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Abstract. In order to meet usability requirements, most logic-based applications provide
explanation facilities for reasoning services. This holds also for DLs, where research has
focused on the explanation of both TBox reasoning and, more recently, query answering.
Besides explaining the presence of a tuple in a query answer, it is important to explain
also why a given tuple is missing. We address the latter problem for (conjunctive) query
answering over DL-Lite ontologies, by adopting abductive reasoning, that is, we look for
additions to the ABox that force a given tuple to be in the result. As reasoning tasks we
consider existence and recognition of an explanation, and relevance and necessity of a
certain assertion for an explanation. We characterize the computational complexity of these
problems for subset minimal and cardinality minimal explanations.
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1 Introduction

Query answering over ontologies formulated in Description Logics (DLs) has received considerable
attention in both research and industry. Given an ontology, users pose queries over the conceptual
schema and get answers that take into account the constraints specified at the conceptual level.
Many efforts have concentrated on lightweight DLs. For instance DL-LiteA, the language at the
basis of the OWL 2 QL profile [Motik et al., 2009], has been tailored for query answering over
large data sets [Calvanese et al., 2009]. In this setting, expressive power is traded in favour of a
better computational behaviour in terms of data-complexity. In fact, conjunctive query answering in
DL-LiteA enjoys FO-rewritability, i.e., it can be reduced to the problem of evaluating a suitable FO
query over a database instance.

In order to meet usability requirements set by domain users, most logic-based applications
provide explanation algorithms for reasoning services. This holds also for DLs, where research
has focused on the explanation of TBox reasoning (cf. [McGuinness and Borgida, 1995; Borgida,
Franconi, and Horrocks, 2000; Penaloza and Sertkaya, 2010; Horridge, Parsia, and Sattler, 2008]).
Additionally, the problem of explaining positive answers to conjunctive queries over DL-LiteA
ontologies has been studied in [Borgida, Calvanese, and Rodrı́guez-Muro, 2008], where a procedure
for computing the reasons for a tuple to be in the answers to a query is outlined. The same paper
advocates the importance of computing explanations also for the absence of query answers. To
the best of our knowledge, in the literature, the problem of explaining negative answers has been
considered only for relational databases extended with provenance information. In particular,
[Chapman and Jagadish, 2009] studied the problem of determining the database operations that
prevented a given tuple to be in the answers to the query. Also, [Huang et al., 2008] focused on
computing database updates fixing missing answers to given SQL queries. Unfortunately, typical
ontologies do not provide provenance information and, thus, negative query answers can not be
explained by adapting one of the available solutions.

For this reason, we formalize the problem of explaining the absence of a tuple in the context
of query answering over DL ontologies. We adopt abductive reasoning [Eiter and Gottlob, 1995;
Klarman, Endriss, and Schlobach, 2011], that is, we consider which additions need to be made
to the ABox to force the given tuple to be in the result. More precisely, given a TBox T , an
ABox A, and a query q, an explanation for a given tuple ~c is a new ABox E such that the answer
to q over 〈T ,A ∪ E〉 contains ~c. An important aspect in explanations is to provide users with
explanations that are simple to understand and free of redundancy, hence as small as possible. To
address this requirement, we study various restrictions on explanations, in particular, we focus on
subset minimal and cardinality minimal ones. We consider standard decision problems associated
to logic-based abduction: (i) existence of an explanation; (ii) recognition of a given ABox as being
an explanation; (iii) relevance and (iv) necessity of an ABox assertion, i.e., whether it occurs in
some or all explanations. Additionally, it is important to allow one to restrict the signature of
explanations. This can be used to consider only solutions that do not extend the ABox vocabulary:
an important property in the context of accessing relational databases through ontologies, where
database instances are defined over a small, fixed, vocabulary, and the terminological component is
used to enrich that vocabulary. The idea of restricting the explanation signature is an adaptation of a
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concept introduced in [Baader et al., 2010], which studies among others the CQ-emptiness problem.
That is, given a query q over a TBox T decide whether for all ABoxes A over a given signature
Σ, we have that evaluating q over 〈T ,A〉 leads to an empty result. In our framework, deciding the
existence of an explanation generalizes the CQ non-emptiness problem. In fact, deciding whether
there exists an explanation for a negative answer amounts to check whether a query admits a
solution w.r.t. a TBox T and an ABoxA. In the following we sketch algorithms to solve the relevant
reasoning tasks and give a precise characterization of their computational complexity for DL-LiteA.
The complexity results for the various reasoning tasks are summarized in Table 1.

2 Preliminaries
DL-LiteA. DL-LiteA is a member of the DL-Lite family of DLs [Calvanese et al., 2009], which
have been designed for dealing efficiently with large amounts of extensional information. Let
NC , NR, NI be, respectively, countably infinite sets of concept, role, and constant names. In the
following, when the distinction between concept and role names is inessential, we refer to them as
predicate names. Then in DL-LiteA, concept expressions (or, concepts) C, denoting sets of objects,
and role expressions (or, roles) R, denoting binary relations between objects, are formed as follows:

C −→ A | ∃R, R −→ P | P−,

where A is a concept name from NC and P a role name from NR
1. In a DL-LiteA ontology

O = 〈T ,A〉, the TBox T consists of axioms of the form:

C1 v C2,
C1 v ¬C2,

R1 v R2,
R1 v ¬R2, (funct R),

where the first row consists of positive inclusions among concepts or roles, while the second row
contains disjointness axioms among concepts or roles and functionality assertions on roles. The
ABox A consists of assertions of the form A(c) and P (c, c′), where c, c′ are constants in NI .

The semantics of DL-LiteA, as usual in DLs, is based on first-order interpretations I = (∆I , ·I).
We adopt the unique name assumption (UNA), i.e., for every interpretation I and constant pair
c1 6= c2, we have cI1 6= cI2 . An interpretation I is a model of O = 〈T ,A〉, if it satisfies all the
axioms in the TBox T and all the assertions in the ABox A. We call O consistent if it admits at
least one model.

Queries. Let NV be a countably infinite set of variables. Expressions A(t) and P (t, t′) are called
atoms, where t, t′ ∈ NV ∪ NI . A conjunctive query (CQ) q of arity n ≥ 0 is an expression
q(x1, . . . , xn) ← a1, . . . , am, where each ai, i ∈ {1, . . . ,m}, is an atom. We consider safe CQs,
i.e., each xi, for i ∈ {1 . . . , n}, occurs in at least one of the atoms of the query. Let NV (q) denote
the set of variables occurring in q, NI(q) the set of constants in q, and let at(q) =

⋃
1≤i≤m{ai}. A

match for q in an interpretation I is a mapping π : NV (q) ∪NI(q)→ ∆I such that
1We ignore here the distinction between data values and objects present in DL-LiteA and OWL 2 QL, since it is

immaterial for our results. That is, we do not consider value domains and attributes.
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(i) π(c) = cI for all c ∈ NI(q),
(ii) π(t) ∈ AI for each A(t) ∈ at(q), and

(iii) 〈π(t), π(t′)〉 ∈ P I for each P (t, t′) ∈ at(q).
The tuple 〈x1, . . . , xn〉 is the tuple of answer variables of q. The answer to q over I, denoted
ans(q, I), is the set of all n-tuples 〈d1, . . . , dn〉 ∈ (NI)

n such that 〈dI1 , . . . , dIn〉 = 〈π(x1), . . . , π(xn)〉,
for some match π for q in I. A CQ of arity 0 is called Boolean, and returns as answer either ∅ or
the empty tuple 〈〉. We will write a Boolean CQ simply as a set of atoms. A union of conjunctive
queries (UCQ) is a set of CQs of the same arity. For a UCQ q, we let ans(q, I) =

⋃
q′∈q ans(q

′, I).
The certain answer to a CQ or a UCQ q of arity n over O is defined as cert(q,O) = {~c ∈ (NI)

n |
~c ∈ ans(q, I), for each model I of O}.

