
I N F S Y S
F O R S C H U N G S

B E R I C H T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

DOMAIN EXPANSION FOR ASP-PROGRAMS

WITH EXTERNAL SOURCES

THOMAS EITER MICHAEL FINK

THOMAS KRENNWALLNER CHRISTOPH REDL

INFSYS FORSCHUNGSBERICHT 14-02

SEPTEMBER 2014

INFSYS FORSCHUNGSBERICHT

INFSYS FORSCHUNGSBERICHT 14-02, SEPTEMBER 2014

DOMAIN EXPANSION FOR ASP-PROGRAMS WITH EXTERNAL

SOURCES

Thomas Eiter1 Michael Fink1 Thomas Krennwallner1 Christoph Redl1

Zusammenfassung. Answer set programming (ASP) is a popular approach to declarative prob-
lem solving which for broader usability has been equipped with external source access. The latter
may introduce new constants to the program (known as value invention), which can lead to in-
finite answer sets and non-termination; to prevent this, syntactic safety conditions on programs
are common which considerably limit expressiveness (in particular, recursion). We present liberal
domain-expansion (lde) safe programs, a novel generic class of ASP programs with external source
access and value invention that enjoy finite restrictability, i.e., equivalence to a finite ground ver-
sion. They use term bounding functions as a parametric notion of safety, which can be instantiated
with syntactic, semantic or combined safety criteria; this empowers us to generalize and integrate
many other notions of safety from the literature, and modular composition of criteria makes future
extensions easy. Furthermore, we devise a grounding algorithm for lde-safe programs which in con-
trast to traditional algorithms can ground any such program straight without the need for program
decomposition. As the latter may still be useful for efficiency, we develop a new decomposition
heuristics. Moreover, we generalize the grounding algorithm with application-specific termination
criteria injected via hooks, such that controlled grounding is possible. This further increases usabil-
ity and supports restricted model generation, which we exploit in showcases for answering datalog
queries with existential quantifiers on top of ASP programs with external sources and for answer set
programs with function symbols. An experimental evaluation of lde-safety on various applications
confirms the practicability of our approach.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,fink,tkren,redl}@kr.tuwien.ac.at.

Danksagungen: This research has been supported by the Austrian Science Fund (FWF) project P24090.
Preliminary results of this work have been presented at AAAI 2013 [15], the 2nd GTTV workshop [14], and
INAP 2013 [16].

Copyright c© 2014 by the authors

2 INFSYS FB 14-02

Inhaltsverzeichnis

1 Introduction 3

2 Preliminaries 5
2.1 Syntax . 6
2.2 Semantics . 6
2.3 Safety . 7

3 Liberal Safety 8
3.1 Sample Term Bounding Functions . 11

3.1.1 Syntactic Criteria . 11
3.1.2 Semantic Properties . 12

3.2 Modular Combinations of Term-Bounding Functions . 14
3.3 Domain predicates . 15

4 Grounding Liberally Domain-expansion Safe HEX-Programs 15
4.1 Soundness and Completeness . 18
4.2 Integrating the Algorithm into the Model-Building Framework 20

5 Implementation and Evaluation 23
5.1 Problem Suite . 24
5.2 Benchmark Results . 26

6 Controlled Grounding 31
6.1 HEX∃-Programs . 33
6.2 Application: Query Answering over Positive HEX∃-Programs 34
6.3 HEX-Programs with Function Symbols . 36

7 Related Notions of Safety 37
7.1 Strong Safety . 37
7.2 VI-Restricted Programs . 37
7.3 Logic Programs with Function Symbols . 38
7.4 Term Rewriting Systems . 39
7.5 Other Notions of Safety . 39

8 Conclusion 39

A Proofs 43

INFSYS FB 14-02 3

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which due to expressive and ef-
ficient systems like CLASP, DLV, and SMODELS, has been gaining popularity in several application areas,
and in particular in artificial intelligence [6]. A problem at hand is represented by a set of rules (an ASP
program) such that its models, called answer sets, encode the solutions to the problem. Compared to the
similar approach of SAT solving, the rules might contain variables as a shortcut for all ground instances,
transitive closure can be readily expressed as well as negation as failure; further extensions including op-
timization constructs, aggregates, preferences and many other features have turned ASP into an expressive
and powerful problem solving tool.

Recent developments in computing require access from ASP programs to external sources, as informa-
tion is increasingly stored in different sources and formats, or because complex, specific tasks can not be
expressed directly or efficiently in the program itself. A prominent example are DL-programs [22], which
integrate rules with description logic ontologies in a way such that queries to an ontology can be made in
the rules; the formalism supports reasoning tasks which cannot be realized in ontologies alone, e.g., default
classification. Another application with need for external access is planning in agent systems, which might
require to import information from sensors and send commands back to agents, e.g. robots [39]; action or
plan feasibility under physical or geometric constraints might be tested using special external libraries, etc.
In other scenarios, the actions might be simple, but the planning domain is implicit in an external data struc-
ture; for example, in advanced route planning tasks for smart city applications [21], where Open Street Map
data or some connection database may be used. Abstracting and accessing such data through an external in-
terface is natural, as the data might not be fully accessible or too big to be simple added to the ASP program.
Related to this is light-weight data access on the Web (e.g., XML, RDF, or other data repositories), which is
getting more frequent and desired in complex applications, for instance in information integration; but like
for a street map, a complete a priori data import is usually infeasible (in particular, in case of recursive data
access). A concrete application scenario is, for instance, from the biomedical domain [23] where different
online knowledge resources about genes, drugs and diseases are assessed in order to answer complex queries
regarding their mutual relationships, e.g., for drugs that treat a certain disease while not targeting a particu-
lar gene. Finally, ASP is a popular host for experimental implementations of logic-based AI formalisms;
however, the expressive capability of ordinary ASP may not be sufficient to cater a particular formalism, or
a direct encoding in ASP may be cumbersome; in this case, it is convenient if some condition checks can
be outsourced to external computation. For example, implementations of Dung-style semantics for abstract
argumentation [10] (this will be more discussed below) or of multi-context systems [5], fall in this class.

To cater for the need of external source access, HEX-programs [18] extended ASP with so-called external
atoms, through which the user can couple any external data source with a logic program. Roughly, such
atoms pass information from the program, given by predicate extensions, into an external source which
returns output values of an (abstract) function that it computes. This convenient extension has been exploited
for a growing range of applications, including those mentioned above; for a more detailed but not up to date
account, see [12]. HEX-programs are highly expressive in general, as in addition to their high computational
power, external atoms may introduce new constants that are not present in the program; this is commonly
referred to as value invention. However, this feature makes the evaluation of ASP programs tricky and may
lead to non-termination.

The predominant evaluation approach of current ASP solvers is grounding & search, which roughly
speaking means that a ground (variable-free) version of the program is generated by substituting constants
for variables, and thereafter an answer set of the resulting ground (propositional) program is searched; both

4 INFSYS FB 14-02

steps use quite sophisticated algorithms.
A naive support of value invention leads to infinite program groundings. For instance, the program

Π=

{
r1 : p(a). r3 : s(Y) ← p(X),&concat [X, a](Y).

r2 : q(aa). r4 : p(X)← s(X), q(X).

}

where &concat [X, a](Y) returns in Y the string in X with a appended, has an infinite grounding assuming
that the external source processes all finite strings over an alphabet. Yet it appears (and is easy to see for an
ASP aficionado) that only ground rules using a, aa and aaa are relevant for program evaluation. However
due to an API style interface, external sources are largely black boxes to an ASP solver. Thus while the
relevant constants for grounding might be clear intuitively, they are not at the formal level, and predeter-
mining them is in general not effectively possible (i.e., is undecidable). To ensure that a finite fragment of
the program’s grounding is faithful, i.e., has the same answer sets as the original program (referred to as
finite restrictability), traditional approaches impose strong syntactic safety conditions on a program, such
as strong domain-expansion safety [19] or VI-restrictedness [8]. However, they often limit expressiveness
too much, i.e., programs may not fulfill the safety conditions while they are clearly finitely restrictable; the
program Π above is a simple example.

In order to evaluate programs which violate safety, a common workaround is to use a domain predicate
d, where each constant c from the external source is added by a fact d(c) to the program and type literals
d(X) are added for “unsafe” variables X in rule bodies; that is, the constants which might be relevant for
external source accesses are imported a priori into the program. E.g., for the realization of DL-programs
[17] via HEX-programs, where the external atoms query a description logic ontologyO, the individuals (i.e.,
constants) occurring in O were added to the program in this way. However, this workaround is not only
inconvenient, but also infeasible for large external domains.

This motivates us to introduce a more liberal notion of safety that still ensures finite restrictability of the
program. However, rather than merely to generalize an existing notion of safety, we aim for a generic notion
at a conceptual level which can incorporate besides syntactic also semantic information about sources, and
which is flexible with regard to further generalizations and extensions. In combination with this notion, we
present a novel grounding algorithm for the new class of programs. To enhance usability, we also present a
generalized version of it which allows to customize the grounding, such that application specific properties
can be exploited.

The contributions in this article are briefly summarized as follows:

• We introduce liberal domain-expansion (lde) safety, which is parameterized with term bounding
functions (TBFs). Such functions embody criteria which ensure that only finitely many ground instances
of a term expression in a program matter. The notion provides a generic framework in which TBFs can be
modularly replaced and combined, which offers attractive flexibility and future extensibility. We provide
sample TBFs which exploit like traditional approaches syntactic structure, but also TBFs that build on
semantic properties of the program, hinging on cyclicity and meta-information; this allows us to cover the
program Π above. Thanks to modularity, these TBFs can be fruitfully combined into a single, more powerful
TBF. Notably, by resorting to lde-safety domain predicates may be dispensed.

• We present a new grounding algorithm for lde-safe programs. The algorithm is based on a grounder
for ordinary ASP programs, which is iteratively called to enlarge the ground program until all relevant
constants are respected; between the calls of the ordinary ASP grounder, external sources may be evaluated.
The new algorithm is integrated into the model-building framework for HEX-programs, for which we also

INFSYS FB 14-02 5

develop a new evaluation heuristics that aims to balance between program decomposition and learning
techniques.

• We consider some applications that take advantage of lde-safety and present an experimental evalua-
tion. The applications include, among others, recursive processing of data structures, abstract argumentation
frameworks, and route planning scenarios. The evaluation of our grounding algorithms will show that lde-
safety not only relieves the user from writing domain predicates, but also leads to significantly better perfor-
mance in many cases. In fact, the realization of some of our applications is impossible with the traditional
notion of safety.

• We present a generalization of the grounding algorithm which features hooks that can be exploited
to introduce application-specific stopping criteria, such that controlled grounding is possible. This provides
the user with a means to generate groundings for computing bounded models, which can serve different
purposes. One is to use a finite fragment of an infinite program grounding that suffices to answer certain rea-
soning tasks; as a showcase, we discuss query answering over existential rules. Another usage is convenient
support for parametric notions of data structures (e.g., bounded arithmetic or strings of bounded length),
deferring necessary domain restrictions from the HEX-program to the grounder. Furthermore, we consider
an application to support programs with function symbols.

• We discuss a number of related notions of safety and find that lde-safety is already more general than
many approaches using the TBFs presented here, and it allows to accommodoate others.

To summarize, lde-safety is a significant advance for ASP with external source access, which on the
one hand improves existing applications, while on the other it empowers new applications that would not
be possible without it; to wit, some route planning tasks that we consider are infeasible using ordinary ASP.
This demonstrates the potential of our results and of the DLVHEX-system implementing them.

Organization. The remainder of this article is organized as follows. In the next section, we recall HEX-
programs and strong domain-expansion safety. In Section 3, we introduce liberal domain safety and con-
sider different ways to instantiate it. In Section 4, we present the new grounding algorithm and discuss its
integration into the HEX-model building framework. Section 5 is devoted to implementation and an experi-
mental evaluation. We then consider in Section 6 the generalization of the grounding algorithm, along with
an application to query answering from datalog programs with existential quantification in rule heads. After
the discussion of related work in Section 7, we conclude in Section 8 with a summary and open issues. In
order not to distract from reading, proofs have been moved to A.

2 Preliminaries

We start with basic definitions and recall HEX-programs [18]. The signature consists of mutually disjoint
sets P of predicates, X of external predicates, C of constants, and V of variables. Note that C may contain
constants that do not occur explicitly in a HEX program and can even be infinite.

A (signed) ground literal is a positive or a negative formula Ta resp. Fa, where a is a ground atom of
form p(c1, . . . , c`), with predicate p ∈ P and constants c1, . . . , c` ∈ C, abbreviated p(c). An assignment A
is a consistent set of literals. We make the convention that if an assignment does not explicitly contain Ta
or Fa for some atom a, i.e. the assignment is partial, then a is false wrt. A. An interpretation is a complete
assignment A, i.e., for every atom a either Ta ∈ A or Fa ∈ A holds.

6 INFSYS FB 14-02

2.1 Syntax

HEX-programs generalize (disjunctive) extended logic programs under the answer set semantics [27] with
external atoms of form &g [X](Y), where &g ∈ X , X = X1, . . . , X` and each Xi ∈ P ∪ C ∪ V is an input
parameter, and Y = Y1, . . . , Yk and each Yi ∈ C ∪ V is an output term.

Each p∈P has arity ar(p)≥ 0 and each &g ∈X has input arity
ar I(&g)≥ 0 and output arity ar O(&g)≥ 0. Each input argument i of &g (1≤ i≤ ar I(&g)) has type const
or pred, denoted τ(&g , i), where τ(&g , i) = pred if Xi ∈ P and τ(&g , i) = const otherwise.

A HEX-program (or program) consists of rules r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai is an (ordinary) atom and each bj is either an ordinary atom or an external atom, and k+n > 0.
The head of r is H(r) = {a1, . . . , an}, the body is B(r) = B+(r) ∪ notB−, where B+(r) =

{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body, and notS = {not b |
b ∈ S}. For any rule, set of rules O, etc., let A(O) and EA(O) be the set of all ordinary and external atoms
occurring in O, respectively.

2.2 Semantics

The semantics of a HEX-program Π is defined via its grounding grnd(Π) (over C) as usual, where the va-
lue of a ground external atom &g [p](c) wrt. an interpretation A is given by the value f&g(A,p, c) of a
k+l+1-ary Boolean oracle function f&g [18]. The input parameter pi ∈ p is monotonic if, f&g(A,p, c) ≤
f&g(A′,p, c) whenever A′ increases A only by literals Ta where a has predicate pi; otherwise, pi is non-
monotonic.

Satisfaction of (sets of) ground literals, rules, programs etc. O wrt. A (denoted A |= O, i.e., A is a
model of O) extends naturally from ordinary logic programs to HEX-programs, by taking external atoms
into account. That is, for every ordinary atom a, A |= a if Ta ∈ A, and A 6|= a if Fa ∈ A, and for every
external atom a = &g [p](c), A |= a if f&g(A,p, c) = 1. For a rule r of form (1), A |= r if either A |= ai
for some 1 ≤ i ≤ k, A |= bj for some m < j ≤ n, or A 6|= bj for some 1 ≤ j ≤ m. Finally, A |= Π, if
A |= r for every r ∈ Π. An answer set of a HEX-program Π is any model A of the FLP-reduct ΠA of Π wrt.
A, given by ΠA = {r ∈ grnd(Π) | A |= B(r)} [24], whose positive part {Ta ∈ A} is subset-minimal,
i.e., there exists no model A′ of ΠA such that {Ta ∈ A′} ⊂ {Ta ∈ A}.1 The set of all answer sets of Π is
denoted by AS(Π).

Example 1 (cont’d) Reconsider the program Π from the Introduction, and consider the interpretation A =
{Tdom(aa),Tt(a),Ts(aa),Tt(aa),Ts(aaa)} (by the convention from above, all atoms not occurring in
A are false). It can be seen that A is an answer set of Π. Indeed, ΠA (which in abuse of notation denotes
the FLP-reduct of the grounding of Π wrt. A) is

ΠA=


t(a). s(aa)← t(a),&concat [a, a](aa).

dom(aa). s(aaa)← t(aa),&concat [aa, a](aaa).

t(aa)← s(aa), dom(aa).

 .

1The FLP-reduct is equivalent to the traditional Gelfond-Lifschitz reduct for ordinary logic programs [27], but more attractive
for extensions such as aggregates or external atoms.

INFSYS FB 14-02 7

Clearly, A |= ΠA, and no atoms can be switched to false such that the resulting interpretation A′ fulfills
A′ |= ΠA; hence, A is an answer set of Π. In fact, A is the only answer set of Π, i.e., AS(Π) = {A}. 2

Note that in the previous example, a finite portion of the grounding of the program is sufficient to single
out its answer sets. This property, which we call finite restrictability, is essential for computing the answer
in finite time. More formally, let us for programs Π′ and Π write Π′ ≡pos Π, ifAS(Π′) andAS(Π) coincide
on positive literals. Then,

Definition 1 A program Π is finitely restrictable, if there exists some finite subset Π′ ⊆ grnd(Π) such that
Π′ ≡pos Π.

As finite restrictability of a program is clearly undecidable in general, we are interested in decidable
cases where Π′ can be effectively computed from Π. To this end, suitable notions of safety are useful.

2.3 Safety

The notion of safety has been introduced in the context of logic programming on data bases (viewed as
facts of a logic program), to prevent that datalog queries produce infinite results. A program is safe, if each
variable in a rule r occurs also in a positive body atom in B+(r). However, due to external atoms, we need
additional safety criteria.

Example 2 Let &concat [X, a](Y) be true iff Y is the string catenation ofX and a. Then Π = {s(a). s(Y)←
s(X),&concat [X, a](Y)} is safe but not finitely restrictable. Note that Π has the single (infinite) answer set
{Ts(ai) | i ≥ 1}. 2

Thus the notion of strong safety was introduced by [19], which limits the output of cyclic external atoms.
In hinges on the concept of external atom dependencies.

Definition 2 (External Atom Dependencies) Let Π be a HEX-program and leta a = &g [X](Y) be an
external atom in Π.

• If b= p(Z) ∈
⋃

r∈ΠH(r), then a depends external monotonically (resp. nonmonotonically) on b,
denoted a→e

m b (resp. a→e
n b), ifXi = p for some monotonic (resp. nonmonotonic) parameterXi ∈X

(= X1, .., X`).

• If {a, p(Z)}⊆B+(r), some Xi ∈X occurs in Z, and τ(&g , i) = const, then &g [X](Y)→e
m p(Z).

• If {a, &h[V](U)}⊆B+(r), some Xi∈X occurs in U, and we have τ(&g , i) = const, then
&g [X](Y)→e

m &h[V](U).

Definition 3 (Atom Dependencies) For a HEX-program Π and (ordinary or external) atoms a, b, we say
that

(i) a depends monotonically on b, denoted a→m b, if:

• some rule r ∈ Π has a ∈ H(r) and b ∈ B+(r); or

• there are rules r1, r2 ∈ Π such that a ∈ B(r1) and b ∈ H(r2) and a unifies with b; or

• some rule r ∈ Π has a ∈ H(r) and b ∈ H(r).

8 INFSYS FB 14-02

(ii) a depends nonmonotonically on b, denoted a →n b, if there is some rule r ∈ Π such that a ∈ H(r)
and b ∈ B−(r).

The following definition represents these dependencies.

Definition 4 (Atom Dependency Graph) Given a HEX-program Π, its atom dependency graph ADG(Π)
has as nodes VA the (nonground) atoms occurring in non-facts r (i.e., k 6= 1 or n > 0) of Π and as edges
EA the dependency relations→m,→n,→e

m,→e
n between these atoms in Π.

This allows us to introduce strong safety as follows.

Definition 5 (Strong Safety) An atom b= &g [X](Y) in a rule r of a program Π is strongly safe wrt. r
and Π, if either there is no cyclic dependency over b in ADG(Π), or every variable in Y occurs also in a
positive ordinary atom a ∈ B+(r) not depending on b in ADG(Π). A program Π is strongly safe, if every
external atom in a rule r ∈ Π is strongly safe wrt. r in Π.

Example 3 (cont’d) Reconsider the program Π of Example 2. The external atom a = &concat [X, a](Y)
is not strongly safe because it is in a cycle and no ordinary body atom contains Y . However, a would be
strongly safe, and hence also Π, if the rule body would contain an atom p(Y) and p would occur in Π apart
from this only in facts. Likewise, the program Π in the Introduction is not strongly safe as the external atom
&concat [X, a](Y) is not safe. 2

The notion of strong domain-expansion safety is then as follows.

Definition 6 (Strong Domain-expansion Safety [19]) A program Π is strongly domain-expansion (sde)
safe, if it is safe and each external atom occurring in any rule r of Π is strongly safe wrt. r and Π.

For this notion of safety, [19] established the following result.

Proposition 1 Every strongly domain-expansion safe HEX-program Π is finitely restrictable.

More in detail, they gave an algorithm to construct a finite portion Π′ of the grounding of such a Π with
the property Π′ ≡pos Π; this algorithm has been implemented in the DLVHEX-system.

While many HEX-programs are sde-safe, there are simple programs which lack this property.

