
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstrassße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

FINDING EXPLANATIONS OF

INCONSISTENCY IN

MULTI-CONTEXT SYSTEMS

THOMAS EITER MICHAEL FINK PETER SCHÜLLER
ANTONIUS WEINZIERL

INFSYS RESEARCH REPORT 1843-12-09

DECEMBER 2012

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-12-09, DECEMBER 2012

FINDING EXPLANATIONS OF INCONSISTENCY IN

MULTI-CONTEXT SYSTEMS

Thomas Eiter1 Michael Fink1 Peter Schüller 2 Antonius Weinzierl1

Abstract. Interlinking knowledge sources to enable information exchange is a basic means to build
enriched knowledge-based systems, which gains importance with the spread of the Internet. Incon-
sistency, however, arises easily in such systems, which is not least due to their heterogeneity, but
also due to their independent design. This makes developing methods for consistency management
of such systems a pressing issue. An important aspect is that in many relevant cases, the informa-
tion at individual sources may not be amenable to change in order to resolve inconsistency, like in
case of autonomous management of the sources. We thus aim at analyzing inconsistency of a sys-
tem by means of the interlinking of sources and changes thereof. More concretely, we consider the
powerful framework of Multi-Context Systems, in which decentralized and heterogeneous system
parts interact via (possibly nonmonotonic) bridge rules for information exchange. Nonmonotonic-
ity and potential cyclic dependencies pose additional challenges that call for suitable methods of
inconsistency analysis. We thus provide two approaches for explaining inconsistency, which both
characterize inconsistency in terms of bridge rules, but in different ways: by pointing out rules which
need to be altered for restoring consistency, and by finding combinations of rules which cause in-
consistency. We show duality and modularity properties of these notions, give precise complexity
characterizations, and provide algorithms for their computation, which have been implemented in a
prototype, by means of so-called HEX-programs. Our results provide a basis for inconsistency man-
agement in heterogeneous knowledge systems which, different from and orthogonal to other works,
explicitly addresses the knowledge interlinks in order to restore consistency.

1Institute of Information Systems, Knowledge-Based Systems Group, TU Vienna, Favoritenstraße 9-11, A-1040
Vienna, Austria. Email: (eiter | fink | weinzierl)@kr.tuwien.ac.at

2Cognitive Robotics Laboratory, Faculty of Engineering and Natural Sciences, Sabancı University, Orhanli, Tuzla
- 34956, Istanbul, Turkey. Email: peterschueller@sabanciuniv.edu

Acknowledgements: This work was supported by the Vienna Science and Technology Fund (WWTF) under
grant ICT 08-020.

This article is a revised and significantly extended version of the preliminary paper with the same title pre-
sented at the Twelfth International Conference on Principles of Knowledge Representation and Reasoning
(KR 2010), Toronto, Canada, May 9-13, 2010.

Copyright c© 2012 by the authors

2 INFSYS RR 1843-12-09

Contents

1 Introduction 1

2 Preliminaries 3

3 Diagnoses and Explanations for Inconsistency 6
3.1 Diagnoses . 7
3.2 Explanations. 8
3.3 Deletion-Diagnoses / Deletion-Explanations. 10
3.4 Refined Notions of Diagnosis and Explanation . 11

4 Properties 13
4.1 Converting between Diagnoses and Explanations . 13
4.2 Non-Overlap in Minimal Diagnoses . 16
4.3 Modularity of Explanations and Diagnoses . 17

5 Computational Complexity 18
5.1 Complexity Classes . 19
5.2 Output-projected Equilibria . 20
5.3 Context Complexity . 21
5.4 Overview of Complexity Results . 22
5.5 Proof Outline . 22
5.6 Detailed Results . 24

6 Computation 25
6.1 Preliminaries: HEX-Programs . 25
6.2 Computing Diagnoses . 26
6.3 Computing Explanations . 29
6.4 Implementation and Evaluation . 32

7 Related Work 33
7.1 Debugging in Logic Programming . 35
7.2 Content-Based Methods . 37

8 Conclusion 40

A Examples 49

B Proofs 49
B.1 Proofs for Section 3 . 49
B.2 Proofs for Section 4 . 50
B.3 Proofs for Section 5 . 55
B.4 Proofs for Section 6 . 62

INFSYS RR 1843-12-09 1

1 Introduction

In recent years, there has been increasing interest in interlinking information, driven by—and reflected in—
the development of the World Wide Web. Respective progress and ever increasing demands not only regard
the large number of available sources and the degree of interlinking, but also the quality of the information
exchanged. From its initial conception as a means to link textual data, the Internet has evolved to a medium
for interlinking, accessing, and exchanging also more structured information including relational and semi-
structured data, and in the last years also semantically richer knowledge sources. Systems may thus be built
in which individual information sources are connected, such that more informed and accurate answers can
be given to specific user problems. Typically, these sources are expressed in different formalisms, and they
are autonmously managed by third parties, such that a real integration is difficult.

Developing uniform, high-level formalisms to capture such systems has thus become an relevant is-
sue in knowledge representation and reasoning (KRR). The Multi-Context System framework (see for
example the papers [Ghidini and Giunchiglia, 2001], [Roelofsen and Serafini, 2005], [Brewka et al., 2007],
[Brewka and Eiter, 2007], [Bikakis and Antoniou, 2010], [Serafini and Homola, 2012]), which evolved from
MultiLanguage systems [Giunchiglia and Serafini, 1994, Giunchiglia, 1993], is an expressive framework for
this purpose. It is a powerful knowledge representation formalism for many application scenarios where
heterogeneity and pointwise, inter-contextual information exchange are essential properties. Multi-context
systems (MCS) as introduced by [Brewka and Eiter, 2007] consist of knowledge bases (in possibly hetero-
geneous and/or nonmonotonic logics) at nodes (called contexts) that formulate the exchange of information
via so called bridge rules, such as

(c1 : ok(X Risk)← (c2 : insurance(X Risk),
(c2 : low rate(X Risk),not (c3 : black list(X Risk));

informally, it says that if X Risk is a low rate insurance company according to knowledge source (context)
c2, and it is not known to be blacklisted according to context c3, then context c1 adds the fact ok(X Risk)
to its knowledge base.

MCS enable knowledge exchange at a general level, by interlinking possibly heterogenous formalisms
like e.g. ontologies, databases, and logic programs. However, due to their decentralized nature, information
exchange can have unforeseen effects, and in particular cause an MCS to be inconsistent. For example,
consider a system for supporting health care decisions in a hospital, that comprises several components: (i)
a database of laboratory test results; (ii) a patient record database; (iii) an ontology for disease classification;
and (iv) an expert system suggesting suitable treatments for patients. Modeled as an MCS, each component
is a context and the information flow between them is specified by suitable bridge rules (cf. Example 5
for details); thanks to the latter, existing systems might be easily incorporated. Suppose the expert system
concludes that a patient must be given a special drug, but the patient database states that she is allergic to
that drug, thus counter-indicating its use. The whole system gets inconsistent if such special cases were not
anticipated when contexts and bridge rules were modeled, rendering it useless.

In real world applications, system complexity tends to increase, in terms of both contexts and intercon-
nectivity. Extensive testing considering all possible states of a system often is infeasible, especially if legacy
information systems are employed as contexts in an MCS. Therefore, and specifically due to the hetero-
geneity of individual system components that are linked together, inconsistency arises easily and methods
for handling inconsistency are a pressing issue. Our work aims at analyzing inconsistencies in MCS, in
order to understand where and why such inconsistencies occur, and how they might be removed. It thus pro-
vides a basis for the specification of concrete strategies to handle inconsistencies and to extend systems with
inconsistency management mechanisms (in addition to some basic operations that can be obtained directly

2 INFSYS RR 1843-12-09

from our approach).
Various approaches to cope with inconsistent information have been developed for different KRR for-

malisms (see Section 7 for works closely related to ours and a more general overview). Specifically in
traditional data integration scenarios, inconsistency problems also surface naturally and methods for con-
sistency restoring or maintenance have been studied extensively. Compared to that, however, our work
innovates conceptually and differs considerably beyond differences in the settings and formalisms consid-
ered: The important point is that we focus on the exchange of information, its interlinking, i.e., on adjusting
bridge rules instead of modifying the data in the contexts. In data integration terms, we thus consider
modifications of the mapping as a potential for resolving inconsistency rather than repairing or cleaning
the data. While the importance of maintaining and repairing mappings has been recognized in database
integration [Doan and Halevy, 2005], progress on this has been on a slow pace.

The motivation for addressing inconsistency in MCS on the level of bridge rules stems from the fact
that an MCS models usually a loose integration scenario with autonomous sources (e.g., if companies link
their business logics), where changing contexts or their data to restore consistency may not be an option.
Compared to data integration settings that globally materialize (at least virtually) the data of the individual
sources, it may not be possible to modify (or even access all the) data that is internal to one of the knowledge
bases employed in an MCS; in particular, this applies to cases of cyclic information exchange. Therefore,
we identify bridge rules as the source of inconsistency, and their modification as a possibility of counter-
acting. On the one hand, under the reasonable assumption that every context is consistent if bridge rules
are disregarded, we can fully capture reasons of inconsistency in terms of bridge rules. On the other hand,
negation and potential cyclic dependencies (as opposed to acyclic mappings in data integration) render the
task of characterizing and analyzing inconsistency non-trivial.

Starting from this, our contributions are summarized as follows:

(1) In the spirit of debugging approaches used in the nonmonotonic reasoning community, especially in
logic programming [Inoue and Sakama, 1995], [Syrjänen, 2006], [Brain et al., 2007], [Pereira et al., 1993a],
[Lloyd, 1987], we introduce two notions of explaining inconsistency in MCS: a consistency-based notion,
called diagnosis, which characterizes inconsistency in terms of modified sets of bridge rules that are con-
sistent, and an entailment-based notion, called explanation, which captures bridge rules that cause incon-
sistency in a given system. Potential nonmonotonicity makes intuitive and sound notions challenging; that
our notions have appealing properties may count as evidence for their suitability. Further refinements and
restrictions of our notions are investigated; we show, however, that these can be expressed in terms of our
basic notions.

(2) We establish useful properties of our notions. First, conversion and duality results between diag-
noses and explanations show that, while representing different analytic properties, they identify the same
overall set of bridge rules as relevant for inconsistency. This in fact generalizes a similar classic result by
Reiter [Reiter, 1987], who characterized the consistency-based diagnoses of system description in classical
(monotonic) logic in terms of conflict sets. Furthermore, we establish modularity properties in the spirit of
Splitting Sets [Lifschitz and Turner, 1994], which allow for an incremental computation of diagnoses and
explanations, taking the MCS topology into account.

(3) We sharply characterize the computational complexity of identifying explanations, under varying as-
sumptions on the complexity of reasoning in contexts (note that by the underlying assumption, consistency-
based explanations always exist). It turns out that this problem has for a range of context complexities no (or
only mildly) higher complexity than the contexts themselves. As a consequence, computing explanations is
in some cases not harder than consistency checking.

INFSYS RR 1843-12-09 3

(4) Finally, we consider how consistency- and entailment-based explanations can be computed. The is
end, we resort here to HEX-programs, which are a generalization of Answer Set Programming (ASP) by
so-called external atoms that provide access to external sources of computation; an experimental prototype
has been implemented, while more advanced implementatios are underway.

Our results provide a basis for building enhanced MCS systems which are capable of analyzing and
reasoning about emerging inconsistencies. Rather than automatically resolving inconsistency, as e.g. in
[Bikakis and Antoniou, 2008], we envisage a (semi-)automatic approach with user support for locating and
tracking parts that cause inconsistency. Indeed, user invention may be indispensable as often no automatic
solution is feasible; in our healthcare example, for instance, giving the special drug would resolve the
inconsistency, but this should only be done after approval by a medical doctor.

Structure. The remainder of this article is organized as follows. Section 2 provides necessary preliminar-
ies on the MCS framework and introduces a running example. In Section 3, diagnoses and explanations
are introduced, while Section 4 contains conversion results and modularity properties that depend on the
interlinking of MCS. Section 5 contains a detailed analysis of the computational complexity of identifying
both diagnoses and explanations, and in Section 6 we elaborate on how they can be computed using HEX

programs. A comprehensive discussion of related work is given in Section 7, followed by concluding re-
marks and directions for future work in Section 8. Further material is provided in the appendix; some of our
examples are detailed more in-depth in A, while B contains proofs for all results.

2 Preliminaries

In this section, we recall nonmonotonic MCS from [Brewka and Eiter, 2007]. Further background is given in
[Brewka et al., 2011a], [Eiter et al., 2009], which discuss extensions of MCS, compare them to other related
formalisms, and survey computational issues.

Loosely speaking, a nonmonotonic MCS consists of contexts, each composed of a knowledge base
with an underlying abstract logic, and a set of bridge rules which control the information flow between
contexts. The MCS framework uses a minimalistic, abstract model of logics, which consists of possible sets
of formulas, possible sets of beliefs, and a satisfiability relation.

Definition 1. A logic L = (KBL,BSL,ACCL) consists, in an abstract view, of the following components:

• KBL is the set of well-formed knowledge bases of L. We assume each element of KBL is a set (of
“formulas”).

• BSL is the set of possible belief sets, where the elements of a belief set are statements that possibly
hold, given a knowledge base.

• ACCL : KBL → 2BSL is a function describing the “semantics” of the logic by assigning to each
knowledge base a set of acceptable belief sets.

Intuitively, a belief set is a set of statements (beliefs) that a reasoner may jointly hold, and ACCi(kb)
singles out, given a knowlede base kb, the belief sets that are acceptable according to some reasoning ratio-
nale; to accommodate nonmonotonic formalisms where knowledge basy may have multiple such acceptable
belief sets (e.g., answer sets of logic program; extensions of a default theory; expansions of an autoepistemic
theory), ACCi(kb) is designed as a multi-valued function.

4 INFSYS RR 1843-12-09

This abstract notion of a purely functional “logic” captures many monotonic and nonmonotonic logics,
e.g., classical logic, description logics, modal, default, and autoepistemic logics, circumscription, and logic
programs under answer set semantics.

The following examples introduce logics used in formalizing our running example, and they shall illus-
trate how this abstraction captures some well-known knowledge-representation formalisms.

Example 1. To capture classical (propositional) logic over a set At of propositional atoms, we may define:

• KBc = 2Σ is the set of all subsets of Σ, where Σ is the set of well-formed formulas over At built
using the connectives ∧,∨,¬,→;

• BSc = 2Σ, i.e., each set of formulas is a possible belief set; and

• ACCc returns for each set kb ∈ KBc of well-formed formulas a singleton set that contains the set
of formulas entailed by kb; if |=c denotes classical entailment, then ACCc(kb) = {{F ∈ Σ | kb |=c

F}}.

The resulting logic LcΣ = (KBc,BSc,ACCc) captures entailment in classical logics.
In practice, the formulas in knowledge bases and belief sets might be restricted to particular forms, e.g.,

to literals; we denote the respective logic by LplΣ = (KBpl,BSpl, ACCpl). Note that
ACCpl(kb) = {{A ∈ At | kb |=c A} ∪ {¬A ∈ At | kb |=c ¬A}} .

Example 2. For our running example we employ two contexts, C1 and C2, using the respective signa-
tures Σ1 = {allergy strong ab} and Σ2 = {blood marker , xray pneumonia}, and logics LplΣ1

and LplΣ2
,

respectively. Their knowledge bases are as follows:

kb1 = {allergy strong ab},
kb2 = {¬blood marker , xray pneumonia},

Those knowledge bases provide information that the patient is allergic to strong antibiotics (kb1), respec-
tively that a certain blood marker is not present and that pneumonia was detected in an X-ray examination
(kb2).

The corresponding semantics is given by ACC(kb1) =
{
{allergy strong ab}

}
for C1, and ACC(kb2)

=
{
{¬blood marker , xray pneumonia}

}
for C2.

Example 3. For ontologies with syntax and semantics of the description logicALC (cf. [Baader et al., 2003]),
we use the abstract logic LA obtained similar as LplΣ above for propositional logic (for details see Example
29 in Appendix A). Intuitively, LA captures T-Box axioms and A-Box axioms of the description logic ALC.
An LA-knowledge base contains both, A-Box and T-Box axioms. An accepted belief set of such a knowledge
base is the set of assertions that follow from it.

For a running example, we use an ontology about diseases, given by context C3 using LA. Its knowledge
base, kb3, consists of two axioms, where the first states that pneumonia is a bacterial disease and the second
states that pneumonia which has an associated blood-marker implies an atypical pneumonia (that is a severe
form of pneumonia). The corresponding knowledge base is:

kb3 = {Pneumonia v BacterialDisease,
Pneumonia u ∃has marker .> v AtypPneumonia}.

As kb3 is satisfiable and contains only terminological knowledge, no assertions follow from this knowledge
base, thus ACC(kb3) = {∅}. Adding the assertion that d is pneumonia results in the conclusion that d also
is a bacterial disease, i.e., ACC

(
kb3∪{d : Pneumonia}

)
=
{
{d : Pneumonia, d : BacterialDisease}

}
.

INFSYS RR 1843-12-09 5

Example 4. For normal disjunctive logic programs under answer set semantics over a non-ground signature
Σ (cf. [Przymusinski, 1991] and [Faber et al., 2004]), we use the abstract logic LaspΣ , which is detailed
in the Appendix in Example 30. We employ LaspΣ for a context, C4, suggesting proper treatments where
Σ = {give strong , give weak ,need ab, allow strong ab, give nothing}. The knowledge base for C4 is:

kb4 = {give strong ∨ give weak ← need ab.
give strong ← need strong .
⊥ ← give strong , not allow strong ab.
give nothing ← notneed ab, notneed strong .}.

C4 suggests a treatment which is either a strong antibiotics, a weak antibiotics, or no medication at all. With-
out further information, kb4 thus concludes that nothing is required, i.e., ACC(kb4) =

{
{give nothing}

}
.

If need ab is added, however, kb4 results in two answer sets, i.e., ACC
(
kb4 ∪ {need ab.}

)
= {A1, A2}

where A1 = {give strong ,need ab} and A2 = {give weak ,need ab}.

A bridge rule can add information to a context, depending on the belief sets which are accepted at other
contexts. Let L = (L1, . . . , Ln) be a sequence of logics. A L-bridge rule r over L is of the form

(k : s) ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci , and s is a knowledge-base formula of Lk
(i.e. s ∈

⋃
KBLk

). We denote by hb (r) the formula s in the head of r and by hc (r) the context k where r
belongs to. The full head of r is denoted by hd(r) = (k : s). The literals in the body of r are referred to by
body(r), body+(r), body−(r) which denotes the set {(c1 : p1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj)},
{(cj+1 : pj+1), . . . , (cm : pm)}, respectively. Furthermore, bc (r) denotes the set of contexts referenced in
r’s body, i.e., bc (r) = {ci | (ci : pi) ∈ body(r)}. For technical use later, we denote by cf (r) the condition-
free bridge rule stemming from r by removing all elements in its body, i.e., cf (r) is (k : s)← . and for any
set of bridge rules R, we let cf (R) =

⋃
r∈R cf (r).

Definition 2. A multi-context system M = (C1, . . . , Cn) is a collection of contexts Ci = (Li, kbi, br i),
1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic as above, kbi ∈ KBi a knowledge base, and br i is
a set of L-bridge rules over L = (L1, . . . , Ln). Furthermore, for each H ⊆ {hb (r) | r ∈ br i} it holds that
kbi ∪H ∈ KBLi , i.e., adding bridge rule heads to a knowledge base yields a legal knowledge base.

By br(M) =
⋃n
i=1 br i and c(M) = {C1, . . . , Cn} we denote the set of all bridge rules, resp. the set of

all contexts of M . We write br i(M) to denote the set of bridge rules of context i of M , i.e., br i(M) = {r ∈
br(M) | hc (r) = i}.

In the following, we formally introduce our running example.

Example 5. Consider an MCS M embodying a health care decision support system that contains the fol-
lowing contexts: a patient history database (C1), a blood and X-Ray analysis database (C2), a disease
ontology (C3), and an expert system (C4) which suggests proper treatments. The corresponding abstract
logics and knowledge bases are those in Examples 2, 3, and 4.

The bridge rules are as follows:

r1: (3 : d:Pneumonia)← (2 : xray pneumonia).
r2: (3 : (d,m1):has marker)← (2 : blood marker).
r3: (4 : need ab.)← (3 : d:BacterialDisease).
r4: (4 : need strong .)← (3 : d:AtypPneumonia).
r5: (4 : allow strong ab.)←not (1 : allergy strong ab).

6 INFSYS RR 1843-12-09

History
C1

Expert System

C4

Disease Ontology
C3

Laboratory
C2

r1r2
r3

r4

r5

Figure 1: Knowledge bases and bridge rules of the hospital MCS.

Rules r1 and r2 provide input for disease classification to the ontology; they assert facts about a new individ-
ual ‘p’ corresponding to the patient. Rules r3 and r4 link disease information with medication requirements,
while r5 relates acceptance of strong antibiotics with an allergy check on the patient database.

A layout of the information exchange in this MCS, is depicted in Figure 1, where each bridge rule
r ∈ {r1, . . . , r5} with hc (r) = j and i ∈ bc (r) is depicted as an arrow from Ci to Cj .

The semantics of MCS is defined over locally accepted belief sets, taking the bridge rules into account
as follows. A belief state of an MCS M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) of belief sets
Si ∈ BSi, 1 ≤ i ≤ n. A bridge rule r of form (1) is applicable in S, denoted S r, iff for all (c : p) ∈
body+(r) it holds that p ∈ Sc, and for all (c : p) ∈ body−(r) it holds that p /∈ Sc. For a set R of bridge
rules, app(R,S) = {r ∈ R | S r}, denotes the set of applicable bridge rules.

Equilibrium semantics selects a belief state S of an MCS M as acceptable, if each context Ci takes the
heads of all bridge rules that are applicable in S into account, and accepts Si.

Definition 3. A belief state S = (S1, . . . , Sn) ofM is an equilibrium iff for all 1 ≤ i ≤ n, Si ∈ ACCi(kbi∪
{hb (r) | r ∈ app(br i, S)}).

Example 6. In our example, M has a single equilibrium S = (S1, S2, S3, S4) where

S1 ={allergy strong ab},
S2 ={¬blood marker , xray pneumonia},
S3 ={d : Pneumonia, d : BacterialDisease},
S4 ={need ab, give weak}).

The only rules applicable in S are r1 and r3, because app(br1(M), S) = app(br2(M), S) = ∅, app(br3(M),
S) = {r1}, and app(br4(M), S) = {r3}. Note that if we replace S4 with the set {need ab, give strong ,
allow strong ab}, then the resulting belief state is not an equilibrium: C4 uses answer set semantics, there-
fore allow strong ab cannot be part of S4 unless it is added by a bridge rule. The only bridge rule with this
head is r5, and its applicability is blocked by the presence of allergy strong ab in kb1 and in S1.

3 Diagnoses and Explanations for Inconsistency

Inconsistency in an MCS is the lack of an equilibrium. As the combination and interaction of heterogeneous,
possibly autonomous, systems can easily have unforeseen and intricate effects, inconsistency is a major
problem in MCS. To provide support for restoring consistency, we seek to understand and give reasons for
inconsistency.

INFSYS RR 1843-12-09 7

Example 7. As a running example, we consider a slightly modified version of Example 5, where the blood
serum analysis shows presence of the blood marker:

kb2 = {blood marker , xray pneumonia}.
This MCS is inconsistent since r2 and r4 become applicable, which in turn requires strong antibiotics.
This is in conflict with the patient’s allergy. Note that applicability of r5 would resolve this inconsistency
by activating allow strong ab. However, presence of allergy strong ab in S1 together with the body atom
‘not (1 : allergy strong ab)’ in r5 prevents the applicability of r5 (due to negation as failure).

We will use the following notation. Given an MCS M and a set R of bridge rules (that are compatible
with M), we denote by M [R] the MCS obtained from M by replacing its set of bridge rules br(M) with
R; e.g., M [br(M)] = M and M [∅] is M with no bridge rules. By M |= ⊥ we denote that M has no
equilibrium, i.e., is inconsistent, and by M 6|= ⊥ the opposite.

In the following, we consider two possibilities for explaining inconsistency in MCS: first, a consistency-
based formulation, which identifies a part of the bridge rules which need to be changed to restore consis-
tency. Second, an entailment-based formulation, which identifies a part of the bridge rules which is required
to make the MCS inconsistent. Following common terminology, we call the first formulation diagnosis
(cf. [Reiter, 1987]) and the second inconsistency explanation.

3.1 Diagnoses

As well-known, adding knowledge in nonmonotonic reasoning can both cause and prevent inconsistency;
the same is true for removing knowledge.

For our consistency-based explanation of inconsistency, we therefore consider pairs of sets of bridge
rules, such that if we deactivate the rules in the first set, and add the rules in the second set in unconditional
form, the MCS becomes consistent (i.e., admits an equilibrium). Adding rules unconditionally is the most
severe form of modification of a rule’s body, but as we later see, this notion also allows to capture more
fine-grained forms of modification.

Definition 4. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ br(M), such that
M [br(M) \D1 ∪ cf (D2)] 6|= ⊥. By notation, D±(M) is the set of all diagnoses.

To obtain a more relevant set of diagnoses, by Occam’s razor we prefer subset-minimal diagnoses, where
for pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B holds iff A1 ⊆ B1

and A2 ⊆ B2.

Definition 5. Given an MCS M , D±m(M) is the set of all pointwise subset-minimal diagnoses of an MCS
M , i.e.,

D±m(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : D′ ⊆ D ⇒ D ⊆ D′}.

Example 8. In our running example, we obtain
D±m(M) =

{
({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})

}
.

Accordingly, deactivating r1, or r2, or r4, or adding r5 unconditionally, will result in a consistent MCS.
In more detail, we find: diagnosis ({r1} , ∅) removes bridge rule r1. This way we ignore the X-Ray

finding and obtain the following equilibrium:

EQ1 = ({allergy strong ab}, {blood marker , xray pneumonia},
{(d,m1) : has marker}, {give nothing}).

8 INFSYS RR 1843-12-09

It represents that we do not treat the patient since no illness is detected in it.
Diagnosis ({r4} , ∅) removes bridge rule r4. This ignores the information that treating the illness re-

quires the strong antibiotics. We obtain the following equilibrium:

EQ2 = ({allergy strong ab}, {blood marker , xray pneumonia},
{(d,m1):has marker , d:Pneumonia, d:BacterialDisease,
d:AtypPneumonia}, {need ab, give weak}).

Diagnosis (∅, {r5}) adds an unconditional copy of bridge rule r5, which forces strong antibiotics to be
allowed as a treatment. The modified system has the following equilibrium:

EQ3 = ({allergy strong ab}, {blood marker , xray pneumonia},
{(d,m1):has marker , d:Pneumonia, d:BacterialDisease,
d:AtypPneumonia}, {need ab,need strong , allow strong ab,
give strong}).

Any or none of the above possibilities might be the right choice: such decisions ought to be taken by a
domain specialist (e.g., a doctor) and cannot be done automatically. Therefore analysis of inconsistency is
important to identify reasons for it.

Preference on diagnoses can be defined in general, relying on some notion of plausibility (see e.g., for
abduction [Bylander et al., 1991b]). This is, however, beyond the scope of this work, as we investigate basic
notions of inconsistency here.

3.2 Explanations.

In the spirit of abductive reasoning, we also propose an entailment-based notion of explaining inconsistency.
An inconsistency explanation (in short, an explanation) is a pair of sets of bridge rules, whose presence or,
expected, absence entails a relevant inconsistency in the given MCS.

Definition 6. Given an MCS M , an inconsistency explanation of M is a pair (E1, E2) of sets E1, E2 ⊆
br(M) of bridge rules, such that for all (R1, R2) where E1 ⊆ R1 ⊆ br(M) andR2 ⊆ br(M)\E2, it holds
that M [R1 ∪ cf (R2)] |= ⊥. By E±(M) we denote the set of all inconsistency explanations of M , and by
E±m(M) the set of all pointwise subset-minimal ones.

The intuition about E1 is as follows: bridge rules in E1 are crucial to create an inconsistency in M (i.e.,
M [E1] |= ⊥), and this inconsistency is relevant for M in the sense that adding some bridge rules from
br(M) to M [E1] never yields a consistent system.

This condition of relevancy is necessary for non-monotonic reasoning systems; for example the program
P = {a← not a.} is inconsistent under the answer set semantics, but its superset P ′ = {a← not a. a.}
is consistent. The inconsistency of P does not matter for P ′. In terms of MCS, a set of bridge rules may
create an inconsistency in M , but this inconsistency is irrelevant, as it does not occur if more or all bridge
rules are present.

The intuition aboutE2 regards inconsistency wrt. the application of bridge rules: M [E1] cannot be made
consistent unless at least one bridge rule from E2 fires.

In summary, bridge rules E1 create a relevant inconsistency, and at least one bridge rule in E2 must
applied in unconditional form to repair that inconsistency.