Complexity Theory. We briefly outline the definition of some non-canonical complexity classes
used in the paper, and refer to [Papadimitriou, 1994] for more details. The class ΣP

2 is a member
of the Polynomial Hierarchy; it is the class of all decision problems solvable in non-deterministic
polynomial time using an NP oracle. The class PNP

‖ contains all the decision problems that can
be solved in polynomial time with an NP oracle, where all oracle calls must be first prepared and
then issued in parallel. The class DP contains all problems that, considered as languages, can
be characterized as the intersection of a language in NP and a language in CONP. It is believed
that PTIME ⊆ NP ⊆ DP ⊆ PNP

‖ ⊆ ΣP
2 is a strict hierarchy of inclusions. Here we make such an

assumption.
In the following, we will use [i..j] to denote the integer interval {i, . . . , j}.

3 Explaining Negative Query Answers

In this paper we deal with the following problem:

Definition 1. Let O = 〈T ,A〉 be a DL-LiteA ontology, q(~x) a UCQ, and ~c a tuple of constants of
arity |~x|. Further, assume a set Σ ⊆ NC ∪ NR. We call P = 〈T ,A, q,~c,Σ〉 a Query Abduction
Problem (QAP). An explanation for (or, a solution to) P is an ABox E such that:

(i) the concept and role names of E are contained in Σ,
(ii) the ontology O′ = 〈T ,A ∪ E〉 is consistent, and

(iii) ~c ∈ cert(q,O′).
The set of all explanations for P is denoted by expl(P). If Σ = NC ∪ NR, we say that P has an
unrestricted explanation signature.

The predicates in Σ are the ones allowed in explanations, hence we call them abducible
predicates. If ~c /∈ cert(q,O), we call ~c a negative answer to q over O. Note that a query over the
ontology can have a negative answer only if the ontology is consistent. Also, by condition (ii), if
the ontology is inconsistent then P does not have any explanation. Note also that E may contain
constant names not present in A. Next, we provide an example of a QAP.
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Example 1. Let A be the following set of assertions about a particular university:

DPhil(Anna), DPhil(Beppe),
enroll(Anna,KR), teach(Marco,KR),
enroll(Luca, IDB), teach(Carlo, IDB).

That is, Anna and Beppe are doctoral students. Anna is enrolled in the KR course, which is taught
by Marco, and Luca is enrolled in the introductory DB course (IDB ), which is taught by Carlo.
Now, consider the following TBox T , in standard DL-LiteA syntax, formalizing the university
domain, of which A is a (partial) instance:

∃enroll v Student,
∃enroll− v Course,

DPhil v Student,

∃teach v Lecturer,
∃teach− v Course,
Course v ∃teach−.

T models that objects in the domain of enroll are Students, and objects in the domain of teach are
Lecturers, while objects in the range of enroll or of teach are Courses. Among the students we have
DPhil students. Finally, every Course must be taught by someone.

Now, assume that the university administration is interested in finding all those who are teaching
a course in which at least one of the enrolled students is a doctoral student, which is captured by the
following query:

q(x)← teach(x, y), enroll(z, y),DPhil(z).

Assume that Carlo is expected to be part of the result, i.e., Carlo ∈ cert(q, 〈T ,A〉). This is not the
case, as Luca is the only student of Carlo and he is not known to be a doctoral student. Suppose
that we have complete information on all the predicates but enroll and teach, i.e., only the latter
predicates are abducible. It is easy to see that:

{teach(Carlo,AI ), enroll(Beppe,AI ), enroll(Luca,AI )}

is an explanation for the given negative answer, which suggests the existence of a course, AI , not
present in A.

This example shows that certain explanations may be too assumptive in that they include
assertions that are not required to solve the problem. Indeed, in the example’s explanation there is no
reason to assume that Luca is enrolled in the freshly introduced course on Artificial Intelligence. In
the following, we will examine various restrictions to expl(P) to reduce redundancy in explanations,
achieved by introducing a preference relation among explanations. This relation is reflexive and
transitive, i.e., we have a pre-order among explanations. For such a pre-order � on expl(P), we
write E ≺ E ′ if E � E ′ and E ′ � E .

Definition 2. The preferred explanations expl�(P) of a QAP P under the pre-order �, called �-
explanations, are defined as follows: expl�(P) = { E ∈ expl(P) | there is no E ′ ∈ expl(P) s.t. E ′ ≺
E }, i.e., expl�(P) contains all the explanations that are minimal under �.
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� �-EXIST �-NEC �-REL �-REC

none NP CONP NP NP
≤ NP PNP

‖ PNP
‖ DP

⊆ NP CONP ΣP
2 DP

Table 1: Summary of main complexity results for DL-LiteA explanation (all are completeness
results)

We consider two preference orders that are commonly adopted when comparing abductive
solutions: the subset-minimality order, denoted by ⊆, and the minimum explanation size order,
denoted by ≤. The latter order is defined by E ≤ E ′ iff |E| ≤ |E ′|. Observe that expl≤(P) ⊆
expl⊆(P).

Example 2. {teach(Carlo,AI ), enroll(Beppe,AI )} is a ⊆-explanation in our example, whereas
{enroll(Beppe, IDB)} is a ≤-explanation (and hence also a ⊆-explanation).

We study here the four basic decision problems related to (minimal) explanations [Eiter and
Gottlob, 1995], which are parametric w.r.t. the chosen preference order �.

Definition 3. Given a QAP P , define the following decision problems:

• ≺-EXIST(ENCE): Does there exist a �-explanation for P?

• ≺-NEC(ESSITY): Does a given assertion α occur in all �-explanations for P?

• ≺-REL(EVANCE): Does a given assertion α occur in some �-explanation for P?

• ≺-REC(OGNITION): Is a given ABox E a �-explanation for P?

Whenever no preference is applied (i.e., when � is the identity) we omit to write � in front of the
problems’ names.

In the next section, we study the complexity of these four problems in the light of the different
preference relations.