Example 4 (cont’d) The program in Example 2 and the program Π in Section 1 are not sde-safe, as external
atoms that occur in them are not strongly safe. Furthermore, for both programs adding a domain predicate
(as described in Section 1 is infeasible as infinitely many domain facts d(σ) would be added, one for each
string σ. 2

However, the program Π in Section 1 has only finite answer sets, and no infinite domain predicate seems
necessary to single out all relevant rules instances; this motivates a more general notion of safety.

3 Liberal Safety

Strong domain-expansion safety is overly restrictive, as it also excludes programs that clearly are finitely
restrictable.

INFSYS FB 14-02 9

Example 5 Reconsider the program Π from Section 1. It is not strongly domain-expansion safe because Y
in r3 does not occur in an ordinary body atom that does not depend on &concat [X, a](Y). However, Π is
finitely restrictable as the cycle is “broken” by dom(X) in r4. 2

In this section, we introduce a new notion of liberal domain-expansion safety which incorporates both
syntactic and semantic properties of the program at hand. In the following, domain-expansion safety (de-
safety) refers to liberal domain-expansion safety, unless we explicitly say strong domain-expansion safety.
Compared to the latter, this gives us a larger class of programs which are guaranteed to have a finite groun-
ding that preserves all answer sets. Unlike strong de-safety, liberal de-safety is not a property of entire atoms
but of attributes, i.e., pairs of predicates and argument positions. Intuitively, an attribute is lde-safe, if the
number of different terms in an answer-set preserving grounding (i.e. a grounding which has the same ans-
wer sets if restricted to the positive atoms as the original program) is finite. A program is lde-safe, if all its
attributes are lde-safe.

Our notion of lde-safety is designed in an extensible fashion, i.e., such that several safety criteria can be
easily integrated. For this we parameterize our definition of lde-safety by a term bounding function (TBF),
which identifies variables in a rule that are ensured to have only finitely many instantiations in the answer
set preserving grounding. Finiteness of the overall grounding follows then from the properties of TBFs.
Concrete syntactic and semantic properties are realized in some sample TBFs (cf. Section 3.1).

For an ordinary predicate p∈P , let p�i be the i-th attribute of p for all 1 ≤ i ≤ ar(p). For an external
predicate &g ∈ X with input list X in rule r, let &g [X]r�T i with T ∈ {I, O} be the i-th input resp. out-
put attribute of &g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground program P , the range of an attribute
is, intuitively, the set of ground terms which occur in the position of the attribute. Formally, for an attri-
bute p�i we have range(p�i,Π) = {ti | p(t1, . . . , tar(p)) ∈ A(Π)}; for an attribute &g [X]r�T i we have
range(&g [X]r�T i,Π) = {xTi | &g [xI](xO) ∈ EA(Π)}, where xs = xs1, . . . , x

s
ars(&g).

Example 6 Reconsider the program Π from Section 1. Examples for attributes are t�1, &concat [X, a]r3�I2
and &concat [X, a]r3�O1. Furthermore, range(t�1,Π) = {a}.

We use the following monotone operator to compute by fixpoint iteration a finite subset of grnd(Π) for
a program Π:

GΠ(Π′) =
⋃
r∈Π

{rθ | ∃A ⊆ A(Π′),A 6|= ⊥,A |= B+(rθ)},

whereA(Π′) = {Ta,Fa | a ∈ A(Π′)}\{Fa | a← . ∈ Π} and rθ is the ground instance of r under variable
substitution θ : V → C. Note that in this definition, A might be partial, but by convention we assume that
all atoms which are not explicitly assigned to true are false. That is, GΠ takes a ground program Π′ as input
and returns all rules from grnd(Π) whose positive body is satisfied under some assignment over the atoms
of Π′. Intuitively, the operator iteratively extends the grounding by new rules if they are possibly relevant for
the evaluation, where relevance is in terms of satisfaction of the positive rule body under some assignment
constructible over the atoms which are possibly derivable so far. Obviously, the least fixpoint G∞Π (∅) of this
operator is a subset of grnd(Π); we will show that it is finite if Π is lde-safe according to our new notion.
Moreover, we will show that this grounding preserves all answer sets because all rule instances which are
not added have unsatisfied bodies anyway.

Example 7 Consider the following program Π:

r1 : s(a). r2 : dom(ax). r3 : dom(axx).
r4 : s(Y)← s(X),&concat [X,x](Y), dom(Y).

10 INFSYS FB 14-02

The least fixpoint of GΠ is the following ground program:

r′1 : s(a). r′2 : dom(ax). r′3 : dom(axx).
r′4 : s(ax)← s(a),&concat [a, x](ax), dom(ax).
r′5 : s(axx)← s(ax),&concat [ax, x](axx), dom(axx).

Rule r′4 is added in the first iteration and rule r′5 in the second.

Towards a definition of lde-safety, we say that a term in a rule is bounded, if the number of substitutions
in G∞Π (∅) for this term is finite. This is abstractly formalized using term bounding functions.

Definition 7 (Term Bounding Function (TBF)) A term bounding function, denoted b(Π, r, S,B), maps a
program Π, a rule r ∈ Π, a set S of (already safe) attributes, and a set B of (already bounded) terms in r
to an enlarged set of (bounded) terms b(Π, r, S,B) ⊇ B, such that every t ∈ b(Π, r, S,B) has finitely many
substitutions inG∞Π (∅) if (i) the attributes S have a finite range inG∞Π (∅) and (ii) each term in terms(r)∩B
has finitely many substitutions in G∞Π (∅).

Intuitively, a TBF receives a set of already bounded terms and a set of attributes that are already known
to be lde-safe. Taking the program into account, the TBF then identifies and returns further terms which are
also bounded.

Our concept yields lde-safety of attributes and programs from the boundedness of variables according to
a TBF. We provide a mutually inductive definition that takes the empty set of lde-safe attributes S0(Π) as its
basis. Then, each iteration step n ≥ 1 defines first the set of bounded terms Bn(r,Π, b) for all rules r, and
then an enlarged set of lde-safe attributes Sn(Π). The set of lde-safe attributes in step n+ 1 thus depends on
the TBF, which in turn depends on the domain-expansion safe attributes from step n.

Definition 8 (Liberal Domain-Expansion Safety) Let b be a term bounding function. The set Bn(r,Π, b)
of bounded terms in a rule r ∈ Π in step n ≥ 1 isBn(r,Π, b) =

⋃
j≥0Bn,j(r,Π, b) whereBn,0(r,Π, b) = ∅

and for all j ≥ 0, Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).

The set of domain-expansion safe attributes S∞(Π) =
⋃

i≥0 Si(Π) of a program Π is iteratively con-
structed with S0(Π) = ∅ and for n ≥ 0:

• p�i∈Sn+1(Π) if for each r∈Π and atom p(t1, . . . , tar(p)) ∈ H(r), term ti ∈ Bn+1(r,Π, b), i.e., ti
is bounded;

• &g [X]r�Ii∈Sn+1(Π) if each Xi is a bounded variable, or Xi is a predicate input parameter p and
p�1, . . . , p�ar(p) ∈ Sn(Π);

• &g [X]r�Oi∈Sn+1(Π) if and only if r contains an external atom &g [X](Y) such that Yi is bounded,
or &g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(Π).

A program Π is liberally domain-expansion (lde) safe, if it is safe and all its attributes are domain-
expansion safe.

We sometimes omit “liberally” and refer with domain-expansion safe to lde safe programs. An example
is delayed until we have introduced sample TBFs in Section 3.1. However, the intuition is as follows. In each
step, the TBF first provides further terms that are bounded (given the information assembled in previous
iterations), exploiting e.g. syntactic or semantic criteria. This possibly makes additional attributes lde-safe

INFSYS FB 14-02 11

(cf. the conditions for Sn(Π) in Definition 8 above), which in turn may cause further terms to become
bounded in the next iteration step.

We next show that S∞(Π) is finite, thus the inductive definition can be used for computing S∞(Π): the
iteration can be aborted after finitely many steps. We first note some desired properties.

Proposition 2 The set S∞(Π) is finite.

Moreover, lde-safe attributes have a finite range in G∞Π (∅).

Proposition 3 For every TBF b and n ≥ 0, if α ∈ Sn(Π), then the range of α in G∞Π (∅) is finite.

Corollary 4 If α ∈ S∞(Π), then range(α,G∞Π (∅)) is finite.

This means that such attributes occur with only finitely many arguments in the grounding computed by
GΠ. This result implies that also the whole grounding G∞Π (∅) is finite.

Corollary 5 If Π is a lde-safe program, then G∞Π (∅) is finite.

As follows from these propositions, S∞(Π) is also finitely constructible. Note that the propositions hold
independently of a concrete TBF because the properties of TBFs are sufficiently strong. This allows for a
modular exchange or combination of the TBFs, as long as the preconditions of TBFs are satisfied, without
changing the definition of lde-safety.

We now make use of the results from above to show that lde-safe programs are finitely restrictable.
However, we remark that the following proposition does not directly lead to an efficient implementation; the
algorithm presented in Section 4 makes use of several optimizations.

Proposition 6 Every lde-safe program Π is finitely restrictable, and it holds that G∞Π (∅) ≡pos Π.

This proposition holds independently of a concrete term bounding function. However, functions that are
too liberal are excluded by the preconditions in the definition of TBFs.

3.1 Sample Term Bounding Functions

We now introduce sample term bounding functions that exploit syntactic and semantic properties of external
atoms to guarantee boundedness of variables. By our previous result, this ensures also finiteness of the
ground program computed by G∞Π (∅).

3.1.1 Syntactic Criteria

We first identify syntactic properties that can be exploited for our purposes.

Definition 9 (Syntactic Term Bounding Function) We define bsyn(Π, r, S,B)
such that t ∈ bsyn(Π, r, S,B) iff

(i) t is a constant in r; or

(ii) there is an ordinary atom q(s1, . . . , sar(q)) ∈ B+(r) such that t = sj , for some 1 ≤ j ≤ ar(q) and
q�j ∈ S; or

12 INFSYS FB 14-02

(iii) for some external atom &g [X](Y) ∈ B+(r), we have that t = Yi for some Yi ∈ Y, and for each
Xi ∈ X, {

Xi ∈ B, if τ(&g , i) = const,

Xi�1, . . . , Xi�ar(Xi) ∈ S, if τ(&g , i) = pred.

Intuitively, (i) a constant is trivially bounded because it is never substituted by other terms in the groun-
ding. Case (ii) states that terms occurring at lde-safe attribute positions are bounded; more spcifically, the
fact that an attribute q�j (where 1 ≤ j ≤ ar(q)) is lde-safe, and thus has a finite range in G∞Π (∅), im-
plies that the term at this attribute position is bounded. Case (iii) essentially expresses that if the input to an
external atom is finite, then also its output is finite.

Proposition 7 The function bsyn(Π, r, S,B) is a TBF.

Example 8 (cont’d) Consider Π from Example 7 to compute the sets of safe attributes. We get S1(Π) =
{dom�1,&concat [X,x]r4�I2}, asB1(r2,Π, bsyn) = {ax},B1(r3,Π, bsyn) = {axx} andB1(r4,Π, bsyn) =
{x} (by item (i) in Definition 9), i.e., the derived terms in all rules that have dom�1 in their head are known
to be bounded. In the next iteration, we getB2(r4,Π, bsyn) = {Y } (by item (ii) in Definition 9) as dom�1 is
already known to be lde-safe. Since we also have B2(r1,Π, bsyn) = {a}, the terms derived by r1 and r4 are
bounded, hence s�1 ∈ S2(Π). Moreover, &concat [X,x]r4�O1 ∈ S2(Π) because Y is bounded. The third
iteration yields &concat [X,x]r4�I1 ∈ S3(Π) because X ∈ B3(r4,Π, bsyn) due to item (ii) in Definition 9.
Thus, all attributes are lde-safe. 2

3.1.2 Semantic Properties

We now define a TBF exploiting meta-information about external sources in four properties.
The first property is based on malign cycles in the positive attribute dependency graphs, which are the

source of any infinite value invention. The positive attribute dependency graph GA(Π) has as nodes the
attributes of Π and its edges model the information flow between the attributes. For instance, if for rule r we
have p(X)∈H(r) and q(Y)∈B+(r) such that Xi =Yj for some Xi ∈X and Yj ∈Y, then we have a flow
from q�j to p�i.

Formally, the positive attribute dependency graph is defined as follows.

Definition 10 (Positive Attribute Dependency Graph) For a given HEX-program Π, the positive attribute
dependency graph GA(Π) = 〈Attr , E〉 has as nodes Attr the set of all attributes in Π and the least set of
edges E such that for all r ∈ Π:

• If p(X) ∈ H(r), q(Y) ∈ B+(r) and for some i, j we have that Xi = Yj is a variable, then
(q�j, p�i) ∈ E.

• If &g [X](Y) ∈ B+(r), p(Z) ∈ B+(r) and for some i, j we have thatZi = Xj and τ(&g , i) = const,
then (p�i,&g [X]r�Ij) ∈ E.

• If &g [X](Y) ∈ B+(r), &h[V](U) ∈ B+(r) and for some i, j we have that Vi = Yj and τ(&h, i) =
const, then (&g [X]r�Oj,&h�Ii) ∈ E.

• If &g [X](Y) ∈ B+(r) then (&g [X]r�Ii,&g [X]r�Oj) ∈ E for all 1 ≤ i ≤ iar(&g) and 1 ≤ j ≤
oar(&g)..

INFSYS FB 14-02 13

dom�1 s�1 &concatr4�I1

&concatr4�O1

&concatr4�I2

Abbildung 1: Attribute dependency graph for Π in Example 7

• If p(X) ∈ H(r), &g [Y](Z) ∈ B+(r) and and for some i, j we have that Xi = Zj is a variable, then
(&g [X]r�Oj, p�i) ∈ E.

• If &g [X](Y) ∈ B+(r) s.t. p = Xi and τ(&g , i) = pred, then we have (p�k,&g [X]r�Ii) ∈ E for all
1 ≤ k ≤ ar(p).

The transitive closure of the edge relation in GA is denoted by →+
GA

. Intuitively, GA(Π) models the
information flow in Π.

Example 9 (cont’d) The (positive) attribute dependency graph of the program from Example 7 has the at-
tributes Attr = {s�1, dom�1,&concatr4�I1,&concatr4�I2,&concatr4�O1} and the edges {(dom�1, s�1),
(s�1,&concatr4�I1), (&concatr4�I1,&concatr4�O1), (&concatr4�I2,&concatr4�O1),
(&concatr4�O1, s�1)} (see Figure 1).

Definition 11 (Benign and Malign Cycles) A cycle K in GA(Π) is benign wrt. a set of safe attributes
S, if there exists a well-ordering ≤C of C, such that for every attribute &g [X]r�Oj 6∈ S in the cycle,
f&g(A, x1, . . . , xm, t1, . . . tn) = 0 whenever
• some xi for 1≤ i≤m is a predicate parameter, &g [X]r�Ii 6∈S is in K, and we have (s1, . . . , sar(xi))
∈ ext(A, xi), and tj 6≤C sk for some 1 ≤ k ≤ ar(xi); or
• some xi for 1≤ i≤m is a constant input parameter, &g [X]r�Ii 6∈ S is in K, and tj 6≤C xi.

A cycle in GA(Π) is called malign wrt. S if it is not benign.

Intuitively, a cycle is benign if external atoms never deliver larger values wrt. to their yet unsafe cyclic
input. As there is a least element, this ensures a finite grounding.

Example 10 (cont’d) The cycle in GA(Π) (dashed lines in Figure 1) is malign wrt. S = ∅ because there is
no well-ordering as required by Definition 11. Intuitively, this is because the external atom infinitely extends
the string.

If we replace &concat [X,x](Y) in Π by &tail [X](Y), i.e., we compute the string Y from X with the
first character removed, then the cycle in the adapted attribute dependency graph becomes benign using <
over the string lengths as well-ordering. 2

Two other properties involve meta-information that directly ensures an output attribute of an external source
is finite.

Definition 12 (Finite Domain) An external predicate &g ∈ X has the finite domain property wrt. output
argument i ∈ {1, . . . , ar O(&g)}, if {yi | x ∈ (P ∪ C)ar I(&g),y ∈ Car O(&g), f&g(A,x,y) = 1} is finite for
all assignments A.

Here, the provider of the external source explicitly states that the output at a certain position in the output
tuple is finite. This is perhaps the most direct way to ensure boundedness of the respective term.

14 INFSYS FB 14-02

Example 11 An external atom &md5 [S](Y) computing the MD5 hash value Y of a string S is finite domain
wrt. the (single) output element, as its domain is finite (yet very large). 2

While the previous properties derive boundedness of an output term of an external atom from finiteness
of its input, we now reverse the direction. An external atom may have the property that only a finite number
of different inputs can yield a certain output, which is formalized as follows.

Definition 13 (Finite Fiber) An external predicate &g ∈ X has the finite fiber property, if the set {x ∈
(P∪C)ar I(&g) | f&g(A,x,y) = 1} is finite for every A and y ∈ Car O(&g).

Example 12 Let &sq [X](S) be an external atom that computes the square S of the integer X . Then for a
given S, there are at most two distinct values for X . 2

The four properties above lead to the following TBF.

Definition 14 (Semantic Term Bounding Function) We define bsem(Π, r, S,B) such that t ∈ bsem(Π, r,
S,B) holds iff

(i) t is captured by some attribute α in B+(r) that is not reachable from malign cycles in GA(Π) wrt. S,
i.e., if α = p�i then t = ti for some body atom p(t1, . . . , t`) ∈ B+(r), and if α = &g [Y]r�T i then
t = Y T

i for some external atom &g [YI](YO) ∈ B+(r) where YT = XT
1 , . . . , Y

T
ar (&g); or

(ii) t = Xi for some &g [Y](X) ∈ B+(r), where &g has the finite domain property in i; or

(iii) t = Xi for some &g [Y](X) ∈ B+(r), where &g has the relative finite domain property in output
argument i and predicate input argument j and Yj�k ∈ S for all 1 ≤ k ≤ ar(Yj); or

(iv) t ∈ Y for some &g [Y](X) ∈ B+(r), where X ∈ B for every X ∈ X and &g has the finite fiber
property.

This TBF is directly motivated by the properties introduced above.

Proposition 8 Function bsem(Π, r, S,B) is a TBF.

3.2 Modular Combinations of Term-Bounding Functions

For an attractive framework it is important that a certain degree of flexibility is achieved in terms of compo-
sability of TBFs. The following proposition allows us to construct TBFs modularly from multiple TBFs and
thus ensures future extensibility by, e.g., customized application-specific TBFs.

Theorem 9 If bi(Π, r, S,B), 1 ≤ i ≤ `, are term bounding functions, then the union b(Π, r, S,B) =⋃
1≤i≤` bi(Π, r, S,B) is a TBF.

In particular, a TBF which exploits syntactic and semantic properties simultaneously is

bs2(Π, r, S,B) = bsyn(Π, r, S,B) ∪ bsem(Π, r, S,B),

which we will use subsequently.

INFSYS FB 14-02 15

3.3 Domain predicates

Recall that, as stated in the introduction, using domain predicates d is a common technique to ensure strong
safety of a HEX-program (which does, however, not work for the program Π in Section 1). For instance this
technique was applied in implementing DL-programs [17] and terminological default theories [1] in DLV-
HEX using the DL-plugin, which provides generic external atoms for querying description logic ontologies.
However, exploiting lde-safety, sometimes domain predicates may be dropped. We illustrate this with an
example.

Example 13 (Bird-Penguin) We consider here a simple DL-program (Π,O) which can be viewed as a
HEX-program Π (left side) with access to an external ontology O (right side) containing the conceptual
knowledge that penguins are birds and do not fly, and the assertion (data) that lia is a bird; the rules express
that birds fly unless the opposite is derivable:

Rules Π: Ontology O :

r1 : birds(X)← DL[Bird](X). Flier v ¬NonFlier Bird(lia)

r2 : flies(X)← birds(X),not neg flies(X). Penguin v Bird

r3 : neg flies(X)← DL[Flier] flies;¬Flier](X). Penguin v NonFlier

Here the expressions DL[· · ·](X) are so called DL-atoms, which in the HEX-view are just user-friendly
syntax for external atoms &dlC [· · ·](X) whose input parameters consist of a query (a concept name) and
optional additions of facts (assertions) to the ontology prior to query evaluation. To determine the birds
that fly, rule r1 retrieves all birds known by the ontology using a DL-atom DL[Bird](X). Intuitively, the
DL-atom DL[Flier] flies;¬Flier] returns all individuals in ¬Flier assuming that the concept Flier is
augmented with the extension of the predicate flies . The rules r2 and r3 encode then the conclusion that
a bird flies by default. In particular, this is concluded for lia , as the program has the single answer set
{bird(lia), flies(lia)}.