INFSYS RR 1843-12-09 9

kba1 = ∅Ca1

kba2 = ∅Ca2 kba3 = {z}

Ca3

kba4 = {u; ⊥ ← w}Ca4

kba5 = {⊥ ← t}Ca5

not y

x
ra1

not x

w
ra2

z

w
ra3

u

t

ra4

(a) Example MCS Ma

kbb1 = ∅Cb1

kbb2 = ∅Cb2

kbb3 = ∅Cb3

kbb4 = {⊥ ← p}Cb4

not s

r
rb1

not r

q
rb2

q

p
rb4

r

p

rb3

(b) Example MCS Mb

Figure 2: Example MCS topologies for illustrating properties and the usefulness of inconsistency explana-
tions. Dotted areas indicate individual inconsistency explanations.

Example 9. In our running example, we have one minimal inconsistency explanation, namely ({r1, r2, r4} ,
{r5}). To trigger the only possible inconsistency, which is in C4, we need to import need strong (us-
ing r4) and we must not import allow strong ab (using r5). Furthermore, r4 can only fire if C3 accepts
AtypPneumonia(p), which is only possible if r1 and r2 fire. Therefore, r1, r2, and r4 must be present to
get inconsistency, and the head of r5 must not be present.

From Definition 6 the following property follows immediately.

Proposition 1. Given an explanation E of an MCS M , every E′ such that E ⊆ E′ ⊆ br(M) × br(M) is
also an explanation.

We now give further examples of inconsistency explanations and their properties.

Example 10. Consider a modification of our running medical example, where bridge rules are added for
the administration of anti-allergenics. Bridge rule r6 encodes that an allergy blocking (anti-allergenic)
medication is given, if there strong antibiotics is needed, the patient is allergic to it, and nothing was done
to block the allergic reaction; r7 encodes that the patient database is informed if an anti-allergenics is
applied:

r6: (4 : give antiallergenic)← (4 : need strong),
(1 : allergy strong ab),not (1 : allergy blocked).

r7: (1 : allergy blocked .)← (4 : give antiallergenic).

The resulting system has two minimal inconsistency explanations: the previous explanation ({r1, r2, r4}, {r5}),
and the new ({r1, r2, r4, r6, r7}, {r6, r7}). The latter show the typical effect of an odd cycle: both rules of
the odd cycle, r6 and r7, are present in both components of the minimal explanation. Intuitively, all rules
of the cycle are necessary to cause the inconsistency while founding the cycle anywhere prevents the in-
consistency. Minimal diagnoses of this MCS are ({r1}, ∅), ({r2}, ∅) ({r4}, ∅), ({r6}, {r5}), ({r7}, {r5}),
(∅, {r5, r6}), and (∅, {r5, r7}).

10 INFSYS RR 1843-12-09

Example 11. To show that explanations separate independent reasons for inconsistency, and that they report
only relevant inconsistencies, consider Ma = (Cb1, Ca2, Ca3, Ca4, Ca5) depicted in Figure 2a. All contexts
use logic Lasp

Σ from Example 4 with Σ = {a, b, . . . , z}. This system is inconsistent, because u is a fact inCa4

and therefore ra4 adds fact t to Ca5 which makes Ca5 inconsistent. An alternative source of inconsistency is
that z is a fact inCa3, therefore ra3 adds factw toCa4 which makesCa4 inconsistent. E±m(M) contains only
the explanations ({ra3} , ∅) and ({ra4} , ∅), which each capture one source of inconsistency. Note that that
Ma[{ra2}] also is an inconsistent system, because ra2 adds the fact w to Ca4, which makes Ca4 inconsistent.
But, since Ma[{ra1, ra2}] is consistent, this inconsistency is not relevant and therefore not reported by our
notions.

Example 12. This example shows that mutually exclusive bridge rules can be part of the same explanation,
and some advantage of subset- over cardinality-minimality. Consider the MCS Mb = (Cb1, Cb2, Cb3, Cb4)
depicted in Figure 2b. Again, all contexts use logic Lasp

Σ from Example 4 with Σ = {a, b, . . . , z}. Mb is
inconsistent, as p causes inconsistency in Cb4 and p is added to the knowledge base of Cb4 by bridge rule
rb3. Due to bridge rule rb1, r is always believed by Cb2, hence rb3 is always applicable. This inconsistency
cannot be prevented by bridge rules of Mb, or unconditional versions thereof. Therefore ({rb1, rb3}, ∅) is
a minimal explanation of Mb. Another minimal explanation is ({rb2, rb3, rb4}, ∅), where the bodies of rb2
and rb3 are mutually exclusive. However, only together they ensure that Cb4 is inconsistent, regardless of
whether rb1 is present and whether fact r is believed at Cb2.

The above example also shows that cardinality-minimal explanations cannot identify all sources of in-
consistency, since there are two ⊆-minimal explanations, but only one cardinality-minimal one. Addition-
ally, the set of cardinality-minimal explanations does not point out all bridge rules that must be modified to
obtain a consistent system.

3.3 Deletion-Diagnoses / Deletion-Explanations.

For domains where removal of bridge rules is preferred to unconditional addition of rules, we specializeD±

to obtain diagnoses of the form (D1, ∅). By Occam’s razor, subset-minimal diagnoses are preferred.

Definition 7. Given an MCSM , a deletion-diagnosis ofM is a setD⊆ br(M) such thatM [br(M) \D] 6|=
⊥. The set of all deletion-diagnoses (resp., ⊆-minimal deletion-diagnoses) is D−(M) (resp., D−m(M)).

Example 13. In our example, D−m(M)={{r1}, {r2}, {r4}}.

Specializing inconsistency explanations to the first component, i.e., disregarding that rules may be added
unconditionally, all explanations are of the form (E1, br(M)).

Definition 8. Given an MCS M , a deletion-explanation of M is a set E ⊆ br(M) such that each R, where
E ⊆ R ⊆ br(M), satisfiesM [R] |= ⊥. The set of all such (⊆-minimal) explanations is denoted byE+(M),
and the set of ⊆-minimal ones by E+

m(M).

Example 14. The only, and thus also minimal, deletion-explanation in our running example is given by
{r1, r2, r4}.

INFSYS RR 1843-12-09 11

3.4 Refined Notions of Diagnosis and Explanation

3.4.1 Refined Diagnoses

One can generalize Definition 4 to refined changes of bridge rules, such that bridge rules necessary to be
applicable, become applicable by only removing some body atoms instead of all. Let br ref (M) denote
the set of bridge rules of M where some body literals have been removed, i.e., br ref (M) = {hd(r) ←
B. | B ⊆ body(r)} (where we identify the body of a bridge rule with the set of its literals). A function
fg : br(M) → br ref (M) is called a body-reduction function; it maps bridge rules to rules where some or
no body atoms are removed. In the following, we identify fg : br(M)→ br ref (M) with the corresponding
function fg : 2br (M) → 2brref (M) on sets of bridge rules, i.e., for a set R ⊆ br(M) we have fg(R) =
{fg(r) | r ∈ R}.

Definition 9. A refined diagnosis is a triple (D1, D2, fg) consisting of sets of bridge rulesD1, D2 ⊆ br(M)
and a body-reduction function fg : br(M) → br ref (M), such that the resulting MCS is consistent, i.e.,
M [br(M) \D1 ∪ fg(D2)] 6|= ⊥. The set of all refined diagnoses is denoted by D±,r(M).

Again, by Occam’s razor, we seek minimal refined diagnoses. To that end, we seek to change a minimal
set of bridge rules and within this set, we seek a minimal change of bridge rule bodies. Therefore, more
conservation of body atoms is considered more minimal. Formally, let fg and fg′ be two body-reduction
functions on br(M), then fg is more conservative than fg′, written fg ≤ fg′, iff for every r ∈ br(M)
holds body(fg(r)) ⊇ body(fg′(r)). Furthermore, we write fg < fg′ iff fg ≤ fg′ and fg 6= fg′.

A refined diagnosis (D1, D2, fg) ∈ D±,r(M) is called minimal, iff for every (D′1, D
′
2, fg

′) ∈ D±,r(M)
such that D′1 ⊆ D1 and D′2 ⊆ D2 it holds that D1 = D′1, D2 = D′2, and fg′ 6< fg. The set of all minimal
refined diagnoses is denoted by D±,rm (M). Observe that the conservation of the body-reduction functions
only comes into play if the sets of bridge rules are minimal.

Example 15. Consider a slight modification of our running example where data from the patient history is
only imported in the expert system, if the patient is currently under treatment in the hospital. So bridge rule
r5 is changed to

r5: (4 : allow strong ab)← (1 : under treatment(p)),not (1 : allergy strong ab)

and our patient is at the hospital, i.e., kb1 = {allergy strong ab, under treatment(p)}.
Let fg(r5) = (4 : allow strong ab) ← (1 : under treatment(p)) and fg(r) = r for all r ∈ br(M)

with r 6= r5. Then, (∅, {r5}, fg) ∈ D±,rm (M), since fg(r5) allows the strong antibiotic if the patient merely
is under treatment.

Note that one could also think of refining rules in D1, i.e., ensuring that a rule in D1 is not applicable
by adding additional atoms to its body. But as there are no hints to which atoms should be added, such a
process would result in a large and arbitrary search space. For example, adding not allergy strong ab to r2

would result in
r′2: (3 : has marker(p))← (2 : blood marker),not (1 : allergy strong ab).,

which would make the MCS of our running example consistent. Nevertheless, such a rule does not convey
any meaning beyond making the MCS consistent, therefore we disregard such kind of manipulations.

But even in the case of minimal refined diagnoses, there is little information gain: every minimal di-
agnosis (D1, D2) ∈ D±m(M), together with a witnessing equilibrium Sw of (D1, D2), can be refined to a
minimal diagnosis (D1, D2, fg) using the following refine function. Let S be the set of belief states of the

12 INFSYS RR 1843-12-09

MCS M , then refine(D2, Sw) : 2br(M) × S → (br(M) → br ref (M)) is given by (D2, Sw) 7→ fg where
fg is the body-reduction function defined as follows:

fg(r) =


hd(r)← B. if r ∈ D2, B ⊆ body(r), Sw hd(r)← B.,

and for no B ⊂ B′ ⊆ body(r) holds S hd(r)← B′;
r otherwise.

Observe that a refined diagnosis (D1, D2, fg) obtained in such way also admits the equilibrium Sw, as
all rules of fg(D2) are applicable in Sw and therefore all head beliefs of D2 are added to the respective
contexts, which results in the same knowledge bases as for cf (D2).

Proposition 2. A triple (D1, D2, fg) is a minimal refined diagnosis of M iff there exists a diagnosis
(D1, D2) ∈ D±m(M) and a witnessing equilibrium Sw, such that refine(D2, Sw) = fg and no witness-
ing equilibrium S′w exists where refine(D2, S

′
w) = fg′ and fg′ < fg.

Example 16. Consider Example 15 again. The set of minimal diagnoses is the same as for the running
example, in particular (∅, {r5}) is a minimal diagnosis. The refinement of this diagnosis can be computed
using its (only) witnessing equilibrium

Sv = ({allergy strong ab, under treatment(p)},
{blood marker , xray pneumonia},
{Pneumonia(p), has marker(p),AtypPneumonia(p)},
{need ab,need strong , allow strong ab, give strong}),

where only the negated literal of r5 is deleted, this is sufficient to make the rule applicable under Sw, i.e.,
fg(r5) = (4 : allow strong ab)← (1 : under treatment(p)) and (∅, {r5}, fg) ∈ D±,rm (M).

3.4.2 Refined Explanations

Similar to diagnoses, it is possible to consider refined modifications of rules (rather than cf (R2)) in Defini-
tion 6.

Definition 10. A refined explanation is a triple (E1, E2, fg) consisting of sets of bridge rules E1, E2 ⊆
br(M) and a body-reduction function fg, such that M [R1 ∪ fg′(R2)] |= ⊥ holds, for every E1 ⊆ R1 ⊆
br(M), R2 ⊆ br(M), and every body-reduction function fg′ where r ∈ E2 implies body(fg(r)) ⊆
body(fg′(r)).

Here, we shift the “prevention of inconsistency” expressed by E2 in Definition 6 to the body-reduction
fg: we do not add unconditional bridge rules, i.e., from br(M)\E2, but rather consider all body-reductions
fg′ for which it holds that bridge rules in E2 retain all literals indicated by fg.

Example 17. Consider the modified MCS of Example 15 again. A refined explanation is (E1, E2, fg) where
E1 = {r1, r2, r4}, E2 = {r5}, and fg(r5) = (4 : allow strong ab)← not (1 : allergy strong ab).

The notion of a refined explanation is a generalization of the notion of explanation and there is a 1-to-1
correspondence between them.

Proposition 3. For an inconsistent MCS M , it holds that (E1, E2) ∈ E±(M) iff there exists a body-
reduction function fg such that (E1, E2, fg) is a refined explanation.

INFSYS RR 1843-12-09 13

In contrast to diagnoses, an explanation does not admit a witnessing equilibrium. Therefore, we cannot
infer from an explanation whether the addition of a reduced version of a bridge rule would yield consistency.

However, this can be achieved considering a transformed MCS: Consider M = (C1, . . . , Cn), then
M r = (C1, . . . , Cn, Cα) is the transformed MCS where Cα is a context whose acceptable belief states
contain exactly those formulas added to it via bridge rules, e.g., Cα uses the logic Lasp and an empty
knowledge base kbα = ∅. Furthermore, the bridge rules of br(M r) are obtained from br(M) in such a way
that every bridge rule r ∈ br(M) of form (1) is split into a core rule (r(0)) and a supplementary rule for
each body atom (r(1), . . . , r(m)). The set tr(r) of transformed rules corresponding to r is then given by:

tr(r) = { r(0) : (k : s)← (Cα : p1), . . . , (Cα : pj), (Cα : pj+1), . . . , (Cα : pm).

r(1) : (Cα : p1)← (c1 : p1).
. . .

r(j) : (Cα : p1)← (cj : pj).

r(j+1) : (Cα : p1)← not (cj+1 : pj+1).
. . .

r(m) : (Cα : pm)← not (cm : pm). }

Finally, M r contains for each bridge rule of M the corresponding transformed rules, i.e., br(M r) =⋃
r∈br(M) tr(r). Note that, for readability, this transformation assumes beliefs of different contexts to be

disjoint.
For example, a bridge rule (c1:h) ← (c2:a),not (c3:b) of M is transformed to bridge rules (c1:h) ←

(cα:a′), (cα:b′)., (cα:a′)← (c2:a)., and (cα:b′)← not (c3:b) of M r.
An explanation (E1, E2) ∈ E±(M r) then allows to construct a refined explanation (E1, E

r
2 , fg) for M

as follows: For every r ∈ br(M), it holds that r ∈ Er2 iff tr(r) ∩ E2 6= ∅. Furthermore, let sup(r) =
{body(r′) | r′ ∈ tr(r) ∧ r′ 6= r(0)}, then fg is a body-reduction function on br(M) such that fg(r) =
hd(r)← sup(r) if r ∈ E2 and fg(r) = (r) otherwise.

For example, if the supplementary rules (cα:a′) ← (c2:a)., is in E2, then the removal of the corre-
sponding literal, here (c2 : a), from the original bridge rule in M contributes to avoiding the explained
inconsistency in M . Removal of all corresponding literals indicated by E2 yields a change of bridge rule
bodies to avoid the explained inconsistency completely.

4 Properties

In this section we first show that, to some extent, diagnoses can be converted to explanations and vice versa;
specifically, minimal diagnoses and minimal explanations point out the same bridge rules, a property we call
duality. We then prove a useful non-intersection property of minimal diagnoses, and show how modularity of
an MCS (defined in the spirit of splitting sets of logic programs) is reflected in the structure of its diagnoses
and explanations.

4.1 Converting between Diagnoses and Explanations

While duality expresses that minimal diagnoses and minimal inconsistency explanations point out the same
set of bridge rules, in the following we consider the relationships between these notions in more detail. We
show that it is possible to characterize explanations in terms of diagnoses, and vice versa minimal diagnoses
in terms of minimal explanations.

14 INFSYS RR 1843-12-09

For the following theorem we generalize the notion of a hitting set [Reiter, 1987] from sets to pairs of
sets. Given a collection C = {(A1, B1), . . . , (An, Bn)} of pairs of sets (Ai, Bi), Ai, Bi ⊆ U over a set U ,
a hitting set of C is a pair of sets (X,Y), X,Y ⊆ U such that for every pair (Ai, Bi) ∈ C, (i) Ai ∩X 6= ∅
or (ii) Bi ∩ Y 6= ∅. A hitting set (X,Y) of C is minimal, if no (X ′, Y ′) ⊂ (X,Y) is a hitting set of C.

We consider hitting sets over pairs of sets of bridge rules, and denote by HSM (C) (resp., minHSM (C))
the set of all (resp., all minimal) hitting sets of C overU = br(M). Note that in particular HSM (∅) = {(∅, ∅)},
and HSM ({(∅, ∅)}) = ∅.

Theorem 1. For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ br(M) is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±(M)), i.e., (E1, E2) is a hitting set of D±(M); and

(b) a pair (E1, E2) with E1, E2 ⊆ br(M) is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±(M)), i.e., (E1, E2) is a minimal hitting set of D±(M).

Clearly, a hitting set of a collection X is the same as a hitting set of the collection of the ⊆-minimal
elements in X; from Theorem 1. we therefore immediately obtain the following.

Corollary 1. For every MCS M ,

(a) a pair (E1, E2) with E1, E2 ⊆ br(M) is an inconsistency explanation of M
iff (E1, E2) ∈ HSM (D±m(M)); and

(b) a pair (E1, E2) with E1, E2 ⊆ br(M) is a minimal inconsistency explanation of M
iff (E1, E2) ∈ minHSM (D±m(M)).

For our next result, we use the following generalization of a well-known result for minimal hitting sets (see
[Berge, 1989]).

Lemma 1. For every collection X = {X1, . . . , Xn} of pairs Xi = (Xi
1, X

i
2) of sets, 1 ≤ i ≤ n, such that

X is an anti-chain wrt. ⊆, i.e., elements in X are pairwise incomparable (Xi ⊆ Xj with 1 ≤ i, j ≤ n
implies Xi = Xj) it holds that minHSM (minHSM (X)) = X .

Combined with Corollary 1 (b) we thus obtain.

Theorem 2. A pair (D1, D2) with D1, D2 ⊆ br(M) is a minimal diagnosis of M iff (D1, D2) is a minimal
hitting set of E±m(M), formally D±m(M) = minHSM (E±m(M)).

As for computation, Theorem 1 provides a way to compute the set of explanations E±(M) from the set
D±(M) of diagnoses, while Theorem 2 allows us to compute the set D±m(M) of minimal diagnoses from
the set of minimal explanations E±m(M). Corollary 1 shows that, for computing E±(M) and E±m(M), it is
sufficient to know the set D±m(M) of minimal diagnoses.

Note that Theorem 2 generalizes a result of Reiter’s approach to diagnosis [Reiter, 1987], since the
former describes relationships between minimal hitting sets in a sense similar to the relationship between
diagnoses and conflict sets of the latter.

In contrast, note that Theorem 1 (a) uses hitting sets without the requirement of ⊆-minimality.

INFSYS RR 1843-12-09 15

Example 18. In our running example, we hadE±m(M) = {({r1, r2, r4}, {r5})} andD±m(M) =
{

({r1} , ∅) ,
({r2} , ∅) , ({r4} , ∅) , (∅, {r5})}. An explanation (E1, E2) has a nonempty intersection E1 ∩ D1 6= ∅
or E2 ∩ D2 6= ∅ with every minimal diagnosis (D1, D2). We thus obtain exactly one minimal expla-
nation E = ({r1, r2, r4} , {r5}) by Corollary 1; furthermore, all component-wise supersets of E are
explanations, as they also hit every minimal diagnosis, e.g. ({r1, r2, r3, r4, r5} , {r1, r2, r3, r4, r5}), and
({r1, r2, r4} , {r1, r2, r3, r4, r5}).

For illustrating Theorem 2, consider the single minimal explanation (E1, E2) ofM withE1 = {r1, r2, r4}
and E2 = {r5}. Then any minimal diagnosis (D1, D2) must fulfill E1 ∩D1 6= ∅ or E2 ∩D2 6= ∅, and there
is no smaller pair (D1, D2) with that property. This condition holds for all minimal diagnoses in D±m(M),
and as they contain singleton sets only, and all rules in E±m(M) have been ‘hit’ that way, it is easy to see
that the condition cannot be true for any smaller pair (D1, D2) ⊂ (D1, D2).

4.1.1 Duality

As it appears, explanations and diagnoses point out bridge rules as causes of inconsistency on a dual basis.
Intuitively, bridge rules in E1 of an explanation (E1, E2) cause inconsistency, while bridge rules in D1 of
a diagnosis (D1, D2) remove inconsistency; furthermore, adding unconditional forms of bridge rules from
E2 spoils inconsisteny, while not adding unconditional forms of bridge rules from D2 spoils consistency.

Both notions point out rules that are erroneous in the way that those rules contribute to inconsistency.
This naturally gives rise to the question whether diagnoses and explanations point out the same rules of an
MCS as erroneous, or whether they characterize different aspects.

To formalize this question, we introduce relevancy for inconsistency. Given an MCS M , a bridge rule
r ∈ br(M) is relevant for diagnosis (d-relevant) iff there exists a minimal diagnosis (D1, D2) of M with
r ∈ D1 ∪D2. Analogously, r is relevant for explanation (e-relevant) iff there exists a minimal explanation
with r ∈ E1 ∪ E2.

Example 19. Recall our running example where D±m(M) = {({r1} , ∅) , ({r2} , ∅) , ({r4} , ∅) , (∅, {r5})}
while E±m(M) = {({r1, r2, r4} , {r5})}.

Here the set of d-relevant bridge rules is {r1, r2, r4, r5}. The set of e-relevant bridge rules is identical
to that; in fact, even identical componentwise, i.e.,⋃

{D1 | (D1, D2) ∈ D±(M)} = {r1, r2, r4} =
⋃
{E1 | (E1, E2) ∈ E±(M)}

and ⋃
{D2 | (D1, D2) ∈ D±(M)} = {r5} =

⋃
{E2 | (E1, E2) ∈ E±(M)}.

As the following proposition shows, the component-wise coincidence is not accidental. not only are
the d-relevant rules exactly the same that are e-relevant, but this even holds if the components of diagnoses
and explanations are treated separately. Formalizing this, for any set X of pairs (A,B) we write

⋃
X for

(
⋃
{A | (A,B) ∈ X},

⋃
{B | (A,B) ∈ X}).

Proposition 4. For every inconsistent MCS M ,
⋃
D±m(M) =

⋃
E±m(M), i.e., the unions of all minimal

diagnoses and all minimal inconsistency explanations coincide.

Proposition 4 is an immediate consequence of the close structural relationships between diagnoses and
explanations, which are shown by Theorems 1 and 2.

This provides evidence for our view that both notions capture exactly those parts of an MCS that are
relevant for inconsistency, as duality shows that, in total, two very different perspectives on inconsistency
state exactly the same parts of the MCS as erroneous.

16 INFSYS RR 1843-12-09

In practice this allows one to compute the set of all bridge rules which are relevant for making an MCS
consistent (i.e., appear in at least one diagnosis) in two ways: either to compute all minimal explanations, or
to compute all minimal diagnoses. Furthermore, the duality result allows to exclude, under Occam’s razor,
all bridge rules that are not part of any diagnosis (or explanation) from further investigation as they can be
skipped savely.

Our running example suggests, that duality also holds for deletion-diagnoses and -explanations, which
indeed is true:

Theorem 3. For every inconsistent MCS M ,
⋃
D−m(M) =

⋃
E+
m(M), i.e., the unions of all minimal

deletion-diagnoses and all minimal deletion-inconsistency explanations coincide.

Proof. This is a direct consequence of Theorem 4; set in its proof the second components of diagnoses and
explanations to ∅. �

4.1.2 Asymmetry

We now investigate why it is possible to obtain the set of explanations from the set of diagnoses, while the
other direction only works under ⊆-minimality. The following example illustrates this.

Example 20. Consider the MCS M = (C1) with the ASP context C1 = {← a.}, and the bridge rules
br(M) = {r1 = (1 : a) ← (1 : a)., r2 = (1 : a) ← not(1 : b)}. Then D±(M) = {({r2}, ∅), ({r1, r2}, ∅)},
while E±m(M) = {({r2}, ∅)}, because only r2 is relevant (cf. Section 3.2) for inconsistency.

E±(M) contains all pointwise supersets of ({r2}, ∅), viz. ({r2}, ∅), ({r1, r2}, ∅), ({r2}, {r1}), ({r2},
{r2}), ({r1, r2}, {r1}), ({r1, r2}, {r2}), and ({r1, r2}, {r1, r2}). Now the set of (non-minimal) hitting sets
of the set E±(M) of explanations is the set E±(M) itself, while the set D±(M) of diagnoses only contains
two elements.

The reason behind this asymmetry is that the notion of explanation is an order-increasing concept, i.e.,
all supersets of an explanation are also explanations, while the notion of diagnosis is not, i.e., a superset of
a diagnosis is not necessarily a diagnosis.

This difference is due to the fact that explanations characterize only relevant inconsistencies (as dis-
cussed in Section 3.2) and by its definition, all supersets of an explanation are explanations. Therefore the
set of minimal explanations characterizes the set of explanations. For the notion of diagnosis this is not the
case: a system might contain inconsistent bridge rule configurations which do not appear in explanations
because they are irrelevant in the original system. Non-minimal diagnoses provide modifications of the sys-
tem which might cause and at the same time suppress such an irrelevant inconsistency in order to achieve
overall consistency.

In summary, a minimal hitting set of the set of diagnoses characterizes the set of minimal explana-
tions (Corollary 1 (b)) and a minimal hitting set of the set of explanations characterizes the set of minimal
diagnoses (Theorem 2). With non-minimality it looks different: the non-minimal hitting sets of D±(M)
characterize the set E±(M) of explanations (see Theorem 1 (a)), however the non-minimal hitting sets of
E±(M) do not characterize the set D±(M) of diagnoses (see Example 20 for a counterexample).

4.2 Non-Overlap in Minimal Diagnoses

We conclude a simple but useful property of minimal diagnoses. Definition 4 reveals that, (D1, D2) such
that r ∈ D2 is a diagnosis regardless of whether r ∈ D1. Therefore,

INFSYS RR 1843-12-09 17

Proposition 5. Every minimal diagnosis (D1, D2) of an MCS M , fulfills D1 ∩D2 = ∅, i.e., no rule occurs
in both components.

An analog property does not hold for inconsistency explanations; as shown by Example 10: the minimal
explanation (E1, E2) with E1 = {r1, r2, r4, r6, r7} and E2 = {r6, r7} is such that r6 and r7 are present in
both E1 and E2.

4.3 Modularity of Explanations and Diagnoses

We next give a syntactic criterion which enables the computation of explanations for an MCSM in a divide-
and-conquer fashion. In particular, minimal explanations of M are then just combinations of the minimal
explanations of the smaller parts. Based on the results about conversion between explanations and diagnoses,
these results then carry over to diagnoses as well. This can be exploited to compute minimal explanations
and minimal diagnoses for certain classes of MCS more efficiently.

An approach to modularization (in particular for hierarchical and partitionable MCS) is that some part
does not impact the rest of the system. To this end, we adapt the notion of splitting set as introduced by
[Lifschitz and Turner, 1994] in the context of logic programming; a splitting set characterizes a subset of a
logic program which is independent of other rules in the program by a syntactic property.

Since an MCS may include contexts with arbitrary logics, a purely syntactical criterion can only be
obtained by resorting to beliefs occurring in bridge rules, under the implicit assumption that every output
belief of a context depends on every input belief of the context. Hence, we split at the level of contexts, i.e.,
a splitting set is a set of contexts rather than a set of literals.

Definition 11. A set of contexts U ⊆ c (M) is a splitting set of an MCS M , if every rule r ∈ br(M) is such
that hc (r) ∈ U satisfies bc (r) ⊆ U . More formally, U is a splitting set iff U ⊇

⋃
{bc (r) | r ∈ br(M),

hc (r) ∈ U}.
For such U , the set bU = {r ∈ br(M) | hc (r) ∈ U} is called the bottom relative to U .

Example 21. In our running example, we have c (M) = {C1, . . . , C4}, with e.g., hc (r1) = hc (r2) = C3,
and bc (r1) = bc (r2) = {C2}. So the set U1 = {C2, C3} is a splitting set ofM ; its bottom is bU1 = {r1, r2}.

The further splitting sets of M are U2 = {C1} with bU2 = ∅, U3 = {C2} with bU3 = ∅, and U4 =
{C4, C3, C2, C1} with bottom bU4 = brM .

Intuitively, if U is a splitting set ofM , then the consistency (respectively inconsistency) of contexts in U
does not depend on the contexts in c (M) \ U . Thus, if M [bU] is inconsistent, M stays inconsistent (under
the assumption that M [∅] 6|= ⊥).

For a pair R = (R1, R2) of sets of bridge rules compatible with M and a set U of contexts we say that
R is U -headed iff r ∈ (R1 ∪R2) implies hc (r) ∈ U .

Proposition 6. Suppose U is a splitting set of an MCS M . Then,

(i) E ∈ E±(M [bU]) iff E ∈ E±(M) and E is U -headed, and

(ii) D ∈ D±(M [bU]) iff there exists some D′ ∈ D±(M) such that D ⊆ D′.

