
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

Abtg. Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTE SYSTEME

STRUCTURAL PARAMETERIZATIONS

OF LANGUAGE RESTRICTED

CONSTRAINT SATISFACTION

PROBLEMS

Simone Bova Stefan Szeider

INFSYS RESEARCH REPORT 1843-13-02

APRIL 2013

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-13-02, APRIL 2013

STRUCTURAL PARAMETERIZATIONS OF LANGUAGE

RESTRICTED CONSTRAINT SATISFACTION PROBLEMS

Simone Bova Stefan Szeider

Abstract. We study the fixed-parameter tractability of the constraint satisfaction problem.
We restrict constraint relations to languages in a family of NP-hard languages, classified by
a purely combinatorial criterion that generalizes Boolean matrices with fixed row and col-
umn sum. For various natural and established structural parameterizations of the instances,
we characterize the fixed-parameter tractable constraint languages in the family.

Acknowledgements: This work was supported by the ERC Starting Grant 239962 (COMPLEX
REASON).

Publication Information: This work was presented at the Dagstuhl Seminar 12451 on “The Con-
straint Satisfaction Problem: Complexity and Approximability”, November 4-9, 2012.

INFSYS RR 1843-13-02 1

1 Introduction
The goal of a constraint satisfaction problem (CSP) is to assign values to variables subject to
constraints on the values of certain groups of variables. In this general formulation, the CSP uni-
formly captures many algorithmic problems in various areas of computer science; in the parlance
of database theory, the CSP is equivalent to model checking of conjunctive queries on relational
databases [11]. As a consequence of its expressive power, the CSP is computationally hard, and a
central research problem in computer science is to find tractable restrictions of the CSP.

In the framework of polynomial-time tractability, two main restriction patterns have been stud-
ied: structural restrictions and language restrictions. Roughly speaking, these patterns restrict
the general problem to classes of instances where the constraints induce some nice mathematical
structure on the variables and on the values. Very general tractable classes have been identified for
each type of restriction singly taken [10, 2]. In particular, restrictions acting purely on the language
side appear severe; for instance, the constraint language {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, containing
the size three identity matrix only, is already NP-hard by Schaefer’s dichotomy [17].

With the purpose of contrasting this limitation, we study the CSP in the framework of param-
eterized complexity, looking for language restrictions that warrant fixed-parameter tractability, a
relaxation of the notion of polynomial-time tractability [7]. Namely, we do not restrict instances
to certain classes, but instead we attach to each instance a natural number k, the parameter, and
the goal is to attain (if possible) fixed-parameter tractability, that is, a decision algorithm whose
running time is bounded above by f(k) · nO(1), where f is a computable function and n is the size
of the input (the performance is interesting if k is assumed much smaller than n).

More precisely, in this paper we start exploring the interplay between structural parameteri-
zations and language restrictions of the CSP, a novel but natural restriction pattern. Intuitively, a
parameter can be viewed as a structural parameter if it is bounded above by the size of the “struc-
tural” part of the instance. In the aforementioned database interpretation of the CSP, the structural
part of the instance is the query, as opposed to the “language” part of the instance formed by the
database; note that the former is typically much smaller than the latter.

We parameterize instances by natural structural parameters (see Section 2 for the definitions):
query size, number of variables, number of constraints, treewidth of primal graph, treewidth of dual
graph, and treewidth of incidence graph. Observed that already the easiest parameter considered,
query size, is in general not fixed-parameter tractable [15], we investigate the following question:

Which language restrictions of the CSP are fixed-parameter tractable under natural struc-
tural parameterizations?

As the question clearly trivializes for polynomial-time tractable languages, we focus on a fam-
ily of hard constraint languages. As usual, a constraint language is just a set of finite relations,
which we conveniently display here as matrices; without loss of generality, we take matrices over
nonnegative integers, and 0 as a distinguished value.

Each language in the family is attached a pair (r, c) ∈ (N ∪ {∗})2, defined as follows:

• for all relations in the language, r is an upper bound on the number of entries distinct from
0 in the rows (r = ∗, if such a bound does not exist);

2 INFSYS RR 1843-13-02

• for all relations in the language and all columns in the relation, c is an upper bound on the
number of rows having an entry distinct from 0 in the column (c = ∗, if such a bound does
not exist).

For instance, the language containing all Boolean relations whose underlying matrix is an iden-
tity matrix would be classified by the pair (1, 1). By ordering in the natural way the set of all
pairs (r, c) ∈ (N ∪ {∗})2, we obtain a hierarchy of increasingly expressive, computationally hard
constraint languages.

For every structural parameterization κ considered, we explicitly define the subset Sκ ⊆ (N ∪
{∗})2 such that:

The CSP with relations restricted to the language defined by the pair (r, c) ∈ (N ∪ {∗})2, is
fixed-parameter tractable under the parameterization κ if and only if (r, c) ∈ Sκ.

The backward direction requires FPT 6= W[1], a standard hypothesis in parameterized complexity
theory (see Theorem 1 in Section 3).

Related Work. We review previous work on restrictions of the CSP that is related and prepara-
tory to the restriction pattern proposed in this paper.

