
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

MANAGING INCONSISTENCY

IN MULTI-CONTEXT SYSTEMS

USING THE IMPL POLICY LANGUAGE

THOMAS EITER MICHAEL FINK

GIOVAMBATTISTA IANNI PETER SCHÜLLER

INFSYS RESEARCH REPORT 1843-12-05

APRIL 2012

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-12-05, APRIL 2012

MANAGING INCONSISTENCY

IN MULTI-CONTEXT SYSTEMS

USING THE IMPL POLICY LANGUAGE

Thomas Eiter1 Michael Fink1 Giovambattista Ianni2 Peter Schüller1

Abstract. Multi-context systems are a formalism for interlinking knowledge-based system (con-
texts) which interact via (possibly nonmonotonic) bridge rules. Such interlinking provides ample
opportunity for unexpected inconsistencies. These are undesired and come in different categories:
some are serious and must be inspected by a human operator, while some should simply be re-
paired automatically. However, no one-fits-all solution exists, as these categories depend on the
application scenario. To tackle inconsistencies in a general way, we therefore propose a declarative
policy language for inconsistency management in multi-context systems. We define syntax and
semantics, discuss methodologies for applying the language in real world applications, and describe
an implementation by rewriting to the ACTHEX formalism which is an extension of Answer Set
Programs.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,fink,schueller}@kr.tuwien.ac.at.

2Dipartimento di Matematica, Cubo 30B, Università della Calabria, 87036 Rende (CS), Italy; email:
ianni@mat.unical.it.

Acknowledgements: This research has been supported by the Vienna Science and Technology Fund (WWTF)
project ICT08-020. This report is an extended version of [Eiter et al., 2012].

Copyright c© 2012 by the authors

2 INFSYS RR 1843-12-05

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Multi-context systems (MCSs) . 4
2.2 Explaining Inconsistency in MCSs. 6

3 Policy Language IMPL 7
3.1 Syntax. 8

3.1.1 System and Inconsistency Analysis Predicates. 8
3.1.2 Value Invention via Built-in Predicates ‘#idk’. 10
3.1.3 Actions. 11

3.2 Semantics . 13
3.2.1 Action Determination. 14
3.2.2 Effect Determination. 14
3.2.3 Effect Materialization. 15

4 Methodologies of Applying IMPL and Realization 16
4.1 Reasoning Modes . 17
4.2 Additional Considerations . 18

5 Realizing IMPL in acthex 19
5.1 Preliminaries on acthex . 19

5.1.1 Syntax. 19
5.1.2 Semantics. 20

5.2 Rewriting the IMPL Core Fragment to acthex . 21

6 Rewriting IMPL to the IMPL Core fragment 23

7 Conclusion 29

INFSYS RR 1843-12-05 3

1 Introduction

Powerful knowledge based applications can be built by interlinking smaller existing knowledge based systems.
Multi-context systems (MCSs) [Brewka and Eiter, 2007], based on [Giunchiglia and Serafini, 1994, Brewka
et al., 2007], are a generic formalism that captures heterogeneous knowledge bases (contexts) which are
interlinked using (possibly nonmonotonic) bridge rules.

However, the advantage of building a system from smaller parts poses the challenge of unexpected
inconsistencies due to unintended interaction of system parts. Such inconsistencies are undesired, as (under
common principles) inference becomes trivial. Explaining reasons for inconsistency in MCSs has been
investigated in [Eiter et al., 2010a]: several independent inconsistencies can exist in a MCS, and each
inconsistency usually comes with more than one possibility to repair it.

For example, imagine a hospital information system which links several databases and suggests treatments
for patients. A simple inconsistency which can be automatically ignored would be if a patient enters her birth
date correctly at the front desk, but swaps two digits filling in a form at the X-ray department. An entirely
different story is, if we have a patient who needs treatment, but all options are in conflict with some allergy of
the patient. Attempting an automatic repair may not be a viable option in this case: a doctor should inspect
the situation and make a decision.

In the light of such scenarios, tackling inconsistency requires individual strategies and targeted (re)actions,
depending on the type of inconsistency and on the application. We thus propose the declarative Inconsistency
Management Policy Language (IMPL), which provides a means to specify inconsistency management
strategies for MCSs. Our contributions are as follows.
• We define the syntax of IMPL, inspired by Answer Set Programming (ASP) [Gelfond and Lifschitz, 1991].

In particular, we specify input for policy reasoning, in terms of reserved predicates. These predicates
encode inconsistency analysis results as introduced in [Eiter et al., 2010a]. Furthermore, we specify
action predicates that can be derived by rules. Actions provide a means to counteract inconsistency by
modifying the MCS, and may involve interaction with a human operator.

• We define the semantics of IMPL in a three-step process which calculates models of a policy, then
determines effects of actions which are present in such a model (this possibly involves user interaction),
and finally applies these effects to the MCS.

• We provide methodologies for integrating IMPL into application scenarios, and discuss possible modes of
reasoning and language extensions that could be useful in practical applications.

• We identify a fragment of IMPL, called Core IMPL , which is sufficient for realizing functionality of the
full IMPL language. We give a rewriting from Core IMPL to the acthex formalism [Basol et al., 2010]
which extends Answer Set Programs with external computations and actions.

• Finally we provide a method of rewriting IMPL to the Core IMPL fragment. This allows for using the
acthex rewriting as an implementation for the full IMPL language.
The paper is organized as follows: first we introduce MCS and notions for explaining inconsistency

in MCSs in Section 2, we define syntax and semantics of the IMPL policy language in Section 3, describe
methodologies for applying IMPL in practice in Section 4, provide a possibility for realizing Core IMPL by
rewriting to acthex in Section 5, give a rewriting from the full IMPL language to Core IMPL in Section 6, and
conclude the paper in Section 7.

4 INFSYS RR 1843-12-05

2 Preliminaries

We first introduce the MCS formalism and then describe notions for analyzing inconsistencies in MCSs.

2.1 Multi-context systems (MCSs)

A heterogeneous nonmonotonic MCS [Brewka and Eiter, 2007] consists of contexts, each composed of
a knowledge base with an underlying logic, and a set of bridge rules which control the information flow
between contexts.

A logic L= (KBL,BSL,ACCL) is an abstraction which captures many monotonic and nonmonotonic
logics, e.g., classical logic, description logics, or default logics. It consists of the following components, the
first two intuitively define the logic’s syntax, the third its semantics:
• KBL is the set of well-formed knowledge bases of L. We assume each element of KBL is a set of

“formulas”.

• BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.

• ACCL : KBL → 2BSL assigns to each KB a set of acceptable belief sets.
Since contexts may have different logics, this allows to model heterogeneous systems.

Example 2.1. For propositional logic Lprop under the closed world assumption over signature Σ, KB is
the set of propositional formulas over Σ; BS is the set of deductively closed sets of propositional Σ-literals;
and ACC(kb) returns for each kb a singleton set, containing the set of literal consequences of kb under the
closed world assumption.

A bridge rule models information flow between contexts: it can add information to a context, depending
on the belief sets accepted at other contexts. Let L = (L1, . . . , Ln) be a tuple of logics. An Lk-bridge rule r
over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where k and ci are context identifiers, i.e., integers in the range 1, . . . , n, pi is an element of some belief set
of Lci , and s is a formula of Lk. We denote by hb (r) the formula s in the head of r and by B(r) = {(c1 :
p1), . . . ,not (cj+1 : pj+1), . . .} the set of body literals (including negation) of r.

A multi-context system M = (C1, . . . , Cn) is a collection of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n,
where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi a knowledge base, and br i is a set of Li-bridge rules
over (L1, . . . , Ln). By IN i = {hb (r) | r ∈ bri} we denote the set of possible inputs of context Ci added by
bridge rules. For each H ⊆ IN i it is required that kbi ∪H ∈ KBLi . We denote by c(M) = {C1, . . . , Cn}
the set of all contexts of M . By br(M) =

⋃n
i=1 br i we denote the set of all bridge rules of M .

The following running example will be used throughout the paper.

Example 2.2 (generalized from [Eiter et al., 2010a]). Consider a MCS M1 in a hospital which comprises the
following contexts: a patient database Cdb , a blood and X-Ray analysis database Clab , a disease ontology
Conto , and an expert system Cdss which suggests proper treatments. Knowledge bases are given below;

INFSYS RR 1843-12-05 5

initial uppercase letters are used for variables and description logic concepts.

kbdb = {person(sue, 02/03/1985), allergy(sue, ab1)},
kb lab = {customer(sue, 02/03/1985), test(sue, xray , pneumonia),

test(Id , X, Y)→ ∃D : customer(Id , D)),
customer(Id , X) ∧ customer(Id , Y)→ X = Y },

kbonto = {Pneumonia uMarker v AtypPneumonia},
kbdss = {give(Id , ab1) ∨ give(Id , ab2)← need(Id , ab).

give(Id , ab1)← need(Id , ab1).
¬give(Id , ab1)← not allow(Id , ab1),need(Id ,Med).}.

Context Cdb uses propositional logic (see Example 2.1) and provides the information that Sue is allergic to
antibiotics ‘ab1 ’. Context Clab is a database with constraints which stores laboratory results connected to
Sue: pneumonia was detected in an X-ray. Constraints enforce, that each test result is linked to a customer
record, and that each customer has only one birth date. Conto specifies, that presence of a blood marker
in combination with pneumonia indicates atypical pneumonia. Conto is based on AL, a basic description
logic [Baader et al., 2003]: KBonto is the set of all well-formed theories within that description logic,
BSonto is the powerset of the set of all assertions C(o) where C is a concept name and o an individual name,
and ACConto returns the set of all concept assertions entailed by a given theory. Cdss is an ASP program
that suggests a medication using the give predicate.

Schemas for bridge rules of M1 are as follows:

r1 = (lab : customer(Id ,Birthday))← (db : person(Id ,Birthday)).
r2 = (onto : Pneumonia(Id)) ← (lab : test(Id , xray , pneumonia)).
r3 = (onto : Marker(Id)) ← (lab : test(Id , bloodtest ,m1)).
r4 = (dss : need(Id , ab)) ← (onto : Pneumonia(Id)).
r5 = (dss : need(Id , ab1)) ← (onto : AtypPneumonia(Id)).
r6 = (dss : allow(Id , ab1)) ←not (db : allergy(Id , ab1).

Rule r1 links the patient records with the lab database (so patients do not need to enter their data twice).
Rules r2 and r3 provide test results from the lab to the ontology. Rules r4 and r5 link disease information
with medication requirements, and r6 associates acceptance of the particular antibiotic ‘ab1 ’ with a negative
allergy check on the patient database.

Equilibrium semantics [Brewka and Eiter, 2007] selects certain belief states of a MCS M = (C1, . . . , Cn) as
acceptable. A belief state is a list S= (S1, . . . , Sn), s.t. Si ∈BSi. A bridge rule (1) is applicable in S iff for
1≤ i≤ j: pi ∈ Sci and for j < l ≤m: pl /∈ Scl . Let app(R,S) denote the set of bridge rules in R that are
applicable in belief state S. Then a belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for 1 ≤ i ≤ n,
the following condition holds: Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(br i, S)}).

For simplicity we will disregard the issue of grounding bridge rules (see [Fink et al., 2011]), and
only consider ground instances of bridge rules. In the following, with r1, . . . , r6 we refer to the ground
instances of the respective bridge rules in Example 2.2, where variables are replaced by Id 7→ sue and
Birthday 7→ 02/03/1985 (all other bridge rule instances are irrelevant).

6 INFSYS RR 1843-12-05

Example 2.3 (ctd). MCS M1 has one equilibrium S= (Sdb , Slab , Sonto , Sdss), where

Sdb = kbdb ,

Slab = {customer(sue, 02/03/1985), test(sue, xray , pneumonia)},
Sonto = {Pneumonia(sue)}, and

Sdss = {need(sue, ab), give(sue, ab2),¬give(sue, ab1)}.

Moreover, bridge rules r1, r2, and r4 are applicable under S.

2.2 Explaining Inconsistency in MCSs.

Inconsistency in a MCS is the lack of an equilibrium [Eiter et al., 2010a]. Note that no equilibrium may
exist even if all contexts are ‘paraconsistent’ in the sense that for all kb ∈ KB, ACC(kb) is nonempty. No
information can be obtained from an inconsistent MCS, e.g., inference tasks like brave or cautious reasoning
on equilibria become trivial. To analyze, and eventually repair, inconsistency in a MCS, we use the notions
of consistency-based diagnosis and entailment-based inconsistency explanation [Eiter et al., 2010a], which
characterize inconsistency by sets of involved bridge rules.

Intuitively, a diagnosis is a pair (D1, D2) of sets of bridge rules which represents a concrete system repair
in terms of removing rules D1 and making rules D2 unconditional. The intuition for considering rules D2

as unconditional is that the corresponding rules should become applicable to obtain an equilibrium. One
could consider more fine-grained changes of rules such that only some body atoms are removed instead of all.
However, this increases the search space while there is little information gain: every diagnosis (D1, D2) as
above, together with a witnessing equilibrium S, can be refined to such a generalized diagnosis.

The formal definition is as follows. Given a MCS M and a set R of bridge rules, by M [R] we denote
the MCS obtained from M by replacing its set of bridge rules br(M) with R (in particular, M [br(M)] =M
and M [∅] is M with no bridge rules). By M |=⊥ we denote that M is inconsistent, by M 6|=⊥ the opposite.
For any set of bridge rules A, we denote by heads(A) the rules in A in unconditional form. For pairs
A= (A1, A2) and B= (B1, B2) of sets, A⊆B denotes the pointwise subset relation.

Definition 2.4 (Diagnosis [Eiter et al., 2010a]). Given a MCS M , a diagnosis of M is a pair (D1, D2),
D1, D2 ⊆ br(M), s.t. M [br(M)\D1∪heads(D2)] 6|= ⊥. D±(M) is the set of all such diagnoses. D±m(M)
is the set of all pointwise subset-minimal diagnoses of a MCS M .

Dual to that, inconsistency explanations (short: explanations) separate independent inconsistencies. An
explanation is a pair (E1, E2) of sets of bridge rules, such that the presence of rules E1 and the absence
of heads of rules E2 necessarily makes the MCS inconsistent. In other words, bridge rules in E1 cause an
inconsistency in M which cannot be resolved by considering additional rules that are already present in M ,
or by modifying rules in E2 (in particular by making them unconditional).

Definition 2.5 (Inconsistency Explanation [Eiter et al., 2010a]). Given a MCS M , an inconsistency explana-
tion of M is a pair (E1, E2) s.t. for all (R1, R2) where E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \ E2, it holds
that M [R1 ∪ heads(R2)] |= ⊥. By E±(M) we denote the set of all inconsistency explanations of M , and by
E±m(M) the set of all pointwise subset-minimal ones.

See [Eiter et al., 2010a] for detailed motivation of these notions, relationships between them, and more
background discussion.

INFSYS RR 1843-12-05 7

Example 2.6 (ctd). Consider a MCS M2 obtained from M1 by modifying kb lab: we replace customer(sue ,
02/03/1985) by the two facts customer(sue, 03/02/1985) and test(sue, bloodtest ,m1), i.e., we change
the birth date, and add a blood test result. Accordingly,

kb lab = {customer(sue, 03/02/1985),
test(sue, xray , pneumonia), test(sue, bloodtest ,m1),
test(Id , X, Y)→ ∃D : customer(Id , D)),
customer(Id , X) ∧ customer(Id , Y)→ X = Y },

M2 is inconsistent with two minimal inconsistency explanations e1 = ({r1}, ∅) and e2 = ({r2, r3, r5}, {r6}):
e1 characterizes the problem, that Clab does not accept any belief set because constraint customer(Id , X)∧
customer(Id , Y)→X = Y is violated. Another independent inconsistency is pointed out by e2: if e1 is
repaired, then Conto accepts AtypPneumonia(sue), therefore r5 imports the need for ab1 into Cdss which
makes Cdss inconsistent due to Sue’s allergy. Moreover, the following minimal diagnoses exist for M2:
({r1, r2}, ∅), ({r1, r3}, ∅), ({r1, r5}, ∅), and ({r1}, {r6})

}
. For instance, diagnosis ({r1}, {r6}) removes

bridge rule r1 fromM2 and adds r6 unconditionally toM2, which yields a consistent MCS. Formally, analysis
of inconsistency as defined in [Eiter et al., 2010a] yields E±m(M2) = {e1, e2} and D±m(M2) =

{
({r1, r2}, ∅),

({r1, r3}, ∅), ({r1, r5}, ∅), ({r1}, {r6})
}

.

3 Policy Language IMPL

Dealing with inconsistency in an application scenario is difficult, because, even if inconsistency analysis
provides information how to restore consistency, it is not obvious which choice of system repair is rational. It
may not even be clear whether it is wise at all to repair the system by changing bridge rules.

Example 3.1 (ctd). Repairing e1 by removing r1 and thereby ignoring the birth date (which differs at the
granularity of months) may be the desired reaction and could very well be done automatically. On the
contrary, repairing e2 by ignoring either the allergy or the illness is a decision that should be left to a doctor,
as every possible repair could cause serious harm to Sue.

Therefore, managing inconsistency in a controlled way is crucial. To address these issues, we propose the
declarative Inconsistency Management Policy Language IMPL, which provides a means to create policies
for dealing with inconsistency in MCSs. Intuitively, an IMPL policy specifies (i) which inconsistencies are
repaired automatically and how this shall be done, and (ii) which inconsistencies require further external
input, e.g., by a human operator, to make a decision on how and whether to repair the system. Note that we
do not rule out automatic repairs, but — contrary to previous approaches — automatic repairs are done only
if a given policy specifies to do so, and only to the extent specified by the policy.

Since a major point of MCSs is to abstract away context internals, IMPL treats inconsistency by modifying
bridge rules. For the scope of this work we delegate any potential repair by modifying the kb of a context to
the user. The effect of applying an IMPL policy to an inconsistent MCS M is a modification (A,R) which is
a pair of sets of bridge rules which are syntactically compatible with M . Intuitively, a modification specifies
bridge rules A to be added to M and bridge rules R to be removed from M , similar as for diagnoses without
restriction to the original rules of M .

An IMPL policy P for a MCS M is intended to be evaluated on a set of system and inconsistency analysis
facts, denoted EDBM , which represents information about M , in particular EDBM contains atoms which
describe bridge rules, minimal diagnoses, and minimal explanations of M .

8 INFSYS RR 1843-12-05

The evaluation of P yields certain actions to be taken, which potentially interact with a human operator,
and modify the MCS at hand. This modification has the potential to restore consistency of M .

In the following we formally define syntax and semantics of IMPL.

3.1 Syntax.

We assume disjoint sets C, V , Built , and Act , of constants, variables, built-in predicate names, and action
names, respectively, and a set of ordinary predicate names Ord ⊆ C. Constants start with lowercase letters,
variables with uppercase letters, built-in predicate names with #, and action names with @. The set of terms
T is defined as T =C ∪V .

An atom is of the form p(t1, . . . , tk), 0 ≤ k, ti ∈T , where p ∈ Ord ∪Built∪Act is an ordinary predicate
name, built-in predicate name, or action name. An atom is ground if ti ∈ C for 0 ≤ i ≤ k. The sets AAct ,
AOrd , and ABuilt , called sets of action atoms, ordinary atoms, and built-in atoms, consist of all atoms over T
with p∈Act , p∈Ord , respectively p∈Built .

Definition 3.2. An IMPL policy is a finite set of rules of the form

h← a1, . . . , aj , not aj+1, . . . , not ak. (2)

where h is an atom from AOrd ∪AAct , every ai, 1 ≤ i ≤ k, is from AOrd ∪ABuilt , and ‘not‘ is negation as
failure.

Given a rule r, we denote by H(r) its head, by B+(r) = {a1, . . . , aj} its positive body atoms, and by
B−(r) = {aj+1, . . . , ak} its negative body atoms. A rule is ground if it contains ground atoms only. A
ground rule with k = 0 is a fact. As in ASP, a rule must be safe, i.e., variables in H(r) or in B−(r) must also
occur in B+(r). For a set of rules R, we use cons(R) to denote the set of constants from C appearing in R,
and pred(R) for the set of ordinary predicate names and action names (elements from Ord ∪Act) in R.

We next describe how a policy represents information about the MCS M under consideration.

3.1.1 System and Inconsistency Analysis Predicates.

Entities, diagnoses, and explanations of the MCS M at hand are represented by a suitable finite set CM ⊆ C
of constants which uniquely identify contexts, bridge rules, beliefs, rule heads, diagnoses, and explanations.
For convenience, when referring to an element represented by a constant c we identify it with the constant,
e.g., we write ‘bridge rule r’ instead of ‘bridge rule of M represented by constant r’.

Reserved atoms use predicates from the set Cres ⊆Ord of reserved predicates, with Cres = {ruleHead ,
ruleBody+, ruleBody−, context , modAdd , modDel , diag , explNeed , explForbid}. They represent the
following information.
• context(c) denotes that c is a context.

• ruleHead(r, c, s) denotes that bridge rule r is at context c with head formula s.

• ruleBody+(r, c, b) (resp., ruleBody−(r, c, b)) denotes that bridge rule r contains body literal ‘(c : b)’
(resp., ‘not (c : b)’).

• modAdd(m, r) (resp., modDel(m, r)) denotes that modification m adds (resp., deletes) bridge rule r.
Note that r is represented using ruleHead and ruleBody .

INFSYS RR 1843-12-05 9

• diag(m) denotes that modification m is a minimal diagnosis in M .

• explNeed(e, r) (resp., explForbid(e, r)) denotes that the minimal explanation (E1, E2) identified by
constant e contains bridge rule r ∈ E1 (resp., r ∈ E2).

• modset(ms,m) denotes that modification m belongs to the set of modifications identified by ms .

Example 3.3 (ctd). We can represent r1, r5, and the diagnosis ({r1, r5}, ∅) as the set of reserved atoms
Iex = {ruleHead(r1, clab , ‘customer(sue, 02/03/1985)′), ruleBody+(r1, cdb , ‘person(sue , 02/03/1985)′),
ruleHead(r5, cdss , ‘need(sue, ab1)′), ruleBody+(r5, conto , ‘AtypPneumonia(sue)′), modDel(d, r1),
modDel(d, r5), diag(d)} where constant d identifies the diagnosis.

Further knowledge used as input for policy reasoning can easily be defined using additional (supplemen-
tary) predicates. Note that predicates over all explanations or bridge rules can easily be defined by projecting
from reserved atoms. Moreover, to encode preference relations (e.g., as in [Eiter et al., 2010b]) between
system parts, diagnoses, or explanations, an atom preferredContext(c1, c2) could denote that context c1 is
considered more reliable than context c2. The extensions of such auxiliary predicates need to be defined
by the rules of the policy or as additional input facts (ordinary predicates), or they are provided by the
implementation (built-in predicates), i.e., the ‘solver’ used to evaluate the policy. The rewriting to acthex
given in Section 5.2 provides a good foundation for adding supplementary predicates as built-ins, because
the acthex language has generic support for calls to external computational sources. A possible application
would be to use a preference relation between bridge rules that is defined by an external predicate and can be
used for reasoning in the policy.

Towards a more formal definition of a policy input, we distinguish the set BM of ground atoms built
from reserved predicates Cres and terms from CM , called MCS input base, and the auxiliary input base
BAux given by predicates over Ord \ Cres and terms from C. Then, the policy input base BAux ,M is defined
as BAux ∪ BM . For a set I ⊆ BAux ,M , I|BM and I|BAux

denote the restriction of I to predicates from the
respective bases.

Now, given an MCS M , we say that a set S ⊆ BM is a faithful representation of M wrt. a reserved
predicate p ∈ Cres \ {modset} iff the extension of p in S exactly characterizes the respective entity or
property of M (according to a unique naming assignment associated with CM as mentioned). For instance,
context(c) ∈ S iff c is a context of M , and correspondingly for the other predicates. Consequently, S is a
faithful representation of M iff it is a faithful representation wrt. all p in Cres \ {modset} and the extension
of modset in S is empty.

A finite set of facts I ⊆ BAux ,M containing a faithful representation of all relevant entities and properties
of an MCS qualifies as input of a policy, as defined next.

Definition 3.4. A policy input I wrt. MCS M is a finite subset of the policy input base BAux ,M , such that
I|BM is a faithful representation of M .

In the following, we denote by EDBM a policy input wrt. a MCSM . Note that reserved predicate modset
has an empty extension in a policy input (but corresponding atoms will be of use later in combination with
actions).

Given a set of reserved atoms I , let c be a constant that appears as a bridge rule identifier in I . Then
ruleI (c) denotes the corresponding bridge rule represented by reserved atoms ruleHead , ruleBody+, and
ruleBody− in I with c as their first argument. Similarly we denote by mod I (m) = (A,R) (resp., by
modset I (m) = {(A1, R1), . . .}) the modification (resp., set of modifications) represented in I by the respec-
tive predicates and identified by constant m.

10 INFSYS RR 1843-12-05

Subsequently, we call a modification m that is projected to rules located at a certain context c ‘the
projection of m to context c’. (We use the same notation for sets of modifications.) Formally we denote
by mod I (m)|c (resp., modset I (m)|c) the projection of modification (resp., set of modifications) m in I to
context c.

Example 3.5 (ctd). In the previous example Iex , ruleIex (r1) refers to bridge rule r1; moreover mod Iex (d) =
({r1, r5}, ∅) and the projection of modification d to cdss is mod Iex (d)|cdss

= ({r5}, ∅).

Example 3.6 (ctd). A proper EDBM2 of our running example is, e.g., as follows:

{context(cdb), context(clab), context(conto), context(cdss),
ruleHead(r1, clab , ‘customer(sue, 02/03/1985)′),ruleBody+(r1, cdb , ‘person(sue, 02/03/1985)′),
ruleHead(r2, conto , ‘Pneumonia(sue)′), ruleBody+(r2, clab , ‘test(sue, xray , pneumonia)′),
ruleHead(r3, conto , ‘Marker(sue)′), ruleBody+(r3, clab , ‘test(sue, bloodtest ,m1)′),
ruleHead(r4, cdss , ‘need(sue, ab)′), ruleBody+(r4, conto , ‘Pneumonia(sue)′),
ruleHead(r5, cdss , ‘need(sue, ab1)′), ruleBody+(r5, conto , ‘AtypPneumonia(sue)′),
ruleHead(r6, cdss , ‘allow(sue, ab1)′), ruleBody−(r6, clab , ‘allergy(sue, ab1)′),
diag(d1),modDel(d1, r1),modDel(d1, r2),
diag(d2),modDel(d2, r1),modDel(d2, r3),
diag(d3),modDel(d3, r1),modDel(d3, r5),
diag(d4),modDel(d4, r1),modAdd(d4, r6),
explNeed(e1, r1),
explNeed(e2, r2), explNeed(e2, r3), explNeed(e2, r5), explForbid(e2, r6)}

Here, the two explanations and four diagnoses given in Ex. 2.6 are identified by constants e1, e2, d1, . . . , d4,
respectively.

A policy can create representations of new rules, modifications, and sets of modifications, because
reserved atoms are allowed to occur in heads of policy rules. However such new entities require new constants
identifying them. To tackle this issue, we next introduce a facility for value invention.

3.1.2 Value Invention via Built-in Predicates ‘#idk’.

Whenever a policy specifies a new rule and uses it in some action, the rule must be identified with a constant.
The same is true for modifications and sets of modifications. Therefore, IMPL contains a family of special
built-in predicates which provide policy writers a means to comfortably create new constants from existing
ones.

For this purpose, built-in predicates of the form #idk(c
′, c1, . . . , ck) may occur in rule bodies (only).

Their intended usage is to uniquely (and thus reproducibly) associate a new constant c′ with a tuple c1, . . . , ck
of constants (for a formal semantics see the definitions for action determination in Section 3.2).

Note that this value invention feature is not strictly necessary, as new constants can be obtained via
defining an order relation over all constants, a pool of unused constants, and auxiliary rules that use the next
unused constant for each new constant that is required by the program. However, a dedicated value invention
built-in, as introduced here, simplifies policy writing and improves policy readability.

Example 3.7. Assume one wants to consider projections of modifications to contexts as specified by the
extension of an auxiliary predicate projectMod(M,C). The following policy fragment achieves this using

INFSYS RR 1843-12-05 11

a value invention built-in to assign a unique identifier with every projection (recorded in the extension of
another auxiliary predicate projectedModId(M ′, M , C)).

projectedModId(M ′,M,C)← projectMod(M,C),
#id3(M

′, pm id ,M,C);
modAdd(M ′, R)←modAdd(M,R), ruleHead(R,C, S),

projectedModId(M ′,M,C);
modDel(M ′, R)←modDel(M,R), ruleHead(R,C, S),

projectedModId(M ′,M,C)


(3)

Intuitively, we identify new modifications by new ids cpmid ,M,C which are obtained via #id3 from M , C, and
an auxiliary constant pm id /∈ CM . The latter simply serves the purpose of disambiguating constants used for
projections of modifications. This way link new identifiers to constant pm id , therefore we can easily combine
(3) with other policy fragments that use #id3 on modifications and contexts, and values invented in these
fragments will not interfere with one another as long as every fragments uses its own auxiliary constant. (We
therefore can think of pm id as being ‘reserved for value-invention in the projection of modifications’.)

Besides representing modifications of a MCS and reasoning about them, an important feature of IMPL is
to actually apply them. Actions serve this purpose.

3.1.3 Actions.

Actions alter the MCS at hand and may interact with a human operator. According to the change that an
action performs, we distinguish system actions which modify the MCS in terms of entire bridge rules that
are added and/or deleted, and rule actions which modify a single bridge rule. Moreover, the changes can
depend on external input, e.g., obtained by user interaction. In the latter case, the action is termed interactive.
Accumulating the changes of all actions yields an overall modification of the MCS. We formally define this
intuition when addressing the semantics in Section 3.2.2.

Syntactically, we use @ to prefix action names from Act . The predefined actions listed below are
reserved action names. Let M be the MCS under consideration, then the following predefined actions are
(non-interactive) system actions:
• @delRule(r) removes bridge rule r from M .

• @addRule(r) adds bridge rule r to M .

• @applyMod(m) applies modification m to M .

• @applyModAtContext(m, c) applies those changes in m to the MCS that add or delete bridge rules at
context c (i.e., applies the projection of m to c).

Note that a policy might specify conflicting effects, i.e., the removal and the addition of a bridge rule at the
same time. In this case the semantics gives preference to addition.

The predefined actions listed next are rule actions:
• @addRuleCondition+(r, c, b) (resp., @addRuleCondition−(r, c, b)) adds body literal (c : b) (resp.,
not (c : b)) to bridge rule r.

• @delRuleCondition+(r, c, b) (resp., @delRuleCondition−(r, c, b)) removes body literal (c : b) (resp.,
not (c : b)) from bridge rule r.

12 INFSYS RR 1843-12-05

• @makeRuleUnconditional(r) makes bridge rule r unconditional.
Since these actions can modify the same rule, this may also result in conflicting effects, where again addition
is given preference over removal by the semantics. (Moreover, rule modifications are given preference over
addition or removal of the entire rule.)

Eventually, the subsequent predefined actions are interactive (system) actions, i.e., they involve a human
operator:
• @guiSelectMod(ms) displays a GUI for choosing from the set of modifications ms . The modification

chosen by the user is applied to M .

• @guiEditMod(m) displays a GUI for editing modification m. The resulting modification is applied to
M .1

• @guiSelectModAtContext(ms, c) projects modifications in ms to c, displays a GUI for choosing among
them and applies the chosen modification to M .

• @guiEditModAtContext(m, c) projects modification m to context c, displays a GUI for editing it, and
applies the resulting modification to M .

As we define formally in Section 3.2, changes of individual actions are not applied directly, but collected
into an overall modification which is then applied to M (respecting preferences in case of conflicts as stated
above). Before turning to a formal definition of the semantics, we give example policies.

Example 3.8 (ctd). Figure 1 shows three policies that can be useful for managing inconsistency in our running
example. Their intended behavior is as follows. P1 deals with inconsistencies at Clab: if an explanation
concerns only bridge rules at Clab , an arbitrary diagnosis is applied at Clab , other inconsistencies are not
handled. Applying P1 to M2 removes r1 at Clab , the resulting MCS is still inconsistent with inconsistency
explanation e2, as only e1 has been automatically fixed. P2 extends P1 by adding an ‘inconsistency alert
formula’ to Clab if an inconsistency was automatically repaired at that context. Finally, P3 is a fully manual
approach which displays a choice of all minimal diagnoses to the user and applies the user’s choice. Note,
that we did not combine automatic actions and user-interactions here since this would result in more involved
policies (and/or require an iterative methodology; cf. Section 4).

We refer to the predefined IMPL actions @delRule, @addRule, @guiSelectMod , and @guiEditMod as
core actions, and to the remaining ones as comfort actions. Comfort actions exist for convenience of use,
providing means for projection and for rule modifications. They can be rewritten to core actions as sketched
in the following example.

Example 3.9. To realize @applyMod(M) and @applyModAtContext(M,C) using the core language, we
replace them by applyMod(M) and applyModAtContext(M,C), respectively, use rules (3) from Exam-
ple 3.7, and add the following set of rules.

@addRule(R)← applyMod(M), modAdd(M,R);
@delRule(R)← applyMod(M), modDel(M,R);

projectMod(M,C)← applyModAtContext(M,C);
applyMod(M ′)← applyModAtContext(M,C),

projectedModId(M ′,M,C)

 (4)

1It is suggestive to also give the human operator a possibility to abort, causing no modification at all to be made, however we do
not specify this here because a useful design choice depends on the concrete application scenario.

INFSYS RR 1843-12-05 13

Policies (sets of IMPL rules) Intuitive meaning of rules in each set

P1 ={expl(E)← explNeed(E,R); Define domain predicate
expl(E)← explForbid(E,R); for explanations.
incNotLab(E)← explNeed(E,R), Find out whether one explanation

ruleHead(R,C, F), C 6= clab ; only concerns bridge rules at clab .
incNotLab(E)← explForbid(E,R),

ruleHead(R,C, F), C 6= clab ;
incLab← expl(E), not incNotLab(E);
in(D)← not out(D), diag(D), incLab; Guess a diagnosis.
out(D)← not in(D), diag(D), incLab;
⊥← in(A), in(B), A 6=B; Ensure that we guess exactly one
useOne← in(D); diagnosis if there is a local
⊥← not useOne, incLab; inconsistency at clab .
@applyModAtContext(D, clab)← Apply the guessed diagnosis after

useDiag(D)} projecting it to context clab .

P2 ={ruleHead(ralert , clab , alert)← ; Define new inconsistency alert rule ralert .
@addRule(ralert)← incLab} Add that new rule to clab .

∪ P1 Reuse policy P1.

P3 ={modset(md , X)← diag(X); Create modification set with all diagnoses.
@guiSelectMod(md)←} Let the user choose from that set.

Figure 1: Sample IMPL policies for our running example.

This concludes our introduction of the syntax of IMPL, and we move on to a formal development of its
semantics which so far has only been conveyed by accompanying intuitive explanations.

3.2 Semantics

The semantics of applying an IMPL policy P to a MCS M is defined in three steps:

• Actions to be executed are determined by computing a policy answer set of P wrt. policy input EDBM .

• Effects of actions are determined by executing actions. This yields modifications (A,R) of M for each
action. Action effects can be nondeterministic and thus only be determined by executing respective
actions (which is particularly true for user interactions).

• Effects of actions are materialized by building the componentwise union over individual action effects
and applying the resulting modification to M .

In the remainder of this section, we introduce the necessary definitions for a precise formal account of these
steps.

14 INFSYS RR 1843-12-05

3.2.1 Action Determination.

We define IMPL policy answer sets similar to the stable model semantics [Gelfond and Lifschitz, 1991].
Given a policy P and a policy input EDBM , let idk be a fixed (built-in) family of one-to-one mappings
from k-tuples c1, . . . , ck, where ci ∈ cons(P ∪ EDBM) for 1 ≤ i ≤ k, to a set Cid ⊂C of ‘fresh’ constants,
i.e., disjoint from cons(P ∪ EDBM).2 Then the policy base BP,M of P wrt. EDBM is the set of ground
IMPL atoms and actions, that can be built using predicate symbols from pred(P ∪ EDBM) and terms from
UP,M = cons(P ∪ EDBM) ∪ Cid , called policy universe.

The grounding of P , denoted by grnd(P), is given by grounding its rules wrt. UP,M as usual. Note that,
since cons(P ∪ EDBM) is finite, only a finite amount of mapping functions idk is used in P . Hence only a
finite amount of constants Cid is required, and therefore UP,M , BP,M , and grnd(P) are finite as well.

An interpretation is a set of ground atoms I ⊆ BP,M . We say that I models an atom a ∈ BP,M , denoted
I |= a iff (i) a is not a built-in atom and a∈ I , or (ii) a is a built-in atom of the form #idk(c, c1, . . . , ck) and
c = idk(c1, . . . , ck). I models a set of atoms A ⊆ BP,M , denoted I |=A, iff I |= a for all a ∈ A. I models
the body of rule r, denoted as I |=B(r), iff I |= a for every a∈B+(r) and I 6|= a for all a∈B−(r); and for
a ground rule r, I |= r iff I |=H(r) or I 6|=B(r). Eventually, I is a model of P , denoted I |=P , iff I |= r for
all r∈ grnd(P). The FLP-reduct [Faber et al., 2011] of P wrt. an interpretation I , denoted fP I , is the set of
all r ∈ grnd(P) such that I |= B(r).3

Definition 3.10 (Policy Answer Set). Given an MCS M , let P be an IMPL policy, and let EDBM be a policy
input wrt. M . An interpretation I ⊆BP,M is a policy answer set of P for EDBM iff I is a ⊆-minimal model
of fP I ∪ EDBM .

We denote by AS(P ∪ EDBM) the set of all policy answer sets of P for EDBM .

3.2.2 Effect Determination.

We define the effects of action predicates @a∈Act by nondeterministic functions f@a. Nondeterminism is
required for interactive actions. An action is evaluated wrt. an interpretation of the policy and yields an effect
according to its type: the effect of a system action is a modification (A,R) of the MCS, in the following
sometimes denoted system modification, while the effect of a rule action is a rule modification (A,R)r wrt. a
bridge rule r of M , i.e., in this case A is a set of bridge rule body literals to be added to r, and R is a set of
bridge rule body literals to be removed from r.

Definition 3.11. Given an interpretation I , and a ground action α of form @a(t1, . . . , tk), the effect of α
wrt. I is given by effI(α) = f@a(I, t1, . . . , tk), where effI(α) is a system modification if α is a system action,
and a rule modification if α is a rule action.

Action predicates of the IMPL core fragment have the following semantic functions.

• f@delRule(I, r) = (∅, {ruleI (r)}).

• f@addRule(I, r) = ({ruleI (r)}, ∅).

2Disjointness ensures finite groundings; without this restriction, e.g., the program {p(C′)← #id1(C
′, C); p(C)} would not

have finite grounding.
3We use the FLP reduct for compliance with acthex (used for realization in Section 5), but for the language considered, the

Gelfond-Lifschitz reduct would yield an equivalent definition.

INFSYS RR 1843-12-05 15

• f@guiSelectMod (I,ms) = (A,R) where (A,R) is the user’s selection after being displayed a choice
among all modifications in {(A1, R1), . . .} = modset I (ms).

• f@guiEditMod (I,m) = (A′, R′), where (A′, R′) is the result of user interaction with a modification
editor that is preloaded with modification (A,R) = mod I (m).

Note that the effect of any core action in I can be determined independently from the presence of other
core actions in I , and rule modifications are not required to define the semantics of core actions. However,
rule modifications are needed to capture the effect of comfort actions. Moreover, adding and deleting rule
conditions, and making a rule unconditional can modify the same rule, therefore such action effects yield
accumulated rule modifications.

More specifically, the semantics of IMPL comfort actions is defined as follows:

• f@delRuleCondition+(I, r, c, b) = (∅, {(c : b)})r.

• f@delRuleCondition−(I, r, c, b) = (∅, {not (c : b)})r.

• f@addRuleCondition+(I, r, c, b) = ({(c : b)}, ∅)r.

• f@addRuleCondition−(I, r, c, b) = ({not (c : b)}, ∅)r.

• f@makeRuleUnconditional (I, r) = (∅, {(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm :
pm)})r for r of the form (1).

• f@applyMod (I,m) = mod I (m).

• f@applyModAtContext(I,m, c) = mod I (m)|c.

• f@guiSelectModAtContext(I,ms, c) = (A′, R′) where (A′, R′) is the user’s selection after being displayed
a choice among all modifications in {(A′1, R′1), . . .} = modset I (ms)|c.

• f@guiEditModAtContext(I,m, c) = (A′, R′), where (A′, R′) is the result of user interaction with a
modification editor that is preloaded with modification mod I (m)c.

In practice, however, it is not necessary to implement action functions on the level of rule modifications, since
a policy in the comfort fragment can equivalently be rewritten to the core fragment (which does not rely on
rule modifications). Example 3.9 already sketched a rewriting for @applyMod and @applyModAtContext .
In Section 6 we provide a rewriting from IMPL to the IMPL core fragment.

The effects of user-defined actions have to comply to Definition 3.11.

3.2.3 Effect Materialization.

Once the effects of all actions in a selected policy answer set have been determined, an overall modification
is computed by the componentwise union over all individual modifications. This overall modification is then
materialized in the MCS.

Given a MCS M and a policy answer set I (for a policy P and a corresponding policy input EDBM),
let IM , respectively IR, denote the set of ground system actions, respectively rule actions, in I . Then,
Meff = {effI(α)|α ∈ IM} is the set of effects of system action atoms in I , and Reff = {effI(α)|α ∈ IR} is
the set of effects of rule actions in I . Furthermore, Rules = {r | (A,R)r ∈ Reff } is the set of bridge rules
modified by Reff , and for every r ∈ Rules , let Rr =

⋃
(A,R)r∈Reff

R, respectively Ar =
⋃

(A,R)r∈Reff
A,

denote the union of rule body removals, respectively additions, wrt. r in Reff .

16 INFSYS RR 1843-12-05

Definition 3.12. Given a MCS M , and an IMPL policy P , let I be a policy answer set of P for a policy input
EDBM wrt. M . Then, the materialization of I in M is the MCS M ′ obtained from M by replacing its set of
bridge rules br(M) by the set

(br(M) \R∪A) \Rules ∪M,

whereR=
⋃

(A,R)∈Meff
R, A=

⋃
(A,R)∈Meff

A, andM= {(k:s)← Body | r ∈ Rules , r ∈ brk, hb (r) =

s, Body = B(r) \ Rr ∪ Ar}. (Formally, M ′ = M [(br(M) \R∪A) \Rules ∪M].)

Note that, by definition, the addition of bridge rules has precedence over removal, and the addition of
body literals similarly has precedence over removal. There is no particular reason for this choice; one just
has to be aware of it when specifying a policy. Apart from that, no order for evaluating individual actions is
specified or required.

Eventually, we can define modifications of a MCS that are accepted by a corresponding IMPL policy.

Definition 3.13. Given a MCS M , an IMPL policy P , and a policy input EDBM wrt. M , a modified MCS M ′

is an admissible modification of M wrt. P and EDBM iff M ′ is the materialization of some policy answer set
I ∈AS(P ∪EDBM).

Example 3.14 (ctd). Evaluating P2 ∪EDBM2 yields four policy answer sets, one is

I1 = EDBM2 ∪ {expl(e1), expl(e2), incNotLab(e2), incLab, in(d1), out(d2), out(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d1, clab)}.

From I1 we obtain a single admissible modification of M2 wrt. P2: add bridge rule ralert and remove r1.
The other policy answer sets are

EDBM2 ∪ {expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), in(d2), out(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d2, clab)},

EDBM2 ∪ {expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), out(d2), in(d3), out(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d3, clab)}, and

EDBM2 ∪ {expl(e1), expl(e2), incNotLab(e2), incLab, out(d1), out(d2), out(d3), in(d4), useOne,
ruleHead(ralert , clab , alert),@addRule(ralert),@applyModAtContext(d4, clab)}.

Evaluating P3 ∪EDBM2 yields one policy answer set, which is I2 = EDBM2 ∪ {modset(md , d1),
modset(md , d2), modset(md , d3), modset(md , d4), @guiSelect-Mod(md)}. Determining the effect of I2
involves user interaction; thus multiple materializations of I2 exist. For instance, if the user chooses to
ignore Sue’s allergy and birth date (and probably imposes additional monitoring on Sue), then we obtain an
admissible modification of M which adds the unconditional version of r6 and removes r1.

4 Methodologies of Applying IMPL and Realization

Based on the simple system design shown in Figure 2, we next briefly discuss elementary methodologies
of applying IMPL for the purpose of integrating MCS reasoning with potential user interaction in case of
inconsistency.

We maintain a representation of the MCS together with a store of modifications. The semantics evaluation
component performs reasoning tasks on the MCS and invokes the inconsistency manager in case of an

INFSYS RR 1843-12-05 17

Multi-
Context
System

Store of
Modifi -
cations

Semantics
Evaluation

Inconsistency
Analysis

Inconsistency
Manager

Policy
Engine

User
Interaction

Policy

control flow data flow

Figure 2: Policy integration data flow and control flow block diagram.

inconsistency. This inconsistency manager uses the inconsistency analysis component4 to provide input
for the policy engine which computes policy answer sets of a given IMPL policy wrt. the MCS and its
inconsistency analysis result. This policy evaluation step results in action executions potentially involving
user interactions and causes changes to the store of modifications, which are subsequently materialized.
Finally the inconsistency manager hands control back to the semantics evaluation component.

4.1 Reasoning Modes

Principal modes of operation, and their merits, are the following.

Reason and Manage once. This mode of operation evaluates the policy once, if the effect materialization
does not repair inconsistency in the MCS, no further attempts are made and the MCS stays inconsistent.
While simple, this mode may not be satisfying in practice.

Manage-Once-Ranked-Repair-Attempts. In this strategy, the result of evaluating a policy wrt. an incon-
sistency does not yield a single attempt for restoring consistency, instead it yields multiple attempts, each
with a separate set of actions.

This requires to augment actions of the policy language by an attempt ranking which specifies an order
of actions to be applied: first only the highest-ranked modifications are used, if this repairs the system the
process finishes. Otherwise the highest-ranked modifications are removed and the process restarts, looking
for the set of actions with the second-best rank and so on. This is repeated until either the system becomes
consistent (success), or until no lower rank exists (failure).

Example 4.1. An inconsistency management strategy generates some sophisticated policy-generated set of
modifications which is attempted first. If this first attempt fails to restore consistency, the policy uses an
element of the set of minimal diagnoses as a fallback modification. This guarantees to restore inconsistency.
Additionally, this second attempt adds a bridge rule to some context, to notify contexts (and thus users and
operators of the MCS). This way reasoning with the system is never impossible due to inconsistency, however
consistency may come at the cost of being a “fallback consistency”.

4For realizations of this component we refer to [Bögl et al., 2010, Eiter et al., 2010a].

18 INFSYS RR 1843-12-05

User interaction in this strategy demands special considerations: (i) user modifications could be the same
for all attempt ranks, such that the user does not need to care about ranks, or (ii) the user can produce sets
of modifications for multiple ranks. The first option seems easier to use, while the second provides more
possibilities to the user and to inconsistency management as a whole.

Overall this mode of using IMPL requires only one reasoning step and easily guarantees termination of
the inconsistency management process.

Reason and Manage iteratively. Another way to deal with failure to restore consistency is to simply
invoke policy evaluation again on the modified but still inconsistent system. This is useful if user interaction
may involve trial-and-error, especially if multiple inconsistencies occur: some might be more difficult to
counteract than others.

Another positive aspect of iterative policy evaluation is, that it allows for policies to be structured, e.g.,
as follows: (a) classify inconsistencies into automatically versus manually repairable; (b) apply actions to
repair one of the automatically repairable inconsistencies; (c) if such inconsistencies do not exist: perform
user interaction actions to repair one (or all) of the manually repairable inconsistencies. Such policy
structuring follows a divide-and-conquer approach, trying to focus on individual sources of inconsistency
and to disregard interactions between inconsistencies as much as possible. If user interaction consists of
trial-and-error bugfixing, fewer components of the system are changed in each iteration, and the user starts
from a situation where only critical (i.e. not automatically repairable) inconsistencies are present in the MCS.
Moreover, such policies may be easier to write and maintain. On the other hand, termination of iterative
methodologies is not guaranteed. However, one can enforce termination by limiting the number of iterations,
possibly by extending IMPL with a control action that configures this limit.

Manage-Iteratively-First-Auto-Then-User. This is a specialization of the above ‘Manage-Iteratively’
strategy, with the goal of adding more structure to the inconsistency management process. We accomplish
this by deliberately using iterations as a procedural aspect controlled by the declarative policy language.As
the name suggests, a policy following this strategy emits either only modification actions, or only user
interactions.

This suggests to use the following structure for a policy: detected inconsistencies are categorized as
automatically repairable or not, if there exist automatically repairable ones, actions to repair them are emitted,
otherwise user interactions for the remaining inconsistencies are emitted. (Additionally, the policy could only
emit repair actions for single automatically repairable inconsistencies in one iteration.)

This kind of a policy has the benefit that it does one thing at a time instead of doing everything at once.
Therefore, identifying problems (i.e., debugging policies or the whole inconsistency management process) is
likely to be easier than in the more general case.

Furthermore, if user interaction consists of trial-and-error bugfixing, fewer components of the system
are changed in each iteration. This should have favorable effects on the performance and maintainability of
inconsistency management.

4.2 Additional Considerations

Here we discuss additional properties and features that could be advantageous in practical applications. (And
could easily be added to IMPL.)

INFSYS RR 1843-12-05 19

Iteration-persistent Storage. In iterative mode it may be useful to access information from previous
iterations. We call this persistent storage. For instance, a persistant storage (reminiscent of an RDF
triplestore) can be added to IMPL as follows: (a) we add a (persistent) triplestore to the policy engine,
(b) define actions @kbAdd(S, P,O) and @kbDel(S, P,O) s.t. @kbAdd stores and @kbDel removes triples,
and finally (c) define a new ternary predicate kbTriple(S, P,O) that is added to EDBM for each stored triple.

Stable Identifiers. When an IMPL policy is applied to an MCS, it might remove, add, or change bridge
rules. In an iterative mode of operation, it would be useful if changing a bridge rule did not change its
identifier.

For example, the bridge rule ralert might be added to M2 by our example policy P2 (see Example 3.14),
which yields a new MCS M ′2. If we apply IMPL to M ′2, the subsequent EDBM ′2

should then use again ralert

to identify that bridge rule. If this is the case, we can reason about the existence of that rule in our policy.
When using iteration-persistant storage, we can store rule-identifiers across iterations; however this only

makes sense if identifiers remain the same across iterations.
Therefore stable identifiers are a desireable property. This property can be added to IMPL as a simple

condition on added and modified rules, namely that they have an associated identifier which remains the same
for subsequently created EDBM ’s. (In Section 6 we will take particular care to provide stable identifiers.)

Automatic Modifications vs User Interactions. In the current declarative semantics definition, a rule
might be ‘simultaneously’ modified both by a user interation and by another action. However, this means that
a modification done by a user can be undone by another action that was triggered by the policy. Therefore, to
achieve a system with intuitively clear effects of a user’s actions, user interaction actions should be limited to
rules that are not modified by other actions.

5 Realizing IMPL in acthex

In this section, we demonstrate how IMPL can be realized using acthex. First we give preliminaries about
acthex, which is a logic programming formalism that extends HEX programs with executable actions. We
then show how to implement the core IMPL fragment by rewriting it to acthex in Section 5.2.

5.1 Preliminaries on acthex

The acthex formalism [Basol et al., 2010] generalizes HEX programs [Eiter et al., 2005] by adding dedicated
action atoms to heads of rules. An acthex program operates on an environment; this environment can influence
external sources in acthex, and it can be modified by the execution of actions.

5.1.1 Syntax.

By C, X , G, and A we denote mutually disjoint sets whose elements are called constant names, variable
names, external predicate names, and action predicate names, respectively. Elements from X (resp., C) are
denoted with first letter in upper case (resp., lower case), while elements from G (resp., A) are prefixed with
“&” (resp. “#”). Names in C serve both as constant and predicate names, and we assume that C contains a
finite subset of consecutive integers {0, . . . , nmax}.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple (Y0, Y1, . . . Yn), where
Y0, Y1, . . . Yn are terms, and n ≥ 0 is the arity of the atom. Intuitively, Y0 is the predicate name, and we

20 INFSYS RR 1843-12-05

thus also use the more familiar notation Y0(Y1 . . . Yn). An atom is ordinary if Y0 is a constant. An external
atom is of the form &g [Y1, . . . , Yn](X1, . . . , Xm) with Y1, . . . , Yn and X1, . . . , Xm being lists of terms. An
action atom is of the form #g [Y1, . . . , Yn]{o, r}[w : l] where #g is an action predicate name, Y1, . . . , Yn is a
list of terms (called input list), and each action predicate #g has fixed length in(#g) = n for its input list.
Attribute o ∈ {b, c, cp} is called the action option; depending on o the action atom is called brave, cautious,
and preferred cautious, respectively. Attributes r, w, and l are called precedence, weight,5 and level5 of #g ,
denoted by prec(a), weight(a), and level(a), respectively. They are optional and range over variables and
positive integers.

A rule r is of the form α1 ∨ . . .∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, where m, n, k ≥ 0, m ≥ n,
α1, . . . , αk are atoms or action atoms, and β1, . . . βm are atoms or external atoms. We define H(r) =
{α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}.
An acthex program is a finite set P of rules.

Example 5.1. The acthex program {night ∨ day← ; #robot [goto, charger]{b, 1}←&sensor [bat](low);
#robot [clean, kitchen]{c, 2}←night; #robot [clean, bedroom]{c, 2}← day} uses action atom #robot to
command a robot, and an external atom &sensor to obtain sensor information. Precedence 1 of action
atom #robot [goto, charger]{b, 1} makes the robot recharge its battery before executing cleaning actions, if
necessary.

5.1.2 Semantics.

We present several features of the semantics of acthex slightly different than [Basol et al., 2010]. Therefore
we here first give an intuitive overview of the semantics and then precise formal definitions.

Intuitively, an acthex program P is evaluated wrt. an external environment E using the following steps:
(i) answer sets of P are determined wrt. E, the set of best models is a subset of the answer sets determined
by an objective function; (ii) one best model is selected, and one execution schedule S is generated for that
model (although a model may give rise to multiple execution schedules); (iii) the effects of action atoms in S
are applied to E in the order defined by S, yielding an updated environment E′; and finally (iv) the process
may be iterated starting at (i), unless no actions were executed in (iii) which terminates an iterative evaluation
process. Formally the acthex semantics is defined as follows.

Given an acthex program P , the Herbrand base HBP of P is the set of all possible ground versions of
atoms, external atoms, and action atoms occurring in P obtained by replacing variables with constants from
C. Given a rule r ∈ P , the grounding grnd(r) of r is defined accordingly, the grounding of program P is
given as the grounding of all its rules. Unless specified otherwise, C, X , G, and A are implicitly given by P .

An interpretation I relative to P is any subset I ⊆ HBP containing ordinary atoms and action atoms.
We say that I is a model of atom (or action atom) a ∈ HBP , denoted by I |= a, iff a ∈ I . With every
external predicate name &g ∈ G, we associate an (n+m+2)-ary Boolean function f&g, assigning each tuple
(E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where n = in(&g), m = out(&g), xi, yj ∈ C, I ⊆ HBP , and
E is an environment. Note that this slightly generalizes the external atom semantics such that they may take
E into account, which was left implicit in [Basol et al., 2010]. We say that an interpretation I relative to
P is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm) wrt. environment E, denoted as
I, E |= a, iff f&g(E, I, y1 . . . , yn, x1, . . . , xm) = 1. Let r be a ground rule. We define (i) I, E |= H(r) iff
there is some a ∈ H(r) such that I, E |= a, (ii) I, E |= B(r) iff I, E |= a for all a ∈ B+(r) and I, E 6|= a
for all a ∈ B−(r), moreover (iii) I, E |= r iff I, E |= H(r) or I, E 6|= B(r). We say that I is a model of P

5Weight and level have a similar intuition as the corresponding attributes of weak constraints in ASP [Buccafurri et al., 1997].

INFSYS RR 1843-12-05 21

wrt. E, denoted by I, E |= P , iff I, E |= r for all r ∈ grnd(P). The FLP-reduct of P wrt. I and E, denoted
as fP I,E , is the set of all r ∈ grnd(P) such that I, E |= B(r). Eventually, I is an answer set of P wrt. E
iff I is a ⊆-minimal model of fP I,E . Note that, as for HEX programs we need the FLP-reduct [Faber et al.,
2011], which is equivalent to the traditional Gelfond-Lifschitz reduct for ordinary programs, and in acthex
ensures answer-set minimality in the presence of external atoms (see [Eiter et al., 2008b] for details). We
denote by AS(P,E) the collection of all answer sets of P wrt. E.

The set of best models of P , denoted BM(P,E), contains those I ∈ AS(P,E) that minimize the
objective function HP (I) = Σa∈A (ω · level(a) + weight(a)), where A ⊆ I is the set of action atoms in I ,
and ω is the first limit ordinal. (This definition using ordinal numbers is equivalent to the definition of weak
constraint semantics in [Buccafurri et al., 1997].) Intuitively, an answer set I will be among the best models
if no other answer set contains only actions with a lower level, and if no other answer set I ′ that contains only
actions with the same level as I has a smaller weight of all contained actions.

An action a = #g [y1, . . . , yn]{o, r}[w : l] with option o and precedence r is executable in I wrt. P and
E iff (i) a is brave and a ∈ I , or (ii) a is cautious and a ∈ B for every B ∈ AS(P,E), or (iii) a is preferred
cautious and a ∈ B for every B ∈ BM(P,E). An execution schedule of a best model I is a sequence of all
actions executable in I , such that for all action atoms a, b ∈ I , if prec(a) < prec(b) then a has a lower index
in the sequence than b. We denote by ESP,E(I) the set of all execution schedules of a best model I wrt. acthex
program P and environment E; formally, let Ae be the set of action atoms that are executable in I wrt. P and
E, then ESP,E(I) =

{
[a1, . . . , an] | prec(ai) ≤ prec(aj), for all 1 ≤ i < j ≤ n, and {a1, . . . , an} = Ae

}
.

Example 5.2. In Example 5.1, if the robot has low battery, then AS(P,E) = BM(P,E) contains models

I1 = {night , #robot [clean, kitchen]{c, 2}, #robot [goto, charger]{b, 1}}, and

I2 = {day , #robot [clean, bedroom]{c, 2}, #robot [goto, charger]{b, 1}}.

We have ESP,E(I1) = {#robot [goto, charger]{b, 1}, #robot [clean, bedroom]{c, 2}}.

Given a model I , the effect of executing a ground action #g [y1, . . . , ym]{o, p}[w : l] on an environment
E wrt. I is defined for each action predicate name #g by an associated (m+2)-ary function f#g which
returns an updated environment E′ = f#g(E, I, y1, . . . , ym). Correspondingly, given an execution sched-
ule S = [a1, . . . , an] of a model I , the execution outcome of S in environment E wrt. I is defined as
EX(S, I, E) = En, where E0 = E, and Ei+1 = f#g(Ei, I, y1, . . . , ym), given that ai is of the form
#g [y1, . . . , ym]{o, p}[w : l]. Intuitively the initial environment E0 = E is updated by each action in S in the
given order. The set of possible execution outcomes of a program P on an environment E is denoted as
EX (P,E), and formally defined by EX (P,E) = {EX(S, I, E) | S ∈ ESP,E(I) where I ∈ BM(P,E)}.

In practice, one usually wants to consider a single execution schedule. This requires the following
decisions during evaluation: (i) to select one best model I ∈ BM(P,E), and (ii) to select one execution
schedule S ∈ ESP,E(I). Finally, one can then execute S and obtain the new environment E′ = EX(S, I, E).

5.2 Rewriting the IMPL Core Fragment to acthex

Using acthex for realizing IMPL is a natural and reasonable choice because acthex already natively provides
several features necessary for IMPL: external atoms can be used to access information from a MCS, and
acthex actions come with weights for creating ordered execution schedules for actions occurring within the
same answer set of an acthex program. Based on this, IMPL can be implemented by a rewriting to acthex,
with acthex actions implementing IMPL actions, acthex external predicates providing information about the
MCS to the IMPL policy, and acthex external predicates realizing the value invention built-in predicates.

22 INFSYS RR 1843-12-05

We next describe a rewriting from the IMPL core language fragment to acthex. We assume that the
environment E contains a pair (A,R) of sets of bridge rules, and an encoding of the MCS M (suitable for an
implementation of the external atoms introduced below, e.g., in the syntax used by the MCS-IE system [Bögl
et al., 2010], which provide the corresponding policy input). A given IMPL policy P wrt. the MCS M is then
rewritten to an acthex program P act as follows.
1. Each core IMPL action @a(t) in the head of a rule of P is replaced by a brave acthex action #a[t]{b, 2}

with precedence 2. These acthex actions implement semantics of the respective IMPL actions according
to Def. 3.11: interpretation I and the original action’s argument t are used as input, the effects are
accumulated as (A,R) in E.

2. Each IMPL built-in #idk(C, c1, . . . , ck) in P is replaced by an acthex external atom &idk [c1, . . . , ck](C).
The family of external atoms &idk [c1, . . . , ck](C) realizes value invention and has as semantics function
f&idk(E, I, c1, . . . , ck, C) = 1 for one constant C = auxc c1 . . . ck created from the constants in tuple
c1, . . . , ck.

3. We add to P act a set Pin of acthex rules containing (i) rules that use, for every p ∈ Cres \ {modset},
a corresponding external atom to ‘import’ a faithful representation of M , and (ii) a preparatory action
#reset with precedence 1, and a final action #materialize with precedence 3:

Pin = {p(t)← &p[](t) | p ∈ Cres \ {modset}} ∪ {#reset []{b, 1}; #materialize[]{b, 3}},

where t is a vector of different variables of length equal to the arity of p (i.e., one, two, or three).
The first two steps transform IMPL actions into acthex actions, and #idk-value invention into external

atom calls. The third step essentially creates policy input facts from acthex external sources. External atoms
in Pin return a representation of M and analyze inconsistency in M , providing minimal diagnoses and
minimal explanations. Thus, the respective rules in Pin yield an extension of the corresponding reserved
predicates which is a faithful representation of M . Moreover, action #reset resets the modification (A,R)
stored in E to (∅, ∅).6 Action #materialize materializes the modification (A,R) (as accumulated by actions
of precedence 2) in the MCS M (which is part of E).

Example 5.3 (ctd). Policy P3 from Ex. 3.8 translated to acthex contains the following rules

P act
3 = Pin ∪

{
modset(md , X)← diag(X); #guiSelectMod [md]{b, 2}

}
where

Pin =
{

ruleHead(R,C, S)← &ruleHead [](R,C, S);
ruleBody+(R,C, S)← &ruleBody+[](R,C, S);
ruleBody−(R,C, S)← &ruleBody−[](R,C, S);
. . .
#reset []{b, 1}; #materialize[]{b, 3}

}
.

Note, that actions in the rewriting have no weights, therefore all answer sets are best models. For obtaining
an admissible modification, any policy answer set can be chosen, and any execution schedule can be used.

6This reset is necessary if a policy is applied repeatedly, as discussed in Section 4.1, i.e., in iterative reasoning modes.

INFSYS RR 1843-12-05 23

Proposition 5.4. Given a MCS M , a core IMPL policy P , and a policy input EDBM wrt. M , let P act

be as above, and consider an environment E containing M and (∅, ∅). Then, every execution outcome
E′ ∈ EX (P act ∪ EDBM |BAux

, E) contains instead of M an admissible modification M ′ of M wrt. P and
EDBM .

Proof. In this proof we denote by ASI the IMPL policy answer set function, and by ASA the acthex
answer set function. Admissible modifications of IMPL are defined using ASI , and execution outcomes
of acthex are defined using ASA, therefore we first establish a relationship between policy answer sets
II ∈ ASI(P ∪ EDBM) and answer sets IA ∈ ASA(P act ∪ EDBM |BAux

, E). Let Pin
′ = {p(t)← &p[](t) |

p ∈ Cres \ {modset}} then semantics of external atoms &p[](t) are independent from E and from I (they
depend only on M), and they are defined such that ASA(Pin

′) = {EDBM |BM }. Therefore, and because
Pin
′ ⊆ P act , every IA is such that EDBM |BM ⊆ IA and we get that ASA(P act ∪ EDBM |BAux

, E) =
ASA(P act ∪ EDBM , E). We next show the following relationship between IMPL answer sets and acthex
answer sets on the rewritten program: given a set A of action atoms @α(t) where @α ∈ Act , t ∈ C, we show
that II ∈ ASI(P ∪EDBM) iff IA ∈ ASA(P act ∪EDBM , E) where II = I ∪A and IA = I ∪{#α[t]{b, 2} |
@α(t) ∈ A} ∪ {#reset []{b, 1}, #materialize[]{b, 3}} and I is a set of ground ordinary atoms (i.e., I neither
contains IMPL actions nor acthex actions) with EDBM ⊆ I . Item 2 (page 22) replaces all built-ins by
an external computation that exactly realizes semantics of the replaced built-in (wlog. we assume that
idk(c1, . . . , ck) = auxc c1 . . . ck, if this is not the case the answer sets coincide modulo auxiliary constant
replacement). Rules in Pin are always satisfied by IA as it contains the #reset and #materialize actions
and as it contains EDBM . Everything else (i.e., rule bodies and rule heads) in P act is equal to P , and rule
and rule body semantics are defined equally in IMPL and acthex, modulo action renaming. Furthermore,
both semantics are defined as minimal models of the reduct, and (in the definition of IMPL policy answer
sets) II |= fP II ∪ EDBM iff II |= f(P ∪ EDBM)II . Therefore the following intermediate result holds:
II ∈ ASI(P ∪ EDBM) iff IA ∈ ASA(P act ∪ EDBM , E), with II and IA as introduced above. As actions in
P act have no weight and no level, all answer sets are best models. An execution schedule of an answer set IA
first executes #reset , then executes actions that originated in IMPL actions, and finally executes #materialize .
The reset sets (A,R) inE to (∅, ∅) and actions created from IMPL actions by their definition realize semantics
of the corresponding IMPL actions and accumulate the resulting sets of added and removed bridge rules in
(A,R), before executing #materialize we have that (A,R) = Meff (for Meff see 3.2.3) and #materialize
modifies M in E to yield M ′ which is a materialization of II in M and therefore an admissible modification
of M . Therefore the result holds.

The results of this section can be used to realize the full IMPL language, using the rewriting technique
described in the next section.

6 Rewriting IMPL to the IMPL Core fragment

In this section we provide a rewriting from the complete IMPL language to the IMPL core fragment. This
allows us to realize the whole IMPL language using the acthex rewriting which realizes the IMPL core
fragment.

Our rewriting will be ‘identifier-neutral’ in the sense that if the original policy would have created a rule
with identifier r, the rewritten policy creates the rule exactly with the same identifier. Furthermore, rule
modifications are realized by removing the original rule and adding a modified version. Here, again, the
rewritten policy uses the original identifier to create the modified rule. As a consequence, our rewriting can
be used if stable identifiers are required (see Section 4.2 for this property and its benefits).

24 INFSYS RR 1843-12-05

For our rewriting, it is furthermore important that user interactions are limited to rules that are not
modified by other actions. This restriction is useful in practice and has been discussed in Section 4.2.

For that purpose we introduce auxiliary predicates and constants which do not occur anywhere in a policy
before rewriting. Given an IMPL policy P and a policy input EDBM , we first define the set of critical constants
which cannot be freely used by the rewriting: critical(P ∪ EDBM) = CM ∪ Cres ∪ cons(P ∪ EDBM).

Example 6.1 (ctd.). We have critical(P1∪EDBM2) =Cres∪{cdb , conto , clab , cdss , r1, . . . , r6, d1, . . . , d4, e1,
e2, expl , incNotLab, incLab, in, out , useOne}. (See Example 3.6 and Figure 3.8 for EDBM2 and P1).

W.l.o.g., we assume that the following sets of ‘fresh’ constants are disjoint with critical(P ∪ EDBM):
{c′ | c ∈ CM}, {raα | α ∈ Act}, and {map,modifiedRule, add+, add−, del+, del−, cm id , csm id , pm id ,
psm id , cleanMod , cleanedModId , cleanModSet , cleanedModSetId , projectMod , projectedModId , pro-
jectModSet , projectedModSetId}.

Given a set P of IMPL rules, we define the replacement function tr repl (P) which replaces every constant
c ∈ CM in every rule in P by its corresponding constant c′ and returns the resulting set of rules. Note that
facts are also translated by tr repl . The replacement of all constants with fresh constants is required to obtain
an identifier-stable rewriting.

Given a set of IMPL rules P , we define the replacement function tract(P) which replaces every action
atom α(t) in every rule in P by an ordinary atom raα(t) and returns the resulting set of rules. (Again, facts
are translated.)

Given an IMPL policy P and a policy input EDBM , then P ′ = tr repl (tract(P ∪ EDBM)) is an IMPL

policy which does not contain any actions (therefore it is in the IMPL Core fragment), furthermore P ′ does
not contain constants from CM . Policy answer sets of P ′ correspond 1-1 to policy answer sets of P ∪EDBM
such that the former contain a replacement atom raα iff the latter contain a corresponding action α.

We next describe the IMPL code fragment PAux which realizes semantics of IMPL actions by translating
replacement atoms to IMPL core actions.

For mapping replaced constants back to their original value (to achieve stable identifiers) PAux contains
the following facts:

map(c, c′). for every constant c ∈ CM (5)

We collect all rules which are modified in modifiedRule .

modifiedRule(R)← raaddRuleCondition+(R,C,B).
modifiedRule(R)← raaddRuleCondition−(R,C,B).
modifiedRule(R)← radelRuleCondition+(R,C,B).
modifiedRule(R)← radelRuleCondition−(R,C,B).
modifiedRule(R)← ramakeRuleUnconditional (R).

(6)

We accumulate effects of rule modification actions in add+, add−, del+, and del−.

add+(R,C,B)← raaddRuleCondition+(R,C,B).
add−(R,C,B)← raaddRuleCondition−(R,C,B).
del+(R,C,B)← radelRuleCondition+(R,C,B).
del+(R,C,B)← ramakeRuleUnconditional (R), ruleBody+(R,C,B).
del−(R,C,B)← radelRuleCondition−(R,C,B).
del−(R,C,B)← ramakeRuleUnconditional (R), ruleBody−(R,C,B).

(7)

INFSYS RR 1843-12-05 25

We represent rule bodies for modified rules in reserved predicates, using original rule, context, and belief
identifiers. (We use primed variable names where primed identifiers will be grounded.)

ruleBody+(R,C,B)← add+(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody+(R,C,B)← ruleBody+(R′, C ′, B′), not del+(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← add−(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← ruleBody−(R′, C ′, B′), not del−(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

ruleHead(R,C,B)← ruleHead(R′, C ′, B′),
modifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

(8)

We represent new rule bodies for unmodified rules in reserved predicates, using original identifiers.

ruleBody+(R,C,B)← ruleBody+(R′, C ′, B′), notmodifiedRule(R′),
map(R,R′), map(C,C ′), map(B,B′).

ruleBody−(R,C,B)← ruleBody−(R′, C ′, B′), notmodifiedRule(R′),
map(R,R′), map(C,C ′), map(B,B′).

ruleHead(R,C,B)← ruleHead(R′, C ′, B′),
notmodifiedRule(R′), map(R,R′), map(C,C ′), map(B,B′).

(9)

For actions that operate on modifications or sets of modifications, we must not use rules that have been
changed by rule modifying actions. Therefore we next introduce an IMPL fragment that removes such rules
from modifications specified by the extension of cleanMod , Identifiers for the changed modifications are
created using auxiliary constant cm id .

cleanedModId(M ′,M)← cleanMod(M), #id2(M
′, cm id ,M);

modAdd(M ′, R)←modAdd(M,R′), cleanedModId(M ′,M), map(R,R′),
notmodifiedRule(R′);

modDel(M ′, R)←modDel(M,R′), cleanedModId(M ′,M), map(R,R′).

(10)

We trigger cleaning for every modification that is used by @guiEditMod or @applyMod .

cleanMod(M)← raguiEditMod (M).
cleanMod(M)← raapplyMod (M).

(11)

The following fragment cleans sets of modifications similar as (10).

cleanedModSetId(MS ′,MS)← cleanModSet(MS), #id2(MS ′, csm id ,MS).
cleanMod(M)←modset(MS ,M), cleanModSet(MS).

modset(MS ′,M ′)← cleanedModId(M ′,M),modset(MS ,M),
cleanedModSetId(MS ′,MS).

(12)

We trigger cleaning of sets of modifications for all sets of modifications used by @guiSelectMod .

cleanModSet(MS)← raguiSelectMod (MS). (13)

26 INFSYS RR 1843-12-05

For comfort actions that project modifications and sets of modifications, we need a projection feature in
the rewriting. Additionally we must remove rules that have been changed by rule modifications.7

The following IMPL fragment projects modifications specified by the extension of projectMod , removes
all bridge rules that have been modified from these modifications and maps rule identifier constants back to
their original identifiers. We trigger this by actions @guiEditModAtContext and @applyModAtContext .

projectedModId(M ′,M,C)← projectMod(M,C), #id3(M
′, pm id ,M,C);

modAdd(M ′, R)←modAdd(M,R′), ruleHead(R′, C, S),
projectedModId(M ′,M,C), map(R,R′),
notmodifiedRule(R′);

modDel(M ′, R)←modDel(M,R′), ruleHead(R′, C, S),
projectedModId(M ′,M,C),map(R,R′).

projectMod(M,C)← raguiEditModAtContext(M,C).
projectMod(M,C)← raapplyModAtContext(M,C).

(14)

The next IMPL fragment achieves the same for sets of modifications, triggered by @guiSelectModAtContext .

projectedModSetId(MS ′,MS , C)← projectModSet(MS , C), #id3(MS ′, psm id ,MS , C);
projectMod(M,C)←modset(MS ,M), projectModSet(MS , C);
modset(MS ′,M ′)← projectedModId(M ′,M,C),modset(MS ,M),

projectedModSetId(MS ′,MS , C).
projectModSet(MS , C)← raguiSelectModAtContext(MS , C).

(15)

Program fragments (5) to (15) prepared everything for executing core actions which realize the original
comfort actions.

We trigger action @delRule for every rule that was removed by @delRule in the original program, for
every rule that was removed by a cleaned @applyMod , for every rule that was removed by a projected
@applyModAtContext , and for every rule that was modified by a rule modifying action. (We use the primed
rule identifiers to remove the original rules.)

@delRule(R′)← radelRule(R′).
@delRule(R′)← raapplyMod (M ′), modDel(M ′, R′).
@delRule(R′)← raapplyModAtContext(M

′, C ′),
projectedModId(M ′′,M ′, C ′), modDel(M ′′, R′).

@delRule(R′)←modifiedRule(R′).

(16)

We trigger action @addRule for every rule that was added and not modified, for every rule of an applied
and cleaned modification, for every rule of an applied and projected modification, and for every rule that was
modified. We map to the original rule identifiers to obtain an identifier stable rewriting. (This is achieved,
because rules that are modified are removed with their primed identifiers, while their modified form is added
using the original identifiers.)

@addRule(R)← raaddRule(R′), map(R,R′), notmodifiedRule(R′).
@addRule(R)← raapplyMod (M ′), cleanedModId(M ′′,M ′), modAdd(M ′′, R).
@addRule(R)← raapplyModAtContext(M

′, C ′),
projectedModId(M ′′,M ′, C ′), modAdd(M ′′, R).

@addRule(R)←modifiedRule(R′), map(R,R′).

(17)

7Examples 3.7 and 3.9 already hinted at how to realize @applyMod and @applyModAtContext , however these examples do
not guarantee stable identifiers, therefore we here give extended rewritings.

INFSYS RR 1843-12-05 27

Finally we realize cleaned and projected GUI actions by activating core GUI actions.8

@guiSelectMod(M ′)← cleanedModSetId(M ′,M), raguiSelectMod (M).
@guiSelectMod(MS ′)← raguiSelectModAtContext(MS , C),

projectedModSetId(MS ′,MS , C).
@guiEditMod(M ′)← cleanedModId(M ′,M), raguiEditMod (M).
@guiEditMod(M ′)← raguiEditModAtContext(M,C), projectedModId(M ′,M,C).

(18)

This completes PAux (which consists of (5) to (18)). We formally define our rewriting as follows.

Definition 6.2. Given an IMPL policy P and a policy input EDBM the rewritten policy tr(P ∪ EDBM) is
defined as

tr(P ∪ EDBM) = tr repl (tract(P ∪ EDBM)) ∪ PAux .

Using this rewriting, we can realize IMPL by implementing the IMPL core fragment.

Proposition 6.3. Given an MCS M , an IMPL policy P , and a policy input EDBM wrt. M , a MCS M ′

is an admissible modification of M wrt. P and EDBM iff M ′ is an admissible modification of M wrt.
tr(P ∪ EDBM).

Proof. We first investigate the internal structure of policy tr(P ∪ EDBM) = Ptr ∪ PAux where Ptr =
tr repl (tract(P∪EDBM)). Ptr contains no constants fromCM (they all have been replaced). PAux contains in
its rule heads either actions, or atoms with predicates that are not critical and therefore disjoint with predicates
in Ptr , or atoms with reserved predicates and constants from CM ∪ Cid . PAux contains no constraints and
no cyclic dependencies (neither positive nor including default negation). Therefore Ptr does not depend
on PAux , and we can split the policy and obtain Itr ∪ IAux ∈ AS(tr(P ∪ EDBM)) iff Itr ∈ AS(Ptr) and
Itr ∪ IAux ∈ AS(PAux ∪ Itr). Due to the definition of tr repl and tract we additionally have Itr ∈ AS(Ptr)
iff tr−1repl (tr

−1
act(Itr)) ∈ AS(P ∪ EDBM). (I.e., translated policy answer sets directly correspond with policy

answer sets of the translation.) Itr contains no actions, because Ptr contains no actions (only replacements).
To show the result, it remains to show that M ′ is a materialization of an answer set IC ∈ AS(P ∪EDBM) iff
M ′ is a materialization of an answer set IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC))). As the
translation removes actions, this amounts to showing that a materialization of actions in IC is a materialization
of actions in IAux where IAux contains atoms derived by PAux from tr repl (tract(IC)). Therefore we must
show that (br(M) \ R ∪ A) \ Rules ∪M (see Definition 3.12) yields the same result for IC and for IAux .
In the following we subscript sets in the above formula by the policy answer set that was used to create the
respective set. Using this new notation, we need to show that

(br(M) \ RIAux
∪ AIAux

) \ RulesIAux
∪MIAux

= (br(M) \ RIC ∪ AIC) \ RulesIC ∪MIC .

As PAux contains only core actions, IAux contains only core actions, accordingly RulesIAux
=MIAux

= ∅
and we need to show thatRIAux

= RIC ∪ RulesIC and AIAux
= AIC \ RulesIC ∪MIC .

We next show properties of answer sets of PAux . Given IC , as PAux is stratified and contains no
constraints, an answer set IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC))) always exists, is unique,
and IAux has the following properties.

8The IMPL core actions @guiEditMod and @guiSelectMod cannot be realized by the simple rule @α(t)← raα(t), because
our usage of @addRule and @delRule for realizing rule modifying actions would lead to incorrect semantics.

28 INFSYS RR 1843-12-05

(i) Due to (6), modifiedRule(r′) ∈ IAux iff r ∈ RulesIC .
(ii) Due to (7), add+(r′, c′, b′) ∈ IAux iff (c : b) ∈ AIC ,r; add−(r′, c′, b′) ∈ IAux iff not (c : b) ∈ AIC ,r;

del+(r′, c′, b′) ∈ IAux iff (c : b) ∈ RIC ,r; and del−(r′, c′, b′) ∈ IAux iff not (c : b) ∈ RIC ,r.
(iii) Due to (ii) and (8), for every bridge rule q ∈MIC identified by r in IC , we have q = ruleIAux

(r), i.e.,
the modified bridge rule q is represented in IAux and identified by its original constant r.

(iv) Due to (9), for every bridge rule q ∈ AIC \ RulesIC we have q = ruleIAux
(r), i.e., q is represented in

IAux and identified by constant r.
(v) Due to (10) and (11), for every modification (A,R) = mod IC (m) such that @guiEditMod(m) ∈ IC

or @applyMod(m) ∈ IC , we have (A \ RulesIC , R) = mod IAux
(ccmid ,m) with ccmid ,m ∈ Iid and

cleanedModId(ccmid ,m,m) ∈ IAux .
(vi) Due to (10), (12), and (13), for every modification set {(A1, R1), . . . , (Ak, Rk)} = modsetIC (ms)

such that @guiSelectMod(ms) ∈ IC , we have {(A1 \ RulesIC , R1), . . . , (Ak \ RulesIC , Rk)} =
modsetIAux

(ccsmid ,ms) with ccsmid ,ms ∈ Iid and cleanedModSetId(ccsmid ,ms ,ms) ∈ IAux .
(vii) Due to (14), for every modification mod IC (m) and context identifier c such that (A,R) = mod IC (m)|c

and @guiEditModAtContext(m, c) ∈ IC or @applyModAtContext(m, c) ∈ IC , we have (A \
RulesIC , R)|c = mod IAux

(cpmid ,m,c) with cpmid ,m,c ∈ Iid and projectedModId(cpmid ,m,c,m, c) ∈
IAux .

(viii) Due to (15), for every modification set modsetIC (ms) and context identifier c such that {(A1, R1),
. . . , (Ak, Rk)} = modsetIC (ms)|c and @guiSelectModAtContext(ms, c) ∈ IC , we have {(A1 \
RulesIC , R1)|c, . . . , (Ak \ RulesIC , Rk)|c} = modsetIAux

(cpsmid ,ms,c) with cpsmid ,ms,c ∈ Iid and
projectedModSetId(cpsmid ,ms,c,ms, c) ∈ IAux .

We first show correctness for non-GUI actions, indicated by superscript ng , and then for GUI actions, indicated
by superscript gui . Due to (16), all rules inRng

IC
(from @delRule , @applyMod , and @applyModAtContext ,

see also (v) and (vii)) and all rules in RulesIC (see also (i)) are deleted in IAux using @delRule , and no other
rules are deleted due to (16). Therefore, Rng

IAux
= Rng

IC
∪ RulesIC . Due to (17), those rules in Ang

IC
which

are not in RulesIC (from @addRule, @applyMod , and @applyModAtContext , see also (v) and (vii)) and
all rules inMIC (see also (ii) and (iii)) are added in IAux using @addRule, and no other rules are added
due to (17). Therefore, Ang

IAux
= Ang

IC
\ RulesIC ∪MIC . Note that these rules are added using their original

identifiers (see (iii) and (iv)) which makes our rewriting identifier-neutral wrt. created rules.
It remains to show, that also GUI actions are realized correctly by the rewriting, i.e., thatRgui

IAux
= Rgui

IC

and that Agui
IAux

= Agui
IC
\ RulesIC . As semantics of user interaction is nondeterministic, it is not possible

(and makes no sense) to directly prove the above equalities. Instead, we split the rest of the proof into two
directions: we prove that, given IC and some effect of executing GUI actions in IC , it is possible to achieve
the same effect from executing GUI actions in IAux , and vice versa.

(⇒) Given policy answer set IC ∈ AS(P ∪ EDBM), and the accumulated effect Rgui
IC

and Agui
IC

of
GUI actions in IC , the corresponding IAux (with IAux ∪ tr repl (tract(IC)) ∈ AS(PAux ∪ tr repl (tract(IC)))
as above) contains due to (18) a set of GUI actions that corresponds to GUI actions in IC as follows:
@guiEditMod(m) ∈ IC is mapped to a modification editor over (A \ RulesIC , R) (see (v)); @guiSelect-
Mod(ms) ∈ IC is mapped to a modification selection over {(A1 \ RulesIC , R1), . . .} (see (vi)); @guiEdit-
ModAtContext(m, c) and @guiSelectModAtContext(ms, c) are mapped analogously, always removing
RulesIC from the first component of all modifications at hand. As GUI actions in IAux correspond to GUI
actions in IC with all rules from RulesIC removed, it is clearly possible to obtain a GUI action effect such
thatRgui

IAux
= Rgui

IC
and Agui

IAux
= Agui

IC
\ RulesIC .

(⇐) For every GUI action in IAux there is a corresponding GUI action in IC which contains the same
modification(s) as the action in IAux and probably contains some more rules from RulesIC . However, as

INFSYS RR 1843-12-05 29

GUI actions accumulate in RIC and in AIC and RulesIC is always subtracted from RIC and from AIC to
obtain an admissible modification, a rule from RulesIC which is added by an effect of a GUI actions in IC is
not added in the materialization of the overall accumulated action effects. Therefore here alsoRgui

IAux
= Rgui

IC

and Agui
IAux

= Agui
IC
\ RulesIC and the result holds.

7 Conclusion

We have motivated the need for an inconsistency management policy language for MCSs, have introduced
the IMPL language, its syntax and semantics, discussed modes of reasoning with IMPL, and how to realize
IMPL using acthex and a rewriting from the full IMPL language to a core fragment of IMPL.

Related Work

Related to IMPL is the action language IMPACT [Subrahmanian et al., 2000], which is a declarative formalism
for actions in distributed and heterogeneous multi-agent systems. IMPACT is a very rich general purpose
formalism, which however is more difficult to manage compared to the special purpose language IMPL.
Furthermore, user interaction as in IMPL is not directly supported in IMPACT; nevertheless most parts of
IMPL could be embedded in IMPACT.

In the fields of access control, e.g., surveyed in [Bonatti et al., 2009], and privacy restrictions [Duma
et al., 2007], policy languages have also been studied in detail. As a notable example, PDL [Chomicki
et al., 2000] is a declarative policy language based on logic programming which maps events in a system
to actions. PDL is richer than IMPL concerning action interdependencies, whereas actions in IMPL have a
richer internal structure than PDL actions. Moreover, actions in IMPL depend on the content of a policy
answer set. Similarly, inconsistency analysis input in IMPL has a deeper structure than events in PDL.

In the context of relational databases, logic programs have been used for specifying repairs for databases
that are inconsistent wrt. a set of integrity constraints [Greco et al., 2003, Eiter et al., 2008a, Marileo and
Bertossi, 2010]. These approaches may be considered fixed policies without user interaction, like an IMPL

policy simply applying diagnoses in a homogeneous MCS. Note however, that an important motivation for
developing IMPL is the fact that automatic repair approaches are not always a viable option for dealing with
inconsistency in a MCS.

Active integrity constraints (AICs) [Caroprese et al., 2009, Caroprese and Truszczynski, 2008a,b] and
inconsistency management policies (IMPs) [Martinez et al., 2008] have been proposed for specifying repair
strategies for inconsistent databases in a flexible way. AICs extend integrity constraints by introducing update
actions, for inserting and deleting tuples, to be performed if the constraint is not satisfied. On the other hand,
an IMP is a function which is defined wrt. a set of functional dependencies mapping a given relation R to a
‘modified’ relation R′ obeying some basic axioms.

Although suitable IMPL policy encodings can mimic database repair programs—AICs and (certain)
IMPs—for specific classes of integrity constraints, there are fundamental conceptual differences between
IMPL and the above approaches to database repair. Most notably, IMPL policies aim at restoring consistency
by modifying bridge rules, which leaves knowledge bases unchanged; opposed to that, IMPs and AICs
consider a set of fixed constraints and repair the database. Another difference is, that IMPL policies are able
to operate on heterogeneous knowledge bases and may involve user interaction.

30 INFSYS RR 1843-12-05

Ongoing and Future Work.

Regarding an actual prototype implementation of IMPL, we are currently working on improvements of acthex
which are necessary for realizing IMPL using the rewriting technique described in Section 5.2. In particular,
this includes the generalization of taking into account the environment in external atom evaluation. Other
improvements concern the support for implementing model and execution schedule selection functions.

An important feature of IMPL is the user interface for selecting or editing modifications. There the number
of displayed modifications might be reduced considerably by grouping modifications according to nonground
bridge rules. This would lead to a considerable improvement of usability in practice.

Also, we currently just consider bridge rule modifications for system repairs, therefore an interesting issue
for further research is to drop this convention. A promising way to proceed in this direction is to integrate
IMPL with recent work on managed MCSs [Brewka et al., 2011], where bridge rules are extended such that
they can arbitrarily modify the knowledge base of a context and even its semantics. Accordingly, IMPL could
be extended with the possibility of using management operations on contexts in system modifications.

References

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge, 2003.

S. Basol, O. Erdem, M. Fink, and G. Ianni. HEX programs with action atoms. In ICLP, pages 24–33, 2010.

M. Bögl, T. Eiter, M. Fink, and P. Schüller. The MCS-IE system for explaining inconsistency in multi-context
systems. In JELIA, pages 356–359, 2010.

P. A. Bonatti, J. L. D. Coi, D. Olmedilla, and L. Sauro. Rule-based policy representations and reasoning. In
REWERSE, volume 5500, pages 201–232. Springer, 2009.

G. Brewka and T. Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems. In AAAI Conference
on Artificial Intelligence (AAAI), pages 385–390, 2007.

G. Brewka, F. Roelofsen, and L. Serafini. Contextual default reasoning. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 268–273, 2007.

G. Brewka, T. Eiter, M. Fink, and A. Weinzierl. Managed multi-context systems. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 786–791, 2011.

F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog. In J. Dix,
U. Furbach, and A. Nerode, editors, Logic Programming And Nonmonotonic Reasoning, volume 1265 of
Lecture Notes in Computer Science, pages 2–17. Springer, 1997.

L. Caroprese and M. Truszczynski. Declarative semantics for active integrity constraints. In ICLP, volume
5366, pages 269–283, 2008a.

L. Caroprese and M. Truszczynski. Declarative semantics for revision programming and connections to
active integrity constraints. In JELIA, volume 5293, pages 100–112, 2008b.

L. Caroprese, S. Greco, and E. Zumpano. Active integrity constraints for database consistency maintenance.
IEEE Trans. Knowl. Data Eng, 21(7):1042–1058, 2009.

INFSYS RR 1843-12-05 31

J. Chomicki, J. Lobo, and S. A. Naqvi. A logic programming approach to conflict resolution in policy
management. In KR, pages 121–132, 2000.

C. Duma, A. Herzog, and N. Shahmehri. Privacy in the semantic web: What policy languages have to offer.
In POLICY, pages 109–118, 2007.

T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order Reasoning and
External Evaluations in Answer-Set Programming. In L. P. Kaelbling and A. Saffiotti, editors, IJCAI,
pages 90–96, Denver, USA, 2005.

T. Eiter, M. Fink, G. Greco, and D. Lembo. Repair localization for query answering from inconsistent
databases. ACM Trans. Database Syst., 33(2), 2008a.

T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with
description logics for the semantic web. Artificial Intelligence, 172(12-13):1495 – 1539, 2008b.

T. Eiter, M. Fink, P. Schüller, and A. Weinzierl. Finding explanations of inconsistency in nonmonotonic
multi-context systems. In KR, pages 329–339, 2010a.

T. Eiter, M. Fink, and A. Weinzierl. Preference-based inconsistency assessment in multi-context systems. In
JELIA, LNAI, pages 143–155, 2010b.

T. Eiter, M. Fink, G. Ianni, and P. Schüller. The IMPL policy language for managing inconsistency in
multi-context systems. In Postproceedings of the International Conference on Applications of Declarative
Programming and Knowledge Management (INAP) and the Workshop on Logic Programming (WLP),
2012. To appear.

W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggregates in answer set
programming. Artif. Intell., 175(1):278–298, 2011.

M. Fink, L. Ghionna, and A. Weinzierl. Relational information exchange and aggregation in multi-context
systems. In J. Delgrande and W. Faber, editors, Logic Programming and Nonmonotonic Reasoning, 11th
International Conference (LPNMR 2011), pages 120–133, 2011.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation
Computing, 9(3/4):365–386, 1991.

F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics, or: How we can do without modal logics.
Artificial Intelligence, 65(1):29–70, 1994.

G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and repairing inconsistent databases.
IEEE Trans. Knowl. Data Eng, 15(6):1389–1408, 2003.

M. C. Marileo and L. E. Bertossi. The consistency extractor system: Answer set programs for consistent
query answering in databases. Data Knowl. Eng, 69(6):545–572, 2010.

M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, and V. S. Subrahmanian. Inconsistency management
policies. In KR, pages 367–377, 2008.

V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Heterogeneous Agent Systems:
Theory and Implementation. MIT Press, 2000.

	Introduction
	Preliminaries
	Multi-context systems (MCSs)
	Explaining Inconsistency in MCSs.

	Policy Language impl
	Syntax.
	System and Inconsistency Analysis Predicates.
	Value Invention via Built-in Predicates `#idk'.
	Actions.

	Semantics
	Action Determination.
	Effect Determination.
	Effect Materialization.

	Methodologies of Applying impl and Realization
	Reasoning Modes
	Additional Considerations

	Realizing IMPL in acthex
	Preliminaries on acthex
	Syntax.
	Semantics.

	Rewriting the impl Core Fragment to acthex

	Rewriting impl to the impl Core fragment
	Conclusion

