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TrungKien Tran Guohui Xiao

INFSYS RESEARCH REPORT 1843-12-04

APRIL 2012





INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-12-04, APRIL 2012

QUERY REWRITING FOR HORN-SHIQ PLUS RULES

Thomas Eiter1 Magdalena Ortiz1 Mantas Šimkus1
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Abstract. Query answering over Description Logic (DL) ontologies has become a vibrant
field of research. Efficient realizations often exploit database technology and rewrite a given
query to an equivalent SQL or Datalog query over a database associated with the ontology.
This approach has been intensively studied for conjunctive query answering in the DL-Lite
and EL families, but is much less explored for more expressive DLs and queries. We present
a rewriting-based algorithm for conjunctive query answering over Horn-SHIQ ontologies,
possibly extended with recursive rules under limited recursion as in DL+log. This set-
ting not only subsumes both DL-Lite and EL, but also yields an algorithm for answering
(limited) recursive queries over Horn-SHIQ ontologies (an undecidable problem for full
recursive queries). A prototype implementation shows its potential for applications, as ex-
periments exhibit efficient query answering over full Horn-SHIQ ontologies and benign
downscaling to DL-Lite, where it is competitive with comparable state of the art systems.
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village(Carichi)
state(Chihuahua)
country(Mexico)

capital(Islamabad)
country(Pakistan)

capital(Brasilia)
country(Brazil)

hasHDI(Carichi, low)
hasHDI(Mexico, high)
hasHDI(Islamabad, high)
hasHDI(Brasilia, high)
isLocatedIn(Carichi,Chihuahua)
isLocatedIn(Chihuahua,Mexico)
isLocatedIn(Islamabad,Pakistan)
isLocatedIn(Brasilia,Brazil)

(a) trans(isLocatedIn) (c) Countryv∃hasCapital.capital
(b) hasCapitalv isLocatedIn− (d) Countryv∀hasCapital.city

(e) Countryv61 isLocatedIn−.capital

(q1) disadvantagedTerritory(x, y)← hasHDI(x, low), isLocatedIn(x, y),
country(y), hasHDI(y, high)

(q2) hasDevelopedCapital(x)← country(x), hasCapital(x, y), city(y),
hasHDI(y, high)

Table 1: An example ontology and queries

1 Introduction

Description Logics (DLs) are the primary tool for representing and reasoning about knowledge
given by an ontology. They are mostly fragments of first-order logic with a clear-cut semantics,
convenient syntax and decidable reasoning, performed by quite efficient algorithms. This has led to
important applications of DLs in areas like Ontology Based Data Access (OBDA), Data Integration
and the Semantic Web, where the OWL standard is heavily based on DLs.

An important reasoning task in DLs is query answering similar as in databases, where a
database-style query is evaluated over an ontology, viewing it as an enriched database.

Example 1. Consider the following sociopolitical ontology. The Human Development Index
(HDI) of certain territories T , whose value V may be low, medium or high (as in the UN De-
velopment Programme) is given by facts hasHDI(T, V ). Further facts classify territories as cities,
countries, etc. and relate their locations. The facts are shown in the two left columns of Table 1.
The axioms (a)–(e) on the right hand side provide a terminology (in DL syntax) stating that: (a) the
isLocatedIn relation is transitive; (b) the capital of a territory is located in that territory; (c) every
country has a capital; (d) only cities can be capitals; and (e) only one capital can be located in
each country. The query q1 can be used to retrieve disadvantaged territories that lie in countries
with high HDI but have a low HDI themselves. Observe that if we evaluate q1 over the database
(i.e., the facts), it returns no answer: indeed, Mexico is the only country with high HDI, and there
is no fact islocatedIn(X,Mexico) such that territory X has low HDI. However, if we evaluate q1
over the full ontology, we can infer from axiom (a) that Carichi is located in Mexico, and return
(Carichi ,Mexico) as an answer. The query q2, which retrieves countries whose capital city has
a high HDI, would also have an empty answer over the database, but from the axioms (b)–(e) we
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can infer that Brasilia is the capital of Brazil and Islamabad the capital of Pakistan, and return both
countries as an answer to the query.

To supply this reasoning service, a number of challenges must be faced. Conjunctive queries
(CQs) have typically much higher complexity than standard reasoning in a DL, and recursive DA-
TALOG queries are undecidable even in very weak DLs, including the ones considered here [Levy
and Rousset, 1998]. For reasoning with large instance data, translating queries into database
query languages has proved to be efficient. Calvanese et al. (2007b) introduced a query rewriting
technique for the DL-Lite family of DLs, where the terminological information is incorporated
into the query in such a way that it can be straight evaluated over the database facts. For example,
a rewriting of query q1 in Table 1 should include, among other queries,

disadvantagedTerritory(x, y)← hasHDI(x, low), country(y),
hasCapital(y, x),hasHDI(y, high),

which adds all tuples (x, y) to the query answer that can be inferred using axiom (b). Such rewriting
approaches have been developed for answering CQs in DLs of the DL-Lite family, and to a lesser
extent for EL, but they are practically unexplored for more expressive DLs and queries (see Related
Work for details).

In this paper we present a rewriting-based method for query answering over ontologies in
Horn-SHIQ (the disjunction-free fragment of SHIQ), which extends the members of theDL-Lite
and the EL families. DL-Lite and EL are prominent DLs which underlie the OWL 2 QL and the
OWL 2 EL profiles, respectively. They offer different expressiveness while allowing for tractable
reasoning. For example, axiom (b) is allowed in most DLs of the DL-Lite family but not in EL,
while (c) is allowed in EL but not in DL-Lite. Axioms (a), (d) and (e) are not expressible in either
of them, but they are expressible in Horn-SHIQ. Despite the increase in expressivity, reasoning
in Horn-SHIQ is still tractable in data complexity.

In this paper, we make the following contributions:
• We provide a practical algorithm for rewriting queries over Horn-SHIQ ontologies. It first

applies a special resolution calculus, and then rewrites the query w.r.t. the saturated TBox into
a DATALOG program ready for evaluation over any ABox. It runs in polynomial time in data
complexity, and is worst-case optimal.
• It can handle CQs and the more general weakly DL-safe DATALOG queries in the style of

DL+log [Rosati, 2006], where only existentially quantified variables may be bound to ‘anony-
mous’ domain elements implied by axioms.
• The algorithm supports transitive roles, which are considered relevant in practice [Sattler,

2000], although challenging for query answering (Glimm et al. 2006, Eiter et al. 2009). It simul-
taneously allows for full existential quantification, inverse roles, and number restrictions, covering
and extending the OWL2 profiles QL, EL and RL.
• A prototype implementation for CQ answering (without transitive roles) shows that our ap-

proach behaves well in practice. In experiments it worked efficiently and it scaled down nicely to
DL-Lite, where it is competitive with state of the art query rewriting systems.
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2 Description Logic Horn-SHIQ
As usual, we assume countably infinite sets NC ⊃ {>,⊥} and NR of atomic concepts and role
names, respectively. NR ∪ {r− | r ∈ NR} is the set of roles. If r ∈ NR, then inv(r) = r− and
inv(r−) = r. Concepts are inductively defined as follows: (a) each A ∈ NC is a concept, and
(b) if C, D are concepts and r is a role, then C u D, C t D, ¬C, ∀r.C, ∃r.C, > n r.C and
6n r.C, for n ≥ 1, are concepts. An expression C vD, where C,D are concepts, is a general
concept inclusion axiom (GCI). An expression rv s, where r, s are roles, is a role inclusion (RI).
A transitivity axiom is an expression trans(r), where r is a role. A TBox T is a finite set of GCIs,
RIs and transitivity axioms. We let v∗T denote the reflexive transitive closure of {(r, s) | rv s ∈
T or inv(r)v inv(s) ∈ T }. A role s is transitive in T if trans(s) ∈ T or trans(s−) ∈ T . A role
s is simple in T if there is no transitive r in T s.t. r v∗T s. T is a SHIQ terminology if roles
in concepts of the form >n r.C and 6n r.C are simple. The semantics for TBoxes is given by
interpretations I = 〈∆I , ·I〉. We write I |= T if I is a model of T . See [Baader et al., 2007] for
more details.