Purely structural or language restrictions have been intensively investigated. Currently, the
most general polynomial-time tractable structural restriction of the CSP is formed by classes of in-
stances whose hypergraph has bounded fractional width, established by Marx and Grohe [10], and
the classes of instances whose hypergraph has unbounded fractional width and bounded submod-
ular width is the current obstacle towards the exact characterization of polynomial-time tractable
structural restrictions [14]. In the special case of bounded arity, Grohe proved that the classes of in-
stances whose hypergraph has bounded treewidth coincide with polynomial-time tractable classes
[9]. As regards pure language restrictions of the CSP, it is conjectured that polynomial-time
tractable classes are exactly those classes defined on constraint languages that admit a nontrivial
polymorphism. Sufficiency is a difficult open problem, although very large classes of polynomial-
time tractable constraint languages are known [5, 2]. Motivated by the limitations of the previous
unilateral approaches, hybrid restrictions combine structural and language restrictions to attain
further polynomial-time tractable classes, although in this area the theoretical framework and the
complexity landscape are not as established and definite as in the area of pure restrictions [3].

In the setting of fixed-parameter tractability, Samer and Szeider introduced a restriction pat-
tern for the CSP which combines structural parameters and language parameters (with emphasis
on the former type of parameters), and obtained a classification of all fixed-parameter tractable
combinations of the considered parameters [16].

As mentioned, our restriction pattern demands a criterion to analyze the realm of hard con-
straint languages, where the universal algebraic toolkit developed in the area of language restric-
tions does not help (the criterion adopted, namely for a language to admit certain kinds of poly-
morphisms, is too coarse because all hard languages admit the same kinds of polymorphisms).
Different and novel criteria, purely combinatorial as opposed to universal algebraic, are necessary.
Our criterion generalizes Boolean relations whose underlying matrix has row sum equal to r and

INFSYS RR 1843-13-02 3

column sum equal to c, an established combinatorial object equivalent to semiregular bipartite
graphs [1, 8]. In a similar veine, Marx [13] and Marx and Krokhin [12] use novel combinatorial
criteria (called weak separability and flip separability) to refine the classification of constraint lan-
guages offered by the purely universal algebraic criteria, and characterize fixed-parameter tractable
cases of a certain optimization problems related to the Boolean CSP.

2 Preliminaries
Treewidth. A (simple) graph is a pair (V,E), where V is the set of vertices and E is the set of
edges; an edge is a two-element subset of V . In the following, all graphs are finite (that is, the set
V is finite). A k-clique is a subset K ⊆ V such that |K| = k and {a, b} ∈ E for every {a, b} ⊆ K.
A tree is a connected acyclic graph (T,E); the elements in T are called nodes.

A tree decomposition of a graphG = (V,E) is a pair ((T,E), {Ht}t∈T), where (T,E) is a tree,
Ht ⊆ V for all t ∈ T (called the bag at t), and the following holds: for every vertex a ∈ V , the set
{t ∈ T | a ∈ Ht} is nonempty and connected in (T,E); for every edge {a, b} ∈ E, there exists a
node t ∈ T such that {a, b} ⊆ Ht. The width of the tree decomposition ((T,E), {Ht}t∈T) of G is
max{|Ht| | t ∈ T} − 1, and the treewidth of G, in symbols tw(G), is the minimum of the widths
of all tree decompositions of G.

Parameterized Complexity. A decision problem is a set Q ⊆ Σ∗ of strings over Σ, where Σ is
a finite nonempty alphabet; in the following, without loss of generality, Σ ⊆ N. A string x ∈ Σ∗ is
called an instance of the problem, and the question is whether x ∈ Q.

A parameterization of Σ∗ is a polynomial-time computable mapping κ : Σ∗ → N that maps
each string x to a parameter κ(x). A parameterized problem (over Σ) is a pair (Q, κ) such that Q
is a decision problem and κ is a parameterization of Σ∗.

A mapping g defined on Σ∗ is fixed-parameter tractable (in short, an fpt-mapping) with respect
to a parameterization κ of Σ∗ if for some computable function f : N → N, and some polynomial
p : N → N, there exists an algorithm that for every x ∈ Σ∗ computes g(x) in time bounded above
by f(κ(x))p(|x|). A parameterized problem (over Σ) is fixed-parameter tractable (in short, an
fpt-problem) if the characteristic function of Q is a fpt-mapping with respect to κ; FPT denotes the
class of all fpt-problems.

Let (Q, κ) and (Q′, κ′) be parameterized problems. A fixed-parameter tractable reduction (or,
an fpt-reduction) from (Q, κ) to (Q′, κ′) is a fpt-mapping g (with respect to κ), such that, for all
x ∈ Σ∗, the following holds: (i) x ∈ Q if and only if g(x) ∈ Q′; and, (ii) there is a computable
function f : N → N such that κ′(x) ≤ f(κ(x)). We write (Q, κ) ≤fpt (Q′, κ′) if there exists a
fpt-reduction from (Q, κ) and (Q′, κ′).

The class FPT is closed under fpt-reductions, that is, if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ∈ FPT,
then (Q, κ) ∈ FPT. Let C be a class of parameterized problems closed under fpt-reductions. As
in classical complexity theory, we say that a parameterized problem (Q, κ) is C-hard under fpt-
reductions if every problem in C fpt-reduces to (Q, κ) and C-complete under fpt-reductions if, in
addition, (Q, κ) ∈ C.