Corollary 2. Every minimal explanation of M [bU] is a minimal explanation of M .

Note that M [bU] does not yield all explanations that contain rules from bU , but it yields all explanations
that contain only rules from M [bU].

18 INFSYS RR 1843-12-09

Example 22. Reconsider our running example MCS M from Example 7, where the laboratory database
together with the disease ontology forms a splitting set U = {C2, C3} with bU = {r1, r2}. Now M [bU]
is consistent, so E±(M [bU]) = ∅, but the overall MCS is inconsistent with the minimal explanation E =
({r1, r2, r4}, {r5}). In line with Proposition 6, E contains rules from bU but E is not bU -headed.

In the particular case that two splitting sets form a partitioning of the MCS, then both partitions can be
treated without considering the other one. This means that explanations only contain rules from one partition
and diagnoses of the whole MCS are obtained by simply combining diagnoses of each of the partitions.

Proposition 7. Suppose that both, U and U ′ = c (M) \ U , are splitting sets of an MCS M . Then, every
E ∈ E±m(M) is either U -headed or U ′-headed.

Corollary 3. Suppose U and U ′ = c (M) \ U are splitting sets of an MCS M . Then, E±m(M) =
E±m(M [bU]) ∪ E±m(M [bU ′]).

Thus, using U,U ′ the MCS M can be partitioned into two parts where minimal explanations can be
computed independently. From this and Theorem 2 we can conclude that for a partitionable MCS, the set of
all minimal diagnoses can be obtained by combining the minimal diagnoses of each partition.

Proposition 8. Suppose that U and U ′ = c (M) \ U are splitting sets of an MCS M . Then,

D±m(M) = {(A1 ∪B1, A2 ∪B2) |
(A1, A2)∈D±m(M [bU]) and (B1, B2)∈D±m(M [bU ′])}.

We combine Example 11 and Example 12 to create an MCS with two partitions and observe that diag-
noses and explanations in one partition are independent of the other partition in line with Propositions 7 and
8.

Example 23 (continued). Consider Ma = (Ca1, . . . , Ca5) and Mb = (Cb1, . . . , Cb4) from Example 11 and
12 (cf. Fig. 2a and 2b). Then M = (Ca1, . . . , Ca5, Cb1, . . . , Cb4) with bridge rules br(M) = br(Ma) ∪
br(Mb) has a partitioning (U,U ′) where U = {Ca1, . . . , Ca5} and U ′ = {Cb1, . . . , Cb4}. Then

E±m(M) ={({ra3}, ∅), ({ra4}, ∅), ({rb1, rb3}, ∅), ({rb2, rb3, rb4}, ∅)}
=E±m(Ma) ∪ E±m(Mb)

while

D±m(M) ={({rb1, rb2, ra3}, ∅), ({rb1, rb2, ra4}, ∅), ({rb3, ra3}, ∅), ({rb3, ra4}, ∅),
({rb1, rb4, ra3}, ∅), ({rb1, rb4, ra4}, ∅)}

={(A1 ∪B1, A2 ∪B2) | (A1, A2)∈D±m(MU), (B1, B2)∈D±m(MU ′)}.

5 Computational Complexity

We next consider the complexity of consistency checking, and of diagnosis and explanation recognition in
MCS in a parametric fashion. To this end, we recall the complexity classes that we will use, and show
that we can abstract an MCS to beliefs used in bridge rules. We use context complexity as a parameter to
characterize the overall complexity and we establish for hardness generic results for all complexity classes
that are closed under conjunction and projection. Table 1 summarizes our results for complexity classes that
are typically encountered in knowledge representation.

INFSYS RR 1843-12-09 19

Context Consistency (A,B)
?
∈

complexity checking D±(M) D±m(M) E±(M) E±m(M)

CC(M) MCSEQ MCSD MCSDm MCSE MCSEm

P NP NP DP
1 coNP DP

1

NP NP NP DP
1 coNP DP

1

ΣP
i , i ≥ 1 ΣP

i ΣP
i DP

i ΠP
i DP

i

PSPACE PSPACE

EXPTIME EXPTIME

Proposition 9 10 11 12 13

Table 1: Complexity of consistency checking and recognizing (minimal) diagnoses and explanations, given
(A,B) and an MCS M for complexity classes of typical knowledge-representation formalisms. Member-
ship holds for all cases, completeness holds if at least one context is complete for the respective context
complexity.

5.1 Complexity Classes

Recall that P, EXPTIME, and PSPACE are the classes of problems that can be decided using a deter-
ministic Turing machine in polynomial time, exponential time, and polynomial space, respectively. Further-
more NP (resp., coNP) is the class of problems that can be decided on a nondeterministic Turing machine
in polynomial time, where one (resp., all) execution paths accept. Recall the polynomial hierarchy, where
ΣP

0 = ΠP
0 = P, ΣP

i is NP with a ΣP
i−1 oracle, and ΠP

i is coNP with a ΣP
i−1 oracle.

Given complexity class C, we denote by D(C) the “difference class” of C, i.e., D(C) = {L1 × L2 |
L1 ∈ C, L2 ∈ co-C} denotes the complexity class of decision problems that are the “conjunction” of
a problem L1 in C and a problem L2 in co-C. For example, D(NP) = DP

1 and D(ΣP
i) = DP

i .
Deciding whether a pair (F1, F2) of a SAT instance F1 and an independent UNSAT instance F2 is a
prototypical problem complete for DP

1 . Note in particular that D(PSPACE) = PSPACE and that
D(EXPTIME) = EXPTIME.

Closure under Conjunction and Projection A complexity class C is closed under conjunction, if the
following holds: given a problem L in C, it holds that the problem Ln where Ln is the n-fold Cartesian
product of L, and I = (I1, . . . , In) is a ‘yes’ instance of Ln iff every instance Ij , 1 ≤ j ≤ n is a ‘yes’
instances of L, is such that

⋃
n≥1 L

n is also a problem in C.
All classes P, NP, ΣP

i , ΠP
i , D(ΣP

i), PSPACE, etc. here are closed under conjunction.
A decision problem L ⊆ Σ? × Σ? is polynomially balanced, if some polynomial p exists such that

|I ′| ≤ p(|I|) for all (I, I ′) ∈ L. Moreover, L is a polynomial projection of L′ ⊆ Σ? × Σ? if L = {I | ∃I ′ :
(I, I ′) ∈ L′} and L′ is polynomially balanced (intuitively, I ′ is a witness of polynomial size for I). Given a
complexity class C, let π(C) contain all problems which are a polynomial projection of a problem L′ in C.
Then a complexity class C is closed under projection if π(C) ⊆ C.

20 INFSYS RR 1843-12-09

The classes ΣP
i , NP, EXPTIME, PSPACE are closed under projection, while coNP and ΠP

i are
presumably not.

For further background see [Papadimitriou, 1994].

5.2 Output-projected Equilibria

Computing equilibria by guessing and verifying so-called “kernels of context belief sets” has been outlined
in [Eiter et al., 2009]. For the purpose of recognizing diagnoses and explanations, it suffices to check for
consistency, i.e., for existence of an arbitrary equilibrium in an MCS.

Here we first define output beliefs, which are the beliefs used in bodies of bridge rules. Then we show
that for checking consistency of an MCS, it is sufficient to consider equilibria projected to output beliefs.

Definition 12. Given an MCS M = (C1, . . . , Cn), the set of output beliefs of Ci, OUT i = {p | ∃(c : p) ∈
body(r), r ∈ br(M)}, is the set of beliefs p of Ci that occur in the bodies of bridge rules.

Example 24 (ctd). In our running example, OUT 1 = {allergy strong ab}, OUT 2 = {xray pneumonia,
blood marker}, OUT 3 = {d:BacterialDisease, d:AtypPneumonia}, and OUT 4 = ∅, as no bridge rule
contains a belief at context C4.

Using the notion of output beliefs, we let Soi = Si ∩ OUT i be the projection of Si to OUT i, and for
S = (S1, . . . , Sn) we let So = (So1 , . . . , S

o
n) be the output-projected belief state So of S.

An output-projected belief state provides sufficient information for evaluating the applicability of bridge
rules. We next show how to obtain witnesses for equilibria using this projection.

Definition 13. An output-projected belief state So = (So1 , . . . , S
o
n) of an MCS M is an output-projected

equilibrium iff for all 1 ≤ i ≤ n,

Soi ∈ {T oi | Ti ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, So)})}

So contains information about all (and only about) output beliefs. As these are the beliefs which determine
bridge rule applicability, app(R,S) = app(R,So); thus we obtain:

Lemma 2. For each equilibrium S of an MCS M , So is an output-projected equilibrium. Conversely, for
each output-projected equilibrium So of M , there exists some equilibrium T of M such that T o = So.

Given an MCS M , we denote by EQo(M) the set of output-projected equilibria of M .

Example 25 (continued). In our running example, the equilibrium

S = ({allergy strong ab}, {¬blood marker , xray pneumonia},
{d:Pneumonia, d:BacterialDisease}, {need ab, give weak})

is witnessed by the output-projected equilibrium

So = ({allergy strong ab}, {xray pneumonia},
{d:Pneumonia, d:BacterialDisease}, ∅).

Here we can observe that, for consistency of the overall system, it is not relevant which belief set is accepted
at Ci, only that some belief set is.

Therefore each equilibrium is witnessed by a single output-projected equilibrium, and each output-
projected equilibrium witnesses at least one equilibrium. For consistency checking (i.e., equilibrium exis-
tence) in MCS it is therefore sufficient to consider output-projected equilibria.

INFSYS RR 1843-12-09 21

5.3 Context Complexity

The complexity of consistency checking for an MCS clearly depends on the complexity of its contexts. We
next define a notion of context complexity by considering the roles which contexts play in the problem of
consistency checking.

For all complexity considerations, we represent logics Li of contexts Ci implicitly; they are fixed and
we do not consider these (possibly infinite) objects to be part of the input of the decision problems we
investigate. Accordingly, the instance size of a given MCS M will be denoted by |M | = |kbM | + |br(M)|
where |kbM | denotes the size of knowledge bases in M and |br(M)| denotes the size of its set of bridge
rules.

Consistency of an MCS M can be decided by a Turing machine with input M which (a) guesses an
output-projected belief state So ∈ OUT 1 × · · · × OUTn, (b) evaluates the bridge rules on So, yielding
for each context Ci a set of active bridge rule heads Hi wrt. So, and (c) checks for each context whether it
accepts the guessed Soi wrt.Hi. We call the complexity of step (c) context complexity, formalized as follows.

Definition 14. Given a context Ci = (kbi, br i, Li) and a pair (H,Ti), with H ⊆ IN i and Ti ⊆ OUT i,
the context complexity CC(Ci) of Ci is the computational complexity of deciding whether there exists an
Si ∈ ACCi(kbi ∪H) such that Si ∩OUT i = Ti.

Example 26. Contexts with propositional logic LcΣ (see Example 1) have DP
1 -complete context complexity;

indeed, On the other hand, the restricted logic LplΣ , which is used in our running example for contexts C1

and C2 (see Example 2), is tractable; more precisely, the context complexity is O(n).
A relational database can be captured by knowledge bases and belief sets which are sets of tuples

in relations. Acceptability of a belief set computes whether a belief set is the closure of a knowledge
base wrt. a fixed set of (possibly recursive) Datalog view definitions. Such a context is complete for P
[Dantsin et al., 2001].

A propositional answer set program can be captured by a context where knowledge bases are sets of
rules and belief sets are sets of propositions. Acceptability of such a context then checks whether a set of
propositions is an answer set of a knowledge base. Such a context is complete for NP [Dantsin et al., 2001].
Similarly, satisfiability checking of Boolean formulas can be captured by NP contexts.

Default Logic programs and disjunctive logic programs (cf. Example 4) have ΣP
2 -complete acceptability

checking and thus complexity [Dantsin et al., 2001], [Gottlob, 1992].
An agent using one of the widely-known modal logics Kn, Tn, or S4n with n ≥ 1 knowledge operators

can be represented as a context. Assuming that such a context has knowledge bases and belief sets consisting
of formulas, and that the context accepts the closure CX of a set of formulas X in the knowledge base, this
context is PSPACE-complete [Halpern and Moses, 1992].

For contexts hosting ontological reasoning in the Description Logic ALC (as in Example 3) we have
that acceptability checking corresponds to a set of instance checks. As individual instance checking is
EXPTIME-complete [Baader et al., 2003] and EXPTIME is closed under conjunction, such a context
is in EXPTIME. For |OUT i|= 1 we see that such a context is also EXPTIME-hard. Therefore a
context using logic LA has context complexity EXPTIME.

Given an MCS M , we say M has upper context complexity C, denoted CC(M) ≤ C, if CC(Ci) ⊆ C for
every context Ci of M ; We say M has lower context complexity C, denoted CC(M) ≥ C, if C ⊆ CC(Ci)
for some context Ci of M . We say that M has context complexity C, denoted CC(M) = C, iff CC(M) ≤ C
and CC(M) ≥ C. That is, if CC(M) = C all contexts in M have complexity at most CC(M), and some
context in M has C-complete complexity, provided the class C has complete problems.

22 INFSYS RR 1843-12-09

Example 27 (continued). In our running example, forM = (C1, C2, C3, C4) we have CC(C1) = CC(C2) =
O(n), CC(C3) = EXPTIME, and CC(C4) = ΣP

2 . AsO(n) ⊆ ΣP
2 ⊆ EXPTIME, we obtain CC(M) ≤

EXPTIME, and as C2 is EXPTIME-complete, we obtain CC(M) ≥ EXPTIME; hence CC(M) =
EXPTIME.

5.4 Overview of Complexity Results

We now give an overview of complexity results, and brief intuition about the proofs that are available in the
Appendix.

We study the decision problem for consistency (MCSEQ) and recognition problems for diagnoses
(MCSD), minimal diagnoses (MCSDm), explanations (MCSE), and minimal explanations (MCSEm). Note
that existence of diagnoses and explanations is trivial by our basic assumptions that M is inconsistent and
that M [∅] is consistent.

Table 1 summarizes our results for context complexities that are present in typical monotonic and non-
monotonic KR formalisms. Corresponding theorems are given in Section 5.6, which are more general than
the results shown in Table 1.

For a given context complexity CC(M) of an MCS M , MCSEQ has the same computational complexity
as MCSD. If the context complexity is NP or above, this complexity is equal to context complexity; for
context complexity P, it is NP. Intuitively, this is explained as follows. For context complexity NP and
above, guessing a belief state and checking whether it is an equilibrium can be incorporated into context
complexity without exceeding checking cost; if the context complexity is P, this complexity is NP.

Recognizing minimal diagnoses MCSDm is complete for the complexity of MCSD, which captures di-
agnosis recognition, and an additional complementary problem of refuting MCSD, which captures diagnosis
minimality recognition. For context complexity P we have that MCSDm is DP-complete.

The complexity of MCSE is in the complementary class of the corresponding problem MCSD. Intu-
itively this is because diagnosis involves existential quantification and explanation involves universal quan-
tification. Accordingly, the complexity of MCSEm is complementary to MCSDm. As the complexity classes
of MCSDm are closed under complement, MCSEm and MCSDm have the same complexity.

These results show that minimal diagnosis and minimal explanation recognition are harder than checking
consistency (under usual complexity assumptions), while they are polynomially reducible to each other.

5.5 Proof Outline

We treat context complexity of NP and above uniformly and the case of P separately. For hardness results
we use MCS structures depicted in Figure 3.

For context complexity P we use reductions from SAT, UNSAT or SAT-UNSAT instances F and/or G
to MCS with context complexity P. These reductions use the structure shown in Figure 3a, where contexts
CgenU

andCgenV
generate a set of possible truth assignments to sets of variables,CevalF andCevalG evaluate

formulas F and G under these assignments, and Ccheck checks whether the formulas are satisfiable and/or
unsatisfiable. We obtain the hardness via the nondeterministic guess that arises from the different belief sets
accepted by contexts CgenU

and CgenV
. (See also the description of logic LGUESS in the following.) Our

reductions use an acyclic system topology without negation as failure in bridge rules. Note that hardness
can also be obtained using a nonmonotonic guess in cyclic bridge rules which contain negation as failure; in
that case all contexts of the reduction can be deterministic, i.e., every context accepts at most one belief set
for any input. We give such an alternative hardness reduction in the proof of Proposition 9, where we prove
NP hardness of MCSEQ in an MCS of context complexity P.

INFSYS RR 1843-12-09 23

CgenU

CevalF

CgenV

CevalGCcheck

ru,i rv,j

rα

(rβ)

rγ

MCSEQ, MCSD, and MCSE hardness

MCSDm and MCSEm hardness

(a) Structures for lower context complexity CC(M) = P

Ca ′ Cb′Ccheck

rα

(rβ)

rγ

ren
MCSEQ, MCSD, and MCSE hardness

MCSDm and MCSEm hardness

(b) Topologies for generic lower context complexity CC(M)

Figure 3: MCS structures for hardness reductions, where dotted areas indicate parts of the MCS used for
respective reductions.

Hardness results for context complexity NP and above are established by a generic reduction: we reduce
the problem of acceptability checking of contexts Ca (resp., Cb) with context complexity X to decision
problems in an MCS M with complexity X . These reductions use the scheme shown in Figure 3b, where
Ca ′ (resp., Cb′) evaluates the acceptability checking problem of Ca (resp., Cb), and Ccheck tests whether the
original problems are “yes” or “no” instances.

For hardness reductions we use the following context logics.

• LASP is a logic for contexts that contain stratified propositional ASPs with constraints. More in detail,
if LASP = (BS,KB,ACC), then BS is the collection of sets of atoms over a propositional alphabet
Σ, KB is a set of logic programming rules over Σ, and given a knowledge base kb ∈ KB, we define
ACC(kb) = AS(kb), i.e., the context accepts the set of answer sets of the logic program kb. If
clear, Σ is omitted. In case of stratified propositional ASPs with constraints, a program has at most
one answer set. From [Dantsin et al., 2001, Theorem 4.2] it follows that whether an atom A is part of
this model is P-complete. Thus, deciding given OUT i whether Soi ⊆ OUT i is a projected accepted
belief set, is P-complete; therefore context complexity is P.

• LGUESS(B) is a trivial logic over the set B that accepts all subsets of its knowledge base. In detail, if
logic LGUESS(B) = (BS,KB,ACC) then BS = KB = 2B is the powerset ofB, and ACC(kb) =
2kb for kb ∈ KB. If clear, B is omitted. The check whether belief set Soi is accepted by knowledge
base kbi can be done in time O(|kbi|+ |Soi |).

24 INFSYS RR 1843-12-09

5.6 Detailed Results

We first formally define the decision problems we consider and then report the complexity results.

Definition 15. Given a MCS M , MCSEQ is the problem of deciding whether M has an equilibrium.

Definition 16. Given a MCS M and a pair (A,B) with A,B ⊆ br(M),

• MCSD decides whether (A,B) ∈ D±(M), i.e., whether (A,B) is a diagnosis of M ;

• MCSDm decides whether (A,B) ∈ D±m(M), i.e., whether (A,B) is a minimal diagnosis of M ;

• MCSE decides whether (A,B) ∈ E±(M), i.e., whether (A,B) is an inconsistency explanation of
M ; and

• MCSEm decides whether (A,B)∈E±m(M), i.e., whether (A,B) is a minimal inconsistency explana-
tion of M .

We next formulate the complexity results.

Proposition 9. The problem MCSEQ is
• NP-complete if CC(M) = P, and
• C-complete if CC(M) = C and C is a class with complete problems that is closed under conjunction

and projection.

Diagnosis recognition can be done by transforming the MCS using the given diagnosis candidate and de-
ciding MCSEQ. On the other hand, MCSEQ can be reduced to diagnosis recognition of the empty diagnosis
candidate (∅, ∅). Therefore, diagnosis recognition has the same complexity as consistency checking.

Proposition 10. The problem MCSD is
• NP-complete if CC(M) = P, and
• C-complete if CC(M) = C and C is a class with complete problems that is closed under conjunction

and projection.

Deciding whether a pair (A,B) is a⊆-minimal diagnosis of an MCSM requires two checks: (a) whether
(A,B) is a diagnosis, and (b) whether no pair (A′, B′) ⊂ (A,B) is a diagnosis. The pair (A,B) is a minimal
diagnosis iff both checks succeed. This intuitively leads to the following complexity result.

Proposition 11. The problem MCSDm is
• DP

1 -complete if CC(M) = P,
• D(C)-complete if CC(M) = C and C is a class with complete problems that is closed under con-

junction and projection.

Note that, as shown in Table 1, the second item implies that MCSDm is DP
i -complete if CC(M) is

complete for ΣP
i with i ≥ 1.

Refuting a candidate (A,B) as an explanation ofM can be done by guessing a pair of sets (R1, R2) from
Definition 6 and checking that M [R1 ∪ cf (R2)] is inconsistent. Then (A,B) is a yes instance iff all guesses
succeed, which leads to complementary complexity of consistency checking for that problem. Hardness for
context complexity classes C that are closed under conjunction and projection is established via reducing
two contexts of complexity C to an MCS which (a) is consistent if both instances are ‘yes’ instances, (b) has
a minimal diagnosisD if both instances are ‘no’ instances, and (c) has a nonempty minimal diagnosis which
is a subset of D if one is a ‘yes’ and the other a ‘no’ instance. For context complexity P a similar approach
is used with two SAT instances.

INFSYS RR 1843-12-09 25

Proposition 12. The problem MCSE is
• coNP-complete if CC(M) = P, and
• co-C-complete if CC(M) = C and C is a class with complete problems that is closed under conjunc-

tion and projection.

Note that, as shown in Table 1, the second item implies that MCSE is ΠP
i -complete if CC(M) is com-

plete for ΣP
i with i ≥ 1.

For complexity results of recognizing minimal explanations we need the following Lemma which limits
the number of explanations that need to be checked to verify subset-minimality.

Lemma 3. An explanation Q = (Q1, Q2) is ⊆-minimal iff no pair (Q1, Q2 \ {r}) with r ∈ Q2 is an
explanation and no pair (Q1 \ {r}, Q2) with r ∈ Q1 is an explanation.

Hence, we can check subset-minimality of explanations by deciding whether for linearly many subsets of
the candidate (A,B), none is an explanation, i.e., whether for each subset, some (R1, R2) exists s.t.M [R1∪
cf (R2)] is consistent. As NP (resp., ΣP

i) is closed under conjunction and projection, this check is in
NP (resp., ΣP

i). In combination with checking whether the candidate is an explanation, this leads to
a complexity of DP

1 (resp., DP
i). For context complexity C ∈ PSPACE (resp., C ∈ EXPTIME),

D(C) = C. The hardness reduction for MCSEm is very similar to the one for MCSDm.

Proposition 13. The problem MCSEm is
• DP

1 -complete if CC(M) = P,
• complete for D(C) if CC(M) = C and C is a class with complete problems that is closed under

conjunction and projection.

6 Computation

In this section, we show how to compute diagnoses for MCS using HEX-programs and the tool MCS-IE,1

which is an open source experimental prototype.
First we recall HEX-programs, which extend answer set programs, then show how to compute diagnoses

and explanations of MCS, and finally give an overview of the MCS-IE tool.

6.1 Preliminaries: HEX-Programs

HEX-programs [Eiter et al., 2005], [Eiter et al., 2006] extend disjunctive logic programs by allowing for
access to external information with external atoms, and by predicate variables.

In this paper, we only use ground (variable-free) HEX-programs and thus recall simplified definitions.

Syntax Let C and G be mutually disjoint sets of constants and external predicate names, respectively.
Elements from G are prefixed with “&”.

An ordinary atom is a formula p(c1, . . . , cn) where p, c1, . . . , cn are constants. An external atom is a
formula &g [~v](~w), where ~v = Y1, . . . , Yn and ~w = X1, . . . , Xm are two lists of constants (called input and
output lists, respectively), and &g ∈ G is an external predicate name. Intuitively, an external atom provides
a way for deciding the truth value of tuple ~w depending on the extension of input predicates ~v.

1
http://www.kr.tuwien.ac.at/research/systems/mcsie/

26 INFSYS RR 1843-12-09

A HEX rule r is of the form

α1 ∨ . . . ∨ αk ← β1, . . . , βm, not βm+1, . . . , not βn m, k ≥ 0, (2)

where all αi are ordinary atoms and all βj are ordinary or external atoms. Rule r is a constraint, if k= 0;
it is a fact if n= 0 (in this case we omit←). A HEX-program (or program) is a finite set of HEX rules: it is
ordinary, if it contains only ordinary atoms.

Semantics The (ordinary) Herbrand base HBo
P of a HEX-program P is the set of all ordinary atoms

p(c1, . . . , cn) occurring in P . An interpretation I of P is any subset I ⊆ HBo
P ; I satisfies (is a model of)

• an atom α, denoted I |=α, if α ∈ I for an ordinary atom α, or if f&g(I,~v, ~w) = 1 in the case where
α= &g [~v](~w) and f&g : 2HBo

P × Cn × Cm → {0, 1} is a (fixed) (|~v|+|~w|+1)-ary Boolean function
associated with &g ;

• a rule r of form (2) (I |= r), if either I |= αi for some αi, or I |= βj for some j ∈ {m + 1, . . . , n},
or I 6|= βi for some i ∈ {1, . . . ,m};

• a program P (I |= P), iff I |= r for all r ∈ P .

The FLP-reduct [Faber et al., 2004] of a program P wrt. an interpretation I is the set fP I ⊆ P of all
rules r of form (2) in P such that I |= βi, for all i ∈ {1, . . . ,m} and I 6|= βj for all j ∈ {m + 1, . . . , n}
(i.e., I satisfies the body of (2)). Then, I is an answer set of P iff I is a⊆-minimal model of fP I . We denote
by AS(P) the collection of all answer sets of P .

For P without external atoms, this coincides with answer sets as in [Gelfond and Lifschitz, 1991], for
a discussion on the relation between FLP-reduct and GL-reduct see [Faber et al., 2004]. HEX programs
can be evaluated using the dlvhex solver. 2 A detailed comparison of HEX programs and MCS, showing
similarities and differences, is given in [Eiter et al., 2009].

6.2 Computing Diagnoses

We next use HEX programs to describe a generic approach for computing diagnoses, and a way for checking
consistency of MCS. In order to compute diagnoses more efficiently, we then integrate both HEX programs.

6.2.1 Generic Approach

We can compute diagnoses for some MCS M by guessing a candidate diagnosis and checking whether it
yields a consistent system.

We only consider diagnoses (D1, D2) where D1 ∩D2 = ∅; diagnoses with D1 ∩D2 6= ∅ are trivially
obtained from these, and they are never minimal (cf. Proposition 5); while we are often interested only in
the latter.

Given an MCS M , we assemble a HEX-program PD(M) as follows. For each bridge rule r ∈ br(M),
we add the following guessing rule. Here and in the following, we use r as a name for itself.

um(r) ∨ d1 (r) ∨ d2 (r). (3)

2
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

INFSYS RR 1843-12-09 27

Intuitively, the predicates d1 and d2 hold bridge rules that are removed from M ; respectively are added in
unconditional form to M ; um denotes unmodified bridge rules.

Furthermore we create a check for the diagnosis property, which is ‘outsourced’ to an external atom
&eqM [d1 , d2]() with the following evaluation function:

f&eqM
(I, d1 , d2) = 1 iff

M [br(M) \ {r | d1 (r) ∈ I} ∪ cf ({r | d2 (r) ∈ I})] 6|= ⊥. (4)

Using this external atom, the following constraint eliminates all answer sets that do not correspond to diag-
noses:

← not&eqM [d1 , d2](). (5)

The program PD(M) comprising (3) and (5) properly captures diagnoses. The answer sets of PD(M)
correspond to the diagnoses of M as follows.

Theorem 4. Let M be an MCS, then (i) for each answer set I of PD(M), the pair (DI,1, DI,2) = ({r ∈
br(M) | d1 (r) ∈ I}, {r ∈ br(M) | d2 (r) ∈ I}) is a diagnosis of M , and (ii) for each diagnosis
(D1, D2) ∈ D±(M) with D1 ∩D2 = ∅, there exists some answer set I of PD(M) such that (DI,1, DI,2) =
(D1, D2).

Note that to compute all answer sets of this naive encoding, PD(M), the function feqM will be called
3|br(M)| times. The encoding we present in the following can drastically reduce the computational effort by
doing large parts of the MCS consistency check within the rules part of the HEX encoding. External atoms
are used only to evaluate the generic ACC function of each context in M .

6.2.2 Consistency Checking

Consistency of an MCS M can be checked by computing output-projected equilibria So of M . For that, we
assemble a program Pp(M) as follows.

We guess presence or absence of each output belief p of each context in M .

pres i(p) ∨ abs i(p). for every p ∈ OUT i, 1 ≤ i ≤ n (6)

Given an interpretation I of Pp(M), we use Ai(I) = {p | pres i(p) ∈ I}, 1 ≤ i ≤ n, to denote the set of
output beliefs at context Ci, corresponding to the guess in (6).