A TBox T is a Horn-SHIQ TBox (in normalized form), if each GCI in T takes one the follow-

ing forms:
(F1) A1 u . . . u AnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

where A1, . . . , An, B are concept names and r is a role. Axioms (F1) are called existential.
W.l.o.g. we treat here only Horn-SHIQ TBoxes in normalized form; our results generalize to full
Horn-SHIQ by means of TBox normalization; see e.g. [Kazakov, 2009; Krötzsch et al., 2007] for
a definition and normalization procedures.

An Horn-ALCHIQ TBox is a Horn-SHIQ TBox with no transitivity axioms. Horn-ALCHIQu
TBoxes are obtained by allowing role conjunction r1 u r2, where r1, r2 are roles and in any inter-
pretation I, (r1 u r2)

I = rI1 ∩ rI2 (we use it for a similar purpose as Glimm et al. (2008)). We
let inv(r1 u r2) = inv(r1) u inv(r2) and assume w.l.o.g. that for each role inclusions r v s of an
Horn-ALCHIQu TBox T , (i) inv(r)vinv(s) ∈ T , and (ii) s ∈ {p, p−} for a role name p. For a set
W and a concept or role conjunction Γ = γ1u . . . u γm, we write Γ ⊆ W for {γ1, . . . , γm} ⊆ W .

3 Ontologies and Knowledge Bases

Following [Levy and Rousset, 1998] we now define knowledge bases (KBs). Let NI, NV and
ND be countable infinite sets of constants (or, individuals), variables and DATALOG relations,
respectively; we assume these sets as well as NC and NR are all mutually disjoint. Each σ ∈ ND has
an associated non-negative integer arity. An atom is an expression p(~t), where ~t ∈ (NI)

n ∪ (NV)n,
and (i) p ∈ NC and n = 1, (ii) p ∈ NR and n = 2, or (iii) p ∈ ND and n is the arity of p. If
~t ∈ (NI)

n, then p(~t) is ground. Ground atoms A(a) and r(a, b), where A ∈ NC and r is a role, are
concept and role assertions, respectively. An ABox A is a finite set of ground atoms. A rule ρ is
an expression of the form

h(~u)← p1(~v1), . . . , pm( ~vm), (1)
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where h(~u) is an atom (the head), {p1(~v1), . . . , pm( ~vm)} are also atoms (the body atoms, denoted
body(ρ)), and ~u, ~v1, . . . , ~vm are tuples of variables. The variables in ~u are distinguished. A KB is a
tuple K = (T ,A,P), where T is a TBox, A is an ABox, and P is a set of rules (a program).

The semantics for a KB K = (T ,A,P) is given by extending an interpretation I to symbols
in NI ∪ ND. For any c ∈ NI and p ∈ ND of arity n, we have cI ∈ ∆I and pI ⊆ (∆I)n. A match for
a rule ρ of the form (1) in I is a mapping from variables in ρ to elements in ∆I such that π(~t)∈ pI
for each body atom p(~t) of ρ. We define:

(a) I |= ρ if π(~u)∈hI for every match π for ρ in I,
(b) I |= P if I |= ρ for each ρ ∈ P ,
(c) I |= A if (~c)I ∈ pI for all p(~c) ∈ A,
(d) I |= K if I |= T , I |= A and I |= P .

Finally, given a ground atom p(~c), K |= p(~c) if (~c)I ∈ pI for all models I of K. We recall weak
DL-safety [Rosati, 2006]. A KB K = (T ,A,P) is weakly DL-safe if each rule ρ ∈ P satisfies the
next condition: every distinguished variable x of ρ occurs in some body atom p(~t) of ρ such that
p ∈ ND. We make the Unique Name Assumption (UNA).

A KBK = (T ,A, ∅) is an ontology (we will useO = (T ,A) for brevity). A conjunctive query
(CQ) q over O is a rule of the form (1) such that h does not occur in O. The answer to q over O is
ans(O, q) = {~c ∈ N

|~u|
I | (T ,A, {q}) |= h(~c)}. Note that ~c ∈ ans(O, q) iff in any model I of O

there exists a match π for q such that π(~u) = (~c)I .
Note that, for a KB K = (∅,A,P), A ∪ P is an ordinary DATALOG program with con-

straints (cf. [Dantsin et al., 2001]). By models of DATALOG programs, we mean Herbrand models,
and we recall that a consistent A ∪ P has a unique least (Herbrand) model MM (A ∪ P).

We will also consider programs P containing atoms r−(x, y), r ∈ NR, with the semantics given
by the semantics of P ′ obtained by replacing in P each r−(x, y) by r(y, x).

3.1 Elimination of Transitivity
It is handy to eliminate transitivity axioms from SHIQ TBoxes (see, e.g., Hustadt et al. (2007)).
We use the transformation from [Kazakov, 2009], which ensures the resulting TBox is in normal
form.

Definition 1. Let T ∗ be the Horn-ALCHIQ TBox obtained from a Horn-SHIQ TBox T by
(i) adding for every Av∀s.B ∈ T and every transitive role r with rv∗T s, the axioms Av∀r.Br,
Br v ∀r.Br and Br v B, where Br is a fresh concept name; and (ii) removing all transitivity
axioms.

The transformation does not preserve answers to CQs where non-simple roles occur. However,
we can relax the notion of match and then use the translated TBox for answering arbitrary CQs.

Definition 2. Let T be a Horn-SHIQ TBox. A T -match for a query q in an interpretation I is a
mapping π from variables of q to elements in ∆I that satisfies the following:

(a) If α = p(~t) is a body atom in q, where p ∈ NC ∪ ND or p is a simple role in T , then π(~t)∈ pI .
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M v ∃S.N uN ′ N vA
M v ∃S.N uN ′ uA

Rc
v

M v ∃S u S′.N S v r
M v ∃S u S′ u r.N

Rr
v

M v ∃S.N u ⊥
M v⊥

R⊥

M v ∃S u r.N Av ∀r.B
M uAv ∃S u r.N uB

R∀
M v ∃S u inv(r).N uA Av ∀r.B

M vB
R−∀

M v ∃S u r.N uB Av 61 r.B M ′ v ∃S′ u r.N ′ uB
M uM ′ uAv ∃S u S′ u r.N uN ′ uB

R≤

M v ∃S u inv(r).N1 uN2 uA Av 61 r.B N1 uAv ∃S′ u r.N ′ uB u C
M uB v C M uB v ∃S u inv(S′ u r).N1 uN2 uA

R−≤

Table 2: Inference rules. M (′), N (′), (resp., S(′)) are conjunctions of atomic concepts (roles); A,B
are atomic concepts

(b) If α = s(x, y) with s non-simple, then there exist a transitive rv∗T s and d1 ∈ ∆I , . . . , dk ∈ ∆I

such that d1 = π(x), dk = π(y), and (di, di+1) ∈ rT for all each 1 ≤ i < k; we call this
sequence d1 ∈ ∆I , . . . , dk ∈ ∆I an r-path from π(x) to π(y).