While the program Π is safe, it is not strongly safe; this is because the external atom DL[Flier]
flies;¬Flier](X) in rule r3 is involved in a cycle through negation. This can be remedied using a domain
predicate d as described, by adding the literal d(X) in the body of r3 and the fact d(lia). Alternatively,
assuming that all individuals in the ontology are birds, strong safety is gained by using bird as domain
predicate and simply adding bird(X) in the body of r3; we denote the resulting rule by r′3 and the resulting
program by Π′. In fact, little reflection reveals that projected on flies , the answer sets of Π′ remain the same
even if this assumption is not made.

On the other hand, Π is lde-safe, as X in DL[Flier] flies;¬Flier](X) can take only finitely many
values. This relieves the user from using a domain predicate, which—even if possible—is often cumbersome
in practice. 2

4 Grounding Liberally Domain-expansion Safe HEX-Programs

In this section we present a grounding algorithm for liberally domain-expansion safe HEX-programs. It is
based on the iteratively grounding the input program and then checking whether the grounding contains all
relevant ground rules. The check works by evaluating external sources under relevant interpretations and
testing if they introduce any new values which were not respected in the grounding. If this is the case, then
the set of constants is expanded and the program is grounded again. If the check does not identify additional
constants which must be respected in the grounding, then it is guaranteed that the unrespected constants from

16 INFSYS FB 14-02

C are irrelevant in order to ensure that the grounding has the same answer sets as the original program. For
liberally domain-expansion safe programs, this procedure will eventually reach a fixpoint, i.e., all relevant
constants are respected in the grounding.

We start with some basic concepts that are all demonstrated in Example 14 below. We assume that rules
are standardized apart (i.e., share no variables). Let R be a set of external atoms and let r be a rule. By
r|R we denote the rule obtained by removing external atoms not in R, i.e., such that H(r|R) = H(r) and
Bs(r|R) = ((Bs(r)∩A(r))∪ (Bs(r)∩R)) for s ∈ {+,−}. Similarly, Π|R =

⋃
r∈Π r|R, for a program Π.

Furthermore, let var(r) be the set of variables from V appearing in a rule r.

Definition 15 (Liberal Domain-expansion Safety Relevance) A set R of external atoms is relevant for
lde-safety of a program Π, if Π|R is lde-safe and var(r) = var(r|R), for all r ∈ Π.

Intuitively, if an external atom is not relevant, then it cannot introduce new constants. Note that for a
program, the set of lde-safety relevant external atoms is not necessarily unique, leaving room for heuristics.
In the following definitions we choose a specific set.

We further need the concepts of input auxiliary and external atom guessing rules. We say that an external
atom &g [Y](X) joins an atom b, if some variable from Y occurs in b, where in case b is an external atom
the occurrence is in the output list of b.

Definition 16 (Input Auxiliary Rule) Let Π be a program, and let &g [Y](X) be some external atom with
input list Y occurring in a rule r ∈ Π. Then, for each such atom, a rule r&g[Y](X)

inp is composed as follows:

• the head is H(r
&g[Y](X)
inp) = {ginp(Y)}, where ginp is a fresh predicate; and

• the body B(r
&g[Y](X)
inp) contains each b ∈ B+(r) \ {&g [Y](X)} such that &g [Y](X) joins b, and b is

lde-safety-relevant if it is an external atom.

Intuitively, input auxiliary rules are used to derive all ground tuples y under which the external atom
needs to be evaluated. Next, we need external atom guessing rules.

Definition 17 (External Atom Guessing Rule) Let Π be a program, and let further &g [Y](X) be some
external atom. Then a rule r&g[Y](X)

guess is composed as follows:

• the head is H(r
&g[Y](X)
guess) = {er,&g[Y](X),ner,&g[Y](X)};

• the body B(r
&g[Y](X)
guess) contains

(i) each b ∈ B+(r) \ {&g [Y](X)} such that &g [Y](X) joins b and b is lde-safety-relevant if it is
an external atom; and

(ii) ginp(Y).

Intuitively, they guess the truth value of external atoms using a choice between the external replacement
atom er,&g[Y](X), and fresh atom ner,&g[Y](X).

Our approach is based on a grounder for ordinary ASP programs. Compared to the naive grounding
grndC(Π), which substitutes all constants for all variables in all possible ways, we allow the ASP grounder
GroundASP to optimize rules such that, intuitively, rules may be eliminated if their body is always false,
and ordinary body literals may be removed from the grounding if they are always true, as long as this does
not change the answer sets.

INFSYS FB 14-02 17

Definition 18 We call rule r′ an o-strengthening of r, if H(r′) = H(r), B(r′) ⊆ B(r) and B(r) \ B(r′)
contains only ordinary literals, i.e., no external atom replacements.

Definition 19 An algorithm GroundASP is a faithful ASP grounder for a safe ordinary program Π, if it
outputs an equivalent ground program Π′ such that

• Π′ consists of o-strengthenings of rules in grndCΠ
(Π);

• if r ∈ grndCΠ
(Π) has no o-strengthening in program Π′, then every answer set of grndCΠ

(Π) falsifies
some ordinary literal in B(r); and

• if r ∈ grndCΠ
(Π) has some o-strengthening r′ ∈ Π′, then every answer set of grndCΠ

(Π) satisfies
B(r) \B(r′).

The algorithm is formally stated in Algorithm GroundHEX; our naming convention is as follows. Pro-
gram Π is the non-ground input program, while program Πp is the non-ground ordinary ASP prototype
program, which is an iteratively updated extension of Π with additional rules. In each step, the preliminary
ground program Πpg is produced by grounding Πp using a standard ASP grounding algorithm. Program Πpg

converges against a fixpoint from which the final ground HEX-program Πg is extracted.
The algorithm first chooses a set of lde-safety relevant external atoms, e.g., all external atoms as a naive

and conservative approach or following a greedy approach as in our implementation, and introduces input
auxiliary rules r&g[Y](X)

inp for every external atom &g [Y](X) in a rule r in Π in Part (a). For all non-relevant
external atoms, we introduce external atom guessing rules which ensure that the ground instances of these
external atoms are introduced in the grounding, even if we do not explicitly add them. Then, all external
atoms &g [Y](X) in all rules r in Πp are replaced by ordinary replacement atoms er,&g[Y](X). This allows
the algorithm to use a faithful ASP grounder GroundASP in the main loop at (b). After the grounding step,
the algorithm checks if the grounding is large enough, i.e., if it contains all relevant constants. For this, it
traverses all relevant external atoms at (c) and all relevant input tuples at (d) and at (e). Then, constants
returned by external sources are added to Πp at (f); if the constants were already respected, then this will
have no effect. Thereafter the main loop starts over again. The algorithm will find a program which respects
all relevant constants. It then removes auxiliary input rules and translates replacement atoms to external
atoms at (g).

We illustrate our grounding algorithm with the following example.

Example 14 Let Π be the following program:

f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y) ← &diff [d, n](Y), d(Y).
r2 : n(Y)← &diff [d, s](Y), d(Y).
r3 : c(Z) ← &count [s](Z).

Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of s1 but not in that of s2, and
&count [s](i) is true for the integer i corresponding to the number of elements in s. The program partitions
the domain (extension of d) into two sets (extensions of s and n) and computes the size of s. The external
atoms &diff [d, n](Y) and &diff [d, s](Y) are not relevant for lde-safety. Πp at the beginning of the first
iteration is as follows (neglecting input auxiliary rules, which are facts). Let e1(Y), e2(Y) and e3(Z) be
shorthands for er1,&diff [d,n](Y), er2,&diff [d,s](Y). and er3,&count [s](Z), respectively.

f1 : d(a). f2 : d(b). f3 : d(c). r1 : s(Y) ← e1(Y), d(Y).
g1 : e1(Y) ∨ ne1(Y)← d(Y). r2 : n(Y)← e2(Y), d(Y).
g2 : e2(Y) ∨ ne2(Y)← d(Y). r3 : c(Z) ← e3(Z).

18 INFSYS FB 14-02

Algorithm GroundHEX
Input: An lde-safe HEX-program Π
Output: A ground HEX-program Πg s.t. Πg ≡pos Π

(a) Choose a set R of lde-safety-relevant external atoms in Π

Πp := Π ∪ {r&g[Y](X)
inp | &g [Y](X) in r ∈ Π} ∪ {r&g[Y](X)

guess | &g [Y](X) 6∈ R}
Replace all external atoms &g [Y](X) in all rules r in Πp by er,&g[Y](X)

(b) repeat
Πpg := GroundASP(Πp) /* partial grounding */
/* evaluate all lde-safety-relevant external atoms */

(c) for &g [Y](X) ∈ R in a rule r ∈ Π do
Ama := {Tp(c) | a(c) ∈ A(Πpg), p ∈ Ym} ∪ {Fp(c) | a(c) ∈ A(Πpg), p ∈ Ya}
/* do this under all relevant assignments */

(d) for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. @a : Ta,Fa ∈ Anm do
A := (Ama ∪Anm ∪ {Ta | a←∈ Πpg}) \ {Fa | a←∈ Πpg}

(e) for y ∈ {c | r&g[Y](X)
inp (c) ∈ A(Πpg)} do

(f) Let O = {x | f&g(A,y,x) = 1}
/* add the respective ground guessing rules */
Πp := Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)←| x ∈ O}

until Πpg did not change
(g) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Π by &g [y](x)
return Πpg

The ground program Πpg contains no instances of r3 as the optimizer recognizes that er3,&count [s](Z)
occurs in no rule head and no ground instance can be true in any answer set. Then the algorithm co-
mes to the checking phase. It does not evaluate the external atoms in r1 and r2, because they are not
relevant for lde-safety because of the domain predicate d(Y). But it evaluates &count [s](Z) under all
A ⊆ {s(a), s(b), s(c)} because the external atom is nonmonotonic in s. Then the algorithm adds rules
{e3(Z) ∨ ne3(Z)← | Z ∈ {0, 1, 2, 3}} to Πp. After the second iteration, the algorithm terminates. 2

4.1 Soundness and Completeness

We now argue that Algorithm GroundHEX is sound and complete. Towards a proof we first consider a slower
but conceptually simpler variant GroundHEXNaive of it, for which we show soundness and completeness;
we then prove that the optimizations in GroundHEX do not harm these properties.

Compared to the naive Algorithm GroundHEXNaive, Algorithm GroundHEX contains the following
modifications. The first one concerns the ordinary ASP grounder. We allow the grounder to optimize the
grounding as formalized by Definition 19.

The second change concerns the external atoms evaluated at (d). Intuitively, an external atom may be
skipped if it can only return constants, which are guaranteed to appear also elsewhere in the grounding.

The third optimization concerns the enumeration of assignments. Note that Step (c) in GroundHEXNai-
ve enumerates all models of Πpg . That is, in order to ground the program, an ASP solver must be called,
which is computationally expensive and in fact unnecessary. Step (d) in GroundHEX simply enumerates as-
signments directly extracted from the partial grounding, constructed in a way guaranteeing that all relevant
ground instances of the external atoms are represented in the grounding.

We now illustrate the algorithm with an example.

INFSYS FB 14-02 19

Algorithm GroundHEXNaive:
Input: An lde-safe HEX-program Π
Output: A ground HEX-program Πg s.t. AS(Πg) ≡pos AS(Π)

(a) Πp = Π ∪ {r&g[Y](X)
inp | &g [Y](X) in r ∈ Π}}

Replace all external atoms &g [Y](X) in all rules r in Πp by er,&gY(X)
(b) repeat

/* partial grounding */
Πpg ← grndC(Πp) with constants C in Πp

/* check if the grounding is large enough */
(c) for all models A of Πpg over A(Πpg) do

/* evaluate all external atoms */
(d) for &g [Y](X) in a rule r ∈ Π do
(e) for y ∈ {c | r&g[Y](X)

inp (c) ∈ A} do
(f) Let O = {x | f&g(A,y,x) = 1}

/* add the respective ground guessing rules */
Πp ← Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)←| x ∈ O}

until Πpg did not change
(g) Πg ← Πpg

Remove input auxiliary rules and external atom guessing rules from Πg

Replace all er,&g[y](x) in Πg by &g [y](x)
return Πg

Example 15 Let Π = {d(x); q(Y) ← d(X),&concat [X, a](Y)} be the input program, where the ex-
ternal atom &concat [c1, c2](c3) is true iff c3 is the concatenation of c1 and c2. Then in the first iterati-
on Πp = {d(x) ∨ d(y); q(Y) ← d(X), er,&concat [X,a](Y); ginp(X) ← d(X)}, where ginp is the unique
auxiliary input predicate for &concat [X, a](Y). The grounding step yields then Πpg = {d(x); q(Y) ←
d(X), er,&concat [X,a](Y); ginp(X, a) ← d(X) | X,Y ∈ {x, y}}. Now the algorithm comes to the checking
phase at (c) and (d). Note that ginp(x, a) and ginp(y, a) appear in all models A of Πpg . Therefore the algo-
rithm evaluates &concat under inputs x, a and y, a and collects all output tuples x such that f&g(A, x, a,x) =
1 resp. f&g(A, y, a,x) = 1 holds. This holds for the output tuples xa and ya . Thus, Step (f) adds the rules
er,&g[x,a](xa) ∨ ner,&g[x,a](xa) ← and er,&g[y,a](xa) ∨ ner,&g[y,a](ya) ← to Πp and grounding starts over
again. In the next iteration, the rule instances q(xa)← d(x), er,&concat [x,a](xa) and q(ya)← d(y),
er,&concat [y,a](ya) will appear in Πpg . However, as no new atoms ginp(y) appears in any of the models of
the updated Πpg , the loop terminates after the second iteration. 2

We now come to the formal proof that this procedure always returns a grounding which has the same
answer sets as the original program. As the programs Πp and Πpg are iteratively updated in the algorithm,
we make the following convention. Whenever we write Πp or Πpg in one of the proofs, we refer to the status
after the main loop terminated, i.e., at Step (g) (resp. Step (g) in Algorithm GroundHEX).

A key concept in our proofs will be that of representation of external atoms in a ground program.

Definition 20 For a ground external atom &g [y](x) in a rule r, its representation degree in a program
Π is 0, if Π contains a rule er,&g[y](x) ∨ ner,&g[y](x) ←. It is n + 1, if Π contains a rule with head
er,&g[y](x)∨ ner,&g[y](x) and the maximum representation degree of all &h[w](v) s.t. es,&h[w](v) occurs in
in the body, is n. Otherwise (i.e., there is no rule with head er,&g[y](x) ∨ ner,&g[y](x)), the representation
degree is undefined.

If the representation degree for some ground external atom is undefined, we also say that the external

20 INFSYS FB 14-02

atom is not represented. Intuitively, if an external atom is represented, this means that the program con-
tains a guessing rule for the respective replacement atom. The representation degree specifies on how many
other external atom replacements this guess depends on. Note that in general, an external atom can have
multiple representation degrees simultaneously. However, in the following we will only use its minimum
representation degree and can therefore drop the prefix minimum.

Theorem 10 If Π is a lde-safe HEX-program and Πg = GroundHEXNaive(Π), then Πg ≡pos Π.

It appears that also the optimized algorithm is sound and complete.

Theorem 11 If Π is an lde-safe HEX-program, then GroundHEX(Π)≡pos Π.

4.2 Integrating the Algorithm into the Model-Building Framework

In this section we discuss the integration of the new grounding algorithm into the existing model-building
framework for HEX-programs. However, since the overall evaluation approach is beyond the scope of this
paper, we only give an overview and refer to [37] for a detailed description.

The answer sets of a HEX-program Π are determined using a modular decomposition based on the
concept of an evaluation graph E(V,E), whose nodes V are evaluation units, i.e. subsets of Π, that are
acyclically connected by edges E that are inherited from an underlying dependency graph G = 〈Π,→m

∪ →n〉, where→m captures monotonic and→n nonmonotonic dependencies of the units resp. rules [12].
The evaluation proceeds then unit by unit along the structure of the evaluation graph bottom up. For a

unit u, each union of answer sets of predecessor units of u, called an input model of u, is added as facts to
the program at u. This extended program is grounded and solved; the resulting set of output models of u
is sent to the successor units of u in the same way. The properties of evaluation graphs guarantee that the
output models of a dedicated final unit correspond to the answer sets of the whole program.

In order to ground the units before evaluation using a grounding algorithm for ordinary ASP, each unit
in the evaluation graph must be from the class of extended pre-groundable HEX-programs, which is a proper
subset of all strongly safe HEX programs. It was shown by [40] that every strongly safe HEX-program
possesses at least one evaluation graph, i.e., the program can be decomposed into extended pre-groundable
HEX-programs.

Example 16 Consider the following ground HEX-program Π with facts employee(a), employee(b),
employee(c) and qualification(c):

r1 : team1(a) ∨ team1(b)←
r2 : team1(b) ∨ team1(c)←
r3 : team2(X)← &diff [employee, team1](X)
r4 : team1a(X)← &diff [team1, qualification](X)
r5 : team1b(X)← team1(X), qualification(X)
r6 : bonus(X)← team2(X)
r7 : bonus(X)← team1b(X)

Intuitively, the program considers a company with employees defined using predicate employee, some
of which have a certain qualification . The program forms then two teams team1 and team2 such that certain
restrictions concerning the assignment of employees to team1, encoded by r1 and r2, are satisfied. By r3,
everyone who is not in team1 shall be in team2. Then team1 is further divided into two subteams team1a

INFSYS FB 14-02 21

team1(a) ∨ team1(b) ←
team1(b) ∨ team1(c)←

team2(X)← &diff
[employee, team1](X)

team1a(X)← &diff
[team1, qualification](X)

team1b(X)←
team1(X),
qualification(X)

bonus(X) ← team2(X)
bonus(X)← team1b(X)

u1

u2 u3

u4

u5

Abbildung 2: Evaluation graph of Example 16 without ufinal

and team1b, where team1b shall consist of all employees who have the qualification (r5); the others are
assigned to team1a (r4). Finally, all employees working in team2 or in team1b shall be eligible for a bonus
(r6 and r7). An evaluation graph of Π is visualized in Figure 2.

For the sake of a more convenient presentation, we will denote assignments A as the set of atoms
{a | Ta ∈ A} which are true. For constructing the answer sets of the program, Algorithm BUILDANS-
WERSETS chooses unit u1 and computes the set of output models for input model ∅, which is o-ints(u1) ={
mO

2 = {team1(a), team1(c)}, mO
3 = {team1(b)}

}
. In the next step, one of the components u2, u3

or u4 can be chosen for evaluation because for each of them the single predecessor unit u1 has already
been processed. For u2 and input model mI

4 = mO
2 = {team1(a), team1(c)}, the unique output mo-

del is mO
6 = {team2(b)}, and for input model mI

5 = mO
3 = {team1(b)}, the unique output model is

mO
7 = {team2(a), team2(c)}. For u3 and input model mI

8 = mO
2 = {team1(a), team1(c)}, the unique

output model is mO
10 = {team1a(a)}, and for input model mI

9 = mO
3 = {team1(b)}, the unique output

model is mO
11 = {team1a(b)}. For u4 and input model mI

12 = mO
2 = {team1(a), team1(c)}, the unique

output model is mO
14 = {team1b(c)}, and for input model mI

13 = mO
3 = {team1(b)}, the unique output

model is mO
15 = ∅.

Then the algorithm chooses u5 for evaluation. The first step is the computation of the input models of u5.
Because u5 has two predecessor units u2 and u4 and each of them has two output modelsmO

6 ,mO
7 resp.mO

14,
mO

15, there are four possible combinations. However, only those combinations are considered, which stem
from a “common ancestor model” (for details, see [37]), which are mI

16 = {team2(b), team1b(c)} and
mI

17 = {team2(a), team2(c)}. In the second step, the output models of u5 are determined: for mI
16 the

unique output model is mO
18 = {bonus(b), bonus(c)} and for mI

17 it is mO
19 = {bonus(a), bonus(c)}.

Finally, the answer sets of the overall program are determined as the union of those models of all
units which step from a common ancestor model (this can be realized as the computation of the input
models of an empty unit ufinal , which depends on all other units). We have five units with two output
models each and thus 25 possible combinations, but only two of them stem from a common ancestor
model, namely mI

20 = {team1(a), team1(c), team1a(a), team1b(c), team2(b), bonus(b), bonus(c)} and
mI

21 = {team1(b), team1a(b), team2(a), team2(c), bonus(a), bonus(c)}. These models are the answer
sets of the program. 2

The motivation for the evaluation framework in [12] was mainly performance enhancement. However,
as not every strongly safe program is extended pre-groundable, program decomposition is in some cases

22 INFSYS FB 14-02

indispensable for program evaluation. This is in contrast to the grounding algorithm introduced in this paper,
which can directly ground any lde-safe, and thus strongly safe, program.

Example 17 Program Π from Example 14 cannot be grounded by the traditional HEX algorithms as it is
not extended pre-groundable. Instead, it needs to be partitioned into two units u1 = {f1, f2, f3, r1, r2} and
u2 = {r3} with u1 →n u2. Now u1 and u2 are extended pre-groundable HEX-programs. Then the answer
sets of u1 must be computed before u2 can be grounded. Our algorithm can ground the whole program
immediately. 2

Therefore, in contrast to the previous algorithms one can keep the whole program as a single unit,
but also still apply decomposition with lde-safe programs as units. To this end, we define a generalized
evaluation graph like an evaluation graph in [12], but with lde-safe instead of extended pre-groundable
programs as nodes. We can then show that the algorithm BUILDANSWERSETS by [12] remains sound and
complete for generalized evaluation graphs, if the grounding algorithm from above is applied:

Theorem 12 For a generalized evaluation graph E = (V,E) of an lde-safe HEX-program Π, BUILDANS-
WERSETS with GroundHEX for grounding returns AS(Π).