We evaluate each bridge rule (1) by two corresponding HEX rules, depending on output beliefs guessed
in (6).

ini(s)←not d1 (r), presc1(p1), . . . , prescj (pj),

not prescj+1
(pj+1), . . . , not prescm(pm). (7)

ini(s)←d2 (r). (8)

Given an interpretation I of Pp(M), we use Bi(I) = {s | ini(s) ∈ I} to denote the set of bridge rule
heads at context Ci, activated by the output-projected belief state A(I) = (A1(I), . . . , An(I)). Note that
the atoms d2 (r) and d1 (r) will be justified in the integration of Pp(M) and PD(M). For Pp(M) as stated

28 INFSYS RR 1843-12-09

above, they do not occur in any rule head, therefore (7) will never be deactivated by d1 (r) and (8) will never
become applicable.

Finally, we ensure that answer sets of of Pp(M) correspond to output-projected equilibria by checking
whether each context Ci accepts the guessed Ai(I) wrt. the set Bi(I) of bridge rule heads activated by
bridge rules. For that, we create an external atom &con outi [pres i, bi]() which computes ACCi in an
external computation. This external atom returns true iff context Ci, when given Bi(I), accepts a belief set
Si such that its projection to output-beliefs OUT i is equal to Ai(I). Formally,

f&con outi(I, pres i, ini) = 1 iff Ai(I) ∈ {Soi | Si ∈ ACCi(kbi ∪Bi(I))}.

We complete Pp(M) by adding the following constraints.

← not&con outi [pres i, bi](). for every i with 1 ≤ i ≤ n (9)

Let the program Pp(M) comprise the rules (6), (7), (8), and (9). Then the answer sets I of Pp(M) corre-
spond to the output-projected equilibria of M as follows.

Proposition 14. Let M be an MCS, then (i) for each answer set I of Pp(M), the belief state A(I) is an
output-projected equilibrium of M , and (ii) for each output-projected equilibrium So of M there exists an
answer set I of Pp(M) such that A(I) = So.

As the existence of output-projected equilibria characterizes the consistency of MCS (Theorem 2), we
obtain the following.

Corollary 4. Given an MCS M , Pp(M) has some answer set iff M is consistent.

6.2.3 Combining diagnosis guess and consistency checking

To implement f&eqM
in the program PD(M), we can use Pp(M): given a diagnosis candidate (D1, D2),

we simply add a representation of it using facts d1 (X) and d2 (X) to Pp(M). The resulting program is
equivalent to Pp(M [br(M) \ D1 ∪ cf (D2)]); by returning 1 iff it has an answer set, we obtain a faithful
implementation of f&eqM

.
However, it is possible (and more efficient) to integrate the programs Pp(M) and PD(M): let PDp (M)

be Pp(M) plus all the rules (3). In PDp (M) the guess for a diagnosis d1 and d2 directly effects bridge
rule evaluation in (7) and (8). The answer sets of PDp (M) then correspond to the diagnoses and the output-
projected equilibria of the modified/repaired MCS as follows.

Theorem 5. Let M be an MCS, and let PDp (M) be as above. Then

(i) for each answer set I of PDp (M), the pair (DI,1, DI,2) = ({r ∈ br(M) | d1 (r) ∈ I}, {r ∈ br(M) |
d2 (r) ∈ I}) is a diagnosis of M and A(I) = (A1(I), . . . , An(I)) is an output-projected equilibrium
of M [br(M) \DI,1 ∪ cf (DI,2)]; and

(ii) for each diagnosis (D1, D2) ∈ D±(M) whereD1∩D2 = ∅, and for each output-projected equilibrium
So of M [br(M) \ D1 ∪ cf (D2)], there exists an answer set I of PDp (M) such that (D1, D2) =
(DI,1, DI,2) and So = A(I).

INFSYS RR 1843-12-09 29

Creating one HEX-program that contains both guessing of diagnosis candidates and evaluation of bridge
rule semantics requires one level less of HEX indirection compared to the naive approach of using Pp(M)
in f&eqM

. This allows to reduce the number of evaluations of the ACC function in external computations:
if one context does not accept its output given its input then the system is globally inconsistent; in that case
checking acceptability of other contexts can be omitted, even if different sets of bridge rules are applicable
at these contexts. (This omission is not possible in the naive approach.) In Section 6.4 we discuss an
implementation of PDp (M) and practical results on scalability.

6.3 Computing Explanations

We next address computing explanations and present an encoding in HEX. This encoding is more involved
since explanations show relevant inconsistencies only and this relevancy requires to check that all pairs of
sets of bridge rules in the explanation range yield inconsistent systems. Given an explanation candidate
E = (E1, E2) ∈ 2br(M) × 2br(M), the explanation range of E is

Rg(E) = {(R1, R2) | E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M) \ E2}.
Intuitively, Rg(E) are “relevant pairs” for E. It follows directly from Definition 6 that, E = (E1, E2) ∈
E±(M) iff M [R1 ∪ cf (R2)] |= ⊥ for all (R1, R2) ∈ Rg(E).

So, the computational complexity of diagnosis recognition is not the same as the one for explanation
recognition (for CC(M) being P it is NP versus coNP). In the following we present a direct encoding,
PEP (M), in HEX using a technique from answer-set programming (cf. [Eiter and Gottlob, 1995] called sat-
uration, [Leone et al., 2006]). We first guess an explanation candidate E = (E1, E2) and then ensure via
saturation, that for all pairs of sets (R1, R2) ∈ Rg(E) the modified system is inconsistent, i.e., we check for
every (R1, R2) ∈ Rg(E) and for every belief state S, that some context does not accept S under the bridge
rules of M [R1 ∪ cf (R2)].

For all r ∈ br(M), PEP (M) contains the following rules to guess an explanation candidate.

e1 (r) ∨ ne1 (r). (10)

e2 (r) ∨ ne2 (r). (11)

To give some intuition of the saturation technique, assume that I is the (partial) interpretation corre-
sponding to an explanation candidate guessed by the above rules. To check that every (R1, R2) ∈ Rg(E)
yields an inconsistent system, saturation is used as follows: via disjunctive rules, (R1, R2) ∈ Rg(E) is
guessed as well as a belief state S. If S is not an equilibrium for M [R1cf (R2)], then the atom spoil is
concluded to be true. This in turn leads to the truth of all other atoms that occur in rules to guess R1, R2, S,
and all other atoms that are necessary to check that S is not an equilibrium. The resulting interpretation, I?,
is said to be saturated (or spoiled); formally, it contains Ispoil , which is given by:

Ispoil ={r1(r), nr1(r), r2(r), nr2(r), body(r) | r ∈ br(M)}∪
{ini(b) | r ∈ br(M) ∧ hc (r) = i ∧ hb (r) = b} ∪ {spoil}∪⋃
a∈OUT i

{pres i(a), abs i(a)} ∪
⋃

b∈INi

{ini(b)}.

Most importantly, I? is a maximal model of fPEP (M)I and every other guess for (R1, R2) and S will result
in the same interpretation I?, if S is not an equilibrium of M [R1 ∪ cf (R2)].

On the other hand, if there is a guess for (R1, R2) and S such that S is an equilibrium ofM [R1∪cf (R2)],
then the corresponding interpretation I ′ will not be saturated. Since I? is a maximal model, it then holds

30 INFSYS RR 1843-12-09

that I ′ ⊂ I?, hence I? is not a minimal model of fPEP (M)I . Thus, if I? is indeed the minimal model of
fPEP (M)I , then there can not exist such an I ′, i.e., for all (R1, R2) and S it then holds that S is not an
equilibrium of M [R1 ∪ cf (R2)].

Since we are only interested in explanation candidatesE where no equilibrium exists for any (R1, R2) ∈
Rg(E), a constraint is added to ensure that only saturated models comprise an answer set, i.e, we ensure
that only I? may yield an answer set.

To generate (R1, R2) ∈ Rg(E), for every r ∈ br(M) the following rules are in PEP (M):

r1 (r) : −e1 (r). (12)

r1 (r) ∨ nr1 (r) : −ne1 (r). (13)

nr2 (r) : −e2 (r). (14)

r2 (r) ∨ nr2 (r) : −ne2 (r). (15)

We further guess a belief state of M , so PEP (M) contains for every a ∈ OUT i with 1 ≤ i ≤ n the
following rule:

pres i(a) ∨ abs i(a). (16)

Recall that I is an answer set of PEP (M) iff I is a⊆-minimal model of fPEP (M)I . As we use saturation
and external atoms, this can lead to the undesired effect that some r ∈ fPEP (M)I is unsupported, i.e., for a
being the head of r it can happen that a ∈ I but the body of r is false under I and no other rule’s body with
head a is true. To avoid this, each bridge rule of M is encoded such that a ∈ I implies that a correesponding
body also evaluates to true. This is achieved by the addition of a unique atom body(r) for each r ∈ br(M)
and further rules ensuring that each literal in the body of r holds if body(r) ∈ I . So, PEP (M) contains
for each r ∈ br(M) of form (i : b) ← (i1 : b1), . . . , (ik−1 : bk−1), not(ik : bk), . . . , not(im : bm) the
following rules:

body(r) : −r1 (r), pres i1(b1), . . . , pres ik−1
(bk−1),

abs ik(bk), . . . , abs im(bm). (17)

r1 (r) : −body(r). (18)

pres i1(b1) : −body(r). (19)

. . .

pres ik−1
(bk−1) : −body(r). (20)

abs ik(bk) : −body(r). (21)

. . .

abs im(bm) : −body(r). (22)

ini(b) : −body(r). (23)

ini(b) : −r2 (r). (24)

Rules (23) and (24) ensure that the head of r is derived if either the body holds, or if r is unconditional,
i.e., r ∈ R2. For the head (i : b) of r, let [(i : b)] be the set of bridge rules whose head is the same,
i.e., [(i : b)] = {r ∈ br(M) | hc (r) = i ∧ hb (r) = b}. For each head (i : b) of a bridge rule with
[(i : b)] = {r1, . . . , rk} the following rule of PEP (M) ensures that (i : b) is supported:

body(r1) ∨ . . . ∨ body(rk) ∨ r2(r1) ∨ . . . ∨ r2(rk) : −ini(b). (25)

INFSYS RR 1843-12-09 31

So far PEP (M) guesses an explanation candidate E, a pair (R1, R2) ∈ Rg(E), a belief state encoded
by pres and abs , and the beliefs of applicable bridge rule heads are computed. To ensure that E is an
explanation it must be the case that for every pair (R1, R2) and belief state S some context Ci does not
accept Si given the input encoded by ini. If some context does not accept Si then a special atom spoil
is derived, i.e., if the external atom &con out ′i [spoil , pres i, ini, out i]() is false then spoil is derived. This
atom is also derived if the guess of S and (R1, R2) is contradictory by itself. So for every r ∈ br(M), a ∈
OUT i, i ∈ {1, . . . , n} the following rules are in PEP (M):

spoil : −not&con out ′i [spoil , pres i, ini](). (26)

spoil : −r1 (r),nr1 (r). (27)

spoil : −r2 (r),nr2 (r). (28)

spoil : −pres i(a), abs i(a). (29)

We slightly extend the external atom &con outi [pres i, ini]() for checking consistency of a context: if
spoil is present, then the external atom must be false. This is needed, since a spoiled interpretation I?

must be a model of the HEX program, which is only guaranteed if the external atom is false in I?. So,
&con out ′i [spoil , pres i, ini]() is based on &con outi [pres i, ini]() as follows:

f&con out′i
(I, spoil , pres i, ini) = 0 iff f&con outi(I, pres i, bi) = 0 ∨ spoil ∈ I.

To saturate all guesses, we add the following rules, for all r ∈ br(M), i ∈ ci(M), a ∈ OUT i, b ∈ INi,
to PEP (M):

r1 (r) : − spoil . r2 (r) : − spoil . (30)

nr1 (r) : − spoil . nr2 (r) : − spoil . (31)

abs i(a) : − spoil . pres i(a) : − spoil . (32)

ini(b) : − spoil . body(r) : − spoil . (33)

As an interpretation I of a program P is only an answer set if it is a minimal model of fP I , it follows
that I is not an answer set if there is a model I ′ of fP I with I ′ ⊂ I . If the guess for (R1, R2) and the belief
state S is not acceptable at context Ci, then spoil is derived and saturation takes place, i.e., I ′ becomes ⊂-
maximal. If, however, some guess for (R1, R2) and S yields an equilibrium of M , then the corresponding
interpretation I ′ is a subset of the saturated guesses, thus making the explanation candidate no minimal
model of its reduct.

To obtain only valid explanations, PEP (M) contains the following constraint:

: −not spoil . (34)

It ensures that only saturated interpretations I? can be answer sets. But it only is a ⊆-minimal model of
fPEP (M)I , if no I ′ ⊂ I exists, i.e., if all (R1, R2) ∈ Rg(E) yield an inconsistent system. For more details
on the saturation technique we refer to [Leone et al., 2000], [Eiter and Polleres, 2003].

The answer sets of PEP (M) now exactly encode all explanations of the inconsistent MCS M .

Theorem 6. Let M be an inconsistent MCS. Then (E1, E2) ∈ E±(M) iff there exists an answer set I of
PEP (M) where E1 = {r | e1(r) ∈ I} and E2 = {r | e2(r) ∈ I}.

32 INFSYS RR 1843-12-09

master.hex: #context(1,"dlv asp context acc", "kb1.dlv").
#context(2,"dlv asp context acc", "kb2.dlv").
#context(3,"ontology context3 acc", "").
#context(4,"dlv asp context acc", "kb4.dlv").
r1: (3:pneum) :- (2:xraypneum).
r2: (3:marker) :- (2:marker).
r3: (4:need ab) :- (3:pneum).
r4: (4:need strong) :- (3:atyppneum).
r5: (4:allow strong ab) :- not (1:allergystrong).

kb1.dlv: allergystrong.

kb2.dlv: marker. xraypneum.

kb4.dlv: give strong v give weak :- need ab.
give strong :- need strong.
give nothing :- not need ab, not need strong.
:- give strong, not allow strong ab.

Figure 4: Examples for MCS topology and knowledge base input files of the MCS-IE tool. These files encode
most parts of our running example.

6.4 Implementation and Evaluation

We have implemented the rewritings to HEX in the MCS Inconsistency Explainer (MCS-IE) tool3 described
in [Bögl et al., 2010], which is an experimental prototype based on the dlvhex solver. MCS-IE solves the
reasoning tasks of enumerating output-projected equilibria, diagnoses, minimal diagnoses, explanations,
and minimal explanations of a given MCS.

Contexts can be realized as ASP programs, or by writing a context reasoning module using a C++
interface which allows for implementing arbitrary formalisms that can be captured by MCS contexts.

An online version of MCS-IE is available.4, which is a useful research tool for quick analysis of inconsis-
tency in small-scale MCS. It requires no installation of additional software on the user side and allows direct
editing of bridge rules and context knowledge-bases. A list of showcase MCS allows to directly compute
(minimal) diagnoses and (minimal) explanations also for MCS given in this paper.

Example 28 (ctd). Figure 4 shows files which encode our running example MCS in the MCS-IE input for-
mat. Contexts C1, C2, and C4 are formalized in ASP, with knowledge bases kb1.dlv, kb2.dlv, and
kb4.dlv, these contexts are evaluated through a HEX-plugin for external atoms, which in turn uses the
dlv solver. On the other hand, ontology reasoning C3 is implemented in C++. For more details about the
format and the interface we refer to [Bögl et al., 2010].

Figure 5 shows the architecture of the MCS-IE system, which is implemented as a plugin to the dlvhex
solver. The MCS M at hand is described by the user in a master input file, which specifies all bridge rules
and contexts (it may refer to context knowledge base files). Depending on the configuration of MCS-IE,
the desired reasoning tasks are solved using one of the three rewritings Pp(M), PDp (M), resp. PE(M),
on the input MCS M . MCS-IE enumerates answer sets of the rewritten program, and potentially uses a

3http://www.kr.tuwien.ac.at/research/systems/mcsie/
4http://www.kr.tuwien.ac.at/research/systems/mcsie/tut/

INFSYS RR 1843-12-09 33

extract
D±/E±/EQ ′

⊆-min

convert to
dual notion

⊆-min

D±/E±/EQ ′

D±m/E±m

E±/-

E±m/D±m

HEX

evaluation

answer
sets

rewrite using
PDp /PE /Pp

HEX

program

MCS-IE

input file

user
defined
contexts

builtin
contexts

context input files
(kbi)

refers
to

dlvhex Output Rewriter

dlvhex external
atom API

data flow
control flow

external
atoms:

Figure 5: Architecture of the MCS-IE system.

⊆-minimization module, and a module which realizes the conversions between diagnosis and explanation
notions as described in Theorem 2 and Corollary 1. Explanations can be computed by MCS-IE using the
direct encoding given in Section 6.3 or through the conversion from diagnoses.

As expected, MCS-IE shows the following behavior wrt. efficiency: the rewriting PDp (M), which uses
guess-and-check, shows better performance than the rewriting PE(M), which expresses the coNP task of
recognizing explanations in the ΣP

2 formalism of full-fledged disjunctive HEX programs.
Nevertheless, it appeared that also PDp (M) does not scale well. This lead to the development of a better

HEX evaluation framework, which divides and conquers the guessing space more efficiently [Eiter et al., 2011a].
While the old evaluation of PDp (M) scales exponentially in the total number of output beliefs and bridge
rules, the improved one scales exponentially only in the number of output beliefs and bridge rules of the
largest context of M .

Other approaches to compute diagnoses and explanations of MCS may be faster than the HEX rewriting
approach, e.g., distributed evaluation with an extended version of the DMCS algorithm [Bairakdar et al., 2010b].
However, the primary focus of this work are the notions of diagnosis and explanation, investigation of their
properties, and an experimental framework for evaluation; therefore the efficient (and more intricate) evalu-
ation methods are left for future work.

7 Related Work

Non-monotonicity in MCS was introduced by [Roelofsen and Serafini, 2005] and then further developed
([Brewka et al., 2007], [Brewka and Eiter, 2007]), to eventually allow heterogeneous as well as nonmono-
tonic systems, and in particular nonmonotonic MCS [Brewka and Eiter, 2007] as considered in this article
(cf. [Brewka et al., 2011a] for a more comprehensive account of work related to MCS). However, issues

34 INFSYS RR 1843-12-09

arising from inconsistency of such systems have been largely disregarded.

7.0.1 Inconsistency in MCS

A remarkable exception, and thus most closely related to ours, is [Bikakis et al., 2011], where inconsis-
tency in a homogeneous MCS setting is addressed. The approach is to consider defeasible bridge rules for
inconsistency removal, i.e., a rule is applicable only if its conclusion does not cause inconsistency. This
concept is described in terms of an argumentation semantics in [Bikakis and Antoniou, 2010]. The decision
which bridge rules to ignore is based, for every context, on a strict total order of all contexts. The set of
rules that are ignored thus corresponds to a unique deletion-only diagnosis whose declarative description
is more involved compared to our notion, but which is polynomially computable. Note however, that the
second component of diagnoses, i.e., rules that are forced to be applicable, have no counterpart in the defea-
sible MCS inconsistency management approach. Furthermore, the strict total order over contexts forces the
user to make (perhaps unwanted) decisions at design time; alternative orders would require a redesign and
separate evaluation. Our approach avoids this and can be refined to respect various kinds of orderings and
preferences.

Another formalism for homogenous contextualized reasoning that incorporates a form of inconsistency
tolerance is the Contextualized Knowledge Repository (CKR) approach [Serafini and Homola, 2012]. It is
similar to the MCS approach of formalizing context-dependent knowledge, i.e., a CKR is a set of contexts.
Contexts are based on description logic and a hierarchical coverage relation is used to specify that the
knowledge of one context, regarding specified topics, is broader than the knowledge of another context. A
CKR model then is a collection containing a local DL-model for each context such that constants, concepts
and roles that are covered are interpreted exactly the same way in both contexts. The coverage relation itself
is specified using a DL-like meta-language.

Consider a DL assertion P (a): if context C1 covers context C2, then the concept P is interpreted in C1

and in C2 in the same way, as well as the individual a. MCS are different since the interpretation of P (a)
in C1 is not related to that in C2. Similar as in bridge rules of MCS, a CKR context can refer to knowledge
from other contexts using a so-called qualifier, e.g., P (a){location=Italy,time=2010} refers to P (a) of a context
that covers knowledge about Italy in the year 2010.

A CKR is inconsistency tolerant in the sense that if some context is inconsistent (i.e., its local model
is the one with empty domain), then this inconsistency does not propagate to other unrelated contexts. The
same property also holds for MCS, but in contrast to CKR, our approach allows to restore consistency by
modifying the interlinking of contexts.

Similar in vein to CKR systems are Modular Ontologies, i.e., a framework where consistent description
logic modules utilize and realize a set of interfaces [Ensan and Du, 2008]. These interfaces are connected
by bridge rules for Distributed Description Logic (DDL) [Borgida and Serafini, 2003]. Consistent query
answering in a module is achieved by using the maximum consistent set of interfaces utilized by this module
only, therefore whole interfaces will be ignored if they would cause any inconsistency in the module. Again,
in addition to addressing a more general setting in terms of heterogeneity, our work considers potential
modifications of bridge rules that allow to go beyond simple masking of inconsistent parts of the system in
order to analyze inconsistency and potentially restore consistency.

Conceptually close to the above homogeneous forms of MCS are Federated Databases, a distributed
formalism for linked databases [Heimbigner and McLeod, 1985]: objects can be exported and imported us-
ing a decentralized negotiation between two databases. Notably, [Sheth and Larson, 1990] is a survey that,
in addition to autonomy (access granting and revoking), is taking up on issues of heterogeneity, however

INFSYS RR 1843-12-09 35

mostly referring to the integration of different query languages. Existing approaches handle incoherence in
a database-typical manner of cascading or rejecting local or distributed constraints. For instance, several
protocols for global integrity constraint enforcement are presented in [Grefen and Widom, 1996]. These
protocols define the quiescent state of the system—when it is at rest—and ensure that no constraints are
violated in such states. Hence, inconsistency in federated databases is addressed at the level of the (in-
dividual) databases rather than their interlinking. Even though resorting to SQL and stratified Datalog
allows for non-monotonicity, the possibility of instability in a distributed database system—due to a cyclic
dependencies—has not been addressed in the literature. Our work would be suitable to deal with such situ-
ations, given that federated databases can be described as MCS with stratified (mostly monotonic) contexts
including constraints, and with positive bridge rules.

Concerning the complexity results we established for diagnoses of MCS, we remark that they are related
to respective results in abduction: by associating abducible hypotheses with bridge rules, due to the non-
monotonicity of the system, recognition of diagnoses corresponds to cancellation abduction problems. The
latter have been shown to be NP-complete in [Bylander et al., 1991a] under the assumption of a tractable
underlying theory (i.e., for P contexts in our terminology).

For putting our work in a broader context, we subsequently relate it more generally to work on incon-
sistency management in knowledge bases. We classify and discuss some of the most relevant literature
according to the following basic approaches:

• debugging techniques serve the purpose of diagnosing information systems, aiming at identifying
sources of unexpected and in most cases unintended computation outcomes, and at explaining the
latter;

• repairing techniques modify the content of knowledge bases in order restore consistency, in particular
when new information is incorporated into a knowledge base, or when several knowledge bases are
integrated into a single one;

• consistent query answering virtually repairs a knowledge base or system, often by ignoring a minimal
subset of beliefs or subsystems, and operates on the resulting (virtual) consistent system (i.e., no
knowledge is permanently removed);

• paraconsistent reasoning accepts contradictory knowledge and, rather than repairing or ignoring
(parts of) the information, a more tolerant mode of reasoning is applied that handles also inconsistent
pieces of knowledge in a non-trivial way.

Different from most approaches to inconsistency management, our primary aim is to provide a solid
theoretical framework for analyzing inconsistency; we do not aim at automatically restoring consistency
(although our notions can be used to achieve that).

7.1 Debugging in Logic Programming

Debugging in logic programming, i.e., finding out why some logic program has no or an unexpected answer,
is remotely related to the problem considered in this paper given that bridge rules look similar to rules
of logic programming. A major difference is that in MCS we take contexts with an opaque content into
account. In logic programming, presence of an atom in a model of a program directly depends on the firing
of rules, which in turn directly depends on the presence or absence of other atoms in the bodies; in the MCS
framework, which allows to capture arbitrary logics by abstract belief set functions, there is in general no
visible link between the firing of bridge rules and beliefs accepted by a context.

36 INFSYS RR 1843-12-09

7.1.1 Prolog Debugging

A framework for debugging Prolog programs was developed in [Shapiro, 1983]. It relies strongly on the op-
erational specifics of Prolog and consists of a diagnosis and a bug-correction component, where three basic
types of errors are considered: (i) termination with incorrect output, (ii) termination with missing output, and
(iii) nontermination. For the latter, the approach identifies rules that behave unexpectedly by tracing proce-
dure calls and querying the user whether the procedure call at hand of the form 〈procedure, input , output〉
is correct. A similar goal is achieved in [Pereira, 1986], where the user should not tell whether such a
triple is wrong, but point to a wrong subterm of a procedure call; for that, the implementation builds on
a modified unification algorithm that keeps track of the origins of subterms. This is further refined in
[Pereira and Calejo, 1988], where the different types of bugs are treated uniformly and by the use of a
heuristics the number of questions to the user is reduced.

In comparison, our notion of inconsistency diagnosis roughly corresponds to type (i) and (ii) errors:
in a diagnosis (D1, D2), D1 contains bridge rules whose head belief is “incorrect”, while D2 contains
bridge rules whose head belief is “missing”. As for (iii), nontermination is not an issue for MCS since
no infinite recursion can emerge (modulo computations inside contexts). Furthermore, our approach is
fully declarative, without operational attachment adherent to Prolog, and it does not require user input;
on the other hand, it only covers consistency and no further aspects. Nonetheless, it is possible to mimic
behaviour under user input to some extent by using a technique similar to the meta-reasoning transformation
in [Eiter et al., 2010b].

A purely declarative perspective on Prolog debugging is taken in [Lloyd, 1987], based on the formal
semantics of extended programs under SLDNF resolution. Again two types of errors are considered, so
called “wrong clause instances” (wrong solutions) and “uncovered atoms” (missing solutions). To pinpoint
the origin of such errors, the user must specify the intended interpretation of the program, by repeatedly
answering queries about the behaviour of the rules.

In [Pereira et al., 1993b] a connection between logic program debugging and abductive diagnosis is
investigated. It considers extended logic programs (with strong and default negation) under closed-world
assumption (CWA). Based on revisables, i.e., a subset R of the set of literals notL assumed true by CWA,
and the notion of supported sets SS(L) of a literal L, the removal sets of L are defined as the hitting sets
of SS(L) restricted to R; the ones of the literal ⊥ indicate how to obtain a non-contradictory program.
Using a transformed program P1 of P and information about wrong and missing solutions in P , so called
minimal revising assumptions (MRAs) of P1 are computed in an iterative manner which identify the reasons
for wrong and missing solutions. For programs P that model diagnostic problems, minimal solutions can
be obtained from the MRAs.

The ideas and notions in [Pereira et al., 1993b], [Pereira et al., 1993a] are merged in [Lloyd, 1987],
[Pereira et al., 1993a] for normal logic programs with constraint rules under well-founded semantics. Re-
ferring to them, a diagnosis for a set U of literals is a pair D = 〈Unc, InR〉 where Unc are uncovered
atoms and InR are incorrect rules of P , such that U is contained in the well-founded model (WFM) of
the program P ′ that results from P by removing all incorrect rules and adding all uncovered atoms. In
case of a single minimal diagnosis, the bug in the program is pinpointed precisely; otherwise, the user
is asked which diagnosis corresponds to the intended interpretation. This leads to an iterative debugging
algorithm that only asks disambiguating queries, i.e., it asks about a subset of the intended interpretation
and adds the answer to U . Our notion of inconsistency diagnosis, where D = (D1, D2) is a diagnosis iff
M [br(M) \D1 ∪ cf (D2)] 6|= ⊥ resembles this notion for U = ∅; the underlying semantics of MCS is how-
ever very different from WMF . Furthermore, there is no counterpart of our inconsistency explanations,

INFSYS RR 1843-12-09 37

nor have refined diagnoses been considered.

7.1.2 ASP Debugging

Answer-set Programming (ASP) is as a rule-based paradigm related to MCS, yet more under grounded
equilibrium semantics, which imposes a minimality condition on equilibria [Brewka and Eiter, 2007]; in
fact, answer-set programs can be modeled as particular MCS with monotonic rules and non-monotonic
birdge rules.

The declarative debugging of answer-set programs was approached by [Syrjänen, 2006] for programs
that have no cycles of odd length; in subsequent works, tagging [Brain et al., 2007], meta-programming for
ground [Gebser et al., 2008] and non-ground programs [Oetsch et al., 2010], and establishing procedural
techniques (breakpoints, step-wise execution) [Oetsch et al., 2011] have been considered. The idea is that
an expected answer-set E and an (erroneous) ASP program P are transformed into a program T whose
answer-sets explain why E is not an answer-set of P . Explanations cover that an instantiation of some rule
in P is not satisfied by E, as well as the presence of unfounded loops (i.e., lack of foundedness). The latter
could be of interest for developing diagnosis of MCS under grounded equilibria semantics; this remains for
future work. On the other hand, the procedural techniques seem to be less promising, as MCS lack rule
chaining at the abstract level.