The set ansT (O, q) is defined as ans(O, q) but using T -matches instead of matches. The next
characaterization follows from known techniques, see e.g. [Eiter et al., 2012b] for a similar result.

Proposition 1. For any Horn-SHIQ ontology O = (T ,A) and CQ q, we have ans(O, q) =
ansT ((T ∗,A), q).

4 Canonical Models
A stepping stone for the tailored query answering methods for Horn DLs and languages like
DATALOG± is the canonical model property [Eiter et al., 2008b; Ortiz et al., 2011; Calı̀ et al.,
2009]. In particular, for a consistent Horn-ALCHIQu ontologyO = (T ,A), there exists a model
I of O that can be homomorphically embedded into any other model I ′ of O. We show that such
an I can be built in three steps:

(1) Close T under specially tailored inferences rules.
(2) Close A under all but existential axioms of T .
(3) Extend A by “applying” the existential axioms of T .
For Step (1), we tailor from the inference rules in [Kazakov, 2009; Ortiz et al., 2010] a calculus

to support model building for Horn-ALCHIQu ontologies.

Definition 3. Given a Horn-ALCHIQu TBox T , Ξ(T ) is the TBox obtained from T by exhaus-
tively applying the inference rules in Table 2.

For Step (2), we use DATALOG rules that express the semantics of GCIs, ignoring existential
axioms.
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B(y)←A(x), r(x, y) for each Av ∀r.B ∈ T
B(x)←A1(x), . . . , An(x) for all A1u . . .uAnvB ∈Ξ(T )

r(x, z)← r(x, y), r(y, z) for all transitive roles r in T
r(x, y)← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T
⊥(x)←A(x), r(x, y1), r(x, y2), B(y1), B(y2), y1 6= y2 for each Av 61 r.B ∈ T

Γ←A(x), A1(x), . . . , An(x), r(x, y), B(y)
for all A1u . . .uAn v ∃r1u . . .urm.B1u . . .uBk
and Av 61 r.B of Ξ(T ) such that r=ri and B=Bj for some i, j
with Γ ∈ {B1(y), . . . , Bk(y), r1(x, y), . . . , rk(x, y)}

Table 3: (Completion rules) DATALOG program cr(T ).

Definition 4. Given a Horn-ALCHIQu TBox T , cr(T ) is the DATALOG program described in
Table 3.

Given a consistent Horn-ALCHIQu ontology O = (T ,A), the least model J of the DATA-
LOG program cr(T ) ∪ A is almost a canonical model of O; however, existential axioms may be
violated. We deal with this in Step (3), by extending J with new domain elements as required
by axioms A v ∃r.N in Ξ(T ), akin to database chase [Maier and Mendelzon, 1979] where fresh
values and tuples are introduced to satisfy the given dependencies.

Definition 5. Let T be a Horn-ALCHIQu TBox and I an interpretation. A GCI M v ∃S.N is
applicable at e ∈ ∆I if

(a) e ∈MI ,

(b) there is no e′ ∈ ∆I with (e, e′) ∈ SI and e′ ∈ NI ,

(c) there is no axiom M ′ v ∃S ′.N ′ ∈ T such that e ∈ (M ′)I , S ⊆ S ′, N ⊆ N ′, and S ⊂ S ′ or
N ⊂ N ′.

An interpretation J obtained from I by an application of an applicable axiom M v ∃S.N at
e ∈ ∆I is defined as:

- ∆J = ∆I ∪ {d} with d a new element not present in ∆I (we call d a successor of e),

- For each atomic A ∈ NC and o ∈ ∆J , we have o ∈ AJ if (a) o ∈ ∆I and o ∈ AI ; or (b) o = d
and A ∈ N .

- For each role name r and o, o′ ∈ ∆J , we have (o, o′) ∈ rJ if (a) o, o′ ∈ ∆I and (o, o′) ∈ rI ; or
(b) (o, o′) = (e, d) and r ∈ S; or (c) (o, o′) = (d, e) and inv(r) ∈ S.

We denote by chase(I, T ) a possibly infinite interpretation obtained from I by applying the exis-
tential axioms in T . We require the application to fair: the application of an applicable axiom can
not be infinitely postponed.
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We note that chase(I, T ) is unique up to renaming of domain elements. As usual in DLs, it
can be seen as a ‘forest’: application of existential axioms simply attaches ‘trees’ to a possibly
arbitrarily shaped I. The following statement can be shown similarly as in [Ortiz et al., 2011].

Proposition 2. LetO= (T ,A) be a Horn-ALCHIQu ontology. ThenO is consistent iffA∪cr(T )
consistent. Moreover, if O is consistent, then

(a) chase(MM (A ∪ cr(T )),Ξ(T )) is a model of O, and

(b) chase(MM (A ∪ cr(T )),Ξ(T )) can be homomorphically embedded into any model of O.

Proof. Let O= (T ,A) be a Horn-ALCHIQu ontology.
SupposeO is consistent and J is a model ofO. We first show thatA∪cr(T ) is consistent, and

afterwards show (a) and (b). Due to the UNA, we can w.l.o.g. assume that aJ = a for each constant
a ∈ NI. A model of A ∪ cr(T ) can built by simply restricting the domain of J to constants. Let
J ′ be the interpretation such that

- ∆J
′
= NI;

- AJ ′ = AJ ∩∆J
′ and rJ ′ = rJ ∩∆J

′ ×∆J
′ , for all concepts names A and role names r.

J ′ is a model of A ∪ cr(T ) because J is a model of T and since all axioms in Ξ(T ) are logical
consequences of T .

Assume the least model IA of A ∪ cr(T ), which exists due to consistency A ∪ cr(T ). Let
IO = chase(IA,Ξ(T )). We show next that IO is a model of O, i.e. show (a). To show the
statement we need some book-keeping when building IO. We assume ∆IA = NI and prescribe
the naming of fresh domain elements introduced during the chase procedure. In particular, if d is
a successor of e according to Definition 5, then d is an expression of the form e · n, where n is a
integer. We show that IO satisfies each statement in O:

(1) For assertions A(a) ∈ A and r(a, b) ∈ A, we have aIA ∈ AIA and (aIA , bIA) ∈ rIA because
IA is a model of A ∪ cr(T ). We have aIO ∈ AIO and (aIO , bIO) ∈ rIO because IO is an
extension IA by construction.

(2) Assume an axiom M v B ∈ Ξ(T ), where M is a conjunction of atomic concepts, and also
assume a domain element e ∈ MIO . Note that T ⊆ Ξ(T ). If e ∈ NI, then e ∈ BIO since IA
is a model of A ∪ cr(T ). Assume e = w ·n. We know e is a successor of w introduced in IO
by an application of some M ′ v ∃S.N ∈ Ξ(T ). By the construction of IO, e satisfies exactly
the atomic concepts in N . It remains to see that B ∈ N . This follows from the inference rule
(Rc
v). Indeed, ifB 6∈ N , then we can apply (Rc

v) to obtain the axiomM ′v∃S.N uB ∈ Ξ(T ).
This makes M ′ v ∃S.N ∈ Ξ(T ) inapplicable at e due a violation of (c) in Definition 5.

