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Abstract. HEX programs extend logic programs with external computations through external
atoms. As already reasoning from Horn programs with nonmonotonic external atoms of polynomial
complexity is on the second level of the polynomial hierarchy, minimality checking of answer set
candidates needs special attention. To this end, we present an approach based on unfounded sets as
a generalization of related techniques for ordinary ASP programs. The unfounded set detection is
efficiently expressed as a propositional SAT problem, for which we provide two different encodings
and optimizations to them. We then integrate our approach into a previously developed evaluation
framework for HEX-programs, which is enriched by additional learning techniques that aim at
avoiding the reconstruction of the same or related unfounded sets. Furthermore, we provide a
syntactic criterion that allows one to skip the minimality check in practically relevant cases. It
benignly carries over to the components of an appropriate program decomposition, which can be
exploited to restrict unfounded set search to relevant parts of the program. An experimental evaluation
shows that the new approach significantly decreases runtime.
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1 Introduction

Answer Set Programming (ASP) is a declarative problem solving approach which due to expressive and
efficient systems like SMODELS [Simons et al., 2002], dlv [Leone et al., 2006] and CLASP [Gebser et al.,
2012], has been gaining popularity for many applications [Brewka et al., 2011]. However, current trends in
computing, such as context awareness or distributed systems, raised the need for access to external sources in
a program, which for instance on the Web ranges from light-weight data access (e.g., XML, RDF, or data
bases) to knowledge-intensive formalisms (e.g., OWL ontologies).

To cater for this need, HEX-programs [Eiter et al., 2005] extend ASP with so-called external atoms,
through which the user can couple any external information source with a logic program. Roughly, such
atoms pass information from the program, given by predicate extensions, into an external source which
returns output values of an (abstract) function that it computes. This convenient extension has been exploited
for many applications, including querying data and ontologies, e.g. [Eiter et al., 2008b, Hoehndorf et al.,
2007, Marano et al., 2010], e-government [Zirtiloǧlu and Yolum, 2008], fuzzy answer set programming
[Nieuwenborgh et al., 2007a], multi-context reasoning [Brewka and Eiter, 2007, Eiter et al., 2012e], user
interface adaptation [Zakraoui and Zagler, 2011], or reasoning about actions and planning [Nieuwenborgh
et al., 2007b, Basol et al., 2010], to mention some of them. It is highly expressive as recursive data exchange
between the rules and external sources is possible.

The semantics of HEX-programs is model-based and formally defined in terms of answer sets using the
FLP reduct [Faber et al., 2011]: an interpretation A is an answer set of a program Π, if it is a subset-minimal
model of the FLP-reduct fΠA of Π wrt. A, where fΠA is the set of all rules whose body is satisfied by A.
For ordinary programs (without external atoms), this definition is equivalent to the one using the seminal
GL-reduct in [Gelfond and Lifschitz, 1991], but has advantages for extensions with nonmonotonic aggregates
[Faber et al., 2011] and the more general external atoms in HEX-programs.

Traditionally, a HEX-program Π is evaluated in two steps as follows. In the first step, external atoms
are viewed as ordinary atoms (called replacement atoms) whose truth values are guessed by choice rules.
The respective ordinary ASP program Π̂ is evaluated using an ordinary ASP solver, and each answer set Â
obtained is checked against the external sources, i.e., the guess is verified. In case of success A is a model of
the reduct fΠA, but it is yet unknown whether it is subset-minimal. This is ensured in the second step by an
FLP check. A straightforward method, the explicit FLP check, constructs fΠA and checks whether it has
some model smaller than A. However, this approach is not very efficient in practice; actually the explicit FLP
check often dominates total runtime. This calls for an alternative method to perform an FLP check efficiently,
which we address in this paper.

For ordinary logic programs, unfounded sets proved to be a fruitful approach for minimality checking
[Leone et al., 1997]. Informally, a set U of atoms is unfounded wrt. an interpretation A, if no atom in U is
derivable by applying a rule if all atoms in U are made false; this in particular allows to identify mutual and
self-support by rules. E.g. U = {a, b} is unfounded with respect to A = {Ta,Tb} (a and b are true) under
the rules a← b and b← a. The answer sets of a program are now the interpretations that are unfounded-free,
i.e., disjoint from all their unfounded sets. Thus to check a candidate answer set, one search for unfounded
sets of Π wrt. A rather than explicitly construct fΠA and enumerate its models in search for a smaller one.

Starting from this idea, we define unfounded sets for HEX-programs following [Faber, 2005], which
extended the concept to programs with aggregates, and explore their use for FLP checking. Our main
contributions are summarized as follows:
• We present a basic encoding of unfounded set existence to a set of nogoods, i.e., constraints that have to

be satisfied, and we show that its solutions are in 1-1 correspondence with the unfounded sets. The latter
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can thus be computed running a SAT solver and followed by a post-processing step which checks that the
values of replacement atoms are compatible with the external call results. Benchmarks show that this
strategy is already more efficient than the explicit FLP check.

• We then present an advanced encoding of unfounded set existence that is independent of the interpretation.
Compared to our first encoding, it is conceptually more involved and has (slightly) higher initialization
cost, but it has the advantage that it can be reused for all unfounded set checks and needs no separate
initialization for each check. Our benchmarks show that the advanced encoding is superior to the first one
for many practical problems.

• Next, we consider optimizations which hinge on dependencies between external and ordinary atoms that
are determined in careful analysis. These optimizations can be integrated into our encodings by adding
further nogoods which restrict the search space to relevant parts.

• We consider how to exploit information gained in the FLP check for generating candidate answer sets in
step 1. Adopting a Conflict Driven Clause Learning approach [Drescher et al., 2008], this step has been
recently enhanced by external behavior learning [Eiter et al., 2012a], in which nogoods describing the
external source behavior are learned during the search to guide model generation towards proper guesses.
We show how to learn in step 1 additional nogoods from unfounded sets that avoid the reconstruction of
the same or related unfounded sets, yielding further gain.

• We present a syntactic decision criterion that can be used to decide whether a program possibly has
unfounded sets. If the result of this check is negative, then the computationally expensive search for
unfounded sets can be skipped entirely. The criterion is based on atom dependency and, loosely speaking,
says that there are no cyclic dependencies of ground atoms through external atoms. This property can
be efficiently checked for a given ground HEX-program using standard methods. In fact it applies to a
range of applications, in particular for input-stratified programs, where external sources are accessed
in a workflow to produce input for the next stage of computation. However, advanced applications
of HEX-programs can have cycles through external atoms, e.g., in natural encodings of problems on
multi-context systems [Brewka and Eiter, 2007] or abstract argumentation systems [Dung, 1995], for
which the FLP check can not be simply skipped.

• In further elaboration, we then consider a program decomposition based on the dependency graph that is
induced by a program Π. We show that Π has some unfounded set wrt. a candidate answer set A exactly
if some of the components ΠC in its decomposition has some unfounded set wrt. A; As computing
the decomposition is efficiently possible and does not incur large overhead, we can apply the decision
criterion for skipping the FLP check efficiently on a finer-grained level, and the search for unfounded sets
can be guided to relevant program parts.

• An experimental evaluation on advanced reasoning applications shows that unfounded sets checking
combined with learning methods from [Eiter et al., 2012a] improves HEX-program evaluation considerably,
sometimes drastically. More specifically, the benchmark applications include reasoning tasks in Multi-
Context Systems [Brewka and Eiter, 2007, Eiter et al., 2012e], abstract argumentation [Dung, 1995],
terminological default reasoning over description logic knowledge bases [Baader and Hollunder, 1995],
and conformant planning [Goldman and Boddy, 1996, Smith and Weld, 1998]. The decomposition
approach can yield a considerable gain, as it appears e.g. for the HEX-encoding of a Dung-style 1995
argumentation semantics and DL-programs [Eiter et al., 2008a]. On the other hand, for the terminological
default reasoning benchmark, our syntactic criterion let us conclude that the FLP check is obsolete. In
conclusion, the new approach enables significant speedup and thus enlarges the scope of HEX applicability.



INFSYS RR Draft 1843-12-08 5

Organization. The rest of this paper is organized as follows. The next section provides preliminaries on
HEX programs and their evaluation via compatible sets. In Section 3, we define unfounded sets and present a
basic and a uniform encoding of unfounded set search using nogoods. Section 4 considers refinements and
optimizations of the encodings, as well as external behavior learning to prevent reconstruction of unfounded
sets. In Section 5, we give a syntactic decision criterion to avoid the FLP check and a program decomposition
method exploiting it. Experimental results of a prototype implementation are reported in Section 6. In
Section 7 we consider related work and extensions of our approach. In Section 8 we conclude and point out
issues for further research.

2 Preliminaries

In this section, we start with some basic definitions, and then introduce HEX-programs.
In accordance with [Gebser et al., 2012, Eiter et al., 2012a], a (signed) literal is a positive or a negative

formula Ta resp. Fa, where a is a ground atom of form p(c1, . . . , c`), with predicate p and constants
c1, . . . , c`, abbreviated p(c). For a literal σ=Ta or σ=Fa, let σ denote its opposite, i.e., Ta=Fa and
Fa=Ta. An assignment A over a (finite) set of atoms A is a consistent set of signed literals Ta or Fa,
where Ta expresses that a ∈ A is true and Fa that it is false; A is complete, also called an interpretation, if
no assignment A′⊃A exists. We denote by AT = {a | Ta∈A} and AF = {a | Fa∈A} the set of atoms
that are true resp. false in A, and by ext(q,A) = {c | Tq(c)∈A} the extension of a predicate q in A.
Furthermore, A|q is the set of all literals over atoms with predicate q in A. For a list q = q1, . . . , qk of
predicates, we write p ∈ q iff qi = p for some 1 ≤ i ≤ k, and let A|q =

⋃
j A|qj .

A nogood is a set {L1, . . . , Ln} of literals Li, 1 ≤ i ≤ n. An interpretation A is a solution to a nogood δ
(resp. to a set ∆ of nogoods), iff δ 6⊆ A (resp. δ 6⊆ A for all δ ∈ ∆).

Example 2.1. The interpretation A = {Ta,Fb} is a solution to the nogood {Ta,Tb,Tc} but not to
{Ta,Fb,Tc}.

2.1 HEX Programs

HEX-Program Syntax. As introduced in [Eiter et al., 2005], HEX-programs are a generalization of
(disjunctive) extended logic programs under the answer set semantics [Gelfond and Lifschitz, 1991]; for
details and background see [Eiter et al., 2005]. HEX-programs extend ordinary ASP programs by external
atoms, which enable a bidirectional interaction between a program and external sources of computation.
External atoms have a list of input parameters (constants or predicate names) and a list of output parameters.
Informally, to evaluate an external atom, the reasoner passes the constants and extensions of the predicates in
the input tuple to the external source associated with the external atom. The external source computes output
tuples which are matched with the output list. Syntactically, a ground external atom is of the form

&g [p](c), (1)

where p = p1, . . . , pk are constant input parameters (predicate names or object constants), and c = c1, . . . , cl
are constant output terms.

A default literal is a formula b or not b, where b is a (ground) ordinary or external atom. For every set S
of ordinary and external atoms, we let not S = {not b | b ∈ S}.

Ground HEX-programs are then defined similar to ground ordinary ASP programs.
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Definition 2.2 (Ground HEX-programs). A ground HEX-program consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn , (2)

where each ai is an (ordinary) ground atom p(c1, . . . , c`) with constants ci, 1 ≤ i ≤ `, each bj is either an
ordinary ground atom or a ground external atom, and k + n > 0.1

For a rule r, the head is given as H(r) = {a1, . . . , ak} and the body is B(r) = B+(r) ∪ notB−(r),
where B+(r) = {b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. If
B(r) = ∅, then r is a fact, and we omit ←. For a program Π, let A(Π) be the set of all ordinary atoms
occurring in Π. For a default literal b, let tb = Ta if b = a for an atom a, and tb = Fa if b = not a.
Furthermore, fb = Fa if b = a and fb = Ta if b = not a.

Example 2.3. For rule r = a ∨ b← c, not d we have H(r) = {a, b}, B+(r) = {c} and B−(r) = {d}. We
further have tc = Tc, fc = Fc, tnot d = Fd and f not d = Td.

We also use non-ground programs (i.e., with variables allowed in place of object constants). For such
programs, suitable safety conditions allow for using a grounding procedure [Eiter et al., 2006]. We limit our
investigation to ground programs.

Example 2.4. The program

domain(a); domain(b)

sel(X)← domain(X), notnsel(X)

nsel(X)← domain(X), not sel(X)

partitions the domain elements into two sets sel and nsel .

HEX-Program Semantics. An ordinary ground atom a is true relative to assignment A, denoted A |= a, if
Ta ∈ A and false otherwise. A default-negated ground atom not a is true relative to assignment A, denoted
A |= not a, if Fa ∈ A and false otherwise.

The semantics of a ground external atom &g [p](c) wrt. an interpretation A is given by the value of
a 1+k+l-ary Boolean oracle function f&g that is defined for all possible values of A, p and c, such that
&g [p](c) is true relative to A if and only if f&g(A,p, c) = 1.

Example 2.5 (Set Partitioning). Consider the program Π

sel(a)← domain(a),&diff [domain,nsel ](a)

nsel(a)← domain(a),&diff [domain, sel ](a)

domain(a)

where &diff [p, q ](X) computes the set of all elements X which are in the extension of p but not in the
extension of q. Informally, this program implements a choice from sel(a) and nsel(a).

1 For simplicity, we do not formally introduce strong negation but view, as customary, classical literals ¬a as new atoms together
with a constraint which disallows that a and ¬a are simultaneously true.
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Satisfaction of ordinary rules and ASP programs [Gelfond and Lifschitz, 1991] is then extended to
HEX-rules and programs in the obvious way: a rule r is satisfied by assignment A, denoted A |= r, iff
A |= h for some h ∈ H(r), or A 6|= b for some b ∈ B+(r), or A |= b for some b ∈ B−(r). A program Π is
satisfied by assignment A iff A |= r for all r ∈ Π.

The notion of extension ext(·,A) for external predicates &g with input lists p is naturally defined by
ext(&g [p],A) = {c | f&g(A,p, c) = 1}.

An input predicate p of an external predicate with input list &g [p] is monotonic (antimonotonic), iff
f&g(A,p, c) = 1 implies f&g(A

′,p, c) = 1 (f&g(A,p, c) = 0 implies f&g(A
′,p, c) = 0) for all A′ s.t.

ext(p,A′) ⊇ ext(p,A) and ext(q,A′) = ext(q,A) for q ∈ p and q 6= p. The sublist of all monotonic resp.
antimonotonic p is denoted by m(&g) resp. a(&g) and the sublist of other (i.e., nonmonotonic) p by n(&g);
we also write pτ for τ(&g), τ ∈ {m, a, n}.

Definition 2.6 (FLP-Reduct [Faber et al., 2011]). For an interpretation A over a program Π, the FLP-reduct
of Π wrt. A is the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules whose body is satisfied under
A.

An assignment A1 is smaller or equal to another assignment A2 wrt. a program Π, denoted A1 ≤Π A2,
iff {Ta ∈ A1 | a ∈ A(Π)} ⊆ {Ta ∈ A2 | a ∈ A(Π)}.

Definition 2.7 (Answer Set). An answer set of Π is a ≤Π-minimal model A of fΠA.

Since interpretations (thus answer sets) are complete assignments, in slight abuse of notation we identify
them with their sets of positive literals.

Example 2.8. Consider the program Π:

p← &id [q]()

q ← p

where f&id (A, p, ) = 1 iff Tp ∈ A is true. Then Π has the answer set A1 = ∅; indeed it is a ≤Π-minimal
model of fΠA1 = ∅. Note that A2 = {p, q} is not an answer set of Π, as it is not a minimal model of
fΠA2 = Π

2.2 Evaluation

The answer sets of a HEX-program Π are determined by the dlvhex solver using a transformation to ordinary
ASP programs as follows. Each external atom &g [p](c) in Π is replaced by an ordinary ground replacement
atom e&g[p](c) and a rule e&g[p](c)∨ne&g[p](c)← is added to the program. The answer sets of the resulting
guessing program Π̂ are determined by an ordinary ASP solver and projected to non-replacement atoms.
However, the resulting assignments are not necessarily models of Π, as the value of &g [p] under f&g can be
different from the one of e&g[p](c). Each answer set of Π̂ is thus merely a candidate which must be checked
against the external sources. If no discrepancy is found, the model candidate is a compatible set of Π. More
precisely,

Definition 2.9 (Compatible Set). A compatible set of a program Π is an assignment Â such that
(i) Â is an answer set [Gelfond and Lifschitz, 1991] of the guessing program Π̂, and

(ii) f&g(Â,p, c) = 1 iff Te&g[p](c) ∈ Â for all external atoms &g [p](c) in Π, i.e. the guessed values
coincide with the actual output under the input from Â.
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The compatible sets of Π computed by dlvhex include (modulo A(Π)) all answer sets of Π, where each
answer set A of Π is the restriction of a unique compatible set Â to non-replacement atoms. To filter out
the compatible sets not yielding answer sets, the current evaluation algorithm proceeds as follows. Each
compatible set Â is fed to the FLP check, which constructs the reduct fΠA and checks whether it has a
model A′ smaller than A, by enumerating the models A′ of fΠA and comparing them to A; if such an A′ is
found, it rejects A, otherwise outputs A as an answer set.