A different approach to debug answer-set programs is given in [Balduccini and Gelfond, 2003], where
A-Prolog (an ASP-based language) is extended by consistency-restoring (CR) rules of the form

r : h1 or . . . or hk
+← l1, . . . , lm, not lm+1, . . . , not ln.

which intuitively reads as: if l1, . . . , lm are accepted beliefs while lm+1, . . . , ln are not, then one of h1, . . . , hk
“may possibly” be believed. In addition, a preference relation on the rules may be provided. The semantics
of CR rules is defined via a translation to abductive logic programs, i.e., logic programs where certain atoms
are abducibles (cf. [Kakas et al., 1992]). In answer sets of such programs, a minimal set of abducibles may
be assumed to be true without further justification.

Disregarding possible rule preferences, a logic program P with CR rules CR can be embedded to a
MCS M = (C1), where the single context C1 is over disjunctive logic programs, such that the answer sets
of P with CR correspond to the witnessing equilibria of the minimal diagnoses (D1, D2) of M . In more
detail, C1 has the knowledge base kb1 = P ∪ {cr(r) | r ∈ CR} and bridge rules br1 = {(c1 : ab(r)) ←
a⊥. | r ∈ CR}, where a⊥ and ab(r) are fresh atoms, for each r as above, and

cr(r) = h1 ∨ . . . ∨ hk ← ab(r), l1, . . . , lm, not lm+1, . . . , not ln;

informally, unconditional firing of a bridge rule simulates the corresponding CR rule; note that D1 = ∅.

7.2 Content-Based Methods

The methods and approaches underlying research issues and works presented in this subsection exhibit more
foundational differences to our approach. Therefore, we will mostly discuss them on a more general level,
pointing to some seminal works and survey articles for more extensive coverage of the relevant literature.

7.2.1 Repair Approaches in Integrating Information

A lot of work on inconsistency management has been concentrating on the repair of data when merging,
incorporating, or integrating data from different sources. In contrast to our work, in such approaches usually
the mappings that relate data of different knowledge bases are fixed, while the contents of the knowledge

38 INFSYS RR 1843-12-09

bases are subject to change in order to restore consistency. This subsumes approaches that do not actually
modify original data but modify it virtually (i.e., a view), or operate on a copy.

Belief revision and belief merging are well understood problems, in particular for classical propositional
theories [Konieczny and Pérez, 2011],[Peppas, 2008]. They address how to incorporate a new belief into an
existing knowledge base, respectively how to combine knowledge bases, such that the resulting knowledge
base is consistent. In this regard, our approach is more related to belief merging than to belief revision.
A major difference to belief merging is, however, that MCS connect heterogenous knowledge bases in a
decentralized fashion (compared to a centralized merge of uniform knowledge bases), and that selective
information exchange among knowledge bases is possible via bridge rules in complex topologies. Further-
more, our work concentrates on changing the mappings between these components in case of conflict, while
belief merging strives for modified contents (i.e., knowledge base).

Abductive reasoning is often applied to identify pieces of information that need to be changed in order
to repair a logical theory or knowledge base, cf. [Inoue and Sakama, 1995], [Lobo and Uzcátegui, 1996],
[Zhang and Ding, 2008]. In particular, in [Inoue and Sakama, 1995] abduction is applied to repair theories
in (nonmonotonic) logic based on notions of ‘explanation’ and ‘anti-explanation’. Given a theory K and a
set Γ of abducible formulas, they remove the formulas of a setO⊆Γ, and add the formulas of a set I ⊆Γ, to
entail (resp. not entail) an observation F ; i.e., (K ∪ I) \O |= F (explanation), resp. (K ∪ I) \O 6|= F (anti-
explanation). A repair of an inconsistent theory K is given by an anti-explanation of F = ⊥; in particular,
if Γ = K and I = ∅, then such a repair is a maximal consistent subset of K; the use of such sets to restore
consistency is central to many approaches of belief revision. Our notion of diagnosis may be regarded as
a generalized 2-sorted variant of such anti-explanations, where O ⊆ ΓO and I ⊆ ΓI ; moreover, under
suitable conditions, it is reducible to ordinary anti-explanations. In particular, for ΓI = ∅ and ΓO = K, the
maximal consistent subsets of K correspond to the minimal diagnoses of MK . Indeed, for the MCS M =
(C1) with single context C1 having knowledge base kb1 = K and bridge rules br1 = br>Γ ∪ br⊥Γ , where
br>Γ = {(c1 :φ) ← (c1 :>) | φ ∈ Γ} and br⊥Γ = {(c1 :φ) ← (c1 :⊥) | φ ∈ Γ}, then the minimal diagnoses
of M correspond to the repairs of K. One may replace Γ with ΓO in both, br>Γ and br⊥Γ ; furthermore,
modified bodies in br>Γ allow for conditional removal of formulas, with conditions that might be beyond the
expressivness of the language of K. As regards explanations, our notion of explanation has no counterpart
in the approach of [Inoue and Sakama, 1995].

Information integration approaches (see e.g. the papers [Lenzerini, 2002], [Doan and Halevy, 2005],
[Leone et al., 2005]) wrap several information sources and materialize the information into one schema.
Differences exist in whether the global schema is expressed as a view in terms of the local schemata (global-
as-view approaches), or vice versa (local-as-view). The relevant relationships are represented as mappings,
which often are specified by database queries; inconsistencies are resolved by modifying the materialized in-
formation, thus again by changing contents. However, since the original information sources are not altered,
one might consider it closer in spirit to our approach than belief merging. Inconsistency management in
information integration systems, and in particular the global-as-view approach, may be regarded as implicit
change of mappings, by discarding tuples and/or generating missing tuples. Naturally, this corresponds to
deactivating bridge rules and forcing bridge rules to fire, respectively. Different from MCS however, in-
formation integration approaches rely on hierarchical, acyclic system topologies and monotone semantics
(that can be evaluated using fixpoint algorithms). On the other hand, they apply a more expressive mapping
formalism compared to bridge rules in MCS.

Peer-to-peer data integration systems [Calvanese et al., 2004] allow for a dynamically changing archi-
tecture of a data integration scenario in which peers can enter or leave the system anytime. Inconsistency
handling in such systems resorts mainly to approaches that are motivated or akin to techniques of consistent

INFSYS RR 1843-12-09 39

query answering; we thus postpone this to the respective subsection below.
Ontology mapping [Choi et al., 2006] and the related tasks of ontology alignment, merging, and integra-

tion aim at reusing ontologies in a suitable combination. To this end, mappings between concepts, roles, and
individuals are identified to denote the same entity in different ontologies, usually by automatic, statistical
methods to ‘discover’ mappings. They may introduce inconsistency in the (global or local) view on the
resulting ontology, even if each individual ontology is consistent. Consistency is achieved by disregarding
a mapping if it would add an inconsistency. Heterogeneity in ontology mapping usually refers to different
nomenclatures prevailing in different ontologies, or to ontologies in different yet closely related formalisms
(e.g., different description logics). In contrast, in MCS heterogeneity refers to combining systems based
on different logical formalisms, which need not share any relationship. More notably, however, our work
aims at explaining inconsistency, and to provide via diagnoses a more fine-grained possibility to achieve
consistency than by simply discarding mappings.

To summarize, the main difference between our work and the contributions to these rather diverse set-
tings of integrating information—and in particular the issue of achieving integrity in doing so—is that we
consider modifying the ‘mapping’, i.e., the interlinking, rather than the data. While the importance of main-
taining and repairing mappings has been recognized [Doan and Halevy, 2005], major breakthroughs are still
missing.

7.2.2 Consistent Query Answering

The approaches considered in this section do not actually modify data to repair an inconsistent system, but
virtually consider possible repairs in order to return consistent answers to queries. As this includes (partial)
ignorance of information (and thus inconsistency) for the sake of reasoning on a consistent system, the
approaches may be regarded as in between repairing and paraconsistent reasoning.

The term consistent query answering (CQA) has been coined in the database area where various settings
(wrt. integrity constraints and operations for repair) have been considered [Bertossi, 2011], [Bertossi, 2006],
[Arenas et al., 2003]. For instance, in the case of denial constraints (including key constraints, functional
dependencies, etc.), it is sufficient to restrict the attention to tuple deletions for obtaining repairs and an-
swering queries consistently. Thus, CQA might be regarded as an approach that automatically applies
deletion-diagnoses to suppress inconsistent information for answering queries over inconsistent relational
databases. Despite this superficial similarity to our work, the differences are apart from heterogeneity much
more fundamental: diagnoses and explanations address the interlinking of knowledge bases rather than their
content and they aim at making inconsistencies amenable to analysis, explicitly hinting at problems that
should be investigated, rather than treating them implicitly for the sake of providing consistent answers.
CQA techniques have also been extended to description logic ontologies, e.g., in [Lembo et al., 2010],
[Lembo and Ruzzi, 2007], where the taxonomy part is considered to be correct but the data part as pos-
sibly inconsistent. Consistent answers to queries are then obtained on maximal consistent subsets of the
data wrt. the taxonomy part (and potential further constraints).

Other approaches (but similar in nature) have been applied to answering queries in peer-to-peer data
integration settings. An automatic approach for repair was presented in [Calvanese et al., 2008] that ignores
inconsistent components, resp. the beliefs held by a minority of peers in the system. Another work on
peer-to-peer systems over propositional knowledge bases [Binas and McIlraith, 2008] answers queries over
a maximal consistent subset of the knowledge bases. Besides the conceptual difference to MCS regarding
the system architecture (dynamic vs. static), our approach explains inconsistency by pointing out mappings
that must be changed to achieve consistency. Furthermore, its does not aim at automatic fixes to the system,

40 INFSYS RR 1843-12-09

and in particular not by ignoring entire contexts or beliefs held by a minority among them.

7.2.3 Paraconsistent Approaches

Paraconsistent reasoning approaches (see, e.g., [Hunter, 1996],[Bertossi et al., 2005]) aim upfront at ignor-
ing or tolerating inconsistency in knowledge bases, providing means to reason on them without knowledge
explosion, i.e., without justifying arbitrary beliefs (ex falso quodlibet); thus, they do not focus on eliminating
inconsistency. Nevertheless, in addition to keeping information systems operable in case of inconsistency,
paraconsistent reasoning may, similar to our aim, also serve the purpose of analysing inconsistency.

Taking again a very general perspective, in particular disregarding heterogeneity and even the fact that
our techniques apply to the interlinking of information, syntactic approaches (e.g. [Besnard and Schaub, 1998])
would be closest to our approach. They essentially restrict theories to the intersection of maximal consistent
subsets of formulae as a basis for drawing paraconsistent conclusions. However, while minimal deletion-
diagnoses might be viewed as corresponding to maximal consistent subsets, our approach does not prescribe
a particular reasoning mode upon them (like considering the system obtained by their intersection). More-
over, our notions of diagnosis and explanation provide more fine-grained structures for analysis than just
considering deletion diagnosis, and they deal with nonmonotonic behavior.

The methods that are applied in logic-based approaches to paraconsistent reasoning are completely or-
thogonal to our techniques. The most prominent representatives resort to many-valued logics in order to deal
with inconsistency (cf. [Belnap, 1977], [Priest, 1989]). The same applies to paraconsistent logic program-
ming [Blair and Subrahmanian, 1989] (see e.g. [Eiter et al., 2010a] for more references and recent works),
which therefore also elude themselves from a detailed comparison. Nevertheless, developing model-based
techniques for paraconsistent reasoning from inconsistent MCS is an interesting topic for future research.
In this regard, [Schenk, 2008] can be inspiring, where trust on information sources on the web has been
modeled using an extension of Belnap’s four-valued logic [Belnap, 1977] and bridge-rule like constructions
based on external predicates govern the information flow.

We conclude this section with a pointer to Gabbay and Hunter [Gabbay and Hunter, 1991] who argued
strongly for managing inconsistency, in contrast to avoiding, removing, or ignoring it. Their point is that
an inconsistent system requires actions to be taken, and in order to do so, different issues need to be taken
into account that require a variety of methods. Notably they also developed a corresponding framework
in a relational database setting [Gabbay, 1993], [Gabbay and Hunter, 1993]. In this spirit, we consider the
notions of diagnosis and inconsistency explanation for MCS as providing a foundational basis for developing
methods for more specific tasks on top in order to manage inconsistency of the system.

8 Conclusion

We have considered the problem of inconsistency analysis in nonmonotonic Multi-Context Systems (MCS),
which are a flexible, abstract formalism to interlink heterogeneous knowledge sources for information ex-
change. We have presented a consistency-based and an entailment-based notion of inconsistency explana-
tion, called diagnosis and explanation, which are in a duality relation that can be exploited for computational
purposes, and which enjoy modularity properties. We have characterized the computational complexity of
the two notions, establishing generic results for a range of context complexities. They show that in many
cases, explaining inconsistency does not lead to a jump in complexity compared to inconsistency testing, al-
though (unsurprisingly) depending on the interlinking intractability might arise. We have furthermore shown

INFSYS RR 1843-12-09 41

how the notions can be computed by a transformation to HEX programs, which has been implemented in the
experimental software tool MCS-IE.

Our results provide a basis for building advanced systems of interlinked knowledge sources, in which
the natural need for inconsistency management is supported, by taking specifically the information linkage
as a source of inconsistency into account, in contrast to traditional works on inconsistency management
that focus on the contents of the knowledge sources; however, in loosely connected systems, control over
autonomous knowledge sources is elusive and modifying the information exchange may be the only resort
to remove inconsistency.

Further work The work presented in this article has been continued in several directions. One of them
is to impose different kinds of preferences on the notions of diagnosis and explanation that were introduced
here, as in [Eiter et al., 2010b], [Weinzierl, 2012]. They allow for filtering and comparing diagnoses; using
meta-programming techniques, the most-preferred ones can be selected from all diagnoses.

Another direction concerns incomplete information about contexts. The setting considered in this article
assumes complete information about the behavior of the contexts in information exchange, i.e., for each
’input’ of relevant beliefs from other contexts accessed via bridge rules, the ’output’ in terms of firing bridge
rules is fully known. In real-world applications, however, this information may be only available for specific
(classes of) inputs, and querying a context arbitrarily often to gain this knowledge might be infeasible. In
such scenarios the notions introduced in [Eiter et al., 2011b] allow to obtain reasonable approximations for
diagnoses and explanations of inconsistency.

Finally, another implementation is currently underway in which diagnoses and explanations can be com-
puted by distributed algorithms, exploiting the distributed MCS evaluation framework of [Dao-Tran et al., 2010],
[Bairakdar et al., 2010b, Bairakdar et al., 2010a].

Open Issues Several issues remain for future work. Building on the notions of preferred diagnosis and ex-
planation, a further topic is to establish concrete inconsistency management procedures for analysis. To this
end, a system administrator might ask repeatedly for diagnoses and explanations, considering subsystems
and/or a modified interlinkage, and select among the ones presented a most appealing one; the information
about past selections may in turn be used to adjust the preferences for calculations.

On the computational side, scalability to scenarios with larger data volume and number of bridge rules
is desirable, where the intrinsic complexity of our diagnoses and explanations is prohibitive in general. It
remains to single out settings where scalability is still possible, and to get a clearer picture of the scalability
frontier. This is linked to the complexity of consistency checking for an MCS; restrictions on the inter-
linking, in numbers and structure (for the latter, see [Bairakdar et al., 2010b]) will be helpful, as well as
properties of the context logics (e.g., monotonicity and unique accepted belief sets). Related to this is devel-
oping pragmatic variants of our notions, like focusing by protecting bridge rules (which does not increase
worst case complexity), giving up properties (e.g., minimality), or by tolerating inconsistency in parts of the
system.

Another issue is to combine inconsistency management of contents and of context interlinking. Re-
call that Section 7.2 points out how maximal consistent subsets of a knowledge base (which are ubiquitous
in content-based inconsistency management) might be simulated using bridge rules. However, an emerg-
ing combination—although in a uniform formalism—would be inflexible and less amenable to refinement.
More promising is to combine the notions in this article and in [Brewka et al., 2011b], which generalized
MCS with a management component for each context and operations to be performed on the knowledge
base when a bridge rule fires; this allows for a more sophisticated content-change than simple addition of

42 INFSYS RR 1843-12-09

formulas. Nevertheless, consistency can not be guaranteed in general with such content-based approachs, as
inconsistency caused by cyclic information flow can not be resolved. Since the latter can be dealt with by
modifying the interlinking, as for instance by our notion of diagnosis, a combination of techniques can be
successful.

References

[Arenas et al., 2003] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Answer sets for consistent
query answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge, UK, 2003.

[Bairakdar et al., 2010a] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. Decomposition of distributed nonmonotonic multi-context systems. In Janhunen and
Niemelä [2010], pages 24–37.

[Bairakdar et al., 2010b] Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. The DMCS solver for distributed nonmonotonic multi-context systems. In European
Conference on Logics in Artificial Intelligence (JELIA 2010), volume 6341, pages 352–355, 2010.

[Balduccini and Gelfond, 2003] Marcello Balduccini and Michael Gelfond. Logic programs with
consistency-restoring rules. In International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, pages 9–18, 2003.

[Belnap, 1977] N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors, Modern
Uses of Multiple-Valued Logic, pages 7–37. Reidel Publishing Company, Boston, 1977.

[Berge, 1989] C. Berge. Hypergraphs. Elsevier Science Publishers B.V. (North-Holland), Amsterdam,
1989.

[Bertossi et al., 2005] Leopoldo E. Bertossi, Anthony Hunter, and Torsten Schaub, editors. Inconsis-
tency Tolerance [result from a Dagstuhl seminar], volume 3300 of Lecture Notes in Computer Science.
Springer, 2005.

[Bertossi, 2006] Leopoldo Bertossi. Consistent query answering in databases. SIGMOD Rec., 35(2):68–76,
June 2006.

[Bertossi, 2011] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[Besnard and Schaub, 1998] Philippe Besnard and Torsten Schaub. Signed systems for paraconsistent rea-
soning. J. Autom. Reasoning, 20(1):191–213, 1998.

[Bikakis and Antoniou, 2008] Antonis Bikakis and Grigoris Antoniou. Distributed defeasible contextual
reasoning in ambient computing. In Ambient Intelligence, pages 308–325, 2008.

INFSYS RR 1843-12-09 43

[Bikakis and Antoniou, 2010] Antonis Bikakis and Grigoris Antoniou. Defeasible contextual reasoning
with arguments in ambient intelligence. IEEE Trans. Knowl. Data Eng., 22(11):1492–1506, 2010.

[Bikakis et al., 2011] Antonis Bikakis, Grigoris Antoniou, and Panayiotis Hassapis. Strategies for contex-
tual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst., 27(1):45–84, 2011.

[Binas and McIlraith, 2008] Arnold Binas and Sheila A. McIlraith. Peer-to-peer query answering with in-
consistent knowledge. In Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning, pages 329–339, Sydney, Australia, September 16–19 2008.

[Blair and Subrahmanian, 1989] Howard A. Blair and V. S. Subrahmanian. Paraconsistent logic program-
ming. Theor. Comput. Sci., 68(2):135–154, 1989.

[Bögl et al., 2010] Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller. The MCS-IE system
for explaining inconsistency in multi-context systems. In Tomi Janhunen and Ilkka Niemelä, editors,
12th European Conference on Logics in Artificial Intelligence (JELIA 2010), Lecture Notes in Artificial
Intelligence, pages 356–359. Springer, September 2010.

[Borgida and Serafini, 2003] A. Borgida and L. Serafini. Distributed description logics: Assimilating infor-
mation from peer sources. Journal on data semantics I, pages 153–184, 2003.

[Brain et al., 2007] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan
Woltran. Debugging ASP programs by means of ASP. In Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pages 31–43, 2007.

[Brewka and Eiter, 2007] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic
multi-context systems. In AAAI Conference on Artificial Intelligence (AAAI), pages 385–390, 2007.

[Brewka et al., 2007] Gerhard Brewka, Floris Roelofsen, and Luciano Serafini. Contextual default reason-
ing. In International Joint Conference on Artificial Intelligence (IJCAI), pages 268–273, 2007.

[Brewka et al., 2011a] Gerhard Brewka, Thomas Eiter, and Michael Fink. Nonmonotonic multi-context
systems: A flexible approach for integrating heterogeneous knowledge sources. In Marcello Balduccini
and Tran Cao Son, editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reason-
ing, volume 6565 of Lecture Notes in Computer Science, pages 233–258. Springer, 2011.

[Brewka et al., 2011b] Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl. Managed
multi-context systems. In Toby Walsh, editor, IJCAI, pages 786–791. IJCAI/AAAI, 2011.

[Bylander et al., 1991a] T. Bylander, D. Allemang, C. Tanner, and J. Josephson. The computational com-
plexity of abduction. Artificial Intelligence, 49:25–60, 1991.

[Bylander et al., 1991b] Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson. The
computational complexity of abduction. Artif. Intell., 49(1-3):25–60, 1991.

[Calvanese et al., 2004] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Logical foundations of peer-to-peer data integration. In Catriel Beeri and Alin Deutsch, edi-
tors, PODS, pages 241–251. ACM, 2004.

44 INFSYS RR 1843-12-09

[Calvanese et al., 2008] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Inconsistency tolerance in P2P data integration: An epistemic logic approach.
Information Systems, 33(4-5):360–384, 2008.

[Choi et al., 2006] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping. SIGMOD
Rec., 35:34–41, September 2006.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[Dao-Tran et al., 2010] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Dis-
tributed nonmonotonic multi-context systems. In Lin et al. [2010], pages 60–70.

[Delgrande and Faber, 2011] James P. Delgrande and Wolfgang Faber, editors. Logic Programming and
Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-
19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer Science. Springer, 2011.

[Doan and Halevy, 2005] AnHai Doan and Alon Y. Halevy. Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic
programming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323, 1995.

[Eiter and Polleres, 2003] Thomas Eiter and Axel Polleres. Transforming co-np checks to answer set com-
putation by meta-interpretation. In Francesco Buccafurri, editor, APPIA-GULP-PRODE, pages 410–421,
2003.

[Eiter et al., 2005] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming. In Interna-
tional Joint Conference on Artificial Intelligence, pages 90–96, 2005.

[Eiter et al., 2006] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effective
integration of declarative rules with external evaluations for semantic-web reasoning. In European Se-
mantic Web Conference (ESWC), pages 273–287, 2006.

[Eiter et al., 2009] Thomas Eiter, Gerhard Brewka, Minh Dao-Tran, Michael Fink, Giovambattista Ianni,
and Thomas Krennwallner. Combining nonmonotonic knowledge bases with external sources. In Fron-
tiers of Combining Systems (FroCoS), pages 18–42, 2009.

[Eiter et al., 2010a] Thomas Eiter, Michael Fink, and João Moura. Paracoherent Answer Set Programming.
In Lin et al. [2010], pages 486–496.

[Eiter et al., 2010b] Thomas Eiter, Michael Fink, and Antonius Weinzierl. Preference-based inconsistency
assessment in multi-context systems. In Janhunen and Niemelä [2010], pages 143–155.

[Eiter et al., 2011a] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, and Peter
Schüller. Pushing efficient evaluation of HEX programs by modular decomposition. In James Delgrande
and Wolfgang Faber, editors, Logic Programming and Nonmonotonic Reasoning, 11th International Con-
ference (LPNMR 2011), pages 93–106, May 2011. (selected for “Best Papers Track” of IJCAI 2011).

INFSYS RR 1843-12-09 45

[Eiter et al., 2011b] Thomas Eiter, Michael Fink, and Peter Schüller. Approximations for explanations of
inconsistency in partially known multi-context systems. In Delgrande and Faber [2011], pages 107–119.

[Ensan and Du, 2008] Faezeh Ensan and Weichang Du. Aspects of inconsistency resolution in modular
ontologies. In Advances in Artificial Intelligence, 21st Conference of the Canadian Society for Compu-
tational Studies of Intelligence, Canadian AI 2008, Windsor, Canada, May 28-30, 2008, Proceedings,
volume 5032 of LNCS, pages 84–95. Springer, 2008.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In European Conference on Logics in Artificial Intelligence
(JELIA), pages 200–212, 2004.

[Gabbay and Hunter, 1991] Dov Gabbay and Anthony Hunter. Making inconsistency respectable 1: A
logical framework for inconsistency in reasoning. In Foundations of Artificial Intelligence Research,
volume 535 of LNCS, pages 19–32, 1991.

[Gabbay and Hunter, 1993] Dov M. Gabbay and Anthony Hunter. Making inconsistency respectable: Part
2 - meta-level handling of inconsistency. In ECSQARU, volume 747 of LNCS, pages 129–136. Springer,
1993.

[Gabbay, 1993] Dov M. Gabbay. Labelled deductive systems: A position paper. In J. Oikkonen and
J. Väänänen, editors, Proc. of Logic Colloquium ’90, Helsinki, Finland, 15–22 July 1990, volume 2
of Lecture Notes in Logic, pages 66–88. Springer-Verlag, Berlin, 1993.

[Gebser et al., 2008] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming
technique for debugging answer-set programs. In Dieter Fox and Carla P. Gomes, editors, AAAI, pages
448–453. AAAI Press, 2008.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

[Ghidini and Giunchiglia, 2001] Chiara Ghidini and Fausto Giunchiglia. Local models semantics, or con-
textual reasoning=locality+compatibility. Artif. Intell., 127(2):221–259, 2001.

[Giunchiglia and Serafini, 1994] Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical log-
ics, or: How we can do without modal logics. Artificial Intelligence, 65(1):29–70, 1994.

[Giunchiglia, 1993] Fausto Giunchiglia. Contextual reasoning. Epistemologia, XVI:345–364, 1993.

[Gottlob, 1992] Georg Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Com-
putation, 2:397–425, 1992.

[Grefen and Widom, 1996] Paul W. P. J. Grefen and Jennifer Widom. Integrity constraint checking in fed-
erated databases. In CoopIS, pages 38–47, 1996.

[Halpern and Moses, 1992] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity
for modal logics of knowledge and belief. Artificial Intelligence, 54(3):319–379, 1992.

[Heimbigner and McLeod, 1985] Dennis Heimbigner and Dennis McLeod. A federated architecture for
information management. ACM Trans. Inf. Syst., 3(3):253–278, 1985.

46 INFSYS RR 1843-12-09

[Hunter, 1996] Anthony Hunter. Handbook of Defeasible Reasoning and Uncertain Information, chapter
Paraconsistent Logics, pages 11–36. Kluwer, 1996.

[Inoue and Sakama, 1995] Katsumi Inoue and Chiaki Sakama. Abductive framework for nonmonotonic
theory change. In International Joint Conference on Artificial Intelligence (IJCAI), pages 204–210, 1995.

[Janhunen and Niemelä, 2010] Tomi Janhunen and Ilkka Niemelä, editors. Logics in Artificial Intelligence -
12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15, 2010. Proceedings, volume
6341 of Lecture Notes in Computer Science. Springer, 2010.

[Kakas et al., 1992] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic program-
ming. J. Log. Comput., 2(6):719–770, 1992.

[Konieczny and Pérez, 2011] Sébastien Konieczny and Ramón Pino Pérez. Logic based merging. J. Philo-
sophical Logic, 40(2):239–270, 2011.

[Lembo and Ruzzi, 2007] Domenico Lembo and Marco Ruzzi. Consistent query answering over descrip-
tion logic ontologies. In Proc. Conference on Web Reasoning and Rule Systems, volume 4524 of LNCS,
pages 194–208. Springer, 2007.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant semantics for description logics. In Pascal Hitzler and
Thomas Lukasiewicz, editors, RR, volume 6333 of Lecture Notes in Computer Science, pages 103–117.
Springer, 2010.

[Lenzerini, 2002] Maurizio Lenzerini. Data integration: A theoretical perspective. In Lucian Popa, Serge
Abiteboul, and Phokion G. Kolaitis, editors, PODS, pages 233–246. ACM, 2002.

[Leone et al., 2000] Nicola Leone, Riccardo Rosati, and Francesco Scarcello. Enhancing answer set plan-
ning. Technical Report DBAI-TR-2000-37, Institut für Informationssysteme – Abteilung Databanken
und Artificial Intelligence, Technische Universität Wien, 2000.

[Leone et al., 2005] Nicola Leone, Gianluigi Greco, Giovambattista Ianni, Vincenzino Lio, Giorgio Ter-
racina, Thomas Eiter, Wolfgang Faber, Michael Fink, Georg Gottlob, Riccardo Rosati, Domenico Lembo,
Maurizio Lenzerini, Marco Ruzzi, Edyta Kalka, Bartosz Nowicki, and Witold Staniszkis. The INFOMIX
system for advanced integration of incomplete and inconsistent data. In SIGMOD, pages 915–917, 2005.

[Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM Trans.
Comput. Log., 7(3):499–562, 2006.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Interna-
tional Conference on Logic Programming (ICLP), pages 23–37, 1994.

[Lin et al., 2010] Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors. Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010,
Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press, 2010.

[Lloyd, 1987] J. Lloyd. Declarative error diagnosis. New Generation Computing, 5:133–154, 1987.
10.1007/BF03037396.

INFSYS RR 1843-12-09 47

[Lobo and Uzcátegui, 1996] Jorge Lobo and Carlos Uzcátegui. Abductive change operators. Fundam.
Inform., 27(4):385–411, 1996.

[Oetsch et al., 2010] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the ouroboros: On debug-
ging non-ground answer-set programs. TPLP, 10(4-6):513–529, 2010.