(3) To show that existential axioms are satisfied, first take an arbitrary domain element e ∈ AIO .
We say M v ∃S.N ∈ Ξ(T ) is relevant for e if there is no axiom M ′ v ∃S ′.N ′ ∈ T such
that e ∈ (M ′)I , S ⊆ S ′, N ⊆ N ′, and S ⊂ S ′ or N ⊂ N ′. To prove that IO satisfies each
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existential axiom of Ξ(T ), it suffices to show that IO satisfies each existential axiom that is
relevant for e. To this end, assume M v ∃S.N ∈ Ξ(T ) relevant for e. Suppose e ∈ MIO and
e 6∈ (∃S.N)IO . Then M v ∃S.N ∈ Ξ(T ) is applicable in IO at e according to Definition 5.
This leads to a contradiction: by the fairness of chase, the axiom M v ∃S.N ∈ Ξ(T ) must be
applied and thus e ∈ (∃S.N)IO .

(4) Assume an axiom Av ∀r.B ∈ T and a domain element e ∈ AIO . Suppose there is e′ ∈ ∆IO

such that (e, e′) ∈ rIO and e′ 6∈ BIO . Due to the definition of IO, we have 3 possible cases:

(i) e, e′ ∈ NI and (e, e′) ∈ rIA . We have that e′ ∈ BIO because IA is a model of A ∪ cr(T )
by assumption.

(ii) e′ = e · n for some integer n, where e′ was introduced by applying some axiom M v
∃S.N ∈ Ξ(T ). Note that, by the construction of IO, we must have e ∈ MIO and r ∈ S.
From the inference rule (R∀) we know that M uAv ∃S.N uB ∈ Ξ(T ). We know that
e ∈ (M u A)IO . Then due to maximality of M v ∃S.N at e, we have N u B = N , i.e.
B ∈ N . By the construction of IO, e′ ∈ BIO .

(iii) e = e′ · n for some integer n, where e was introduced by applying some axiom M v
∃S.N ∈ Ξ(T ). By the construction of IO, we have r− ∈ S and A ∈ N . Then by the
inference rule (R−∀ ), we have M v B ∈ Ξ(T ). We have already shown above that IO
satisfies M vB. Since e′ ∈MIO by the construction of IO, we have e′ ∈ AIO .

(5) Assume a role inclusion S v r ∈ Ξ(T ) and a pair (e, e′) ∈ SIO . Due to the definition of IO,
we have 2 possible cases:

(i) e, e′ ∈ NI. Then (e, e′) ∈ rIO because IA is a model of A ∪ cr(T ) by assumption.

(ii) e′ = e · n for some integer n, where e′ was introduced by applying some axiom M v
∃S ′.N ∈ Ξ(T ) with S ⊆ S ′. We know from the inference rule (Rr

v) that M v
∃S ′ u r.N ∈ Ξ(T ). Due to maximality of M v ∃S ′.N , we must have S ′ u r = S ′,
which implies (e, e′) ∈ rIO .

(iii) e = e′ · n for some integer n, where e was introduced by applying some axiom M v
∃S ′.N ∈ Ξ(T ) with S− ⊆ S ′. Note that S− v r− ∈ T (see preliminaries). We know
from the inference rule (Rr

v) thatMv∃S ′ u r−.N ∈ Ξ(T ). Again, due to maximality of
Mv∃S ′.N , we must have S ′ur− = S ′, which implies (e′, e) ∈ (r−)IO and (e, e′) ∈ rIO .

(6) Assume an axiom Av 6 1 r.B ∈ T and a domain element e ∈ AIO . Suppose there is
e1, e2 ∈ ∆IO such that e1 6= e2, {(e, e1), (e, e2)} ⊆ rIO and {e1, e2} ⊆ BIO . We have the
following possible cases:

(i) {e1, e2} ⊆ NI. Then by the construction of IO we must have e ∈ NI. We arrive at a con-
tradiction to the assumption that IA is a model of A∪ cr(T ); the constraint representing
Av 61 r.B ∈ T must be violated.
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(ii) e1, e ∈ NI and e2 is of the form e2 = e ·n for some integer. Assume e2 was introduced
by applying an applicable axiom M v ∃S.N ∈ Ξ(T ) at e. Note we have e ∈ MIO . By
a rule of the last type in Table 3, we have that e1 ∈ NIA and (e, e1) ∈ SIA . This shows
that M v ∃S.N ∈ Ξ(T ) was never applicable at e. Contradiction.

(iii) e2, e ∈ NI and e1 is of the form e1 = e ·n for some integer. Symmetric to the above.

(iv) e1, e2 are of the form e1 = e ·n and e2 = e ·n′. Suppose e1, e2 where introduced by
applying axioms M v ∃S.N ∈ Ξ(T ) and M ′ v ∃S.N ∈ Ξ(T ) at e. Then by the
construction of IO we have r ∈ S, r ∈ S ′, B ∈ N and B ∈ N ′. Then by the inference
rule (R≤), we haveM uM ′uAv∃S u S ′.N uN ′ ∈ Ξ(T ). Since e ∈ (M uM ′uA)IO ,
we have a violation of applicability of M v∃S.N ∈ Ξ(T ) and M ′v∃S.N ∈ Ξ(T ) at e,
i.e. they are not maximal.

(v) e = e1 ·n and e2 = e ·n′ obtained by applying some axioms M v ∃S.N ∈ Ξ(T ) and
M ′ v ∃S ′.N ′ ∈ Ξ(T ) at e1 and e, respectively. By the construction of IO, we have
have A ∈ N , r− ∈ S, r ∈ S ′ and B ∈ N ′. Then by the inference rule (R−≤), we
have M u B v C ∈ Ξ(T ) for all C ∈ N ′ and also M u B v ∃S u (S ′)−.N ∈ Ξ(T ).
Since e1 ∈ (M u B)IO , we have (S−)− ⊂ S by the maximality of M v ∃S.N . Due
to point (2) in this proof, we also have e1 ∈ CIO for all C ∈ N ′. This shows that
M ′ v ∃S ′.N ′ ∈ Ξ(T ) was not applicable at e, i.e. maximality violated.

(7) It remains to see that⊥IO = ∅. First note that NI∩⊥IO = ∅ because IA is a model ofA∪cr(T ).
Thus it suffices to prove the following statement: if e ·n ∈ ⊥IO , then also e ∈ ⊥IO . Assume
some e ·n ∈ ⊥IO . Suppose e ·n was introduced by applying an axiom M v ∃S.N ∈ Ξ(T ).
Then by the definition of IO, ⊥ ∈ N . By the inference rule (R⊥), we have M v ⊥ ∈ Ξ(T ).
Since e ∈MIO , by point (2) in this proof we have e ∈ ⊥IO .

It remains to see (b), i.e. that IO can be homomorphically embedded into any model I of O.
A homomorphism h from IO to I can be inductively defined as follows:

- h(e) = eI for all e ∈ NI ∩ ∆IO . It is straightforward to see that e1 ∈ AIO and (e1, e2) ∈ rIO
imply e1 ∈ AI and (e1, e2) ∈ rI for all e1, e2 ∈ NI, concepts A and roles r.

- Assume e ·n ∈ ∆IO was introduced in IO by an application of M v ∃S.N ∈ Ξ(T ). Note that
e ∈ MIO . It suffices to define h(e ·n) = e′ where e′ ∈ ∆I is an element such that S ⊆ {r |
(h(e), e′) ∈ rI} and N ⊆ {A | e′ ∈ AI}. Note that such e′ exists. Indeed, by the induction
hypothesis, h(e) ∈MI . Since I is a model of Ξ(T ), we must have h(e) ∈ (∃S.N)I .