The explicit FLP check also uses a rewriting to ordinary programs and corresponds to the search for
compatible sets of the following program:

Check(Π,A) = fΠ̂Â ∪ {← a | a ∈ A(Π), Ta 6∈ Â} ∪ {a ∨ a′ ←| Ta ∈ Â}
∪ {← not smaller} ∪ {smaller ← not a | a ∈ A(Π), Ta ∈ Â}.

It consists of the reduct fΠ̂Â and rules that restrict the search to proper subinterpretations of Â, where
smaller is a new atom. Moreover, as we actually need to search for models and not just compatible sets,
rules of the form a∨ a′ ← (where a′ is a new atom for each Ta ∈ Â) make sure that atoms can be arbitrarily
true without having a justifying rule in Π. Because of these guessing rules, we can rewrite all rules in fΠ̂Â

except the guesses on replacement atoms to constraints; this is more efficient for evaluation. Our comparison
in Section 6 uses this optimized version of the explicit check, but still demonstrates a significant performance
gain by our novel approach.

Example 2.10 (cont’d). Reconsider the program Π = { p ← &id [q](); q ← p } from above. Then the
corresponding guessing program is Π̂ = {p ← e&id [q](); q ← p; e&id [q] ∨ ne&id [q] ←} and yields the
compatible sets Â1 = ∅ and Â2 = {Tp,Tq,Te&id [p]}. While A1 = ∅ is also a ≤Π-minimal model of
fΠA1 = ∅, A2 = {Tp,Tq} is not a ≤Π-minimal model of fΠA2 = Π.

3 Unfounded Set Detection

As described in Section 2.2, the explicit minimality check is computationally costly and involves much
overhead: all models of Check(Π,A) must be enumerated, and calls to the external sources to test com-
patibility must be made. Even worse, as we need to search for a smaller model and not just for a smaller
compatible set, Check(Π,A) usually (to our experience) has even more models than the original program.
Moreover, it appears that in many current application scenarios there is no smaller model of the reduct fΠA,
i.e., most assignments A extracted from compatible sets Â pass the FLP check. There are two possible
reliefs: developing a cheaper minimality check and to avoid the minimality check if possible. While this
section targets at the former idea, the latter one is addressed in Section 5.

To this end, we present a novel FLP check algorithm based on unfounded sets (UFS). Instead of explicitly
searching for smaller models of the reduct, we check whether the candidate answer set is unfounded-free. To
this end, we use unfounded sets for hex programs akin to those in [Faber, 2005] for programs with arbitrary
aggregates.

Definition 3.1 (Unfounded Set). Given a program Π and an assignment A, let X be any set of ordinary
ground atoms appearing in Π. Then, X is an unfounded set for Π wrt. A if, for each rule r having some
atoms from X in the head, at least one of the following conditions holds, where A

.
∪ ¬.X = (A \ {Ta | a ∈

X}) ∪ {Fa | a ∈ X}:

(i) some literal of B(r) is false wrt. A,
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(ii) some literal of B(r) is false wrt. A
.
∪ ¬.X , or

(iii) some atom of H(r) \X is true wrt. A.

Intuitively, an unfounded set is a set of atoms which only cyclically support each other; by assigning all
of them false, no violation of any rule will be introduced. As for answer sets, their minimality enforces now
that no subset of the atoms that are true in an answer set can form an unfounded set; in fact, answer sets can
be characterized in terms of unfounded sets, using the following notion.

Definition 3.2 (Unfounded-free Interpretations). An interpretation A of a program Π is unfounded-free, iff
AT ∩X = ∅, for every unfounded set X of Π wrt. A.

The following result is a generaliztion of a respective result for ordinary (disjunctive) logic programs
[Leone et al., 1997] and logic programs with aggregates [Faber et al., 2011].

Theorem 3.3 (Characterization of Answer Sets). A model A of a program Π is an answer set of Π iff it is
unfounded-free.

Example 3.4. Consider the program Π and A1 from Example 2.10. Trivially, A1 is unfounded-free, and
thus A1 is an answer set of Π. On the other hand, the set X = {p, q} is an unfounded set w.r.t. A2, since X
intersects with the head of p← &id [q]() and A

.
∪ ¬.X 6|= &id [q](). Therefore A2 is not unfounded-free and

not an answer set.

3.1 Basic Encoding of the Unfounded Set Search

We realize the search for unfounded sets using nogoods, i.e., for a given Π and an assignment A we construct
a set of nogoods, such that solutions to this set correspond to (potential) unfounded sets; we then use a SAT
solver to search for such unfounded sets.

More specifically, our encoding of unfounded set detection uses a set

ΓA
Π = NA

Γ,Π ∪OA
Γ,Π,

of nogoods whereNA
Γ,Π contains all necessary constraints and the setOA

Γ,Π are optional optimization nogoods
that prune irrelevant parts of the search space; the latter is related to [Drescher et al., 2008] but respects
external atoms. The idea is that the set of ordinary atoms of a solution to ΓA

Π represents a (potential)
unfounded set U of Π wrt. A, while the replacement atoms encode the truth values of the corresponding
external atoms under A

.
∪ ¬.U .

Let B+
o (r) ⊆ B+(r) consist of all ordinary atoms, and let Be(r) ⊆ B(r) consist of all external

replacement atoms. Then, ΓA
Π is built over atoms A(ΓA

Π ) = A(Π̂) ∪ {hr, lr | r ∈ Π}, where hr, and lr are
atoms for every rule r in Π. The necessary part

NA
Γ,Π = {{Fa | Ta ∈ A}} ∪

(⋃
r∈ΠRr,A

)
of ΓA

Π consists of a nogood {Fa | Ta ∈ A}, which eliminates unfounded sets that do not intersect with true
atoms in A, and of nogoods Rr,A = Hr,A ∪ Cr,A for every r ∈ Π where
• Hr,A = {{Thr} ∪ {Fh | h ∈ H(r)}}∪{{Fhr,Th} | h ∈ H(r)}, called the head criterion, encodes

that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and
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• Cr,A =


{{Thr} ∪
{Fa | a ∈ B+

o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪
{Th | h ∈ H(r),A |= h}} if A |= B(r),

{} otherwise,
called the conditional part Cr,A, encodes that Condition (i), (ii) or (iii) of Definition 3.1 must hold if
hr is true.

More specifically, for an unfounded set U and a rule r with H(r)∩U 6= ∅ (hr is true) it must not happen
that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in the unfounded set and all a ∈ Be(r̂) are
true under A

.
∪ ¬.U (Condition (ii) fails), and all h ∈ H(r) with A |= h are in the unfounded set (Condition

(iii) fails). Concrete instances for OΓ,A
Π are defined in Section 4.

Example 3.5. Consider Π = {r1 : p← &id [p]()} and the compatible set Â= {Tp,Te&id [p]}. The nogood
set NA2

Γ,Π is {{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 , Te&id [p](),Tp}}.

Towards computing unfounded sets, observe that every unfounded set can be extended to a solution to the
nogood set ΓA

Π over A(ΓA
Π ). Conversely, the solutions to ΓA

Π include specific extensions of the unfounded
sets, given for each unfounded set U by assigning true to all atoms in U , to all hr such that H(r) intersects
with U , and to all replacement atoms e&g[p](c) such that &g [p](c) is true under A

.
∪ ¬.U , and assigning

false to all other atoms in A(ΓA
Π ). More formally,

Definition 3.6 (Induced Assignment of an Unfounded Set wrt. ΓA
Π ). Let U be an unfounded set of a program

Π wrt. assignment A. The assignment induced by U wrt. ΓA
Π , denoted IΓ(U,ΓA

Π ), is

IΓ(U,ΓA
Π ,Π,A) = I0

Γ(U,Π,A) ∪ {Fa | a ∈ A(ΓA
Π ),Ta 6∈ I0

Γ(U,Π,A)},

where
I0

Γ(U,Π,A) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π, H(r) ∩ U 6= ∅} ∪
{Te&g[p](c) | e&g[p](c) ∈ A(Π̂),A

.
∪ ¬.U |= &g [p](c)}.

Intuitively, the truth value of a in the assignment represents whether a is in the unfounded set U or not,
the hr encode if the intersection of H(r) with U is nonempty, and the replacement atoms represent the truth
values of the corresponding external atoms under A

.
∪ ¬.U .

We call a set N of nogoods conservative, if it holds for every unfounded set U of Π wrt. A that
IΓ(U,ΓA

Π ,Π,A) is a solution to N . We then show that the solutions to ΓA
Π include all assignments induced

by unfounded sets of Π wrt. A, assuming that OΓ,A
Π is conservative.

Proposition 3.7. Let U be an unfounded set of a program Π wrt. assignment A such that AT ∩ U 6= ∅.
Then IΓ(U,ΓA

Π ,Π,A) is a solution to ΓA
Π .

Note that the converse does not hold, i.e., not every solution corresponds to some induced assignment;
intuitively this is because it does not reflect the semantics of external sources. Regardless of this we
immediately obtain from Proposition 3.7 a useful test for unfounded-freeness.

Corollary 3.8. If ΓA
Π has no solution, then U ∩AT = ∅ for every unfounded set U of Π.

Using the following result, we can find the unfounded sets of Π wrt. A among all solutions to ΓA
Π by

using a postcheck on the external atoms.

Theorem 3.9. Let S be a solution to ΓA
Π such that
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(a) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A
.
∪ ¬.U |= &g [p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A
.
∪ ¬.U 6|= &g [p](c)

where U = {a | a ∈ A(Π),Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

Informally, the proposition states that the non-replacement atoms in S that are true and also appear in Π
form an unfounded set, provided that truth of the replacement atoms e&g[p](c) in S coincides with the truth of
the corresponding &g [p](c) under A

.
∪ ¬.U (as in Definition 3.6). However, this check is just required if the

truth values of e&g[p](c) in S and of &g [p](c) under A differ. This gives rise to an important optimization
for the implementation: external atoms, whose (known) truth value of &g [p](c) under A matches the truth
value of e&g[p](c) in S, do not need to be postchecked.

Example 3.10. Reconsider program Π = {r1 : p ← &id [p]()} from Example 3.5 and the compatible
set Â2 = {Tp,Te&id [p]}. The nogood set NA2

Γ,Π = {{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p](),Tp}} has
solutions S⊇{Thr1 ,Tp,Fe&id [p]()}, which correspond to the unfounded set U = {p}. Here, Fe&id [p]()

represents that A2
.
∪ ¬.U 6|= &id [p]().

Note that due to the premises in Conditions (a) and (b) of Theorem 3.9, the postcheck is faster if
Te&g[p](c) ∈ S whenever A |= &g [p](c) holds for many external atoms in Π. This can be exploited during
the construction of S as follows: if it is not absolutely necessary to set the truth value of e&g[p](c) differently,
then carry over the value from &g [p](c) under A. Specifically, this is successful if e&g[p](c) does not occur
in ΓA

Π .

3.2 Uniform Encoding of the Unfounded Set Search

The encoding ΓA
Π presented in the previous subsection has the disadvantage that it depends on the current

assignment A. Therefore it needs to be generated separately for every unfounded set check if the assignment
changed (which is very likely). As this causes significant overhead, we present now an advanced encoding
which is independent of the current assignment. We introduce some additional variables which represent the
truth values of the atoms in the current assignment. Prior to an unfounded set check, the current assignment
is injected by setting the values of these variables to fixed values, which can be done using assumptions as
supported by modern SAT solvers such as CLASP. Changing assumptions is much easier than changing the
encoding, which leads to an additional speedup in some cases, especially for programs which need many
unfounded set checks.

Our advanced encoding uses a set ΩΠ of nogoods. As before, the idea is that the set of ordinary atoms of a
solution to ΩΠ represents a (potential) unfounded set U of Π wrt. some assignment A, while the replacement
atoms encode the truth values of the corresponding external atoms under A

.
∪ ¬.U . The encoding ΩΠ

is conceptually more complex than ΓA
Π ; the initialization is computationally (slightly) more costly, hence

the advantages of our new encoding become visible for instances with many compatible sets (thus many
unfounded set checks), while it might be counterproductive for small instances.

The nogood set ΩΠ is built over the atoms of Π̂ and and further fresh atoms not occurring in Π̂: hr and
lr, for every rule r in Π, aA for every ordinary atom a ∈ A(Π̂) (i.e. ordinary atoms in Π and replacement
atom auxiliaries), and aA .

∪¬.U , aA∧U , aA∨U for every ordinary atom a ∈ A(Π). The auxiliary atoms aA,
aA

.
∪¬.U , aA∧U , aA∨U are used to make the encoding independent of a certain assignment A. Only during the

unfounded set check with respect to a certain assignment, we will temporarily add assumptions to the solver
which force certain truth values of the atoms aA for all a ∈ A(Π̂) depending on the current assignment A.
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Intuitively, aA represents the truth value of a in A and aA .
∪¬.U of a in A

.
∪ ¬.U (where U is the currently

unfounded set), aA∧U represents that a is true in A and is contained in U , and aA∨U represents that a is false
in A or it is contained in U .

To this end, a set of assumptions is a consistent setA of signed literals. A solution A to a nogood δ resp. a
set ∆ of nogoods satisfies A, if A ⊆ A. That is, assumptions fix the truth value of some atoms. Modern ASP
and SAT solvers support assumptions natively, and they can be easily undone without a complete reset of the
reasoner and recreating the whole problem instance. This is an essential feature for efficiently implementing
our improved encoding.

Our encoding ΩΠ is then
ΩΠ = NΩ,Π ∪OΩ,Π,

where NΩ,Π = {{Fa | a ∈ A(Π)}} ∪
⋃
a∈A(Π)Da ∪

⋃
r∈Π(Hr ∪ Cr) is the necessary part and

• {Fa | a ∈ A(Π)} encodes that we search for a nonempty unfounded set;

• Da =


{{FaA∧U ,TaA,Ta}, {TaA∧U ,FaA}, {TaA∧U ,Fa}}∪
{{FaA∨U ,FaA}, {FaA∨U ,Ta}, {TaA∨U ,TaA,Fa}}∪{
{TaA .

∪¬.U ,FaA}, {TaA .
∪¬.U ,Ta}, {FaA .

∪¬.U ,TaA,Fa}
}

encodes that aA∧U is true iff aA and a are both true, aA∨U is true iff aA is false or a is true, and
aA

.
∪¬.U is true iff aA is true and a is false;

• Hr = {{Thr} ∪ {Fh | h ∈ H(r)}} ∪ {{Fhr,Th} | h ∈ H(r)}
encodes that hr is true for a rule r iff some atom of H(r) is in the unfounded set; and

• Cr =


{{Thr} ∪
{TaA | a ∈ B+(r̂)} ∪ {FaA | a ∈ B−(r̂)} ∪ (i)

{FaA∧U | a ∈ B+
o (r)} ∪ {ta | a ∈ Be(r̂)} ∪ (ii)

{ThA∨U | h ∈ H(r)}} (iii)

encodes that if hr is true, then one of (i), (ii) or (iii) in Definition 3.1 must hold.

More specifically, for an unfounded set U and a rule r with H(r) ∩ U 6= ∅ (hr is true) it must not
happen that A |= B(r) (Condition (i) fails), no a ∈ B+

o (r) with A |= a is in the unfounded set and
all a ∈ Be(r̂) are true under A

.
∪ ¬.U (Condition (ii) fails), and all h ∈ H(r) with A |= h are in the

unfounded set (Condition (iii) fails).

Example 3.11. For Π = {r1 : p← &id [p]() } in Example 2.10, the constructed nogood set is

ΩΠ = {Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},
{FpĀ∨U ,Fp}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp}, {TpA .

∪¬.U ,FpA},
{TpA .

∪¬.U ,Tp}, {FpA .
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]A
,Te&id [p],TpĀ∨U}}.

Towards computing unfounded sets, observe that every unfounded set can be extended to a solution to the
set of nogoods ΩΠ over A(ΩΠ). Conversely, the solutions to ΩΠ include specific extensions of all unfounded
sets, which are again characterized by induced assignments; that is, by assigning true to all atoms in U , to all
hr such that H(r) intersects with U , and to all replacement atoms e&g[p](c) such that &g [p](c) is true under
A

.
∪ ¬.U , appropriate truth values to the auxiliary atoms according to their intuitive meaning, and assigning

false to all other atoms in A(ΩΠ). More formally, this leads us to the following assignment:



INFSYS RR Draft 1843-12-08 13

Definition 3.12 (Induced Assignment of an Unfounded Set wrt. ΩΠ). Let U be an unfounded set of a program
Π wrt. assignment A. The assignment induced by U wrt. ΩΠ, denoted IΩ(U,ΩΠ,Π,A), is

IΩ(U,ΩΠ,Π,A) = I0
Ω(U,Π,A) ∪ {Fa | a ∈ A(ΩΠ),Ta 6∈ I0

Ω(U,Π,A)}
where

I0
Ω(U,Π,A) = {Ta | a ∈ U} ∪ {Thr | r ∈ Π, H(r) ∩ U 6= ∅} ∪

{Te&g[p](c) | e&g[p](c) ∈ A(Π̂),A
.
∪ ¬.U |= &g [p](c)} ∪

{TaA | a ∈ A(Π),Ta ∈ A} ∪ {TâA | a ∈ EA(Π),A |= a} ∪
{TaA∧U | a ∈ A(Π),Ta ∈ A, a ∈ U} ∪
{TaA .