[Oetsch et al., 2011] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Stepping through an answer-set
program. In Delgrande and Faber [2011], pages 134–147.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Peppas, 2008] Pavlos Peppas. Handbook of Knowledge Representation, volume 3 of Foundations of Arti-
ficial Intelligence, chapter Belief Revision, pages 317 – 359. Elsevier, 2008.

[Pereira and Calejo, 1988] Luı́s Moniz Pereira and Miguel Calejo. A framework for prolog debugging. In
ICLP/SLP, pages 481–495, 1988.

[Pereira et al., 1993a] Luı́s Moniz Pereira, Carlos Viegas Damásio, and José Júlio Alferes. Debugging by
diagnosing assumptions. In Peter Fritszon, editor, AADEBUG, volume 749 of Lecture Notes in Computer
Science, pages 58–74. Springer, 1993.

[Pereira et al., 1993b] Luı́s Moniz Pereira, Carlos Viegas Damásio, and José Júlio Alferes. Diagnosis and
debugging as contradiction removal. In LPNMR, pages 316–330, 1993.

[Pereira, 1986] Lus Moniz Pereira. Rational logic programming, 1986.

[Priest, 1989] Graham Priest. Reasoning about truth. Artificial Intelligence, 39(2):231 – 244, 1989.

[Przymusinski, 1991] T.C. Przymusinski. Stable semantics for disjunctive programs. New generation com-
puting, 9(3):401–424, 1991.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.

[Roelofsen and Serafini, 2005] Floris Roelofsen and Luciano Serafini. Minimal and absent information in
contexts. In International Joint Conference on Artificial Intelligence (IJCAI), pages 558–563, 2005.

[Schenk, 2008] Simon Schenk. On the semantics of trust and caching in the semantic web. In Amit P.Sheth
et al., editor, International Semantic Web Conference, volume 5318 of Lecture Notes in Computer Sci-
ence, pages 533–549. Springer, 2008.

[Serafini and Homola, 2012] Luciano Serafini and Martin Homola. Contextualized knowledge repositories
for the semantic web. J. Web Sem., 12:64–87, 2012.

[Shapiro, 1983] Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[Sheth and Larson, 1990] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236, 1990.

[Syrjänen, 2006] Tommi Syrjänen. Debugging inconsistent answer set programs. In International Work-
shop on Nonmonotonic Reasoning (NMR), pages 77–83, 2006.

48 INFSYS RR 1843-12-09

[Weinzierl, 2012] Antonius Weinzierl. Comparing inconsistency resolutions in multi-context systems. In
Daniel Lassiter and Marija Slavkovik, editors, New Directions in Logic, Language and Computation,
volume 7415 of Lecture Notes in Computer Science, pages 158–174. Springer Berlin Heidelberg, 2012.

[Zhang and Ding, 2008] Yan Zhang and Yulin Ding. Ctl model update for system modifications. J. Artif.
Intell. Res. (JAIR), 31:113–155, 2008.

INFSYS RR 1843-12-09 49

A Examples

In this section, we give the abstract logics LA and LaspΣ in detail.

Example 29. We formally introduce the abstract logic LA to capture ontologies and description logic. Over
a signature of atomic concepts C, roles R, and individuals I , T-Box axioms and A-Box axioms are defined
based on the notion of concepts. Concepts are inductively defined as follows: every atomic concept is a
concept, and if C,D are concepts and R ∈ R is a role, then C u D, C t D, ¬C, ∀R.C, and ∃R.C are
concepts. Given concepts C,D, a role R ∈ R, and individuals a, b ∈ I , a T-Box axiom (terminological
axiom) is a formula of the form C v D, and an A-Box axiom (assertional axiom) is either of the form a : C,
or of the form (a, b) : R. Finally, ALC axioms are either T-Box axioms or A-Box axioms.

Then, LA is composed of

• KB, being the collection of sets of ALC axioms,

• BS, being the set of possibly believed assertions, i.e., BS is the powerset of the set of positive A-Box
axioms, and

• ACC, being a mapping from knowledge bases to the set of assertions entailed by the knowledge base.
As ALC amounts to a fragment of first-order logic, the semantics of an ALC knowledge base π can
be given by a rewriting to first-order logic. For our purpose, ACC(π) = {S} where S is the set of
classically entailed atomic assertions of the first-order rewriting of π.

Example 30. We give the formal definition of LaspΣ , the abstract logic for disjunctive logic programs under
the answer-set semantics over a non-ground signature Σ. For LaspΣ = (KB,BS,ACC),

• KB is the set of normal disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of rules of the
form

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm,

where all ai, bj , are atoms over a first-order language Σ, and n + m > 0. Let r be a rule of the
aforementioned form, then H(r) = {a1, . . . , an}, B+(r) = {b1, . . . , bi}, B− = {bi+1, . . . , bm},
and B(r) = B+(r) ∪ B−(r). Each rule r ∈ kb must be safe, i.e., vars(H(r)) ∪ vars(B−(r)) ⊆
vars(B+(r)), where for a set of atoms A, vars(A) = {vars(a) | a ∈ A} and vars(a) is the set of
first-order variables occurring in the atom a,

• BS is the set of Herbrand interpretations over Σ, i.e, each bs ∈ BS is a set of ground atoms from Σ,
and

• ACC(kb) returns the set of kb’s answer sets: for P ∈ KB and T ∈ BS let P T = {r ∈ grnd(P) |
T |= B(r)} be the FLP-reduct of P wrt. T , where grnd(P) returns the ground version of all rules in
P . Then bs ∈ BS is an answer set, i.e., bs ∈ ACC(kb), iff bs is a minimal model of kbbs .

B Proofs

B.1 Proofs for Section 3

Proof of Proposition 2. (⇒) Let Dr = (D1, D2, fg) ∈ D±,rm (M), we show that (D1, D2) ∈ D±m(M).

50 INFSYS RR 1843-12-09

We first show that (D1, D2) ∈ D±(M). Since Dr is a refined diagnosis, it holds that M [br(M) \D1 ∪
fg(D2)] 6|= ⊥. Let Sw be a witnessing equilibrium of M [br(M) \ D1 ∪ fg(D2)], then it holds for every
r ∈ D2 that Sw fg(r) sinceDr is minimal. Therefore, Sw is an equilibrium ofM [br(M)\D1∪cf (D2)],
hence (D1, D2) ∈ D±(M). SinceDr is minimal, it holds for no r ∈ D2 that Sw hd(r)← body(fg(r))∪
B. where body(fg(r)) ⊂ B ⊆ body(r), hence refine(D2, Sw) = fg.

It remains to show that (D1, D2) ∈ D±m(M). Assume for contradiction that there exists (D′1, D
′
2) ⊂

(D1, D2) such that (D′1, D
′
2) ∈ D±m(M). Let S′w be a witnessing equilibrium of (D′1, D

′
2) and fg′ =

refine(D′2, S
′
w), then it holds that (D′1, D

′
2, fg

′) ∈ D±,r(M) since S′w is a witnessing equilibrium of
M [br(M) \ D′1 ∪ fg′(D′2)]. Since (D′1, D

′
2, fg

′) ∈ D±,r(M) and (D′1, D
′
2) ⊂ (D1, D2) it holds that

Dr is not a minimal refined diagnosis, which is a contradiction. Therefore, no such (D′1, D
′
2) exists and

(D1, D2) ∈ D±m(M).

(⇐) Let D = (D1, D2) ∈ D±m(M), let Sw be a witnessing equilibrium of D, and let refine(D2, Sw) = fg.
Furthermore, it holds that no witnessing equilibrium S′w exists with refine(D2, S

′
w) = fg′ and fg′ < fg.

We show that (D1, D2, fg) is a minimal refined diagnosis of M . By definition of refine it holds for every
r ∈ D2 that Sw fg(r). Furthermore, there is no body-reduction function fg′ such that it holds for every
r ∈ D2 that Sw fg′(r). Therefore, Sw is an equilibrium ofM [br(M)\D1∪fg(D2)] and (D1, D2, fg) ∈
D±,r(M).

Towards contradiction assume that (D1, D2, fg) is not minimal, then there exists (D′1, D
′
2, fg

′) ∈
D±,rm (M) such that (D′1, D

′
2) ⊂ (D1, D2) or D1 = D′1, D2 = D′2, and fg′ < fg. In the former case, there

exists a witnessing equilibrium S′w of M [br(M)\D′1∪fg′(D′2)]. Therefore S′w is a witnessing equilibrium
of M [br(M) \D′1 ∪ cf ({r ∈ D′2 | S′w fg′(r)})], i.e., D′′ = (D′1, {r ∈ D′2 | S′w fg′(r)}) ∈ D±(M).
Since D′′ ⊂ D this is a contradiction to D ∈ D±m(M). In the latter case holds fg′ < fg and there
exists a witnessing equilibrium S′w of M [br(M) \ D1 ∪ fg′(D2)]. Since (D′1, D

′
2, fg

′) ∈ D±,rm (M)
and D′1 = D1, D

′
2 = D2, it holds that S′w also is an equilibrium of M [br(M) \ D1 ∪ cf (D2)] and

refine(D2, S
′
w) = fg′. Then, fg′ < fg directly contradicts that our assumption that no such S′w and

fg′ exist. Since all cases are contradicting, it must hold that (D1, D2, fg) is a minimal refined diagnosis. �

Proof of Proposition 3. (⇒) Let (E1, E2) ∈ E±(M), pick fg such that for every r ∈ E2 holds fg(r) =
hd(r)← ., i.e. {fg(r) | r ∈ E2} = cf (E2). Observe that for every r ∈ E2 holds that fg(r) = r, therefore
for all sets R1, R2 of bridge rules with r ∈ R2 holds that R1 ∪ fg(R2) = R1 ∪ {r} ∪ fg(R2 \ {r}).
Then, for all E1 ⊆ R1 ⊆ br(M), R2 ⊆ br(M), and body-reduction functions fg′ such that body(fg(r)) ⊆
body(fg′(r)) holds if r ∈ E2, it holds thatM [R1∪fg′(R2)] |= ⊥, i.e., (E1, E2, fg) is a refined explanation.
(⇐) Let (E1, E2, fg) be a refined explanation, i.e., M [R1 ∪ fg′(R2)] |= ⊥ for every E1 ⊆ R1 ⊆ br(M),
R2 ⊆ br(M), and body-reduction function fg′ with body(fg(r)) ⊆ body(fg′(r)) for every r ∈ E2.
Consider the body-reduction function fg′ such that for all r ∈ br(M)\E2 it holds that fg′(r) = hd(r)← .,
i.e., fg′(R′2) = cf (R′2) for every R′2 ⊆ br(M) \ E2. Observe that body(fg(r)) ⊆ body(fg′(r)) holds for
every r ∈ E2, therefore M [R1 ∪ fg′(R2)] |= ⊥ for every E1 ⊆ R1 ⊆ br(M) and R2 ⊆ br(M). Hence,
M [R1 ∪ cf (R′2)] |= ⊥ for every R′2 ⊆ br(M) \ E2 and thus (E1, E2) ∈ E±(M). �

B.2 Proofs for Section 4

Proof of Theorem 1. In this proof, for variablesEi,Di, andRi with i ∈ {1, 2}, we assume thatEi, Di, Ri ⊆
br(M). Furthermore, we denote by X the complement of set X wrt. br(M), i.e., X = br(M) \X .

(a) Given a pair (E1, E2). For all diagnoses (D1, D2) ∈ D±(M), D1 ∩ E1 or D2 ∩ E2 or both are

INFSYS RR 1843-12-09 51

nonempty iff

for all (D1, D2) we have that

M [D1 ∪ cf (D2)] 6|= ⊥ implies D1 ∩ E1 6= ∅ or D2 ∩ E2 6= ∅

which (by reversing the implication and simplifying) is equivalent to

for all (D1, D2) we have that

(D1 ∩ E1 = ∅ and D2 ∩ E2 = ∅) implies M [D1 ∪ cf (D2)] |= ⊥.

As A ∩B = ∅ with A,B ⊆ br(M) is equivalent to A ⊆ B we next obtain

for all (D1, D2) we have that

(E1 ⊆ D1 and D2 ⊆ E2) implies M [D1 ∪ cf (D2)] |= ⊥.

If we let D1 = R1 and D2 = R2 this amounts to

for all (R1, R2) we have that

(E1 ⊆ R1 and R2 ⊆ E2) implies M [R1 ∪ cf (R2)] |= ⊥. (35)

This proves the result (a) as this last condition is the one of an explanation (E1, E2) in Definition 6. Note
that, if (∅, ∅) ∈ D±(M), then no explanation exists; this is intentional and corresponds to the definitions of
diagnosis and explanation for consistent systems.

(b) As minHSM (X) contains the ⊆-minimal elements in HSM (X), and E±m(M) contains the ⊆-
minimal elements in E±(M), (b) follows from (a). �

Proof of Corollary 1. Let min(X) be the set of ⊆-minimal elements in a collection X of sets. Then
for every (A,B) ∈ X \ min(X) there is a pair (A′, B′) ∈ min(X) with (A′, B′) ⊆ (A,B). Given
HSM (min(X)), every pair (A,B) ∈ X \ min(X) is hit by every pair (C,D) ∈ HSM (min(X)). There-
fore HSM (min(X)) = HSM (X). Then (a) immediately follows from Theorem 1 (a), and (b) immediately
follows from Theorem 1 (b). �

Proof of Lemma 1. A collection of sets C = {C1, . . . , Cn} over a universe, i.e., Ci ⊆ U , 1 ≤ i ≤ n,
can be seen as a hypergraph H = (U,C) with vertices U and hyperedges Ci ∈ C. If no hyperedge Ci
is contained in any hyperedge Cj , i 6= j, it is called simple. A hitting set on C is called transversal, and
the hypergraph (U,C ′) containing as hyperedges C ′ all minimal hitting sets of the hypergraph H is called
transversal hypergraph Tr(H).

We can map a collectionX = {X1, . . . , Xn} of pairsXi = (Xi
1, X

i
2) of sets,Xi

1,Xi
2 ⊆ U bijectively to

a collection µ(X) = {µ(X1), . . . , µ(Xn)} over U ∪{u′ | u ∈ U}where µ(Xi
1, X

i
2) = Xi

1∪{u′ | u ∈ Xi
2}.

Then, (A,B) is a hitting set ofX iff µ(A,B) is a hitting set of µ(X), and well-known results for transversal
hypergraphs [Berge, 1989] carry over to minimal hitting sets over pairs.

In particular, given a simple hypergraphH = µ(X), it holds that Tr(Tr(µ(X))) = µ(X). This directly
translates into the lemma, because µ(X) is a simple hypergraph due to incomparability (also called the anti-
chain property) of X , and µ is bijective, therefore transversal hypergraphs can be mapped back to minimal
hitting sets. �

52 INFSYS RR 1843-12-09

Proof of Theorem 2. From Corollary 1 (b) we have thatE±m(M) = minHSM (D±m(M)). Applying minHSM
on both sides of this formula and then using Lemma 1 yields

minHSM (E±m(M)) = minHSM (minHSM (D±m(M))) = D±m(M).

�

Proof of Proposition 5. Let (D1, D2) ∈ D±m(M) and let S be a witnessing belief state for it, i.e., S is an
equilibrium of M [br(M) \D1 ∪ cf (D2)]. Towards contradiction, assume that D1 ∩D2 6= ∅. Consider any
bridge rule r ∈ D1∩D2 and let hc (r) = i and hb (r) = p. Furthermore, consider r′ = cf (r) = (i : p)← .,
then body(r′) = ∅ and thus r′ is applicable in any belief state. Therefore, r′ ∈ app(br i(M [br(M) \
D1 ∪ cf (D2)]), S) and consequently p ∈ {hb (r) | r ∈ app(br i(M [br(M) \ D1 ∪ cf (D2)]), S)}. For
(D′1, D

′
2) = (D1 \{r}, D2), we thus obtain that p ∈ {hb (r) | r ∈ app(br i(M [br(M)\D′1∪cf (D′2)]), S)}

and since all other bridge rules are as before, we conclude that app(br i(M [br(M) \D′1 ∪ cf (D′2)]), S) =
app(br i(M [br(M)\D1∪cf (D2)]), S) for all i ∈ c (M). Consequently S is an equilibrium ofM [br(M)\
D′1∪cf (D′2)] and (D′1, D

′
2) ∈ D±(M). But (D′1, D

′
2) ⊂ (D1, D2) contradicts (D1, D2) ∈ D±m(M), which

proves the result. �

Lemma 4. Let U be a splitting set of an MCS M and let R1, R2 ⊆ br(M). Then, U is also a splitting set
of M [R1 ∪ cf (R2)].

Proof. Towards contradiction assume that U is not a splitting set for M [R1 ∪ cf (R2)], i.e., there exists a
rule r ∈ br(M [R1 ∪ cf (R2)]) such that hc (r) ∈ U and bc (r) 6⊆ U . Thus, there exists (i : p) ∈ body(r)
such that i /∈ U . Since body(r′) = ∅ for all r′ ∈ cf (R2), it follows that r ∈ R1 and since R1 ⊆ br(M), it
follows that r ∈ br(M). By the assumption that hc (r) ∈ U and because U is a splitting set of M , it follows
that i ∈ U for all (i : p) ∈ body(r), which contradicts that bc (r) 6⊆ U . Therefore, no such r can exists and
U is also a splitting set of M [R1 ∪ cf (R2)]. �

Lemma 5. Let M be an MCS, let B be a set of bridge rules compatible with M , and let U ⊆ c (M) be a
splitting set for M [B]. Then, for every i ∈ U and belief state S = (S1, . . . , Sn) of M it holds that:

Si ∈ ACCi(kbi ∪ app(br i(M [bU]), S)) iff Si ∈ ACCi(kbi ∪ app(br i(M [B]), S)).

Proof. We first show that br i(M [bU]) = br i(M [B]) holds for all i ∈ U :

(⊆) From the definition of the bottom, bU , it follows that bU ⊆ B, thus br i(M [bU]) ⊆ br i(M [B]).

(⊇) Consider r ∈ br i(M [B]), it holds that hc (r) = i. Since U is a splitting set and i ∈ U it follows that
r ∈ bU by definition of the bottom bU . Hence, br i(M [bU]) ⊇ br i(M [B]).

As a consequence of the above, i.e., of br i(M [bU]) = br i(M [B]), it follows that app(br i(M [bU]), S) =
app(br i(M [B]), S) holds for all i ∈ U , and therefore it is also the case that

ACCi(kbi ∪ app(br i(M [bU]), S)) = ACCi(kbi ∪ app(br i(M [B]), S)),

which proves the lemma. �

Observe that splitting sets preserve acceptability not only when bridge rules in the remainder of the
MCS are modified (as in Lemma 5), but also when belief sets in the remainder are exchanged. For two
belief states S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) of an MCS, we say that S coincides with S′ on U ,

written S =U S
′, if for all i ∈ U holds Si = S′i.

INFSYS RR 1843-12-09 53

Lemma 6. Let M be an MCS, let B be a set of bridge rules compatible with M , and let U be a splitting set
for M [B]. Furthermore, let S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) be belief states of M , and let bU ⊆

R ⊆ B. Then, S =U S
′ implies ACCi(kbi∪app(br i(M [B]), S,)) = ACCi(kbi∪app(br i(M [R]), S′,)).

Proof. Since bU ⊆ R it holds for all i ∈ U that br i(M [B]) = br i(M [R]). Furthermore, because U is a
splitting set, it follows that c ∈ U for all (c : p) ∈ body(r) such that r ∈ br i(M [B]) and i ∈ U . As a
consequence p ∈ Sc iff p ∈ S′c since S and S′ coincide on U and r ∈ br i(M [B]) iff r ∈ br i(M [R]). �

Proof of Proposition 6. For reasoning about explanations, the concept of explanation range proves to be
useful. For a given pair E = (E1, E2) ∈ 2br(M) × 2br(M) of sets of bridge rules and B ⊆ br(M), the
explanation range of E with respect to B is Rg(E,B) = {(R1, R2) | E1 ⊆ R1 ⊆ B and R2 ⊆ B \ E2}.
Intuitively, Rg(E,B) are “relevant pairs” for E wit respect to the upper bound B. It follows directly from
Definition 6 that, E = (E1, E2) ∈ E±(M) iff M [R1 ∪ cf (R2)] |= ⊥ for all (R1, R2) ∈ Rg(E, br(M)).

In the following we prove Item (i): E ∈ E±(M [bU]) holds iff E ∈ E±(M) holds and E is U -headed.

(⇒) Let (R′1, R
′
2) ∈ Rg(E, br(M)) be arbitrary, then both R′1 ⊆ br(M) and R′2 ⊆ br(M). By Lemma 4,

U is also a splitting set for the MCS N ′ = M [R′1 ∪ cf (R′2)].
Let R1 = R′1 ∩ bU and let R2 = R′2 ∩ bU . As E1, E2 ⊆ bU , it follows that (R1, R2) ∈ Rg(E, bU).

Because E is an explanation of M [bU], it holds for N = M [R1 ∪ cf (R2)] that N |= ⊥, i.e., for every belief
state S exists a context i ∈ U with Si /∈ ACCi(kbi ∪ app(br i(N), S)).

Since B = R′1 ∪ cf (R′2) is compatible with M and U is a splitting set for N ′ = M [B], we conclude
from Lemma 5 that for every belief state S it holds that Si ∈ ACCi(kbi ∪ app(bri(N ′), S)) iff Si ∈
ACCi(kbi ∪ app(bri(N), S)). Since N |= ⊥ this implies that for every S there exists some i ∈ U such
that Si /∈ ACCi(kbi ∪ app(bri(N ′), S)) and thus N ′ |= ⊥.

Since (R′1, R
′
2) ∈ Rg(E, br(M)) is arbitrary, it follows that E ∈ E±(M). Furthermore, E is U -headed

by definition.

(⇐) Let E = (E1, E2) ∈ E±(M) such that E is U -headed, and consider some arbitrary (R1, R2) ∈
Rg(E, bU). Since bU ⊆ br(M), we conclude that (R1, R2) ∈ Rg(E, br(M)). Since E is an explanation of
M , it follows thatN = M [R1∪cf (R2)] is such thatN |= ⊥. As this holds for every (R1, R2) ∈ Rg(E, bU),
it follows that (E1, E2) ∈ E±(M [bU]).

This establishes item (i).
Next we prove Item (ii): D ∈ D±(M [bU]) holds iff there exists D′ ∈ D±(M) such that D ⊆ D′.

(⇒) Let D = (D1, D2) ∈ D±(M [bU]). Then, there exists an equilibrium S of M [R] where R = (bU \
D1)∪cf (D2). Consider (D′1, D

′
2) = (D1∪(br(M)\bU), D2) and observe that (br(M)\D′1)∪cf (D′2) = R,

because br(M) \D′1 = bU \D1. Since S is an equilibrium of M [R], it follows that D′ ∈ D±(M).

(⇐) Assume D′ ∈ D±(M) where D′ = (D′1, D
′
2). First assume that E±(M [bU]) = ∅, i.e., M [bU] is

consistent. Then, D = (∅, ∅) ∈ D±(M [bU]), hence D ⊆ D′ and D ∈ D±(M [bU]).
Otherwise, E±(M [bU]) 6= ∅. Consider (D1, D2) = (D′1 ∩ bU , D′2 ∩ bU) and let R′ = br(M) \D′1 ∪

cf (D′2) and R = bU \ D1 ∪ cf (D2). Observe that br j(M [R]) = ∅ for all j ∈ c (M) \ U , because
R ⊆ bU ∪ cf (bU) and for no rule r ∈ bU ∪ cf (bU) it holds that hc (r) = j.

As M [∅] is consistent, there exists some S0
j ∈ ACCj(kbj) for every j ∈ c (M). Let S′ = (S′1, . . . , S

′
n)

be an equilibrium for M [R′] (which exists because D′ ∈ D±(M)). Let S = (S1, . . . , Sn) such that
Si = S′i if i ∈ U , and Si = S0

i otherwise. Then, S is an equilibrium for M [R]. Indeed, first consider
i ∈ c (M) \ U . Since br i(M [R]) = ∅, it follows that app(br i(M [R]), S) = ∅, hence S0

i ∈ ACCi(kbi ∪
app(br i(M [R]), S)). Second, consider i ∈ U . Note that U is a splitting set ofM [R], because br j(M [R]) =
∅ for all j ∈ c (M) \ U . Since bU ⊆ R ⊆ R′ and S =U S′, it follows from Lemma 6 that ACCi(kbi ∪

54 INFSYS RR 1843-12-09

app(br i(M [R]), S)) = ACCi(kbi∪app(br i(M [R′]), S′)). From S′i ∈ ACCi(kbi∪app(br i(M [R′]), S′))
and Si = S′i, it thus follows that Si ∈ ACCi(kbi ∪ app(br i(M [R]), S)).

Consequently, Si ∈ ACCi(kbi ∪ app(br i(M [R]), S)) for all i ∈ c (M); hence S is an equilibrium of
M [R]. Since R1 ∪R2 ⊆ bU , it follows that D ∈ D±(M [bU]). �

Proof of Corollary 2. Let E ∈ E±m(M [bU]), then it follows from Proposition 6 that E ∈ E±(M) and E is
U -headed. Assume for a contradiction that E /∈ E±m(M). Hence, there exists some E′ ∈ E±(M) such that
E′ ⊂ E. Since E is U -headed, it follows that E′ also is U -headed. Thus by Proposition 6 it follows that
E′ ∈ E±(M [bU]), which contradicts that E ∈ E±m(M [bU]). �

Proof of Proposition 7. As in the proof of Proposition 6, let (R1, R2) ∈ Rg(E,B) iff E1 ⊆ R1 ⊆ B and
R2 ⊆ B \ E2.

Wlog. assume that M = (C1, . . . , Cn), U = {1, . . . , k}, and U ′ = {k + 1, . . . , n}, where 1 ≤ k ≤ n.
Towards a contradiction assume that some E = (E1, E2) ∈ E±m(M) exists which contains rules from both,
bU and bU ′ . Consider an arbitrary (R1, R2) ∈ Rg(E, br(M)). Since E is an explanation, it holds that
M [R1 ∪ cf (R2)] |= ⊥.

GivenR = (R1, R2) s.t.R1, R2 ⊆ bU ⊆ br(M) and V , we say that the V -projection ofR is inconsistent
iff M [(R1 ∩ V) ∪ cf (R2 ∩ V)] |= ⊥. We prove that for every R = (R1, R2) ∈ Rg(E, br(M)) either its
U -projection or its U ′-projection is inconsistent, or both.

Towards contradiction assume that neither projection is inconsistent. Then, there exists an equilibrium
S = (S1, . . . , Sn) of M [(R1 ∩ U) ∪ cf (R2 ∩ U)] and an equilibrium S′ = (S′1, . . . , S

′
n) of M [(R1 ∩

U ′) ∪ cf (R2 ∩ U ′)]. Consider the belief state S′′ = (S1, . . . , Sk, S
′
k+1, . . . , S

′
n). By Lemma 6, it holds

that Si ∈ ACCi(kbi ∪ app(br i(M [R1 ∪ cf (R2)]), S′′) for all i ∈ U , because U is a splitting set of M ,
bU ⊆ (R1∩U)∪ cf (R2∩U) ⊆ R1∪ cf (R2) , and S =U S

′′. Analogously, it holds that S′i ∈ ACCi(kbi∪
app(br i(M [R1 ∪ cf (R2)]), S′′) for all i ∈ U ′. Consequently, S′′ is an equilibrium of M [R1 ∪ cf (R2)],
which contradicts that E is an explanation. Therefore, for every R ∈ Rg(E, br(M)) it holds that either the
U -projection of R, the U ′-projection of R, or both are inconsistent.

Next, we distinguish for all R ∈ Rg(E, br(M)) which projections are inconsistent.
Case (1): for every R ∈ Rg(E, br(M)) its U -projection is inconsistent. Then, E′ = (E1 ∩ bU , E2 ∩ bU)
is an explanation, since for every R′ ∈ Rg(E′, br(M)) it holds that R′ is a U -projection of some R ∈
Rg(E, br(M)), which is inconsistent. Since E1 ∪ E2 6⊆ bU , we have E′ ⊂ E. Since E′ ∈ E±(M), it
follows that E /∈ E±m(M), which contradicts the assumption that E ∈ E±m(M).
Case (2): for all R ∈ Rg(E, br(M)) it holds that the U ′-projection is inconsistent. Analogously to the
previous case, we conclude that E′ = (E1 ∩ bU ′ , E2 ∩ bU ′) is an explanation of M such that E′ ⊂ E, which
contradicts the assumption that E ∈ E±m(M).
Case (3): Neither case (1) nor case (2) applies. That is, for some R = (R1, R2) ∈ Rg(E, br(M)) the
U -projection is consistent, and also for some R′ = (R′1, R

′
2) ∈ Rg(E, br(M)) the U ′-projection is con-

sistent. This means that there exists some belief state S = (S1, . . . , Sn) such that Si ∈ ACCi(kbi ∪
app(br i(M [(R1 ∩ bU) ∪ cf (R2 ∩ bU)]), S)) for all i ∈ c (M) and there exists some belief state S′ =
(S′1, . . . , S

′
n) such that S′i ∈ ACCi(kbi ∪ app(br i(M [(R′1 ∩ bU ′) ∪ cf (R′2 ∩ bU ′)]), S)) for all i ∈ c (M).