It remains to show that consistency of A ∪ cr(T ) implies consistency of O. Assume O is
inconsistent and suppose A ∪ cr(T ) is consistent. Then there exists the least model IA of A ∪
cr(T ), and thus IO = chase(MM (A ∪ cr(T )),Ξ(T )) is defined. As we shown in (a), IO |= O.
Contradiction.
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In database terms, this means that checking consistency of O = (T ,A) reduces to evaluating
the (plain) DATALOG query cr(T ) over the database A. Note that Ξ(T ) can be computed in
exponential time in size of T : the calculus only infers axioms of the form M vB and M v∃S.N ,
where M,N are conjunctions of atomic concepts, B is atomic and S is a conjunction of roles. The
number of such axiom is single exponential in the size of T .

5 Rewriting Rules and Programs
The following is immediate from Propositions 1 and 2:

Theorem 3. Let O= (T ,A) be a Horn-SHIQ ontology. Then A ∪ cr(T ∗) is consistent iff O is
consistent. Moreover, if O is consistent, then ans(O, q) = ansT (IO, q) for every CQ q, where
IO = chase(MM (A ∪ cr(T ∗),Ξ(T ∗)).

Computing ansT (IO, q) is still tricky because IO can be infinite. Hence we rewrite q into a
set Q of CQs such that ansT (IO, q) =

⋃
q′∈Q ans(MM (A ∪ cr(T ∗), q′). That is, we only need to

evaluate the queries in Q over the DATALOG program A ∪ cr(T ∗). Since this can be easily done
directly in DATALOG, we have an algorithm for answering q over O, which we later generalize
to KBs.

5.1 Rewriting rules with simple roles only
We will first present a simplified version of our rewriting algorithm that rewrites a rule ρ assuming
that r is a simple role for all atoms of the form r(x, y) that occur in its body. This version can be
explained more easily, and it will allow us to give a better explanation of the general algorithm.

The intuition is the following. Suppose that ρ has a non-distinguished variable x, and that
there is some match π in IO such that π(x) is an object in the ‘tree part’ introduced by the chase
procedure and it has no descendant in the image of π, that is, π(x) it is a leaf in the forest shaped
image of ρ under π. Then for all atoms r(y, x) of ρ, the “neighbor” variable y must mapped
to the parent of π(x). A rewrite step makes a choice of such an x, and employs an existential
axiom from Ξ(T ) to ‘clip off’ x, eliminating all query atoms that mention it. By repeating this
procedure, we can clip off all variables matched in the tree part and obtain a rule that has a match
in MM (A ∪ cr(T )).

The one-step clipping off of a variable works as follows. For a CQ ρ and a Horn-ALCHIQu
TBox T , we write ρ→T ρ′ if ρ′ can be obtained from ρ in the following steps:

(S1) Select in ρ an arbitrary non-distinguished variable x such that there are no atoms of the form
r(x, x) in ρ.

(S2) Replace each role atom r(x, y) in ρ, where y is arbitrary, by the atom inv(r)(y, x).

(S3) Let Vp = {y | ∃r : r(y, x) ∈ body(ρ)}, and select some M v ∃S.N ∈ Ξ(T ) such that

(a) {r | r(y, x) ∈ body(ρ) ∧ y ∈ Vp} ⊆ S, and
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merge {x2, x4},
rename to x3,
and add A(x3)

x1A1

ρ′

x3 A4, A2, A

r1, r2

Figure 1: Example 2, query rewriting with only simple roles

(b) {A | A(x) ∈ body(ρ)} ⊆ N .

(S4) Drop from ρ each atom containing x.

(S5) Rename each y ∈ Vp of ρ by x.

(S6) Add the atoms {A(x) | A ∈M} to body(ρ).

We illustrate the rewriting step with two examples:

Example 2. Let ρ : q(x1) ← A1(x1), r2(x1, x2), A2(x2), r3(x2, x3), A3(x3), r1(x1, x4), A4(x4),

r4(x3, x4) in Figure 1, and assume that A v ∃(r u r3 u r−4 ).(B uA3) is in Ξ(T ) and that all roles
are simple. We choose the variable x3, replace r4(x3, x4) by r−4 (x4, x3) in step (S2), and get
Vp = {x2, x4}. Intuitively, if π(x3) is a leaf in a tree-shaped match π, then x2 and x4 must both
be mapped to the parent of π(x3). Since the GCI A v ∃(r u r3 u r−4 ).(B uA3) in Ξ(T ) satisfies
(S3.a,b), we can drop the atoms containing x3 from ρ, and perform (S5) and (S6) to obtain the
rewritten query ρ′ : q(x1)← A1(x1), r1(x1, x3), r2(x1, x3), A4(x3), A2(x3), A(x3).

Example 3. In this example, illustrated in Figure 2a, we again assume that all roles are simple. Let
ρ : q(x1)←C(x1), B(x2), r1(x1, x2), r1(x3, x2), r2(x2, x4), and assume Av∃(r1 u r−1 u r−2 ).B ∈
Ξ(T ∗). In (S1) we select the non-distinguished variable x2. Next, in (S2), we replace r2(x2, x4)
by r−2 (x4, x2). Since all roles are simple, we do nothing in (S3). In (S4) we choose V` = {x2}
and Vp = {x1, x3, x4}, and in (S5), A v ∃(r1 u r−1 u r−2 ).B. Then we clip off x2 in (S6), merge
all variables in Vp and rename them to x2 in (S7), and add A(x2) in (S8), to obtain ρ′ : q(x2) ←
C(x2), A(x2).

5.2 Rewriting arbitrary rules
Now we present the rewriting algorithm for the general case, and show that it is sound and com-
plete.

As above, suppose that ρ has a match and π(x) is a leaf of its forest shaped image, for some
variable x. The most significant difference in the presence of non-simple roles is that if the query
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(b) Example 4: Query rewriting with non-simple roles

Figure 2: Examples of query rewriting

has an atom r(y, x) and r is non-simple, then π(y) is not necessarily the parent p of π(x). Instead,
π(y) can be an ancestor of p, or π(y) = π(x) may hold. Hence, instead of just x, we guess a set
of distinguished variables V` that are mapped together at some leaf node π(x). Then we guess a
subset of the neighbor variables whose match is higher up in the tree, and for them we introduce an
‘intermediate’ variable u that can be matched at the parent p. In this way we can forget about the
variables that are matched to ancestors of p, and assume that all the neighbours Vp of the variables
in V` are matched at p. We can then proceed similarly as above and clip off all variables in V` using
an axiom from M v ∃S.N that ensures the existence of a match for them. This axiom must now
also ensure that π(x) is an r-successor of itself for every atom r(x, y) such that x, y ∈ V`. This
is verified by the new condition (S5c), which relies on the fact that a node e is an r-successor of
itself in IO iff both e, e′ ∈ sIO and e′, e ∈ sIO hold for some transitive s v∗T r, where e′ is either
the parent or a child of e in IO.

Definition 6. For a rule ρ and a Horn-SHIQ TBox T , we write ρ→T ρ′ if ρ′ is obtained from ρ
by the following steps:

(S1) Select an arbitrary non-empty set V` of non-distinguished variables in ρ.

(S2) Replace each role atom r(x, y) in ρ, where x ∈ V` and y 6∈ V` is arbitrary, by the atom
inv(r)(y, x).
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ρ

xA

yC

r

zD

r

select y 

xA

yC

r

zD

r−

trans(r) 

xA

u

r

yC

r

zD

r−

trans(r)
B v ∃(r u r−).(C uD) 
V` = {y, z}

xA

uB

r

y/z

C,D

r, r−

r−

rename u to y 

ρ1
xA

yB

r select y 
xA

yB

r
A v ∃r.B 
V` = {y}

ρ2
x A

Figure 3: Example 5

(S3) For each atom α = s(y, x) in ρ, where where x ∈ V`, y 6∈ V` is arbitrary and s is non-
simple, either leave α untouched or replace it by two atoms r(y, u), r(u, x), where u is a
fresh variable and r is a transitive role with r v∗T s.