∪¬.U | a ∈ A(Π),Ta ∈ A, a 6∈ U} ∪
{TaA∨U | a ∈ A(Π),Fa ∈ A or a ∈ U}.

If we adopt for an assignment A the assumption set

AA = {TaA | a ∈ A(Π),Ta ∈ A} ∪ {FaA | a ∈ A(Π),Fa ∈ A} ∪
{TâA | a ∈ EA(Π),A |= a} ∪ {FâA | a ∈ EA(Π),A 6|= a},

then all assignments induced by unfounded sets of Π wrt. A are solutions to ΩΠ wrt. AA (but not conversely,
because intuitively the latter do not reflect the semantics of external sources).

As before, we call a set of nogoods N conservative, if IΩ(U,ΩΠ,Π,A) is a solution to N for every
unfounded set U of Π wrt. A. Under this property, these interpretations are solutions of the whole nogood
set that comply with the assumptions from A.

Proposition 3.13. Let U be an unfounded set of a program Π wrt. assignment A such that AT ∩ U 6= ∅. If
OΩ,Π is conservative, then IΩ(U,ΩΠ,Π,A) is a solution to ΩΠ that satisfies AA.

Corollary 3.14. If ΩΠ has no solution which satisfies AA, then U ∩AT = ∅ for every unfounded set U of
Π (assuming OΩ,Π is conservative).

The next property allows us to find the unfounded sets of Π wrt. A among all solutions to ΩA that satisfy
AA by using a postcheck on the external atoms.

Theorem 3.15. Let S be a solution to ΩΠ (with conservative OΩ,Π) that satisfies AA such that

(a) Te&g[p](c) ∈ S and A 6|= &g [p](c) implies A
.
∪ ¬.U |= &g [p](c); and

(b) Fe&g[p](c) ∈ S and A |= &g [p](c) implies A
.
∪ ¬.U 6|= &g [p](c)

where U = {| a ∈ A(Π) | Ta ∈ S}. Then U is an unfounded set of Π wrt. A.

As for ΓA
Π , the proposition states that the non-replacement atoms in S that are true and appear in Π form

an unfounded set, provided that each replacement atom e&g[p](c) in S has the same truth value as &g [p](c)

under A
.
∪ ¬.U (as in Definition 3.12). Again, this check is just required if the truth value of e&g[p](c) in S

is different from the one of &g [p](c) under A.

Example 3.16. Reconsider program Π = {r1 : p← &id [p]()} from Example 2.10 and the compatible set
A2 = {Tp,Te&id [p]}. The nogood set

ΩΠ = {Fp}, {FpA∧U ,TpA,Tp}, {TpA∧U ,FpA}, {TpA∧U ,Fp},
{FpĀ∨U ,Fp}, {FpĀ∨U ,Tp}, {TpĀ∨U ,TpA,Fp}, {TpA .

∪¬.U ,FpA},
{TpA .

∪¬.U ,Tp}, {FpA .
∪¬.U ,TpA,Fp},

{Thr1 ,Fp}, {Fhr1 ,Tp}, {Thr1 ,Te&id [p]A
,Te&id [p],TpĀ∨U}}
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with assumptionsAA2 = {TpA} has solutions S⊇{Thr1 ,Tp,TpA,Fe&id [p],TpA∧U ,TpĀ∨U ,FpA
.
∪¬.U},

which correspond to the unfounded set U = {p}. Here, Fe&id [p]() represents that A2
.
∪ ¬.U 6|= &id [p]().

We will see in Section 6 that the encoding ΩΠ is superior to ΓA
Π for many practically relevant programs.

The effect becomes especially visible if they need many unfounded set checks, which intuitively is the case
when many answer sets exist; here reusability of the encoding is very beneficial, while for small programs
with few answer sets, the incurred overhead does not lead to savings.

4 Optimization and Learning

In this section we first discuss some refinements and optimizations of our nogood encodings for UFS search.
In particular, we present nogoods which prune irrelevant parts of the search space; they can be integrated
into both encodings ΓA

Π and ΩΠ under suitable adjustments. After that, we propose a strategy for learning
nogoods from detected unfounded sets, avoiding that the same unfounded set is generated later again.

4.1 Optimization

We present now three optimizations which turned out to be effective in improving UFS search, where the
second and the third exclude each other, i.e., they can not be used simultanously.

O1: Restricting the UFS Search to atoms in the compatible set. First, not all atoms in a program are
relevant for the unfounded set search: atoms that are false under A can be ignored.

Proposition 4.1. Suppose U is an unfounded set of Π wrt. a complete assignment A such that A 6|= a for
some a ∈ U . Then U \ {a} is an unfounded set of Π wrt. A.

The nogoods for this optimization are simple. In the encoding ΓA
Π , we add the conservative nogood

{Ta} for each a ∈ A(Π) with A 6|= a to the optimization part OA
Γ,Π and in the encoding ΩΠ the conservative

nogood {FaA,Ta} for each a ∈ A(Π) to the optimization part OΩ,Π.

O2: Avoiding guesses of replacement atoms. In some situations, the truth value of a replacement atom b in
a solution S to ΓA

Π resp. ΩΠ with assumptions AA is irrelevant. That is, both STb = (S \ {Tb,Fb}) ∪ {Tb}
and SFb = (S \ {Tb,Fb})∪{Fb} are solutions to ΓA

Π resp. ΩΠ that satisfyAA, and they represent the same
unfounded set. We then can set the truth value of b to an (arbitrary) fixed value instead of inspecting both
alternatives. The next proposition states a sufficient criterion for this irrelevance.

Proposition 4.2. Let b be a replacement atom, and let S be a solution to ΓA
Π resp. ΩΠ satisfying AA. If for

every rule r ∈ Π such that b ∈ B+(r̂) ∪B−(r̂) and A |= B(r), either

(a) for some a ∈ B+
o (r) such that A |= a, it holds that Ta ∈ S, or

(b) for some a ∈ H(r) such that A |= a, it holds that Fa ∈ S,

then both STb and SFb are solutions to ΓA
Π resp. ΩΠ that satisfy AA.

This property can be utilized by adding conservative nogoods. Recall that A(ΓA
Π ) and A(ΩΠ) contain

atoms lr for every r ∈ Π. They intuitively serve to encode for a solution S to ΓA
Π resp. ΩΠ with assumptions

AA whether the truth values of the replacement atoms in B(r) are relevant or can be set arbitrarily. The
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following nogoods label relevant rules r, forcing lr to be false iff some of the conditions in Proposition 4.2
holds. For the encoding ΓA

Π , we add to OA
Γ,Π for each rule r:

LA
Γ,r ={{Tlr,Ta} | a ∈ B+

o (r),A |= a} ∪ {{Tlr,Fa} | a ∈ H(r),A |= a} ∪
{{Flr} ∪ {Fa | a ∈ B+

o (r),A |= a} ∪ {Ta | a ∈ H(r),A |= a}}.

For the encoding ΩΠ, we add to OΩ,Π for each rule r:

LΩ,r ={{Tlr,Ta,TaA} | a ∈ B+
o (r)} ∪ {{Tlr,Fa,TaA} | a ∈ H(r)} ∪

{{Flr} ∪ {FaA∧U | a ∈ B+
o (r)} ∪ {TaĀorU | a ∈ H(r)}}.

These constraints exclusively enforce either Tlr or Flr. Hence, the truth value of lr deterministically
depends on the other atoms, i.e., the nogoods do not cause additional guessing.

By Proposition 4.2 we can set the truth value of a replacement atom b arbitrarily, if lr is false for all r
such that b ∈ B+(r̂) or b ∈ B−(r̂). As mentioned after Theorem 3.9, it is beneficial to set the truth value of
e&g[p](c) to the one of &g [p](c) under A, because this can reduce the number of external atoms that must be
checked. The following nogoods enforce a coherent interpretation of the replacement atoms.

For the encoding ΓA
Π we add to OA

Γ,Π for each rule r:

FA
Γ,r ={{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Fb} | b ∈ Be(r̂),A |= b} ∪

{{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {Tb} | b ∈ Be(r̂),A 6|= b}

while for the encoding ΩΠ we add to OΓ,Π for each rule r:

FΩ,r ={{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {TbA,Fb} | b ∈ Be(r̂)} ∪
{{Flr | b ∈ B+(r̂) ∪B−(r̂)} ∪ {FbA,Tb} | b ∈ Be(r̂)}

In summary, the encoding ΓA
Π has the optimization part OA

Γ,Π =
⋃
r∈Π L

A
Γ,r ∪ FA

Γ,r and the encoding ΩΠ

the optimization part OΩ,Π =
⋃
r∈Π LΩ,r ∪ FΩ,r.

We give now an example for this optimization using our encoding Γ.

Example 4.3. Consider the program Π = {r1 : p ← &id [p](); r2 : q ← &id [q]()}, and the compat-
ible set Â = {Tp,Fq,Te&id [p](),Fe&id [q]()}. Then the necessary part of encoding ΓA

Π has solutions
S1 ⊇ {Thr1 ,Tp,Fe&id [p](),Fhr2 ,Fq,Fe&id [q]()} and S2 ⊇ {Thr1 ,Tp,Fe&id [p](), Fhr2 ,Fq,Te&id [q]()}
(which represent the same unfounded set U = {p}). Here, the optimization part for r2, LA

r2 ∪ F
A
r2 =

{{Tlr2 ,Fq}, {Flr2 ,Tq}, {Flr2 ,Te&id [q]()}}, eliminates solutions S2 for ΓA
Π . This is beneficial as for

solutions S1 the postcheck is easier (e&id [q]() in S1 and &id [q]() have the same truth value under A).

O3: Exchanging nogoods between UFS and main search. The third optimization allows for the exchange
of learned knowledge about external atoms between the UFS check and the main search for compatible sets.
For this purpose, we first define nogoods which correctly describe the input-output relationship of external
atoms.

Definition 4.4. A nogood of the form N = {Tt1, . . . ,Ttn, Ff1, . . . ,Ffm, σe&g[p](c)}, where σ is T or F,
is a valid input-output-relationship, if for every assignment A such that N \ {σe&g[p](c)} ⊆ A it holds that
A |= &g [p](c) if σ = F, and A 6|= &g [p](c) if σ = T.

Let N be a nogood which is a valid input-output-relationship learned during the main search, i.e., for
compatible sets of Π̂, and let F̄ = T and T̄ = F.
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Definition 4.5 (Nogood Transformation TΓ). For a valid input-output relationship N = {Tt1, . . . , Ttn,
Ff1, . . . ,Ffm, σe&g[p](c)} and an assignment A, the nogood transformation TΓ is defined as

TΓ(N,A) =


∅ if Fti ∈ A for some 1 ≤ i ≤ n,
{ {Ft1, . . . ,Ftn} ∪ {σe&g[p](c)} ∪
{Tfi | 1 ≤ i ≤ m,A |= fi} } otherwise.

The next result states that TΓ(N,A) can be considered, for all valid input-output relationships N under
all assignments A, without losing unfounded sets.

Proposition 4.6. Let N be a valid input-output relationship, and let U be an unfounded set wrt. Π and
A. If OA

Γ,Π contains only conservative nogoods, then IΓ(U,ΓA
Π ,Π,A) is a solution to TΓ(N,A) (i.e., also

nogoods TΓ(N,A) are conservative).

Hence, all valid input-output relationships for external atoms that are learned during the search for
compatible sets can be reused (applying the above transformation) for the UFS check. Moreover, during the
evaluation of external atoms in the postcheck for candidate unfounded sets (i.e., solutions to ΓA

Π ), further
valid input-output relationships might be learned. They can in turn be used by (further) unfounded set checks
(in transformed form) but also in the search for compatible sets.

Example 4.7 (Set Partitioning). For the program Π from Example 2.5, consider the compatible set ÂT =
{domain(a), sel(a), e&diff [nsel ](a)}. Suppose the main search has learned the input-output relationshipN =
{Tdomain(a), Fnsel(a),Fe&diff [nsel ](a)}. Then the transformed nogood is aTΓ(N,A)={{Fdomain(a),
Fe&diff [nsel ](a)}}; it intuitively encodes that if domain(a) is not in the unfounded set U , then e&diff [nsel ](a)

is true under A
.
∪ ¬.U . This holds because e&diff [nsel ](a) is true under A and can only change its truth value

if domain(a) becomes false.

This learning technique can be adopted for our encoding ΩΠ as follows.

Definition 4.8 (Nogood Transformation TΩ). For a valid input-output relationship N , the nogood transfor-
mation TΩ is defined as

TΩ(N) = {{σe&g[p](c)} ∪ {Tt1A,Ft1 . . . ,TtnA,Ftn,Ff1A
.
∪¬.U , . . . ,FfmA

.
∪¬.U}}.

Compared to TΓ(N,A), the main difference is that TΩ(N) is independent of the current assignment,
similar to the definition of our unfounded set detection problem ΩΠ.

The next result states that TΩ(N) can be considered, for all valid input-output relationships N under all
assignments A, without losing unfounded sets.

Proposition 4.9. Let N be a valid input-output relationship, and let U be an unfounded set wrt. Π and A. If
OΩ,Π contains only conservative nogoods, then IΩ(U,ΩΠ,Π,A) is a solution to TΩ(N) (i.e., also nogoods
TΩ(N,A) are conservative).

Hence, all valid input-output relationships for external atoms that are learned during the search for
compatible sets can be reused (applying the above transformation) for the unfounded set check. Moreover,
during the evaluation of external atoms in the postcheck for candidate unfounded sets (i.e., solutions to ΩΠ),
further valid input-output relationships might be learned. The latter can be used in turn in the main search for
compatible sets and (in transformed form) in further unfounded set checks.
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Example 4.10 (cont’d). Reconsider the program Π from Example 2.5 and the compatible set AT =
{domain(a), sel(a), e&diff [domain,nsel ](a)}. Suppose the main search has learned the input-output rela-
tionship N = {Tdomain(a), Fnsel(a),Fe&diff [domain,nsel ](a)}. The transformed nogood is

TΩ(N)={{Tdomain(a)A,Fdomain(a),Fnsel(a)A
.
∪¬.U ,Fe&diff [domain,nsel ](a)A

.
∪¬.U}};

it intuitively encodes that if domain(a) is true in the assignment A but not in the unfounded set U ,
and if nsel(a) is false in A

.
∪ ¬.U , then e&diff [domain,nsel ](a) is true under A

.
∪ ¬.U . This holds as

e&diff [domain,nsel ](a) is true under A and can only change its truth value if domain(a) gets false.

The nogood exchange also benefits from our assignment-independent encoding. With our previous
encoding ΓA

Π , we needed to build the SAT instance from scratch for every unfounded set check. Thus,
nogoods learned in the main search for compatible sets need to be transformed and added to the UFS
detection problem for every check (otherwise they are lost). With our new encoding ΩΠ, this is done only
once because learned nogoods are kept for multiple unfounded set checks. This also allows us to make use of
advanced forgetting heuristics in SAT solvers more effective.

Finally, an important note is that the optimizations O2 and O3 can not be used simultaneously (differently
from O1 and O2 resp. O1 and O3), as this can result in contradictions due to (transformed) learned nogoods.
That is, O2 and O3 together are not conservative (we thus disabled O2 in our experiments).

4.2 Learning Nogoods from Unfounded Sets

Until now we have considered merely detecting unfounded sets. A strategy to learn from detected unfounded
sets for the main search for compatible sets is missing. We next develop such a strategy which we call
unfounded set learning (UFL).

Example 4.11. Consider the program Π = { p ← &id [p](); x1 ∨ x2 ∨ · · · ∨ xk ←}. As we know from
Example 3.4, U = {p} is a UFS of the subprogram Π′ = { p ← &id [p]() } wrt. A= {Tp,Te&id ()}. The
same is true for Π and moreover for every A′ ⊃ A; i.e., p must never be true.

The program in Example 4.11 has many compatible sets, and half of them (all where p is true) will fail
the UFS check for the same reason. We thus develop a strategy for generating additional nogoods to guide
the search for compatible sets in a way such that the same unfounded sets are not reconsidered. We present
two such strategies, but will focus on the first one because our experiments have shown that the first one is
superior for all our instances.

4.2.1 UFS-based Learning

For an unfounded set U of Π wrt. A we define a set L1(U,Π,A) of learned nogoods as follows. Suppose
that r1, . . . , rj are all rules r in Π such that H(r) ∩ U 6= ∅ and U ∩B+

o (r) = ∅, i.e., the set of all “external”
rules of Π wrt. U (rules which do not directly depend positively on U ). Then

L1(U,Π,A) = {{σ0, σ1, . . . , σj} | σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ j)} ,

where Hi = {Th | h ∈ H(ri) \ U, A |= h} ∪ {Fb | b ∈ B+
o (ri), A 6|= b}. Formally we can show that

adding this set of nogoods is correct, i.e., does not prune answer sets:

Proposition 4.12. If U is an unfounded set of Π wrt. A, then every answer set of Π is a solution to the
nogoods in L1(U,Π,A).
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Example 4.13. Consider the program Π from Example 4.11 and suppose we have found the unfounded
set U = {p} wrt. the interpretation A = {Tp,Tx1} ∪ {Fai | 1 < i ≤ k}. Then the learned nogood
L1(U,A,Π) = {Tp} immediately guides the search to the part of the search tree where p is false, i.e.,
roughly half of the guesses are avoided.