While program decomposition has led to a performance increase for the solving algorithms in [12], it
is counterproductive for learning-based algorithms [13] because learned knowledge cannot be effectively
reused. In guess-and-check ASP programs, existing heuristics for evaluation graph generation frequently
even split the guessing from the checking part, which is detrimental to conflict learning. Thus, from this
angle having few units is an advantage. However, the worst case for the grounding algorithm is a unit
containing an external atom that is relevant for lde-safety and receives nonmonotonic input from the same
unit; this requires to consider exponentially many assignments.

Example 18 Reconsider program Π from Example 14. Then the algorithm evaluates external atom
&count [s](Z) under all A ⊆ {s(a), s(b), s(c)} because it is nonmonotonic and lde-safety-relevant. Now
assume that the program contains the additional constraint

c1 : ← s(X), s(Y), s(Z), X 6= Y,X 6= Z, Y 6= Z ,

i.e., no more than two elements can be in set s. Then the algorithm would still check all A ⊆ {s(a), s(b),
s(c)}, but it is clear that the subset with three elements, which introduces the constant 3, is irrelevant because
this interpretation will never occur in an answer set. If the program is split into units u1 = {f, r1, r2, c1}
and u2 = {r3} with u2 →n u1, then {s(a), s(b), s(c)} does not occur as an answer set of u1. Thus, u2 never
receives this interpretation as input and never is evaluated under this interpretation. 2

Algorithm GroundHEX evaluates the external sources under all interpretations such that the set of ob-
served constants is maximized. While monotonic and antimonotonic input atoms are not problematic (the
algorithm can simply set all to true resp. false), nonmonotonic parameters require an exponential number
of evaluations. Thus, in such cases program decomposition is still useful as it restricts grounding to those
interpretations which are actually relevant in some answer set. Program decomposition can be seen as a
hybrid between traditional and lazy grounding [35], as program parts are instantiated which are larger than
single rules but smaller than the whole program.

We thus introduce a heuristics in Algorithm GreedyGEG for generating a good generalized evaluation
graph, which iteratively merges units. Condition (a) maintains acyclicity, while the condition at (b) deals

INFSYS FB 14-02 23

Algorithm GreedyGEG
Input: An lde-safe HEX-program Π
Output: A generalized evaluation graph E = 〈V,E〉 for Π

(a) Let V be the set of (subset-maximal) strongly connected components of G = 〈Π,→m ∪ →n〉
Update E

(b) while V was modified do
(c) for u1, u2 ∈ V such that u1 6= u2 do
(a) if there is no indirect path from u1 to u2 (via some u′ 6= u1, u2) or vice versa then
(b) if no de-relevant &g [y](x) in some u2 has a nonmonotonic predicate input from u1 then

V := (V \ {u1, u2}) ∪ {u1 ∪ u2}
Update E

return E = 〈V,E〉

with two opposing goals: (1) minimizing the number of units, and (2) splitting the program whenever a de-
relevant nonmonotonic external atom would receive input from the same unit. It greedily gives preference
to (1).

We illustrate the heuristics with an example.

Example 19 Reconsider program Π from Example 18. Algorithm GreedyGEG creates a generalized eva-
luation graph with the units u1 = {f1, f2, f3, r1, r2, c1} and u2 = {r3} with u2 →n u1, which is as desired.
2

It is not difficult to show that the heuristics yields a sound result.

Theorem 13 For an lde-safe program Π, Algorithm GreedyGEG returns a suitable generalized evaluation
graph of Π.

Again, for details and a formal discussion of the integration of the algorithm into the DLVHEX-framework,
we refer to [37].

5 Implementation and Evaluation

For implementing our technique, we integrated GRINGO as grounder (implementation of Algorithm Groun-
dASP) and CLASP into our prototype system DLVHEX. The overall evaluation is driven by the evaluation
framework described in Section 4.2. The evaluation of single evaluation units use separate instances of
GRINGO for grounding and of CLASP for solving. External sources can be easily added by using a conveni-
ent API provided by the system. Internally, the system exploits CLASP’s SMT interface for realizing external
calls. To this end, CLASP makes callbacks to the DLVHEX core whenever its generic propagation methods
(exploiting unit clauses and minimality considerations) cannot derive further truth values. The callback is
then delegated to external sources to derive further truth values (if possible).

The system is available from http://www.kr.tuwien.ac.at/research/systems/dlvhex as open-source software
and provides convenient interfaces for adding external sources and intervening in the algorithms depending
on the needs of the application at hand. The system has been successfully applied to a range of applications
(e.g. multi-context systems, dl-programs) and runs on multiple platforms, including Linux, Mac OS X and
Microsoft Windows.

24 INFSYS FB 14-02

We now present the problems we are going to use as benchmarks and discuss the results for instances in
a separate subsection; the HEX-encodings of all problems can be found in [37].

5.1 Problem Suite

Reachability. We consider reachability, where the edge relation is provided as an external atom &out [X](Y)
delivering all nodes Y that are directly reached from a node X . The traditional implementation imports all
nodes into the program and then uses domain predicates. An alternative is to query outgoing edges of nodes
on-the-fly, which needs no domain predicates. This benchmark is motivated by route planning applications,
where importing the full map might be infeasible due to the amount of data.

Set Partitioning. In this benchmark we consider a program similar to Example 14, which implements for
each domain element x a choice from sel(x) and nsel(x) by an external atom, i.e., a partitioning of the
domain into two subsets, where sel may contain at most two elements. The program is as follows:

domain(1). . . . domain(n).

sel(X)← domain(X),&diff [domain,nsel](X)

nsel(X)← domain(X),&diff [domain, sel](X)

← sel(X), sel(Y), sel(Z), X 6= Y,X 6= Z, Y 6= Z

where &diff [p, q](X) computes the set of all elements X which are in the extension of p but not in the
extension of q. Note that under lde-safety, the domain predicate domain is not needed as &diff does not
introduce new constants.

Bird-Penguin Variant. For our experiments, we used a variant of the Bird-Penguin program Π′ in Exam-
ple 13. Structurally, Π′ is for grounding similar to the Set Partitioning problem, as the external atom in rule
r3 is monotonic, and grounding is expected to behave similarly. For a worst case which cannot be avoided
by the greedy heuristics, we replaced this atom with a slightly more general, nonmonotonic external atom
which also outputs a special constant cons if the extended ontology is satisfiable. With a growing num-
ber of birds, we get a growing number of cycles with nonmonotonic external atoms which combinatorially
intermingle the worst case for the heuristics when bird(X) is dropped from rule r′3.

Recursive Processing of Data Structures. This problem is representative for a range of applications which
process data structures recursively. As an example, we implement the merge sort algorithm using external
atoms for splitting a list in half and merging two sorted lists, where lists are encoded as constants consisting
of elements and delimiters. However, this is only a showcase and performance cannot be compared to native
merge sort implementations.

Argumentation. In this benchmark, we use a HEX-program which computes specific extensions for Dung-
style abstract argumentation frameworks (AFs) [10], given that code for an extension test is available. AFs
are directed graphs with the nodes being interpreted as arguments and the arcs as attacks between argu-
ments. A typical reasoning task is the computation of extensions, which are sets of nodes that fulfill certain
properties, depending on the semantics being used, and cautious and brave reasoning, i.e., checking whether
an argument is contained in all or at least one extension, respectively. Many reasoning tasks are intractable
or even beyond NP, depending on the type of extension considered. Here we consider ideal set extensions,
i.e., extensions which have to be ideal sets of the AF at hand; notably, testing whether a set of arguments is
an ideal set of an AF is co-NP-complete [11]. Thus a natural guess-and-check computation of an ideal set
extension that uses an external atom to decide the extension property reflects this complexity in the ideal set

INFSYS FB 14-02 25

check, which is done in our ASP program using a standard saturation technique; the encoding is generic and
might be adapted for other semantics.

In addition, we perform a processing of the arguments in the computed extension, e.g., by using an
external atom for generating LATEX code for the visualization of the AF (the graph with ideal sets being
marked) using a graphics library. The challenge here is that argument processing depends nonmonotonically
on the ideal sets (the LATEX code of one ideal set is, in general, incomparable to that of another ideal set). As
discussed in Section 4, this is the worst case for the new grounding algorithm if no program decomposition
is used, but can be avoided by our new evaluation heuristics in this case.
Route Planning. Inspired by semantically enriched route planning, which has been studied in the MyITS
project [20] for smart city applications, we consider here two route planning scenarios using the public
transport system of Vienna. The data is available under creative commons license (cc-by) from data.wien.gv.
at and contains a map of 158 subway, tram, city bus and rapid transit train lines with a total number of 1701
stations. Since the data does not contain information about the distances between stations, we uniformly
assumed costs of 1, 2 and 3 for each stop traveled by subway/rapid transit train, tram or bus, respectively.
We further assumed costs of 10 for each necessary change representing walking and waiting time. However,
with more detailed data, our encoding would also allow for using different values for each line or station.
Access to the data is provided via an external atom &path[s, d](a, b, c, l), which returns for a start location s
and a destination d the shortest direct connection (computed using Dijkstra’s algorithm), represented as set
edges (a, b) between stations a and b with costs c using line l.

For instance, a journey from Wien Mitte to Taubstummengasse is possible using subway line U4
from Wien Mitte to Karlsplatz (with intermediate stop at Stadtpark), changing to line U1, and going from
Karlsplatz to Taubstummengasse (which is just one stop). This will be represented as follows:

{(Wien Mitte,Wien Mitte (U4), 10, change),

(Wien Mitte (U4),Stadtpark (U4), 1,U4),

(Stadtpark (U4),Karlsplatz (U4), 1,U4),

(Karlsplatz (U4),Karlsplatz (U1), 10, change),

(Karlsplatz (U1),Taubstummengasse (U1), 1,U1),

(Taubstummengasse (U1),Taubstummengasse, 10, change)}

In order to model changes between lines, our graph has for each station and each line which arrives
at this station a separate node, with a label consisting of the actual name of the station and the respective
line. To foster a change, the external atom returns a tuple (a, a′, 10, change), where a and a′ are two nodes
representing the same station but for different lines, and change is just a dedicated “line” representing walks
between platforms, cf. Figure 3 (dashed lines indicates changes with costs 10, solid lines indicate trips with
the costs given in parantheses). In order to relieve the user from writing line-specific names of stations in the
input to the program, we further have for each station a generic node which is connected to all line-specific
nodes for this station.

Note that there will never be cycles in the direct path between two stations because the costs are mini-
mized, thus the set representation is sufficient and there is no need to formally store the order of the edges.
Further note that tuples (1) and (6) do not really represent changes but are merely the connections between
the generic stations and the line-specific nodes. This allows the user to use the constants Wien Mitte and
Taubstummengasse in the input without predetermining which line to take at these stations. However, as
these spurious changes at the start and at the destination node are necessary in any route, this does not affect
the minimization of the costs.

26 INFSYS FB 14-02

Wien Mitte

Wien Mitte (U4)

Wien Mitte (U3)

Stadtpark (U4)

Stadtpark

Karlsplatz (U4) Karlsplatz Karlsplatz (U1)

Karlsplatz (U2)Taubstummengasse (U1)

Taubstummengasse

U4 (1)

U4 (1)

U1 (1)

Abbildung 3: Graph representation of stations and lines (dashed: changes with costs 10, solid: given lines
and costs)

Route planning can be subject to side constraints, where the user not only wants a route connecting two
or more locations, but that it satisfies additional semantic conditions, like ending in a restaurant or next to a
park; this may be determined using suitable information sources and ontologies [20]. Here we concentrate
on a plain setting and consider two concrete applications as show cases.

Single Route Planning. In the first scenario we consider route planning of a single person who wants to
visit a number of locations. Additionally, we have the side constraint that the person wants to go for lunch
in a restaurant if and only if the tour is longer than the given limit of cost 300. Because the external source
allows only for computing direct connections between two locations, it cannot solve the task completely and
there needs to be interaction between the HEX-program and the external source.

Pair Route Planning. In our second scenario we consider two persons. Each of them wants to visit a
number. Additionally, the two persons want to meet, thus the two tours need to intersect at some point.
Possible meeting locations are drawn randomly. We further have the side constraint, that the meeting location
shall be a restaurant, if at least one of the tours is longer than the limit of costs 300.

5.2 Benchmark Results

We evaluated the implementation on a Linux server with two 12-core AMD 6176 SE CPUs with 128GB
RAM. For this we use five benchmarks and present the total wall clock runtime (wt), the grounding time
(gt) and the solving time (st) when computing the first answer set. We possibly have wt 6= gt + st
because wt includes also computations other than grounding and solving (e.g., passing models through the
evaluation graph). The numbers in parentheses indicate the number of instances and timeouts, respectively.
For determining lde-safety relevant external atoms, our implementation follows a greedy strategy and tries
to identify as many external atoms as irrelevant as possible. Detailed benchmark results are available at
http://www.kr.tuwien.ac.at/staff/redl/grounding/allbenchmarks.ods.

Reachability. We use random graphs with a node count from 5 to 70 and an edge probability of 0.25. For
each count, we average over 10 instances. The results are shown in Table 1a. Here we can observe that the
encoding without domain predicates is more efficient in all cases because only a small part of the map is
active in the logic program, which does not only lead to a smaller grounding, but also to a smaller search

INFSYS FB 14-02 27

Tabelle 1: Benchmark results in secs; timeout (“—”) is 300 secs

(a) Reachability

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

15 (10) 0.59 (0) 0.28 (0) 0.08 (0) 0.49 (0) 0.23 (0) 0.06 (0)
25 (10) 5.78 (0) 4.67 (0) 0.33 (0) 2.94 (0) 1.90 (0) 0.35 (0)
35 (10) 36.99 (0) 33.99 (0) 1.00 (0) 14.02 (0) 11.30 (0) 0.95 (0)
45 (10) 161.91 (0) 155.40 (0) 2.18 (0) 53.09 (0) 47.19 (0) 2.22 (0)
55 (10) — (10) — (10) n/a 171.46 (0) 158.58 (0) 5.74 (0)
65 (10) — (10) — (10) n/a — (10) — (10) n/a

(b) Set Partitioning

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

10 (1) 0.49 (0) 0.01 (0) 0.39 (0) 0.52 (0) 0.02 (0) 0.41 (0)
20 (1) 3.90 (0) 0.05 (0) 3.62 (0) 4.67 (0) 0.10 (0) 4.23 (0)
30 (1) 16.12 (0) 0.18 (0) 15.32 (0) 19.59 (0) 0.36 (0) 18.32 (0)
40 (1) 48.47 (0) 0.48 (0) 46.71 (0) 51.55 (0) 0.90 (0) 48.74 (0)
50 (1) 115.56 (0) 1.00 (0) 112.14 (0) 119.40 (0) 1.79 (0) 114.11 (0)
60 (1) 254.66 (0) 1.84 (0) 248.88 (0) 257.78 (0) 3.35 (0) 248.51 (0)

(c) Bird-penguin

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 (1) 0.06 (0) <0.005 (0) 0.01 (0) 0.08 (0) 0.02 (0) 0.01 (0)
10 (1) 0.14 (0) <0.005 (0) 0.08 (0) 1.32 (0) 1.12 (0) 0.10 (0)
11 (1) 0.27 (0) <0.005 (0) 0.19 (0) 2.85 (0) 2.43 (0) 0.27 (0)
12 (1) 0.32 (0) <0.005 (0) 0.23 (0) 6.05 (0) 5.53 (0) 0.26 (0)
13 (1) 0.69 (0) 0.01 (0) 0.60 (0) 12.70 (0) 11.76 (0) 0.61 (0)
14 (1) 0.66 (0) <0.005 (0) 0.57 (0) 28.17 (0) 26.70 (0) 0.73 (0)
15 (1) 1.66 (0) 0.01 (0) 1.49 (0) 59.73 (0) 57.14 (0) 1.46 (0)
16 (1) 1.69 (0) 0.01 (0) 1.53 (0) 139.47 (0) 131.87 (0) 1.92 (0)
17 (1) 3.83 (0) 0.01 (0) 3.57 (0) — (1) — (1) n/a
18 (1) 4.34 (0) 0.01 (0) 4.08 (0) — (1) — (1) n/a
19 (1) 10.07 (0) 0.01 (0) 9.56 (0) — (1) — (1) n/a
20 (1) 11.36 (0) 0.01 (0) 10.87 (0) — (1) — (1) n/a
24 (1) 95.60 (0) 0.01 (0) 93.35 (0) — (1) — (1) n/a
25 (1) — (1) 0.01 (0) — (1) — (1) — (1) n/a

(d) Merge Sort

w. domain predicates w/o domain predicates
wall clock ground solve wall clock ground solve

5 (10) 0.22 (0) 0.04 (0) 0.10 (0) 0.10 (0) 0.01 (0) 0.04 (0)
6 (10) 1.11 (0) 0.33 (0) 0.54 (0) 0.10 (0) 0.01 (0) 0.04 (0)
7 (10) 9.84 (0) 4.02 (0) 4.42 (0) 0.11 (0) 0.01 (0) 0.05 (0)
8 (10) 115.69 (0) 61.97 (0) 42.30 (0) 0.12 (0) 0.01 (0) 0.05 (0)
9 (10) — (10) — (10) n/a 0.14 (0) 0.01 (0) 0.07 (0)

10 (10) — (10) — (10) n/a 0.15 (0) 0.08 (0) 0.01 (0)
15 (10) — (10) — (10) n/a 0.23 (0) 0.14 (0) 0.01 (0)
20 (10) — (10) — (10) n/a 0.47 (0) 0.35 (0) 0.02 (0)
25 (10) — (10) — (10) n/a 1.90 (0) 1.58 (0) 0.06 (0)
30 (10) — (10) — (10) n/a 4.11 (0) 3.50 (0) 0.12 (0)
35 (10) — (10) — (10) n/a 20.98 (0) 18.45 (0) 0.51 (0)
40 (10) — (10) — (10) n/a 61.94 (0) 54.62 (0) 1.46 (0)
45 (10) — (10) — (10) n/a 144.22 (2) 133.99 (2) 2.26 (0)
50 (10) — (10) — (10) n/a — (10) — (0) n/a

(e) Argumentation

monolithic greedy # monolithic greedy
wall clock ground solve wall clock ground solve wall clock ground solve wall clock ground solve

4 (30) 0.57 (0) 0.11 (0) 0.38 (0) 0.25 (0) 0.01 (0) 0.18 (0) 10 (30) — (30) — (30) n/a 15.92 (0) 0.02 (0) 15.81 (0)
5 (30) 2.12 (0) 0.67 (0) 1.26 (0) 0.44 (0) 0.01 (0) 0.37 (0) 11 (30) — (30) — (30) n/a 31.19 (0) 0.02 (0) 31.05 (0)
6 (30) 18.93 (0) 7.45 (0) 10.86 (0) 0.88 (0) 0.01 (0) 0.80 (0) 12 (30) — (30) — (30) n/a 63.16 (0) 0.02 (0) 62.95 (0)
7 (30) 237.09 (9) 170.12 (9) 65.12 (0) 1.65 (0) 0.01 (0) 1.57 (0) 13 (30) — (30) — (30) n/a 172.75 (1) 0.03 (0) 172.38 (1)
8 (30) — (30) — (30) n/a 3.13 (0) 0.01 (0) 3.05 (0) 14 (30) — (30) — (30) n/a 256.60 (18) 0.01 (0) 256.44 (18)
9 (30) — (30) — (30) n/a 7.41 (0) 0.02 (0) 7.31 (0) 15 (30) — (30) — (30) n/a 290.01 (29) <0.005 (0) 290.00 (29)

space during solving.

Set Partitioning. We considered domains with n∗10 elements, 1 ≤ n ≤ 6. The results for the program with
and without the domain predicate are presented in Table 1b. Since &diff is monotonic in the first parameter
and antimonotonic in the second, the measured overhead is small in the grounding step. Although the ground
programs of the strongly safe and the liberally safe variants of the program are identical, the solving step
is slower in the latter case; we explain this with caching effects. Grounding lde-safe programs needs more
memory than grounding strongly safe programs, which might have negative effects on the later solving step.
However, the total slowdown is moderate.

Bird-Penguin Variant. We considered ontologies with n distinct birds, for which respective assertions
(facts) were added to the ontology, and the non-monotonic variant of the external atom in rule r3. The re-
sults in Table 1c show a slowdown for the encoding without domain predicates. It is mainly caused by the
grounding, but also solving becomes slightly slower without domain predicates due to caching effects. Whi-
le this example was tailored for the worst case, grounding of the regular Bird-Penguin program is easy, with
as well as without domain predicate (similar as Set Partitioning). Furthermore, we could in applications of

28 INFSYS FB 14-02

DL-programs sometimes even experience a sensible run time improvement by removing domain predicates.

Recursive Processing of Data Structures. In order to implement the application with strong safety, one
must manually add a domain predicate with the set of all instances of the data structures at hand as extension,
e.g., the set of all permutations of the input list. This number is factorial in the input size and thus already
unmanageable for very small instances. The problems are both due to grounding and solving. Similar pro-
blems arise with other recursive data structures when strong safety is required (e.g., trees, for the pushdown
automaton from [15], where the domain is the set of all strings up to a certain length). However, only a small
part of the domain will ever be relevant during computation, hence the new grounding algorithm for lde-safe
programs performs quite well, as shown in Table 1d.

Argumentation. This benchmark demonstrates the advantage of our new greedy heuristics, which is com-
pared to the evaluation without splitting (monolithic). Without program decomposition, this is the worst case
for our grounding algorithm because the code generating atom is nonmonotonic and receives input from the
same component. But then our grounding algorithm calls it for exponentially many extensions, although
only few of them are actually extensions of the framework.

We use random instances with an argument count from 1 to 20, and an edge probability from {0.30,
0.45, 0.60}; we use 10 instances for each combination. We can observe that grounding the whole program
in a single pass causes large programs wrt. grounding time and size. Since the grounding is larger, also the
solving step takes much more time than with our new decomposition heuristics, which avoids the worst case,
cf. Table 1e.

Route Planning. For each instance size n we generated 50 instances by randomly drawing n locations to
visit plus n possible locations for having lunch (the data does not provide information about such locations,
but usually there are restaurants or snack bars in the near area of stations). We show for each instance size
the averages of the total runtimes, the grounding times, the solving times, the percentage of instances for
which a solution was found within the time limit (column solution (%))2, the average path length (costs)
of the instances with solutions (column length), the average number of necessary changes, not counting
changes between generic and line-specific station nodes (column changes), and the percentage of instances
with solutions which require a restaurant visit due to length of the tour (column lunch (%)). The results
are shown in Tables 2a, 2b and 2c using the full map, the map restricted to tram and subway, and the map
restricted to subway only, respectively. In addition to the wall clock, grounding and solving time, we further
show for the instances which have a solution the average path length (column length) average number of
necessary changes.

The hardness of the benchmark stems from the side constraint. Without this constraint, the tour could be
computed deterministically by successive calls of the external source, once the sequence of locations was
guessed. However, due to side constraint, not only the overall tour does depend on the individual locations,
but also the individual locations depend on the overall tour (they need to contain a restaurant iff the tour is
too long). This leads to a cycle over the external atom &path . With the notion of strong safety, this requires
the output variables of this external atom to be bounded by domain predicates, thus the whole map needs to
be imported a priori.

Single Route Planning. We considered instances with 1 ≤ n ≤ 15 locations to visit. The sequence
in which the locations are visited is guessed non-deterministically in the logic program. While the direct
connections between two locations are of minimum length by definition of the external atom, the length of
the overall tour is only optimal wrt. to the chosen sequence of locations, but other sequences might lead to
a shorter overall tour. However, we have the constraint that for visiting n locations there should be at most

2The number of instances for which no solution was found include both timeout instances and instances which have no solution.

INFSYS FB 14-02 29

Tabelle 2: Single Route Planning benchmark, results in secs; timeout (“—”) is 300 secs

(a) Full Map

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 2.40 (0) 1.71 (0) 0.54 (0) 100.00 0.00 0.00 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 7.82 (0) 5.00 (0) 2.42 (0) 90.00 82.64 2.24 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 16.44 (0) 9.46 (0) 5.81 (0) 76.00 152.21 3.92 0.00
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 36.60 (0) 16.69 (0) 16.90 (0) 52.00 213.00 5.31 3.85
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 102.71 (0) 26.63 (0) 69.26 (0) 52.00 281.27 7.58 11.54
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 284.69 (38) 236.43 (38) 45.56 (0) 16.00 368.12 9.00 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(b) Subway and Tram

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 1.13 (0) 0.83 (0) 0.20 (0) 100.00 0.00 0.00 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 3.50 (0) 2.34 (0) 0.85 (0) 100.00 68.12 1.80 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 8.91 (0) 4.88 (0) 3.01 (0) 96.00 125.19 3.38 0.00
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 34.05 (2) 20.11 (2) 11.41 (0) 92.00 192.80 4.65 0.00
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 62.98 (0) 13.57 (0) 43.58 (0) 90.00 284.89 7.53 46.67
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 192.58 (11) 81.96 (11) 101.66 (0) 74.00 361.86 8.95 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 287.99 (38) 234.55 (38) 49.27 (0) 24.00 410.17 10.50 100.00
8 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 299.75 (48) 289.34 (48) 9.48 (0) 4.00 418.00 12.00 100.00
9 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(c) Subway Only

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) 295.42 (49) 294.73 (49) 0.29 (0) 2.00 0.00 0.00 0.00 0.89 (0) 0.65 (0) 0.15 (0) 100.00 0.00 0.00 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 2.89 (0) 1.92 (0) 0.66 (0) 100.00 64.04 1.22 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 8.08 (0) 4.10 (0) 2.91 (0) 100.00 127.16 2.62 0.00
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 23.87 (0) 7.31 (0) 13.72 (0) 100.00 206.78 4.16 12.00
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 57.30 (0) 11.69 (0) 39.37 (0) 100.00 317.08 7.20 90.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 107.05 (0) 17.32 (0) 78.33 (0) 100.00 364.32 8.46 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 225.16 (9) 73.97 (9) 135.58 (0) 82.00 405.27 9.61 100.00
8 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 299.90 (48) 289.15 (48) 9.83 (0) 4.00 353.00 9.00 100.00
9 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

dn × 1.5e changes. Due to this constraint not all instances have a solution. It would be easy to extend the
scenario to predetermine the sequence of locations by additional constraints, e.g., by global weak constraints
in order to minimize the costs.

For each instance size n we generated 50 instances by randomly drawing n locations to visit plus n
possible locations for having lunch (the data does not provide information about such locations, but usually
there are restaurants or snack bars in the near area of stations). We show for each instance size the averages
of the total runtimes, the grounding times, the solving times, the percentage of instances for which a solution
was found within the time limit (column solution (%))3, the average path length (costs) of the instances with
solutions (column length), the average number of necessary changes, not counting changes between generic
and line-specific station nodes (column changes), and the percentage of instances with solutions which
require a restaurant visit due to length of the tour (column lunch (%)). The results are shown in Tables 2a, 2b
and 2c using the full map, the map restricted to tram and subway, and the map restricted to subway only,
respectively. In addition to the wall clock, grounding and solving time, we further show for the instances
which have a solution the average path length (column length) average number of necessary changes.

Pair Route Planning. We created for each instance size of 1 ≤ n ≤ 15 locations (with at most dn× 1.5e
changes) a number of 50 instances, where the n locations for each person, n possible (non-restaurant)

3The number of instances for which no solution was found include both timeout instances and instances which have no solution.

30 INFSYS FB 14-02

Tabelle 3: Pair Route Planning benchmark, results in secs; timeout (“—”) is 300 secs)

(a) Full Map

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 11.60 (0) 9.32 (0) 1.31 (0) 82.00 150.98 4.54 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 34.20 (0) 26.00 (0) 6.54 (0) 90.00 300.69 8.53 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 89.21 (0) 53.31 (0) 29.95 (0) 44.00 449.77 11.14 9.09
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 204.73 (4) 107.60 (4) 83.28 (0) 76.00 592.87 15.47 84.21
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 297.29 (44) 278.85 (44) 15.03 (0) 12.00 710.00 17.50 100.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(b) Subway and Tram

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 8.17 (0) 7.32 (0) 0.44 (0) 98.00 133.76 3.67 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 23.35 (0) 19.09 (0) 2.78 (0) 100.00 269.54 7.62 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 59.04 (0) 36.47 (0) 17.64 (0) 98.00 390.37 10.08 0.00
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 147.43 (3) 75.46 (3) 59.60 (0) 94.00 582.55 14.51 89.36
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 255.94 (17) 161.93 (17) 76.12 (0) 66.00 636.55 16.61 100.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

(c) Subway Only

w. domain predicates w/o domain predicates
wall clock ground solve solution (%) length changes lunch (%) wall clock ground solve solution (%) length changes lunch (%)

1 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 7.72 (0) 6.97 (0) 0.30 (0) 98.00 124.51 2.45 0.00
2 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 21.35 (0) 17.69 (0) 2.19 (0) 100.00 251.66 4.94 0.00
3 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 60.00 (0) 33.79 (0) 21.05 (0) 100.00 375.08 7.46 4.00
4 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 167.44 (5) 80.97 (5) 74.14 (0) 90.00 565.33 10.98 82.22
5 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 267.17 (20) 169.57 (20) 81.00 (0) 60.00 627.70 12.30 100.00
6 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN 299.05 (48) 292.38 (48) 4.88 (0) 4.00 640.00 13.00 100.00
7 (50) — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN — (50) — (50) 0.00 (0) 0.00 NaN NaN NaN

meeting locations and n restaurants are drawn randomly. The results are shown in Tables 3a, 3b and 3c using
the full map, the map restricted to tram and subway, and the map restricted to subway only, respectively.
Columns length and changes show the sums of the lengths of the tours and of the necessary changes for both
persons.

Observations. In both scenarios we can observe that importing the whole map a priori is merely impos-
sible. Already the grounder fails with a timeout, but due to the large number of (unnecessary) external atoms
in the ground program, also solving would not be reasonably possible with the given data. Only liberal sa-
fety allows for solving the task in the given time limit by importing only the relevant part of the map during
grounding. The external atom implements a cache both for the graph representation of the map and the re-
sults of Dijkstra’s algorithm. The first external source call needs on our benchmark system approximately 5
seconds to load the map (in case of the full map, but not for single route planning with n = 1 which will not
call the external source). Moreover, Dijkstra’s algorithm computes for a given start node the shortest paths
to all nodes, thus after the external source has been called for a certain start node, successive calls for the
same start node are significantly faster. In particular, the cache is already filled with all relevant data during
grounding, thus solving will spend only very little time in external sources and the solving time will mainly
be caused by the HEX evaluation algorithms.

For pair route planning, note that even instances with n = 1 have a path longer than 0 because the
location for the meeting is not included in instance size n.

As expected, a restriction of the map to trams and subway or to subway only usually yields smaller runti-
mes. Also the number of changes decreases because multiple tram and especially subway lines have usually

INFSYS FB 14-02 31

more shared stations than bus lines. With increasing number of locations to visit, the number of restaurant
visits usually increases as well. However, this is not a strict rule and the tables show some exceptions as the
locations were drawn at random and their distances is an important factor.

Summary. Our new grounding algorithm allows for grounding lde-safe programs. Instances that can be
grounded by the traditional algorithm as well, usually require domain predicates to be manually added (often
cumbersome and infeasible in practice, as for recursive data structures). Our algorithm does not only relieve
the user from writing domain predicates, but in many cases also has a significantly better performance.
Nonmonotonic external atoms might be problematic for our new algorithm. However, the worst case can
mostly be avoided by our new decomposition heuristics.

6 Controlled Grounding

Algorithm GroundHEX in Section 4 derives finiteness of the grounding from syntactic and semantic condi-
tions. That is, termination is guaranteed by the program at hand. However, an alternative is to intervene the
grounding process itself and guarantee termination by application-specific criteria. To this end, we extend
the algorithm with additional hooks which can be instantiated for an application at hand.

This leads us to computing a restricted grounding, which enables a form of bounded model generation
that can be exploited for different purposes. Informally, the bounded grounding algorithm BGroundHEX is
explained as follows. The input is a non-ground program Π, and the program Πp is a non-ground ordinary
ASP prototype program, which is an iteratively updated variant of Π that is enriched with additional rules.
In each step, the preliminary ground program Πpg is produced by grounding Πp using a standard ASP
grounding algorithm. Program Πpg is intended to converge against a fixpoint, i.e., a final ground HEX-
program Πg. For this purpose, the loop at (b) and the abortion check at (f) introduce two hooks (Repeat and
Evaluate) which allow for realizing application-specific termination criteria. They need to be substituted by
concrete program fragments depending on the reasoning task; for now we assume that the loop at (f) runs
exactly once and the check at (f) is always true (which is sound and complete for model computation of
lde-safe programs, cf. Theorem 14).

Akin to Algorithm GroundHEX the algorithm first introduces input auxiliary rules r&g[Y](X)
inp for every

external atom &g [Y](X) in a rule r in Π in Part (a). Then, all external atoms &g [Y](X) in all rules r in Πp

are replaced by ordinary replacement atoms er,&g[Y](X). This allows the algorithm to use an ordinary ASP
grounder GroundASP in the main loop at (b). After the grounding step, it checks whether the grounding
contains all relevant constants; to this end, it checks, for all external atoms (d) and relevant input interpretati-
ons (e), potential output tuples at (f), whether they contain any new value not yet respected in the grounding;
here, Ym,Ya,Yn denote the sets of monotonic, antimonotonic, and nonmonotonic predicate input parame-
ters in Y, respectively. The program adds the relevant constants via guessing rules at (g) to Πp (this may
also be expressed by unstratified negation). Then the main loop starts over again. Eventually, the algorithm
is intended to find a program respecting all relevant constants. Then at (h), auxiliary input rules are removed
and replacement atoms are translated to external atoms.

The main difference to Algorithm GroundHEX is the addition of the two hooks at (c) (Repeat) and at (f)
(Evaluate), which must be defined for a concrete instance of the algorithm (which we do in the following).
We assume that the hooks are substituted by code fragments with access to all local variables. Moreover,
the set PIT i contains the input atoms for which the corresponding external atoms have been evaluated in
iteration i. Evaluate decides for a given input atom r

&g[Y](X)
inp (c) whether the corresponding external atom

shall be evaluated under c. This allows for abortion of the grounding even if it is incomplete, which can be

32 INFSYS FB 14-02

Algorithm BGroundHEX
Input: A HEX-program Π
Output: A ground HEX-program Πg

(a) Πp = Π ∪ {r&g[Y](X)
inp | &g [Y](X) in r ∈ Π}

Replace all external atoms &g [Y](X) in all rules r in Πp by er,&g[Y](X)
i← 0

(b) while Repeat() do
i← i + 1 // Remember already processed input tuples at iteration i

(c) Set NewInputTuples ← ∅ and PIT i ← ∅
repeat

Πpg ← GroundASP(Πp) // partial grounding
(d) for &g [Y](X) in a rule r ∈ Π do // evaluate all external atoms
(e) // do this under all relevant assignments

Ama = {Tp(c) | a(c) ∈ A(Πpg), p ∈ Ym} ∪ {Fp(c) | a(c) ∈ A(Πpg), p ∈ Ya}
for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. @a : Ta,Fa ∈ Anm do

A = (Ama ∪Anm ∪ {Ta | a←∈ Πpg}) \ {Fa | a←∈ Πpg}
(f) for y ∈ {c | r&g[Y](X)

inp (c) ∈ A(Πpg) s.t. Evaluate(r
&g[Y](X)
inp (c)) = true do

(g) // add ground guessing rules and remember y-evaluation
Πp ← Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)← | f&g(A,y,x) = 1}
NewInputTuples ← NewInputTuples ∪ {r&g[Y](X)

inp (y)}

PIT i ← PIT i ∪NewInputTuples

until Πpg did not change

(h) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Πpg by &g [y](x)
return Πpg

exploited for reasoning tasks over programs with infinite groundings where a finite subset of the grounding
is sufficient. The second hook Repeat allows for repeating the core algorithm multiple times such that
Evaluate can distinguish between input tuples processed in different iterations. Naturally, soundness and
completeness of the algorithm cannot be shown in general, but depends on concrete instances for (c) and (f)
which in turn may vary for different reasoning tasks.

Usage. As already said above, controlled grounding can be used for different purposes, e.g. to bound models
to a fragment sufficient for problem solving, or to support parametric data structures. As a show case of
the former, we discuss queries over (positive) existential rules in Section 6.2, which can be answered by
computing a finite part of a canonical model.

As for parametric data structures, we note that using suitable hooks it is not difficult to support e.g.
strings of bounded length and trees of bounded depth, where the bound is given by an integer k; this is akin
to bounded arithmetic as supported in ASP solvers, where for instance in DLV the range is bounded by a
maximum value #maxint . The point is that the actual bound k can be specified separately such that the
grounding algorithm can take it into account; this relieves the user from writing clumsy rules within the
ASP program to restrict the grounding relative to k, and it increases readability.

Finally, we present with HEX-programs with function symbols in Section 6.3 another application of the
grounding algorithm.

INFSYS FB 14-02 33

6.1 HEX∃-Programs

We now model existential quantifiers as an application of Algorithm BGroundHEX, which can also be
written in the usual syntax; a rewriting then simulates it by using external atoms which return dedicated
null values as representatives for the unnamed values introduced by existential quantifiers. We start by
introducing a language for HEX-programs with logical existential quantifiers, called HEX∃-programs.

A HEX∃-program is a finite set of rules of form

∀X∃Y : p(X′,Y)← conj[X], (2)

where X and Y are disjoint sets of variables, X′ ⊆ X, p(X′,Y) is an atom, and conj[X] is a conjunction
of atoms possibly under not, containing exactly the variables X; without confusion, we may omit ∀X.

Intuitively speaking, whenever conj[X] holds for some vector of constants X, then there should exist a
vector Y of (unnamed) individuals such that p(X′,Y) holds. Existential quantifiers are simulated by using
new null values which represent the introduced unnamed individuals. Formally, we assume that N ⊆ C is a
set of dedicated null values, denoted by ωi with i ∈ N, which do not appear in the program.

We transform HEX∃-programs to HEX-programs as follows. For a HEX∃-program Π, let T∃(Π) be the
HEX-program with each rule r of form (2) replaced by

p(X′,Y)← conj[X],&exists |X
′|,|Y|[r,X′](Y),

where f&existsn,m(A, r,x,y) = 1 iff y = ω1, . . . , ωm is a vector of fresh and unique null values for r,x,
and f&existsn,m(A, r,x,y) = 0 otherwise. Each occurrence of an existential quantifier is replaced by an
external atom of kind &exists |X

′|,|Y|[r,X′](Y) of appropriate input and output arity which exploits value
invention for simulating the logical existential quantifier similar to the chase algorithm.

We call a HEX∃-program Π lde-safe if the program T∃(Π) is lde-safe.

Example 20 The following set of rules is a HEX∃-program Π:

Π : employee(john). employee(joe).

r1 : ∃Y : office(X,Y)← employee(X).

r2 : room(Y)← office(X,Y).

Then T∃(Π) is the following lde-safe program:

T∃(Π) : employee(john). employee(joe).

r′1 : office(X,Y)← employee(X),&exists1 ,1 [r1, X](Y).

r2 : room(Y)← office(X,Y).

Intuitively, each employee X has an unnamed office Y of X , which is a room. The unique answer set of
T∃(Π) is {employee(john), employee(joe), office(john, ω1), office(joe, ω2), room(ω1), room(ω2)}.

For grounding lde-safe programs, we simply let Repeat be the test i < 1 and let Evaluate return
true . Explicit model computation is in general infeasible for non-lde-safe programs. However, the resulting
algorithm GroundDESafeHEX always terminates for lde-safe programs; for non-lde-safe programs, we can
support bounded model generation by other hook instantiations. This is exploited e.g. for query answering
over cyclic programs (described next). We establish the following result.

Theorem 14 If Π is an lde-safe program then AS(GroundDESafeHEX(Π)) ≡pos AS(Π), where ≡pos

denotes equivalence of the answer sets on positive atoms.

34 INFSYS FB 14-02

6.2 Application: Query Answering over Positive HEX∃-Programs

The basic idea for query answering over programs with possibly infinite models is to compute a ground
program with a single answer set that can be used for answering the query. Positive programs with existential
variables are essentially grounded by simulating the parsimonious chase procedure by [33], which uses null
values for each existential quantification. However, for termination of BGroundHEX we need to provide
specific instances of the hooks in the grounding algorithm.

We start by restricting the discussion to a fragment of HEX∃ called Datalog∃ [33]. A Datalog∃-program
is a HEX∃-program where every rule body conj[X] consists of positive ordinary atoms. Thus compared to
HEX∃-programs, default negation and external atoms are excluded.

Example 21 The following set Π of rules is a simple Datalog∃-program about persons and fathers:

Π : person(john). person(joe).

r1 : ∃Y : father(X,Y)← person(X).

r2 : person(Y)← father(X,Y).

(3)

Intuitively, each person X has some unnamed father Y of X which is also a person. 2

We recall homomorphisms as used for defining Datalog∃-semantics and query answering over Datalog∃-
programs. A homomorphism h is a mapping h : N ∪ V → C ∪ V . For a homomorphism h, let h|S be its
restriction to S ⊆ N ∪ V , i.e., h|S(X) = h(X) if X ∈ S and is undefined otherwise. For any atom a, let
h(a) be the atom where each variable and null value V in a is replaced by h(V); this is likewise extended
to h(S) for sets S of atoms and/or vectors of terms. A homomorphism h is a substitution, if h(N) = N for
all N ∈ N . An atom a is homomorphic (substitutive) to atom b, if some homomorphism (substitution) h
exists such that h(a) = b. An isomorphism between two atoms a and b is a bijective homomorphism h s.t.
h(a) = b and h−1(b) = a.

A set M of atoms is a model of a Datalog∃-program Π, denoted M |= Π, if is holds that h(B(r))⊆M
for some substitution h and r∈Π of form (2) implies that h|X(H(r)) is substitutive to some atom in M ; the
set of all models of Π is denoted by mods(Π).

Next, we can introduce queries over Datalog∃-programs. A conjunctive query (CQ) q is an expression
of form ∃Y : ← conj[X ∪ Y], where Y and X (the free variables) are disjoint sets of variables and
conj[X ∪Y] is a conjunction of ordinary atoms containing all and only the variables X ∪Y.

The answer of a CQ q with free variables X wrt. a model M is defined as follows:

ans(q,M) = {h|X | h is a substitution and h(conj[X ∪Y]) ⊆M}.

Intuitively, this is the set of assignments to the free variables such that the query holds wrt. the model. The
answer of a CQ q wrt. a program Π is then defined as the set ans(q,Π) =

⋂
M∈mods(Π) ans(q,M).

Query answering wrt. Π can be carried out over some universal model U of Π that is embeddable into
each of its models by applying a suitable homomorphism. Formally, a model U of a program Π is called
universal if, for each M ∈ mods(Π), there is a homomorphism h s.t. h(U) ⊆ M . Thus, a universal model
may be obtained using null values for unnamed individuals introduced by existential quantifiers. Moreover,
it can be used to answer any query thanks to the following result.

Proposition 15 ([25]) Let Π be a Datalog∃-program and let U be a universal model. Then, for any CQ q,
it holds that h ∈ ans(q,Π) iff h ∈ ans(q, U) and h : V → C \ N .

INFSYS FB 14-02 35

Intuitively, the set of all answers to q wrt. U which map all variables to non-null constants is exactly the
set of answers to q wrt. Π.

Example 22 (cont’d) Reconsider Π consisting of the rules (3). The conjunctive query ∃Y :← person(X),
father(X,Y) asks for all persons who have a father. Its universal model isU = {person(john), person(joe),
father(john, ω1), father(joe, ω2), person(ω1), person(ω2), . . .}. Hence, ans(q,Π) contains answers
h1(X) = john and h2(X) = joe . 2

Thus, computing a universal model is a key issue for query answering. A common approach for this
step is the chase procedure. Intuitively, it starts from an empty interpretation and iteratively adds the head
atoms of all rules with satisfied bodies, where existentially quantified variables are substituted by fresh nulls.
However, in general this procedure does not terminate. Thus, a restricted parsimonious chase procedure was
introduced by [33], which derives less atoms, and which is guaranteed to terminate for the class of Shy-
programs. Moreover, it was shown that the interpretation computed by the parsimonious chase procedure is,
although not a model of the program in general, still sound and complete for query answering and a bounded
model in our view.

For query answering over Datalog∃-programs we reuse the translation in Section 6.1.

Example 23 (cont’d) The Datalog∃-program Π in Example 21, has the following HEX-translation:

T∃(Π) : person(john). person(joe).

father(X,Y)← person(X),&exists1 ,1 [r1, X](Y).

person(Y)← father(X,Y).

While T∃(Π) is not lde-safe in general, the hooks in Algorithm BGroundHEX can be used to still
guarantee termination. We define the algorithm GroundDatalog∃(Π, k) as BGroundHEX(T∃(Π)) where
Repeat tests for i < k + 1 where k is the number of existentially quantified variables in the query, and
Evaluate(PIT i, x) = true iff atom x is not homomorphic to any a ∈ PIT i.

The produced program has a single answer set, which essentially coincides with the result of pChase
[33] that can be used for query answering. Thus, query answering over Shy-programs is reduced to groun-
ding and solving of a HEX-program.

Theorem 16 For a Shy-program Π, GroundDatalog∃(Π, k) has a unique answer set which is sound and
complete for answering CQs with up to k existential variables.

The main difference to pChase by [33] is essentially due to the homomorphism check. Actually, pChase
instantiates existential variables in rules with satisfied body to new null values only if the resulting head atom
is not homomorphic to an already derived atom. In contrast, our algorithm performs the homomorphism
check for the input to &existsn,m atoms. Thus, homomorphisms are detected when constants are cyclically
sent to the external atom. Consequently, our approach may need one iteration more than pChase , but allows
for a more elegant integration into our algorithm.

Example 24 (cont’d) For the program Π in Example 23, the algorithm computes a program with the single
answer set {person(john), person(joe), father(john, ω1), father(joe, ω2), person(ω1), person(ω2)}. In
contrast, pChase stops earlier with the answer set {person(john), person(joe), father(john, ω1),
father(joe, ω2)} as the atoms person(ω1), person(ω2) are homomorphic to person(john), person(joe).

36 INFSYS FB 14-02

Formally, one can show that GroundDatalog∃(Π, k) yields, for a Shy-program Π, a program with a
single answer set that is equivalent to pChase(Π, k + 1) by [33]. Lemma 4.9 by [33] implies that the
resulting answer set can be used for answering queries with k different existentially quantified variables,
which proves Theorem 16.

While pChase intermingles grounding and computing a universal model, our algorithm cleanly separates
the two stages; modularized program evaluation by the solver will however also effect such intermingling.
We nevertheless expect the more clean separation to be advantageous for extending Shy-programs to pro-
grams that involve existential quantifiers and other external atoms, or existential quantifiers in presence of
disjunction; this remains for future work.

6.3 HEX-Programs with Function Symbols

In this section we show how to process terms with function symbols by a rewriting to lde-safe HEX-
programs, which is another application of the grounding algorithm. We will briefly discuss advantages of
our approach compared to a direct implementation of function symbols.

We consider HEX-programs, where the arguments Xi for 1 ≤ i ≤ ` of ordinary atoms p(X1, . . . , X`),
and the constant input arguments in X and the output Y of an external atom &g [X](Y) are from a set of
terms T , that is the least set T ⊇ V∪C such that f ∈ C (constant symbols are also used as function symbols)
and t1, . . . , tn ∈ T imply f(t1, . . . , tn) ∈ T .

Following [8], we introduce for all k ≥ 0 external predicates &compk and &decompk with parameters
ar I(&compk) = 1 +k, ar O(&compk) = 1, ar I(&decompk) = 1, and ar O(&decompk) = 1 +k. We define

f&compk
(A, f,X1, . . . , Xk, T) = f&decompk

(A, T, f,X1, . . . , Xk) = 1,

iff T = f(X1, . . . , Xk).
Composition and decomposition of function terms can be simulated using these external predicates.

Function terms are replaced by new variables and appropriate additional external atoms with predicate
&compk or &decompk in rule bodies to compute their values. More formally, the rewriting is as follows.

For any HEX-program Π with function symbols, let Tf (Π) be the program where each occurrence of a
term t = f(t1, . . . , tn) in a rule r s.t. B(r) 6= ∅ is recursively replaced by a new variable V , and if V occurs
afterwards in H(r) or the input list of an external atom in B(r), we add &compn [f, t1, . . . , tn](V) to B(r);
otherwise (i.e., V occurs afterwards in some ordinary body atom or the output list of an external atom), we
add &decompn [V](f, t1, . . . , tn) to B(r).

Intuitively, &compn is used to construct a nested term from a function symbol and arguments, which
can be nested terms themselves, and &decompn is used to extract the function symbol and the arguments
from a nested term. The translation can be optimized wrt. evaluation efficiency, which we disregard here.

Example 25 Consider the following HEX-program Π with function symbols and its translation:

Π: q(z). q(y).
p(f(f(X)))← q(X).

r(X)← p(X).
r(X)← r(f(X)).

Tf (Π): q(z). q(y).
p(V) ← q(X),&comp1 [f,X](U),

&comp1 [f, U](V).
r(X) ← p(X).
r(X) ← r(V),&decomp1 [V](f,X).

Intuitively, Tf (Π) builds f(f(X)) for anyX on which q holds using two atoms over &comp1 , and it extracts
terms X from derived r(f(X)) facts using an appropriate &decomp1 -atom. 2

INFSYS FB 14-02 37

Note that &decompn supports a well-ordering on term depth such that its output has always a strictly
smaller depth than its inputs. This is an important property for proving finite groundability of a program by
exploiting the TBFs introduced by [15].

Example 26 The program Π = {q(f(f(a))); q(X) ← q(f(X))} is translated to program Tf (Π) =
{q(f(f(a))); q(X)← q(V),&decomp1 [V](f,X)}. Since the external source &decomp1 supports a well-
ordering, the cycle is benign [15], i.e., it cannot introduce infinitely many values because the nesting depth
of terms is strictly decreasing with each iteration. 2

The realization of function symbols via external atoms has the advantage that their processing can be
controlled. For instance, new nested terms may be restricted by additional conditions which can be integra-
ted in the semantics of the external predicates &compk and &decompk . A concrete example is data type
checking, i.e., testing whether the arguments of a function term are from a certain domain. In particular,
values might be rejected (e.g., for generation bounded up to a maximal term depth). Another example is
computing some of the term arguments from others, e.g., constructing the function term num(7, vii) from
7, where the second argument is the Roman representation of the first argument.

A further advantage of using external atoms for function term processing is that the expressive frame-
work of lde-safety of HEX-programs can be exploited to guarantee finiteness of the grounding; no safety
criteria specific for function terms have to be enforced.

7 Related Notions of Safety

Our notion of lde-safety using bs2 compares to the traditionally used strong de-safety and to other formali-
zations

7.1 Strong Safety

One can now show that liberal de-safety is strictly less restrictive than strong de-safety.

Proposition 17 Every strongly de-safe program Π is lde-safe.

The converse does not hold, as there are clearlyx lde-safe programs that are not strongly safe, cf. Exam-
ple 5.

7.2 VI-Restricted Programs

[8] introduced the notion of VI-restrictedness for VI programs, which amount to the class of HEX-programs
in which all input parameters to external atoms are of type const. Their notion of attribute dependency graph
is related to ours, but our notion is more fine-grained for attributes of external predicates. While we use a no-
de &g [X]r�T i for each external predicate &g with input list X in a rule r and T ∈ {I, O}, 1≤ i≤ arT (&g),
Calimeri et al. use just one attribute &g�i for each i∈{1, . . . , ar I(&g)+ar O(&g)} independent of X. Thus,
neither multiple occurrences of &g with different input lists in a rule, Thus, neither multiple occurrences
of &g with different input lists in a rule, nor of the same attribute in multiple rules are distinguished; this
collapses distinct nodes in our attribute dependency graph into one.

38 INFSYS FB 14-02

Example 27 Consider the following program Π = {r1 : t(X)← s(X),&e[X](Y),
r2 : r(X)← t(X),&e[X](Y)} . We have the attributes s�1, t�1, r�1, &e[X]r1�I1, &e[X]r1�O1, &e[X]r2�I1,
&e[X]r2�O2 with edges (s�1,&e[X]r1�I1), (&e[X]r1�I1, &e[X]r1�O1), and (&e[X]r1�O1, t�1) originating
from the first rule of Π, and the edges (t�1,&e[X]r2�I1), (&e[X]r2�I1,&e[X]r2�O1), (&e[X]r2�O1, t�r)
originating from the second rule of Π.

In contrast, [8] have attributes s�1, t�1, r�1,&e�1,&e�2 with edges (s�1,&e�1), (&e�1,&e�2),
(&e�2, t�1), (t�1,&e�1), (&e�2, r�1).

Using bs2 , we establish the following result.

Proposition 18 Every VI-restricted program Π is lde-safe.

The converse does not hold, as there are clearly lde-safe VI-programs (due to semantic criteria) that are
not VI-restricted.

7.3 Logic Programs with Function Symbols

[41] defined ω-restricted logic programs, which allow function symbols in an ordinary logic program under
a level mapping to control the introduction of new terms with function symbols to ensure decidability.
[8] observe that such programs Π can be rewritten to VI-programs F (Π) using special external predicates
that compose/decompose terms from/into function symbols and a list of arguments, such that F (Π) is VI-
restricted. As every VI-restricted program, viewed as a HEX-program, is by Proposition 18 also lde-safe,
we obtain:

Proposition 19 If an ordinary logic program Π is ω-restricted, then F (Π) is lde-safe.

As lde-safety is strictly more liberal than VI-restrictedness, it is also more liberal than ω-restrictedness.
More expressive variants of ω-restricted programs are λ-restricted programs [26], argument-restricted pro-
grams [34] and Γ-acyclic programs [30]. These notions can be captured within our framework as well, but
argument-restricted programs Π exist such that F (Π) is not lde-safe wrt. bs2 . The reason is that specific pro-
perties of the external atoms resp. sources for term (de)composition are needed, while our TBF bs2 builds
on general external sources. However, tailored TBFs can be used (which shows the flexibility of our mo-
dular approach). A further generalization of Γ-acyclic programs are bounded programs, which do not track
the propagation of single terms through the program but consider whole rule bodies [29]. This allows for
deriving termination even if the term depth of single terms increases, as long as the set of terms in a rule
does not increase. Also the notions of model-faithful (MFA) and model-summarising acyclicity (MSA) [28],
which have been developed in the context of positive existential rules, can be expressed in our framework.
They are both more refined than other notions of acyclicity to single out cases where the chase procedure for
query answering terminates, but MSA acyclicity is coarser and less complex to check than MFA acyclicity.
The key idea is a dependency analysis by examining the actual structure of the so called universal model
of the program formed by the existential rules. This analysis, however, can be done within a term bounding
function, and thus these notions can be captured in our framework.

Similarly, i.e., by means of dedicated external atoms for (de)composing terms and a specialized TBF,
so-called FD programs [9] map into our framework. Finitary programs [4, 3] and FG programs [9], however,
differ more fundamentally from our approach and cannot be captured as lde-safe programs using TBFs, as
they are not effectively recognizable (and FD-programs are even not finitely restrictable in general).

INFSYS FB 14-02 39

7.4 Term Rewriting Systems

A term rewriting system is a set of rules for rewriting terms to other terms. Termination is usually shown by
proving that the right-hand side of every rule is strictly smaller than its left-hand side [42, 43]. Our notion of
benign cycles is similar, but different from term rewriting systems the values do not need to strictly decrease.
While terms that stay equal may prevent termination in term rewriting systems, they do not harm in our case
because they cannot expand the grounding infinitely.

7.5 Other Notions of Safety

Related to our semantic properties are the approaches by [38], [36], and [31]. They exploited finiteness of
attributes (cf. item (ii) in Definition 14) in sets of Horn clauses and derive finiteness of further attributes
using finiteness dependencies. This is related to item (iii) in Definition 14 and item (iii) in Definition 9.
However, they did this for query answering over infinite databases but not for model building.

Less related to our work are [7], [32], and [2], where safety resp. argument restrictedness was extended
to arbitrary first-order formulas with(out) function symbols under the stable model semantics rather than a
generalization of the concepts given.

While a formal comparison with our approach is only possible for concrete other notions of safety, we
can at a meta-level say that in general arbitrary notions of safety with finite groundings that are based on
the program rules can be easily expressed in our approach. This is because TBFs as in Definition 7 have
full access to the program at hand. Thus, the simulation of some approach by a term bounding function
is easily possible by declaring all variables in all rules as bounded, if the approach considers the given
program to be safe. While this naive simulation works for all approaches which can decide safety based on
the program at hand, other notions (e.g. VI-restricted programs) are based on an iterative expansion of sets
of safe variables, external sources or rules. For such approaches, a simulation by exploiting the incremental
extension of bounded terms as in Definition 8 may be applied.

8 Conclusion

We have presented a framework for obtaining classes of HEX-programs, which are ASP programs with
external sources, that allow for finite groundings sufficient for evaluation over an infinite domain (which
arises by “value invention” in external atoms). It is based on term bounding functions (TBFs) and enables
modular exchange and combination of such functions under the novel notion of liberal domain expansion
(lde) safety. Hitherto separate syntactic and semantic safety criteria can be combined, which pushes the
class of HEX-program with evaluation via finite grounding considerably. We have provided sample TBFs
that capture syntactic criteria similar to but more fine-grained than ones by [8], and semantic criteria related
to those by [38] and [36], but target model generation (not query answering). Deploying them, classes that
strictly enlarger classes available through well-known safety notions for ASP programs are obtained, and
other notions can be modularly integrated. An implementation of lde-safety in the DLVHEX-framework is
available for use.

Together with lde-safety, we have also presented a new grounding algorithm for HEX-programs. In con-
trast to previous grounding techniques for ASP and HEX-programs, it can handle all lde-safe programs
directly and does not rely on program decomposition. This is an advantage, as program splitting negatively
affects learning techniques described in [13]. However, in the worst case the algorithm needs exponentially
many external source calls to determine the relevant constants for grounding. We have thus developed a

40 INFSYS FB 14-02

novel heuristics for program evaluation that aims at avoiding this worst case while retaining the positive
features of the new algorithm, and we have extended the current DLVHEX evaluation framework for its use.
An experimental evaluation of our implementation on synthetic and real applications shows a clear benefit.

Furthermore, we have presented a generalization of the grounding algorithm which allows for controlled
grounding by injecting application-specific stopping criteria; this can be fruitfully exploited e.g. for bounded
model generation (as shown for query answering from existential rules), for parametric data structures, and
for support of function symbols in HEX-programs.

Open Issues and Future Work. While lde-safe HEX-programs are ready for use via the DLVHEX-system,
several issues remain naturally for future work. One such isses is to identify further TBFs and suitable well-
orderings of domains in practice. Of particular interest are external atoms that provide built-in functions and
simulate, in a straightforward manner, particular interpreted function symbols. On the implementation side,
further refinement and optimizations are an issue, as well as a library of TBFs and a plugin architecture
that supports creating customized TBFs easily, to make our framework more broadly usable. Connected
with this are refinements of our algorithm and heuristics. Here, meta-information about external sources to
identify programs that allow for a better grounding and to reduce worst case costs of inputs are of interest.
A particular challenge is also a sensitive integration of grounding and solving under decomposition, which
are currently not much aligned. Finally, exploring on the application side the benefits of our results e.g. for
domain-specific value invention (i.e., existential quantifiers under restrictions, which occurs prominently in
configuration problems) appears to be an interesting direction.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) via the project P24090.

Literatur

[1] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological knowledge represen-
tation formalisms. Journal of Automated Reasoning, 14(1):149–180, 1995.

[2] Michael Bartholomew and Joohyung Lee. A decidable class of groundable formulas in the general
theory of stable models. In 12th International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR’10), pages 477–485. AAAI Press, 2010.

[3] Piero A. Bonatti. Reasoning with infinite stable models ii: Disjunctive programs. In 18th International
Conference on Logic Programming (ICLP’02), volume 2401 of LNCS, pages 333–346. Springer, 2002.

[4] Piero A. Bonatti. Reasoning with infinite stable models. Artificial Intelligence, 156(1):75—111, 2004.

[5] Gerd Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems. In
Robert C. Holte and Adele Howe, editors, 22nd AAAI Conference on Artificial Intelligence (AAAI’07),
pages 385–390. AAAI Press, 2007.

[6] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming at a glance. Com-
munications of the ACM, 54(12):92–103, 2011.

INFSYS FB 14-02 41

[7] Pedro Cabalar, David Pearce, and Agustı́n Valverde. A revised concept of safety for general answer
set programs. In 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’09), volume 5753 of LNCS, pages 58–70. Springer, 2009.

[8] Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni. External sources of knowledge and
value invention in logic programming. Annals of Mathematics and Artificial Intelligence, 50(3–4):333–
361, 2007.

[9] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Computable functions
in asp: Theory and implementation. In International Conference on Logic Programming (ICLP’08),
volume 5366 of LNCS, pages 407–424. Springer, 2008.

[10] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reaso-
ning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995.

[11] Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelligence,
173(18):1559–1591, 2009.

[12] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, and Peter Schüller. Pushing
efficient evaluation of hex programs by modular decomposition. In James Delgrande and Wolfgang
Faber, editors, 11th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’11), volume 6645 of LNAI, pages 93–106. Springer, May 2011.

[13] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-driven ASP solving
with external sources. Theory and Practice of Logic Programming, 12(4-5):659–679, July 2012.

[14] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Grounding HEX-programs
with expanding domains. In David Pearce, Shahab Tasharrofi, Evgenia Ternovska, and Concepción Vi-
dal, editors, Informal Proceedings of the 2nd Workshop on Grounding and Transformations for Theo-
ries with Variables (GTTV’13), Corunna, 15th, September 15, 2013, Corunna, Spain, pages 3–15,
2013. Online available at http://gttv13.irlab.org/sites/10.56.35.200.gttv13/files/gttv13.pdf.

[15] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Liberal Safety Criteria for
HEX-Programs. In Marie desJardins and Michael Littman, editors, Twenty-Seventh AAAI Conference
(AAAI 2013), July 14–18, 2013, Bellevue, Washington, USA, pages 267–275. AAAI Press, July 2013.

[16] Thomas Eiter, Michael Fink, Christoph Redl, and Thomas Krennwallner. HEX-programs with existen-
tial quantification. In 20th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2013), Kiel, Germany, September 11-13, 2013, Preproceedings, 2013.

[17] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web. Artificial Intelli-
gence, 172(12-13):1495–1539, 2008.

[18] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform integration
of higher-order reasoning and external evaluations in answer-set programming. In Leslie Pack Kaelb-
ling and Alessandro Saffiotti, editors, 19th International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 90–96. Professional Book Center, 2005.

42 INFSYS FB 14-02

[19] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effective integration
of declarative rules with external evaluations for semantic-web reasoning. In York Sure and John
Domingue, editors, 3rd European Conference on Semantic Web (ESWC’06), volume 4011 of LNCS,
pages 273–287. Springer, 2006.

[20] Thomas Eiter, Thomas Krennwallner, Matthias Prandtstetter, Christian Rudloff, Patrik Schneider, and
Markus Straub. Semantically enriched multi-modal routing. International Journal of Intelligent Trans-
portation Systems Research, August 2014. Published online: 05 August 2014.

[21] Thomas Eiter, Thomas Krennwallner, and Patrik Schneider. Lightweight spatial conjunctive query
answering using keywords. In Philipp Cimiano, Óscar Corcho, Valentina Presutti, Laura Hollink, and
Sebastian Rudolph, editors, ESWC, volume 7882 of Lecture Notes in Computer Science, pages 243–
258. Springer, 2013.

[22] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining answer set
programming with description logics for the semantic web. In Didier Dubois, Christopher Welty,
and Mary-Anne Williams, editors, Proceedings of the 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2004), pages 141–151. AAAI Press, 2004.

[23] Esra Erdem, Yelda Erdem, Halit Erdogan, and Umut Öztok. Finding answers and generating explana-
tions for complex biomedical queries. In Wolfram Burgard and Dan Roth, editors, AAAI. AAAI Press,
2011.

[24] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence, 175(1):278–298, January 2011.

[25] Ronald Fagin, Phokion Kolaitis, Renée Miller, and Lucian Popa. Data exchange: Semantics and query
answering. Theoretical Computer Science, 336(1):89–124, 2005.

[26] Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo: A new grounder for answer set program-
ming. In 9th International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’07), volume 4483, pages 266–271. Springer, 2007.

[27] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9(3–4):365–386, 1991.

[28] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka, Boris
Motik, and Zhe Wang. Acyclicity notions for existential rules and their application to query answering
in ontologies. CoRR, abs/1406.4110, 2014.

[29] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Bounded programs: A new decidable class
of logic programs with function symbols. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI 2013), IJCAI 2013, pages 926–931. AAAI Press, 2013.

[30] Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. On the termination of logic programs with
function symbols. In Agostino Dovier and Vı́tor Santos Costa, editors, ICLP (Technical Communi-
cations), volume 17 of LIPIcs, pages 323–333. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

INFSYS FB 14-02 43

[31] Ravi Krishnamurthy, Raghu Ramakrishnan, and Oded Shmueli. A framework for testing safety and
effective computability. Journal of Computer and System Sciences, 52(1):100–124, 1996.

[32] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe formulas in the general theory of stable models
(preliminary report). In 24th International Conference on Logic Programming (ICLP’08), volume
5366 of LNCS, pages 672–676. Springer, 2008.

[33] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. Efficiently computable
datalog∃ programs. In KR, 2012.

[34] Yuliya Lierler and Vladimir Lifschitz. One more decidable class of finitely ground programs. In 25th
International Conference on Logic Programming (ICLP’09), volume 5649 of LNCS, pages 489–493.
Springer, 2009.

[35] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Gasp: Answer set
programming with lazy grounding. Fundamenta Informaticae, 96(3):297–322, 2009.

[36] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive horn clauses with infinite
relations. In 6th Symposium on Principles of Database Systems (PODS’87), pages 328–339. ACM,
1987.

[37] Christoph Redl. Answer Set Programming with External Sources: Algorithms and Efficient Evaluati-
on. PhD thesis, Vienna University of Technology, Knowledge-Based Systems Group, A-1040 Vienna,
Karlsplatz 13, April 2014.

[38] Y. Sagiv and M. Y. Vardi. Safety of datalog queries over infinite databases. In 8th Symposium on
Principles of Database Systems (PODS’89), pages 160–171. ACM, 1989.

[39] P. Schüller, V. Patoglu, and E. Erdem. Levels of integration between low-level reasoning and task
planning. In Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013)
– Intelligent Robotic Systems, Bellevue, WA, July 14th, 2013. AAAI Press, 2013. to appear.

[40] Peter Schüller. Inconsistency in Multi-Context Systems: Analysis and Efficient Evaluation. PhD thesis,
Vienna University of Technology, Vienna, Austria, August 2012.

[41] Tommi Syrjänen. Omega-restricted logic programs. In 6th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’11), pages 267–279. Springer, 2001.

[42] Hans Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic
Computation, 17(1):23–50, 1994.

[43] Hans Zantema. The termination hierarchy for term rewriting. Applicable Algebra in Engineering,
Communication and Computing, 12(1-2):3–19, 2001.

A Proofs

Proof of Proposition 2. There are only finitely many ordinary and external predicates with finite (input and
output) arity. 2

44 INFSYS FB 14-02

Proof of Proposition 3. We prove this by induction on n.
For n = 0 we have S0(Π) = ∅ and the proposition holds trivially.
For the induction step n 7→ n+ 1, assume that the attributes in Sn(Π) are domain-expansion safe (outer

induction hypothesis). We first show that for each rule r and term t ∈ Bn+1(r,Π, b), the set of ground in-
stances of r in G∞Π (∅) contains only finitely many different substitutions for t. We consider Bn+1,j(r,Π, b)
and again prove this by induction on j. For j = 0 we have Bn+1,0(r,Π, b) = ∅ and the proposition holds
trivially. For the induction step j 7→ j + 1, assume that the terms in Bn+1,j(r,Π, b) are bounded (inner
induction hypothesis). Let t ∈ Bn+1,j+1(r,Π, b). If t ∈ Bn+1,j(r,Π) then the claim follows from the inner
induction hypothesis. Otherwise t is added in step j + 1. By the outer induction hypothesis all attributes in
Sn(Π) have a finite range inG∞Π (∅). By the inner induction hypothesis there are only finitely many substitu-
tions for all terms t ∈ Bn+1,j(r,Π, b) in G∞Π (∅). This fulfills the conditions of TBFs (Definition 7). Since b
is a TBF, this implies that there are also only finitely many substitutions for all t ∈ b(r, Sn(Π), Bn+1,j). This
proves the inner induction statement and, by definition of Bn(r,Π, b), also that for each t ∈ Bn+1(r,Π, b)
the set of ground instances of r in G∞Π (∅) contains only finitely many different substitutions for t.

If p�i ∈ Sn+1(Π), then for each rule r ∈ Π and atom p(t1, . . . , tar(p)) ∈ H(r) we have ti ∈
Bn+1(r,Π, b). As we have shown, this means that there are only finitely many different substitutions for
ti in the ground instances of r in the set G∞Π (∅). As there are also only finitely many different rules in
Π, and the number of substitutions for the term ti in the head of r is finite, this implies that also the set{
ti | p(t1, . . . , tar(p)) ∈ A(G∞Π (∅))

}
is finite.

If &g [Y]r�Ii ∈ Sn+1(Π), then the i-th input parameter is either of type constant and Yi is a constant or
a variable, or it is of type predicate. If it is of type constant and Yi is a constant, then there exists only one
ground instance. If it is of type constant and Yi is a variable, then Yi ∈ Bn+1(r,Π, b), for which we have
shown that there are only finitely many different substitutions for Y . If it is of type predicate input parameter
p, then the range of all attributes p�1, . . . , p�ar(p) in G∞Π (∅) is finite by the (outer) induction hypothesis.

If &g [Y]r�Oi ∈ Sn+1(Π), then either &g [Y]r�I1, . . . ,&g [Y]r�Iar I(&g) ∈ Sn(Π), or r contains some
&g [Y](X) s.t. Yi is bounded.

If &g [Y]r�I1, . . . ,&g [Y]r�Iar I(&g) ∈ Sn(Π), then the range of all input parameters in G∞Π (∅) is finite
by the (outer) induction hypothesis. But then there exist only finitely many oracle calls to &g . As each such
call can introduce only finitely many new values, also the range of each output parameter in G∞Π (∅) is finite.
If r contains an external atom &g [Y](X) such that Yi is bounded, then only finitely many substitutions for
&g [Y]r�Oi can satisfy the rule body, thusG∞Π (Π) will also contain only finitely many values for &g [Y]r�Oi.
Thus, the (outer) induction hypothesis holds for n+ 1, which proves the statement. 2

Proof of Corollary 4. If a ∈ S∞ then a ∈ Sn for some n ≥ 0 and the claim follows from Proposition 3.
2

Proof of Corollary 5. Since Π is domain-expansion safe by assumption, a ∈ S∞(Π) for all attributes a of
Π. Then by Corollary 4, the range of all attributes of Π in G∞Π (∅) is finite. But then there exists also only
a finite number of ground atoms in G∞Π (∅). Since the original non-ground program Π is finite, this implies
that also the grounding is finite. 2

Proof of Proposition 6. We construct the grounding grndC(Π) as the least fixpointG∞Π (∅) of the grounding
operator GΠ(X), which is known to be finite by Corollary 5. The set C is then implicitly given by the set of
constants appearing in grndC(Π). It remains to show that indeed grndC(Π) ≡pos grndC(Π). We will show
the more general proposition grndC(Π) ≡pos grndC′(Π) for any C ′ ⊇ C.

(⇒) Suppose A ∈ AS
(
grndC(Π)

)
. Let A′ = A ∪

{
Fa | a ∈ A

(
grndC′(Π)

)
, Ta 6∈ A

}
, i.e.,

the completion of A to all atoms in grndC′(Π) by setting all additional atoms to false. Then {Ta ∈ A} =

INFSYS FB 14-02 45

{Ta ∈ A′}. We show now that A′ is an answer set of grndC′(Π). First observe that A′ 6|= B+(r) for all r ∈
grndC′(Π)\grndC(Π); otherwise r ∈ GΠ

(
grndC(Π)

)
, which contradicts the assumption that grndC(Π) is

the least fixpoint of GΠ(∅). Therefore, A′ |= grndC′(Π). Moreover fgrndC(Π)A = fgrndC′(Π)A
′
, hence

A′ is a subset-minimal model of the FLP-reduct of grndC′(Π) iff A is a subset-minimal model of the FLP-
reduct of grndC(Π), which is the case because A ∈ AS

(
grndC(Π)

)
. Therefore A′ ∈ AS

(
grndC′(Π)

)
.

(⇐) Now suppose A ∈ AS
(
grndC′(Π)

)
. Then we have A′ = A ∩

{
Ta,Fa | a ∈ A

(
grndC(Π)

)}
is

a model of grndC(Π). Let A′′ = A′ ∪ {Fa | a ∈ A
(
grndC′(Π)

)
, Ta 6∈ A′}, i.e., the completion of A′

to all atoms in grndC′(Π) by setting all additional atoms to false. Then we have A′′ 6|= B+(r) for all r ∈
grndC′(Π) \ grndC(Π); otherwise r ∈ GΠ

(
grndC(Π)

)
, which contradicts the assumption that grndC(Π)

is the least fixpoint of GΠ(∅). Therefore, A′′ |= grndC′(Π). But this implies that A = A′′: by construction
of A′′ we have A′′T ⊆ AT, and A′′T (AT would imply that A is not subset-minimal, which contradicts
the assumption that A ∈ AS

(
grndC′(Π)

)
. Moreover, fgrndC(Π)A

′
= fgrndC′(Π)A

′′
. Therefore A′ is a

subset-minimal model of the FLP-reduct of grndC(Π) iff A′′ is a subset-minimal model of the FLP-reduct
of grndC′(Π), which is the case because A′′ ∈ AS

(
grndC′(Π)

)
. Thus we have A′ ∈ AS

(
grndC(Π)

)
. The

observation {Ta ∈ A′} = {Ta ∈ A′′} concludes the proof. 2

Proof of Proposition 7. If t is in the output of bsyn(Π, r, S,B), then one of the conditions holds. If Con-
dition (i) holds, then t is a constant, hence there is only one ground instance. If Condition (ii) holds, then t
must also occur as value for q�j, which has a finite range by assumption.

If Condition (iii) holds, then t is output of an external atom such that there are only finitely many
substitutions of its constant inputs and the attributes of all predicate inputs have a finite range by assumption.
Thus there are only finitely many different oracle calls with finite output each. 2

Proof of Proposition 8. If t is in the output of bsem(Π, r, S,B), then one of the conditions holds. If Condi-
tion (i) holds, then there is no information flow from malign cycles wrt. S to t. However, such cycles are the
only source of infinite groundings: the attributes in S have a finite domain by assumption. For the remaining
attributes in the cycle, the well-ordering guarantees that only finitely many different values can be produced
in the cycle.

If Condition (ii) holds, then the claim follows immediately from finiteness of the domain of the respective
external atom.

If Condition (iii) holds, then the external atom cannot introduce new constants. Because the set of con-
stants in the extension of the respective input parameter Yj is finite by assumption that Yj�k ∈ S for all
1 ≤ k ≤ ar(Yj), it follows that also the set of constants in the output of the external atom is finite.

If Condition (iv) holds, then there are only finitely many different substitutions for t because the output
of the respective external atom is bound by the precondition of TBFs and the finite fiber ensures that there
are only finitely many different inputs for each output. 2

Proof of Theorem 9. For t ∈ b(Π, r, S,B), t ∈ bi(Π, r, S,B) for some 1 ≤ i ≤ `. Then there are only
finitely many substitutations for t in G∞Π (∅) because bi is a TBF. 2

Towards a proof of Theorem 10, we first prove the following lemma.

Lemma 20 Let Πg = GroundHEXNaive(Π) and C be the constants which appear in Πg. Then for any
C ′ ⊇ C and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π).

Proof. Let A be a model of grndC(Π). Then it can be extended to a model Apg of Πpg as follows:

• For all er,&g[y](x) ∈ A(Πpg), add er,&g[y](x) if f&g(A,y,x) = 1 and add atom ner,&g[y](x) other-
wise.

46 INFSYS FB 14-02

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for an external
atom a = &g [Y](X)).

This satisfies each ground instance of each input auxiliary rule rainp because the head g&g
inp(y) is true. Mo-

reover, because A is a model of grndC(Π) = Πg and Πpg contains er,&gy(x) in place of &g [y](x) and we
set er,&g[y](x) to true iff f&g(A,y,x) = 1, it satisfies also all remaining rules.

We show now that A is also a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r, then
A 6|= H(r) and A |= B(r). Since A |= B(r), we have A |= a for each ordinary literal a ∈ B(r). If there
would be only ordinary literals in B(r), then Πg would also contain this rule instance because all constants
in B(r) must appear in the atoms which are true in A und thus in Πg. Hence, A could not be a model of
Πg. Therefore there must be external atoms in B(r).

We show now that each positive external atom in r is represented in Πpg (with degree 0). Suppose there
is an external atom in B(r) which is not represented in Πpg . Then, due to safety of r, which forbids cyclic
passing of constant input within a rule body, there is also a ‘first’ unrepresented external atom &g [v](u),
i.e., one such that all its input constants in v either: (1) appear in a positive ordinary atom, (2) appear in the
output list of a represented external atom, or (3) were already constants in the input program. In all three
cases, the input auxiliary rule for &g [v](u) is instantiated for this v because its body atoms are potentially
true (they are ordinary atoms or replacement atoms of represented external atoms), i.e., g&g

inp(v) appears in
the program and is therefore true in Apg . Thus, the loop at (e) would evaluate &g with Apg and v and
determine all tuples w s.t. f&g(Apg ,v,w) = 1. However, f&g(Apg ,v,u) = 0, because otherwise rule
er,&g[v](u) ∨ ner,&g[v](u) ← would have been added at (f) to Πp and thus &g [v](u) would be represented
in Πpg , which contradicts our assumption. But if f&g(Apg ,v,u) = 0 then also f&g(A,v,u) = 0 because
Apg and A differ only on input auxiliary atoms and external atom replacement atoms, which would imply
A 6|= B(r).

Thus, all positive external atoms are represented in Πpg . But as default-negated ones cannot introduce
new values due to ordinary safety, all constants in r also appear in Πg, thus r ∈ Πg. But then A could not
be a model of Πg if A |= B(r), hence A 6|= B(r). 2

Now we can show the result of Theorem 10.

Proof of Theorem 10. Let Πg = GroundHEXNaive(Π). For the proof, observe that Πg = grndC(Π)
where C is the set of all constants which appear in Πg. We show now

grndC(Π) ≡pos grndC′(Π)

for any C ′ ⊇ C. Because Π ≡pos grndC(Π) for Herbrand universe C ⊇ C by definition of the HEX-
semantics, this implies the proposition.

Termination of the algorithm follows from Theorem 11, where we will prove that an optimized version of
the algorithm, which may produce a larger grounding (wrt. the number of constants) but need less iterations,
terminates. As the grounding produced by this algorithm is even smaller, it terminates as well.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma 20 it is also a model of grndC′(Π). It remains to show

that it is also a subset-minimal model of fgrndC′(Π)A. Since C ⊆ C ′, fgrndC(Π)A ⊆ fgrndC′(Π)A.
By Lemma 20, A 6|= B(r) for any r ∈ grndC′(Π) \ grndC(Π), thus fgrndC(Π)A = fgrndC′(Π)A.
But since A ∈ AS

(
grndC(Π)

)
, it is a minimal model of fgrndC(Π)A, thus also of fgrndC′(Π)A, i.e.,

A ∈ AS
(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩A

(
grndC(Π)

)
is an answer set of grndC(Π).

Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π). It remains to show that

INFSYS FB 14-02 47

it is also a subset-minimal model of fgrndC(Π)A. By Lemma 20, A is a model of grndC′(Π). Clearly,
A ⊆ A′. But A (A′ would imply that A′ is not subset-minimal, which contradicts the assumption that
it is an answer set of grndC′(Π), thus A = A′. Because grndC(Π) ⊆ grndC′(Π) and A 6|= B(r) for
all r ∈ grndC′(Π) \ grndC(Π), it holds that fgrndC(Π)A = fgrndC′(Π)A. Because A is a subset-
minimal model of grndC′(Π)A, it is a subset-minimal model of fgrndC(Π)A. Thus, A is an answer set of
grndC(Π). 2

In order to prove soundness and completeness of our optimized algorithm, we first show a lemma ana-
logous to Lemma 20.

Lemma 21 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg. Then for any C ′ ⊇ C
and each model A of grndC(Π), A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π).

Proof. Let A be an model of grndC(Π). Then it can be extended to a model Apg of Πpg as follows:

• For all er,&g[y](x) ∈ A(Πpg), add er,&g[y](x) if f&g(Ag,y,x) = 1 and add atom ner,&g[y](x) other-
wise.

• Add all g&g
inp(y) ∈ A(Πpg), for all predicates g&g

inp occurring in the head of some rainp (for an external
atom a = &g [Y](X)).

This satisfies all guessing rules as for each &g [y](x) one of the atoms er,&g[y](x) or ner,&g[y](x) is true,
and each input auxiliary rule rainp because the head g&g

inp(y) is true. Moreover, because A is a model of
grndC(Π), it is also a model of the (possibly) less restrictive program Πg. Since Πpg contains er,&gy(x) in
place of &g [y](x) and we set er,&g[y](x) in Apg to true iff f&g(A,y,x) = 1, Apg satisfies also all remaining
rules in program Πpg .

We show now that A is a model of grndC′(Π). Let r ∈ grndC′(Π) and suppose A 6|= r, i.e., A 6|= H(r)
but A |= B(r).

As we have seen in the proof of Theorem 10, all lde-safety relevant positive external atoms in r are
represented with degree 0 in the program computed by Algorithm GroundHEXNaive. As such external
atoms are handled equivalently by our optimized algorithm, they are also represented in Πpg . We show that
this holds also for positive external atoms which are not lde-safety relevant.

Suppose r contains an external atom which is not lde-safety relevant and which is not represented in
Πpg . Then there is a ‘first’ such external atom &g [v](u) in B(r), i.e., its input list only contains constants
which (1) appear in ordinary atoms, (2) appear in lde-safety relevant external atoms, or (3) were already
constants in the input program. In all three cases, the input auxiliary rule for &g [v](u) is instantiated for
this v because its body atoms are potentially true (ordinary atoms appear also in B(r) and are potentially
true, otherwise r would not have been added to Πg; external atoms are all not lde-safety relevant and are
potentially true since they are represented with degree 0), i.e., g&g

inp(v) appears in the program. Moreover, the
respective external atom guessing rule is instantiated for v and u because all its body atoms are potentially
true (with the same argument as for input auxiliary rules). Thus, &g [v](u) would be represented in Πp with
some degree > 0, and thus also in Πpg and Πg.