(S4) Let Vp = {y | ∃r : r(y, x) ∈ body(ρ) ∧ x ∈ V` ∧ y 6∈ V`}.

(S5) Select some M v ∃S.N ∈ Ξ(T ∗) such that

(a) {r | r(y, x) ∈ body(ρ) ∧ x ∈ V` ∧ y ∈ Vp} ⊆ S,

(b) {A | A(x) ∈ body(ρ) ∧ x ∈ V`} ⊆ N , and

(c) for each atom r(x, y) in body(ρ) with x, y ∈ V` there is a transitive sv∗T r such that

i. {s, s−} ⊆ S, or
ii. there is an axiom M ′ v ∃S ′.N ′ ∈ Ξ(T ∗) such that M ′ ⊆ N and {s, s−} ⊆ S ′.

(S6) Drop each atom from ρ containing a variable from V`.

(S7) Select some x ∈ V` and rename each y ∈ Vp of ρ by x.

(S8) Add the atoms {A(x) | A ∈M} to ρ.

We write ρ →∗T ρ′ if ρ′ can be obtained from ρ by finitely many rewrite iterations. We let
rewT (ρ) = {ρ′ | ρ→∗T ρ′}. For a set P of rules, rewT (P) =

⋃
ρ∈P rewT (ρ).

Example 4 (ctd). Recall ρ : q(x1)←C(x1), B(x2), r1(x1, x2), r1(x3, x2), r2(x2, x4) andAv∃(r1u
r−1 ur−2 ).B ∈ Ξ(T ∗) from Example 3, but now assume that trans(r1) ∈ T . As shown in Figure 2b,
in (S1) we choose V` = {x2}, and in (S3) we choose to replace r1(x1, x2) with r1(x1, u), r1(u, x2).
In (S4) we get Vp = {u, x3, x4}. Then we proceed similarly as above to obtain ρ′′ : q(x1) ←
C(x1), r1(x1, x2), A(x2).

Example 5. Assume T = {r v r−, trans(r), A v ∃r.B, B v ∃r.C, C vD}. Let ρ : q(X) ←
A(x), r(x, y), C(y), D(z), r(y, z).By saturation rules Rc

v and Rr
v, we haveBv∃(r u r−).(C uD) ∈

Ξ(T ).
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In the first round, in (S1) we select y. In (S2), we replace r(y, z) by r−(z, y). In (S3), as r is
transitive, we replace r(x, z) by r(x, u) and r(u, y). In (S4), we choose V` = {y, z}, Vp = {u}. In
(S5), we choose B v ∃(r u r−).(C uD) ∈ Ξ(T ), which satisfies (S5.a), (S5.b), and (S5.c1). In
(S6), we drop atoms containing y or z from body(ρ). In (S7), we rename u to y. Finally in (S8),
we add B(y) to the body and get ρ1 : q(x)← A(x), r(x, y), B(y).

In the second round, we select y in (S1), V` = {y}, Vp = {x} in (S3), and A v ∃r.B in (S5).
Following the similar steps, we get another rewritten rule ρ2 : q(X)← A(x).

The following is crucial:

Theorem 4. Assume a consistent Horn-SHIQ ontology O = (T ,A) and a conjunctive query q.
Then ans(O, q) =

⋃
q′∈rewT (q) ans(MM (A ∪ cr(T ∗)), q′).

Proof. Let IO = chase(J ,Ξ(T ∗)), whereJ = MM (A∪cr(T ∗)) . It suffices to show ansT (IO, q) =
ans(J , rewT (q)).

We first show ansT (IO, q) ⊇ ans(J , rewT (q)). Suppose h(~x) is the head atom of q. Assume
a tuple ~u ∈ ans(J , rewT (q)). Then there is a query q′ ∈ rewT (q) and a match πq′ for q′ in J
such that ~u = πq′(~x). By the construction of IO, we also have ~u ∈ ansT (IO, q′). If q′ = q, then
we are done. Suppose q′ 6= q. Then there is n > 0 such that q0 →T q1, · · · , qn−1 →T qn with
q0 = q and qn = q′. Thus to prove the claim it suffices to show that ~u ∈ ansT (IO, qi) implies
~u ∈ ansT (IO, qi−1), where 0 < i ≤ n.

Suppose πqi is a match for qi in IO with ~u = πq′(~x), i.e. ~u ∈ ansT (IO, qi). Let V` be the set
chosen in (S1), let x ∈ V` be the variable chosen in (S7), and let Mv∃S.N be the axiom chosen in
(S5). Moreover, let d = πqi(x). Due to step (S8) in the rewriting and the fact that IO is a model of
O, we have d ∈ (∃S.N)IO . Then there is d′ ∈ ∆IO such that (d, d′) ∈ SIO and d′ ∈ NIO . Define
the mapping πqi−1

for the variables of qi−1 as follows: (a) πqi−1
(z) = d′ for all variables z ∈ V`,

(b) πqi−1
(u) = d for all variables u ∈ Vp, and (c) πqi−1

(z) = πqi(z) for the remaining variables z.
Then πqi−1

is a match for qi−1 in IO. To see this, assume an atom α in qi−1. We show that πqi−1

makes α true in IO. There can be two possibilities:

(i) α has an occurrence of a variable from V`. In this case we have 3 more possibilities:

(a) α is a unary atom of the form α = A(z). Then z ∈ V` and πqi−1
(z) = d′ by construction

of πqi−1
. As noted above, d′ ∈ NIO . By (S5.b) we have A ∈ N .

(b) α is a binary atom α = r(y, x), where y ∈ Vp. We know πqi−1
(y) = d and πqi−1

(x) = d′.
As noted above, (d, d′) ∈ SIO . By (S5.b) we have r ∈ S.

(c) α is a binary atom α = r(y, x), where y ∈ V`. We know πqi−1
(y) = πqi−1

(x) = d′.
By (S5.c), there is a transitive s v∗T r such that {s, s−} ⊆ S, or there is an axiom
M ′ v ∃S ′.N ′ ∈ Ξ(T ∗) such that M ′ ⊆ N and {s, s−} ⊆ S ′. Since IO is a model of O,
we have (d′, d′) ∈ rIO .

(ii) α does not have an occurrence of a variable from V`. We distinguish the following cases:

(a) α has no variables from Vp. Then α ∈ body(qi) and the claim follows from (c) in the
definition of πqi−1

.
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(b) α is a unary atom α = A(u) with u ∈ Vp, which was replaced by A(x) in (S7). By
construction of πqi−1

we have πqi−1
(u) = d. As A(x) ∈ body(qi), we have that πqi(x) =

d implies d ∈ AIO as desired.

(c) α is a binary atom α = r(u, z) with u ∈ Vp and z 6∈ Vp, which was replaced by r(x, z)
in (S7). Since πqi is a match for qi in IO and r(x, z) ∈ body(qi), πqi satisfies r(x, z).
By construction of πqi−1

we have πqi−1
(u) = πqi(x) = d and πqi−1

(z) = πqi(z), hence
πqi satisfies r(u, z).

(d) the cases α = r(z, u) with either u ∈ Vp and z 6∈ Vp, or {z, u} ⊆ Vp, are both analogous
to the previous one.

We show ansT (IO, q) ⊆ ans(J , rewT (q)). To show this we need some book-keeping when
chasing J w.r.t. Ξ(T ∗). We prescribe the naming of fresh domain elements introduced during
the chase procedure. In particular, if d is a successor of e according to Definition 5, then d is an
expression of the form e · n, where n is a integer. For d ∈ ∆J , let |d| = 0. For the elements
w · n ∈ ∆IO , let |w · n| = |w|+ 1.

Suppose h(~x) is the head atom of q. Assume a tuple ~u ∈ ansT (IO, q). By definition, there is
match πq for q in IO such that ~u = πq(~x). We have to show that there exists q′ ∈ rewT (q) and a
match πq′ for q′ in J such that ~u = πq′(~x). For any match π′ in IO, let

deg(π′) =
∑

y∈rng(π′)

|π′(y)|.

Then, given that q ∈ rewT (q), to prove the claim it suffices to prove the following statement: if
q1 ∈ rewT (q) has a match πq1 for q1 in IO such that ~u = πq1(~x) and deg(πq1) > 0, then there exists
q2 ∈ rewT (q) that has a match πq2 for q2 in IO such that ~u = πq2(~x) and deg(πq2) < deg(πq1).

Assume q1 ∈ rewT (q) as above. Since deg(πq1) > 0 by assumption, there must exists a variable
x of q1 such that πq1(x) 6∈ NI. Take such an x for which there is no variable x′ of q1 with πq1(x)
being a prefix of πq1(x

′). That is, there is no variable x′ of q1 with πq1(x
′) = πq1(x) · w for some

w. Intuitively, the image of πq1 induces a subforest in IO; the variable x is mapped into a leaf node
in this forest.

Let dx = πq1(x), and dp be the parent element of dx, i.e. dx = dp · n for some integer
n. We know from the construction of IO that dx was introduced by an application of an axiom
ax = M v ∃S.N ∈ Ξ(T ∗) such that dp ∈MIO . We take a query q2 obtained from q1 as follows:

- For Step (S1) choose V` = {y ∈ var(q1) | πq1(y) = dx} (note that since dx 6∈ NI, all such y are
non-distinguished).

- For Step (S3) let Γ = {s(y, x) ∈ q1 | x ∈ V`∧πq1(y) 6= dx∧πq1(y) 6= dp} be the set of atoms we
choose to rewrite. Note that due to the selection of the atoms in Γ and since πq1 is a T -match for
q1, by definition of T -matches, for every atom s(y, x) ∈ Γ there exists a transitive role rs with
rs v∗T s such that there is an rs-path from πq1(y) to πq1(x). Using this role rs, we rewrite s(y, x)
into rs(y, u), rs(u, x). Observe that, since dp is the parent of dx in IO and π1(y) 6= dp, then dp is
in the rs-path from πq1(y) to πq1(x) and the following holds:
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(†) there is an rs-path from πq1(y) to dp, and (dp, dx) ∈ rsIO .

Observe also that if Γ 6= ∅, then in Step (S4) we get that u ∈ Vp.

- For Step (S5), choose ax given above. To see that (S5.a) holds, take any r(y, x) where x ∈ V`
and y ∈ Vp. We have to show r ∈ S, and we have two cases:

i. y ∈ var(q1) and πq1(y) = dp. Since πq1 is a T -match for q1 and dx is a successor of dp, we
must have (πq1(y), πq1(x)) ∈ rIO . Then due to the construction of IO, r ∈ S.

ii. if y = u is the fresh variable introduced in Step (S3), then r is the role rs chosen above and
by (†) we have (dp, dx) ∈ rIO , which implies r ∈ S due to the construction of IO.

To see that (S5.b) holds, take any A(z) where z ∈ V`. We have to show A ∈ N . Since πq1 is
a T -match for q1, we have πq1(z) ∈ AIO . Since πq1(z) = dx, by construction of IO we have
A ∈ N .

Finally, we check that (S5.c) holds. Take an atom r(x, y) in q1 such that x, y ∈ V`. Since
πq1(z) = πq1(x) = dx and πq1 is a T -match, we have a “self-loop” from dx to itself, that is, there
is a transitive sv∗T r and an s-path from dx to dx. This path must pass through a domain element
d 6= dx, an in particular it muss pass a d that is either the parent dx or some child of dx. Due to
the construction of IO, (i.) is satisfied in the former case and (ii.) is satisfied in the latter case.

Finally, a match πq2 for q2 in IO such that ~u = πq2(~x) and deg(πq2) < deg(πq1) is obtained
from πq1 by setting (a) πq2(z) = πq1(z) for all z of q2 with z 6= x, and (b) πq2(x) = dp. It is
easy to check that πq2 is a T -match for q2 because q2 is intuitively a subquery of q1. Observe that
vars(q2) ⊆ vars(q1) because any new variable introduced in Step (S3) is eliminated in Step (S7).
Hence, deg(πq2) < deg(πq1) follows from the fact that (i) |πq2(z)| = |πq1(z)| for all z of q2 with
z 6= x, and (ii) |πq2(x)| = |πq1(x)| − 1.

By the above reduction, we can answer q over O = (T ,A) by posing rewT (q) over the DA-
TALOG program A ∪ cr(T ∗). The method also applies to KBs K = (T ,A,P), where T is in
Horn-SHIQ and P is weakly DL-safe. The ground atomic consequences of K can be collected
by fixed-point computation: until no new consequences are derived, pose rules in P as CQs over
(T ,A) and put the obtained answers into A. If we employ the rewriting in Definition 6, this
computation can achieved using a plain DATALOG program.

Theorem 5. For a ground atom α over a KB K = (T ,A,P) where T is a Horn-SHIQ TBox and
P is weakly DL-safe, we have (T ,A,P) |= α iff cr(T ∗) ∪ rewT (P) ∪ A |= α.

Proof. First of all, let K1 |=T α1 be defined as K1 |= α1 but using the notion of a T -match instead
of a (plain) match. Since (T ,A,P) |= α iff (T ∗,A,P) |=T α, it suffices to show (T ∗,A,P) |=T α
iff cr(T ∗) ∪ rewT (P) ∪ A |= α.

Let P ′ = cr(T ∗) ∪ rewT (P).
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For the “if” direction, the interesting case is where (T ∗,A) is consistent. Note first that
(T ∗,A,P) |=T α′ for all α′ ∈ A. Hence, intuitively, it suffices to show that the rules of P ′
applied on A derive consequences of (T ∗,A,P). In particular, assume a rule

r = h(~u)← b1(~v1), . . . , bm( ~vm)

in P ′ and take a mapping π : vars(r) → NI. To prove the claim it suffices to show that
(T ∗,A,P) |=T b1(π(~v1)), . . . , (T ∗,A,P) |=T bm(π( ~vm)) implies (T ∗,A,P) |=T h(π(~u)).

The statement is straightforward if r is a rule in cr(T ∗), because cr(T ∗) encodes a subset of
Ξ(T ∗), which contains only logical consequences of T ∗.

Suppose r ∈ rewT (r′), for some rule r′ ∈ P . Let K′ = (T ∗,A′,P), where

A′ = A ∪ {b1(π(~v1)), . . . , bm(π( ~vm)}.

By applying Theorem 4, we get h(π(~u)) ∈ ans((T ∗,A′), r′). Hence, K′ |=T h(π(~u)). Since
K′ ≡ (T ∗,A,P) due to the induction hypothesis, we also get (T ∗,A,P) |=T h(π(~u)).

