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Abstract
The INDUCED MINOR CONTAINMENT problem takes as input two graphs G and H , and asks
whether G has H as an induced minor. We show that this problem is fixed parameter tractable
in |VH | if G belongs to any nontrivial minor-closed graph class and H is a planar graph. For a
fixed graph H , the H-CONTRACTIBILITY problem is to decide whether a graph can be contracted
to H . The computational complexity classification of this problem is still open. So far, H has a
dominating vertex in all cases known to be solvable in polynomial time, whereas H does not have
such a vertex in all cases known to be NP-complete. Here, we present a class of graphs H with a
dominating vertex for which H-CONTRACTIBILITY is NP-complete. We also present a new class
of graphs H for which H-CONTRACTIBILITY can be solved in polynomial time. Finally, we study
the (H, v)-CONTRACTIBILITY problem, where v is a vertex of H . The input of this problem is
a graph G and an integer k, and the question is whether G is H-contractible such that the “bag”
of G corresponding to v contains at least k vertices. We show that this problem is NP-complete
whenever H is connected and v is not a dominating vertex of H .
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1 Introduction
There are several natural and elementary algorithmic problems that check if the structure of some
fixed graph H shows up as a pattern within the structure of some input graph G. This paper
studies the computational complexity of two such problems, namely the problems of deciding if
a graph G can be transformed into a graph H by performing a sequence of edge contractions and
vertex deletions, or by performing a sequence of edge contractions only. Theoretical motivation
for this research can be found in several papers [3, 8, 14, 15] and comes from hamiltonian graph
theory [12] and graph minor theory [17], as we will explain below. Practical applications include
surface simplification in computer graphics [1, 4] and cluster analysis of large data sets [5, 11, 13].
In the first practical application, graphic objects are represented using (triangulated) graphs and
these graphs need to be simplified. One of the techniques to do this is by using edge contractions.
In the second application, graphs are coarsened by means of edge contractions.

Basic Terminology. All graphs in this paper are undirected, finite, and have neither loops nor
multiple edges. For a graph G and a set of vertices S ⊆ VG, we write G[U ] to denote the subgraph
of G induced by U . Two sets S, S ′ ⊆ VG are called adjacent if there exist vertices s ∈ S and
s′ ∈ S ′ such that ss′ ∈ EG. Let G and H be two graphs. The edge contraction of edge e = uv in
G removes u and v from G, and replaces them by a new vertex adjacent to precisely those vertices
to which u or v were adjacent. If H can be obtained from G by a sequence of edge contractions,
vertex deletions and edge deletions, then G contains H as a minor. If H can be obtained from G
by a sequence of edge contractions and vertex deletions, then G contains H as an induced minor.
If H can be obtained from G by a sequence of edge contractions, then G is said to be contractible
to H and G is called H-contractible. This is equivalent to saying that G has a so-called H-witness
structureW , which is a partition of VG into |VH | sets W (h), called H-witness sets, such that each
W (h) induces a connected subgraph of G and for every two hi, hj ∈ VH , witness sets W (hi) and
W (hj) are adjacent in G if and only if hi and hj are adjacent in H . Here, two subsets A,B of VG

are called adjacent if there is an edge ab ∈ EG with a ∈ A and b ∈ B. By contracting all the edges
in each of the witness sets, we obtain the graph H . See Figure 1 for an example that shows that in
general the witness sets W (h) are not uniquely defined.

Figure 1: Two P4-witness structures of a graph.

For any fixed graph H , the problems H-MINOR CONTAINMENT, H-INDUCED MINOR CON-
TAINMENT and H-CONTRACTIBILITY ask if an input graph G has H as a minor, has H as an
induced minor, or is H-contractible, respectively. When H is part of the input, we denote the three
problems by MINOR CONTAINMENT, INDUCED MINOR CONTAINMENT and CONTRACTIBIL-
ITY.
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Known Results. A celebrated result by Robertson and Seymour [17] states that H-MINOR CON-
TAINMENT can be solved in cubic time for every fixed graph H . The complexity classification of
the other two problems is still open, although Matoušek and Thomas [16] showed that when H
is part of the input both problems are already NP-complete when H and G are trees of bounded
diameter or trees in which all vertices, except possibly one, have degree at most five.

Fellows, Kratochvı́l, Middendorf, and Pfeiffer [8] give both polynomial-time solvable and NP-
complete cases for the H-INDUCED MINOR CONTAINMENT problem. They also prove the fol-
lowing.

Theorem 1 ([8]). For every fixed planar graph H , the H-INDUCED MINOR CONTAINMENT prob-
lem can be solved in polynomial time on planar input graphs.

Brouwer and Veldman [3] initiated the research on the H-CONTRACTIBILITY problem. Their
main result is stated below. A dominating vertex is a vertex adjacent to all other vertices.

Theorem 2 ([3]). Let H be a connected triangle-free graph. The H-CONTRACTIBILITY problem
can be solved in polynomial time if H has a dominating vertex, and is NP-complete otherwise.

Note that a connected triangle-free graph with a dominating vertex is a star and that H = P4

(path on four vertices) and H = C4 (cycle on four vertices) are the smallest graphs H for which
H-CONTRACTIBILITY is NP-complete. The research of Brouwer and Veldman [3] was continued
by Levin et al. [14, 15].

Theorem 3 ([14, 15]). Let H be a connected graph on at most five vertices. The H-CON-
TRACTIBILITY problem can be solved in polynomial time if H has a dominating vertex, and is
NP-complete otherwise.

The NP-completeness results in Theorems 2 and 3 can be extended using the notion of degree-
two covers. Let dG(x) denote the degree of a vertex x in a graph G. A graph H ′ with an induced
subgraph H is called a degree-two cover of H if the following two conditions both hold. First,
for all x ∈ VH , if dH(x) = 1 then dH′(x) ≥ 2, and if dH(x) = 2 and its two neighbors in H
are adjacent then dH′(x) ≥ 3. Second, for all x′ ∈ VH′ \ VH , either x′ has one neighbor and this
neighbor is in H , or x′ has two neighbors and these two neighbors form an edge in H .