4 INFSYS RR 1843-13-02

A fundamental class of parameterized problems closed under fpt-reductions is W[1], which
plays in parameterized complexity a role analogous to NP in classical complexity theory: If
(Q, κ) ≤fpt (Q′, κ′) and (Q, κ) is W[1]-complete, then (Q′, κ′) is not in FPT unless W[1] ⊆ FPT,
which is conjectured false. Therefore, to establish that a parameterized problem (Q, κ) is unlikely
in FPT, it is sufficient to give a fpt-reduction from a W[1]-complete problem to (Q, κ).

Constraint Satisfaction. In the following, A andm always denote a nonempty set and a positive
integer, respectively. A relation R is a is a finite subset of the Cartesian power Am, where A and
m are respectively the universe and arity of of R.

A constraint is a pair (R, (v1, . . . , vm)), also written Rv1 . . . vm in short, where R is an arity m
relation, called the (constraint) relation, and (v1, . . . , vm) ∈ V m is a tuple of m pairwise distinct
variables, called the (constraint) scope. We liberally also think of the scope (v1, . . . , vm) as the set
{v1, . . . , vm}.

For algorithmic purposes, we think of a constraint Rv1 . . . vm as a {v1, . . . , vm}-relation in the
sense of database theory. An X-relation is a finite set of total maps with domain X; if R is an X-
relation, we also writeR(X). The size of a suitable encoding ofR is defined by ‖R‖ = O(|X|·|R|).
1 For every Y ⊆ X , the projection of the X-relation R onto Y , is the Y -relation defined by
πYR = {f |Y | f ∈ R}, which is computable in time O(‖R‖). Also, for every X-relation R and
every Y -relation S, the join of R and S, is the X ∪ Y -relation defined by

R ./ S = {f : X ∪ Y → A | f |X ∈ R, f |Y ∈ S},

which is computable in time O(‖R‖+ ‖S‖+ ‖R ./ S‖); compare [6, Appendix].
The constraint satisfaction problem, in symbols CSP, is defined as follows. The instance is

(a suitable encoding of) a triple I = (V,D,C), where V is a finite set of variables, D is a finite
nonempty set (the domain of the instance), and C is a finite set of constraints with relations over
D. The question is whether the instance is satisfiable, that is, whether there exists a mapping
f : V → D such that f |X ∈ R(X) for all constraints R(X) ∈ C. In the following, n always
denotes the size of the encoding of a CSP instance I , and n = O(

∑
R(X)∈C ‖R‖).

A (constraint) language is a set Γ containing relations over a universe A; in the following,
Γ01 = {R ∈ Γ | R has universe {0, 1}} denotes the Boolean sublanguage of Γ. The problem
CSP(Γ) is the problem of deciding, given a CSP instance I = (V,D,C) with constraint relations
in Γ, whether the instance is satisfiable.

Let I = (V,D,C) be a CSP instance. The primal graph of I , in symbols prim(I), is the
graph whose vertices are the variables of the instance, and whose edges connect two variables if
and only if they are contained together in a constraint scope. The dual graph of I , in symbols
dual(I), is the graph whose vertices are the constraints of the instance, and whose edges connect
two constraints if and only if their scopes have nonempty intersection. The incidence graph of I ,
in symbols inc(I), is the graph whose vertices are the variables and the constraints of the instance,
and whose edges connect two vertices if and only if the two vertices are a variable and a constraint,
and the variable is contained in the scope of the constraint.

1We adopt the standard random access machine model as computational model, and the uniform cost measure to
analyze the running time of the algorithms.

INFSYS RR 1843-13-02 5

Let I = (V,D,C) be a CSP instance. We introduce the following measures on I:

query(I) =
∑

R(X)∈C

|X|;

var(I) = |V |;
constr(I) = |C|;

twprim(I) = tw(prim(I));
twdual(I) = tw(dual(I));

twinc(I) = tw(inc(I)).

The following inequalities are known [16]:

twinc(I) ≤ twprim(I) + 1 ≤ var(I) ≤ query(I); (1)
twinc(I) ≤ twdual(I) + 1 ≤ constr(I) ≤ query(I). (2)

We let,
PAR = {query, var, constr, twprim, twdual, twinc}.

In view of (1) and (2), we define a partial order on PAR by letting, for all p ∈ PAR: twinc ≤ p,
twprim ≤ var, twdual ≤ constr, and p ≤ query.

3 Complexity Classification
For all a ∈ A and (a1, . . . , am) ∈ Am, the row sum of (a1, . . . , am) with respect to a is the number
of entries in (a1, . . . , am) that are not equal to a; formally,

rowsum(a, (a1, . . . , am)) = |{i ∈ [m] | ai 6= a}|.

The row sum operation naturally extends to a relation R ⊆ Am by maximizing the row sum over
all tuples in R,

rowsum(a,R) = max{rowsum(a, (a1, . . . , am)) | (a1, . . . , am) ∈ R}.

We analogously define the column sum of a relation R with respect to a. For all i ∈ [m], the
column sum of R with respect to i and a is the number of tuples in R whose i-th entry is not equal
to a; formally,

colsum(a, i, R) = |{(a1, . . . , am) ∈ R | ai 6= a}|.

The column sum extends to R by maximizing the column sums over all i ∈ [m],

colsum(a,R) = max{colsum(a, i, R) | i ∈ [m]}.

If r, c ∈ {0} ∪ N are such that rowsum(a,R) ≤ r and colsum(a,R) ≤ c, we say that R has
row sum bounded by r and column sum bounded by c with respect to a.