4.2.2 Reduct-based Learning

A different learning strategy is based on the models of fΠA rather than the unfounded set U itself, hinging
on the observation that for every unfounded set U , A

.
∪ ¬.U is a model of fΠA; hence U 6= ∅ refutes A as a

minimal model of fΠA. This was noted in [Faber et al., 2011] for aggregates.
We exploit this to construct nogoods from a nonempty U wrt. a model A as follows. The interpretation

A
.
∪ ¬.U is not only a model of fΠA, but of all programs Π′ ⊆ fΠA. Hence, if an assignment A′ falsifies

at least the rules of Π which A falsifies, and A′T ⊃ (A
.
∪ ¬.U)T, then A′ is not an answer set of Π. This

yields the following nogood set L2(U,Π,A). Suppose r1, . . . , rn are all rules r of Π which are not in its
FLP-reduct wrt. A (i.e., A 6|= B(ri). Then

L2(U,Π,A) = {{Ta | a ∈ (A
.
∪ ¬.U)T} ∪ {σ0, σ1, . . . , σn}

| σ0 ∈ {Ta | a ∈ U}, σi ∈ Hi for all 1 ≤ i ≤ n}

where Hi = {ta | a ∈ B(r̂), Â 6|= a}, 1 ≤ i ≤ n. That is, each nogood consists of the true-part of the
smaller model A

.
∪ ¬.U of the reduct fΠA, an unfounded atom σ0 (i.e. true in A but not in A

.
∪ ¬.U ), and

a false body literal σi (1 ≤ i ≤ n) for each rule of Π with unsatisfied body wrt. A.

Example 4.14. Let Π = {p ← &id [p](); q ← &id [q]()}, where &id [a]() evaluates to true iff a is true.
Suppose A = {p, q}. Then U = {p, q} is an unfounded set wrt. A. In the above construction rule we have
A

.
∪ ¬.U = {}, σ0 ∈ {Tp,Tq} and n = 0 (because both rule bodies are satisfied wrt. A). The learned

nogoods are L2(U,Π,A) = {{Tp}, {Tq}}.

In Example 4.14, the learned nogoods will immediately guide the search to the interpretation {Fp,Fq},
which is the only one which becomes an answer set. Formally, we can show:

Proposition 4.15. If U is an unfounded set of Π wrt. A and A |= Π, then each answer set of Π is a solution
to all nogoods in L2(U,Π,A).

However, L2(U,Π,A) appeared to be clearly inferior to L1(U,Π,A) from Section 4.2.1. Informally, its
nogoods overfit the detected unfounded set and do not generalize well to other ones.

5 Deciding the Necessity of the Minimality Check

Although the minimality check based on unfounded sets is more efficient than the explicit minimality check,
the computational costs are still high. Moreover, during the evaluation of Π̂ for computing the compatible
set Â, the ordinary ASP solver has already made an unfounded set check, and we can safely assume that
it is founded from the perspective of the ordinary ASP solver. Hence, all remaining unfounded sets which
were not discovered by the ordinary ASP solver must involve external sources, as their behavior is not fully
captured by the ASP solver.

In this section we pursue these ideas and give a decision criterion for deciding whether a further UFS
check is necessary. We eventually define a class of programs which needs no additional UFS check. Intuitively,
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we show that every unfounded set that is not already detected during the construction of Â contains input
atoms of external atoms involved in cycles. If the program has no such input atom, then the UFS check is
superfluous. Afterwards, we show how to apply this criterion, which holds in practically relevant cases, to
program components; this often yields additional speedup. However, there are also cases where the UFS
check can not be skipped; e.g., recursive URL retrieval from a web resource (which requires cyclic use of an
external atom).

5.1 Basic Decision Criterion

We start with a definition of atom dependency.

Definition 5.1 (Atom Dependency). For a ground program Π, and ground atoms p(c) and q(d), we say that

(i) p(c) depends on q(d), denoted p(c)→ q(d), if for some rule r ∈ Π we have p(c) ∈ H(r) and
q(d) ∈ B(r);

(ii) p(c) depends externally on q(d), denoted p(c)→e q(d), if some rule r∈Π and external atom
&g [q1, . . . , qn](e) ∈ B+(r)∪B−(r) exist such that p(c) ∈ H(r) and q ∈ {q1, . . . , qn}.

In the following, we consider dependency graphs GRΠ = (V,E) for a ground program Π, whose vertices
E are the ground atoms and whose edges E are given by a binary relation R over ground atoms (E = R).
We omit R if R =→ ∪ →e; we call p(c)→ q(d) also an ordinary edge and p(c)→e q(d) an e-edge.

We establish a lemma that allows us to restrict our attention to the “core” of an unfounded set, i.e., its
most essential part; we can disregard atoms in a cut, which is defined as follows.

Definition 5.2 (Cut). Let U be an unfounded set of Π wrt. A. A set of atoms C ⊆ U is a cut, if

(i) b 6→e a, for all a ∈ C and b ∈ U (C has no incoming e-edge from U ), and

(ii) b 6→ a and a 6→ b, for all a ∈ C and b ∈ U \ C (there are no ordinary edges between C and U \ C).

We first prove that cuts can be removed from unfounded sets and the resulting set is still an unfounded
set.

Lemma 5.3 (Unfounded Set Reduction Lemma). Let U be an unfounded set of Π wrt. a complete assignment
A, and let C be a cut. Then, Y = U \ C is an unfounded set of Π wrt. A.

Example 5.4. Consider the following program:

Π = {r ← &id [r](); p← &id [r](); p← q; q ← p}.

Then we have p → q, q → p, r →e r and p →e r. Π has the unfounded set U = {p, q, r} wrt. A =
{Tp,Tq,Tr}. Observe that C = {p, q} is a cut, and therefore U \ C = {r} is an unfounded set of Π
wrt. A.

Next we prove that intuitively, for each unfounded set U of Π, either the input to some external atom is
unfounded itself, or U is already detected when Π̂ is evaluated.

Lemma 5.5 (EA-Input Unfoundedness). Let U be an unfounded set of Π wrt. an assignment A. If no edge
x→e y with x, y ∈ U exists, then U is an unfounded set of Π̂ wrt. Â.
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Example 5.6. Reconsider the program Π from Example 5.4. Then the unfounded set U ′ = {p, q} wrt. A′ =
{Tp,Tq,Fr} is already detected when

Π̂ = { e&id [r]() ∨ ne&id [r]()← ; r ← e&id [r](); p← e&id [r](); p← q; q ← p }

is evaluated by the ordinary ASP solver because p 6→e q and q 6→e p. In contrast, the unfounded set
U ′′ = {p, q, r} wrt. A′′ = {Tp,Tq,Tr} is not detected by the ordinary ASP solver because p, r ∈ U ′′ and
p→e r.

Thus, the unfounded sets of Π wrt. A that are not recognized during the evaluation of Π̂ have cyclic
dependencies over input atoms of some external atom. Programs with acyclic dependencies do not need
additional UFS checks.

Recall that a cycle wrt. a binary relation R is a sequence C = c0, c1, . . . , cn, cn+1 of elements, n ≥ 0,
such that (ci, ci+1) ∈ R for all 0 ≤ i ≤ n and c0 = cn+1. A set S contains a cycle under R, if there is a
cycle C = c0, c1, . . . , cn, cn+1 under R such that ci ∈ S for all 0 ≤ i ≤ n+ 1.

Informally, the next proposition states that each unfounded set of Π wrt. A which contains no cycle
through the input atoms to some external atom corresponds to some unfounded set of Π̂ wrt. Â, i.e., the
unfoundedness is already detected when Π̂ is evaluated.

Let →d = → ∪ ← ∪ →e, where ← is the inverse of → (i.e. ← = {(x, y) | (y, x) ∈ →}). A
cycle c0, c1, . . . , cn, cn+1 under→d is called an e-cycle, if it contains an e-edge, i.e., ci →e ci+1 for some
0 ≤ i ≤ n.

Theorem 5.7 (Relevance of e-cycles). Let U 6= ∅ be an unfounded set of Π wrt. an interpretation A which
does not contain any e-cycle under→d. Then Π̂ has a nonempty unfounded set wrt. Â.

Corollary 5.8. If a program Π has no e-cycle under→d and Π̂ has no unfounded set wrt. an interpretation
Â, then A is unfounded-free for Π.

This corollary can be used to increase the performance of an evaluation algorithm as follows: if there is
no cycle under→d containing e-edges, then an explicit unfounded set check is not necessary because the
unfounded set check during the evaluation of Π̂ is sufficient. Note that this test can be done efficiently (in
fact in linear time, similar to deciding stratifiability of an ordinary logic program). Moreover, in practice
one can abstract from→d by using analogous relations on the level of predicate symbols instead of atoms.
Clearly, if there is no e-cycle in the predicate dependency graph, then there can also be no e-cycle in the
atom dependency graph. Hence, the predicate dependency graph can be safely used to decide whether the
unfounded set check can be skipped.

Example 5.9. All example programs so far need an UFS check, but the program Π = {out(X) ←
&diff [set1, set2](X)} ∪ F , where diff computes the set difference of unary predicates set1 and set2

and F is any set of facts, needs no UFS check as there is no e-cycle under →d. Also the program
Π = {str(Z) ← dom(Z), str(X), str(Y ), not&concat [X,Y ](Z)} (where &concat takes two constants
and computes their string concatenation) needs no UFS check; there is a cycle over an external atom, but no
e-cycle under→d.

Unfortunately, the converse of Theorem 5.7 does not hold, that is, Π̂ may fail to be unfounded-free wrt. Â
but no unfounded set of Π wrt. A contains an e-cycle; thus, the condition in Corollary 5.8 is not necessary
for unfounded-freeness of Π wrt. A. However, the following generalization of Theorem 5.7 allows us to
conclude that if Π̂ is unfounded-free wrt. Â, then every unfounded set U of Π wrt. A must contain an atom
that provides input to an external atom on a cycle under→d.
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Definition 5.10 (Cyclic Input Atoms). For a program Π, an atom a is a cyclic input atom, if some edge
b→e a with a path from a to b under→d exists.

Let CA(Π) denote the set of all cyclic input atoms of program Π.

Theorem 5.11 (Unfoundedness of Cyclic Input Atom). Let U 6= ∅ be an unfounded set of Π wrt. A such
that U ∩ CA(Π) = ∅. Then, Π̂ has a nonempty unfounded set wrt. Â.

As a consequence of Theorem 5.11, we can add the nogood {Fa | a ∈ CA(Π)} to ΓA
Π . Again using

predicate symbols instead of atoms reduces the overhead of the dependency graph.

Example 5.12. Reconsider Π in Example 5.4. Then U = {p, q} is an unfounded set wrt. A = {Tp,Tq,Fr};
as U is disjoint from CA(Π) = {r}, it is detected during the evaluation of Π̂.

5.2 Program Decomposition

The usefulness of the decision criterion can be increased by decomposing the program into components, such
that the criterion can be applied componentwise. This allows us to restrict the UFS check to components with
e-cycles, while e-cycle-free components can be ignored.

Let C be a partitioning of the ordinary atoms A(Π) of Π into subset-maximal strongly connected
components under→ ∪ →e. We define for each partition C ∈ C the subprogram ΠC associated with C as
ΠC = {r ∈ Π | H(r) ∩ C 6= ∅}.

We next show that if a program has an unfounded set U wrt. A, then U ∩C is an unfounded set wrt. A
for the subprogram of some strongly connected component C.

Theorem 5.13. Let U 6= ∅ be an unfounded set of Π wrt. A. Then, for some C ∈ C it holds that U ∩ C is a
nonempty unfounded set of ΠC wrt. A.

Note that constraints (i.e., rules with empty head) do not harm this proposition. Each constraint r of
kind← B(r) can be rewritten to p← B(r), not p for a new atom p, and C = {p} is a strongly connected
component with ΠC = {r}, which does not contain an e-cycle. Thus, for the rewritten constraints the
according subprograms ΠC can be ignored anyways.

This proposition states that a search for unfounded sets can be done independently for the subprograms
ΠC for all C ∈ C. If a global unfounded set exists, then also for some program component exists. We know
by Corollary 5.8 that programs Π without e-cycles can only contain unfounded sets that are already detected
when Π̂ is solved. If we apply Theorem 5.13 to the subprograms ΠC , we can safely ignore e-cycle-free
program components.

Example 5.14. Reconsider the program Π from Example 5.4. Then C contains the components C1 = {p, q}
and C2 = {r} and we have ΠC1 = {p ← &id [r ](); p ← q; q ← p} and ΠC2 = {r ← &id [r ]()}. By
Theorem 5.13, each unfounded set of Π wrt. some assignment A gives rise to an unfounded set of either
ΠC1 or ΠC2 . E.g., consider U = {p, q, r} and A = {Tp,Tq,Tr}; then U ∩ {r} = {r} is an unfounded
set of ΠC2 wrt. A. As ΠC1 has no e-cycles, we conclude from Corollary 5.8 that all unfounded sets of ΠC1

are already detected when Π̂ (resp., Π̂C1) is evaluated. Hence, only ΠC2 needs an additional UFS. Indeed,
the only unfounded set of Π̂ that is not detected when Π̂ is evaluated is {r}, which is unfounded wrt. each
interpretation A ⊇ {Tr} for ΠC2 and Π.

Finally, we show that splitting, i.e., the component-wise check for foundedness, does not lead to spurious
unfounded sets.



22 INFSYS RR Draft 1843-12-08

Proposition 5.15. If U is an unfounded set of ΠC wrt. A such that U ⊆ C, then U is an unfounded set of Π
wrt. A.

The results can be generalized to subprograms that are larger than strongly connected components;
however, we leave a detailed study of this for future work.

6 Implementation and Evaluation

For implementing our technique, we integrated CLASP into our prototype system dlvhex; we use CLASP as an
ASP solver for computing compatible sets and as a SAT solver for solving the nogood set of the UFS check.

Regarding a concrete setting, there is a large number of combinations of the techniques in [Eiter et al.,
2012a] and from above. Indeed, we may either activate or deactivate external behavior learning (EBL) and
use either the explicit or the UFS-based minimality check. In the latter case, we can further use unfounded
set learning (UFL), the decision criterion for skipping the unfounded set check can be exploited or ignored,
and program decomposition might be used or not. Moreover, we can choose between the encodings Γ and Ω.
In total, these are 34 different settings.

However, we will restrict our discussion to some interesting configurations. In general, we will activate
the developed features stepwise such that in our tables the efficiency increases from left to right. We will start
with the traditional algorithm based on an explicit minimality check without any kind of learning. In the next
step we will add external behavior learning (EBL) [Eiter et al., 2012a], while UFL is not possible with the
explicit check. Then we switch from the explicit minimality check to the UFS-based check without learning
and without exploiting the decision criterion and program decomposition. Nevertheless, this naive kind of
UFS-based minimality checking is usually already more efficient than the explicit minimality check with
EBL. In the next step, we add the decision criterion and program decomposition. In the following, monolithic
(mol) means that both the decision criterion and the program decomposition are off, and modular (mod)
that they are on. Next we add EBL and UFL to the UFS-based minimality check, and finally we switch the
encoding from Γ to Ω. However, we might skip some of the steps for specific benchmarks and argue why
they are uninteresting in the respective cases. Detailed instance information and results with all combinations
of parameters are available at http://www.kr.tuwien.ac.at/research/projects/hexhex/ufs.

Briefly, our results show a clear improvement, for both synthetic and application instances, by the UFS
check and EBL. Moreover, a closer analysis shows that the UFS check decreases in some cases not only the
runtime but also the number of enumerated candidates (UFS resp. model candidates of the FLP reduct) and
the number of external atom evaluations.

We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs with 128GB
RAM. In each test run the CPU usage was limited to two CPU cores, running a Condor load distribution
system which ensures robust runtimes (i.e., multiple runs of the same instance have negligible deviations).
The timeout was uniformly set to 300 seconds for each instance; for each parameter value, the average
runtime over all instances is printed where timeouts, whose number is shown in parentheses, are fully taken
into account.

6.1 Detailed Benchmark Description

Set Partitioning. This benchmark extends the program from Example 2.5 by the additional constraint
← sel(X), sel(Y ), sel(Z), X 6=Y,X 6=Z, Y 6=Z and varies the size of domain . Here we see a big advan-
tage of the UFS check over the explicit check, for both computing all answer sets and finding the first one. A

http://www.kr.tuwien.ac.at/research/projects/hexhex/ufs
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do

m
ai

n all answer sets first answer set
explicit +EBL UFS Γ UFS Γ +EBL Ω explicit +EBL UFS Γ UFS Γ +EBL Ω

mol mod mol mod

5 12.52 6.43 0.73 0.73 0.12 0.11 0.79 0.85 0.08 0.07 0.07 0.10
6 100.48 51.51 1.96 1.51 0.22 0.16 4.72 4.91 0.09 0.07 0.09 0.09
7 — — 4.80 4.60 0.34 0.20 27.51 29.67 0.13 0.07 0.08 0.10
8 — — 10.40 11.51 0.49 0.21 173.39 186.59 0.12 0.10 0.12 0.11
9 — — 28.64 29.23 0.66 0.30 — — 0.14 0.12 0.16 0.16

10 — — 65.17 71.17 0.81 0.35 — — 0.21 0.13 0.20 0.18
11 — — 161.98 175.03 1.03 0.51 — — 0.25 0.16 0.23 0.21
12 — — — — 1.48 0.60 — — 0.27 0.16 0.26 0.25
15 — — — — 3.13 1.04 — — 0.38 0.26 0.42 0.34
20 — — — — 13.89 2.55 — — 0.87 0.53 0.59 0.76
25 — — — — 54.81 5.04 — — 1.84 0.87 1.65 1.50

Table 1: Set Partitioning Benchmark Results

closer investigation shows that the improvement is mainly due to the optimizations in Section 4, which make
the UFS check investigate significantly fewer candidates than the explicit FLP check. Furthermore the UFS
check requires fewer external computations.