Theorem 4 ([14]). Let H ′ be a degree-two cover of a connected graph H . If H-CONTRACTIBIL-
ITY is NP-complete, then so is H ′-CONTRACTIBILITY.

In the papers by Brouwer and Veldman [3] and Levin et al. [14] several other results are shown.
To discuss these we need some extra terminology (which we will use later in the paper as well). For
two graphs G1 = (V1, E1) and G2 = (V2, E2) with V1∩V2 = ∅, we denote their join by G1 on G2 =
(V1∪V2, E1∪E2∪{uv | u ∈ V1, v ∈ V2}), and their disjoint union by G1∪G2 = (V1∪V2, E1∪E2).
For the disjoint union G∪G∪· · ·∪G of k copies of the graph G, we write kG; for k = 0 this yields
the empty graph (∅, ∅). For integers a1, a2, . . . , ak ≥ 0, we let H∗i (a1, a2, . . . , ak) be the graph
Ki on (a1P1 ∪ a2P2 ∪ · · · ∪ akPk), where Ki is the complete graph on i vertices and Pi is the path
on i vertices. Note that H∗1 (a1) denotes a star on a1 + 1 vertices. Brouwer and Veldman [3] show
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that H-CONTRACTIBILITY can be solved in polynomial time for H = H∗1 (a1) or H = H∗1 (a1, a2)
for any a1, a2 ≥ 0. Observe that H∗i (0) = Ki and that Ki-CONTRACTIBILITY is equivalent to
Ki-MINOR CONTAINMENT, and hence solvable in polynomial time, by the previously mentioned
result of Robertson and Seymour [17]. These results have been generalized by Levin et al. [14]
leading to the following theorem.

Theorem 5 ([14]). The H-CONTRACTIBILITY problem can be solved in polynomial time for:

1. H = H∗1 (a1, a2, . . . , ak) for any k ≥ 1 and a1, a2, . . . , ak ≥ 0

2. H = H∗2 (a1, a2) for any a1, a2 ≥ 0

3. H = H∗3 (a1) for any a1 ≥ 0

4. H = H∗i (0), for any i ≥ 1.

Our Results and Paper Organization. In Section 2 we first recall some basic notions in param-
eterized complexity. Then we consider the INDUCED MINOR CONTAINMENT problem, where
we assume that G belongs to some fixed minor-closed graph class G (i.e., G contains every mi-
nor of every member) and that H is planar. We prove that under these assumptions this problem
becomes fixed parameter tractable in |VH |. Since the class of planar graphs is minor-closed, this
result generalizes Theorem 1.

The presence of a dominating vertex seems to play an interesting role in the complexity clas-
sification of the H-CONTRACTIBILITY problem. So far, in all polynomial-time solvable cases of
this problem the pattern graph H has a dominating vertex, and in all NP-complete cases H does
not have such a vertex. Following this trend, we extend Theorem 5 in Section 3.1 by showing that
H∗4 (a1)-CONTRACTIBILITY can be solved in polynomial time for every a1 ≥ 0. In Section 3.2
however we present the first class of graphs H with a dominating vertex for which H-CON-
TRACTIBILITY is NP-complete. This result implies that the presence of a dominating vertex in
the target graph H does not guarantee that the H-CONTRACTIBILITY problem can be solved in
polynomial time (unless P = NP). However, it might still be the case that H-CONTRACTIBILITY

is NP-complete whenever H does not have a dominating vertex. This motivates the study of the
following variant of the H-CONTRACTIBILITY problems in Section 4.

(H, v)-CONTRACTIBILITY

Instance: A graph G and a positive integer k.
Question: Does G have an H-witness structureW with |W (v)| ≥ k?

The main result of Section 4 is a theorem stating that (H, v)-CONTRACTIBILITY is NP-complete
whenever H is connected and v is not a dominating vertex of H . For example, let P3 = p1p2p3.
Then the (P3, p3)-CONTRACTIBILITY problem is NP-complete (whereas P3-CONTRACTIBILITY

can be solved in polynomial time). Section 5 contains the conclusions and mentions a number of
open problems.
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2 Induced Minors in Minor-Closed Classes
We start this section with a short introduction on the complexity classes XP and FPT. Both classes
are defined in the framework of parameterized complexity as developed by Downey and Fel-
lows [7]. The complexity class XP consists of parameterized decision problems Π such that for
each instance (I, k) it can be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π, where f and g
are computable functions depending only on the parameter k, and |I| denotes the size of I . So XP
consists of parameterized decision problems which can be solved in polynomial time if the param-
eter is considered to be a constant. A problem is fixed parameter tractable in k if an instance (I, k)
can be solved in time O(f(k)|I|c), where f denotes a computable function and c a constant inde-
pendent of k. Therefore, such an algorithm may provide a solution to the problem efficiently if the
parameter is reasonably small. The complexity class FPT ⊆ XP is the class of all fixed-parameter
tractable decision problems.

We show that INDUCED MINOR CONTAINMENT is fixed parameter tractable in |VH | on input
pairs (G,H) with G from any fixed minor-closed graph class G and H planar. Before doing this
we first recall the following notions. A tree decomposition of a graph G = (V,E) is a pair (X , T ),
where X = {X1, . . . , Xr} is a collection of bags, which are subsets of V , and T is a tree on
vertex set X with the following three properties. First,

⋃r
i=1 Xi = V . Second, for each uv ∈ E,

there exists a bag Xi such that {u, v} ⊆ Xi. Third, if v ∈ Xi and v ∈ Xj then all bags in T
on the (unique) path between Xi and Xj contain v. The width of a tree decomposition (X , T )
is max{|Xi| − 1 | i = 1, . . . , r}, and the treewidth tw(G) of G is the minimum width over all
possible tree decompositions of G.