6 INFSYS RR 1843-13-02

Definition 1 (Constraint Language Γrc). Let A = {0} ∪ N and a = 0. For all r, c ∈ N ∪ {∗},
the language Γrc over A is defined as follows: Γ∗∗ = {R | 1 ≤ rowsum(a,R), colsum(a,R)};
Γr∗ = {R | rowsum(a,R) ≤ r} ⊆ Γ∗∗; Γ∗c = {R | colsum(a,R) ≤ c} ⊆ Γ∗∗; Γrc = Γr∗ ∩ Γ∗c.

For all p ∈ PAR, we define parameterized versions of the problem CSP(Γ):

Problem: CSP(p,Γ).

Instance: A pair (I, k), where I is an instance of CSP(Γ) and p(I) ≤ k ∈ N.

Parameter: k.

Question: Is I satisfiable?

Remark 1. Without loss of generality, the problem is formulated as a promise problem, whose
instances (I, k) correspond to instances I of CSP(Γ) where p(I) ≤ k. Indeed, by Bodlaender’s
algorithm [7, Theorem 11.12], the corresponding decision problem, which also involves check-
ing whether the instance has the promised form, is equivalent to the promise version under fpt-
reductions.

Remark 2. The choice A = {0} ∪ N and a = 0 in Definition 1 is arbitrary, but without loss of
generality. Namely, let Γ be any constraint language, let B be the universe of Γ, and let b ∈ B. If
all relations in Γ have row sum bounded by some positive integer with respect to b (or column sum
bounded by some positive integer with respect to b, or both, or none), then, for every p ∈ PAR, the
problem CSP(p,Γ) is polynomial-time equivalent to a problem of the form CSP(p,Γrc) for some
(r, c) ∈ (N ∪ {∗})2.

Moreover, in Definition 1, we restrict without loss of generality to relations R satisfying 1 ≤
rowsum(a,R) and 1 ≤ colsum(a,R). Note that if rowsum(a,R) = 0 or colsum(a,R) = 0, then
R = {(a, a, . . . , a)}, and the language is therefore polynomial-time tractable.

Proposition 1. For all p′ ≤ p in PAR and all constraint languages Γ,

CSP(p,Γ) ≤fpt CSP(p′,Γ).

Proof. Immediate from (1) and (2).

To state the main result in a compact fashion, we define a partial (in fact, lattice) order over the
set (N ∪ {∗})2, by letting (r, c) ≤ (r′, c′) if and only if i ≤ i′ and j ≤ j′, where 1 < 2 < · · · < ∗.
Note that (2, ∗) 6≤ (r, c) if and only if (r, c) ≤ (1, ∗) or (r, c) ≤ (∗, j) for all j ∈ N.

Theorem 1 (Main Result). Let (r, c) ∈ (N ∪ {∗})2.

1. If p ∈ {twinc, twdual}, then CSP(p,Γrc) is in FPT if (r, c) ≤ (1, ∗), and W[1]-hard other-
wise.

2. If p ∈ {twprim, var, constr, query}, then CSP(p,Γrc) is in FPT if (2, ∗) 6≤ (r, c), and W[1]-
hard otherwise.

INFSYS RR 1843-13-02 7

Proof. Exploiting the partial order over structural parameters and constraint languages, we reduce
the entire classification to three positive results (in Section 4), in the form of fixed-parameter
algorithms, and two negative results (in Section 5), in the form of W[1]-hardness proofs. We
remark that Item 2 required us fairly different algorithmic techniques to settle the two tractable
cases for p = constr (in Lemma 1 and Lemma 3, respectively). The details follow.

For tractability, Lemma 1 establishes fixed-parameter tractability of Γrc for all (r, c) ≤ (1, ∗)
and all p ∈ PAR, thus settling the FPT part of Item 1 (together with Proposition 1). Lemma 2
and Lemma 3 establish fixed-parameter tractability of Γrc for all (r, c) ≤ (∗, j) with j ∈ N,
respectively if p ≥ twprim and p ≥ constr, thus completing the FPT part of Item 2 (together with
Proposition 1).

For intractability, Item 1 in Lemma 4 establishes W[1]-hardness of Γrc for all (r, c) ≥ (2, ∗)
and all p ∈ PAR, thus settling the hardness part of Item 2 (together with Proposition 1). Lemma 5
establishes W[1]-hardness of Γrc for all (r, c) ≥ (2, 1) and all p ≤ twdual, thus settling the
hardness part of Item 1 (together with Proposition 1).

Remark 3. Assuming FPT 6= W[1] the conditions in the statement of Theorem 1 are also neces-
sary for fixed-parameter tractability.

Since CSP(query,Γ) ∈ W[1] for all languages Γ [15, Theorem 1], and it is folklore that
CSP(constr,Γ) ≤fpt CSP(query,Γ), the W[1]-hardness results for p ∈ {var, constr, query} in
the statement of Theorem 1 are indeed W[1]-completeness results.

As an interesting special case, we derive the following complexity classification of Boolean
languages.

Corollary 1 (Boolean Case). Let (r, c) ∈ (N ∪ {∗})2.

1. If p ∈ {twinc, twdual, constr}, then CSP(p,Γ01
rc) is in FPT if (r, c) ≤ (1, ∗), and W[1]-hard

otherwise.