4 Complexity of Explanations
In Table 1 we give an overview of our complexity results for explanation in DL-LiteA. We measure
the complexity of a QAP P = 〈T ,A, q,~c,Σ〉 in terms of the combined size of T , A, and q, i.e., we
consider combined complexity. Notice that we do not explicitly count the explanation signature
Σ towards the complexity, since when it is restricted, its size is bounded by the size of the other
parameters (see Proposition 2), and when it is unrestricted it is actually countably infinite and
defined outside of the actual problem instance.

We briefly comment the results and provide then the details in the rest of the section. An
algorithm for EXIST can non-deterministically guess an ABox E and check in polynomial time
whether E is an explanation for the given QAP. The NP-hardness is proved by reducing the well-
known problem of finding a homomorphism between two graphs. The latter lower-bound is
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subsequently used to characterize the complexity of REL, NEC, and ⊆-NEC. Differently, ≤-REL and
≤-NEC are harder. The reason being that in order to solve these problems one has to compute first
the minimal size of an explanation and, then, inspect all the explanations of that size. Additionally,
there is another increase in complexity when dealing with ⊆-REL. The intuition is that there is an
exponential number of candidate explanations to examine and for each of them one has to check
that none of its subsets is itself an explanation, which requires a CONP computation. Finally, the
intuition for the NP upper bound of REC is that in order to solve the problem one needs to check
consistency of the explanation with the ontology, and check whether the tuple is in the certain
answer to the query. In case a preference order is in place, one has to check minimality as well.
This check is CONP-hard for ⊆- and ≤-minimality, leading to completeness for DP..

Next, we provide formal proofs of our results. One can prove that all the reductions we provide
can be computed using logarithmic space.

4.1 Existence of Explanations

Before discussing our complexity results, we show that whenever a QAP P = 〈T ,A, q,~c,Σ〉 has
an explanation, then P has an explanation E that is small in two senses.

First, all concepts and roles occurring in E occur either in T or in q. Indeed, we can remove
from an arbitrary explanation all assertions that make use of predicates not in T or in q and all
conditions in Definition 1 continue to be satisfied (the removed assertions are irrelevant for certain
answers and for ontology consistency). Second, E is built from a small number of fresh constants.
This can be shown using the FOL-rewritability of queries in DL-LiteA [Calvanese et al., 2009].

Definition 4. Given an ABox A, let DBA be the interpretation whose domain ∆DBA is the set of
constants occurring in A, and

(i) ADBA = {o | A(o) ∈ A}, for all A ∈ NC ;
(ii) PDBA = {〈o, o′〉 | P (o, o′) ∈ A}, for all P ∈ NR.

Proposition 1. [Calvanese et al., 2009] Let O = 〈T ,A〉 be a DL-LiteA ontology, q a UCQ over O,
and PerfectRef(q, T ) the perfect reformulation of q w.r.t. T , which is a UCQ obtained by applying the
rewrite rules given in [Calvanese et al., 2009]. Then, cert(q,O) =

⋃
r∈PerfectRef (q,T ) ans(r,DBA).

In other words, the certain answers to a UCQ over an ontologyO = 〈T ,A〉 can be computed by
rewriting each CQ qi in it into a UCQ Q′i to be evaluated over A alone, seen as a standard relational
database. From this and Definition 1 it follows that if there is a solution to P , then there exists an
explanation E such that some CQ q′i in Q′i has a match in E ∪ A. Furthermore, |E| is bounded by
|q′i|, while the number of fresh constants in E is bounded by the number of variables in q′i. Indeed, a
match for q′i needs to map only the terms and the atoms occurring in the query. Since it follows
from [Calvanese et al., 2009] that each q′i in Q′i has at most |qi| atoms and 2 · |qi| terms, we obtain:

Proposition 2. Let 〈T ,A〉 be a DL-LiteA ontology. If P = 〈T ,A, q,~c,Σ〉 has an explanation, then
P has an explanation E with concepts and roles only from T and q, at most max(q) atoms, and at
most 2 ·max(q) fresh ABox constants, where max(q) = maxqi∈q |qi|.

We now turn to the complexity of finding explanations.
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Algorithm 1 someExplanation
1: INPUT: QAP P = 〈T ,A, q,~c,Σ〉.
2: OUTPUT: yes iff P has an explanation.
3: Guess an ABox E constructed from Σ using original constants in A and fresh constants
o1, . . . , omax(q).

4: Guess a rewriting r(~c) of q(~c) w.r.t. T .
5: Guess a variable mapping π for r(~c) in DBA∪E .
6: Check that 〈T ,A ∪ E〉 is consistent.
7: Check that π is a match for r(~c) over DBA∪E .

Theorem 3. For DL-LiteA, EXIST, ⊆-EXIST, and ≤-EXIST are NP-complete. NP-hardness holds
already for QAPs with an empty TBox and a CQ.

Proof. Observe that existence of an explanation for a QAP P implies existence of a ⊆-minimal and
a ≤-minimal explanation for P . Thus, we further consider EXIST only.

(MEMBERSHIP) The upper bound follows from guess-and-check Algorithm 1, which is immedi-
ate by Propositions 1 and 2. It guesses non-deterministically a candidate explanation E , a rewriting
r(~c) of q(~c) w.r.t. T 2 and a candidate match for r(~c) in DBA∪E . The algorithm then checks in poly-
nomial time that the ontology 〈T ,A ∪ E〉 is consistent [Calvanese et al., 2009]. Finally, it checks
that π is indeed a match for r(~c) witnessing ~c ∈ ans(r,DBA∪E) and thus ~c ∈ cert(q, 〈T ,A ∪ E〉).

(HARDNESS) In [Baader et al., 2010] the authors show CONP-completeness of CQ-query
emptiness, which is equivalent to checking non-existence of an explanation in QAPs with empty
ABoxes. Hence, the lower bound carries over to EXIST. Their reduction uses a TBox and an acyclic
conjunctive query. We show next that, quite unsurprisingly, NP-hardness of EXIST can be shown
without a TBox, but using a non-empty ABox and (cyclic) conjunctive queries.

We reduce the NP-complete problem of deciding the existence of a homomorphism from
a directed graph G = (V,E) to a directed graph G′ = (V ′, E ′). Assume such a pair 〈G,G′〉
and build a QAP PG,G′ = 〈∅,A, q, 〈〉,Σ〉 as follows. Let A = {e(ca, cb) | (a, b) ∈ E ′} and
q = {e(xa, xb) | (a, b) ∈ E} ∪ {A(o)} with o a constant not occurring in A. Finally, let Σ = {A}.

We claim that there is a homomorphism from G to G′ iff there is a solution to PG,G′ . Indeed,
if there is a homomorphism from G to G′, then {A(o)} is a solution to P . For the other direction,
assume there is an explanation E for P . Since binary atoms are prohibited from occurring in E by
the selection of Σ, there must exist a match π from q to DBA. Such a mapping π also witnesses the
existence a homomorphism from G to G′.