Now consider R′′ = (R′′1 , R
′′
2) = ((R1 ∩ bU) ∪ (R′1 ∩ bU ′), (R2 ∩ bU) ∪ (R′2 ∩ bU ′)). First, we show

that R′′ ∈ Rg(E, br(M)). Since U and U ′ partition c (M) it holds that E1 = (E1 ∩ bU)∪ (E1 ∩ bU ′); since
E1 ⊆ R1, clearly E1 ∩ bU ⊆ R1 ∩ bU . Analogously, it holds that E1 ∩ bU ′ ⊆ R1 ∩ bU ′ . Consequently,
E1 = (E1 ∩ bU) ∪ (E1 ∩ bU ′) ⊆ (R1 ∩ bU) ∪ (R′1 ∩ bU ′); hence E1 ⊆ R′′1 ⊆ br(M). For R′′2 observe that
(R2 ∪ R′2) ∩ E2 = ∅ since both, R2 and R′2, are disjoint with E2 by definition. Therefore ((R2 ∩ bU) ∪
(R′2 ∩ bU ′)) ∩ E2 = ∅; hence R′′2 ⊆ br(M) \ E2. In conclusion, it holds that R′′ ∈ Rg(E, br(M)).

INFSYS RR 1843-12-09 55

Second, we show that S′′ = (S1, . . . , Sk, S
′
k+1, . . . , S

′
n) is an equilibrium of the MCSM [R′′1 ∪cf (R′′2)].

Since S′′ =U S and as already shown, R1 ∩ bU ⊆ R′′1 and cf (R2 ∩ bU) ⊆ cf (R′′2), it follows by Lemma 6
that Si ∈ ACCi(kbi ∪ app(br i(M [R′′1 ∪ cf (R′′2)]), S′′)) for all i ∈ U . Analogously, the same is shown for
U ′, i.e., S′i ∈ ACCi(kbi ∪ app(br i(M [R′′1 ∪ cf (R′′2)]), S′′)) for all i ∈ U ′. Therefore, S′′ is an equilibrium
of M [R′′1 ∪ cf (R′′2)]. Since R′′ ∈ Rg(E, br(M)), it follows that E /∈ E±(M). This is a contradiction to the
assumption that E ∈ E±m(M).

Since all cases yield a contradiction, it follows that everyE ∈ E±m(M) is either U -headed or U ′-headed.
�

Proof of Corollary 3. (⊆) Let E±m(M). Then by Proposition 7, E is either U -headed or U ′-headed. If E is
U -headed, then by Proposition 6 E ∈ E±(M [bU]). Assume that E /∈ E±m(M [bU]), hence some E′ ⊂ E
exists such that E′ ∈ E±m(M [bU]). By Proposition 7, E′ ∈ E±m(M). This contradicts that E ∈ E±m(M),
which gives E ∈ E±m(M [bU). Analogously, if E is U ′-headed, then E ∈ E±m(M [bU ′]). It follows that
E ∈ E±m(M [bU]) ∪ E±m(M [bU ′]).

(⊇) Let E ∈ E±m(M [bU]) (respectively E ∈ E±m(M [bU ′])). Since U (respectively U ′) is a splitting set of
M , from Corollary 2 it follows that E ∈ E±m(M). In conclusion it holds that E±m(M) ⊇ E±m(M [bU]) ∪
E±m(M [bU ′]) �

Proof of Proposition 8. By Corollary 3, E±m(M) = E±m(M [bU]) ∪ E±m(M [bU ′]), while by Theorem 2 each
diagnosis is a minimal hitting set onE±m(M). Because U and U ′ partitionM ,E±m(M [bU]) andE±m(M [bU ′])
are on disjoint sets. Therefore the minimal hitting set of their unions is the pairwise combination of their
minimal hitting sets. That is, (D1, D2) ∈ minHSM (E±m(M)) iff (D1, D2) = (A1 ∪ B1, A2 ∪ B2) with
(A1, A2) ∈ minHSM (E±m(M [bU]) and (B1, B2) ∈ minHSM (E±m(M [bU ′]). From Theorem 2 it follows
that D±m(M) = minHSM (M). This proves the proposition. �

B.3 Proofs for Section 5

Proof of Lemma 2. (⇒) Let S= (S1, . . . , Sn). Then Si ∈ACC(kbi ∪Hi), where the set Hi of active
bridge rule heads at context Ci is app(br i, S). Bridge rule applicability depends on output beliefs only,
hence app(br i, S) = app(br i, So). Thus So = (So1 , . . . , S

o
n) with Soi = Si ∩OUT i is an output-projected

equilibrium of M .
(⇐) Let So = (So1 , . . . , S

o
n), then, as So is an output-projected equilibrium, for each i, 1 ≤ i ≤ n,

Soi ∈ {T oi | Ti ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, So)})}, and therefore for each Soi there exists some
belief set Si such that Si ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i, So)}) and Soi = Si ∩OUT i. If we take for
each i some arbitrary Si satisfying the above condition, we obtain T = (S1, . . . , Sn). As So and T agree
on all output beliefs of all contexts, app(br i, So) = app(br i, T) and hence T is an equilibrium of M . By
construction of T , it holds that also T o = So. �

Proof of Proposition 9. (Membership) Given a MCS M = (C1, . . . , Cn) we compute OUT i for all Ci in
O(|br(M)|), then we guess output projected belief sets Soi ⊆ OUT i, 1 ≤ i ≤ n, yielding an output-
projected belief state So. We evaluate bridge rule applicability of all rules in So in time O(|br(M)|) and
thereby obtain a set of active bridge rule heads Hi for each context Ci, 1 ≤ i ≤ n. Finally we check
acceptability of Soi for all contexts Ci, i.e., whether Soi ∈ ACCi(kbi ∪Hi)|OUT i . We accept if all contexts
accept, otherwise we reject. This check is a conjunction of n independent acceptability checks of maximum
complexity equal to the smallest upper bound C on context complexities which is C = CC(M). If C is
closed under conjunction, we can unite these checks into one check of complexity C over an instance of

56 INFSYS RR 1843-12-09

size O(|M |). Then the overall acceptability check is in C as well. This way we check the output-projected
equilibrium property for all possible output-projected equilibria. Therefore if no computation path accepts,
then the MCS M is inconsistent. If there is one path that accepts, then the output-projected belief state So

corresponding to the guesses on this path is an output-projected equilibrium which fulfills all conditions
of Definition 13. Therefore M is consistent iff at least one path accepts. Hence if C is closed under
conjunction and projection, then the guess of sizeO(|br(M)|) can be projected away (i.e., incorporated into
I ′, see Section 5) and the complexity of MCSEQ is in C. For CC(M) = P (which is presumably not closed
under projection) the complexity of MCSEQ is in NP.

(NP-hardness for CC(M) = P) We show that consistency checking in an MCS M with lower con-
text complexity CC(M) ≥ P is NP-hard. We use the part of the MCS structure in Figure 3a labeled
with MCSEQ. We reduce a 3-SAT instance F = c1 ∧ . . . ∧ cn on variables X = {x1, . . . , xk} and
clauses ci = ci,1 ∨ ci,2 ∨ ci,3 with ci,j ∈ X ∪ {¬x | x ∈ X} to consistency checking in an MCS M =
(CgenU

, CevalF , Ccheck). Context CgenU
= (LGUESS , kbgenU

, brgenU
) with kbgenU

= X and brgenU
= ∅

has linear complexity, while CevalF = (LASP , kbevalF , brevalF) and Ccheck = (LASP , kbcheck , brcheck)
have context complexity P. M contains the following bridge rules:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ k (36)

rα: (check : nsat)← not (evalF : sat). (37)

Hence brevalF = {ru,i | ∀i : 1 ≤ i ≤ k} and brcheck = {rα}. The knowledge base kbevalF is as follows:

sat i ← li,1. sat i ← li,2. sat i ← li,3. ∀i : 1 ≤ i ≤ n (38)

sat ← sat1, . . . , satn. (39)

where li,j is
{

xv if ci,j = xv
not xv if ci,j = ¬xv

The knowledge base kbcheck is as follows:

⊥ ← nsat . (40)

ContextCgenU
accepts all possible subsets ofX , representing all possible truth assignments for the variables

X . (36) imports the truth assignment into CevalF , which evaluates F under that truth assignment using rules
(38) and (39). Then CevalF puts the belief sat in its belief set iff F is satisfied given the truth assignment
accepted by CgenU

. Finally Ccheck imports the belief nsat iff sat is not accepted at CevalF . Therefore
constraint (40) makes Ccheck inconsistent, i.e., accepts no belief set, iff sat is not true in CevalF iff there is
no satisfying truth assignment for F . Therefore, if F has a satisfying assignment with variables T ⊆ X set
to t and variables X \T set to f , thenM has an equilibrium S = (SgenU

, SevalF , Scheck) where SgenU
= T ,

SevalF = T ∪ {sat i | 1 ≤ i ≤ n} ∪ {sat}, and Scheck = ∅. Conversely, if M has an equilibrium
S = (SgenU

, SevalF , Scheck), then Scheck does not contain nsat due to constraint (40). Hence SevalF must
contain sat , thus SevalF contains {sat}∪{sat i | 1 ≤ i ≤ n} due to (39). It follows that the set of bridge rule
heads active at CevalF corresponds to a satisfying assignment of F . This shows that MCS M is consistent
iff F is a satisfiable 3-SAT instance. As the size of M is linear in the size of the formula F and 3-SAT is an
NP-hard problem, hardness for equilibrium existence follows.

(CC(M)-hardness) We show that consistency checking in an MCS M with lower context complexity
CC(M) ≥ C is C-hard if C is a class with complete problems that is closed under conjunction and pro-
jection. For that we use part of the MCS structure labeled with MCSEQ in Figure 3b. We reduce context

INFSYS RR 1843-12-09 57

acceptability checking, i.e., an instance (Ha, Sa), Ca = (kba, bra, La) with IN a, OUT a and context com-
plexity CC(Ca) to consistency checking in an MCS M = (Ca ′ , Ccheck) such that the context complexity
CC(Ca ′) = CC(Ca) and CC(Ccheck) = P. Intuitively, Ca ′ gets input Ha, bridge rule rα is applicable only
if Sa is accepted by Ha, and Ccheck verifies whether rα is applicable. Then M is consistent iff (Ha, Sa),
Ca is a ‘yes’ instance. Formally, Ca ′ = (kba ∪ Ha, ∅, La) uses knowledge base and logic from Ca, while
Ccheck = (kbcheck , brcheck , LASP) use the specific logic LASP that can be decided in P. Bridge rules of M
are as follows:

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(41)

ren : (check : en)←. (42)

The knowledge base kbcheck is as follows:

⊥ ← not equalS′a , en. (43)

Bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is consistent. Wlog.
we assume that Ca accepts some belief set given input Ha. Ca ′ contains the logic of Ca and its knowledge
base already contains bridge rule heads Ha. Therefore Ca ′ accepts a belief set Sfull

a , such that Sfull
a ∪

OUT a = Sa, iff (Ha, Sa), Ca is a ‘yes’ instance. Therefore, belief state S = (Sfull
a , {equalS′a , en})

is an equilibrium iff (Ha, Sa), Ca is a ‘yes’ instance. All belief states where Ca ′ accepts a belief set T
with T ∩ OUT a 6= Sa trigger constraint (43) and therefore lead to an inconsistency. Therefore M has an
equilibrium, and this equilibrium is S iff context (Ha, Sa), Ca is a ‘yes’ instance for context acceptability
checking. We thus have reduced context acceptability checking to consistency checking in M and hardness
follows.

(Alternative reduction for NP-hardness with P-contexts) Note that the above reduction for P-contexts
uses an acyclic MCS with stratified negation in bridge rules. Furthermore the context CgenU

accepts 2|X |

belief sets and the contexts CevalF and Ccheck accept at most one belief set for any input. In the above
reduction NP-hardness arises from the nondeterminism of CgenU

, i.e., from the number of belief sets po-
tentially accepted by context CgenU

. It is possible to obtain the hardness not from nondeterminism of a
context but from nondeterminism of bridge rules. To illustrate this, we next give an alternative hardness
reduction. (In subsequent proofs we only give one reduction, and there hardness arises from nondetermin-
ism of contexts.) We reduce the same 3-SAT instance F to an MCS M = (C1) consisting of one context
C1 = (LASP , kb1, br1). It contains the following bridge rules br1:

(1 : xi)← not (1 : x̄i). ∀i : 1 ≤ i ≤ k (44)

(1 : x̄i)← not (1 : xi). ∀i : 1 ≤ i ≤ k (45)

(1 : en)←. (46)

The knowledge base kb1 is as follows:

sat i ← li,1. sat i ← li,2. sat i ← li,3. ∀i : 1 ≤ i ≤ n (47)

sat ← sat1, . . . , satn. (48)

⊥ ← en, not sat . (49)

where li,j is
{
xv if ci,j = xv
x̄v if ci,j = ¬xv

58 INFSYS RR 1843-12-09

Without bridge rules, en is not true in the knowledge base, hence the body of constraint (49) is never
satisfied. ThereforeC1 satisfies our assumption that a context without bridge rules is consistent. The facts xi
and x̄i are contained only in heads of bridge rules (44) and (45) and not in heads of rules in kb1. Furthermore
bridge rules (44) and (45) are mutually exclusive in their applicability for each 1 ≤ i ≤ n. Therefore these
bridge rules guess for each xi whether xi or x̄i is part of the set of facts added to kb1. (47) and (48)
evaluate F wrt. the guess for xi: if xi is added by a bridge rule, then xi = t in F , otherwise xi = f . The
value of F wrt. the guess for xi and x̄i is represented as sat in kb1. The constraint (49) makes the context
inconsistent if en is true and sat is not true. Therefore if F is satisfied with variables T ⊆ X set to t
and variables X \ T set to f , then M has an equilibrium (S1) where S1 = {xi | xi ∈ T } ∪ {x̄i | xi ∈
X \ T } ∪ {sat i | 1 ≤ i ≤ n} ∪ {sat , en}. Conversely, if M has an equilibrium (S1), then S1 contains
en due to the unconditional bridge rule (46). Hence S1 must contain sat due to constraint (49), and thus
S1 contains {sat i | 1 ≤ i ≤ n} due to (48). Therefore the guess of bridge rules (44) and (45) corresponds
to a satisfying assignment of F . This shows that M is consistent iff F is satisfiable. Context C1 uses logic
LASP , therefore CC(M) ≥ CC(C1) = P. As the size of M is linear in the size of the formula F and 3-SAT
is an NP-hard problem, hardness for equilibrium existence follows. �

Proof of Proposition 10. (Membership) Given MCS M and D1, D2 ⊆ br(M), we compute the modified
MCS M ′ = M [br(M) \D1 ∪ cf (D2)] and return the result of deciding MCSEQ on M ′. By Definition 4,
this returns ‘yes’ iff (D1, D2) ∈ D±(M). The transformation can be done in timeO(|M |) therefore MCSD

is in the same complexity class as MCSEQ.
(Hardness) Deciding whether (∅, ∅) is a diagnosis of M can be decided by checking consistency of M ,

because (∅, ∅) ∈ D±(M) iff M is consistent. Therefore MCSD is as hard as MCSEQ for respective context
complexity. �

Proof of Proposition 11. (Membership) Given an MCSM andD1, D2 ⊆ br(M), we solve two independent
decision problems: (a) we decide whether (D1, D2) is a diagnosis ofM , and (b) we check whether a smaller
diagnosis (D′, D′′) ⊂ (D1, D2) exists in M . We return ‘yes’ if (a) returns ‘yes’ and (b) returns ‘no’. Thus,
this procedure returns ‘yes’ iff (a) (D1, D2) is a diagnosis and (b) no ⊆-smaller diagnosis exists. Therefore
the computation yields the correct result. For (a) we decide MCSD onM and (D1, D2). For (b) we guess for
each bridge rule in D1 whether it is contained in D′, and for each bridge rule in D2 whether it is contained
inD′′. Then we continue with the decision procedure MCSD onM and (D′, D′′), i.e., we guess presence of
output belief sets, evaluate bridge rule applicability, and check acceptability for each context. Consequently
for deciding (b) we decide the complement of a polynomial projection of MCSD. Therefore MCSDm is
in the complexity class of solving the MCSD problem and independently solving the complement of a
polynomially projected MCSD problem. Hence if CC(M) is closed under conjunction and projection, then
the complexity of MCSDm is in D(CC(M)). For CC(M) = P (which is presumably not closed under
projection) the complexity of MCSDm is in DP

1 .
(DP-hardness for CC(M) = P) We reuse ideas from the MCSEQ hardness proof for 3-SAT, but we now

use the complete topology shown in Figure 3a. We reduce two 3-SAT instances F andG on variables X and
Y , respectively, to minimal diagnosis recognition on MCS M = (CgenV

, CevalF , CgenU
, CevalG , Ccheck).

Intuitively, CgenU
and CevalF provide NP-hardness for satisfiability of F , while CgenV

and CevalG provide
coNP-hardness for unsatisfiability of G. CgenU

and CevalF are constructed from F exactly as for the proof
of MCSEQ hardness. Similarly, CgenV

andCevalG are constructed fromGwith bridge rules rv,j transferring

INFSYS RR 1843-12-09 59

a guessed set V ⊆ Y from CgenV
to CevalG . The bridge rules in M are as follows:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ |X | (50)

rv,j : (evalG : yj)← (genV : yj). ∀j : 1 ≤ j ≤ |Y| (51)

rα: (check : nsatF)← not (evalF : sat). (52)

rγ : (check : nsatG)← not (evalG : sat). (53)

Context Ccheck has the following knowledge base kbcheck :

⊥ ← nsatF . (54)

⊥ ← nsatG. (55)

If F andG are both satisfiable,M is consistent so (∅, ∅) ∈ D±m(M). If F is satisfiable andG is unsatisfiable,
M is inconsistent and a minimal diagnosis for M is ({rγ}, ∅). If F and G are both unsatisfiable, M is
inconsistent and a minimal diagnosis is ({rα, rγ}, ∅) ∈ D±m(M). If F is unsatisfiable and G is satisfiable,
M is inconsistent; ({rγ}, ∅) is no minimal diagnosis, because every diagnosis containing rγ in D1 must
also contain rα in D1 to restore consistency in M . Therefore ({rγ}, ∅) is a minimal diagnosis of M iff F is
satisfiable andG is unsatisfiable. Therefore recognizing a minimal diagnosis in an MCS with CC(M) = P is
hard for DP. Note that it is possible to do this reduction with one context that evaluates F andG and checks
the result, using bridge rules that guess U and V and bridge rules that individually activate satisfiability
checking for F and G. However this would make the reduction less readable.

(D(CC(M))-hardness) We show that recognizing minimal diagnoses in an MCS M with lower context
complexity CC(M) ≥ C is hard for D(C ifC is a class with complete problems that is closed under conjunc-
tion and projection. We reduce two context complexity check instances (Ha, Sa), Ca with IN a, OUT a and
(Hb, Sb), Cb with IN b, OUT b to an MCS M = (Ca ′ , Cb′ , Ccheck) with the topology shown in Figure 3b.
Similar to the generic hardness reduction for MCSEQ, we reduce Ha and Ca = (kba, bra, La) to the context
Ca ′ = (kba ∪Ha, ∅, La) and we reduce Hb and Cb = (kbb, br b, Lb) to the context Cb′ = (kbb ∪Hb, ∅, Lb).
Then CC(Ca ′) = CC(Ca) and CC(Cb′) = CC(Cb). Furthermore Ca ′ accepts a belief set Sfull

a with
Sfull
a ∩ OUT a = Sa iff (Ha, Sa), Ca is a ‘yes’ instance. Similarly Cb′ accepts a belief set Sfull

b with
Sfull
b ∩OUT b = Sb iff (Hb, Sb), Cb is a ‘yes’ instance. The bridge rules brcheck are as follows.

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(56)

rγ : (check : equalS′b)←l1, . . . , lj , . . . l|OUT b|.

where lj is
{

sj if sj ∈ OUT b ∧ sj ∈ Sb
not sj if sj ∈ OUT b ∧ sj /∈ Sb

(57)

ren : (check : en)←. (58)

The knowledge base kbcheck is as follows:

n equal ← not equalS′a . (59)

n equal ← not equalS′b . (60)

⊥ ← notn equal , en. (61)

60 INFSYS RR 1843-12-09

Bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is consistent. Wlog.
we assume that Ca and Cb accept some belief set given input Ha and Hb, respectively. Bridge rule rα adds
equalS′a to Ccheck iff the first instance (Ha, Sa), Ca we reduce from is a ‘yes’ instance. The same is true

for rγ , equalS′b and the second instance. Therefore there exists an equilibrium S = (Sfull
a , Sfull

b , {equalS′a ,
equalS′b , en}) in M , i.e., (∅, ∅) ∈ D±m(M), iff both instances are ‘yes’ instances. Moreover, if the first
instance is a ‘yes’ instance and the second instance is a ‘no’ instance, then the system is inconsistent and
there is a minimal diagnosis (∅, {rγ}) ∈ D±m(M). If both instances are ‘no’ instances, activating equalS′b
is not sufficient for restoring consistency, and a minimal diagnosis for M is then (∅, {rα, rγ}). Therefore
(∅, {rγ}) is a minimal diagnosis forM iff (Ha, Sa), Ca is a ‘yes’ instance and (Hb, Sb), Cb is a ‘no’ instance
of context acceptability checking. Therefore we have established that MCSDm is hard for D(C). Note that
by nesting contexts Ca ′ and Cb′ into a new context it is possible, although more complicated, to obtain a
reduction with just one context that is hard for D(C). �

Proof of Proposition 12. (Membership) For deciding (E1, E2) ∈ E±(M), we guess R1, R2 ⊆ br(M) and
check whetherE1 ⊆ R2 andR2 ⊆ br(M)\E2. If not, we immediately reject, otherwise we decide MCSEQ

of M [R1 ∪ cf (R2)]. Then all execution paths reject iff (E1, E2) is an explanation. Therefore, if CC(M)
is a class with complete problems that is closed under conjunction and projection, the complexity is in co-
CC(M). For CC(M) = P (which is presumably not closed under projection) we obtain that MCSE is in
coNP.

(coNP-hardness for CC(M) = P) We reuse the MCSEQ hardness proof where a 3-SAT instance F
was reduced to MCS M = (CgenU

, CevalF , Ccheck). Then satisfiability of F implies consistency, therefore
E±(M) = ∅, i.e., no inconsistency explanations exist. Unsatisfiability of F implies inconsistency, and in
that case, ({rα}, ∅) is an inconsistency explanation ofM . Therefore ({rα}, ∅) is recognized as inconsistency
explanation of M iff F is unsatisfiable. Therefore the problem MCSE in an MCS with CC(M) ≥ P is hard
for coNP.

(co-CC(M)-hardness) We reuse the MCSEQ hardness proof where we reduced an instance I = (Ha, Sa),
Ca to a MCS MI = (Ca ′ , Ccheck). If I is a ‘yes’ instance, then MI is consistent so no inconsistency ex-
planation exists. If I is a ‘no’ instance, an inconsistency explanation of MI is ({ren}, {rγ}) ∈ E±(MI).
Therefore the problem MCSE in an MCS M with lower context complexity CC(M) ≥ C is hard for co-C
if C is a class with complete problems that is closed under conjunction and projection. �

Proof of Lemma 3. We write (A1, A2)⊂ (B1, B2) iff both, (A1, A2)⊆ (B1, B2) and (A1, A2) 6= (B1, B2).
(⇒) Assume Q = (Q1, Q2) is a minimal explanation. Contrary to the Lemma, assume there exists

another explanation Q′, such that Q′ = (Q1, Q2 \ {r}) with r ∈ Q2 or Q′ = (Q1 \ {r}, Q2) with r ∈ Q1.
Then Q′ ⊂ Q, therefore Q is not minimal, contradicting the assumption.

(⇐) Assume an explanation Q = (Q1, Q2), and no pair (Q1, Q2 \ {r}) with r ∈ Q2 or (Q1 \ {r}, Q2)
with r ∈ Q1 is an explanation. Contrary to the Lemma, assume another explanation P = (P1, P2) exists
with P ⊂ Q. By P ⊂ Q, either a) P1 ⊂ Q1 and P2 ⊆ Q2 or b) P1 ⊆ Q1 and P2 ⊂ Q2. For a) we create
T ′ = (Q1 \ {r}, Q2) for some r ∈ Q1 \ P1. Then P ⊆ T ′ ⊂ Q. Due to Corollary 1, T ′ is an explanation,
contradicting the initial assumption. The case b) is similar. �

Proof of Proposition 13. (Membership) We can decide (E1, E2) ∈ E±m(M) by using Lemma 3, i.e., we
decide (1) whether (E1, E2) ∈ E±(M), and (2) whether all of (E1, E2 \ {r | r ∈ E2}) /∈ E±(M) and
(E1 \ {r | r ∈ E1, E2}) /∈ E±(M) are true. Note that the number of E±-checks in (2) is linear in the size
of the instance, hence we obtain the following membership results: if the upper context complexity CC(M)

INFSYS RR 1843-12-09 61

is a class with complete problems that is closed under conjunction and projection, deciding (1) is in co-
CC(M) and deciding (2) is in CC(M), therefore MCSEm is in D(CC(M)). For upper context complexity
CC(M) = P (which is not closed under projection) deciding (1) is in coNP and deciding (2) is in NP and
therefore MCSEm is in DP

1 .

(DP-hardness for CC(M) = P) We use the same topology as for the MCSDm hardness proof, i.e.,
the complete topology shown in Figure 3a. We reduce two 3-SAT instances F and G on variables X and
Y , respectively, to minimal explanation recognition on MCS M = (CgenV

, CevalF , CgenU
, CevalG , Ccheck).

Again, CgenU
and CevalF provide NP-hardness for satisfiability of F , while CgenV

and CevalG provide
coNP-hardness for unsatisfiability of G. All contexts except for Ccheck are constructed from F and G
exactly as in the MCSDm hardness proof. Wlog. we assume that F is not valid. The bridge rules in M are
as follows:

ru,i: (evalF : xi)← (genU : xi). ∀i : 1 ≤ i ≤ |X | (62)

rv,j : (evalG : yj)← (genV : yj). ∀j : 1 ≤ j ≤ |Y| (63)

rα: (check : sat or nsatF)←(evalF : sat). (64)

rβ: (check : sat or nsatF)← not (evalF : sat). (65)

rγ : (check : nsatG)← not (evalG : sat). (66)

Context Ccheck has the following knowledge base kbcheck :

⊥ ← sat or nsatF , notnsatG. (67)

If G is satisfiable, M is consistent, so E±m(M) = ∅. If F and G are unsatisfiable, the belief sat is never
accepted atCevalF ; therefore the bridge rule rβ is sufficient for creating inconsistency inM (i.e.,M [{rβ}] |=
⊥) and forcing rγ to become applicable is the only way to restore consistency. Therefore if F and G are
unsatisfiable, ({rβ}, {rγ}) ∈ E±(M). If F is satisfiable and G is unsatisfiable, the belief sat may or may
not be accepted at CevalF , depending on the input CevalF gets from CgenU

. Therefore both bridge rules
rα and rβ are required for ensuring inconsistency in M , and they are also sufficient. Again, forcing rγ to
become applicable is the only way to restore consistency. Therefore if F is satisfiable andG is unsatisfiable,
then ({rα, rβ}, {rγ}) ∈ E±(M). Thus ({rα, rβ}, {rγ}) is a minimal inconsistency explanation for M
iff F is satisfiable and G is unsatisfiable. Note that if G is satisfiable, no explanations exist, while if F
is unsatisfiable, the above explanation exists but is no longer minimal. Therefore recognizing a minimal
inconsistency explanation in an MCS with CC(M) = P is hard for DP.