Both the explicit and the UFS-based minimality check benefit from EBL if we compute all answer sets,
but the results show that the UFS-based check benefits more. In contrast, UFL (not shown in the table) does
not lead to a further speedup as no unfounded sets are found in this program.

The decision criterion and program decomposition improve the runtime slightly for small instances.
However, for large instances the decision criterion cannot avoid the UFS check in most components of the
program because of its cyclic structure. Thus a single UFS check over the whole program is replaced by
multiple UFS checks over individual program components, which involves more overhead that becomes
visible when computing all answer sets.

If we compute only one answer set, then EBL turns out to be counter-productive. This is because learning
is involved with additional overhead, while we cannot profit much from the learned knowledge if we abort
after the first answer set, hence the costs exceed the benefit.

Using the encoding Ω instead of Γ increases the efficiency in this case, because there is not only a large
number of answer sets but also a large number of answer set candidates. Thus, a reusable encoding is very
beneficial, even if we compute only one answer set.

Multi-Context Systems (MCSs). Nonmonotonic Multi-Context-Systems (MCSs) [Brewka and Eiter, 2007]
are a generic formalism for aligning knowledge bases called contexts, which emerged from an approach in
[Ghidini and Giunchiglia, 2001]. The contexts are interlinked via bridge rules which enable belief exchange
across contexts; the MCS semantics requires that local belief sets are compliant with the bridge rules. Such
compliance can be impossible to achieve; that is, the MCS is inconsistent. To understand the reasons for
the latter, in [Eiter et al., 2012e] inconsistency explanations (IEs) for a MCS were defined, which can be
computed with a HEX-program encoding. This encoding is based on Saturation, which is a general technique
for solving Σp

2 problems in disjunctive answer set programming, cf. [Leone et al., 2006]. Intuitively, a
quantified Boolean formula (QBF) of the form ∃X∀YΦ(X,Y) is evaluated using this technique as follows.
Disjunctions are used to guess whether a variable v is true or false, where the literals v and ¬v are encoded
with designated atoms. A ‘spoil’ atom is made true whenever Φ evaluates to true given truth assignments to
X and Y. Finally whenever ‘spoil’ is true, all literals over Y are set to true; this creates a unique assignment
of the respective atoms. Given a guess on X, its unique ‘spoil’ extension is an answer set if and only if
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#c
tx explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω

mol mod

3 (6) 6.98 (0) 4.45 (0) 4.47 (0) 4.32 (0) 1.62 (0) 0.10 (0) 0.11 (0)
4 (10) 63.75 (1) 47.85 (1) 55.14 (1) 54.90 (1) 26.38 (0) 0.12 (0) 0.13 (0)
5 (8) 177.93 (3) 143.26 (3) 183.79 (4) 185.44 (4) 98.06 (1) 0.13 (0) 0.15 (0)
6 (6) 169.07 (3) 155.16 (3) 178.11 (3) 174.46 (3) 151.87 (3) 0.18 (0) 0.17 (0)
7 (12) 240.13 (9) 227.92 (9) 248.74 (9) 254.15 (10) 215.89 (8) 0.19 (0) 0.22 (0)
8 (5) 250.42 (4) 207.05 (3) 251.19 (4) 251.66 (4) 188.79 (3) 0.22 (0) 0.24 (0)
9 (8) 300.00 (8) 279.44 (7) 300.00 (8) 300.00 (8) 256.77 (6) 0.25 (0) 0.27 (0)

10 (11) 300.00 (11) 271.64 (9) 300.00 (11) 300.00 (11) 244.39 (8) 0.29 (0) 0.32 (0)

Table 2: Consistent MCSs Benchmark Results

#c
tx all answer sets

explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω
mol mod

3 (9) 4.90 (0) 3.07 (0) 3.46 (0) 3.28 (0) 1.21 (0) 0.17 (0) 0.14 (0)
4 (14) 54.40 (1) 20.35 (0) 46.62 (1) 45.50 (1) 7.06 (0) 3.23 (0) 0.87 (0)
5 (11) 168.68 (5) 149.90 (5) 165.52 (5) 167.53 (5) 104.03 (2) 3.70 (0) 0.88 (0)
6 (18) 138.09 (7) 102.97 (6) 136.29 (7) 136.00 (7) 87.82 (4) 10.52 (0) 2.18 (0)
7 (16) 216.84 (8) 152.41 (8) 201.72 (8) 202.90 (8) 143.93 (7) 120.91 (4) 64.49 (1)
8 (6) 268.62 (5) 149.15 (2) 268.65 (5) 268.48 (5) 116.46 (2) 55.89 (1) 51.38 (1)
9 (14) 291.86 (13) 207.49 (9) 294.29 (13) 294.23 (13) 188.95 (8) 123.70 (5) 110.28 (5)

10 (12) 300.00 (12) 300.00 (12) 300.00 (12) 300.00 (12) 289.56 (11) 290.33 (11) 277.85 (11)

#c
tx first answer set

explicit +EBL UFS Γ UFS Γ +EBL +UFL Ω
mol mod

3 (9) 0.11 (0) 0.11 (0) 0.10 (0) 0.10 (0) 0.10 (0) 0.10 (0) 0.10 (0)
4 (14) 0.16 (0) 0.16 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.14 (0) 0.15 (0)
5 (11) 0.18 (0) 0.18 (0) 0.16 (0) 0.15 (0) 0.15 (0) 0.15 (0) 0.16 (0)
6 (18) 0.21 (0) 0.20 (0) 0.18 (0) 0.18 (0) 0.17 (0) 0.17 (0) 0.19 (0)
7 (16) 0.23 (0) 0.21 (0) 0.21 (0) 0.19 (0) 0.16 (0) 0.17 (0) 0.19 (0)
8 (6) 0.26 (0) 0.22 (0) 0.22 (0) 0.22 (0) 0.19 (0) 0.18 (0) 0.20 (0)
9 (14) 0.37 (0) 0.30 (0) 0.33 (0) 0.32 (0) 0.23 (0) 0.24 (0) 0.26 (0)

10 (12) 0.51 (0) 0.36 (0) 0.45 (0) 0.44 (0) 0.28 (0) 0.29 (0) 0.32 (0)

Table 3: Inconsistent MCSs Benchmark Results

all guesses of truth assignments Y make the spoil atom true and saturate the guess to become the unique
extension—this holds due to the minimality condition on answer sets of the reduct (see Definition 2.7).

We use the HEX-encoding for computing IEs as a benchmark, as the saturation is rich in cycles through
external atoms and disjunctive rule heads. External atoms in this benchmark evaluate semantics of contexts
in the MCS (i.e., the local belief sets or models).

We use random instances of different MCS topologies, i.e., connection graphs of contexts, created with
our MCS benchmark generator.2 Note that the topologies are by their structure bound to certain system sizes
(number of contexts), and that the difficulty of the instances varies among topologies; thus larger instances
may have shorter runtimes. Our instances have up to 10 contexts, each consisting of a randomly generated
consistent normal answer set program.

2Described at http://www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html, online avail-
able at https://dmcs.svn.sourceforge.net/svnroot/dmcs/dmcs/trunk

http://www.kr.tuwien.ac.at/research/systems/dmcs/experiments.html
https://dmcs.svn.sourceforge.net/svnroot/dmcs/dmcs/trunk
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The number of candidates for smaller models of the FLP reduct equals the number of unfounded set
candidates as each unfounded set corresponds to a smaller model. However, as we stop the enumeration as
soon as a smaller model respectively an unfounded set is found, the explicit and the UFS check may consider
depending on the specific program and solver heuristics different numbers of interpretations. This explains
why the UFS check is sometimes slightly slower than the explicit check. However, the delay between different
UFS candidates was always smaller, which sometimes makes it faster even if it visits more candidates.

The results for consistent and inconsistent MCSs are shown in Tables 2 and 3, respectively, where the
number of instances of of each system size is given in parentheses. Intuitively, consistent and inconsistent
MCSs are dual, as for each candidate the explicit resp. UFS check fails (i.e., stops early), vs. for some (or
many) candidates the check succeeds (stops late). However, the mixed results do not permit us to draw solid
conclusions on the computational relationship of the evaluation methods. Nonetheless, we can see that the
UFS check based on Ω was often much faster than the explicit check (up to three orders of magnitude).

As consistent MCSs have no IEs and hence no answer sets, we need not distinguish for them between
computing one or all answer sets. The effects of external behavior learning [Eiter et al., 2012a] and of
unfounded set learning are clearly evident in the MCS benchmarks, for both computing the first and all
answer sets. The UFS check profits more from EBL than the explicit check, further adding to its advantage.
By activating UFL (which is not possible in the explicit check) we gain another significant speedup.

We now discuss the effects of the syntactic decision criterion and program decomposition. Due to
saturation, the encoding contains cycles where nearly all cycles in the HEX-program contain at least one
external atom. Therefore the decision criterion can rarely reduce the set of atoms for which the UFS check
needs to be performed. However, the benchmark results for MCS instances confirm that the syntactic check
is cheap and does not hurt performance. Over all 186 instances, the total runtime with decision criterion
and program decomposition was 11,695 seconds compared to 11,702 seconds without, and the number of
instance timeouts was the same.

If we use encoding Ω instead of Γ, we can observe another significant speedup for computing all IEs
of inconsistent MCSs. This is because there usually exist many answer sets (often thousands), and thus
a reusable encoding is very beneficial. In contrast, if we compute only the first answer set or the MCS is
consistent (no answer set exists), then the check with the more involved encoding Ω is slightly slower; its
reusability does not pay off if we abort after the first answer set.

In summary, we can observe that the encoding Ω leads to a significant performance gain over encoding Γ,
while the decision criterion and decomposition do not help. In our next benchmark we will observe opposite
effects.

Abstract Argumentation. In this benchmark we compute ideal set extensions [Dung et al., 2007] for
randomly generated instances of abstract argumentation frameworks (AFs) [Dung, 1995] of different sizes.
The problem of checking whether a given set of arguments is an ideal set of an AF is co-NP-complete [Dunne,
2009]. In this benchmark we use a HEX encoding that mirrors this complexity: it guesses such a set and
checks its ideality using the Saturation technique involving an external atom (see Appendix A.1).

Table 4 shows the results for different numbers of arguments, where each entry is the average of 30
benchmark instances. We compare the following configurations for both computing all and the first answer
set.

In the first column we do an explicit minimality check without learning techniques. The second column
shows that learning (EBL) leads to almost the same runtime results. This can be explained by the structure of
the encoding, which does not allow for effectively reusing learned nogoods.

In the third column, we perform an UFS-based minimality check using our encoding Γ, but without apply-
ing the decision criterion and decomposition. We can observe that this is already a significant improvements
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#a
rg

s all answer sets
explicit +EBL UFS Γ UFS Γ +EBL Ω

mol mod +UFL

5 0.63 (0) 0.64 (0) 0.51 (0) 0.34 (0) 0.34 (0) 0.35 (0)
6 1.35 (0) 1.35 (0) 1.10 (0) 0.66 (0) 0.65 (0) 0.63 (0)
7 3.05 (0) 3.19 (0) 2.38 (0) 0.99 (0) 0.97 (0) 0.98 (0)
8 10.10 (0) 10.15 (0) 5.87 (0) 2.02 (0) 1.94 (0) 1.92 (0)
9 33.76 (0) 34.82 (0) 18.59 (0) 3.45 (0) 3.35 (0) 3.35 (0)

10 109.58 (1) 112.57 (1) 49.84 (0) 8.86 (0) 8.32 (0) 7.92 (0)
15 290.01 (29) 290.01 (29) 290.00 (29) 108.64 (6) 99.88 (6) 98.44 (6)
20 300.00 (30) 300.00 (30) 300.00 (30) 185.94 (15) 180.25 (15) 179.60 (14)

#a
rg

s first answer set
explicit +EBL UFS Γ UFS Γ +EBL Ω

mol mod +UFL

5 0.41 (0) 0.41 (0) 0.41 (0) 0.27 (0) 0.27 (0) 0.28 (0)
6 0.87 (0) 0.87 (0) 0.82 (0) 0.54 (0) 0.53 (0) 0.54 (0)
7 1.44 (0) 1.48 (0) 1.27 (0) 0.66 (0) 0.66 (0) 0.67 (0)
8 4.74 (0) 4.86 (0) 3.59 (0) 1.49 (0) 1.48 (0) 1.44 (0)
9 17.47 (0) 17.74 (0) 11.88 (0) 2.23 (0) 2.22 (0) 2.18 (0)

10 52.22 (0) 54.18 (0) 29.17 (0) 4.08 (0) 3.88 (0) 3.62 (0)
15 260.03 (26) 260.03 (26) 260.02 (26) 33.13 (2) 32.85 (2) 32.36 (2)
20 220.11 (22) 220.11 (22) 220.04 (22) 72.30 (4) 64.28 (3) 64.50 (3)

Table 4: Argumentation Benchmark Results

compared to the explicit minimality check, illustrating the effectiveness of our new approach. Similar as in
the MCS benchmark, the number of reduct model candidates is equal to the number of UFS candidates in
most cases, but the UFS check again enumerates its candidates faster; this explains the observed speedup.

When we enable the decision criterion and program decomposition, we can observe a further speedup.
This is because cycles in argumentation instances usually involve only small parts of the overall program;
thus the UFS search can be significantly simplified by excluding large program parts. We further have
observed that program decomposition without the decision criterion is counter-productive (not shown in the
table), because a single UFS search over the whole program is replaced by many UFS searches over program
components (without the decision criterion, no such check is excluded). This incurs more overhead.

In the fifth column we enable EBL and UFL, which leads to a small speedup in some cases. However, as
already mentioned above, no effective reuse of learned nogoods is possible.

Finally, switching the encoding from Γ to Ω leads to a small speedup in some cases, but is also counter-
productive in others. This is because the programs in this benchmark have usually only very few compatible
sets, andy only few unfounded set checks need to be performed. Hence the lower initialization overhead of
the encoding Ω does not influence the runtime dramatically. On the other hand, the higher complexity of the
encoding Ω increases the runtime of small instances.

Default Reasoning over Description Logics Benchmarks.. A prominent instance of HEX-programs are
DL-programs, which combine description logic ontologies with rules; they result by using a special external
atom that is available as DL-plugin in dlvhex. Via DL-programs, we obtain an encoding of terminological
default reasoning over description logic ontologies in the approach of [Baader and Hollunder, 1995] into
HEX-programs, in which defaults require cyclic dependencies over external atoms. However, as all such
dependencies involve default negated atoms, we have no cycles according to Definition 5.1, which respects
only positive dependencies. Hence, the decision criterion comes to the conclusion that no UFS check is
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required.
We used variants of the benchmarks presented in [Eiter et al., 2012a], which query wines from an ontology

and classify them as red or white wines, where a wine is assumed to be white unless the ontology explicitly
entails the opposite. In this scenario, the decision criterion eliminates all unfounded set checks. However,
as there is only one compatible set per instance, there would be only one unfounded set check anyway,
hence the speedup due to the decision criterion is not significant. But the effect of the decision criterion can
be increased by slightly modifying the scenario such that there are multiple compatible sets. This can be
done, for instance, by nondeterministic default classifications, e.g., if a wine is not Italian, then it is either
French or Spanish by default. Our experiments have shown that with a small number of compatible sets, the
performance enhancement due to the decision criterion is marginal, but increases with larger numbers of
compatible sets. For instance, for 243 compatible sets (and thus 243 unfounded set checks) we could observe
a speedup from 13.59 to 12.19 seconds.

Conformant Planning. In classical AI planning, a planning domain contains a description of actions with
their preconditions and effects in the world. Finding a plan means to find a sequence of actions that reaches
from a given initial state a state fulfilling a given goal condition. Conformant planning [Goldman and Boddy,
1996, Smith and Weld, 1998] is is the same problem but where the initial state is only partially specified
and/or the domain is nondeterministic, such that by executing the plan we reach the goal regardless of the
action outcomes and the actual initial state.

We here experimented on a very simple conformant planning domain: two robots with a limited sensor
range patrol an area, in which is an object at an unknown initial location. The goal is to find a sequence
of movements of the two robots such that they detect the object in all cases. For experiments we used an
encoding which realizes conformant planning using Saturation (see above) and contains an external atom
for computing whether the patrol robots detect object (cf. Appendix A.2. In general, deciding the existence
of a short (polynomial length bounded) conformant plan is Σp

3-complete, see [Turner, 2002], but if action
executability is decidable in polynomial time, the problem is in Σp

2; our example domain enjoys the property.
Our results are displayed in Table 5, which shows averages over 10 instances per size. The instances

consist of n×4 grids with n∈{3, . . . , 16}, the plan length required for finding a solution increases with
larger instance sizes. (This is because the number of robots does not increase while the two robots must still
cover the whole area.) Instances were generated by randomly placing robots in opposite quarters of the map.

As expected we observe that the explicit FLP check performs worst, followed by the monolithic UFS
check with Γ encoding, and the modular UFS Γ encoding; the UFS Ω encoding (without external behavior
nor unfounded set learning) performs best. External behavior learning (EBL) and unfounded set learning
(UFL) do not improve the performance, on the contrary it increases the run times significantly for the modular
UFS Γ check and slightly for the Ω check. EBL does not change times significantly for the explicit check,
therefore we omit results for explicit +EBL.

By looking into profiling information and at the domain we found the reasons: (a) the external atoms
depend on a large part of the interpretation (locations of all robots) so EBL cannot cut away significant
portions of the search space; (b) evaluating the external atom takes a negligible amount of time, so beneficial
effects of EBL will be outweighed by is computational overhead. For UFL we observed that the benchmark
instances contain only few unfounded sets (prunning less than half of the answer set candidates) and thus
UFL cannot improve performance given the overhead it incurs. We conclude that in some scenarios, using
EBL and UFL can reduce efficiency.

As in the Ω check the UFS check encoding is constructed only once, the overhead for EBL and UFL
observed with the Γ encoding no longer has such a big impact. Nevertheless Ω without learning slightly
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m
ap

si
ze

pl
an

le
ng

th all answer sets

explicit UFS Γ UFS Γ +EBL +UFL Ω +EBL+UFL
mol mod

3×4 1 12.67 (0) 0.90 (0) 0.66 (0) 0.88 (0) 0.84 (0) 0.75 (0) 0.75 (0)
4×4 1 21.31 (0) 0.85 (0) 0.74 (0) 0.91 (0) 0.63 (0) 0.77 (0) 0.70 (0)
5×4 1 27.33 (0) 0.84 (0) 0.73 (0) 0.82 (0) 0.82 (0) 0.68 (0) 0.55 (0)
6×4 2 272.39 (7) 4.64 (0) 2.62 (0) 3.36 (0) 3.51 (0) 1.92 (0) 2.02 (0)
7×4 2 291.26 (9) 6.80 (0) 3.30 (0) 5.14 (0) 5.37 (0) 2.67 (0) 3.23 (0)
8×4 3 300.00 (10) 107.87 (0) 33.73 (0) 78.39 (0) 79.08 (0) 16.59 (0) 22.03 (0)
9×4 3 300.00 (10) 124.72 (0) 40.61 (0) 104.94 (0) 107.37 (0) 21.14 (0) 28.61 (0)

10×4 4 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 230.87 (2) 283.29 (8)
11×4 4 300.00 (10) 300.00 (10) 295.51 (9) 300.00 (10) 300.00 (10) 209.69 (3) 275.22 (6)
12×4 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 294.98 (9) 300.00 (10)
13×4 5 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 295.37 (8) 300.00 (10)
14×4 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 293.65 (9) 300.00 (10)
15×4 6 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)
16×4 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

m
ap

si
ze

pl
an

le
ng

th first answer set

explicit UFS Γ UFS Γ +EBL +UFL Ω +EBL+UFL
mol mod

3×4 1 1.44 (0) 0.05 (0) 0.04 (0) 0.04 (0) 0.04 (0) 0.05 (0) 0.05 (0)
4×4 1 2.21 (0) 0.06 (0) 0.04 (0) 0.05 (0) 0.04 (0) 0.05 (0) 0.06 (0)
5×4 1 6.06 (0) 0.08 (0) 0.06 (0) 0.07 (0) 0.06 (0) 0.07 (0) 0.07 (0)
6×4 2 15.46 (0) 0.23 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.12 (0) 0.14 (0)
7×4 2 35.43 (0) 0.43 (0) 0.20 (0) 0.24 (0) 0.24 (0) 0.19 (0) 0.22 (0)
8×4 3 188.35 (3) 7.46 (0) 2.13 (0) 1.93 (0) 1.93 (0) 1.25 (0) 1.74 (0)
9×4 3 181.38 (3) 9.98 (0) 3.18 (0) 2.50 (0) 3.02 (0) 1.48 (0) 1.84 (0)

10×4 4 248.52 (8) 83.65 (2) 51.98 (1) 55.91 (1) 62.08 (1) 36.50 (1) 40.44 (1)
11×4 4 300.00 (10) 117.33 (2) 51.74 (1) 67.10 (1) 84.32 (2) 37.00 (1) 43.48 (1)
12×4 5 274.38 (9) 254.15 (7) 176.32 (4) 216.24 (6) 198.95 (5) 94.64 (2) 125.79 (2)
13×4 5 300.00 (10) 293.08 (9) 240.73 (5) 276.55 (9) 276.53 (9) 164.91 (4) 203.02 (4)
14×4 6 300.00 (10) 286.46 (9) 247.39 (8) 257.14 (8) 257.27 (8) 207.95 (6) 205.80 (6)
15×4 6 300.00 (10) 300.00 (10) 281.90 (9) 300.00 (10) 300.00 (10) 252.76 (8) 277.33 (9)
16×4 7 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 292.24 (9) 300.00 (10)

Table 5: Conformant Planning Benchmark Results

outperforms Ω with UFL and EBL. An analysis of the number of UFS checks and the number of external
atom evaluations (not shown in table) revealed that UFL and EBL decreases (i) the number of unfounded set
checks needed and (ii) the number of external atoms evaluated (in one 9×4 instance, from 5132 to 3341).
Thus if external computations would be more costly, the positive effects of UFL and EBL on Ω would
outweigh their computational overhead and it would be beneficial to activate UFL and EBL in this domain.

Interestingly, for small map sizes we see that with the Ω encoding, the 3×4 instances actually seem to
be harder to solve than the larger 4×4 and 5×4 instances. This is because all these instances require plan
length 1 to find a solution; so the larger instances are more constrained than the smaller instances because
there robots have less freedom to move around while still detecting all objects. Hence, for 5×4 maps the
solver finds solutions faster than for 4×4 maps.

The conclusion from this benchmark is that depending on the computational task in external atoms, UFL
and EBL can be beneficial or harmful for efficiency of reasoning.
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6.2 Summary

Our experiments have shown that the learning technique EBL developed in [Eiter et al., 2012a] and the
techniques introduced in this paper lead to significant performance improvements in most cases, with few
exceptions for specific benchmarks. The effects of external behavior learning (EBL) are clearly evident both
for the explicit minimality check and for the unfounded set-based check, but are even more prominent with
the latter. Indepedently of whether EBL is used or not, unfounded set checking pushes the efficiency of HEX-
program evaluation compared to explicit minimality checking. Moreoever, it allows for learning of additional
nogoods, which is also advantageous in most of our benchmarks. Regarding the two problem encodings,
the benchmarks show that the UFS check is usually faster with the Ω encoding than with the Γ encoding,
however the former UFS check involves more initialization overhead, which might be counterproductive for
small programs.

The decision criterion may lead to an additional speedup and does not introduce noteable overhead, thus
it can always be activated. Finally, program decomposition often leads to an additional performance gain,
but should only be used in combination with the decision criterion because otherwise a single UFS check is
replaced by multiple UFS checks, which involves more overhead.

7 Discussion

7.1 Related Work

Foundedness is besides grounding one of the main differences between ASP and SAT solving. The notion of
unfounded set has been introduced by van Gelder et al. 1991 for defining the well-founded semantics of logic
programs with negation, by constructing the least fixpoint of a monotone operator on partial interpretations;
the total fixpoints of this operator correspond to the stable models of the logic program. This actually allows
to give a characterization of the stable models in terms of unfounded sets. In fact, unfounded set checking
turned out to be a fruitful model-based approach in ASP solving, which has an equally successful syntactic
counterpart known as loop formulas [Lin and Zhao, 2004, Lee and Lifschitz, 2003, Lee, 2005]. Different
kinds of unfounded set checks with different complexities have been developed for various program classes.

The computation of answer sets by a model generate and test approach, which is pursued by many ASP
solvers, requires that a form of minimality check or unfounded set check is carried out already for ordinary
logic programs (i.e., in absence of external atoms). However, for normal program this test is tractable and it is
frequently realized using source pointers [Simons et al., 2002]. Intuitively, the reasoner stores for each atom a
pointer to a rule which possibly supports this atom. The list of source pointers is updated during propagation.
If at some point there is no supporting rule for an atom, then it can conclude that this atom must be false.

In the context of ASP, the notion of unfounded set has been explictly formulated and extended to
disjunctive logic programs by Leone et al. 1997, who proved that the stable models of a disjunctive logic
program are its models that are unfounded-free. This results was the basis for the architecture of the dlv solver,
which generates answer set candidates that are checked for unfounded-freeness. This test, which like answer
set checking from FLP-reducts is co-NP-complete [Faber et al., 2011], has been reduced in [Koch et al.,
2003] to unsatisfiability testing of a SAT instance. This approach has been later extended to conflict-driven
learning and unfounded set checking in [Drescher et al., 2008], where two instances for the CLASP solver,
an ASP instance and a SAT instance, are used to generate and check answer set candidates, resepectively.
Alviano et al. 2011 consider normal logic programs with monotone and antimonotone aggregate atoms, and
defined unfounded sets for such programs. Based on this, they extended the well-founded semantics of Van
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Gelder et al. 1991, which—although closely related—is weaker than the general FLP semantics [Faber et al.,
2011].

We now considered unfounded set checking in the presence of external sources and for FLP answer
sets, for which the results in [Drescher et al., 2008] do not immediately carry over and also the problem is
intuitively computationally harder. Indeed, already for Horn programs, the presence of nonmonotonic external
atoms that are decidable in polynomial time makes unfoundedness checking intractable (more precisely,
co-NP-complete), such that deciding the existence of an FLP answer set is a Σp

2-complete problem in the
ground case; for computationally harder external atoms, the complexity may increase relative to an oracle for
the external function (see [Faber et al., 2011]).

Drescher et al. 2008 employed also a splitting technique related to our program decomposition, but for
ordinary programs only. Note that our notion of splitting is different from the well-known splitting sets
in [Lifschitz and Turner, 1994], as we consider only positive dependencies for ordinary atoms. While we
consider e-cycles, which are specific for HEX-programs, the interest in [Drescher et al., 2008] was with
head-cycles, which may arise with disjunctive rule heads. In fact, our approach may be regarded as an
extension of the one of Drescher et al., since the evaluation of Π̂ follows their principles of performing UFS
checks in case of head-cycles.

The unfounded set check that we consider in this work is instrumental for the FLP semantics (as it is for
the standard GL-reduct based semantics); we just mention that other semantics of HEX-programs may not
involve such a step. For instance, [Shen, 2011] and [Shen and Wang, 2011] present a well-justified semantics
where unfounded set checking is essentially replaced by a fixpoint iteration which, intuitively, tests if a
model candidate reproduces itself but excludes circular justifications. However, the complexity of answer
set computation does not decrease by this approach in general, and in particular the Σp

2-completeness of
deciding answer set existence of ground Horn programs with nonmonotonic external atoms that are decidable
in polynomial time holds.

7.2 Extensions

We have designed our unfounded set check as a postcondition test; that is like the explicit FLP check, it is
carried out only after a complete interpretation has been generated as an answer set candidate. However, in
certain cases it might be already clear that a partial interpretation (in which some truth values are open) can
never become an answer set, because the existence of an unfounded set is guaranteed for any completion to a
total interpretation. One can then backtrack earlier, which intuitively leads to a saving for certain classes of
instances.

Exploring this idea, we have generalized our framework with a control component which decides, based
on a heuristics, when an unfounded set check is carried out; in the standard setting, this is whenever an
assignment in the model generation is complete (i.e., a total interpretation is given).

A UFS check on partial interpretations that is sound with respect to any completion to a total interpretation
is possible if the ASP solver has finished internal unit propagation over a maximal subset of the program
such that the interpretation is already complete on it. We thus used this criterion, which is easy to test, for a
greedy heuristics to issue UFS checks in our prototype system.

However, in contrast to our initial expectation, we found that for all our benchmarks the UFS check
over partial interpretations was not productive. A closer look reveals that this is essentially because nogood
learning from unfounded sets (UFL) effectively avoids the reconstruction of the same unfounded set anyway.
It therefore rarely happens that UFS checking over a partial interpretation identifies an unfounded set earlier
than UFS checking over complete interpretations. As UFS checking for HEX-programs involves the evaluation
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of external sources and compatibility testing, this easily leads to costs that are higher than the potential savings.
On the other hand, for ordinary ASP solving (where no such extra costs incur), UFS checks over partial
interpretations may still be beneficial. In conclusion, UFS checks on partial interpretations of HEX-programs
will require tailored heuristics that not only take the structure of the program, but also domain-specific
knowledge into account, which remains for future work.

8 Conclusion

HEX-programs are an expressive extension of non-monotonic logic programs with access to external in-
formation via external atoms, which supported by a plugin architecture can be fruitfully deployed for a
range of applications. External atoms however make the efficient evaluation of HEX-programs a challenging
task, and in particular to compute answer sets of a HEX-program Π, which are the models A of Π that are
subset-minimal models of its FLP-reduct fΠA (which keeps all rules whose bodies are satisfied). To improve
on this expensive test (which was customary in implementations so far), we have presented an alternative test
based on unfounded sets that we obtain by adapting the notion of unfounded set for aggregates in [Faber,
2005] to external atoms. Also [Alviano et al., 2011] use a related notion of unfounded sets for programs
with aggregates, but restrict the discussion to monotonic and antimonotonic aggregates. We have realized
unfounded set (UFS) checking by a transformation to SAT solving, where the satisfying assignments of a
constructed CNF generate candidate unfounded sets, which in turn are subject to a (rather simple) postcheck
that takes external atom evaluation into account.

In particular, we have provided two SAT encodings for UFS checking: the conceptually simple encoding
ΓA

Π , which needs initialization for every UFS check, and the advanced encoding ΩΠ, which can be reused
for all UFS checks. To further boost performance, we have shown how to learn from unfounded sets by
deriving nogoods, i.e., constraints (possibly involving also external atoms) which guide future search in model
generation and help to avoid that unfounded sets are regenerated. In further elaboration, we have refined the
basic approach by suitable program splitting, such that the UFS check can be carried out independently on
program components, cutting down the complexity. Furthermore, we have presented a syntactic criterion that
allows us to decide efficiently whether the UFS check can be safely skipped for a component or the whole
program, exploiting that the answer set candidates from the model search have only special unfounded sets
that involve cyclic input to external atoms; for HEX-programs in simple applications, this is usually not the
case.

The experimental evaluation of our new approach, which considered different combinations of the
techniques and comprised problems from various domains including multi-context systems, abstract argumen-
tation, default reasoning over ontologies, and conformant planning, where HEX-programs serve for easy-cut
declarative problem solving, has shown that it is much more efficient than the traditional minimal model
check; it can lead to exponential gains and yields often drastic performance improvements, while it is not
slower (except in very few cases by a marginal amount). Furthermore, the reusable encoding ΩΠ turned out
to be beneficial for programs that require many unfounded set checks, which includes all programs that have
many answer sets.

Future work. An issue for further improvement of the approach in this paper are other heuristics for UFS
checking over partial interpretations. While the natural heuristics that we considered are counterproductive,
others might lead to additional speedup in some cases. However, this may require to incorporate domain-
specific knowledge about external atoms; currently this is only done in the learning algorithms but not in
the heuristics. In the same line, one might consider developing a heuristics for dynamically choosing
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between the UFS search encodings that we presented, and to study heuristics for guiding the unfounded
set search, i.e., for variable selection by the SAT solver. Currently, our implementation applies the same
heuristics for the unfounded set search as in the model generation process. However, our experimental
comparison with the explicit minimality check in terms of the considered candidate sets suggests that there is
room for improvement by employing suitable choices. Developing appropriate heuristics and validating their
effectiveness on candidate set enumeration remains to be explored. Finally, an obvious issue are other criteria
that allow to skip the UFS check or simplify it while they can be efficiently tested.
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A Benchmark Encodings

In this appendix, we give details to some of the benchmark encodings (those which are not described in the
references). We note that these encodings have not been developed and tuned for good performance and serve
merely for an experimental comparison of the various FLP check realizations.

A.1 Abstract Argumentation

The Abstract Argumentation benchmark results in Section 6.1 were obtained using the following encoding,
which is derived from encodings for admissible and preferred set extensions of an argumentation framework
(A, att) described in [Egly et al., 2010].

Input instances of this benchmark are defined over a set A of arguments encoded as facts arg(a) for each
a ∈ A and a set att of attacks between arguments, encoded as facts att(a, b) for some (a, b) ∈ A×A. The
encoding consists of the following rules where x, y, z ∈ A; very similar encodings are explained in detail
in [Egly et al., 2010] (but without the use of external atoms).

We define defeat from attacks.

defeat(x, y)← att(x, y).

We guess a set S ⊆ A using predicates inS and outS .

inS (x)← not outS (x), arg(x). outS (x)← not inS (x), arg(x).

We require that all arguments in S are conflict-free and defended from S.

← inS (x), inS (y), defeat(x, y).

defeated(x)← inS (y), defeat(y, x).

notDefended(x)← defeat(y, x), not defeated(y).

← inS (x),notDefended(x).