The NP-hardness of EXIST is caused by the restriction of the alphabet over which solutions can
be found. In fact, this forbids us to explicitly encode the body of the query into the ABox, and
forces us to search for a match. However, if the signature is not constrained, i.e., Σ = NC ∪NR,
the problem can be solved in polynomial time. To see this, keep in mind that CQs, seen as FO
formulae, are always satisfiable. Then an explanation does not exist only if the structure of the

2The procedure for guessing the derivation of a rewriting in non-deterministic polynomial time is presented in
[Calvanese et al., 2009].
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query is not compliant with the constraints expressed in the ontology. A naı̈ve method to check
whether a UCQ q is compliant with the ontological constraints is to iteratively go through all the
CQs in q and instantiate them in the ABox, introducing fresh constants for the variables. If for none
of the CQs we obtain a consistent ontology, then the query violates some of the constraints imposed
at the conceptual level. However, we need to take into account that the introduced constants might
not correspond to distinct individuals. Indeed, it can be proved that EXIST is equivalent to the
PTIME-complete consistency problem for DL-LiteA without the unique name assumption [Artale et
al., 2009].

Theorem 4. For DL-LiteA and QAPs with unrestricted signatures, EXIST, ⊆-EXIST, and ≤-EXIST

are PTIME-complete.

Proof. As noted in the proof of Theorem 3, it suffices to show the result for EXIST.
(MEMBERSHIP) Let Σ = NC ∪ NR. Note that P = 〈T ,A, q,~c,Σ〉, with q a UCQ, has an

explanation iff Pq′ = 〈T ,A, q′,~c,Σ〉 has an explanation for some q′ ∈ q. Hence, it suffices to show
the upper bound for CQs. To this end, we provide a logarithmic space reduction to consistency
in DL-LiteA without UNA. Assume a QAP P = 〈T ,A, q,~c,Σ〉 with q a CQ. Take an ontology
O = 〈T ∪ T ′,A ∪ Eq ∪ A′〉 as follows. The ABox Eq is obtained from at(q(~c)) by replacing each
variable x with a fresh constant name ax. The ABoxA′ consists of assertions Ao(o) for all constants
o occurring in A ∪ Eq, where each Ao is a fresh concept name. The TBox T ′ consists of axioms
Ao v ¬Ao′ for all pairs o 6= o′ of constants occurring in A and q(~c). We now show that P has a
solution iff O is consistent.

Assume that P has an explanation E . Then, due to consistency of O′ = 〈T ,A ∪ E〉, there is a
model I of O′ under the UNA. Additionally, I admits a match π for q(~c). Let I ′ be the extension
of I that additionally interprets (i) constants in Eq as aI′x = π(x) for each variable x in q, and
(ii) AI

′
o = {oI} for each freshly introduced Ao. It remains to show that I ′ is a model of O. Observe

that since I is under the UNA, we have that AI′o ∩ AI
′

o′ = ∅, for all constant pairs o 6= o′. Thus I ′
satisfies all the disjointness axioms Ao v ¬Ao′ in T ′. The assertions in A′ are satisfied due to (ii),
and the assertions in Eq due to (i) above.

For the other direction, observe that given any model I of O, an explanation for P can be easily
extraced from I.

(HARDNESS) We sketch a reduction from consistency in DL-LiteA without UNA. Given O =
〈T ,A〉, simply create a QAP P = 〈T , ∅, q, 〈〉, NC ∪NR〉, where q is obtained from A by replacing
each constant a in A by a variable name xa. It is easy to see that O is consistent under UNA iff P
has an explanation.

4.2 Deciding Necessity

The existence of an explanation is most of the times not very informative to the user. In fact, given
a negative answer to a query, it is important to delineate the fundamental reasons leading to the
absence of the expected tuple. That is, users would like to know which assertions necessarily occur
in all the explanations for a QAP P .
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Theorem 5. For DL-LiteA, NEC and ⊆-NEC are CONP-complete. Moreover, for QAPs with
unrestricted explanation signature, NEC and ⊆-NEC are PTIME-complete.

Proof. We consider NEC first.
(MEMBERSHIP) We provide a reduction to non-existence of an explanation, which is CONP-

complete in general, but PTIME-complete for QAPs with unrestricted explanation signature (see
Theorems 3 and 4). Assume P = 〈T ,A, q,~c,Σ〉 and an assertion ϕ(~t). Take a new QAP P =
〈T ′,A′, q,~c,Σ〉, where A′ = A ∪ {ϕ̄(~t)} and T ′ = T ∪ {ϕ̄ v ¬ϕ}, where ϕ̄ is a fresh predicate
name. Intuitively, the models of 〈T ′,A′〉 are exactly the models of 〈T ,A〉 in which ϕ(~t) is false.
The following holds: ϕ(~t) occurs in all explanations for P iff P ′ has no explanation. For the “only
if” direction, assume ϕ(~t) occurs in all explanations for P , and P ′ has an explanation E . Clearly, E
is an explanation for P and ϕ(~t) 6∈ E , which contradicts the assumption. For the other direction,
observe that an explanation E with ϕ(~t) 6∈ E is also an explanation for P ′.

(HARDNESS) We provide a reduction from checking non-existence of an explanation. Assume a
QAP P = 〈T ,A, q,~c,Σ〉 and take A(o), where A and o do not occur in P . The following holds: P
has no explanation iff A(o) occurs in all explanations for P . The “only if” direction is immediate.
For the “if” direction, note that by Proposition 2, if P admits an explanation E , then P also admits
an explanation E ′ restricted to the signature of P , i.e., with A(o) /∈ E ′.

To obtain the completeness result for ⊆-NEC, observe that an assertion α occurs in all ⊆-
minimal explanations for a QAP P iff α occurs in all explanations for P . Thus, NEC and ⊆-NEC

are equivalent.

Now, we consider necessity under the minimum explanation size order and we show that under
common assumptions the problem is harder than NEC. Intuitively, this is because one has to compute
first the minimal size of an explanation and, then, inspect all the explanations of that size.

Theorem 6. For DL-LiteA, ≤-NEC is PNP
‖ -complete. PNP

‖ -hardness holds already for QAPs with an
empty TBox, a CQ, and an unrestricted explanation signature.

Proof. (MEMBERSHIP) Let’s assume a QAP P = 〈T ,A, q,~c,Σ〉 and an assertion α. From Propo-
sition 2, we know that if P has an explanation, then there exists an explanation, whose size m is
polynomial in the number of terms contained in q. Observe that 〈P , α〉 is a negative instance of
≤-NEC iff there is an i ∈ [0..m] such that (a) P has an explanation E with |E| = i and α 6∈ E ,
and (b) E is ≤-minimal. Thus, we use an auxiliary problem SIZE-OUT, which is to decide given a
tuple 〈P ′, α′, n′〉, where P ′ is a QAP, α′ is an assertion, and n′ is an integer, whether there exists
an explanation E ′ for P ′ such that |E ′| = n′ and α′ 6∈ E ′. Furthermore, the problem NO-SMALLER

is to decide, given a tuple 〈P ′, n′〉 of a QAP and an integer, whether there is no explanation E ′ for
P ′ such that |E ′| < n′. Observe that SIZE-OUT is in NP, while NO-SMALLER is in CONP. Take the
tuple S = 〈A0, B0, . . . , Am, Bm〉, where Ai = 〈P , α, i〉 and Bi = 〈P , i〉, for all i ∈ [0..m]. Due to
the above observation, α occurs in all ≤-minimal explanations E for P iff for all i ∈ [0..m], one
of the following holds: (i) Ai is a negative instance of SIZE-OUT, or (ii) Bi is a negative instance
of NO-SMALLER. Note that S can be built in polynomial time in the size of the input, while the
positivity of the instances in S can be decided by making 2m parallel calls to an NP oracle. Thus
we obtain membership in PNP

‖ .
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Figure 1: The structure of AG for a graph G with m vertices. Solid arcs in A` represent assertions
Egde(a, b) inA` introduced in (b). A dashed arc from an ABoxA` to the constant par(`) represents
the collection of assertions that relate each constant in A` to par(`) via the role P .