(D(CC(M))-hardness) We use the same topology as for the MCSDm hardness proof, i.e., the complete
topology shown in Figure 3b. We also use a very similar reduction. The only change is in the checking
context Ccheck . We reduce two context complexity check instances (Ha, Sa), Ca with IN a, OUT a and

62 INFSYS RR 1843-12-09

(Hb, Sb), Cb with IN b, OUT b to an MCS M = (Ca ′ , Cb′ , Ccheck). The bridge rules brcheck are as follows.

rα: (check : equalS′a)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(68)

rβ: (check : make inc)←l1, . . . , lj , . . . l|OUTa|.

where lj is
{

sj if sj ∈ OUT a ∧ sj ∈ Sa
not sj if sj ∈ OUT a ∧ sj /∈ Sa

(69)

rγ : (check : equalS′b)←l1, . . . , lj , . . . l|OUT b|.

where lj is
{

sj if sj ∈ OUT b ∧ sj ∈ Sb
not sj if sj ∈ OUT b ∧ sj /∈ Sb

(70)

ren : (check : en)←. (71)

Note that rα and rβ have the same body but different heads, moreover only rβ differs from the MCSDm-
reduction. The knowledge base kbcheck is as follows:

n equala ← not equalS′a . (72)

n equala ← make inc. (73)

⊥ ← en,n equala, not equalS′b . (74)

The bridge rule ren ensures that Ccheck fulfills our assumption that a context without input is consistent.
Wlog. we assume thatCa andCb accept some belief set given inputHa andHb, respectively. The bridge rule
rα adds equalS′a to Ccheck iff the first instance (Ha, Sa), Ca is a ‘yes’ instance. Under the same condition,
rβ adds make inc. The bridge rule rγ adds equalS′b to Ccheck iff the second instance (Hb, Sb), Cb is a ‘yes’
instance. In that case,M is consistent, i.e.,E±m(M) = ∅, because rγ becomes applicable and this deactivates
constraint (74) such that Ccheck can no longer become inconsistent. If both instances are ‘no’ instances, M
is inconsistent and for explaining this inconsistency it is sufficient to have ren present and the heads of
the bridge rules rα and rγ absent. Therefore, in that case, ({ren}, {rα, rγ}) is a minimal inconsistency
explanation for M . Finally, if (Ha, Sa), Ca is a ‘yes’ instance and (Hb, Sb), Cb is a ‘no’ instance, M is
inconsistent and for this inconsistency it is sufficient to have ren and rβ present and heads of bridge rules rα
and rγ absent, so ({ren , rβ}, {rα, rγ}) ∈ E±m(M). Therefore ({ren , rβ}, {rα, rγ}) ∈ E±m(M) iff the first
instance is a ‘yes’ instance and the second instance is a ‘no’ instance. Note that if the second instance is a
‘yes’ instance, no explanations exist, while if the first instance is a ‘no’ instance, the above explanation exists
but is no longer minimal. Therefore we have established that MCSEm is hard for D(C) where CC(M) = C
if C is a class with complete problems that is closed under conjunction and projection. �

B.4 Proofs for Section 6

Preliminaries for proving the results of Section 6 For proving the correctness of our HEX encodings, we
use some lemmas.

Lemma 7. Let P = R ∪ C be a HEX program consisting of an ordinary HEX-program R and a set of
constraints C which contain external atoms. Then for every I ∈ AS(P) it holds that I ∈ AS(R) and I
does not satisfy the body of any constraint in C.

INFSYS RR 1843-12-09 63

Proof. From I ∈ AS(P) we know that I |= P and therefore I |= R and I |= C. From the latter we infer
that I does not satisfy the body of any constraint in C (i.e., the second claim). Thus the reduct fP I does
not contain any constraint from C. Hence fP I = fRI and I is a minimal model of fRI as it is a minimal
model of fP I . �

Lemma 8. Let P be a HEX program, and let I ∈ AS(P) be an answer set of P . Then for every atom a ∈ I
it holds that there is a rule r ∈ P of form (2) with a ∈ {a1, . . . , ak} and I satisfies the body of r.

Proof. Assume towards a contradiction that I ∈ AS(P), a ∈ I and no rule r ∈ P is such that a is in the
head of r and I satisfies the body of r. Due to the latter assumption, no rule that contains a in the head is
contained in fP I . Since I is an answer set of P , I |= fP I , therefore the bodies of all rules in fP I are
satisfied by I . Hence every rule in fP I has a nonempty intersection of its head with I (otherwise I 6|= fP I).
Because no rule in fP I contains a in the head, it follows that I \ {a} |= fP I , therefore I is no minimal
model of fP I and no answer set, which is a contradiction. �

Proof of Theorem 4. (⇒) Given I ∈ AS(PD(M)), due to Lemma 7 we have (a) I ∈ AS(R) where R
contains rules (3), and (b) constraint (5) has an unsatisfied body. Due to (a) the pair (DI,1, DI,2) is such that
DI,1, DI,2 ⊆ br(M). From (b) we know that the external atoms in (5) evaluate to true, therefore from (4)
we know M [br(M) \DI,1 ∪ cf (DI,2)] 6|= ⊥, hence (DI,1, DI,2) ∈ D±(M).

(⇐) Given (D1, D2) ∈ D±(M) with D1 ∩ D2 = ∅, the corresponding Q = {um(r) | r ∈ br(M) \
(D1 ∪ D2)} ∪ {d1 (r) | r ∈ D1} ∪ {d2 (r) | r ∈ D2} satisfies rules (3), furthermore PD(M) contains
only constraint (5) apart from (3), and this constraint, per definition of f&eqM

, has an unsatisfied body if
(D1, D2) ∈ D±(M). Therefore the reduct fPD(M)Q contains only the rules (3). For each rule r ∈ br(M),
Q contains exactly one atom from the set {um(r), d1 (r), d2 (r)}. Hence Q satisfies the reduct fPD(M)Q,
furthermore for each atom we remove from Q, Q no longer satisfy one rule in (3). Therefore Q is a minimal
model of fPD(M)Q and hence Q ∈ AS(PD(M)). �

Proof of Proposition 14. (i) Given I ∈ AS(Pp(M)), due to Lemma 7 we have (a) I ∈ AS(R) where R
contains rules (6), (7), and (8); and (b) no constraint (9) has a satisfied body. In R, (6) are the only rules
with pres i and abs i atoms in the head, therefore Ai(I) ⊆ OUT i for each context Ci ∈ c(M). Hence
A(I) is an output-projected belief state of M . Due to Lemma 8, I does not contain d1(r) or d2(r) for
any r ∈ br(M), as no rule contains these atoms in the head; therefore (8) never has a satisfied body and
I always satisfies not d1(r) in (7). Due to Lemma 8, I contains bi(s) iff there is at least one bridge rule
r ∈ br(M) such that in the corresponding rule (7), for all i, 1 ≤ i ≤ j, presci(pi) ∈ I , and for all l,
j < l ≤ m, prescl(pl) /∈ I . This in turn is the case iff for all (ci : pi) in the body of r, pi ∈ Aci(I), and
for all not (cl : pl) in the body of r, pl /∈ Acl(I). The same is true iff bridge rule r is applicable in A(I),
therefore we have Bi(I) = {hb (r) | r ∈ app(br i,A(I))} for each Ci ∈ c(M). From (b) we can infer
that for every context Ci ∈ c(M), constraint (9) has an unsatisfied body, therefore the external atom returns
false, hence Ai(I) ∈ ACCi(kbi ∪ Bi(I))|OUT i . We further obtain Ai(I) ∈ ACCi(kbi ∪ {hb (r) | r ∈
app(br i,A(I))})|OUT i for every Ci ∈ c(M), which exactly satisfies Definition 13. Therefore A(I) is an
output-projected equilibrium of MCS M .

(ii) Given an output-projected equilibrium So = (So1 , . . . , S
o
n) of M , we assemble an interpretation

I of Pp(M) as follows: I = {ai(p) | p∈Soi , 1 ≤ i ≤ n} ∪ {āi(p) | p∈OUT i \Soi , 1 ≤ i ≤ n} ∪
{bi(s) | s∈Hi, 1 ≤ i ≤ n}, with Hi = app(br i, So). Facts (6) are contained in the reduct fPp(M)I . By
construction of I and by the definition of bridge rule applicability, and because d1 has an empty extension
in I , all bodies of rules (7) which correspond to an applicable bridge rule in So are satisfied, therefore these

64 INFSYS RR 1843-12-09

rules are part of fPp(M)I . Because d2 has an empty extension in I , no rule from (8) is part of fPp(M)I .
Since So is an output-projected equilibrium, for each Ci it holds that Soi ∈ {T oi | Ti ∈ ACCi(kbi ∪
Hi)}. As Bi(I) = Hi and Ai(I) = Soi , we obtain that Ai(I) ∈ ACCi(kbi ∪ Bi(I))|OUT i , therefore
f&con outi(I, ai, bi) = 1 for all Ci, and I does not satisfy the body of any constraint (9). Hence none of
the constraints (9) is part of fPp(M)I . I satisfies all rules of Pp(M) and all rules of fPp(M)I . Moreover,
Pp(M) does not contain loops, neither does fPp(M)I , hence I is a ⊆-minimal model of fPp(M)I and
therefore I ∈ AS(Pp(M)). �

Proof of Theorem 5. (i) Given I ∈ AS(PDp (M)), due to Lemma 7 we have (a) I ∈ AS(R) where R
contains rules (3), (6), (7), and (8); and (b) no constraint (9) has a satisfied body. As in Pp(M), every I
corresponds to a unique belief state A(I) of M , and as in PD(M), every I corresponds to a unique pair
(DI,1, DI,2), DI,1, DI,2 ⊆ br(M). Due to Lemma 8, I contains bi(s) iff at least one of the following is
true: d2(r) ∈ I and accordingly r ∈ DI,2, or there is at least one bridge rule r ∈ br(M) such that d1(r) /∈ I
and in the corresponding rule (7) we have that for all i, 1 ≤ i ≤ j, presci(pi) ∈ I , and for all l, j < l ≤ m,
prescl(pl) /∈ I; this holds iff r /∈ DI,1 and r ∈ app(br i(M),A(I)), which holds iff r ∈ app(br i(M) \
DI,1,A(I)). Therefore, for each context Ci ∈ c(M) we have Bi(I) = {hb (r) | r ∈ app(br i(M) \
DI,1,A(I))} ∪ {hb (r) | r ∈ DI,2}. The condition-free bridge rules are always applicable, therefore
Bi(I) = {hb (r) | r ∈ app(br i(M [br(M) \DI,1 ∪ cf (DI,2)]),A(I))}. Note that in this expression, first
all bridge rules of M are modified using DI,1 and DI,2, then the bridge rules of context Ci of the result are
extracted using br i(·). From (b) we know that for every context Ci ∈ c(M), the external atom in (9) returns
false, therefore Ai(I) ∈ ACCi(kbi ∪ Bi(I))|OUT i for every Ci ∈ c(M). Substituting Bi(I) we obtain
Ai(I) ∈ ACCi(kbi ∪ {hb (r) | r ∈ app(br i(M [br(M) \ DI,1 ∪ cf (DI,2)]),A(I))})|OUT i . Therefore
A(I) is an output-projected equilibrium of MCS M [br(M)\DI,1∪cf (DI,2)] and (DI,1, DI,2) ∈ D±(M).

(ii) Given a diagnosis (D1, D2) ∈ D±(M) and given an output-projected equilibrium So = (So1 , . . . , S
o
n)

of M ′ = M [br(M) \D1 ∪ cf (D2)] we assemble the interpretation

I = {d1 (r) | r ∈ D1}∪ {d2 (r) | r ∈ D2}∪ {um(r) | r /∈ (D1 ∪D2)}∪
{ai(p) | p ∈ Soi }∪ {āi(p) | p ∈ OUT i \ Soi }∪ {bi(s) | s ∈ Hi}

where Hi = app(br i(M ′), So). Since So is an output-projected equilibrium, I satisfies constraints (9),
therefore they are not part of the reduct fPDp (M)I . By construction of I , those rules in (7) where r ∈ D1

or r is not applicable in A(I) have an unsatisfied rule body, so these rules are not part of the reduct. Those
rules in (8) where r ∈ D2 have a satisfied rule body, so these rules are always part of the reduct. Other rules
in (7) or (8) are satisfied by I as their body is not satisfied. For each applicable bridge rule r, the according
head atom bi(s) is part of I , and PDp (M) contains no cyclic dependencies between rules (hence neither does

the reduct fPDp (M)I). Therefore I is a minimal model of rules (7) and (8) in the reduct. Rules (3) and (6)
are contained in the reduct, and I by construction is a minimal model of these rules. Therefore, I is a model
of PDp (M) and a minimal model of fPDp (M)I , hence I ∈ AS(PDp (M)). �

Preliminaries for the proof of Theorem 6 For the following proofs we assume M = (C1, . . . , Cn) to be
an arbitrary but fixed MCS and PEP (M) to be the explanation encoding for M .

Given a HEX rule r of form (2), we write Bhex(r) = {β1, . . . , βn} and Hhex(r) = {α1, . . . , αk} to
denote body and head of r respectively. For an interpretation I and a HEX rule r, we write I |= Bhex(r) iff
I |= βi for all i ∈ {1, . . . ,m} and I 6|= βj for all j ∈ {m+ 1, . . . , n}. Similarly, we write I |= Hhex(r) iff
I |= αi for some i ∈ {1, . . . , k}.

INFSYS RR 1843-12-09 65

For referring to a specific rule of PEP (M), we write trN (v1, . . . , v`) where N is the rule of form (N)
instantiated with v1 . . . , v`. We denote by TRn(M) the set of all instantiations of a rule wrt. an MCS M .
For example, let r7 ∈ br(M), then tr12(r7) denotes the HEX rule r1 (r7) : − e1 (r7)., while TR12(M) =
{tr12(r) | r ∈ br(M)}. For brevity, we write only those values necessary to identify the instantiation, e.g.,
for rules of form (17) we write tr17(r) where r ∈ br(M); for a rule of form (25), we write tr25(i, b) where
(i : b) is the head of some r ∈ br(M).

We say an interpretation I consistently encodes an explanation candidate E = (E1, E2) where E1 =
{r ∈ br(M) | e1 (r) ∈ I}, E2 = {r ∈ br(M) | e2 (r) ∈ I}, for all r ∈ br(M): (i) e1(r) ∈ I iff
ne1(r) /∈ I , and (ii) e2(r) ∈ I iff ne2(r) /∈ I .

Lemma 9. Every answer set I of PEP (M) consistently encodes an explanation candidate.

Proof. Let I be an answer set of PEP (M). Then, by definition I must be a minimal model of fPEP (M)I .
Assume for contradiction that I does not consistently encode an explanation candidate. Then, for some
r ∈ br(M) one of the following cases holds.

(i) e1 (r) ∈ I and ne1 (r) ∈ I: Consider I ′ = I \ {e1 (r)}. For all tr ∈ fPEP (M)I with e1 (r) /∈
Hhex(tr) it holds that I ′ |= tr since I |= tr. There is only one rule tr′ such that e1 (r) ∈ Hhex(tr′),
namely tr′ = tr10(r). Since ne1 (r) ∈ I ′ and ne1 (r) ∈ Hhex(tr10(r)) it holds that I ′ |= tr, hence
I ′ |= fPEP (M)I . Since I ′ ⊂ I this contradicts that I is a minimal model of fPEP (M)I .

(ii) e1 (r) /∈ I and ne1 (r) /∈ I . Since Bhex(tr10(r)) = ∅, it holds that tr10(r) ∈ fPEP (M)I while
I 6|= Hhex(tr10(r)). Hence, in contradiction to the assumption, it holds that I 6|= fPEP (M)I .

(iii) e2 (r) ∈ I and ne2 (r) ∈ I: This is similar to case (i), just replace e1 by e2 and tr10(r) by tr11(r).

(iv) e2 (r) /∈ I and ne2 (r) /∈ I: This is similar to case (ii), just replace e1 by e2 and tr10(r) by tr11(r).

Since each case yields a contradiction, it follows that I consistently encodes an explanation candidate.
�

Lemma 10. If I is an answer set for PEP (M) and E = (E1, E2) is the explanation candidate consistently
encoded by I , then fPEP (M)I exactly contains

1. TR16(M) ∪ . . . ∪ TR33(M).

2. {tr12(r) | r ∈ E1}∪ {tr13(r) | r ∈ br(M)\E1}∪ {tr14(r) | r ∈ E2}∪ {tr15(r) | r ∈ br(M)\E2}.

Proof. Let I be an answer set for PEP (M) encoding an explanation candidate E = (E1, E2).
1. By the constraint rule (34), it holds that spoil ∈ I , thus rules TR30(M) ∪ . . . ∪ TR33(M) are in
fPEP (M)I . Let tr ∈ TR30(M) ∪ . . . ∪ TR33(M), then it holds that I |= Bhex(tr), hence it follows that
I |= Hhex(tr). Therefore, I |= Bhex(tr′) and tr′ ∈ fPEP (M)I , where tr′ ∈ TR16(M) ∪ . . . ∪ TR29(M).
Specifically, it holds for tr26(i), where 1 ≤ i ≤ n, that I |= Bhex(tr26(i)), because spoil ∈ I which implies
that f&con out′i

(I, spoil , pres i, ini) = 0.
2. Let r ∈ E1. Then e1 (r) ∈ I and ne1 (r) /∈ I since I consistently encodes E. Thus, I |= Bhex(tr12(r)),
therefore tr12(r) ∈ fPEP (M)I . Furthermore, I 6|= Bhex(tr13(r)), hence tr13(r) 6∈ fPEP (M)I .

Let r ∈ br(M) \ E1. Then e1 (r) /∈ I and ne1 (r) ∈ I since I consistently encodes E. Thus,
I |= Bhex(tr13(r)), therefore tr13(r) ∈ fPEP (M)I . Furthermore, I 6|= Bhex(tr12(r)), hence tr12(r) 6∈
fPEP (M)I .

The remaining cases for E2 are analogous. �

66 INFSYS RR 1843-12-09

Definition 17. An interpretation I ofPEP (M) is called contradiction-free (regarding r1 ,nr1 , r2 ,nr2 , pres i,
abs i) if and only if the following conditions hold:

r1 (r) ∈ I iff nr1 (r) /∈ I for every r ∈ br(M)
r2 (r) ∈ I iff nr2 (r) /∈ I for every r ∈ br(M)

pres i(a) ∈ I iff abs i(a) /∈ I for every a ∈ OUT i, 1 ≤ i ≤ n

We say thta a contradiction-free interpretation I consistently encodes a belief state S = (S1, . . . , Sn)
and a pair (R1, R2) of sets of bridge rules such that: a ∈ Si iff pres i(a) ∈ I , r ∈ R1 iff r1 (r) ∈ I , and
r ∈ R2 iff r2 (r) ∈ I .

Notice that rule (34) and Lemma 10 ensure that no answer set I of PEP (M) is contradiction-free, because
it holds that spoil ∈ I and the rules of TR30(M) ∪ . . . ∪ TR33(M) ensure the saturation of I . The notion,
however, is useful for reasoning about (minimal) models of fPEP (M)I .

PEP (M) guarantees that a contradiction-free interpretation I that encodes a belief state S and a pair
(R1, R2) of sets of bridge rules also contains a representation of the set of heads of bridge rules applicable
under S and (R1, R2), as the following lemma shows.

Lemma 11. Let I be a contradiction-free interpretation that encodes the belief state S = (S1, . . . , Sn)
of M , and let (R1, R2) such that R1, R2 ⊆ br(M). If I is a minimal model of P ⊆ PEP (M) such that
TR17(M)∪ . . .∪TR25(M) is a subset of P , then {b ∈ INi | ini(b) ∈ I} = {hb (r) | r ∈ app(br i(M [R1∪
cf (R2)]), S)} for every 1 ≤ i ≤ n.

Proof. (⊆): Let b ∈ {b ∈ INi | ini(b) ∈ I} and let {r1, . . . , rk} = [(i : b)] be the set of bridge rules
of M [R1 ∪ cf (R2)] whose head is (i : b). Since I |= Bhex(tr25(i, b)), it must hold for some rule rj with
1 ≤ j ≤ k that r2 (rj) ∈ I or body(rj) ∈ I .

In the former case it follows that rj ∈ R2 and thus rj ∈ app(br i(M [R1 ∪ cf (R2)]), S), hence b ∈
{hb (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)}.

In the latter case, body(rj) ∈ I together with rules tr19(rj), . . . , tr22(rj) implies that each literal in the
body of rj is satisfied by the belief state S. Furthermore, from I |= tr18(rj) it follows that r1 (rj) ∈ I ,
hence rj ∈ R1. Therefore, rj ∈ app(br i(M [R1 ∪ cf (R2)]), S), hence b ∈ {hb (rj) | app(br i(M [R1 ∪
cf (R2)]), S)}.
(⊇) Let b ∈ app(br i(M [R1 ∪ cf (R2)]), S)} and let {r1, . . . , rk} = [(i : b)] be the bridge rules in M [R1 ∪
cf (R2)] whose head is (i : b). By definition of applicability, it must hold for some rj with 1 ≤ j ≤ k
that either rj ∈ R2 or rj ∈ R1 and the body of rj is satisfied wrt. S. In the former case r2 (rj) ∈ I and
by tr24(rj) it must hold that ini(b) ∈ I , hence b ∈ {b ∈ INi | ini(b) ∈ I}. In the latter case observe
that S |= rj and as I consistently encodes S and (R1, R2), it holds that I |= Bhex(tr17(rj)). Therefore
ini(b) ∈ I , hence b ∈ {b ∈ INi | ini(b) ∈ I}. �

Proof of Theorem 6 Recall the concept of a saturated (“spoiled”) interpretation. An interpretation is
saturated, if it is a superset of Ispoil , which is defined as follows:

Ispoil ={r1(r), nr1(r), r2(r), nr2(r), body(r) | r ∈ br(M)}∪
{ini(b) | r ∈ br(M) ∧ hc (r) = i ∧ hb (r) = b} ∪ {spoil}∪⋃
a∈OUT i

{pres i(a), abs i(a)} ∪
⋃

b∈INi

{ini(b)}.

INFSYS RR 1843-12-09 67

Soundness (⇐). Let I be an answer set of PEP (M). Then by Lemma 9 I consistently encodes an explana-
tion candidate E = (E1, E2) where E1 = {r ∈ br(M) | e1(r) ∈ I} and E2 = {r ∈ br(M) | e2(r) ∈ I}.
We show that E is an explanation of M .

Since I is an answer set of PEP (M), it is a minimal model of fPEP (M)I and by Lemma 10 all rules of
TR16(M) ∪ . . . ∪ TR33(M) are in fPEP (M)I , so I must be a minimal model of those rules. By rule (34)
it follows that spoil ∈ I , therefore for each tr ∈ TR30(M) ∪ . . . ∪ TR33(M) it holds that Hhex(tr) ∈ I
since I |= Bhex(tr). Therefore, Ispoil ⊆ I .

Towards a contradiction, assume that E is not an explanation. Then, there exists (R1, R2) ∈ Rg(E)
such that M ′ 6|= ⊥ holds for M ′ = M [R1 ∪ cf (R2)], i.e., M ′ has an equilibrium S = (S1, . . . , Sn).

Consider the interpretation IS,(R1,R2) corresponding to S and (R1, R2), i.e., I ′ is a contradiction-
free interpretation regarding r1 ,nr1 , r2 ,nr2 , pres i, abs i that consistently encodes S and (R1, R2). Let
IS,(R1,R2),E = IS,(R1,R2)∪{e1 (r) ∈ I}∪{ne1 (r) ∈ I}∪{e2 (r) ∈ I}∪{ne2 (r) ∈ I} be the interpretation
consistently encoding E, S, and (R1, R2). Finally, let Iapp = {ini(b) | b ∈ app(br i(M ′), S)}∪ {body(r) |
r ∈ R1 ∧ S |= r} correspond to the set of bridge rule heads and bodies applicable under S. Combining
them, we obtain an interpretation I ′ = IS,(R1,R2),E ∪ Iapp . Note that I ′ ⊂ I , since I is saturated and both I
and I ′ consistently encode E.

As we show in the following, it holds that I ′ |= fPEP (M)I :

• For every tr ∈ TR10(M) ∪ TR11(M) it holds that I ′ |= tr since I |= tr and I agrees with I ′ on
atoms e1 ,ne1 , e2 , and ne2 .

• For every tr ∈ TR12(M) ∪ . . . ∪ TR15(M) it holds that I ′ |= tr since (R1, R2) ∈ Rg(E) and I ′

consistently encodes (R1, R2).

• For every tr ∈ TR16(M) it holds that I ′ |= tr since I ′ consistently encodes S.

• For every r ∈ br(M) it holds that I ′ |= tr17(r) since Iapp ⊆ I ′ and Iapp is defined such that S r
and r ∈ R1 implies that body(r) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr18(r) since body(r) ∈ I ′ implies r ∈ R1, hence by I ′

encoding (R1, R2) it follows that r1 (r) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr19(r), . . . I ′ |= tr22(r), because body(r) ∈ I ′ only if
S |= r, hence by I ′ encoding S the following hold: Hhex(tr19(r)) ∈ I ′, . . . ,Hhex(tr22(r)) ∈ I ′.

• For every r ∈ br(M) it holds that I ′ |= tr23(r), respectively I ′ |= tr24(r) since S |= r and r ∈ R1,
respectively r ∈ R2, implies that r ∈ app(br i(M ′), S), hence ini(b) ∈ I ′ where i ∈ ci(M) and
hb (r) = b.

• For every head (i : b) of a bridge rule it holds that I ′ |= tr25(i, b), because: if ini(b) ∈ I ′ for some
i ∈ ci(M), then by definition of I ′ there exists r ∈ app(br i(M ′), S) such that one of the following
holds:

– S |= r and r ∈ R1, which implies that body(r) ∈ I ′.
– r ∈ R2 and therefore r2 (r) ∈ I ′.

• I ′ |= tr26(i) holds for all 1 ≤ i ≤ n: By definition of Iapp , it holds that {b | ini(b) ∈ I ′} =
app(br i(M ′), S) and since I ′ encodes S, it also it holds that {a | pres i(a)} = Si. By assumption S is

68 INFSYS RR 1843-12-09

an equilibrium of M ′, hence Si ∈ ACCi(app(br i(M ′), S)). Therefore, f&con out′i
(I ′, pres i, ini) =

1 and I ′ 6|= Bhex(tr26(i)).

• For every tr ∈ TR27(M) ∪ . . . ∪ TR29(M) it holds that I ′ |= tr since I ′ is conflict-free and
I ′ 6|= Bhex(tr).

• For every tr ∈ TR30(M) ∪ . . . ∪ TR33(M) it holds that I ′ |= tr since spoil /∈ I ′.

• Rule (34): is not in the reduct fPEP (M)I , hence it needs not be satisfied by I ′.

Therefore, all rules of fPEP (M)I are satisfied and it follows that I ′ is a model of fPEP (M)I . Since
I ′ ⊂ I , I is not a minimal model of fPEP (M)I , which contradicts that I is an answer set of PEP (M). This
proves that E ∈ E±(M). �

Completeness (⇒). LetE = (E1, E2) ∈ E±(M). Then for every (R1, R2) ∈ Rg(E) it holds thatM ′ |= ⊥
where M ′ = M [R1 ∪ cf (R2)], i.e., for every belief state S = (S1, . . . , Sn) exists some 1 ≤ i ≤ n such that
Si /∈ ACCi(app(br i(M ′), S)).

We show that IE = {e1 (r) | r ∈ E1} ∪ {ne1 (r) | r ∈ br(M) \ E1} ∪ {e2 (r) | r ∈ E2} ∪ {ne2 (r) |
r ∈ br(M) \ E2} ∪ Ispoil is an answer set of PEP (M).

Since IE contains respective instances for e1 ,ne1 , e2 , and ne2 , fPEP (M)IE contains the following
rules: tr12(r) such that r ∈ E1; tr13(r) such that r ∈ br(M) \ E1; tr14(r) such that r ∈ E2; and tr15(r)
such that r ∈ br(M) \ E2. Furthermore, because IE contains Ispoil , fPEP (M)IE contains all rules in
TR10(M) ∪ TR11(M) ∪ TR16(M) ∪ . . . ∪ TR33(M). Given that Ispoil ⊂ IE , it is easy to see that IE is a
model of fPEP (M)IE . It remains to show that IE is a ⊆-minimal model of fPEP (M)IE .

Assume for contradiction that some I ′ ⊂ IE is a model of fPEP (M)IE . Observe that IE consistently
encodes E by definition. Since it must hold that I ′ |= tr where tr ∈ TR10(M) ∪ TR11(M) and I ′ ⊂ IE ,
it follows that I ′ also consistently encodes E.

Since fPEP (M)IE contains rules TR30(M) ∪ . . . ∪ TR33(M) which must be satisfied by I ′ either
spoil /∈ I ′ or all respective heads are in I ′, which means that I ′ is saturated. The latter implies that I ′ = IE ,
which contradicts the assumption I ′ ⊂ IE , it follows that spoil /∈ I ′. This requires that I ′ 6|= Bhex(tr)
where tr ∈ TR26(M) ∪ TR27(M) ∪ TR28(M) ∪ TR29(M).

Since it holds that I 6|= Bhex(tr26(i)) for all 1≤ i≤n, there exists a contradiction-free guess regarding
r1 ,nr1 , r2 ,nr2 , pres i, abs i such that f&con out′i

(I ′, pres i, ini) = 1. Let S = (S1, . . . , Sn) be the belief
state consistently encoded by I ′ and let (R1, R2) be the pair of sets of bridge rules consistently encoded
by I ′. It holds that (R1, R2) ∈ Rg(E), because TR12(M) and TR14(M) together with the fact that I ′ is
contradiction-free ensure: e1 (r) ∈ I ′ implies r1 (r) ∈ I ′ and r2 (r) ∈ I ′ implies that ne2 (r) ∈ I ′. In other
words, R1 ⊆ E1 and R2 ⊆ br(M) \ E2, hence (R1, R2) ∈ Rg(E).

By Lemma 11, {b ∈ INi | ini(b) ∈ I ′} = {hb (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)} for every
1 ≤ i ≤ n, which implies that Si ∈ ACCi({hb (r) | r ∈ app(br i(M [R1 ∪ cf (R2)]), S)}); i.e., S is an
equilibrium of M [R1 ∪ cf (R2)]. Since (R1, R2) ∈ Rg(E), this contradicts that E is an explanation of M .
It follows that no I ′ ⊂ IE is a model of fPEP (M)IE . Hence IE is an answer set of PEP (M). �

