5.11 (soundness). Let P be a FoLP and p ∈ upreds(P ). If there exists a complete clash-free
completion structure for p w.r.t. P , then p is satisfiable w.r.t. P .

Proof. From a clash-free complete completion structure for p w.r.t. P , we construct an open interpretation,
and show that this interpretation is an open answer set of P that satisfies p. Let 〈EF , ct, st, G〉 be such
a clash-free complete completion structure with EF = 〈F,ES 〉 the extended forest and G = (V,A) the
corresponding dependency graph and let bl and ch be the sets of blocking pairs and caching pairs corre-
sponding to the completion. Let blocked and cached be the sets of blocked and cached nodes respectively:
blocked = {y | (x, y) ∈ bl} and cached = {y | (x, y) ∈ ch}.
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Figure 7: Justifying a blocked node y by reusing the successors of its corresponding blocking node x

1. Construction of open interpretation.

We construct a new graph Gext = (Vext , Aext) by extending G in the following way: for every pair
of blocking/caching nodes, the content of the blocking/caching node is copied into the content of
the blocked/cached node, and all connections from the blocking/caching node to its successors or
within itself are replicated by connections from the blocked/cached node to the successors of the
blocking/caching node or within itself (or, in other words, the content of the blocked/cached node
is identical with the content of the blocking/caching node and it is motivated in a similar way). The
underlying forest is also extended with arcs from the blocked/cached node to all successors of the
blocking/caching node. Formally:

• Vext = V ∪ {ax|y | a ∈ V ∧ args1(a) = x ∧ (x, y) ∈ bl ∪ ch};
• Aext = A ∪ {(ax|y, bx|y) | (a, b) ∈ A ∧ args1(a) = x ∧ (x, y) ∈ bl ∪ ch};
• Aext

EF = AEF ∪ {(y, z) | (x, y) ∈ bl ∪ ch ∧ (x, z) ∈ AEF }.

Lemma 5.12. Let (x, y) ∈ bl ∪ ch and Gext = (Vext , Aext) constructed as described above. Then, for
any ground rule r ∈ PNEF

: Vext |= r iff Vext |= rx|y iff Vext |= ry|x.

Proof. By construction of Vext . 2

Lemma 5.13. Let UC = 〈EF,ct, G〉 be a unit completion structure for a FoLP P with EF =
({Tε}, ES), and G = (V,A). Then, the open interpretation induced by UC: (NEF , V ), is an open
answer set of the program: ∪r∈P rargs1(head(r))|ε. This is equivalent to V |= ∪r∈PNEF

rargs1(head(r))||ε,
or, in other words, the set of atoms induced by UC satisfies the grounding of P with elements from
NEF s.t. the first term in the head of each ground rule is ε.

Proof. By construction of a unit completion structure. 2
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Figure 8: Justifying a cached node y by reusing the successors of its corresponding caching node x

Let there be an open interpretation (U,M), with U = NEF , i.e., the universe is the set of nodes in the
extended forest, and M = Vext , i.e., the interpretation corresponds to the set of nodes in the extended
graph.

2. M is a model of PM
U . First of all let’s note that M |= PM

U iff M |= PU . We will show that M |= PU .

Let’s note that PU = ∪x∈U ∪r∈PU
rargs1(head(r))||x.

For every node x ∈ U we will show that M |= ∪r∈PU
rargs1(head(r))|x:

• (i) suppose x 6∈ blocked ∪ cached. Then, at some point in the construction of CS, x has
been expanded by replacing it with a unit completion structure UC = 〈EF ′,ct′, G′〉, where
G′ = (V ′, A′). According to Lemma 5.13, V ′ |= ∪r∈PNEF ′

rargs1(head(r))||ε. Let V ′′ =
{aε||x | a ∈ V ′}. Then V ′′ |= ∪r∈PNEF ′

rargs1(head(r))||x. As V ′′ ⊆ V , V ⊆ M , and
∪r∈PNEF ′

rargs1(head(r))||x = ∪r∈PU
rargs1(head(r))||x, so M |= ∪r∈PU

rargs1(head(r))||x.

• (ii) suppose x ∈ blocked ∪ cached. Then, according to Lemma 5.12, for every r ∈ PU : M |= r
iff M |= rx|y, where y is the corresponding blocking or caching node. That M |= rx|y follows
from case (i).

3. M is a minimal model of PM
U . Before proceeding with the actual proof we introduce a notation

and a lemma which will prove useful in the following. Let EF
′

be the directed graph (NEF , A
′
)

which has as nodes all the nodes from EF and as arcs all the arcs of EF plus some ’extra’ arcs
which point from blocked/cached nodes to successors of corresponding blocking/caching nodes:
A
′

= AEF ∪ {(y, z) | ∃x s. t. (x, y) ∈ bl ∪ ch ∧ z ∈ succEF (x)}. The new graph captures
in a more accurate way the structure of M : blocked/cached nodes are connected to successors
of the corresponding blocking nodes, as their contents is justified similarly as the content of the
blocking/caching nodes.
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The following lemma associates paths in the dependency graphs G/Gext to paths in the underlying
extended forest: EF/EF

′
. It basically says that by projecting a path in the dependency graph on

the arguments of every atom in the path and eliminating all binary arguments and redundant unary
arguments one obtains a path in the extended forest.

Lemma 5.14. Let Pt = (a1, . . . , an) ∈ pathsG/pathsGext , with pred(a1) ∈ upreds(P ), and T1 =
(args(ai1), . . . , args(aim)) be a tuple obtained by selecting all and only the unary atoms in Pt1 in
the order they appear in Pt and retaining only their argument: 1 6 ij 6 n, ij < ij+1, for every 1 6
j 6 m, and pred(ak) ∈ upreds(P ) iff there exists 1 6 j 6 m such that k = ij , for every 1 6 k 6 n.
Then, the tuple obtained by eliminating consecutive duplicates in T1, T2 = (b1, . . . , bp), where for
every 1 6 j 6 p, there exists 1 6 k 6 m such that bj = args(aik) and args(aik) 6= args(aik−1

) is a
path in EF/EF

′
: T2 ∈ pathsEF/pathsEF

′ . We will also call T2, the argument path of Pt and denote
it with argpath(Pt).