(HARDNESS) We give a reduction from ODDMINVERTEXCOVER, which is PNP
‖ -complete

[Wagner, 1987]. An instance of this problem is given by a graph G = (V,E), and we are asked
whether the least cardinality over all vertex covers in G is odd. That is, is there an odd integer
k ∈ [1..|V |] such that G has a vertex cover C with |C| = k, and there is no vertex cover C ′ in G
with |C ′| < k?

In the reduction we exploit the following property. Given an integer k and an undirected graph
G = (V,E) with m vertices, construct a new graph G′ = ([1..m], E ′) such that there is an edge
between each i ∈ [1..k] and j ∈ [1..m]. The following holds: if there is an injective homomorphism
h from G to G′, then G has a vertex cover of size k. Indeed, take C = {v ∈ V | h(v) ≤ k}. Due
to injectivity, |C| = k. Assume an arbitrary edge {v1, v2} ∈ E. Since h is a homomorphism, due
to the selection of edges we must have h(v1) ≤ k or h(v2) ≤ k. Then {v1, v2} ∩ C 6= ∅ by the
selection of C.

Assume an arbitrary graph G = (V,E) with vertices V = {v1, . . . , vm}. W.l.o.g., G is
connected, directed, and has at least 2 nodes. We construct next a QAP PG = 〈∅,AG, qG, 〈〉,ΣG〉
and an atom αG such thatG is a positive instance of ODDMINVERTEXCOVER iff αG is≤-necessary
for PG. In the reduction we use constants odd , even , cij , where i, j ∈ [0..m], concept names M , L,
and roles P , 6=, Edge.

Let qG be the Boolean query consisting of atoms
(i) Edge(xi1 , xi2), for each edge (vi1 , vi2) ∈ E,

(ii) 6=(xi1 , xi2), for each i1, i2 ∈ [1..m], i1 6= i2, and
(iii) L(x1), . . . , L(xm) and P (x1, y), M(y).
Intuitively, in (i) we represent the graph G in the query. We will use atoms in (ii) to ensure that
different variables are mapped to distinct elements. The atoms L(xi) will be used to measure the
size of vertex covers, while the atoms P (x1, y) and M(y) will be used to determine their parity. We
allow explanations only over concept names, and thus set ΣG = {M,L}.

To define AG, we first construct a collection A0, . . . ,Am of ABoxes, where each Aj consists of
the assertions
(a) L(cji ), for i ∈ [j..m],
(b) Edge(cji1 , c

j
i2

), for all i1, i2 ∈ [1..m] with i1 ≤ j or i2 ≤ j, and
(c) 6=(cji1 , c

j
i2

), for all i1, i2 ∈ [1..m] with i1 6= i2.
For an integer k, let par(k) = odd if k is odd, and par(k) = even, otherwise. Let A′ =
{P (cji , par(j)) | i, j ∈ [0..m]}. Then AG = A0 ∪ · · · ∪ Am ∪ A′. See Figure 1 for an example.
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Finally, we let αG = M(odd). To prove the correctness of the reduction, we define up(k) =
{L(ck1), . . . , L(ckk),M(par(k))}, and claim the following:

CLAIM 1: If C is a vertex cover in G of size k, then up(k) is an explanation for PG. Let
A∗ = AG ∪ up(k). Since we have no TBox axioms, it suffices to show the existence of a
match π for qG in DBA∗ . Take an enumeration z1, . . . , zm of variables x1, . . . , xm such that
{z1, . . . , zk} = {xi | vi ∈ C}. Take the mapping π such that π(zi) = cki for all i ∈ [1..m], and
π(y) = par(k). Assume an atom Edge(xi1 , xi2) in qG. Due to (b) in the definition of Aj , it suffices
to show that π(xi1) = ck` or π(xi2) = ck` for some ` ≤ k. Indeed, since C is a vertex cover, vi1 ∈ C
or vi2 ∈ C. Then due to the enumeration of variables, xi1 = z` or xi2 = z` for some ` ≤ k. Due to
the definition of π, π(xi1) = ck` or π(xi2) = ck` for ` ≤ k. The atoms 6=(xi1 , xi2) in qG are properly
mapped due to (c) in the construction of Aj and the fact that π is injective by construction. For
an atom L(xi) in qG we have two options. If π(xi) = ck` with ` ≤ k, then L(ck` ) ∈ up(k) by the
definition of up(k). Otherwise, if ` > k, then L(ck` ) ∈ Ak by the definition of Ak. The atom
P (π(x1), π(y)) belongs to A∗ due to the definition of A′, while M(π(y)) ∈ up(k) by construction
of up(k).

CLAIM 2: Assume up(k) is an explanation for PG. Then G has a vertex cover of size k. Let
A∗ = AG ∪ up(k) and let π be a match for qG in DBA∗ . Observe that due irreflexivity of the role 6=
and the atoms (ii) in qG, π must be injective. Observe also that for all ` ∈ [1..m], where ` 6= k, we
have |{c`i | L(c`i) ∈ A`}| < m. Due to the connectedness of G and atoms L(x1), . . . , L(xm) in qG,
π must use only the atoms in Ak ∪ A′ ∪ up(k). That is, π is also a match for qG in DBAk∪A′∪up(k).
Let C = {vi ∈ V | π(xi) = ckn, n ∈ [1..k]}. Then |C| = k due to the injectivity of π. To see that C
is a vertex cover, assume an edge (vi1 , vi2) ∈ E. By construction, qG has the atom Edge(xi1 , xi2).
Since π is a match in DBAk∪A′∪up(k), Edge(π(xi1), π(xi2)) ∈ Ak. Then, by construction of Ak, we
have π(xi1) = ckn or π(xi2) = ckn with n ≤ k. Then by the selection of C, {π(xi1), π(xi2)}∩C 6= ∅.

CLAIM 3: Assume E is a ≤-minimal explanation for PG with size k. Then E = up(k − 1).
Since G is connected and E is ≤-minimal, there exist an index ` ∈ [1..m] such that E ⊆
{L(c`1), . . . , L(c`m),M(par(`))} and there is a match for qG in A` ∪ A′ ∪ E . Since L(c`i) ∈
A` for i ∈ [`+1..m] by the definition of A`, we have by cardinality minimality that E ⊆
{L(c`1), . . . , L(c``),M(par(`))}. By the definition of A`, |{c`i | L(c`i) ∈ A`}| = m − `. Thus,
due to the injectivity of any match π for qG, we must have |{c`i | L(c`i) ∈ E}| ≥ `. Hence,
E = {L(c`1), . . . , L(c``),M(par(`))} = up(`). Since |E| = k, we have ` = k − 1.