2. If p ∈ {twprim, var, query}, then CSP(p,Γ01
rc) ∈ FPT.

Proof. Item 1 follows along the lines of Theorem 1, with an appeal to Item 2 of Lemma 4 to settle
W[1]-hardness of CSP(constr,Γ01

rc) if (r, c) ≥ (2, ∗).
Item 2 follows because, if p ∈ {twprim, var, query}, then CSP(p,Γ01) ∈ FPT for any Boolean

language Γ01 [16, Corollary 2].

4 Tractability
Lemma 1. If (r, c) ≤ (1, ∗), then CSP(twinc,Γrc) ∈ FPT.

Proof. We prove that CSP(twinc,Γrc) ≤fpt CSP(twinc,Γ01
rc).

Given an instance I = (V,D,C) of CSP(Γrc), we compute a CSP instance I ′ = (V, {0, 1}, C ′),
as follows. For all R(X), S(Y) ∈ C and all z ∈ X ∩ Y , enforce the condition

{f(z) | f ∈ R} = {g(z) | g ∈ S}; (3)

8 INFSYS RR 1843-13-02

intuitively, the condition warrants that all constraints on a certain variable agree on the “possible”
values of that variable. This is polynomial-time computable by looping over all variables z ∈ V
and then looping over all pairs of constraints R(X), S(Y) ∈ C such that z ∈ X ∩ Y , redefining
R ..= πX(R ./ S) and S ..= πY (R ./ S) at each iteration, until condition (3) is established on
all constraints sharing variable z; note that the inner loop iterates at most |D| · |C| times, because
each iteration shrinks the domain of variable z in at least one constraint. Now let C ′ = {R′(X) |
R(X) ∈ C}, where

R′(X) = {f ′ : X → {0, 1} | f ∈ R(X)} (4)

and f ′(x) = 0 if and only if f(x) = 0 for all x ∈ X; intuitively, we replace all “possible” values
of each variable, distinct from 0, by the “representative” value 1.

Note that I ′ is an instance of CSP(Γ01
rc).

Claim 1. I is satisfiable if and only if I ′ is satisfiable.

We prove Claim 1. Clearly if f : V → D satisfies I , then the map f ′ : V → {0, 1} such that
f ′(x) = 0 if and only if f(x) = 0 satisfies I ′. Conversely, assume that the map f ′ : V → {0, 1}
satisfies I ′. Define the map f : V → D as follows, for all x ∈ V . If f ′(x) = 0, then f(x) = 0.
Otherwise, settle f(x) = d ∈ D where d is an arbitrarily chosen element in {f(x) | f ∈ R(X)},
for an arbitrarily chosen constraint R(X) ∈ C such that x ∈ X . Note that such a d exists by
(4) since I ′ is satisfied with f ′(x) = 1. We check that f satisfies I . Let R(X) ∈ C. Since
R′(X) has row sum bounded by r = 1, there are exactly two cases. If f ′ satisfies R′(X) by
f ′|X = (x 7→ 0) ∈ R′ then (x 7→ 0) ∈ R by (4) and f |X = (x 7→ 0) by construction. Otherwise,
f ′ satisfies R′(X) by f ′|X 6= (x 7→ 0) ∈ R′, say f ′(x) = 1 for x ∈ X and f ′(y) = 0 for
y ∈ X \ {x}. In this case, (3) implies that the map f |X is in R.

Note that the mapping I 7→ I ′ is computable in polynomial time, and twinc(I) = twinc(I ′),
thus by the previous claim the mapping (I, k) 7→ (I ′, k) is a fpt-reduction of CSP(twinc,Γrc) to
CSP(twinc,Γ01

rc).

Claim 2. CSP(twinc,Γ01
rc) ∈ FPT.

We prove Claim 2. We give a fpt-reduction to the problem of deciding, given a monadic
second-order sentence ϕ and a graph G, whether the formula is true in the graph. The problem,
parameterized by tw(G) and the size of ϕ, is known in FPT [4].

Given an instance I of CSP(twinc,Γ01
rc), we compute an instance (G,ϕ) of the above problem

as follows. For all R(X) ∈ C and x ∈ X , enforce the condition

{f(x) | f ∈ R} 6= {0}, (5)

that is, {f(x) | f ∈ R} = {0, 1} if nonempty. This is polynomial-time computable by looping
over all R(X) ∈ C and x ∈ X and redefining R ..= πX\{x}R if (5) does not hold.

We now complete the definition of (G,ϕ), as follows: The graph G is the incidence graph of
I , with edge relation E, together with two subsets C ′, C ′′ ⊆ C such that C ′ contains exactly the

INFSYS RR 1843-13-02 9

constraint vertices whose constraint relation contains the tuple (0, 0, . . . , 0), and C ′′ = C \C ′. The
monadic second-order formula is ϕ = ∃X∀x(ϕ′ ∧ ϕ′′) where

ϕ′(x) = C ′x→ (∃=1y(y ∈ X ∧ Exy) ∨ ∀z(Exz → z 6∈ X)),
ϕ′′(x) = C ′′x→ ∃=1y(y ∈ X ∧ Exy),

and ∃=1xψ(x) abbreviates ∃x(ψ(x) ∧ ∀y(ψ(y) → y = x)). The map that sends I to (G,ϕ) is the
required fpt-reduction, which settles the claim.

The lemma is settled.

Lemma 2. If (r, c) ≤ (∗, j), then CSP(twprim,Γrc) ∈ FPT.