Furthermore, if Pt1 is a cycle in G/Gext , than T2 is a cycle in EF/EF
′
.

Proof. We construct a sequence of pairs of indexes ((k1, q1), . . . , (kp−1, qp−1)) such that ki is the
greatest index for which args(aki

) = bi and qi is the smallest index for which args(aki
) = bi+1, for

every 1 6 i < p.

Then, we consider subpaths of Pt of the form (aki
, . . . , aqi), for 1 6 i < p. Every such subpath has the

form: (p(bi), f1(bi, bi+1), . . . , fs(bi, bi+1), q(bi+1)), with p, q ∈ upreds(P ), f1, . . . , fs ∈ bpreds(P ),
and s > 1. Thus: (bi, bi+1) ∈ A/A

′
for every 1 6 i < p: T2 is a path in EF/EF

′
.

If Pt is a cycle then a1 = an. By construction of T2, b1 = bn = args(a1). 2

Now we can proceed to the actual proof of statement. Assume there is a model M ′ ⊂M of Q = PM
U .

Then ∃l1 ∈M : l1 /∈ M ′. Take a rule r1 ∈ Q of the form l1 ← β1 with M |= β1; note that such a
rule always exists by construction of M and expansion rule (i) . If M ′ |= β1, then M ′ |= l1 (as M ′ is a
model), a contradiction. Thus, M ′ 6|= β1 such that ∃l2 ∈ β1 : l2 /∈M ′. Continuing with the same line
of reasoning, one obtains an infinite sequence {l1, l2, . . .} with (li ∈M)16i and (li /∈M ′)16i. M is
finite (the complete clash-free completion structure has been constructed in a finite number of steps,
and when constructing M (Vext ) we added only a finite number of atoms to the ones already existing
in V ), thus there must be 1 6 i, j, i 6= j, such that li = lj . We observe that (li, li+1)16i ∈ Eext by
construction of Eext and expansion rule (i), so our assumption leads to the existence of a cycle in Gext .

Assume Gext contains a cycle C = (a1, . . . , an = a1). Then, potentially, the cycle falls into one of the
following categories:

• ‘local’ cycles: cycles in which all unary atoms have identical arguments or there are no unary
atoms.

• ‘blocking’ cycles: non-local cycles which do not contain unary atoms having as arguments cached
nodes.

• ‘caching’ cycles: non-local cycles which have as arguments cached nodes.

Note that G does not contain any cycle (by construction), so every cycle in Gext has to be a result of
the introduction of new nodes/arcs in G: as such, each cycle should contain at least an atom having as
one of its arguments a blocked or cached node. We will show by reductio ad absurdum that each of
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these types of cycles cannot appear in Gext . In the following we consider only elementary cycles as in
the absence of elementary cycles there cannot be any cycles whatsoever.

Lemma 5.15. There are no (elementary) local cycles in Gext .

Proof. Assume C = (a1, . . . , an = a1) is an (elementary) local cycle in Gext . Then C contains
only atoms of the form p(x), and/or f(x, y), for p ∈ upreds(P ), f ∈ bpreds(P ), and x, y ∈ NEF .
Assume x ∈ blocked/cached. Then let z ∈ NEF be such that (x, z) ∈ bl/ch. Then Cx|z =
((a1)x|z, . . . , (an)x|z = (a1)x|z) is a cycle in G. Contradiction with the fact that there are no cycles in
G. 2

To show that there are no elementary blocking cycle in Gext we employ a three step process: the first
two steps restrict the set of possibly cycles by constraining the structure of the argument path of such a
cycle (lemmas 3 and 3).

Lemma 5.16. There is no elementary cycle C in Gext such that its argument path contains a blocking
path from EF : for every x, y ∈ bl such that x, y ∈ T , pathT (x, y) 6⊆ argpath(C).

Proof. Assume pathT (x, y) ⊆ argpath(C). Then, there are two nodes a1, a2 ∈ G, with
args(a1) = x, and args(a2) = and a path Pt ∈ pathsG(a1, a2) such that Pt ∈ C. But this
contradicts with the fact that connprG(x1, x2) = ∅. Thus, the initial assumption was false. 2

Lemma 5.17. Let C be an elementary cycle in Gext which contains a node y such that (x, y) ∈ bl and
x, y ∈ T . Then, pathT (z, y) ∈ argpath(C), where z = x · i and z < y.

Proof. Assume the opposite. As y ∈ argpath(C) and argpath(C) is a cycle, there has to be
an arc of the type (t, y) ∈ argpath(C). Let z2 ∈ pathT (succT (z), y) be such that pathT (z2, y) ∈
argpath(C) and (prevT (z2), z2) 6∈ argpath(C). Every node in pathT (z, y), including z2, has as
incoming arcs the arc from its predecessor in EF and possibly blocking arcs. As (prevT (z2), z2) 6∈
argpath(C), z2 has an incoming blocking arc: let (y2, z2) be such an incoming blocking arc, where
y2 ∈ T and let x2 ∈ T be the corresponding blocking node: (x2, y2) ∈ bl. As (y2, z2) is a blocking
arc, it means that z2 ∈ succT (x2), or in other words x2 = prevT (z2). As z2 ∈ pathT (succT (z), y),
it implies that x2 ∈ pathT (z, prevT (y)).

As y2 ∈ argpath(C) and argpath(C) is a cycle, there has to be an arc of the type (t, y2) ∈
argpath(C). From lemma 3 we know that pathT (x2, y2) 6⊆ argpath(C). Thus, there is a node z3 ∈
pathT (succT (x2), y2) such that pathT (z3, y2) ∈ argpath(C) and (prevT (z3), z3) 6∈ argpath(C).
Like before in the case of z2, z3 has an incoming blocking arc (y3, z3) with (x3, y3) ∈ bl. In this case:
x3 ∈ pathT (x2, prevT (y2)).

The process repeats itself ad infinitum: figure 9 describes it in the general case. One obtains a
sequence of tuples (xi, yi, zi) such that (xi, yi) ∈ bl, xi+1 ∈ pathT (xi, prevT (yi)), zi = succT (xi),
pathT (zi+1, yi) ∈ argpath(C), and (yi, zi) ∈ argpath(C). If yi 6= yj , for every i 6= j, one has an
infinite number of nodes in EF which is a contradiction with the fact that there is a finite amount of
nodes in EF .

If however there exist l < k such that yk = yl, then xl = xl+1 = . . . xk, and (yk, zk)ˆ pathT (zk, yk−
1)ˆ . . .ˆ (yl+1, zl)ˆ pathT (zl+1, yl = yk) is a cycle in Gext strictly included in C. This contradicts
with the fact that C is an elementary cycle (see Figure 10).
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Figure 9: Splitting blocking paths: infinite division
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Figure 10: Splitting blocking paths: the case where x2 = x3 = x4 and y2 = y4: z4, y3, z3, y2, z4 form a cycle
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Figure 11: If (t, z) is a blocking arc, (x, t) is a blocking pair, and the content of (t, z) is justified similarly to
the content of (x, z), then pathsG(t, y) = pathsG(x, y)

Thus, in both cases we obtained a contradiction, and the initial assumption was false.

Lemma 5.18. There are no elementary blocking cycles in Gext .

Proof.

Assume C = (a1, . . . , an = a1) is a blocking cycle in Gext which contains a blocked node y ∈ T :
(x, y) ∈ bl. Then, from lemma 5.14 argpath(C) is a cycle in EF

′
. Also, according to lemma 3

argpath(C) does not contain pathT (x, y), but according to lemma 3 it does contain pathT (z, y),
where z = succT (x). As z ∈ argpath(C), argpath(C), and (x, z) 6⊆ argpath(C) there has to be a
blocking arc of the type (t, z) ∈ argpath(C). The situation is described in Figure 11.

Due to the construction of argpath(C), there have to be unary predicates p, q, r ∈ upreds(P ) such
that (p(t), q(z)) ∈ Aext and (q(z), r(y)) ∈ connG. But, as prevT (z) = x, (x, t) is a blocking pair,
and (p(t), q(z)) ∈ Aext implies (p(x), q(z)) ∈ A. Together with (q(z), r(y)) ∈ connG it implies that
(p(x), q(z)) ∈ connG, and thus (p, q) ∈ connprG(x, y), which is in contradiction with (x, y) ∈ bl.
Thus, the initial assumption was false and Gext does not contain any elementary blocking cycle.

Lemma 5.19. Let C be an elementary caching cycle in Gext for which argpath(C) contains a cached
node y such that (x, y) ∈ ch and for every pair (s, t) ∈ ch, with s, t ∈ T : rightT (s, x) or t 6∈ C.
Then, pathT (z · i, y) ⊆ argpath(C), where z = commonT (x, y) and z < z · i 6 y.

Proof.

Assume that argpath(C) does not contain pathT (z · i, y). As y ∈ argpath(C) and argpath(C) is a
cycle, there has to be an arc of the type (t, y) ∈ argpath(C). Let z2 ∈ pathT (succT (z · i), y) be such
that pathT (z2, y) ∈ argpath(C) and (prevT (z2), z2) 6∈ argpath(C). Every node in pathT (z, y),
including z2, has as incoming arcs the arc from its predecessor in EF and possibly blocking and/or
caching arcs. (prevT (z2), z2) 6∈ argpath(C), so z2 must have either an incoming caching arc or an
incoming blocking arc which is part of argpath(C).
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Figure 12: Splitting blocking paths in a potential caching cycle

• (i) Assume z2 has an incoming caching arc (*). Then, there is a caching pair (prevT (z2), t)
and prevT (z2) is a caching node. We have that prevT (z2) ∈ pathT (z · i, prevT (y)) and thus
z2 >T z · i. At the same time x > z and due to the expansion and caching strategy rightT (y, x).
Thus: x = z · j · s, for some s ∈ 〈N∗〉, and j ∈ N∗, so it holds that rightT (z2, x). This in
contradiction to the fact that x is the right-est caching node in argpath(C). Thus (*) was false,
and there are no incoming caching arcs to z2 which are part of argpath(C).

• (ii) Assume z2 has an incoming blocking arc. Then, there is a blocking pair (x2 = prevT (z2), y2)
and x2 is a blocking node with: x2 ∈ pathT (z · i, prevT (y)). As there is no cycle which contains
a blocking path, pathT (x2, y2) is not part of the cycle. The argument follows similarly to the
argument in the proof of lemma 3: a sequence of tuples (xi, yi, zi) is constructed with similar
properties as in the other lemma. This situation is described in Figure 12. The only difference to
lemma 3, is that we always have to show that (xi, yi) cannot be a caching path, which is done
similarly to item (i). As in the proof of lemma 3 we eventually reach a contradiction.

Thus, in both cases we reach a contradiction, and the original assumption was false: pathT (z · i, y) ⊆
argpath(C). 2

Lemma 5.20. Let C be an elementary caching cycle in Gext such that its argument path contains n+1
distinct caching nodes, for n ∈ N. Then, there is an elementary cycle in Gext such that its argument
path contains n distinct caching nodes.

Proof. Let Pt = argpath(C). Let (x, y) ∈ ch such that: y ∈ Pt, and for every pair (s, t) ∈ ch,
with s, t ∈ T : rightT (s, x) or t 6∈ C. Then, according to lemma 5.19: pathT (z · i, y) ⊆ Pt, where
z = commonT (x, y). In the following we show how to transform C in a cycle which does not contain
y. (x, y) is a caching pair, so there must be a successor of x in T , x · j, such that (y, xj) ⊆ Pt.

There are two distinct cases:
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Figure 13: Reducing the number of cached nodes which appear in atoms in a cycle of G: (x, y) ∈ ch and y is
eliminated.

• (i) pathT (z, y) ⊆ Pt: let Pt1 = pathT (z, y)ˆ(y, x · j) and Pt2 = pathT (z, x · j). Then, for ev-
ery path Pg1 ∈ pathsGext (p(z), q(x·j)), for some p, q ∈ upreds(P ), such that argpath(Pg1) =
Pt1, there is a path Pg2 ∈ pathsGext ( p(z), q(x · j)), such that argpath(Pg2) = Pt2. This fol-
lows from the fact that connprG(z, y) ⊆ connprG(z, x) and connprG(y, x·j) = connprG(x, x·
j) (from the caching condition and construction of Gext ).
Thus, a path Pg ∈ pathsGext with argpath(Pg) = pathT (z, y)ˆ(y, x · j)ˆR, for some
R ∈ pathsGext , is a cycle iff there is another path Pg′ ∈ pathsGext with argpath ( Pg′) =
pathT (z, y)ˆ(y, x · j)ˆR, which is is a cycle. argpath(Pg′) does not contain cached node y
and does not introduce any new cached node, so, it decreases the number of cached nodes in
the cycle. Figure 13 depicts this case: the thick lines are the part from argpath(Pg) which is
replaced with pathT (z, x · j).
• (ii) pathT (z · i, y) ⊆ Pt, but pathT (z, y) 6⊆ Pt: in this case z · i has an incoming blocking or

caching arc (t, z · i), which translates in its predecessor z being a blocking or caching node and
(z, t) ∈ bl ∪ ch. In either of the cases, (t, z · i) is justified similarly to (z, z · i) and thus one
can obtain an equivalent cycle by substituting t with z in C. The new cycle C ′ = Ct|y fulfills
the condition that pathT (z, y) ⊆ argpath(C ′) and pathT (z, y) ⊆ Pt and thus falls into case (i).
Figure 14 depicts this case: the thick lines are the part from argpath(C) which is replaced with
pathT (z, z · i).

Lemma 5.21. There are no caching cycles in Gext .

Proof. Assume C is a caching cycle in Gext which contains n caching nodes. Then, by repeated
application of lemma 5.20, one obtains a cycle with 0 caching nodes, thus a cycle which is either a
blocking or local cycle. According to lemmas 5.18 and 5.15 there are no such cycles in Gext , thus the
initial assumption is false, and there are no caching cycles in Gext . 2
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x
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z · i

Figure 14: Reducing the number of cached nodes which appear in atoms in a cycle of G: reducing a cycle C
in which (z, z · i) 6⊆ argpath(C) to a cycle in which (z, z · i) ⊆ argpath(C).

5.6 Completeness

Proposition 5.22 (completeness). Let P be a FoLP and p ∈ upreds(P ). If p is satisfiable w.r.t. P , then there
exists a complete clash-free completion structure for p w.r.t. P .

Proof.
First, we introduce an operation which replaces the node y of a completion structure CS = 〈EF , ct,

st, G〉, where EF = (F,ES) and G = (V,A), with a matchable unit completion structure UC = 〈EF ′ =
(F ′, ES′), ct′, st′, G′〉 with root ε. The result of the operation is a new completion structure obtained by (i)
deleting Tc[y] from CS, where y ∈ Tc, and (ii) adding UC instead using the expand operation introduced in
section 4.2, and is denoted with replaceCS(y, UC).

i) The removal of Tc[y] transforms CS as follows:

• ES = ES − {(u, v) | u ∈ Tc[y]};

• ct and st are undefined for {u | u ∈ Tc[y]} ∪ {(u, v) | u ∈ Tc[y]};

• V = V − {a | args1(a) ∈ Tc[y]}, A = A− {(a, b) | args1(a) ∈ Tc[y]};

• Tc = Tc − Tc[y].

ii) The addition of UC: expandCS(x, UC).
If p is satisfiable w.r.t. P then p is forest-satisfiable w.r.t. P (Proposition 3.4). We construct a clash-free

complete completion structure for p w.r.t. P , by guiding the application of the match, blocking, caching,
and redundancy rules with the help of a forest model of P which satisfies p. The proof is inspired by
completeness proofs in Description Logics for tableau, for example in [I. Horrocks and Tobies, 1999], but
requires additional mechanisms to eliminate redundant parts from Open Answer Sets.

Lemma 5.23. Let (U,M) be a forest model for a FoLP P , with the extended forest EF = 〈{Tε}∪{Ta | a ∈
cts(P )},ES 〉, and the labeling function L : {Tε} ∪ {Ta | a ∈ cts(P )} ∪AEF → 2preds(P ) as in definition
3.3. Then, for every node x ∈ U , there is a unit completion structure for P : UC = 〈EF ′,ct, G〉, with
EF ′ = ({Tε′}, ES′), and G = (V,A), which satisfies the following:



INFSYS RR 1843-11-07 31

• y ∈ NEF ′ iff yε′||x ∈ NEF ;

• (ε′, y) ∈ AEF ′ iff (x, yε′||x) ∈ AEF ′;

• ct(ε′) = L(x) ∪ not (upreds(P )− L(x));

• ct(y) ⊆ L(yε′||x) ∪ not (upreds(P )− L(yε′||x)), for every y ∈ NEF ′;

• ct(ε′, y) = L(x, yε′||x) ∪ not (upreds(P )− L(x, yε′||x)), for every y ∈ NEF ′ .

Proof. Follows from the completeness of algorithm A2.

Now we proceed to the actual construction. Let U,M be the forest model which guides the expansion
with EF = 〈{Tε} ∪ {Ta | a ∈ cts(P )},ES 〉, where p ∈ L(ε) and let CS = 〈EF ′,ct, st, G〉 be an initial
completion structure for checking satisfiability of p w.r.t. P with EF ′ = 〈{T ′ε′} ∪ {T ′a | a ∈ cts(P )},ES ′〉,
where p ∈ ct(ε′). We will expand CS in a depth-first fashion (the order of processing trees is not important,
just that their contents are expanded depth-first; the expansions of different trees can also be interleaved).
Always a node with status unexp is selected for expansion.

Let π be a function which relates nodes from the extended forest in the completion structure in construction
to nodes in the forest model: π : NEF ′ → U . We show that at any point during the construction the
following property holds: ‡for every node x ∈ NEF ′ there is a node π(x) ∈ NEF , such that ct(x) ⊆
L(π(x)) ∪ not (upreds(P )− L(π(x))). Intuitively, the positive content of a node/edge in the completion
structure is contained in the label of the corresponding forest model node, and the negative content of a
node/edge in the completion structure cannot occur in the label of the corresponding forest model node.

The property will be proved by induction and it is used at every step of the construction (for nodes for
which it was already proved to hold): as such the induction step coincides with the construction step.

Base case: We set π(ε′) := ε and π(a) := a, for every a ∈ cts(P ). That the induction hypothesis is
fulfilled follows from the way the initial completion structure for p w.r.t. P was defined.

Induction/Construction step: Let x be the node currently selected for expansion in EF ′: st(x) := unexp.
Perform the following operations:

(i) Check whether the blocking or caching conditions are met:

• assume there is a node y ∈ NEF ′ such that (y, x) form a blocking pair. Then mark x as a blocked node
and stop its expansion.

• assume there is a node y ∈ NEF ′ such that (y, x) form a caching pair. Then mark x as a cached node
and stop its expansion.

Naturally, in both cases (‡) still holds, as we have not modified the content of nodes and we also did not
add any new nodes. Note that when applying the blocking or caching rule we no longer use the guidance of
(U,M): (U,M) might justify in a different way the atoms which have x and its successors as one of their
arguments; we are interested in finding a finite representation of a model which satisfies p, not necessarily of
the original model which we used for guidance (actually the soundness proof constructs a non-forest model
from a clash-free complete completion structure).

(ii) If x is neither blocked nor cached, according to the induction hypothesis, there is a node π(x) ∈ NEF

such that ct(x) ⊆ L(π(x)) ∪ not (upreds(P ) − L(π(x))). Let UC be a unit completion structure with
root ε′ corresponding to node π(x) as in Lemma 5.23. UC has the property that ct(ε′′) = L(π(x)) ∪
not (upreds(P ) − L(π(x))) and ct(a) ⊆ L(a) ∪ not (upreds(P ) − L(a)), for every a ∈ cts(P ); this,
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together with the induction hypothesis, implies that x ∈ NEF ′ is matchable with UC. Apply the Match rule
for x and UC.

For every node y added to/updated from EF ′ by addition of UC: y ∈ NEF ′ and (x, y) ∈ AEF ′ , we have
that: ct(y) ⊆ L(yx||π(x)) ∪ not (upreds(P ) − L(yx||π(x))). We set π(y) = yx||π(x), for every such node,
and the induction hypothesis holds.

(ii) Check whether the redundancy rule condition is met: assume there is a node y ∈ NEF ′ such that
(y, x) form a redundancy pair.

Note that unlike the models constructed by our algorithm, arbitrary forest models might contain ’redundant’
nodes (or better said they translate to completion structures which contain such nodes). A redundancy pair
(y, x) signals a redundant computation in the form of the tree in the extended forest from y to x The way to
overcome this is to simply ignore the redundancy when constructing a completion structure. As the redundant
part of the model is first incorporated in the completion structure, when encountering such a redundancy
pair we modify the structure by cutting out the redundant part: y is replaced with x (technically with the
completion structure at x): replaceCS(y, CSx).

As concerns the image of y under π in EF , it is changed to the previous image of x: π(y) := π(x). The
induction hypothesis still holds.

Given that the construction process described above terminates after a finite amount of time, its result is
obviously a clash-free complete completion structure: the extended forest has been constructed by appending
UCS-s to matchable nodes of the forest, no rule can be further applied, all redundant nodes are eliminated,
and every node is expanded, blocked, or cached. Next we show by reductio ad absurdum that the construction
can always be performed in a finite amount of steps.

We show that the number of operations related to constructing a path of the completion structure is
finite. Assume the opposite, that the construction of a path in the structure does not terminate. First, one
can only apply blocking or caching once on every path. Second, every completion structure has a finite
number of nodes (from the Termination theorem). The only possibility for the construction to not terminate
is by application of the redundancy rule an infinite number of times: note that also in this case, the path
in construction should always have a finite number of nodes. Thus, in this case, there will be a repeated
processing of chunks of the forest model which are found to be redundant.

In order to formalize this scenario, we first introduce the notion of relaxed completion structure which is
a completion structure constructed in the usual way, except for the fact that it can contain redundancy pairs:
the redundancy rule is not taken into account. Note that any completion structure is a relaxed completion
structure, while the reciprocal statement is not true.

Lemma 5.24. Let (x, y) and (y, z) be two redundancy pairs in a relaxed completion structure. Then (x, z)
is still a redundancy pair.

Proof. Follows directly from the definition of redundancy pair and transitivity of the subset-equal
relationship. 2

Formally, let (xi, yi)i>0 be the infinite sequence of redundancy pairs which are identified during the
construction process on the same path of the completion structure. Note that these redundancy pairs do not
coexist at any time during the construction process: each time a new pair is identified, previous redundancies
have already been removed. Let also CS0 = 〈EF 0, ct0, st0, G0〉 be a relaxed completion structure which is
constructed similarly to the completion structure in discussion, CS, all steps being the same except that in
the case of CS0 the redundancy rule does not apply. Starting from CS0, we define inductively a sequence
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of relaxed completion structures (CSi)i>0, each one (except for CS0) being obtained from the previous
completion in the sequence by elimination of the redundant part indicated by the redundancy pair (xi, yi).
Formally, CSi = replaceCSi−1(xi−1, CS

i−1[yi−1]). We also introduce the notation ui to denote the new
node in the relaxed completion structure CSi corresponding to u in CS0, also denoted as u0 (if it was not
deleted along the way). We have that for every ui ∈ NEF i :

ui+1 =


ui, if ui 6 xi

ui
yi||xi

if ui > yi

undefined, otherwise

It is clear from the previous identity that for every node u ∈ NEF i , there exists a node v ∈ NEF 0 , such
that u = vi (as nodes are always removed from the original relaxed completion structure). Let ui, vi ∈ NEF 0

be such that xi = ui
i and yi = vi

i , for every i > 0. As each redundancy pair ’appears’ later in the construction
process we have that vi+1 > vi, for every i > 0. As the path in CS0 to which ui and vi belong is infinite
and the result of removing every redundancy pair is a finite pair, an infinite part of the path is eventually
removed. This infinite part is formed from chained pairs of nodes which correspond to redundancy pairs in
some ’future’ relaxed completion structure. The following lemma formalizes this observation.

Lemma 5.25. There is a sequence (ki)i>0 (possibly infinite) such that vki
= uki+1

and an index n > 0 such
that path(vk0 , ukn) is a path of infinite length in CS0.

Proof. We start by constructing a sequence of pairs (vli , uli)l>0 such that vli+1
> uli , for every i > 0.

For this we simply eliminate all pairs (vi, ui) from the original sequence for which there is an index j such
that vj 6 vi < ui < uj . Note that this sequence might be finite. The number of nodes after applying
all transformations corresponding to the redundancy pairs is:

∑
uli

<vli+1
|path(uli , vli+1

)|. This is a finite

number, thus also |{i | uli < vli+1
}| is also finite. We have that

∑
i |path(vli , uli)| is infinite. Depending on

the length of the sequence (vli , uli)l>0 there are two possibilities:

• the sequence is finite: then there must be an index lm such that path(vlm , ulm) is infinite. Let
k0 = kn = m .

• the sequence is infinite: as, |{i | uli < vli+1
}|, there must be an index lm such that uli = vli+1

, for
every i > m. Let k0 = m and kn some arbitrary number at infinite distance from k0.

The following lemma will prove useful in concluding our argument regarding the impossibility of applying
the redundancy rule an infinite number of times when constructing a path in a completion structure guided by
a forest model.

Lemma 5.26. For every i > 0, rank(ui) = rank(vi).

Proof. As (xi, yi) is a redundancy pair, it is clear that rank(ui
i) = rank(vi

i). We show that rank(uj
i ) =

rank(vj
i ) implies rank(uj−1

i ) = rank(vj−1
i ), for every 0 < j 6 i. Figure 15 depicts the possible positions

of uj−1
i , vj−1

i relative to the positions of xj−1 and yj−1. There are two different situations:

• a) yj−1 6 uj−1
i (Figure 15 a)): again this case splits in two subcases:
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CSj−1 :

xj−1

yj−1

uj−1
i

vj−1
i

CSj :

xj−1

uj
i = (uj−1

i )yj−1||xj−1

vj
i = (vj−1

i )yj−1||xj−1

CSj−1 :

uj−1
i

xj−1

yj−1

vj−1
i

CSj :

uj
i = uj−1

i

xj−1

vj
i = (vj−1

i )yj−1||xj−1

a) yj−1 6 uj−1
i b)uj−1

i 6 xj−1

Figure 15: Backward preservation of equal rankings for (uj
i , v

j
i ) pairs.

– rankj(u
j
i ) = rankj(xj−1) = k: then, there exist a, b ∈ upredsP such that rankj(a(xj−1)) =

k and (a, b) ∈ connprGj (xj−1, v
j
i ); this, implies that rankj−1(a(xj−1)) = k and (a, b) ∈

connprGj−1(yj−1, v
j−1
i )(see figure); from the fact that (xj−1, yj−1) is a redundancy pair, it

results that: rankj−1(a(yj−1)) = k and together with (a, b) ∈ connprGj−1(yj−1, v
j−1
i ), it

results rankj−1(b(v
j−1
i )) = k, thus rankj−1(v

j−1
i ) = k = rankj−1(u

j−1
i );

– rankj(u
j
i ) > rankj(xj−1): similar to the previous case;

• b) uj−1
i 6 xj−1 < yj−1 < vj−1

i (Figure 15 b)): in this case, rankj(u
j
i ) = rankj(xj−1) = k. Then

there exists a, b, c ∈ upreds(P ) such that rankj(a(u
j
i )) = k, (a, b) ∈ connprGj (u

j
i , xj−1), and

(b, c) ∈ connprGj (xj−1, v
j
i ).

From the figure, one can see that rankj−1(xj−1) = k. As (xj−1, yj−1) is a redundancy pair,
rankj−1(yj−1) = k. If (a, b) ∈ connprGj−1(u

j−1
i , xj−1) and rank (a(uj−1

i )), then (a, b) ∈
connprGj−1(u

j−1
i , yj−1) (again from the redundancy of (xj−1, yj−1)).

From lemma 5.25 and 5.26 it results that there is a sequence of nodes (uki
, vki

)06i6n such that uki
=

vki+1
, and rank(uki

) = rank(vki
) = r, for every 0 6 i 6 n and the path path(uk0 , vkn) is infinite. As

rank(uk0) = rank(vk0) = r, this implies that there is a path of infinite length of rank r in G0. As G0

reflects the dependencies between the atoms in the forest model, this is equivalent to the existence of an atom
in the forest model which is motivated by an infinite chain of atoms in the model. This contradicts with the
fact that any atom in an open answer set is justified in a finite number of steps[Heymans et al., 2006, Theorem
2]. Thus, the construction of a complete clash-free completion structure from a forest model does terminate.
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5.7 Complexity

Proposition 5.10 implies the following complexity result for our algorithm A3:

Proposition 5.27. A3 runs in the worst case in non-deterministic exponential time.

However, one can transform the algorithm to a deterministic procedure which can be executed in
exponential time. The deterministic procedure which we will call DET −A3 consists in constructing an
AND/OR extended forest with depth double in the size of the largest depth encountered when running the
nondeterministic algorithm. At odd levels, there are OR nodes with unexpanded content (they contain just the
constraints imposed by their predecessor or the predicate checked to be satisfiable in case of one root node
and an empty set for the other root nodes), while at even levels, there are AND saturated nodes which are
‘realizations’ of their predecessor, i.e., they (together with their outgoing arcs and direct successors) describe
a possible way to expand the predecessor node. For every OR node, each of its ‘realizations’ spawns a new
copy of the graph G. We call such a structure an AND/OR completion structure.

Blocking and caching are applied by considering only pairs of AND nodes in the extended forest. For
simplicity, we consider the stricter caching condition used in the proof of lemma 5.10.

A leaf of the AND/OR extended forest is labeled with false if it is unexpanded and it is not a blocked or
cached node, with true if it is a blocked node, and it is labeled with the label of its corresponding caching
node otherwise (if the leaf is cached node). A predicate p is satisfiable in such a structure if the root node
of every tree in the structure evaluates to true. In this case the structure is called a successful AND/OR
completion structure. The evaluation can be done straightforwardly as the evaluation of a caching node
does not depend on the evaluation of its cached done due to the fact that, like before, the extended forest is
constructed in a depth-first manner.

Proposition 5.28. DET −A3 is sound, complete, and runs in the worst case in deterministic exponential
time.

Proof Sketch.
Soundness
From a successful AND/OR completion structure we construct a clash-free complete completion structure.
For every pair (S, r) for which there is at least a node x in the extended AND/OR forest with ct(x) = S

and rank(x) = r, let x(S,r) be the ’witness’ AND node for (S, r), i.e. the node which is expanded and which
will be a caching node in every caching pair of nodes with profile (S, r).

Assume that the root node of every tree in the successful deterministic structure evaluates to true. For
every OR node, pick a successor which is true and add it to the completion structure in construction. For
every AND node y, if it is blocked or expanded, simply add it to structure in construction. If y is cached and
x(ct(y),rank(y)) has not been added to the completion structure in construction, copy x(ct(y),rank(y)) instead
of y to the structure.

Completeness
From a clash-free complete completion structure we construct a successful AND/OR completion structure.

At every OR node we always add as the first successor of the node the unit completion structure chosen when
constructing the clash-free complete completion structure. It is easy to see that a deterministic structure
constructed in such a way is successful.

Complexity
Using a similar argument as in lemma 5.10 one can show that the size of a successful deterministic

structure is still exponential in the size of P : clearly the depth of the AND/OR extended forest is still
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exponential in the size of P (it is double the depth of the deepest complete completion structure constructed
using the nondeterministic algorithm) and the caching argument still holds.

Thus, satisfiability checking of a unary predicate p w.r.t. a FoLP P can be evaluated in exponential time
in the size of P . This, together with the fact that the same task is EXPTIME-hard [Feier and Heymans, 2009],
implies that the problem is EXPTIME-complete. With this we close an existing gap regarding the complexity
of reasoning with FoLPs and f-hybrid knowledge bases.

Proposition 5.29. Satisfiability checking of a unary predicate p w.r.t. a FoLP P is EXPTIME-complete.

Finally, this result translates in a similar result concerning f-hybrid knowledge bases. f-hybrid knowledge
[Feier and Heymans, 2009] are a tight combination of FoLPs and the DL SHOQ. As SHOQ is known to
be EXPTIME-complete, it follows that f-hybrid knowledge bases are EXPTIME-hard. We also know that
reasoning with f-hybrid knowledge bases can be reduced to reasoning with FoLPs. Thus, it can be deduced
that they are EXPTIME-complete.

Proposition 5.30. Satisfiability checking of a unary predicate p/concept C w.r.t. an f-hybrid knowledge base
KB is EXPTIME-complete.

6 Conclusions: Reasoning with FoLPs and Beyond

6.1 Discussion

We presented an optimal worst case algorithm for reasoning with Forest Logic Programs. The algorithm
exploits the forest model property of the fragment and builds on techniques introduced in the previous year
of the project, like pre-computing all possible building blocks of a model in the form of trees of depth
1. However due to the introduction of new termination techniques, the worst case complexity drops one
exponential level compared to its previous variants: from double exponential time to exponential time.

Thus, while FoLPs can simulate reasoning with the DL SHOQ, and allow for additional features like a
minimal model based semantics and a cleaner syntax, the worst case reasoning complexity stays the same.
As reasoning with the tight combination of FoLPs and SHOQ ontologies, f-hybrid knowledge bases, can be
reduced to reasoning with FoLPs, the algorithm can be employed also for reasoning with f-hybrid knowledge
bases. It also establishes that satisfiability checking w.r.t. f-hybrid knowledge bases is EXPTIME-complete.

While not mentioned explicitly here,A2 also identifies and eliminates so-called redundant unit completion
structures: these are structures which are strictly less general than others, so they can always be replaced in a
model with other more general structures. Assuming that the new algorithm A3 also employs this technique
of discarding redundant unit completion structures, it addresses computational redundancy issues across
three orthogonal axis: (i) local redundancy: eliminating redundant unit completion structures eliminates local
redundancy, i.e. redundancy among the successors of a single node, (ii) redundancy along a path: achieved
by means of the redundancy rule, and (iii) redundancy across paths: achieved by means of the caching rule.

6.2 Related Work

Datalog± [Calı̀ et al., 2009b,a] is an extension of Datalog which can simulate some DLs from the DL-Lite
family [Calvanese et al., 2007]. The extension consists in allowing a special type of rules with existentially
quantified variables in the head, called tuple generating dependencies (TGDs). Note that our free rules are
different from TGDs, as they allow for universally quantified variables which do not appear in the body of
the rule to appear in the head.
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The formalism is undecidable in the general case. Like in the case of OASP, several syntactical restrictions
have been imposed on the shape of TGDs in order to regain decidability. Two such restrictions are: (1)
every rule should have a guard, an atom which contains all variables in the rule body, giving rise to guarded
Datalog±, and (2) every rule should have a singleton body atom, giving rise to linear Datalog±. The
guardedness condition has been relaxed to weakly-guardedness, where the weak guard has to contain only
the variables in the body that appear in so-called affected positions, positions where newly invented values
can appear during reasoning [Calı̀ et al., 2008]. Reasoning relies on a proof technique from database theory,
the chase algorithm, which repairs databases according to the set of dependencies.

Some further generalizations to the guarded fragment of Datalog± are so-called sticky sets of TGDs
[Calı̀ et al., 2010a], weakly-sticky sets of TGDS, and sticky-join sets of TGDs [Calı̀ et al., 2010b] which
generalize both sticky sets and linear TGDs. All these fragments are defined by imposing restrictions on
multiple occurrences of variables in rule bodies. The syntactical restrictions on rules bodies are orthogonal
to the ones we imposed for achieving decidability on FoLPs: neither Datalog± rules are enforced to have
a tree-shape like FoLPs, nor variables in FoLP rules have to fulfill the conditions required for the different
sets of TGDs to belong to one of the previously mentioned decidable fragments of Datalog±. TGDs do not
contain negation. However, so-called stratified normal TGDs have been introduced, which are TGDs whose
body atoms can appear in a negated form together with a semantics in terms of canonical models. FoLPs
support full negation as failure (under the stable models semantics).