We can now finalize the correctness proof:
“⇒” Suppose there exists an odd integer k ∈ [1..|V |] such that G has a vertex cover C with

|C| = k, and there is no vertex cover C ′ in G with |C ′| < k. By CLAIM 1, up(k) is an explanation
for PG. We make sure that up(k) is ≤-minimal. Suppose there exists an explanation E ′ with size
|E ′| < |up(k)|, i.e., |E ′| = ` for some ` ≤ k. We can assume that E ′ is ≤-minimal. Then by
CLAIM 3, E ′ = up(`− 1). It follows from CLAIM 2 that G has a vertex cover of size `− 1. Since
`− 1 < k, we arrive at a contradiction to the assumption that G has no vertex cover of size < k.
Thus up(k) is ≤-minimal. Since k is odd, we have M(odd) ∈ up(k). By CLAIM 3, apart from
up(k) there is no other ≤-minimal explanation for PG. That is, M(odd) occurs in all ≤-minimal
explanations for PG.
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“⇐” Assume M(odd) occurs in all ≤-minimal explanations for PG. By CLAIM 3, we know
that up(k) is the unique ≤-minimal explanation, for some integer k. Since M(odd) ∈ up(k), we
get that k is odd. Then, by CLAIM 2, there is a vertex cover C with size k. It remains to ensure that
there is no vertex cover C ′ of size ` < k. Assume the opposite. Then by CLAIM 1 we have that
up(`) is an explanation with size |up(`)| < |up(k)|, which contradicts the assumption that up(k) is
≤-minimal. Thus G is a positive instance of ODDMINVERTEXCOVER.

The definition of ΣG prohibits binary atoms from occurring in ≤-minimal explanations. The
same effect can be achieved using ΣG = NC ∪ NR and modifying AG and qG to make it pro-
hibitively expensive to have binary atoms in ≤-minimal explanations. Simply replace each binary
assertion r(c, d) in AG by fresh assertions r1(c, d), . . . , rm+2(c, d), and each binary r(x, y) in qG by
r1(x, y), . . . , rm+2(x, y). In this way the lower-bound can be shown for unrestricted explanation
signatures.

4.3 Deciding Relevance

A domain user faced with a negative answer to a query may ask herself whether the absence of a
certain ABox assertion α in the ontology is related with the lack of the tuple in the results. That is,
she would like to know whether α occurs in some explanation to QAP P . First, we consider REL.

Theorem 7. For DL-LiteA, REL is NP-complete. NP-hardness holds already for QAPs with an
empty TBox and a CQ.

Proof. (MEMBERSHIP) This part can be shown by a reduction to EXIST, which we have shown
previously to be NP-complete. For a given QAP P and an assertion α, construct a new QAP P ′
from P by extending the ABox in P with the assertion α. Intuitively, we restrict the search to those
explanations which do not contradict α. Clearly, α is relevant for P iff an explanation for P ′ exists.

(HARDNESS) We can again use a reduction and an argument almost identical to the one in the
proof of Theorem 3. For a pair G,G′ of directed graphs, let PG,G′ be defined as in the proof of
Theorem 3, and let α = A(o). Then there is a homomorphism from G to G′ iff α is relevant for
PG,G′ .

We now turn our attention to ⊆-REL.

Theorem 8. For DL-LiteA,⊆-REL is ΣP
2 -complete. ΣP

2 -hardness holds already for (i) QAPs with an
empty TBox and a CQ, and (ii) QAPs with an empty TBox, a UCQ, and an unrestricted explanation
signature.

Proof. (MEMBERSHIP) Let P = 〈T ,A, q,~c,Σ〉 be a QAP and let α be an ABox assertion. We now
provide an extended version of the algorithm solving existence (see Algorithm 1), which in turn
decides whether α is ⊆-relevant for P . First of all, an ABox E containing α is non-deterministically
guessed. Let HAS-SUBEXPL solve the problem of deciding whether an explanation E has a subset
which is itself an explanation. The problem can be easily proved to be in NP. Then, the algorithm
checks the complement of HAS-SUBEXPL in order to assure that none of the subsets of E is itself an
explanation, from which it follows that α is⊆-relevant. Checking the complement of HAS-SUBEXPL
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can be done in CONP. For this reason, the problem is solvable in non-deterministic polynomial time
by a TM with an NP oracle.

(HARDNESS) We make use of a reduction of the ΣP
2 -complete problem co-CERT3COL [Stewart,

1991] (see also [Bonatti, Lutz, and Wolter, 2009]). An instance of co-CERT3COL is given by a graph
G = (V,E) with vertices V = {1, . . . , n} such that every edge is labeled with a disjunction of two
literals over the Boolean variables {p(i,j) | i, j ∈ [1..n]}. G is a positive instance if there is a truth
value assignment t to the Boolean variables such that the graph t(G) obtained from G by including
only those edges whose label evaluates to true under t is not 3-colorable. Assume an instance G
of co-CERT3COL. We show how to build in polynomial time a QAP PG = 〈TG,AG, qG,~cG,ΣG〉
and an ABox assertion αG such that: G is a positive instance of co-CERT3COL iff αG is ⊆-relevant
for PG. We use an empty TBox and a Boolean query, thus TG = ∅ and ~cG = 〈〉. Let B = {t, f}
denote the set of truth values. The query qG has the following atoms for each edge e = (i, j)
in E: (a) B(xi), Re(xi, ye), Re(ye, xj), B(xj), and (b) P (ye, zpi), Api(zpi), Wpi(zpi , z

′
pi

), where
pi ∈ {p1, p2} and p1, p2 are the first and the second proposition in the labeling of e, respectively.
The query qG simply incorporates G together with the disjunctions on the edges. Observe that if
two edges have the same proposition in their label, then this will be reflected in qG by some shared
variables zpi .

To build AG we use constants cp and c¬p for the truth value of proposition p. Intuitively, the
truth value of p will be determined by either Ap(cp) or Ap(c¬p) being in the explanation. Assume
a tuple ~t = 〈e, v1, v2, a, b〉, where e ∈ E, {v1, v2} ⊆ B, and a, b are constants. Let p1, p2 be the
first and the second propositions of e. For i ∈ {1, 2} and vi = t, let li = pi if pi is positive and
li = ¬pi otherwise. Similarly, for i ∈ {1, 2} and vi = f , let li = ¬pi if pi is positive and li = pi
otherwise. Then, the ABox A(~t) consists of the assertions Re(a, dT ), Re(dT , b), P (dT , cl1) and
P (dT , cl2) depending on the Boolean values in input.