Proof. Let Γ be any language. Consider the problem of deciding, given a a pair (I, k1 +k2), where
I = (V,D,C) is an instance of CSP(Γ), k1 ≥ twprim(I), and k2 ≥ max{|R| | R ∈ C}, whether
I is satisfiable. The problem, parameterized by κ(I, k1+k2) = k1+k2, is in FPT [16, Corollary 3];
we show that CSP(twprim,Γrc) fpt-reduces to it.

Let (I, k) be an instance of CSP(twprim,Γrc). If r = max{|X| | R(X) ∈ C} is the maximum
arity attained by a constraint in I , then

|R| ≤
r−1∑
i=1

((
r

i

)
· jr−i

)
for every constraint R ∈ C. Since r ≤ twprim(I) + 1 (simply because each constraint induces
a clique in prim(I)), we have that k2 ≤ g(k) for some computable function g : N → N. There-
fore the mapping (I, k) 7→ (I, k + g(k)) is a fpt-reduction from CSP(twprim,Γrc) to the above
problem, and the lemma is settled.

Lemma 3. If (r, c) ≤ (∗, j), then CSP(constr,Γrc) ∈ FPT.

Proof. Let j ∈ N, (r, c) ≤ (∗, j), and I = (V,D,C) be an instance of CSP(Γrc).
Let E be the set of all two-element subsets of C, so that |E| =

(|C|
2

)
, and let L(E) be the set

of all maps g : E → {0, 1}, so that |L(E)| = 2|E|. The algorithm loops over L(E), and rejects if
the loop terminates. For each g ∈ L(E), a corresponding simplified version of the instance I is
computed by the following steps:

1. For all {R(X), S(Y)} ⊆ C and T (Z) ∈ C, if g({R(X), S(Y)}) = 0, then redefine T ..=
πZ\(X∩Y)(T ./ U), where U = {x 7→ 0} is the (X ∩ Y)-relation containing the constant 0
mapping, x 7→ 0.

2. For all {R(X), S(Y)} ⊆ C ′, if g({R(X), S(Y)}) = 1, then redefine R ..= R ./ U ′ and
S ..= S ./ U ′′, where U ′ = (πX∩YR) \ {x 7→ 0}, and U ′′ = (πX∩Y S) \ {x 7→ 0}.

Step 1 is feasible in polynomial-time, by computing for at most
(|C|

2

)
|C| times at most one join

and at most one projection of relations of size at most max{‖R‖ | R ∈ C}. Similarly, Step 2 is
feasible in polynomial-time.

10 INFSYS RR 1843-13-02

Now, the simplified instance returned by Step 1 and Step 2 is checked for satisfiability, as
follows. In polynomial-time, compute all maximal connected components of the dual graph H of
the (simplified) instance.

Loop over all maximal connected components K of H (clearly, |K| ≤ |C|). If |K| = 1, that
is K = {X} for some constraint R(X), then loop over the next map in L(E) if R is empty. This
is polynomial-time computable. Otherwise, if |K| ≥ 2, then compute the join of all constraints
whose scope is in K, namely

./X∈K R(X), (6)

and loop over the next map in L(E) if ./X∈K R(X) is empty. If ./X∈K R(X) is nonempty for all
maximal connected components K of H , accept.

We claim that (6) is computable in polynomial-time. First note that each constraint in the
simplified instance returned by Step 1 and Step 2, and thus each R(X) with X ∈ K, has column
sum bounded by j. Moreover, if R(X), S(Y) ∈ C with X, Y ∈ K, then by Step 2 we have that
πX∩Y (R ./ S) does not contain the constant 0 map.

Claim 3. IfR(X) and S(Y) have column sum bounded by j and πX∩Y (R ./ S) does not contain
the constant 0 map, then |R ./ S| ≤ j|X ∩ Y |.

We prove Claim 3. Suppose |R ./ S| > j|X ∩ Y | for a contradiction. Note that both
πX∩YR and πX∩Y S have column sum bounded by j. Therefore, |πX∩YR|, |πX∩Y S| ≤ j|X ∩
Y |. Then, by the pigeonhole principle, there exist at least j + 1 maps f1, . . . , fj+1 in R such
that |πX∩Y {f1, . . . , fj+1}| = 1, or there exist at least j + 1 maps g1, . . . , gj+1 in S such that
|πX∩Y {g1, . . . , gj+1}| = 1. In the first case, by hypothesis, the map f ∈ πX∩Y {f1, . . . , fj+1} is
not the constant 0, so that there exists x ∈ X such that |{f ∈ R | f(x) 6= 0}| ≥ j + 1, therefore
colsum(0, R(X)) ≥ j + 1, a contradiction. The second case is similar.

By the claim R ./ S is computable in time O(3j|V |) = O(|V |), so that ./X∈K R(X) is
computable in time O(|C| · |V |). Thus, the algorithm runs in time f(|C|)nO(1). Correctness is
clear, and the lemma is settled.

5 Intractability
Lemma 4. Let (r, c) ≥ (2, ∗).

1. CSP(query,Γrc) is W[1]-hard.

2. CSP(constr,Γ01
rc) is W[1]-hard.

Proof. The parameterized problem CLIQUE is the problem of deciding, given in input a graph G
and k ∈ N, whether G contains a k-clique. The parameterization is κ(G, k) = k.