We prove the “only if” direction. The only interesting case is where cr(T ∗) ∪ rewT (P) ∪ A
is consistent. In this case, it suffices to show the existence of a model I of (T ∗,A,P) such that
I 6|= α for all α such that cr(T ∗) ∪ rewT (P) ∪ A 6|= α. Let A′ be the set of all ground α such
that cr(T ∗) ∪ rewT (P) ∪ A |= α. We let I = chase(A′,Ξ(T ∗)). Since the chase procedure does
change the gound atoms that are entailed, I 6|= α for all α such that cr(T ∗) ∪ rewT (P) ∪ A 6|= α.
It only remains to see that

(a) I |= (T ∗,A). Due to consistency of cr(T ∗) ∪ rewT (P) ∪ A, we also have that cr(T ∗) ∪ A′
is consistent. Due to Theorem 2, it suffices to show that A′ = MM(cr(T ∗) ∪ A′). Trivially,
A′ ⊆MM(cr(T ∗)∪A′). ForA′ ⊇MM(cr(T ∗)∪A′), assume there is β ∈MM(cr(T ∗)∪A′)
with β 6∈ A′. Then β is derived via a rule r ∈ cr(T ∗) using some match π in A′. Then it must
be the case that β ∈ A′ because by construction A′ is closed under the rules in cr(T ∗).

(b) I |= P . Assume a rule r ∈ P with a mapping π from variables of r to ∆I such that I |=
b(π(~v)) for each body atom b(~v) of r. We have to show that I |= h(π(~u)), where h(~u) is the
head of r. Due to weak DL-safety of P , π(x) ∈ NI for each variable x in ~u. In other words, π
is an ordinary match for a conjunctive query. In particular, π(~v) ∈ ans((T ∗,A′), r) sinceA′ =
MM(cr(T ∗) ∪ A′). Then due to Theorem 4, we have a match π′ for some r′ ∈ rewT (P) in
A′. Since A′ is closed under rules in rewT (P), we have h(π(~u)) ∈ A′ and thus I |= h(π(~u)).

The algorithm obtained by the above reduction is worst-case optimal in terms of combined and
data complexity.

Theorem 6. For a ground atom α over a KB K = (T ,A,P) where T is a Horn-SHIQ TBox
and P is weakly DL-safe, checking (T ,A,P) |= α is EXPTIME-complete in general, and PTIME-
complete when only the size of A is counted (i.e. in data complexity).
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Proof. By Theorem 5, checking (T ,A,P) |= α is equivalent to deciding cr(T ∗)∪rewT (P)∪A |=
α. We analyze the computational cost of the latter check.

We first recall that Ξ(T ∗) can be computed in exponential time in size of T and is independent
fromA: the calculus in Table 2 only infers axioms of the formMvB andMv∃S.N , whereM,N
are conjunctions of atomic concepts, B is atomic and S is a conjunction of roles. The number of
such axiom is single exponential in the size of T .

Observe that rewT (P) is finite and computable in time exponential in the size of T and P:
rules in rewT (ρ), where ρ ∈ P , use only relation names and variables that occur in ρ and T (fresh
variables introduced in (S3) are eliminated in (S6) and (S7)). Hence, the size of each rule resulting
from a rewrite step is of size polynomial in the size of T and P , and thus the number of rules in
rewT (P) is at most exponential in the size of T and P . The size of rewT (P) is constant when data
complexity is considered.

Furthermore, the grounding of cr(T ∗)∪ rewT (P)∪A is exponential in the size of K, but poly-
nomial for fixed T and P . By the complexity of DATALOG, it follows that the algorithm resulting
from Theorem 5 is exponential in combined but polynomial in data complexity.

The above complexity result is worst-case optimal, and applies already to plain conjunctive
queries [Eiter et al., 2008b].

6 Related Work and Conclusion

Since Calvanese et al. (2007b) introduced query rewriting in their seminal work on DL-Lite,
many query rewriting techniques have been developed and implemented, e.g. (Perez-Urbina et al.
2009, Rosati and Almatelli 2010, Chortaras et al. 2011, Gottlob et al. 2011), usually aiming at an
optimized rewriting size. Some of them also go beyond DL-Lite; e.g. Perez-Urbina et al. cover
ELHI, while Gottlob et al. consider DATALOG±. Most approaches rewrite a query into a (union
of) CQs; Rosati and Almatelli generate a non-recursive Datalog program, while Perez-Urbina et
al. produce a CQ for DL-Lite and a (recursive) Datalog program for DLs of the EL family. Our
approach rewrites a CQ into a union of CQs, but generates (possibly recursive) DATALOG rules to
capture the TBox.

Our technique resembles Rosati’s [2007] for CQs in EL, which replaces query atoms by ex-
istential concepts, then applies some TBox saturation and translates the rewritten queries and the
TBox into Datalog. The main difference is that in Rosati’s technique the rewriting takes place
before TBox saturation, resulting in an algorithm that is best-case exponential in the size of the
query. This is avoided in our approach since a rewrite step occurs only if the saturated TBox has
an applicable existential axiom. Another comparable technique is the combined approach of Lutz
et al. [2009]. In order to do query answering in EL with off-the-shelf RDBMSs, the authors ex-
pand the data in the ABox ‘materializing’ a part of the canonical model that can be used for query
answering after some query rewritings. Viewing our approach as a variation of the combined ap-
proach suggests an alternative query evaluation technique: we can first close the ABox under the
rules in cr(T ), and then evaluate the rewritten query rew(q) over the closed ABox.

Rewriting approaches for more expressive DLs are less common. The most notable exception
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is Hustadt et al.’s translation of SHIQ terminologies into disjunctive DATALOG [Hustadt et al.,
2007], which is implemented in the KAON2 reasoner. The latter can be used to answer queries
over arbitrary ABoxes, but supports only instance queries. An extension to CQs (without transitive
roles) is given in [Hustadt et al., 2004], but it is not implemented. To our knowledge, also the
extension of the rewriting in [Pérez-Urbina et al., 2009] to nominals remains to be implemented
[Pérez-Urbina et al., 2010]. In [Ortiz et al., 2010] a DATALOG rewriting is used to establish
complexity bounds of standard reasoning in the Horn fragments of SHOIQ and SROIQ, but it
does not cover CQs.

To our knowledge, CQ answering for Horn-SHIQ and beyond has not been implemented be-
fore. Respective algorithms for full SHIQwere first given in [Glimm et al., 2008] and (Calvanese
et al. 2007a), and for Horn-SHIQ in [Eiter et al., 2008b]. They are all of theoretical interest (to
prove complexity results) but not suited for practical implementation, due to prohibitive sources of
complexity.

7 Conclusion

We presented a rewriting-based algorithm for answering CQs over Horn-SHIQ ontologies. Our
prototype implementation shows potential for practical applications, and further optimizations will
improve it. Future versions of CLIPPER will support transitive roles and queries formulated in
weakly DL-safe DATALOG, for which the theoretic foundations have been already developed.

As an interesting application, we mention that our method allows to improve reasoning with
DL-programs, which loosely couple rules and ontologies [Eiter et al., 2008a]. To avoid the
overhead caused by the interaction of a rule reasoner and an ontology reasoner of traditional
methods, the inline evaluation framework translates ontologies into rules [Heymans et al., 2010;
Eiter et al., 2012a]. The techniques of this paper can be faithfully integrated into the inline evalu-
ation framework to efficiently evaluate DL-programs involving Horn-SHIQ ontologies.
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