For saturation we define a linear order on arguments, including infimum and supremum.

lt(x, y)← arg(x), arg(y). (x < y)

nsucc(x, z)← lt(x, y), lt(y, z).

succ(x, y)← lt(x, y), notnsucc(x, y).

ninf (x)← lt(y, x). nsup(x)← lt(x, y).

inf (x)← notninf (x), arg(x). sup(x)← notnsup(x), arg(x).

We perform a guess over a set T ⊆ A using a disjunction.

inT (x) ∨ outT (x)← arg(x).
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We check each argument of T whether it is in S and spoil the answer set if S ⊆ T .

sInT upto(y)← inf (y), inS (y), inT (y).

sInT upto(y)← inf (y), outS (y).

sInT upto(y)← succ(z, y), inS (y), inT (y), sInT upto(z).

sInT upto(y)← succ(z, y), outS (y), sInT upto(z).

sInT ← sup(y), sInT upto(y).

spoil ← sInT .

We also spoil the answer set if T is not a preferred extension, determined by an external atom with the semantic
function f&argSemExt such that f&argSemExt(A, pref , arg , att , inT , unused , spoil) = 1 iff Fspoil ∈ A or
the extension of predicate inT is a preferred set extension of the argumentation framework specified by the
extension of predicates arg and att . This check is performed using an ASP encoding for preferred extensions
from [Egly et al., 2010].

tIsNotPref ← &argSemExt [pref , arg , att , inT , unused , spoil ]().

spoil ← tIsNotPref .

Note that the parameters pref and unused support more general functionalities of f&argSemExt which are
not relevant for this benchmark. We create a unique answer set whenever spoil is true and require that only
spoiled answer sets are returned.

inT (x)← spoil , arg(x). outT (x)← spoil , arg(x).

sInT ← spoil . tIsNotPref ← spoil . ← not spoil .

Given an instance encoded as above, an answer set to the above program exists iff there exists an ideal set
extension of the given argumentation framework.

A.2 Conformant Planning

The Conformant Planning benchmark results in Section 6.1 were obtained using the following encoding.
Input instances of this benchmark are defined over a set R of robots, sets X and Y of valid x and y

coordinates of the environment, and a maximum plan length l; an instance contains for each robot r ∈ R the
initial position (x, y) as facts roboX(r, x, 0) and roboY (r, y, 0). The encoding consists of the following rules
where, unless stated otherwise, 0 ≤ t < l, r ∈ R, x ∈ X , y ∈ Y .

For each robot we generate four possible moves in the environment.

move(r, x, y + 1, t) ∨move(r, x, y + 1, t)← roboX(r, x, t), roboY (r, y, t). (y + 1 ∈ Y )

move(r, x, y − 1, t) ∨move(r, x, y − 1, t)← roboX(r, x, t), roboY (r, y, t). (y − 1 ∈ Y )

move(r, x+ 1, y, t) ∨move(r, x+ 1, y, t)← roboX(r, x, t), roboY (r, y, t). (x+ 1 ∈ X)

move(r, x− 1, y, t) ∨move(r, x− 1, y, t)← roboX(r, x, t), roboY (r, y, t). (x− 1 ∈ X)

We disallow moving to multiple locations and standing still (the latter is not strictly necessary but we obtained
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experimental results that way).

← move(r, x1, y1, t),move(r, x1, y2, t). (x1, x2 ∈ X, x1 < x2, y1, y2 ∈ Y )

← move(r, x, y1, t),move(r, x, y2, t). (y1, y2 ∈ Y, y1 < y2)

move∃(r, t)← move(r, x, y, t).

← notmove∃(r, t).

The effect of moving is a deterministic change of location.

roboX(r, x, t+ 1)← move(r, x, y, t). roboY (r, y, t+ 1)← move(r, x, y, t).

For saturation we guess the position of the object.

objX(x) ∨ objX(x)← . objX(y) ∨ obj Y (y)← .

We spoil the answer set if the object is at multiple locations.

spoil ← objX(x1), objX(x2). (x1, x2 ∈ X, x1 < x2)

spoil ← obj Y (y1), obj Y (y2). (y1, y2 ∈ Y, y1 < y2)

We spoil the answer set if the object is at no location.

objectHasNoXUpTo(1)← objX(1).

objectHasNoXUpTo(x)← objectHasNoXUpTo(x− 1), objX(x). (x− 1 ∈ X)

spoil ← objectHasNoXUpTo(xmax ). (xmax = max(X))

objectHasNoYUpTo(1)← obj Y (1).

objectHasNoYUpTo(y)← objectHasNoYUpTo(y − 1), obj Y (y). (y − 1 ∈ Y )

spoil ← objectHasNoYUpTo(ymax ). (ymax = max(Y ))

We spoil the answer set if the object is sensed, which is determined by an external atom with the semantic
function f&sense such that f&sense(A, roboX , roboY , objX , obj Y , range, spoil) = 1 iff Tspoil ∈ A or the
predicates roboX , roboY , objX , obj Y represent in A a state where the robot has a distance less than range
to the object, i.e., the robot can detect the object.

spoil ← &sense[roboX , roboY , objX , obj Y , range, spoil ]().

We create a unique answer set whenever spoil is true and require that only spoiled answer sets are returned.

objX(x)← spoil . objX(x)← spoil .

obj Y (x)← spoil . obj Y (x)← spoil .

objectHasNoXUpTo(x)← spoil . objectHasNoYUpTo(y)← spoil .

← not spoil .

Given an instance encoded as above, an answer set to the above program exists iff there exists a sequence
of movements that ensures to detect the object no matter where it is located. Furthermore the movements
required to detect the object, i.e., the conformant plan, is encoded in the answer set in the extension of the
move predicate.
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B Proofs

Proof of Theorem 3.3. The proof is as in [Faber et al., 2011] with external atoms in place of aggregates. 2

Proof of Proposition 3.7. We proceed by contraposition and show that if IΓ(U,ΓA
Π ,Π,A) is not a solution

to ΓA
Π , then U cannot be an unfounded set such that AT ∩ U 6= ∅.
First observe that the nogoods in Hr,A demand Thr to be true for a rule r ∈ Π in a solution to ΓA

Π if
and only if some head atom h ∈ H(r) of this rule is in U . As the truth values of hr and all h ∈ H(r) are
defined in IΓ(U,ΓA

Π ,Π,A) exactly to this criterion, no nogood from Hr,A can be involved in a contradiction.
Furthermore, the nogood {Fa | Ta ∈ A} ∈ NA

Γ,Π is violated by IΓ(U,ΓA
Π ,Π,A) only if AT ∩ U = ∅;

hence, if IΓ(U,ΓA
Π ,Π,A) is not a solution to ΓA

Π and AT ∩ U 6= ∅, as OA
Γ,Π is conservative, then for some

rule r ∈ Π the nogood in Cr,A must be violated. That is, we know the following: Thr ∈ IΓ(U,ΓA
Π ,Π,A)

(and therefore H(r) ∩ U 6= ∅), Fa ∈ IΓ(U,ΓA
Π ,Π,A) for all a ∈ B+

o (r), ta ∈ IΓ(U,ΓA
Π ,Π,A) for all

a ∈ Be(r̂), and Th ∈ IΓ(U,ΓA
Π ,Π,A) for all h ∈ H(r) with A |= h. Moreover, we have Cr,A 6= ∅. We

now show that this implies that none of the conditions (i)–(iii) of Definition 3.1 holds for r wrt. U and A,
which means that U is not an unfounded set.

Condition (i) does not hold for r because A |= B(r) (otherwise Cr,A = ∅).
Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be some

b ∈ B(r) s.t. A
.
∪ ¬.U 6|= b. Because Cr,A 6= ∅, we know that A |= b. We make a case distinction on the

type of b:
• If b is a positive default literal from A(Π), then Fb ∈ IΓ(U,ΓA

Π ,Π,A) and therefore b 6∈ U . Conse-
quently A

.
∪ ¬.U |= b. Contradiction.

• If b is a negative default literal over A(Π) , then A |= b implies A
.
∪ ¬.U |= b. Contradiction.

• If b is a positive or default-negated replacement atom, then tb ∈ IΓ(U,ΓA
Π ,Π,A). But this implies, by

definition of IΓ(U,ΓA
Π ,Π,A), that A

.
∪ ¬.U |= b. Contradiction.

Condition (iii) does not hold for r because Th ∈ IΓ(U,ΓA
Π ,Π,A) and thus, by definition of IΓ(U,ΓA

Π ,Π,A),
h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all a ∈ H(r) \ U . 2

Proof of Theorem 3.9. Suppose U is not an unfounded set. Then there is an r ∈ Π s.t. H(r) ∩ U 6= ∅ and
none of the conditions (i)–(iii) in Definition 3.1 is satisfied. We show now that S cannot be a solution to ΓA

Π

that satisfies conditions (a) and (b), which proves the result.
Because condition (i) does not hold, there is a nogood of form

{{Thr} ∪ {Fa | a ∈ B+
o (r),A |= a} ∪ {ta | a ∈ Be(r̂)} ∪ {Th | h ∈ H(r),A |= h}}

in ΓA
Π .
We now show that S contains all signed literals of this nogood, i.e., the nogood is violated by the

assignment S.
Since H(r) ∩ U 6= ∅, Thr ∈ S (otherwise a nogood in HA

r is violated). As U is not an unfounded set,
Condition (ii) in Definition 3.1 does not hold. Consider any a ∈ B+

o (r) s.t. A |= a. Then a 6∈ U , otherwise
A

.
∪ ¬.U 6|= a and we have a contradiction with the assumption that Condition (ii) is unsatisfied. But then

Fa ∈ S (because S is complete and would imply a ∈ U otherwise).
Now consider any &g [p](c) ∈ Be(r). Then A

.
∪ ¬.U |= &g [p](c) (as (ii) is violated). If A 6|= &g [p](c),

then Condition (i) would be satisfied, hence A |= &g [p](c). But then Te&g[p](c) ∈ S, otherwise A
.
∪

¬.U 6|= &g [p](c) by precondition (b) of this proposition. Next consider all not&g [p](c) ∈ Be(r). Then
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A
.
∪ ¬.U 6|= &g [p](c) (as (ii) is violated). If A |= &g [p](c), then Condition (i) would be satisfied, hence

A 6|= &g [p](c). But then Fe&g[p](c) ∈ S, otherwise A
.
∪ ¬.U |= &g [p](c) by precondition (a) of this

proposition. Therefore, we have ta ∈ S for all a ∈ Be(r̂).
Finally, because Condition (iii) in Definition 3.1 does not hold, h ∈ U and therefore also Th ∈ S for all

h ∈ H(r) with A |= a.
This concludes the proof that S cannot be a solution to ΓA

Π satisfying (a) and (b), if U is not an unfounded
set. 2

Proof of Proposition 3.13. We proceed by contraposition and show that if IΩ(U,ΩΠ,Π,A) is not a solution
to ΩΠ with assumptions AA, then U cannot be an unfounded set such that AT ∩ U 6= ∅.

First observe that the nogoods in Hr demand Thr to be true for a rule r ∈ Π if and only if some head
atom h ∈ H(r) of this rule is in U . Moreover, the nogoods in Da for each a ∈ A(Π) force aA .

∪¬.U to true if
and only if Ta ∈ A and a /∈ U , which is equivalent to Ta ∈ A

.
∪ ¬.U ; aA∧U to true if and only if Ta ∈ A

and a ∈ U ; and aA∨U to true if and only if Fa ∈ A or a ∈ U . As the truth values of hr for each r ∈ Π, and
aA

.
∪¬.U and aA∧U and aA∨U for each a ∈ A(Π) in IΩ(U,ΩΠ,Π,A) are defined exactly to these conditions,

a contradiction must involve Cr for some r ∈ Π. Furthermore, the nogood {Fa | a ∈ A(Π)} is violated by
IΩ(U,ΩΠ,Π,A) only if A(Π) ∩ U = ∅, and thus AT ∩ U 6= ∅; hence, if IΩ(U,ΩΠ,Π,A) is not a solution
to ΩΠ such that AT ∩ U 6= ∅, since OΩ,Π is conservative, for some rule r ∈ Π the nogood in Cr must be
violated. That is, we know the following:

(I) Thr ∈ IΩ(U,ΩΠ,Π,A) (and therefore H(r) ∩ U 6= ∅),

(II) TaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+(r̂) and FaA ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B−(r̂),

(III) FaA∧U ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ B+
o (r), ta ∈ IΩ(U,ΩΠ,Π,A) for all a ∈ Be(r̂), and

(IV) ThA∨U ∈ IΩ(U,ΩΠ,Π,A) for all h ∈ H(r).

We now show that this implies that none of the conditions of Definition 3.1 holds for r wrt. U and A,
which means that U is not an unfounded set (hr is true in IΩ(U,ΩΠ,Π,A), which implies H(r) ∩ U 6= ∅x).

Condition (i) does not hold for r because of (II), which by our assumptions AA implies A |= B(r).
Condition (ii) does not hold for r. Suppose to the contrary that it holds. Then there must be some b ∈ B(r)
s.t. A

.
∪ ¬.U 6|= b. Since condition (i) is already known to be violated, we can assume that A |= b. We make

a case distinction on the type of b:
• If b is a positive default literal from A(Π) , then b ∈ U (otherwise A

.
∪ ¬.U |= b). But then we have

by definition of IΩ(U,ΩΠ,Π,A) that TbA∧U ∈ IΩ(U,ΩΠ,Π,A), which contradicts (III).
• If b is a negative default literal over A(Π) , then A |= b implies A

.
∪ ¬.U |= b. Contradiction.

• If b is a positive or default-negated replacement atom of an external, then tb ∈ IΩ(U,ΩΠ,Π,A). But
this implies, by definition of IΩ(U,ΩΠ,Π,A), that A

.
∪ ¬.U |= b. Contradiction.

Condition (iii) does not hold for r because ThA∨U ∈ IΩ(U,ΩΠ,Π,A) and thus, by definition of
IΩ(U,ΩΠ,Π,A), h ∈ U for all h ∈ H(r) with A |= h. Thus A 6|= a for all a ∈ H(r) \ U . 2

Proof of Theorem 3.15. SupposeU is not an unfounded set. Then some r ∈ Π exists such thatH(r)∩U 6= ∅
and none of the conditions (i)–(iii) in Definition 3.1 is satisfied. We show that then S, assuming that AA is
satisfied and (a) and (b) hold, cannot be a solution to ΩΠ.

Due to rule r, ΩΠ (more specifically, NΩ,Π) contains a nogood N of form



INFSYS RR Draft 1843-12-08 41

N = { {Thr}∪
{TaA | a ∈ B+(r̂)} ∪ {FaA | a ∈ B−(r̂)} ∪
{FaA∧U | a ∈ B+

o (r)} ∪ {ta | a ∈ Be(r̂)} ∪
{ThA∨U | h ∈ H(r)} }.

We show that S contains all signed literals of N , i.e., N is violated by S. As H(r) ∩ U 6= ∅, Thr ∈ S
(otherwise a nogood in Hr is violated). Furthermore, as U is not an unfounded set, condition (i) in
Definition 3.1 does not hold for U wrt. A, and hence A |= B(r). The assumptions AA thus enforce that
TaA ∈ S for all a ∈ B+(r̂) and FaA ∈ S for all a ∈ B−(r̂).

Consider next an arbitrary a ∈ B+
o (r). As condition (ii) in Definition 3.1 does not hold for U wrt. A, we

have A |= a and a 6∈ U ; the latter implies by definition of U that Fa ∈ S. From the nogood {TaA∧U ,Fa}
we conclude FaA∧U ∈ S.

We next show that for every a ∈ Be(r̂), it holds that ta ∈ S. Indeed, let &g [p](c) ∈ Be(r). We have
A

.
∪ ¬.U |= &g [p](c) (as condition (ii) is violated). Furthermore, A |= &g [p](c), as A 6|= &g [p](c) would

imply that condition (i) is satisfied. Thus from condition (b) of the hypothesis, it follows that Te&g[p](c) ∈ S.
Similarly, let not&g [p](c) ∈ Be(r). Then A

.
∪ ¬.U 6|= &g [p](c) (as condition (ii) is violated) and

A 6|= &g [p](c) as A |= &g [p](c) would satisfy condition (i). Thus from condition (a) of the hypothesis, it
follows that Fe&g[p](c) ∈ S. Thus we have ta ∈ S for all a ∈ Be(r̂).

Finally, because condition (iii) in Definition 3.1 does not hold for U wrt. A, we have h ∈ U and therefore
also Th ∈ S for all h ∈ H(r) with A |= a. That is, for each h ∈ H(r), either FhA ∈ S or Th ∈ S. But by
the nogoods {FhA∨U ,FhA}, {FhA∨U ,Th} ∈ Dh, in both cases we have ThA∨U ∈ S.

Hence, N ⊆ S holds, i.e., N is violated by S, and thus S is not a solution of ΩΠ. This completes the
proof of the result. 2

Proof of Proposition 4.1. To show that U \ {a} is an unfounded set wrt. A, consider r ∈ Π such that
H(r) ∩ (U \ {a}) 6= ∅. We have to show that one of the conditions (i)–(iii) of Definition 3.1 holds for r.
By hypothesis, U is an unfounded set of Π wrt. A, and H(r) ∩ (U \ {a}) 6= ∅ implies H(r) ∩ U 6= ∅. If
condition (i) holds for U , it also holds wrt. U \ {a} because this condition depends only on r and A. Also if
condition (ii) holds for U , it also holds wrt. U \ {a} because A

.
∪ ¬.U is equivalent to A

.
∪ ¬.(U \ {a})

since A 6|= a. Finally, if condition (iii) holds for U , then some atom b ∈ H(r) \ U exists such that A |= b.
As A 6|= a, it follows a 6= b and hence condition (iii) holds for U \ {a}. This proves the result.

2

Proof of Proposition 4.2. Suppose that changing the truth value of b in S turns the solution to a counterex-
ample Sb of ΓA

Π (resp. ΩΠ). That is, Sb must violate some nogood N ∈ ΓA
Π resp. (N ∈ ΩΠ) containing b,

i.e., either Tb ∈ N or Fb ∈ N .
For the encoding ΓA

Π , the nogood N corresponds to a rule with b ∈ B+(r̂) or b ∈ B−(r̂) and A |= B(r),
and N contains also the signed literals (1) Fa for all a ∈ B+

o with A |= a and (2) Ta for all a ∈ H(r) with
A |= a. By hypothesis, we have either (a) Ta ∈ S for some a ∈ B+

o (r) with A |= a, or (b) Fa for some
a ∈ H(r) with A |= a. But then the nogood cannot be violated, because (a) contradicts one of (1) and (b)
contradicts one of (2).

For the encoding ΩΠ, the nogood N corresponds to a rule r with b ∈ B+(r̂) or b ∈ B−(r̂). The nogood
contains also the signed literals (1) TaA for all a ∈ B+(r̂) and FaA for all a ∈ B−(r̂), (2) FaA∧U for
all a ∈ B+

o , and (3) ThĀ∨U for all h ∈ H(r). Because of (1) and since A is a solution to AA, we have
A |= B(r). By hypothesis, we have either (a) Ta ∈ S for some a ∈ B+

o (r) with A |= a, or (b) Fa for
some a ∈ H(r) with A |= a. But then the nogood N cannot be violated, because (a) contradicts part (2) by
definition of AA and aA∧U , and (b) contradicts part (3) by definition of AA and hĀ∨U . 2
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Proof of Proposition 4.6. If TΓ(N,A) = ∅ then the proposition trivially holds. Otherwise TΓ(N,A) =
{C} and we know that Tti ∈ A for all 1 ≤ i ≤ n. Suppose C is violated by IΓ(U,ΓA

Π ,Π,A). Then
Fti ∈ IΓ(U,ΓA

Π ,Π,A) and therefore ti 6∈ U for all 1 ≤ i ≤ n, and Tfi ∈ IΓ(U,ΓA
Π ,Π,A) for all

1 ≤ i ≤ m with A |= fi, and σe&g[p](c) ∈ IΓ(U,ΓA
Π ,Π,A).

But then A
.
∪ ¬.U |= ti for all 1 ≤ i ≤ n and A

.
∪ ¬.U 6|= fi for all 1 ≤ i ≤ m. Because the nogood N

is a valid input-output-relationship, this implies σ̄&g [p](c) ∈ A
.
∪ ¬.U . By definition of IΓ(U,ΓA

Π ,Π,A),
we then have σ̄e&g[p](c) ∈ IΓ(U,ΓA

Π ,Π,A), which contradicts the assumption that TΓ(N,A) is violated. 2

Proof of Proposition 4.9. We know TΩ(N) = {C}. Suppose IΩ(U,ΩΠ,Π,A) violates C. Then TtiA ∈
IΩ(U,ΩΠ,Π,A) and therefore Tti ∈ A and Fti ∈ IΩ(U,ΩΠ,Π,A) for all 1 ≤ i ≤ n; FfiA .

∪¬.U ∈
IΩ(U,ΩΠ,Π,A) and therefore either Ffi ∈ A or fi ∈ U , for all 1 ≤ i ≤ m; and σe&g[p](c) ∈ I(U,ΩΠ,A).

But then, by definition of IΩ(U,ΩΠ,Π,A), Tti ∈ A and ti 6∈ U for all 1 ≤ i ≤ n, hence A
.
∪ ¬.U |= ti

for all 1 ≤ i ≤ n. Moreover, A
.
∪ ¬.U 6|= fi for all 1 ≤ i ≤ m. Because nogood N is a valid input-output-

relationship, this implies σ̄&g [p](c) ∈ A
.
∪ ¬.U . On the other hand, by definition of IΩ(U,ΩΠ,Π,A), we

have σ̄e&g[p](c) ∈ IΩ(U,ΩΠ,Π,A); this contradicts the assumption that the nogood C is violated. 2

Proof of Proposition 4.12. Suppose some answer set A′ of Π exists which is not a solution to L1(U,Π,A),
i.e., it violates some nogood N = {σ0, σ1, . . . , σn} ∈ L1(U,Π,A). We show that in this case U is an
unfounded set of Π wrt. A′ such that U ∩ A′ 6= ∅; this means that A′ is not-unfounded-free, which
contradicts that A′ is an answer set of Π.

Let r ∈ Π be a rule such that H(r) ∩ U 6= ∅. We have to show that one of the conditions (i)–(iii) of
Definition 3.1 holds.

If B+
o (r) ∩ U 6= ∅, then condition (ii) holds. Hence we assume in the following that B+

o (r) ∩ U = ∅,
which means that r is an external rule of Π wrt. U . But then for some σi ∈ N with 1 ≤ i ≤ n we have either
(1) σi = Th for some h ∈ H(r) with h 6∈ U and A |= h, or (2) σi = Fb for some b ∈ B+

o (r) with A 6|= b.
Since A′ violates N by assumption, we have σi ∈ A′. In case (1) the condition (iii) is satisfied, while in case
(2) then condition (i) is satisfied.

Moreover, by definition of L1 some a ∈ U exists such that Ta ∈ A′, i.e., A′ intersects with U . This
proves the result. 2

Proof of Proposition 4.15. Towards a contradiction, suppose some answer set A′ of Π is not a solution
to L2(U,Π,A). Let N = {Ta | a ∈ A

.
∪ ¬.U} ∪ {σ0, σ1, . . . , σn} ∈ L2(U,Π,A) be a violated nogood.

Because σi ∈ A′ for all 1 ≤ i ≤ n, we know that A′ falsifies (at least) the bodies of rules in Π that are
falsified by A; consequently, fΠA′ ⊆ fΠA. From A |= Π and the hypothesis that U is an unfounded set it
follows that A

.
∪ ¬.U |= fΠA; hence, also A

.
∪ ¬.U |= fΠA′

. Moreover, Ta ∈ A′ for all a ∈ A
.
∪ ¬.U ,

and therefore A′T ⊇ (A
.
∪ ¬.U)T. Because σ0 ∈ A′, we conclude A′T ) (A

.
∪ ¬.U)T, i.e., A′ is not a

subset-minimal model of ΠA′
. Consequently, A′ is not an answer set of Π, which is a contradiction. 2

Proof of Lemma 5.3. If Y = ∅, then the result holds trivially. Otherwise, let r ∈ Π with H(r) ∩ Y 6= ∅.
We show that one of the conditions (i)–(iii) in Definition 3.1 holds. Observe that H(r) ∩ U 6= ∅ because
U ⊇ Y . Since U is an unfounded set of Π wrt. A, either

(i) A 6|= b for some b ∈ B(r); or

(ii) A
.
∪ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ U .
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In case (i), the condition also holds wrt. Y . In case (ii), let a ∈ H(r) such that a ∈ Y , and b ∈ B(r) such
that A

.
∪ ¬.U 6|= b. We make a case distinction: either b is an ordinary literal or an external one.

If b is an ordinary default-negated atom not c, then A
.
∪ ¬.U 6|= b implies Tc ∈ A and c 6∈ U , and

therefore also A
.
∪ ¬.Y 6|= b. So assume b is an ordinary atom. If b 6∈ U then A 6|= b and case (i) applies, so

assume b ∈ U . Because a ∈ H(r) and b ∈ B(r), we have a→ b and therefore either a, b ∈ C or a, b ∈ Y
(because there are no ordinary edges between C and Y ). But by assumption a ∈ Y , and therefore b ∈ Y ,
hence A

.
∪ ¬.Y 6|= b.

If b is an external literal, then there is no q ∈ U with a→e q and q 6∈ Y . Otherwise, this would imply
q ∈ C and C would have an incoming e-edge, which contradicts the assumption that C is a cut. Hence, for
all q ∈ U with a→e q, also q ∈ Y , and therefore the truth value of b under A

.
∪ ¬.U and A

.
∪ ¬.Y is the

same. Hence A
.
∪ ¬.Y 6|= b.

In case (iii), also A |= h for some h ∈ H(r) \ Y because Y ⊆ U and therefore H(r) \ Y ⊇ H(r) \ U .
2

Proof of Lemma 5.5. If U = ∅, then the result holds trivially. Otherwise, suppose r̂ ∈ Π̂ and a ∈ H(r̂)∩U .
Observe that r̂ cannot be an external atom guessing rule because U contains only ordinary atoms. We show
that one of the conditions in Definition 3.1 holds for r̂ wrt. Â.

Because r̂ is no external atom guessing rule, there is a corresponding rule r ∈ Π containing external
atoms in place of replacement atoms. Because U is an unfounded set of Π and H(r) = H(r̂), either:

(i) A 6|= b for some b ∈ B(r); or

(ii) A
.
∪ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ U

In case (i), let b ∈ B(r) such that A 6|= b and b̂ the corresponding literal in B(b̂) (which is the same if
b is ordinary and the corresponding replacement literal if b is external). Then also Â 6|= b̂ because Â is
compatible.

In case (ii), we make a case distinction: either b is ordinary or external.
If b is ordinary, then b ∈ B(r̂) and Â

.
∪ ¬.U 6|= b holds because A and Â are equivalent for ordinary

atoms.
If b is an external atom or default-negated external atom, then no atom p(c) ∈ U is input to it, i.e. p is

not a predicate input parameter of b; otherwise we had a→e p(c), contradicting our assumption that U has
no internal e-edges. But then A

.
∪ ¬.U implies A 6|= b because the truth value of b under A

.
∪ ¬.U and A is

the same. Therefore we can apply case (i).
In case (iii), also Â |= h for some h ∈ H(r̂) \ U because H(r) = H(r̂) contains only ordinary atoms

and A is equivalent to Â for ordinary atoms. 2

Proof of Theorem 5.7. We define the reachable set R(a) from some atom a as

R(a) = {b | (a, b) ∈ {→ ∪ ←}∗},

i.e. the set of atoms b ∈ U reachable from a using edges from→ ∪ ← only but no e-edges.
We first assume that U contains at least one e-edge, i.e. there are x, y ∈ U such that x→e y. Now we

show that there is a u ∈ U with outgoing e-edge (i.e. u→e v for some v ∈ U ), but such that R(u) has no
incoming e-edges from U (i.e. for all v ∈ R(u) and b ∈ U , b 6→e v holds). Suppose to the contrary that for all
a with outgoing e-edges, the reachable setR(a) has an incoming e-edge from U . We now construct an e-cycle
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under→d, which contradicts our assumption. Start with an arbitrary node c0 ∈ U that has an outgoing e-edge,
let p0 be the (possibly empty) path (under→ ∪ ←) from c0 to the node d0 ∈ R(c0) such that d0 has an
incoming e-edge, i.e. there is a c1 such that c1 →e d0; note that c1 6∈ R(c0).3 By assumption, also some node
d1 in R(c1) has an incoming e-edge (from some node c2 6∈ R(c1)). Let p1 be the path from c1 to d1, etc. By
iteration we can construct the concatenation of the paths p0, (d0, c1), p1, (d1, c2), p2, . . . , pi, (di, ci+1), . . .,
where the pi from ci to di are the paths within reachable sets, and the (di, ci+1) are the e-edges between
reachable sets. However, as U is finite some nodes on this path must be equal, i.e., a subsequence of the
constructed sequence represents an e-cycle (in reverse order).

This proves that u is a node with outgoing e-edge but such that R(u) has no incoming e-edges. We
next show that R(u) is a cut. Condition (i) is immediately satisfied by definition of u. Condition (ii) is
shown as follows. Let u′ ∈ R(u) and v′ ∈ U \R(u). We have to show that u′ 6→ v′ and v′ 6→ u′. Suppose,
towards a contradiction, that u′ → v′. Because u′ ∈ R(u), there is a path from u to u′ under→ ∪ ←. But if
u′ → v′, then there would also be a path from u to v′ under→ ∪ ← and v′ would be in R(u), a contradiction
Analogously, v′ → u′ would also imply that there is a path from u to v′ because there is a path from u to u′,
again a contradiction.

Therefore, R(u) is a cut of U , and by Lemma 5.3, it follows that U \R(u) is an unfounded set. Observe
that U \ R(u) contains one e-edge less than U because u has an outgoing e-edge and that U \ R(u) 6= ∅;
indeed, by assumption some w ∈ U exists such that u →e w, and clearly w 6∈ R(u). By iterating this
argument, the number of e-edges in the unfounded set can be reduced to zero in a nonempty core. Eventually
Lemma 5.5 applies, proving that the remaining set is an unfounded set of Π̂. 2

Proof of Corollary 5.8. Towards a contradiction, suppose an unfounded set U of Π wrt. A exists. Then U
contains no e-cycle because there is no e-cycle under→d. By Theorem 5.7 there is an unfounded set of Π̂
wrt. Â, which contradicts our assumption that Π̂ has no unfounded set wrt. A. 2

Proof of Theorem 5.11. If U contains no cyclic input atoms, then all cycles under→d containing e-edges
in the atom dependency graph of Π are broken, i.e. U does not contain an e-cycle under →d. Then by
Theorem 5.7 there exists a nonempty unfounded set of Π̂ wrt. Â. 2

Proof of Theorem 5.13. Let U be a nonempty unfounded set of Π wrt. A. Because C is a decomposition of
A(Π) into strongly connected components, the component dependency graph

〈C, {(C1, C2) | C1, C2 ∈ C,∃a1 ∈ C1, a2 ∈ C2 : (a1, a2) ∈→ ∪ →e}〉

is acyclic. Following the hierarchical component dependency graph from the nodes without predecessor
components downwards, we can find a “first” component which has a nonempty intersection with U , i.e.,
there exists a componentC ∈ C such thatC∩U 6= ∅ butC ′∩U = ∅ for all transitive predecessor components
C ′ of C.

We show thatU∩C is an unfounded set of ΠC wrt. A. Let r ∈ ΠC be a rule such thatH(r)∩(U∩C) 6= ∅.
We have to show that one of the conditions (i)-(iii) of Definition 3.1 holds for r wrt. A and U ∩ C.

Because U is an unfounded set of Π wrt. A we know that one of the conditions (i)–(iii) holds for r wrt. A
and U . In case of condition (i), then it trivially holds also wrt. A and U ∩C because these conditions depend
only on the assignment A, but not on the unfounded set U ; in case of condition (iii), it clearly holds because
H(r) \ U 6= ∅ is included in H(r) \ (U ∩ C).

3 Whenever x→e y for x, y ∈ U , then there is no path from x to y under→ ∪ ←, because otherwise we would have an e-cycle
under→d.
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In case of condition (ii), we have that A
.
∪ ¬.U 6|= b for some (ordinary or external) body literal b ∈ B(r).

We show next that the truth value of all literals in B(r) is the same under A
.
∪ ¬.U and A

.
∪ ¬.(U ∩ C),

which proves that condition (ii) holds also wrt. A and U ∩ C.
If b = not a for some ordinary atom a, then Ta ∈ A and a 6∈ U and consequently a 6∈ U ∩ C,

hence A
.
∪ ¬.(U ∩ C) 6|= b. If b is an ordinary atom, then either Fb ∈ A, which implies immediatly that

A
.
∪ ¬.(U ∩ C) 6|= b, or b ∈ U . But in the latter case b is either in a predecessor component C ′ of C or in C

itself (since h→ b for all h ∈ H(r)). But since U ∩ C ′ = ∅ for all predecessor components of C, we know
b ∈ C and therefore b ∈ (U ∩ C), which implies A

.
∪ ¬.(U ∩ C) 6|= b.

If b is a positive or default-negated external atom, then all input atoms a to b are either in a predecessor
component C ′ of C or in C itself (since h →e a for all h ∈ H(r)). We show with a similar argument
as before that the truth value of each input atom a is the same under A

.
∪ ¬.U and A

.
∪ ¬.(U ∩ C): if

A
.
∪ ¬.U |= a, then Ta ∈ A and a 6∈ U , hence a 6∈ (U ∩ C) and therefore A

.
∪ ¬.(U ∩ C) |= a. If

A
.
∪ ¬.U 6|= a, then either Fa ∈ A, which immediately implies A

.
∪ ¬.(U ∩ C) 6|= a, or a ∈ U . But

in the latter case a must be in C because U ∩ C ′ = ∅ for all predecessor components C ′ of C. Therefore
a ∈ (U ∩ C) and consequently A

.
∪ ¬.(U ∩ C) 6|= a. Because all input atoms a have the same truth value

under A
.
∪ ¬.U and A

.
∪ ¬.(U ∩ C), the same holds also for the positive or default-negated external atom b

itself. 2

Proof of Proposition 5.15. If U = ∅, then the result holds trivially. By definition of ΠC , we have
H(r)∩C = ∅ for all r ∈ Π\ΠC . By hypothesis we have U ⊆ C. But thenH(r)∩U = ∅ for all r ∈ Π\ΠC

and U is an unfounded set of Π wrt. A. 2
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