The reduction from CLIQUE given in [15, Theorem 1] basically proves the first statement.
Assume (r, c) ≥ (2, ∗). Let (G, k) with G = (V,E) be an instance of CLIQUE. Without loss of

INFSYS RR 1843-13-02 11

generality, V ⊆ N. Let I = ({v1, . . . , vk}, V, C) be the CSP instance defined by C = {E ′vivj |
i < j in [k]} where E ′ = {(a, b), (b, a) | {a, b} ∈ E}. Note that rowsum(0, E ′) ≤ 2, just because
E ′ is binary, thus I is an instance of CSP(Γrc).

Clearly, if G has a k-clique, then I is satisfiable. Conversely, any mapping of the variables
in V satisfying I is injective (because the graph is loopless), thus if I is satisfiable, then G has a
k-clique. Moreover, query(I) ≤ 2 ·

(
k
2

)
= f(k), so that the mapping (G, k) 7→ (I, f(k)) is indeed

a fpt-reduction from CLIQUE to CSP(query,Γrc). Since CLIQUE is W[1]-complete, the first part
of the lemma is settled.

For the second statement, let (G, k) be an instance of CLIQUE, with G = ([n], E). Intuitively,
we rephrase the reduction given in Item 1 by encoding the vertices of G in unary. The details,
similar to [16, Theorem 8], follow.

Let Rn = {b1, . . . , bn} ⊆ {0, 1}n such that bi = (0, . . . , 0, 1, 0, . . . , 0) with (bi)j = 1 if and
only if j = i. If bi, bj ∈ Rn, we let bibj ∈ {0, 1}2n denote the 2n-tuple such that (bibj)l = 1 if
and only if l ∈ {i, n + j}. We then let En = {bibj, bjbi | {i, j} ∈ E} ⊆ {0, 1}2n. The instance
I = (V, {0, 1}, C) of CSP(Γ01

rc) is defined as follows: V = {vi1, . . . , vin | i ∈ [k]}; C contains
constraints Rnvi1 . . . vin for all i ∈ [k], and Envi1 . . . vinvj1 . . . vjn for all i < j in [k]. It is easy to
check that the mapping (G, k) 7→ (I, k) is the required reduction.

Lemma 5. If (r, c) ≥ (2, 1), then CSP(twdual,Γ01
rc) is W[1]-hard.

Proof. A k-partite graph is a graph G = (V1 ∪ · · · ∪ Vk, E) such that the family {V1, . . . , Vk}
partitions the vertices of G into k independent sets. The problem PARTITIONED-CLIQUE is the
problem of deciding, given as input a k-partite graph G and k ∈ N, whether G contains a k-
clique. The parameterization is κ(G, k) = k. PARTITIONED-CLIQUE is W[1]-complete; we give
a reduction PARTITIONED-CLIQUE ≤fpt CSP(twdual,Γ01

rc).
Given a k-partite graph G, we construct an instance I = (V ∪V ′∪E ′, {0, 1}, C) of CSP(Γ01

rc),
where V ′ = {a′ | a ∈ V }, E ′ = {(a, b), (b, a) | {a, b} ∈ E}, and C is specified as follows. The
constraint relations are (copies of) the following relations Rm and S2m, defined for all m ≤ |G|2:

• Rm ⊆ {0, 1}m such that rowsum(0, Rm) = colsum(0, Rm) = 1;

• S2m = {b1, . . . , bm} ⊆ {0, 1}2m such that rowsum(0, S2m) = 2 and bii = bi(m+i) = 1 for all
i ∈ [m]; for instance, S4 = {(1, 0, 1, 0), (0, 1, 0, 1)}.

Note that colsum(0, S2m) = 1, so I is an instance of CSP(Γ01
21).

The constraints in C are defined as follows. For all i ∈ [k] and a ∈ Vi, if Vi = {a1, . . . , ar},
then C contains the constraints

ψi = Rra
′
1 . . . a

′
r, and (7)

ψia = R2aa
′. (8)

Intuitively, a mapping f : V ∪V ′ ∪E ′ → {0, 1} satisfies constraints of the form (7)-(8) if and only
if, for every block Vi of the k-partition of the vertices of G, it holds that f(a) = 0 for exactly one
vertex a ∈ Vi (in this case, say that f selects a in Vi).

12 INFSYS RR 1843-13-02

For all i < j in [k], a ∈ Vi, and b ∈ Vj , if {(a, b1), . . . , (a, bs)} = E ′ ∩ ({a} × Vj),
{(b, a1), . . . , (b, at)} = E ′ ∩ ({b} × Vi), and {{c1, d1}, . . . , {cu, du}} = E ∩ (Vi ∪ Vj), then C
contains the constraints

ϕija = Rs+1a(a, b1) . . . (a, bs), (9)
ϕijb = Rt+1b(b, a1) . . . (b, at), and (10)
ϕij = S2u(c1, d1) . . . (cu, du)(d1, c1) . . . (du, cu). (11)

Intuitively, a mapping f : V ∪ V ′ ∪E ′ → {0, 1} satisfies all constraints of the form (9)-(11) if and
only if, if f selects a in Vi and b in Vj , then the edge {a, b} is in E.

It is then straightforward to check that G has a k-clique if and only if I is satisfiable.

Claim 4. twdual(I) ≤ (k − 1)(1 +
(
k
2

)
) ..= g(k).