Our proof idea is as follows. We check if the input graph G has sufficiently large treewidth.
If not, then we apply the monadic second-order logic result of Courcelle [6]. Otherwise, we show
that G always contains H as an induced minor. Before going into details, we first introduce some
additional terminology.

The k × k grid Mk has as vertex set all pairs (i, j) for i, j = 0, 1, . . . , k − 1, and two vertices
(i, j) and (i′, j′) are joined by an edge if and only if |i− i′|+ |j− j′| = 1. For k ≥ 2, let Γk denote
the graph obtained from Mk by triangulating its faces as follows: add an edge between vertices
(i, j) and (i′, j′) if i− i′ = 1 and j′− j = 1, and add an edge between corner vertex (k− 1, k− 1)
and every external vertex that is not already adjacent to (k− 1, k− 1), i.e., every vertex (i, j) with
i ∈ {0, k − 1} or j ∈ {0, k − 1}, apart from the vertices (k − 2, k − 1) and (k − 1, k − 2). We let
Πk denote the graph obtained from Γk by adding a new vertex s that is adjacent to every vertex of
Γk. See Figure 2 for the graphs M6,Γ6, and Π6.

Let F denote a set of graphs. Then a graph G is called F-minor-free if G does not contain a
graph in F as a minor. If F = {F} we say that G is F -minor-free. We need the following results
by Fomin et al. [9] and by Fellows et al. [8], respectively.

Theorem 6 ([9]). For every graph F , there is a constant cF such that every connected F -minor-
free graph of treewidth at least cF · k2 is Γk-contractible or Πk-contractible.

Theorem 7 ([8]). For every planar graph H , there is a constant bH such that every planar graph
of treewidth at least bH contains H as an induced minor.
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s

Figure 2: The graphs M6,Γ6, and Π6, respectively.

We also recall the well-known result of Robertson and Seymour [18] proving Wagner’s con-
jecture.

Theorem 8 ([18]). A graph class G is minor-closed if and only if there exists a finite set F of
graphs such that G is equal to the class of F-minor-free graphs.

We are now ready to prove our generalization of Theorem 1. A graph class is nontrivial if it
does not contain all graphs.

Theorem 9. Let G be any nontrivial minor-closed graph class. Then the INDUCED MINOR CON-
TAINMENT problem is fixed parameter tractable in |VH | on input pairs (G,H) with G ∈ G and H
planar.

Proof. Let H be a fixed planar graph with constant bH as defined in Theorem 7. Let G be a graph
on n vertices in a minor-closed graph class G. From Theorem 8 we deduce that there exists a finite
set F of graphs such that G is F-minor-free. Note that F is nonempty, because G is nontrivial.
By Theorem 6, for each F ∈ F , there exists a constant cF such that every connected F -minor-free
graph of treewidth at least cF · b2

H is ΓbH -contractible or ΠbH -contractible. Let c := min{cF | F ∈
F}. We first check if tw(G) < c · b2

H . We can do so as recognizing such graphs is fixed parameter
tractable in c · b2

H due to a result of Bodlaender [2].

Case 1. tw(G) < c · b2
H . The property of having H as an induced minor is expressible in monadic

second-order logic (cf. [8]). Hence, by a well-known result of Courcelle [6], we can determine in
O(|VG|) time if G contains H as an induced minor.

Case 2. tw(G) ≥ c · b2
H . We will show that in this case G is a yes-instance. By Theorem 6, we find

that G is ΓbH -contractible or ΠbH -contractible.
First suppose G is ΓbH -contractible. Then G has ΓbH as an induced minor. It is easy to prove

that MbH has treewidth bH . It is clear from the definition of treewidth that any supergraph of
MbH , and ΓbH in particular, has treewidth at least bH . Note that ΓbH is a planar graph. Then, by
Theorem 7, ΓbH has H as an induced minor. Consequently, by transitivity, G has H as an induced
minor.

Now suppose G is ΠbH -contractible. LetW be a ΠbH -witness structure of G. We remove all
vertices in W (s) from G. We then find that G has ΓbH as an induced minor and return to the
previous situation.
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3 The H-CONTRACTIBILITY Problem
As we mentioned in Section 1, the presence of a dominating vertex seems to play an interesting role
in the complexity classification of the H-CONTRACTIBILITY problem. So far, in all polynomial-
time solvable cases of this problem the pattern graph H has a dominating vertex, and in all NP-
complete cases H does not have such a vertex. The first result of this section follows this pattern:
we prove in Section 3.1 that H∗4 (a1)-CONTRACTIBILITY can be solved in polynomial time for
every a1 ≥ 0. In Section 3.2 however we present the first class of graphs H with a dominating
vertex for which H-CONTRACTIBILITY is NP-complete.

3.1 Polynomial Cases With Four Dominating Vertices
Let H and G be graphs such that G is H-contractible. Let W be an H-witness structure of G.
We call the subset of vertices in a witness set W (hi) that are adjacent to vertices in some other
witness set W (hj) a connector CW(hi, hj). We use the notion of connectors to simplify the witness
structure of an H∗4 (a1)-contractible graph. Let y1, . . . , y4 denote the four dominating vertices of
H∗4 (a1) and let x1, . . . , xa1 denote the remaining vertices of H∗4 (a1). For every 1 ≤ i ≤ a1, we
define CW(xi, Y ) :=

⋃4
j=1 CW(xi, yj), and also call such a set a connector.