6.3 Future Work

We presented a worst-case optimal tableau algorithm for reasoning with FoLPs. From a practical point of
view, FoLPs are interesting as they allow the simulation of reasoning with SHOQ ontologies, while at the
same time having a nonmonotonic semantics. From a theoretical point of view, the stable model semantics
combined with the open domains of interpretation gave rise to unusual challenges as concerns termination
conditions for a tableau algorithm. The knowledge compilation technique in [Feier and Heymans, 2010]
also defines and eliminates redundant unit completion structures, which are structures which are strictly less
general than others. As such, they can always be replaced in a model with other more general structures.
As the new algorithm can also reuse that optimization, it addresses computational redundancy issues across
three orthogonal axis: (i) local redundancy: be eliminating the set of redundant unit completion structures (ii)
redundancy along a branch: by means of the redundancy rule, and (iii) redundancy across branches: means
of the caching rule.

Among rule-based formalisms, one which allows for unsafe rules is Datalog± [Calı̀ et al., 2009b,a], an
extension of Datalog which can simulate some DLs from the DL-Lite family [Calvanese et al., 2007]. The
extension consists in allowing a special type of rules with existentially quantified variables in the head, called
tuple generating dependencies (TGDs).

The formalism is undecidable in the general case. Like in the case of OASP, several syntactical restrictions
have been imposed on the shape of TGDs in order to regain decidability. Such restrictions are: (1) every rule
should have a guard, an atom which contains all variables in the rule body, giving rise to guarded Datalog±,
and (2) every rule should have a singleton body atom, giving rise to linear Datalog±. The guardedness
condition has been relaxed to weakly-guardedness, where the weak guard has to contain only the variables
in the body that appear in so-called affected positions, positions where newly invented values can appear
during reasoning [Calı̀ et al., 2008]. Reasoning relies on a proof technique from database theory, the chase
algorithm, which repairs databases according to the set of dependencies. The guarded fragment of Datalog±

has been generalized to so-called sticky sets of TGDs [Calı̀ et al., 2010a], weakly-sticky sets of TGDS, and
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depth = d

rank = d

p(x)

q(x1) s(x2)

r(x)

Figure 16: Computing the rank of a node in the presence of backward arcs in the tree

sticky-join sets of TGDs [Calı̀ et al., 2010b]: the fragments are defined by imposing restrictions on multiple
occurrences of variables in rule bodies. These restrictions are orthogonal to the ones we imposed for achieving
decidability on FoLPs: neither Datalog± rules are enforced to have a tree-shape like FoLPs, nor variables
in FoLP rules have to fulfill the conditions required for the different sets of TGDs to belong to one of the
previously mentioned decidable fragments of Datalog±.

A formalism related to FoLPs is FDNC [Šimkus and Eiter, 2007]. FDNC is an extension of ASP with
function symbols which as FoLPs has the forest model property. FDNC rules are required to be safe unlike
FoLP ones and as such they are amenable to a bottom-up reasoning technique. The complexity for standard
reasoning tasks for FDNC is EXPTIME-complete and worst-case optimal algorithms are provided.

Another interesting fragment of Open Answer Set Programming which has been proved to be decidable
is Conceptual Logic Programs under the Inverted World Assumption. The fragment has the tree model
property and can simulate the description logic SHIQ. Conceptual Logic Programs (CoLPs) are FoLPs
in which constants are disallowed. The Inverted World Assumption refers to the fact that the signature of
the programs is such that for every binary f , there exists an inverse binary predicate f i; semantically, the
assumption refers to the following condition: for every Open Answer Set (U,M), and for every binary
predicate f it holds that: f i(x, y) ∈M iff f(y, x) ∈M . IWA is equivalent to adding f (X ,Y )← f i(Y ,X )
and f i(Y ,X )← f (X ,Y ) to the original program and evaluating it under the usual semantics.

In [Heymans et al., 2006] satisfiability checking w.r.t. IWA has been reduced to checking emptiness of a
two-way alternating tree automata. However, there is no practical algorithm for dealing with such programs.
We plan to investigate how the algorithm A3 can be adapted for reasoning with CoLPs under IWA: the
non-trivial part of such an adaptation consists in dealing with the IWA. A natural step in this direction is to
generalize the notion of UCS to UCS under IWA: a UCS would be still an extended tree with depth 1, but
the root can have an outgoing arc to its predecessor. Matching UCSs consists in this case in a double match
(between 2 pairs of successor nodes). We conjecture that any arbitrary tree model of a CoLP under IWA
can be reduced to an exponential size structure which can then be unraveled to a finite bounded size model
by applying similar transformations to the ones used for reducing a FoLP model in the completeness proof.
However, it is questionable whether the classical tableau approach still works. In the presence of backwards
arcs in the forest (from nodes to their predecessors), the rank of a node/atom is no longer a function of
predecessor nodes: it might be needed to traverse the whole structure in order to compute it. Figure 16 gives
an example where the rank of a node depends on the content of one of its neighbors: both x · 1 and x · 2 are
the successors of x in a tree, while the arcs depicted in the figure are arcs in the atom dependency graph of
the constructed model. Before fully expanding x · 1 there is no path in G from a predicate with argument x to
a predicate with argument x · 2, and thus the rank of x · 2 is d+ 1. However after fully expanding x · 1, the
rank of x · 2 is d.

One possibility would be to generate a completion structure with size within the computed bound and
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check whether the completion structure is clash-free and complete. Formal proofs for reasoning with this
fragment are subject of future work.

Further on, we plan to formally define the fragment of FoLPs under the IWA and to investigate reasoning
with this fragment. Such a fragment would allow the simulation of the expressive DL SHOIQ.
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