We prove Claim 4. First note that twinc(I) ≤ 1 +
(
k
2

)
. Indeed, it is easy to check that, for

every graph J with vertex set U and every subgraph J ′ of J induced by some U ′ ⊆ U , it holds
that tw(J) ≤ tw(J ′) + |U \ U ′|. Applying the inequality with U = V ∪ C and U ′ = V ∪ {ψ ∈
C | ψ not of form (11)}, we have tw(J ′) = 1 and |U \ U ′| =

(
k
2

)
. Next note that each variable in

V ∪ V ′ is contained in the scope of at most k − 1 constraints in C. In fact, if a′ ∈ V ′, then a′ is
contained in the two constraints in (7)-(8); if (a, b) ∈ E, then (a, b) is contained in one constraint
of the form (11), and in either the constraint in (9) or the constraint in (10); if a ∈ V , then a is
contained in either at most k − 1 constraints of the form (9) or in at most k − 1 constraints of
the form (10). Therefore, given a tree decomposition of inc(I) of width at most 1 +

(
k
2

)
, a tree

decomposition of dual(I) of width at most g(k) = (k − 1)(1 +
(
k
2

)
) is defined by replacing, in

each bag, each variable contained in the bag by the at most k− 1 constraints whose scopes contain
the variable.

The mapping (G, k) 7→ (I, g(k)) is computable in polynomial time, therefore it gives an fpt-
reduction from PARTITIONED-CLIQUE to CSP(twdual,Γ01

rc).

6 Conclusion
We proposed a novel restriction pattern for the CSP by combining structural parameterizations
and language restrictions. For every structural parameterization p ∈ PAR and constraint language
Γ, we were interested in finding a criterion such that CSP(p,Γ) ∈ FPT if and only if Γ satisfies the
criterion.

We introduced a countable family of infinite constraint languages, of the form Γrc with (r, c) ∈
(N ∪ {∗})2, and we proved a classification result (Theorem 1) of the following form: For every
p ∈ PAR, CSP(p,Γrc) ∈ FPT if and only if (r, c) ∈ Sp, where Sp ⊆ (N ∪ {∗})2 is explicitly
defined.

The classification identifies nontrivial fixed-parameter tractable cases; a notable example is
the language Γrc with (r, c) ≤ (∗, j) for any j ∈ N, which has the Boolean language of identity

INFSYS RR 1843-13-02 13

matrices as a special case, is in FPT parameterized by the number of constraints (Lemma 3).
Moreover, for an arbitrary language Γ, a careful inspection of the proofs indicates that the hardness
of CSP(p,Γrc) arises, respectively, from r ≥ 2 if p ∈ {twdual, twinc}, and from c = ∗ if
p ∈ {query, var, constr, twprim}.

We remark that there are examples of (even infinite and Boolean) languages of the form Γ ⊆
Γrc such that the CSP(p,Γ) ∈ FPT, but (r, c) 6∈ Sp; so the classification does not characterize
fixed-parameter tractable languages under the structural parameterizations addressed. However, it
provides directions for future refinements; we briefly discuss its consequences with respect to finite
constraint languages.

Clearly, CSP(p,Γ) ∈ FPT for every Γ ⊆ Γrc with (r, c) ∈ Sp. Moreover, if Γ is a finite
language, then (r, c) ∈ N2. Hence, by the classification, CSP(p,Γ) is W[1]-hard only if p ∈
{twdual, twinc} and (r, c) ≥ (2, 1). Therefore, to refine the classification in the finite case, natural
candidates are finite languages Γ ⊆ Γ21 having row sum equal to 2, that is, containing at least one
relation R such that rowsum(0, R) = 2.

References
[1] Brualdi, R.A.: Matrices of zeroes and ones with fixed row and column sum vectors. Linear

Algebra Appl. 33, 159–231 (1980)

[2] Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using
finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

[3] Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability of CSP
classes defined by forbidden patterns. J. Artif. Intell. Res. 45, 47–78 (2012)

[4] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inform. Comput. 85(1), 12–75 (1990)

[5] Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint
satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28(1), 57–104
(1999)

[6] Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6),
716-752 (2002)

[7] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

[8] da Fonseca, C.M., Mamede, R.: On (0, 1)-matrices with prescribed row and column sum
vectors. Discrete Math. 309(8), 2519–2527 (2009)

[9] Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from
the other side. J. ACM 54(1) (2007)

14 INFSYS RR 1843-13-02

[10] Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. 17th ACM-
SIAM Symposium on Discrete Algorithms (SODA’06), pp. 289–298. ACM Press, New York
(2006)

[11] Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J.
Comput. Syst. Sci. 61(2), 302–332 (2000)

[12] Krokhin, A.A., Marx, D.: On the hardness of losing weight. ACM T. Algorithms 8(2), 19
(2012)

[13] Marx, D.: Parameterized complexity of constraint satisfaction problems. Computat. Com-
plex. 14(2), 153–183 (2005)

[14] Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
In: Proc. 42nd ACM Symposium on Theory of Computing (STOC’10), pp. 735–744. ACM
Press, New York (2010)

[15] Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. J. Comput.
Syst. Sci. 58(3), 407–427 (1999)

[16] Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. In:
Proc. 12th Internationial Conference on Principles and Practice of Constraint Programming
(CP’06). LNCS, vol. 4204, pp 499–513. Springer, Heidelberg (2006)

[17] Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. 10th Symposium on The-
ory of Computing (STOC’78), pp. 216–226. ACM Press, New York (1978)