The graph H∗4 (2) is shown in Figure 3, and two copies of an H∗4 (2)-contractible graph G are
shown in Figure 4. The dashed lines in the left and the right graph indicate two different H∗4 (2)-
witness structures W and W ′ of G, respectively. Exactly four vertices of the witness set W (x2)
are adjacent to W (y1) ∪W (y2) ∪W (y3) ∪W (y4), which means that those four vertices form the
connector CW(x2, Y ). When we consider the H∗4 (2)-witness structure W ′ of the right graph, we
see that none of the connectors CW ′(x1, Y ) and CW ′(x2, Y ), formed by the grey vertices, contains
more than two vertices.

y1 y2 y3 y4

x1 x2

Figure 3: The graph H∗4 (2).

The next lemma shows that every H∗4 (a1)-contractible graph has an H∗4 (a1)-witness structure
W ′ where every connector of the form CW ′(xi, Y ) has size at most two.

Lemma 1. Let a1 ≥ 0. Every H∗4 (a1)-contractible graph has an H∗4 (a1)-witness structure W ′
such that for every 1 ≤ i ≤ a1 one of the following two holds:

(i) CW ′(xi, Y ) consists of one vertex, and this vertex is adjacent to all four sets W ′(y1), W ′(y2),
W ′(y3), W ′(y4);

(ii) CW ′(xi, Y ) consists of two vertices, each of them adjacent to exactly two sets of W ′(y1),
W ′(y2), W ′(y3), W ′(y4).
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W (y1)
W (y2) W (y3)

W (y4)

W (x1) W (x2)

W ′(y1)
W ′(y2) W ′(y3)

W ′(y4)

W ′(x1) W ′(x2)

Figure 4: Two H∗4 (2)-witness structuresW andW ′ of a graph, whereW ′ is obtained fromW by
moving as many vertices as possible from W (x1) ∪W (x2) to W (y1) ∪W (y2) ∪W (y3) ∪W (y4).
The grey vertices form the connectors CW ′(x1, Y ) and CW ′(x2, Y ).

Proof. LetW be an H∗4 (a1)-witness structure of an H∗4 (a1)-contractible graph G. Below we trans-
formW into a witness structureW ′ that satisfies the statement of the lemma.

From each W (xi) we move as many vertices as possible to W (y1) ∪ · · · ∪W (y4) in a greedy
way and without destroying the witness structure. This way we obtain an H∗4 (a1)-witness structure
W ′ of G. See Figure 4 for an example, where the H∗4 (2)-witness structureW ′ in the right graph is
obtained from the H∗4 (2)-witness structureW on the left by performing this greedy procedure. We
claim that 1 ≤ |CW ′(xi, Y )| ≤ 2 for every 1 ≤ i ≤ a1.

Suppose, for contradiction, that |CW ′(xi, Y )| ≥ 3 for some xi. Let u1, u2, u3 be three vertices
in CW ′(xi, Y ). Let L1, . . . , Lp denote the vertex sets of those components of G[W ′(xi)\{u1}] that
contain a vertex of CW ′(xi, Y ). Note that p ≥ 1, because of the existence of u2 and u3. Below we
prove that p = 1 holds.

Observe that each Lq must be adjacent to at least two “unique” witness sets from
{W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that are not adjacent to W ′(xi) \ Lq, since other-
wise we would have moved Lq to W ′(y1) ∪ · · · ∪ W ′(y4). Since u1 is adjacent to at least one
witness set, this means that p = 1.

The fact that p = 1 implies that u1 must be adjacent to at least two “unique” witness sets from
{W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that are not adjacent to W ′(xi) \ {u1}; otherwise we
would have moved u1 and all components of G[W ′(xi) \ {u1}] not equal to L1 to W ′(y1) ∪ · · · ∪
W ′(y4). By the same arguments, exactly the same holds for u2 and u3. This is not possible, as three
vertices cannot be adjacent to two “unique” sets out of four. We conclude that 1 ≤ |CW ′(xi, Y )| ≤
2 for every 1 ≤ i ≤ a1.

Let 1 ≤ i ≤ a1. Suppose |CW ′(xi, Y )| = 1, say CW ′(xi, Y ) = {p}. Then, by defini-
tion, p is adjacent to each of the four witness sets W ′(y1),W ′(y2), W ′(y3), W ′(y4). Suppose
|CW ′(xi, Y )| = 2, say CW ′(xi, Y ) = {p, q}. Then p is adjacent to exactly two of the sets
W ′(y1),W ′(y2),W ′(y3),W ′(y4), and q is adjacent to the other two sets. In all other cases we
would have moved p or q (and possibly some more vertices to keep all witness sets connected) to
W ′(y1) ∪ · · · ∪W ′(y4). This completes the proof of Lemma 1.
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We need one additional result, which can be found in the paper by Levin et al. [14], but follows
directly from the polynomial-time result on minors by Robertson and Seymour [17].

Lemma 2 ([14]). Let G be a graph and let Z1, . . . , Zp ⊆ VG be p specified non-empty pairwise
disjoint sets such that

∑p
i=1 |Zi| ≤ k for some fixed integer k. The problem of deciding whether G

is Kp-contractible with Kp-witness sets U1, . . . Up such that Zi ⊆ Ui for i = 1, . . . , p can be solved
in polynomial time.

Recall that the problems H∗4 (0)-CONTRACTIBILITY and H∗5 (0)-CONTRACTIBILITY can be
solved in polynomial time by Theorem 5. Since H∗5 (0) = H∗4 (1), this means that H∗4 (a1)-CON-
TRACTIBILITY can be solved in polynomial time for 0 ≤ a1 ≤ 1. Using Lemma 1 and Lemma 2
we can generalize this as follows.

Theorem 10. The H∗4 (a1)-CONTRACTIBILITY problem is solvable in polynomial time for any
fixed non-negative integer a1.

Proof. To test whether a connected graph G is H∗4 (a1)-contractible, we act as follows, due to
Lemma 1. We guess a set S = {CW ′(xi, Y ) | 1 ≤ i ≤ a1} of connectors of size at most two. For
each connector CW ′(xi, Y ) we act as follows.

If CW ′(xi, Y ) has size one, i.e., if CW ′(xi, Y ) = {p}, then we guess four neighbors z1, z2, z3, z4

of p that are not contained in any connector of S, and we put those vertices in sets Z1, Z2, Z3, Z4,
respectively. If a connector has size two, i.e., if CW ′(xi, Y ) = {p, q}, then we guess two neighbors
z1, z2 of p and two neighbors z3, z4 of q, such that all the vertices z1, z2, z3, z4 are different and
none of them belongs to any of the connectors in S; we add vertex zi to set Zi for i = 1, . . . , 4. We
then remove the vertices of every connector in S from G and call the resulting graph G′.

We now check the following. First, we determine in polynomial time whether the set Z1∪Z2∪
Z3∪Z4 is contained in one component D of G′. If so, we check whether D is K4-contractible with
K4-witness sets U1, . . . , U4 such that Zi ⊆ Ui for i = 1, . . . , 4. This can be done in polynomial time
due to Lemma 2. If not, then we guess different sets of neighbors for the same set of connectors
S and repeat this step. Otherwise, we check whether the remaining components of G′ together
with the connectors CW ′(xi, Y ) ∈ S form witness sets W ′(xi) for i = 1, . . . , a1. This can be
done in polynomial time; there is only one unique way to do this, because witness sets W ′(xi) are
not adjacent to each other. If all possible sets of neighbors of the connectors in S do not yield a
positive answer, then we guess another set S of connectors and start all over. As an example, see
the right graph in Figure 4: if we guess the three grey vertices as set S, and all of their neighbors
in W ′(y1)∪ . . .∪W ′(y4) as the sets Z1, . . . , Z4, then the algorithm described here would correctly
decide that G is H∗4 (2)-contractible.

Due to Lemma 1 the above algorithm is correct. Since we only have to guess O(n2a1) sets S
with O(n4a1) different sets of neighbors per set S, and a1 is fixed, it runs in polynomial time.

3.2 NP-Complete Cases With a Dominating Vertex
We show the existence of a class of graphs H with a dominating vertex such that H-CONTRACTIBIL-
ITY is NP-complete. To do this we need the following.
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Proposition 11. Let H be a graph. If H-INDUCED MINOR CONTAINMENT is NP-complete, then
so are (K1 on H)-CONTRACTIBILITY and (K1 on H)-INDUCED MINOR CONTAINMENT.

Proof. Let H and G be two graphs. We claim that the following three statements are equivalent.

(i) G has H as an induced minor;

(ii) K1 on G is (K1 on H)-contractible;

(iii) K1 on G has K1 on H as an induced minor.

Below, we use G∗ to denote the graph obtained from G by adding a new vertex x, and making x
adjacent to every vertex of G. Similarly, H∗ is the graph obtained from H by adding a new vertex
y, and making y adjacent to every vertex of H . Note that G∗ and H∗ are isomorphic to the graphs
K1 on G and K1 on H , respectively.

“(i) ⇒ (ii)” Suppose G has H as an induced minor. Then, by definition, G contains an induced
subgraph G′ that is H-contractible. We extend an H-witness structureW of G′ to an H∗-witness
structure of G∗ by putting x and all vertices in VG \ VG′ in W (y). This shows that G∗ is H∗-
contractible, or equivalently that K1 on G is (K1 on H)-contractible.

“(ii) ⇒ (iii)” Suppose K1 on G is (K1 on H)-contractible. By definition, K1 on G contains
K1 on H as an induced minor.

“(iii)⇒ (i)” Suppose G∗ has H∗ as an induced minor. Then G∗ contains an induced subgraph G′

that is H∗-contractible. Let W be an H∗-witness structure of G′. Note that if x ∈ VG′ , then we
may assume without loss of generality that x ∈ W (y). We delete W (y) and obtain an H-witness
structure of the remaining subgraph of G′. This subgraph is an induced subgraph of G. Hence, G
contains H as an induced minor.

Fellows et al. [8] showed that there exists a graph H̄ on 68 vertices such that H̄-INDUCED

MINOR CONTAINMENT is NP-complete; this graph is depicted in Figure 5. Combining their
result with Proposition 11 (applied repeatedly) leads to the following corollary.

Corollary 12. For any i ≥ 1, (Ki on H̄)-CONTRACTIBILITY is NP-complete.

4 The (H, v)-CONTRACTIBILITY Problem
We start with an observation. A star is a complete bipartite graph in which one of the partition
classes has size one. The unique vertex in this class is called the center of the star. We denote the
star on p + 1 vertices with center c and leaves b1, . . . , bp by Kp,1.

Observation 1. The (Kp,1, c)-CONTRACTIBILITY problem can be solved in polynomial time for
every p ≥ 1.
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Figure 5: The graph H̄ .

Proof. Let graph G = (V,E) and integer k form an instance of the (Kp,1, c)-CONTRACTIBILITY

problem. We may without loss of generality assume that |V | ≥ k+p, since otherwise the answer is
clearly negative. If G is Kp,1-contractible, then there exists a Kp,1-witness structureW of G such
that |W (bi)| = 1 for all 1 ≤ i ≤ k. This can be seen as follows. As long as |W (bi)| ≥ 2 we can
move vertices from W (bi) to W (c) without destroying the witness structure. Our algorithm would
just guess the witness sets W (bi) and check whether V \ (W (b1)∪ · · ·W (bp)) induces a connected
subgraph. As the total number of guesses is bounded by a polynomial in p, this algorithm runs in
polynomial time.

The (H, v)-CONTRACTIBILITY problem takes as input a graph G and a parameter k. If k = 1,
then the (H, v)-CONTRACTIBILITY problem is equivalent to the H-CONTRACTIBILITY problem,
which leads to the following observation.

Observation 2. Let H be a graph. If H-CONTRACTIBILITY is NP-complete, then (H, v)-CON-
TRACTIBILITY is NP-complete for every vertex v ∈ VH .

We expect that there are relatively few pairs (H, v) for which (H, v)-CONTRACTIBILITY can
be solved in polynomial time (under the assumption P 6= NP). This is due to the Observation 2
and the following theorem, which is the main result of this section.

Theorem 13. Let H be a connected graph and let v be a vertex of H . The (H, v)-CONTRACT-
IBILITY problem is NP-complete if v does not dominate H .

Proof. Let H be a connected graph, and let v be a vertex of H that does not dominate H . Let
NH(v) denote the neighborhood of v in H . We partition VH \ {v} into the following three sets

• V3 := VH \ (NH(v) ∪ {v}),

• V2 := {w ∈ NH(v) | w is not adjacent to V3},

• V1 := {w ∈ NH(v) | w is adjacent to V3}.
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Note that neither V1 nor V3 is empty because H is connected and v does not dominate H; V2 might
be empty. In the top graph in Figure 7 a partition V1, V2, V3 of the set VH \ {v} is depicted using
dashed lines.

Clearly, (H, v)-CONTRACTIBILITY is in NP, because we can verify in polynomial time whether
a given partition of the vertex set of a graph G forms an H-witness structure of G with |W (v)| ≥ k.
In order to show that (H, v)-CONTRACTIBILITY is NP-complete, we use a reduction from 3-SAT,
which is well-known to be NP-complete (cf. [10]). Let X = {x1, . . . , xn} be a set of variables and
C = {c1, . . . , cm} be a set of clauses making up an instance of 3-SAT. Let X := {x | x ∈ X}.
We introduce two additional variables s and t, as well as 2n additional clauses si := (xi ∨ xi ∨ s)
and ti := (xi ∨ xi ∨ t) for i = 1, . . . , n. Let S := {s1, . . . , sn} and T := {t1, . . . , tn}. Note that
any truth assignment satisfies each of the 2n clauses in S ∪ T . For every vertex w ∈ V1 we create
a copy Xw of the set X , and we write Xw := {xw

1 , . . . , x
w
n}. The literals sw, tw and the sets X

w
,

Cw, Sw and Tw are defined similarly for every w ∈ V1.

xw
1 xw

2 xw
3 xw

n

xw
1 xw

2 xw
3 xw

n

sw tw

cw
1 cw

m sw
1 tw1 sw

n twn

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸
L L L L L L

Figure 6: A subgraph Gw, where cw1 = (xw
1 ∨ xw

2 ∨ xw
3 ).

We construct a graph G such that C is satisfiable if and only if G has an H-witness structure
W with |W (v)| ≥ k. In order to do this, we first construct a subgraph Gw of G for every w ∈ V1

in the following way:

• every literal in Xw ∪X
w ∪ {sw, tw} and every clause in Cw ∪ Sw ∪ Tw is represented by a

vertex in Gw

• we add an edge between x ∈ Xw ∪X
w ∪ {sw, tw} and c ∈ Cw ∪ Sw ∪ Tw if and only if x

appears in c;

• for every i = 1, . . . , n− 1, we add edges xw
i x

w
i+1, xw

i x
w
i+1, xw

i x
w
i+1, and xw

i x
w
i+1

• we add edges swxw
1 , swxw

1 , twxw
n , and twxw

n

• for every c ∈ Cw ∪ Sw ∪ Tw, we add L vertices whose only neighbor is c; we determine the
value of L later and refer to the L vertices as the pendant vertices.
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See Figure 6 for a depiction of subgraph Gw. For clarity, most of the edges between the clause
vertices and the literal vertices have not been drawn. We connect these |V1| subgraphs to each
other as follows. For every w, x ∈ V1, we add an edge between sw and sx in G if and only if w
is adjacent to x in H . Let v∗ be some fixed vertex in V1. We add an edge between sv

∗
1 and sw1 for

every w ∈ V1 \ {v∗}. No other edges are added between vertices of two different subgraphs Gw

and Gx. We add a copy of H[V2 ∪ V3] to G as follows. Vertex x ∈ V2 is adjacent to sw in G if and
only if x is adjacent to w in H . Vertex x ∈ V3 is adjacent to both sw and tw in G if and only if x is
adjacent to w in H . Finally, we connect every vertex x ∈ V2 to sv

∗
1 . See Figure 7 for an example

of a graph H and the graph G obtained from H by the procedure described above.

sv∗
tv

∗

cv∗
1

G

H

v∗

v

V1V2

V3

Figure 7: A graph H , where v∗ is the grey vertex, and the corresponding graph G.

We define L := (2 + 2n)|V1| + |V2| + |V3| and k := (L + 1)(m + 2n)|V1|. We prove that G
has an H-witness structureW with |W (v)| ≥ k if and only if C is satisfiable.

Suppose ϕ : X → {T, F} is a satisfying truth assignment for C. Let XT (respectively XF )
be the variables that are set to true (respectively false) by ϕ. For every w ∈ V1, we define Xw

T :=
{xw

i | xi ∈ XT} and X
w

T := {x | x ∈ Xw
T }; the sets Xw

F and X
w

F are defined similarly. We
define the H-witness sets of G as follows. Let W (w) := {w} for every w ∈ V2 ∪ V3, and let
W (w) := {sw, tw}∪Xw

F ∪X
w

T for every w ∈ V1. Finally, let W (v) := VG \ (
⋃

w∈V1∪V2∪V3
W (w)).

Note that for every w ∈ V1 and for every i = 1, . . . , n, exactly one of xw
i , x

w
i belongs to Xw

F ∪X
w

T .
Hence, G[W (w)] is connected for every w ∈ V1. Since ϕ is a satisfying truth assignment for C,
every cwi is adjacent to at least one vertex of Xw

T ∪ X
w

F for every w ∈ V1; by definition, this also
holds for every swi and twi . This, together with the edges between sv

∗
1 and sw1 for every w ∈ V1\{v∗},

assures that G[W (v)] is connected. So the witness set G[W (w)] is connected for every w ∈ VH .
By construction, two witness sets W (w) and W (x) are adjacent if and only if w and x are adjacent
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in H . HenceW := {W (w) | w ∈ VH} is an H-witness structure of G. Witness set W (v) contains
n|V1| literal vertices, (m + 2n)|V1| clause vertices and L pendant vertices per clause vertex, i.e.,
|W (v)| = (L + 1)(m + 2n)|V1|+ n|V1| ≥ k.

In order to prove the reverse implication, suppose G has an H-witness structure W with
|W (v)| ≥ k. We first show that all of the (m + 2n)|V1| clause vertices must belong to W (v).
Note that for every w ∈ V1, the subgraph Gw contains 2 + 2n + (L + 1)(m + 2n) vertices: the
vertices sw and tw, the 2n literal vertices in Xw∪Xw

, the m+2n clause vertices and the L(m+2n)
pendant vertices. Hence we have

|VG| = (2 + 2n + (L + 1)(m + 2n))|V1|+ |V2|+ |V3|.

Suppose there exists a clause vertex c that does not belong to W (v). Then the L pendant vertices
adjacent to c cannot belong to W (v) either, as W (v) is connected and the pendant vertices are only
adjacent to c. This means that W (v) can contain at most |VG|− (L+1) = (L+1)(m+2n)|V1|−1
vertices, contradicting the assumption that W (v) contains at least k = (L+1)(m+2n)|V1| vertices.
So all of the (m+2n)|V1| clause vertices, as well as all the pendant vertices, must belong to W (v).

We define Wi :=
⋃

w∈Vi
W (w) for i = 1, 2, 3 and prove four claims.

Claim 1: V3 = W3.
The only vertices of G that are not adjacent to any of the clause vertices or pendant vertices in

W (v) are the vertices of V3. As W3 contains at least |V3| vertices, this proves Claim 1.

Claim 2: For any w ∈ V1, both sw and tw belong to W1.
Let w be a vertex in V1, and let w′ ∈ V3 be a neighbor of w in H . Recall that both sw and tw

are adjacent to w′ in G. Suppose that sw or tw belongs to W (v) ∪ W2. By Claim 1, w′ ∈ W3.
Then W (v)∪W2 and W3 are adjacent. By construction, this is not possible. Suppose that sw or tw

belongs to W3. Then W3 and W (v) are adjacent, as sw and tw are adjacent to at least one clause
vertex, which belongs to W (v). This is not possible.

Claim 3: For any w ∈ V1, at least one of each pair xw
i , x

w
i of literal vertices belongs to W (v).

Let w ∈ V1. Suppose there exists a pair of literal vertices xw
i , x

w
i both of which do not belong to

W (v). Apart from its L pendant vertices, the vertex twi is only adjacent to xw
i , xw

i and tw. The latter
vertex belongs to W1 due to Claim 2. Hence twi and its L pendant vertices induce a component of
G[W (v)]. Since G[W (v)] contains other vertices as well, this contradicts the fact that G[W (v)] is
connected.

Claim 4: There exists a w ∈ V1 for which at least one of each pair xw
i , x

w
i of literal vertices belongs

to W1.
Let S ′ := {sw | w ∈ V1} and T ′ := {tw | w ∈ V1}. By Claim 2, S ′ ∪ T ′ ⊆ W1. Suppose, for

contradiction, that for every w ∈ V1 there exists a pair xw
i , x

w
i of literal vertices, both of which do

not belong to W1. Then for any x ∈ V1, the witness set containing tx does not contain any other
vertex of S ′ ∪ T ′, as there is no path in G[W1] from tx to any other vertex of S ′ ∪ T ′. But that
means W1 contains at least |V1| + 1 witness sets, namely |V1| witness sets containing one vertex
from T ′, and at least one more witness set containing vertices of S ′. This contradiction to the fact
that W1, by definition, contains exactly |V1| witness sets finishes the proof of Claim 4.
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Let w ∈ V1 be a vertex for which of each pair xw
i , x

w
i of literal vertices exactly one vertex

belongs to W1 and the other vertex belongs to W (v); such a vertex w exists as a result of Claim
3 and Claim 4. Let ϕ be the truth assignment that sets all the literals of Xw ∪ X

w
that belong to

W (v) to true and all other literals to false. Note that the vertices in Cw form an independent set in
W (v). Since G[W (v)] is connected, each vertex cwi ∈ Cw is adjacent to at least one of the literal
vertices set to true by ϕ. Hence ϕ satisfies C.

5 Open Problems
The most challenging task is to finish the computational complexity classification of both the
H-INDUCED MINOR CONTAINMENT problem and the H-CONTRACTIBILITY problem. With re-
gards to the second problem, all previous evidence suggested some working conjecture stating that
this problem can be solved in polynomial time if H contains a dominating vertex and NP-complete
otherwise. However, in this paper we presented a class of graphs H with a dominating vertex for
which H-CONTRACTIBILITY is NP-complete. This sheds new light on the H-CONTRACTIBILITY

problem and raises a whole range of new questions.

1. What is the smallest graph H that contains a dominating vertex for which H-CONTRACTIBIL-
ITY is NP-complete?

The smallest graph known so far is the graph K1 on H̄ , where H̄ is the graph on 68 vertices
depicted in Figure 5. By Observation 2, we deduce that (K1 on H̄, v)-CONTRACTIBILITY is NP-
complete for all v ∈ VK1onH̄ . This leads to the following question, which might be easier to answer
than Question 1.

2. What is the smallest graph H that contains a dominating vertex v for which (H, v)-CON-
TRACTIBILITY is NP-complete?

We showed that (H, v)-CONTRACTIBILITY is NP-complete if H is connected and v does not
dominate H . We still expect a similar result for H-CONTRACTIBILITY.

3. Is the H-CONTRACTIBILITY problem NP-complete if H does not have a dominating vertex?

Lemma 1 plays a crucial role in the proof of Theorem 10 that shows that H∗4 (a1)-CONTRACTIBIL-
ITY is polynomially solvable for every fixed a1. The lemma states that we can bound the size
of connectors of the form CW ′(xi, Y ) by a fixed constant, which guarantees that we only need to
guess a polynomial number of sets in the proof of Theorem 10. Lemma 1 cannot be generalized
such that it holds for the H∗i (a1)-CONTRACTIBILITY problem for i ≥ 5 and a1 ≥ 2. For example,
there exist H∗5 (2)-contractible graphs for which the size of the connectors CW ′(xi, Y ) cannot be
bounded by a constant. Hence, new techniques are required to attack the H∗i (a1)-CONTRACTIBIL-
ITY problem for i ≥ 5 and a1 ≥ 2. As a result of Theorem 5, the H∗5 (a1)-CONTRACTIBILITY

problem can be solved in polynomial time for 0 ≤ a1 ≤ 1. It would be interesting to see whether
we can find an analogue of Theorem 10 in case the target graph is H∗5 (a1).

4. Is H∗5 (a1)-CONTRACTIBILITY solvable in polynomial time for every a1 ≥ 0?
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We expect that the (H, v)-CONTRACTIBILITY problem can be solved in polynomial time for only
a few target pairs (H, v). One such class of pairs might be (Kp, v), where v is an arbitrary vertex
of Kp. Using similar techniques as before (i.e., simplifying the witness structure), one can easily
show that (Kp, v)-CONTRACTIBILITY can be solved in polynomial time for p ≤ 3.

5. Is (Kp, v)-CONTRACTIBILITY solvable in polynomial time for every p ≥ 4?

We finish this section with some remarks on fixing the parameter k in an instance (G, k) of the
(H, v)-CONTRACTIBILITY problem.

Proposition 14. The (P3, p3)-CONTRACTIBILITY problem is in XP.

Proof. We first observe that any graph G that is a yes-instance of this problem has a P3-witness
structureW with |W (p1)| = 1. This is so, as we can move all but one vertex from W (p1) to W (p2)
without destroying the witness structure (see also Figure 1). Moreover, such a graph G contains a
set W ∗ ⊆ W (p3) such that |W ∗| = k and G[W ∗] is connected. Hence we act as follows.

Let G be a graph. We guess a vertex v and a set V ∗ of size k. We put all neighbors of v in a set
W2. We check if G[V ∗] is connected. If so, we check for each y ∈ VG \ (V ∗∪N(v)∪{v}) whether
it is separated from N(v) by V ∗ or not. If so, we put y in V ∗. If not, we put y in W2. In the end we
check if G[W2] and G[V ∗] are connected. If so, G is a yes-instance of (P3, p3)-CONTRACTIBILITY,
as W (p1) = {v}, W (p2) = W2 and W (p3) = V ∗ form a P3-witness structure of G with |W (p3)| ≥
k. If not, we guess another pair (v, V ∗) and repeat the steps above. Since these steps can be
performed in polynomial time and the total number of guesses is bounded by a polynomial in k,
the result follows.

An affirmative answer to the next question would strengthen Proposition 14.

6. Is the (P3, p3)-CONTRACTIBILITY problem in FPT?

Acknowledgments

We would like to thank the two anonymous referees for helpful comments.

References
[1] M. Andersson, J. Gudmundsson, and C. Levcopoulos. Restricted mesh simplification using

edge contraction. Proceedings of the 12th Annual International Computing and Combina-
torics Conference, Lecture Notes in Computer Science, Vol. 4112, Springer, 2006, pp. 196–
204.

[2] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth.
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, ACM,
1993, pp. 226–234.

[3] A.E. Brouwer and H.J. Veldman. Contractibility and NP-completeness. Journal of Graph
Theory, 11: 71–79, 1987.



18 INFSYS RR 1843-12-06

[4] S. Cheng, T. Dey, and S. Poon. Hierarchy of surface models and irreducible triangulations.
Computational Geometry Theory and Applications, 27: 135–150, 2004.

[5] J. Cong and S.K. Lim. Edge separability-based circuit clustering with application to multi-
level circuit partitioning. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 23: 346–357, 2004.

[6] B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Information and Computation, 85: 12–75, 1990.

[7] R.G. Downey and M.R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, 1999.

[8] M.R. Fellows, J. Kratochvı́l, M. Middendorf, and F. Pfeiffer. The Complexity of Induced
Minors and Related Problems. Algorithmica, 13: 266–282, 1995.

[9] F.V. Fomin, P.A. Golovach, and D.M. Thilikos. Contraction Bidimensionality: The Accurate
Picture. Proceedings of the 17th Annual European Symposium on Algorithms, Lecture Notes
in Computer Science, Vol. 5757, Springer, 2009, pp. 706–717.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Co., New
York, 1979.

[11] D. Harel and Y. Koren. On clustering using random walks. Proceedings of the 21st Confer-
ence on Foundations of Software Technology and Theoretical Computer Science, Lecture
Notes in Computer Science, Vol. 2245, Springer, 2001, pp. 18–41.

[12] C. Hoede and H.J. Veldman. Contraction theorems in Hamiltonian graph theory, Discrete
Mathematics, 34: 61–67, 1981.

[13] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20: 359–392, 1999.

[14] A. Levin, D. Paulusma, and G.J. Woeginger. The computational complexity of graph con-
tractions I: polynomially solvable and NP-complete cases. Networks, 51: 178–189, 2008.

[15] A. Levin, D. Paulusma, and G.J. Woeginger. The computational complexity of graph con-
tractions II: two tough polynomially solvable cases. Networks, 52: 32–56, 2008.
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