The ABox AG is the union of the following ABoxes:
(A1) A(〈e, v, v′, ai, aj〉) for all e ∈ E, v, v′ ∈ B, i, j ∈ [0..2], and i 6= j;
(A2) A(〈e, f , f , ai, ai〉) for all e ∈ E, and i ∈ [0..2];
(A3) A(〈e, v, v′, b, b〉) for all e ∈ E, v, v′ ∈ B;
(A4) The ABox {B(a0), B(a1), B(a2)};
(A5) The assertions Wp(cp, c¬p) and Wp(c¬p, cp) for all propositions.

Let αG = B(b) and ΣG = {Ap | Ap ∈ qG}∪{B}. It is not too difficult to see thatG is a positive
instance of co-CERT3COL iff there exists an ⊆-explanation E to P such that αG ∈ E . Basically,
definitions (A1)–(A3) encode a triangular structure T in which edges in G that evaluate to false
according to a given truth assignment can be mapped on any edge of T , reflexive edges included.
If an edge of G evaluates to true, then it must be mapped to one of the non-reflexive edges. This
ensures that if G can be mapped to T under truth assignment t, then t(G) is 3-colorable. Instead,
definitions (A4)–(A5) define a cyclic structure C into which any graph G can be embedded. It has
to be noted that the node b is not asserted to be a member of B, hence qG cannot be mapped there
directly with any truth assignment. We see this more formally next:

“⇒” Suppose there is a truth assignment t such that t(G) is not 3-colorable. Let E = {B(b)}∪E1,
where E1 = {Ap(cp) | t(p) = t} ∪ {Ap(c¬p) | t(p) = f}. It remains to argue that E is a ⊆-
explanation to P . It is not hard to see that E is an explanation. Indeed qG matches already in the
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ABox obtained by point (A3) (hint: since B(b) ∈ E , we match qG by mapping all variables of qG
to (interpretation of) b). Suppose there is a smaller explanation E ′ ⊂ E . Observe that E1 ⊆ E ′.
This is because for all propositions p, the symbol Ap does not occur in AG but does occur in qG.
Then, E \ {B(b)} must be an explanation. If this is the case, then qG can be matched in AG without
the ABox from (A3), i.e., in the triangle part. Then t(G) is 3-colorable, which contradicts the
assumption.

“⇐” Let E be a ⊆-minimal explanation containing B(b). Due to the signature restriction, the
predicate Wp cannot occur in E for any proposition p. Since E is an explanation, by the definition
of q′ and (A5) we have that Ap(cp) ∈ E or Ap(c¬p) ∈ E for all propositions p. Since for any
proposition p we have that Ap occurs in qG with one and only variable zp, we know that exactly
one of Ap(cp) ∈ E and Ap(c¬p) ∈ E holds. Due to the atoms Wp(zp, z

′
p) in qG, we also have that

constants of the form cp and c¬p are the only ones that can get an Ap label. Consider the assignment
t defined as follows: t(e) = t if Ap(cp) ∈ E , and t(e) = f if Ap(c¬p) ∈ E . It is not difficult to argue
that t(G) is not 3-colorable and thus G is a positive instance of co-CERT3COL. Indeed, if t(G) was
3-colorable, Q should be mappable into the triangle part obtained in (A1)–(A3). Then E \ {B(b)}
would be a smaller explanation, which would mean a contradiction.

In [Calvanese et al., 2011] we have proven that this lower bound holds also for QAPs with a
UCQ and unrestricted explanation signature.

Unsurprisingly, ≤-REL has the same complexity as ≤-NEC. Indeed, the two problems share
the same source of complexity, namely the need to inspect all explanations up to a computed size,
which allows us to reduce the ODDMINVERTEXCOVER problem. In fact, PNP

‖ -hardness can be
shown using the same reduction as in the proof of Theorem 6. A matching upper bound can also be
obtained by slightly modifying the algorithm for ≤-NEC.

Theorem 9. For DL-LiteA, ≤-REL is PNP
‖ -complete. PNP

‖ -hardness holds already for QAPs with an
empty TBox, a CQ, and an unrestricted explanation signature.

Proof. (MEMBERSHIP) ≤-REL can be tackled in a way similar to ≤-NEC. In fact, the algorithm
described in Theorem 6 can be modified in order to solve this problem. Let SIZE-IN solve the
following problem: given a tuple 〈P , α, n〉, where P is a QAP, α an assertion, and n an integer,
decide whether there exists an explanation E , with |E| = n and α ∈ E . Then, we change the
positivity condition of the ≤-NEC algorithm as follows: α occurs in some ≤-minimal explanations
E for P iff for some i ∈ [0..m] it holds that: (i) Ai is a positive instance of SIZE-IN, and (ii) Bi is a
positive instance of NO-SMALLER. It is easy to see that SIZE-IN is solvable in NP, hence the whole
problem is again in PNP

‖ .
(HARDNESS) Recall the reduction from ODDMINVERTEXCOVER to ≤-NEC in the proof of

Theorem 6. We argue that exactly the same reduction also shows PNP
‖ -hardness of ≤-REL. Assume

a directed graph G and let PG and αG be the QAP and the assertion resulting in the reduction. To
prove the claim is suffices to show the following equivalence: αG is ≤-necessary for PG iff αG is
≤-relevant for PG. This equivalence follows directly from CLAIM 3, which states that PG has a
unique ≤-minimal explanation.
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4.4 Recognizing Explanations

In order to decide REC, we need to check consistency of the explanation with the ontology, and
check whether the tuple is in the certain answer to the query. The former is polynomial and the
latter in NP, therefore REC is in NP.

Theorem 10. For DL-LiteA, REC is NP-complete. NP-hardness holds already for QAPs with an
empty TBox, a CQ, and an unrestricted explanation signature.

Proof. (MEMBERSHIP) Given a QAP P = 〈T ,A, q,~c,Σ〉 and an ABox E , we devise an algorithm
deciding REC as follows. Firstly, the procedure checks that NC(E) ∪NR(E) ⊆ Σ. Then, it makes
sure that extending the ontology with ABox E does not lead to an inconsistent theory. Then, it
non-deterministically guesses a rewriting rj of q w.r.t. T and a match π for rj in DBA∪E . Finally,
the algorithm checks that π is a match witnessing ~c in DBA∪E .

(HARDNESS) This part can be shown by a reduction and an argument that is almost identical to
the one in the proof of Theorem 3. For a pair G, G′ of directed graphs, let PG,G′ be defined as in the
proof of Theorem 3 except that Σ = NC ∪NR, and let E = {A(o)}. Then there is a homomorphism
from G to G′ iff E is an explanation for PG,G′ .

In case a preference order is in place, to recognize an explanation one has to check minimality
as well. This check is CONP-hard for ⊆- and ≤-minimality, leading to completeness for DP.

Theorem 11. For DL-LiteA, ≤-REC and ⊆-REC are DP-complete. DP-hardness holds already for
QAPs with an empty TBox, a CQ, and an unrestricted explanation signature.

Proof. (MEMBERSHIP) Membership of a problem Π in DP can be shown by providing two languages
L1 ∈ NP and L2 ∈ CONP, such that the set of all yes-instances of Π is L1 ∩ L2. For ≤-REC,
simply let L1 = {(P , E) | E is an explanation for P} and L2 = {(P , E) | P has no explanation E ′
s.t. |E ′| ≤ |E|}. For ⊆-REC, we take L1 as above and L2 = {(P , E)|P does not have an explanation
E ′ s.t. E ′ ⊂ E}.

(HARDNESS) DP-hardness is shown by a reduction from the problem HP-NOHP. An instance
of HP-NOHP is given by two directed graphs G = (V,E) and G′ = (V ′, E ′), where 〈G,G′〉 is a
positive instance iff G has an Hamilton path and G′ does not have one. For such a pair 〈G,G′〉, we
define a QAP P = 〈∅,A, q, 〈〉,Σ〉 and a set E such that:
(a) 〈G,G′〉 is a positive instance of HP-NOHP iff E is a ≤-minimal explanation for P , and
(b) 〈G,G′〉 is a positive instance HP-NOHP iff E is a ⊆-minimal explanation for P .

W.l.o.g., nodes in G and G′ are disjoint and are ordinary constants. Construct an ABox
AG = {e(vi, vj) | (vi, vj) ∈ E} ∪ {d(vi, vj) | vi, vj ∈ V, vi 6= vi}. Intuitively, an assertion e(vi, vj)
encodes an edge (vi, vj) in the graph G, whereas an assertion d(vi, vj) encodes that nodes vi and vj
are distinct. The ABox AG′ encodes G′ in a similar way as before, using roles e′ instead of e, and in
addition it has an assertion A(v′i) for each v′i ∈ V ′. Take a set of fresh constants O = {o1, . . . , o|V ′|}
and an ABoxAC = {e′(oi, oj), d(oi, oj) | oi, oj ∈ O}. ThenA in P is simplyA = AG∪AG′ ∪AC .
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Let q = q1 ∧ q′1 ∧ q2 ∧ q′2 ∧ q3 be a Boolean CQ with

q1 = {e(x1, x2), e(x2, x3), . . . , e(x|V |−1, x|V |))},
q′1 = {d(xi, xj) | vi, vj ∈ V, vi 6= vj},
q2 = {e′(y1, y2), e′(y2, y3), . . . , e′(y|V ′|−1, y|V ′|)},
q′2 = {d(yi, yj) | v′i, v′j ∈ V ′, v′i 6= v′j},
q3 = {A(y1), . . . , A(y|V ′|)}.

Intuitively, q1 ∧ q′1 asks for a simple path with |V | vertices related via the role e. Analogously,
q2 ∧ q′2 asks for a simple path with |V ′| vertices related via the role e′. Additionaly, q3 asks that each
node on the latter path satisfies A.

Finally, let E = {A(o) | o ∈ O}.
“⇒” Assume that 〈G,G′〉 is a positive instance of HP-NOHP, and let a1, . . . a|V | be a Hamilton

path in G. We show that E is a ≤-minimal and a ⊆-minimal explanation for P . To this end,
first take a mapping π for variables in q such that π(x1) = a1, . . . , π(x|V |) = a|V | and π(y1) =
a1, . . . , π(y|V ′|) = o|V |. Then clearly π is a match for q in DBA∪E , and hence E is an explanation to
P . Indeed, the subquery q1 ∧ q′1 of q is fulfilled because a1, . . . a|V | is a Hamilton path in G, q2 ∧ q′2
is fulfilled because AC has a clique of size |V ′|, while q3 is fulfilled by E . To assure minimality,
assume towards a contradiction that there is an explanation E ′ with |E ′| < |E ′| or |E ′| ⊂ |E ′|. In
any case, |E ′| < |V ′|. Assume π′ is a match for q in DBA∪E ′ . Note that A′G and AG do not share
constants. Since q3 ∧ q′2 asks for |V ′| elements satisfying A and |E ′| < |V ′|, π′ must map the
variables y1, . . . , y|V ′| to the |V ′| distinct constants of A′G. Then the presence of q2 in q implies the
existence of a Hamilton path in G′. Contradiction.

“⇐” Assume that E ∈ expl≤(P) (resp., E ∈ expl⊆(P)) and π is a match for q in DBA∪E . Note
that e′ does not occur in AG and e does not occur in A′G ∪ AC . Then by construction of q1 ∧ q′1
and AG, π maps the variables x1, . . . , x|V | to the |V | distinct constants of AG and G must have a
Hamilton path. Towards a contradiction suppose G′ also has a Hamilton path. Then by construction
ofAG, q2∧q′2∧q3 has a match in DBAG

. This means we can build a match π′ for q in DBAG
, which

in turn means that ∅ is an explanation to P . This contradicts the assumption that E is ≤-minimal
(resp., ⊆-minimal).

Computing Explanations We discuss now the problem of actually computing a solution to a
QAP P . The complexity of this problem is determined by the established complexity bounds for
reasoning tasks over QAPs. Consider first the problem of finding an arbitrary solution E to P with
unrestricted explanation signature. By Theorem 4, one can do so in polynomial-time by creating
a suitable instantiation of the query in the ABox. In general, however, one cannot do better than
guessing an ABox E and deciding whether E ∈ expl�(P). The intuition is that the search space for
solutions is intrinsically exponential in the size of the query and minimality criteria require a check
over all the solutions.
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5 Conclusions
In this paper we characterize the computational complexity of the novel problem of explanation
of negative answers to user queries over DL-LiteA ontologies. All the lower bounds proved in the
paper do not rely on the notion of FO-rewritability. Our upper bounds rely on FO-rewritability
only to argue that solutions are of polynomial size w.r.t. the input query, and on the fact that query
answering can be done in NP. For this reason, we expect our results to carry over to other DLs that
admit “small” explanations and for which query answering is in NP. For instance, the complexity
bounds are applicable to OWL 2-QL, which is obtained from DL-LiteA by forbidding functionality
assertions and dropping the unique name assumption (as our results do not rely on functionality
axioms, the unique name assumption is irrelevant).

For more expressive DLs, some bounds on the complexity of our reasoning tasks can also be
inferred. For QAPs with unrestricted signature, deciding the existence of an explanation has in
general the same complexity as checking ontology consistency. If we consider restricted signature,
lower bounds follow from results on CQ-emptiness from [Baader et al., 2010], while we expect
some upper bounds to be inherited from the complexity of query entailment.

In this work we have focused on combined complexity. With respect to data complexity (i.e.,
when both the query and the TBox are considered fixed), we observe that those inference tasks that
we have shown to be NP-complete essentially rely on checking ontology consistency. It follows that
they are FOL rewritable, and hence in AC0 in data complexity. Moreover, given that explanations
are bounded by the size of the query (see Proposition 2), it is easy to see that for a fixed query, there
are only polynomially many explanations. Hence all our reasoning tasks are polynomial in data
complexity and in ontology complexity (i.e., when only the query is considered fixed).

Finally, it would be interesting to apply this framework to other lightweight description logics,
starting with those of the EL-family. Also, we would like to investigate other minimality criteria.
For instance, semantic criteria allow one to reward explanations that are less/more constraining in
terms of the models of an ontology.
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