Thus, all positive external atoms are represented in Πpg . But as default-negated ones cannot introduce
new values due to ordinary safety, all constants in r also appear in Πg, thus a strengthening of r would be in
Πg. But then A could not be a model of Πg if A |= B(r), hence A 6|= B(r). 2

We now show some additional lemmas to simplify the proof of soundness and completeness of the
optimized algorithm GroundHEX.

48 INFSYS FB 14-02

Lemma 22 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg. Every answer set A of
Πg can be extended to an answer set Apg of Πpg .

Proof. Let A ∈ AS(Πg). Then Apg is constructed by iteratively adding additional atoms to A as follows:

• If the body B of an external atom guessing rule er,&g[y](x) ∨ ner,&g[y](x)← B in Πpg is satisfied by
Apg , add er,&g[y](x) if f&g(A,y,x) = 1 and add atom ner,&gy(x) otherwise.

• Add all g&g
inp(y) ∈ A(Πpg) if the body of the respective input auxiliary rule is satisfied by Apg .

Note that this operation is monotonic because input auxiliary rules and external atom guessing rules contain
only positive body literals.

Then the fixpoint of this operation Apg is by construction a model of all input auxiliary rules and ex-
ternal atom guessing rules. Moreover, it is also a model of all remaining rules because A is a model of the
corresponding rules in Πg with external atoms in place of replacement atoms, and we set the truth values of
the external atom replacement atoms exactly to the truth values of the external atoms in A. Note that there
might be external atoms in Πg for which neither er,&g[y](x) nor ner,&g[y](x) is added to Apg , but then the
body of the respective external atom guessing rule is unsatisfied by Apg . But since the body of an exter-
nal atom guessing rule is a subset of the body of the rule where this external atom occurs, also this rule is
satisfied.

It remains to show that Apg is also a subset-minimal model of fΠpg
Apg . Suppose there is a smaller

model A′pg (Apg . Then Apg \ A′pg must contain at least one atom which is not a replacement atom or
an input auxiliary atom, because by construction of Apg such atoms are only set to true if necessary, i.e., if
they are supported by A, and all rules used to derive such atoms are also in fΠpg

Apg . We now show that the
restriction of A to ordinary atoms A′ (A (i.e., without replacement atoms e&g[y](x) and ne&g[y](x) and
without external atom input atoms g&g

inp(y)) is a model of fΠg
A, which contradicts the assumption that A is

an answer set of Πg.
Observe that, except for the external atom guessing and input auxiliary rules, the reduct fΠpg

Apg con-
tains the same rules as fΠg

A with replacement atoms instead of external atoms. Thus, for r ∈ fΠg
A, the

corresponding rpg ∈ fΠpg
Apg contains the same ordinary literals in the head and body.

We show now that A′pg |= rpg implies A′ |= r. If A′pg is a model of rpg , then we have either (1) A′pg |= h
for some h ∈ H(rpg), or (2) A′pg 6|= b for some b ∈ B(rpg). In Case (1), we also have h ∈ H(r). Since A′pg

and A′ coincide on non-replacement and non-input atoms, this implies A′ |= r. In Case (2), b is either (2a)
a non-replacement literal, or (2b) a (positive or default-negated) external atom replacement. In Case (2a),
we also have b ∈ B(r). Since A′pg and A′ coincide on such atoms, this implies A′ |= r. In Case (2b),
we either have (2b′) Apg 6|= b, or (2b′′) b is positive (since a default-negated atom cannot become false by
removing atoms from the interpretation) and some literal b′ in the body of the external atom guessing or in
the input rule for b is false in A′pg ; in this case b is represented in Πp with some degree n. In Case (2b′),
A falsifies by construction of Apg the external atom in B(r) which corresponds to the replacement atom b.
In Case (2b′′), b′ also appears in B(rpg). Note that b′ can be another external replacement atom. But in this
case, the external atom corresponding to b′ is represented with some degree < n. Thus, we start the case
distinction for b′ again. However, because the degree is reduced with every iteration, we will eventually end
up in one of the other cases.

Thus, A′ would be a model of fΠg
A, which contradicts the assumption that A is an answer set of Πg.

This shows that Apg is an answer set of Πpg . 2

INFSYS FB 14-02 49

Lemma 23 Let Πg = GroundHEX(Π) and C be the constants which appear in Πg. Every answer set A of
grndC(Π) can be extended to an answer set Ap of grndC(Πp).

Proof. Let A ∈ AS
(
grndC(Π)

)
. Then Ap is constructed by iteratively adding additional atoms to A as

follows:

• If the body B of an external atom guessing rule er,&g[y](x) ∨ ner,&g[y](x) ← B in grndC(Πp) is
satisfied by Ap, add er,&g[y](x) if f&g(A,y,x) = 1 and add atom ner,&g[y](x) otherwise.

• Add all g&g
inp(y) ∈ A

(
grndC(Πp)

)
if the body of the respective input auxiliary rule is satisfied by Ap.

Note that this operation is monotonic because input auxiliary rules and external atom guessing rules contain
only positive body literals.

Then the fixpoint of this operation Ap is by construction a model of all ground input auxiliary rules
and external atom guessing rules. Moreover, it is also a model of all remaining rules in grndC(Πp) because
A is a model of the corresponding rules in grndC(Π) with external atoms in place of replacement atoms,
and we set the truth values of the external atom replacement atoms exactly to the truth values of the external
atoms in A. Note that there might be external atoms &g [y](x) for which neither er,&g[y](x) nor ner,&g[y](x)
is added to Ap, but then the body of the respective external atom guessing rule is unsatisfied by Ap. But
since the body of an external atom guessing rule is a subset of the body of the rule where this external atom
occurs, also this rule is satisfied.

Thus Ap is a model of grndC(Πp). It remains to show that it is also a subset-minimal model of
fgrndC(Πp)

Ap . Suppose there is a smaller model A′p (Ap. Then Ap \ A′p must contain at least one
atom which is not a replacement atom or an input auxiliary atom, because by construction of Ap such atoms
are only set to true if necessary, i.e., if they are supported by A, and all rules used to derive such atoms are
also in fgrndC(Πp)

Ap . We now show that the restriction of A to ordinary atoms A′ (A (i.e., without
replacement atoms e&g[y](x) and ne&g[y](x) and without external atom input atoms g&g

inp(y)) is a model of
fgrndC(Π)A, which contradicts the assumption that A is an answer set of grndC(Π).

Observe that, except for the external atom guessing and input auxiliary rules, the reduct fgrndC(Πp)
Ap

contains the same rules as fgrndC(Π)A with replacement atoms instead of external atoms. Thus, for r ∈
fgrndC(Π)A, the corresponding rp ∈ fgrndC(Πp)

Ap contains the same ordinary literals in the head and
body.

We show now that A′p |= rp implies A′ |= r. If A′p is a model of rp, then we have either (1) A′p |= h for
some h ∈ H(rp), or (2) A′p 6|= b for some b ∈ B(rp). In Case (1), we also have h ∈ H(r). Since A′p and A′

coincide on non-replacement and non-input atoms, this implies A′ |= r. In Case (2), b is either (2a) a non-
replacement literal, or (2b) a (positive or default-negated) external atom replacement. In Case (2a), we also
have b ∈ B(r). Since A′p and A′ coincide on ordinary atoms, this implies A′ |= r. In Case (2b), we either
have (2b′) Ap 6|= b, or (2b′′) b is positive (since a default-negated atom cannot become false by removing
atoms from the interpretation) and some literal b′ in the body of the external atom guessing or in the input
rule for b is false in A′p; in this case b is represented in grndC(Πp) with some degree n. In Case (2b′), A
falsifies by construction of Ap the external atom in B(r) which corresponds to the replacement atom b. In
Case (2b′′), b′ also appears in B(rp). Note that b′ can be another external replacement atom. But in this
case, the external atom corresponding to b′ is represented with some degree < n. Thus, we start the case
distinction for b′ again. However, because the degree is reduced with every iteration, we will eventually end
up in one of the other cases.

50 INFSYS FB 14-02

Thus, A′ would be a model of fgrndC(Π)A, which contradicts the assumption that A is an answer set
of grndC(Π). This shows that Ap is an answer set of grndC(Πp). 2

Lemma 24 Let Πg = GroundHEX(Π) andC be the constants which appear in Πg. It holds thatAS(Πg) =
AS(grndC(Π)).

Proof. (⇒) Let A ∈ AS(Πg). Then by Lemma 22 it can be extended to an answer set Apg of Πpg . By
Definition 19, Apg is also an answer set of grndC(Πp).

Let r ∈ grndC(Π) and let r′ be the respective rule in grndC(Πp) with replacement atoms instead of
external atoms. (1) If there is no strengthening of r in Πg, then there is also no strengthening of r′ in Πpg .
Then by Definition 19, every answer set of grndC(Πp) falsifies some ordinary body literal of r′. Thus this
holds also for Apg . But all ordinary literals of r′ are also in r and A coincides with Apg on ordinary literals,
thus A is a model of r. (2) If there is a strengthening r̄ of r in Πg, then there is also a strengthening r̄′ of
r′ in Πpg from which r̄ was generated by replacing external replacement atoms by external atoms. Because
Apg is an answer set of grndC(Πp), it is also a model of r̄′. Moreover, by Definition 19, it satisfies also
all ordinary literals B(r′) \ B(r̄′). This is the same set as B(r) \ B(r̄). Because A and Apg coincide on
ordinary literals, also A is a model of r. Thus, A is a model of grndC(Π).

We show now that A is also a subset-minimal model of fgrndC(Π)A. Because we have seen that
A 6|= B(r) for every r ∈ grndC(Π) which has no strengthening in Πg, it follows that fΠg

A contains a
strengthening r̄ for every rule r ∈ fgrndC(Π)A. Conversely, by Definition 19 every rule in fΠg

A is a
strengthening of some rule r ∈ fgrndC(Π)A. Thus, the rules in fgrndC(Π)A are even more restrictive,
i.e., every model of fgrndC(Π)A is also a model of fΠg

A. Thus, if there would be a smaller model A′ (A

of fgrndC(Π)A, it would also be a model of fΠg
A, which contradicts the assumption that A is an answer

set of Πg.
(⇐) Let A ∈ AS

(
grndC(Π)

)
, then it is also a model of Πg because this program is (possibly) less

restrictive. It remains to show that A is also a subset-minimal model of fΠg
A. By Lemma 23, A can be

extended to an answer set Ap of grndC(Πp).
Let for every r ∈ grndC(Π) be r′ the respective rule in grndC(Πp) with replacement atoms instead

of external atoms. Note that the rules in fΠg
A are strengthenings of the rules in fgrndC(Π)A. Let r ∈

grndC(Π). (1) If there is no strengthening of r in Πg, then also r′ has no strengthening in Πpg . But this
means, that every answer set of grndC(Πp) falsifies an ordinary body literal in r′, thus also Ap. Because
A and Ap coincide on ordinary literals, also A falsifies some ordinary literal in B(r), thus r is not in
fgrndC(Π)A. (2) Now suppose there is a strengthening r̄ of r in Πg. Then A |= B(r) implies A |=
B(r̄). Conversely, if A |= B(r̄), then the missing literals in B(r) \ B(r̄) are satisfied as well because they
are satisfied by all answer sets of grndC(Πp), including Ap, which coincides with A on ordinary atoms
(otherwise the literal would not have been removed by the optimizer).

Now suppose fΠg
A has a smaller model A′ (A. Then A′ is a model of fgrndC(Π)A because we

have seen that the missing literals are satisfied as well. 2

Now we can prove Theorem 11.

Proof of Theorem 11. Let Πg = GroundHEX(Π) and let C be the constants which appear in Πg.
The differences to Algorithm GroundHEXNaive are that we (i) use a faithful (optimized) ASP groun-

ding procedure to compute Πg instead of the naive grndC(Πp); (ii) consider only lde-safety relevant external
atoms in Part (b); and (iii) a different set of interpretations in Part (c). We will now show that the algorithm
is still correct.

INFSYS FB 14-02 51

We first ignore modification (iii) and show that the algorithm is still correct if only modifications (i) and
(ii) are active.

We need to show that AS(Πg) = AS(Π). Recall that we have AS(Πg) = AS
(
grndC(Π)

)
by Lem-

ma 24, thus it is sufficient to show that AS
(
grndC(Π)

)
= AS

(
grndC′(Π)

)
for any C ′ ⊇ C.

(⇒) Let A ∈ AS
(
grndC(Π)

)
. By Lemma 21, A is a model of grndC′(Π). It remains to show that it

is also a subset-minimal model of fgrndC′(Π)A. As C ⊆ C ′, fgrndC(Π)A ⊆ fgrndC′(Π)A. Moreover,
by Lemma 21 A 6|= B(r) for any r ∈ grndC′(Π) \ grndC(Π), thus fgrndC(Π)A = fgrndC′(Π)A.
But since A ∈ AS

(
grndC(Π)

)
, it is a subset-minimal model of fgrndC(Π)A, thus it is also a model of

fgrndC′(Π)A, i.e., A ∈ AS
(
grndC′(Π)

)
.

(⇐) Let A′ ∈ AS
(
grndC′(Π)

)
. We show that A = A′ ∩A

(
grndC(Π)

)
is an answer set of grndC(Π).

Because grndC(Π) ⊆ grndC′(Π), it is trivial that A is a model of grndC(Π). It remains to show that it
is also a subset-minimal model of fgrndC(Π)A.

By Lemma 21, A is also a model of grndC′(Π). But then A = A′ because A (A′ would imply that A′

is not subset-minimal, which contradicts the assumption that it is an answer set of grndC′(Π), thus A = A′.
Because grndC(Π) ⊆ grndC′(Π) and A 6|= B(r) for all r ∈ grndC′(Π) \ grndC(Π) by Lemma 21, we
have fgrndC(Π)A = fgrndC′(Π)A. Because A is a subset-minimal model of grndC′(Π)A, it is a subset-
minimal model of fgrndC(Π)A. Thus, A is an answer set of grndC(Π).

Finally, consider modification (iii). While Algorithm GroundHEXNaive loops for all models of Πpg ,
the optimized algorithm constructs the considered assignments such that the output of the external atoms is
maximized: all monotonic input atoms are set to true, all antimonotonic input atoms to false, and for nonmo-
notonic input atoms all combinations are checked (except facts, which are always true). Every model of Πpg

considered by Algorithm GroundHEX, is contained in some assignment enumerated by Algorithm Ground-
HEXNaive. The output of the external atom wrt. this assignment may be larger, but never smaller. Thus, the
optimized algorithm only produces larger but never smaller groundings wrt. the set of constants. As we have
shown in Lemma 21, this guarantees that the program has the same answer sets.

We also need to show that the algorithm terminates. But this follows from the observation that each
run of the loop at (c) corresponds to a (restricted) application of operator GΠ; while GΠ instantiates rules
whenever their positive body is satisfied by some of the enumerated assignments, our algorithm also respects
the negative part of the rule body, i.e., it is even more restrictive. But by Corollary 5, G∞Π (∅) is finite for
lde-safe programs, thus the grounding produced by our algorithm is finite as well. Therefore the algorithm
terminates. 2

Proof of Theorem 13. The initial set of nodes defined at (a) is the set of all subset-maximal strongly
connected components of the rules of Π wrt.→m ∪ →n. This ensures that the graph is acyclic, that every
rule (including constraints) is contained in exactly one unit, and that unit dependencies are updated according
to the rule dependencies. Thus the initial decomposition forms a generalized evaluation graph.

Loop (b) then iteratively merges two different units, where Condition (a) ensures that the graph remains
acyclic. As the algorithm also updates E according to the rule dependencies, all conditions of a generalized
evaluation graph remain satisfied. 2

Proof of Theorem 14. By definition of the hooks, GroundDESafeHEX behaves like Algorithm Ground-
HEX. 2

We first introduce some lemmas to simplify the proof of Theorem 16.

Lemma 25 If Π is a shy Datalog∃-program then the unique answer set of GroundDESafeHEX(T∃(Π), 0)
is a universal model of Π.

52 INFSYS FB 14-02

Proof. Let A be the unique answer set of Πg and let U = chase(Π) be the universal model computed by
the chase procedure. We first show that there exists a homomorphism from A to U . Then we prove that A
is a model of Π, which concludes the proof that it is a universal model as well.

For a rule r ∈ Π, let rT∃ ∈ T∃(Π) be the according rule in T∃(Π). We stepwise construct an isomorphism
h, beginning with the empty one, and show by induction that the following holds for this isomorphism.
Whenever chase adds an atom a = σ̂(H(r)) to U , then our algorithm adds an o-strengthening r′T∃

of an
instance of rT∃ to the grounding Πg s.t. a = h(H(r′T∃

)) (and h−1(a) = H(r′T∃
)) and such that for the

unique answer set A of Πg it holds that A |= B(r′T∃
) (and thus, as it is an answer set, also A |= H(r′T∃

)).
Suppose some atom p(u, e) is added to U by chase in the n-th iteration of the loop after (c), where u

are the substitutions for universally quantified variables and e the substitutions for existentially quantified
ones.

For n = 0, all (possibly existentially quantified) facts in Π are added to U . Facts without existential
variables are trivially also part of the grounding Πg, thus the proposition holds for any isomorphism, thus
also for h. Facts with existential variables do not contain universal variables (otherwise they would not be
safe), i.e., they are of form r = ∃X : p(X). Then chase adds p(e) for some vector of fresh nulls e toU . Thus
rT∃ = p(X)← &exists0 ,|X|[](X). Since the external atom has no input parameters, the input auxiliary rule

degenerates to fact r&exists0 ,|X|[r,Y](X)
inp () and the algorithm introduces at (f) a rule er,&g[](x)∨ner,&g[](x)←

for a fresh vector of nulls x. Since x is new in Πp and e is new in U , we can easily extend h s.t. h(p(x)) =
p(e) and h−1(p(e)) = p(x).

For n 7→ n+1, suppose there is a firing substitution σ for some r wrt. U and suppose U∪NewAtoms 6|=
σ(H(r)), i.e., chase adds σ̂(H(r)) to NewAtoms and thus toU . Because σ is a firing substitution, σ(B(r)) ⊆
U , i.e., all body atoms of r under σ have been added to U in some earlier iteration. Thus, by induction hypo-
thesis, our algorithms algorithm adds for all b ∈ σ(B(r)) a rule rb with h(H(rb)) = b and H(rb) = h−1(b)
to Πg, s.t. B(rb) and H(rb) are satisfied under the unique answer set of Πg. All ordinary atoms in B(rT∃)
occur also in B(r), thus A satisfies the ordinary atoms in B(rT∃) under substitution h−1 ◦ σ. For existen-
tially quantified variables, rT∃ contains an additional atom &exists[c](X) in the rule body and we show
now that this atom is satisfied by A as well for an appropriate vector c in place of Y some fresh vector
of nulls x in place of X. Because all ordinary atoms in B(rT∃) under substitution h−1 ◦ σ are satisfied
by A, our algorithm will add an o-strengthening of the input auxiliary rule of &exists[r,Y](X) and atom
r

&exists[r,Y](X)
inp (c) will appear inA(Πpg), where c = h−1(u) is the vector of substitutions for the universally

quantified variables in r as defined by h−1 ◦ σ. But then by definition of &exists , &exists[r, c](x) holds for
a vector of nulls x, which is unique for c and r and new in Πp. But then, the algorithm will add a guessing
rule for &exists[c](x) to Πp and subsequently the desired instance r′T∃

with H(r′T∃
) = p(c,x) will appear

in Πg. Because x is new in Πp and e is new in U , h does not define any mapping for them so far, thus we
can easily extend h s.t. h−1(p(u, e)) = p(c,x) and p(u, e) = h(p(c,x)).

This shows that for any atom a = σ̂(H(r)) added to U , our algorithm adds an according rule to Πg.
Conversely, the algorithm may add additional rules to Πg. However, their bodies remain unsatisfied by
A because otherwise chase(Π, 0) would have identified firing substitutions and added the respective rule
heads. Thus, the additional rules do not hurt.

Moreover, the definition of &exists correctly models the semantics of the existential quantifier. Thus, A
is also a model of Π. Since we have defined a homomorphism from A to U , we have shown that A is also a
universal model of Π. 2

Lemma 26 If Π is a shy Datalog∃-program, then GroundDatalog∃(Π,∞) yields the same (possibly infini-
te) program Πg as GroundDESafeHEX(T∃(Π)).

INFSYS FB 14-02 53

Proof. Resetting PIT to ∅ at the beginning of each iteration of the loop at (b) has the same effect as disabling
the homomorphism check. 2

Lemma 27 If Π is a shy Datalog∃-program and Πg = GroundDatalog∃(Π, k), then the unique answer
set of Πg is complete for conjunctive query answering with queries with up to k existentially quantified
variables.

Proof. Resetting PIT to ∅ after every iteration of the main loop at (b) behaves like freezing of nulls as
by [33] and the loop at (b) runs k + 1 times. Thus, the lemma follows from Lemma 4.10 by [33]. 2

Lemma 28 Algorithm GroundDatalog∃(Π, k) terminates.

Proof. Since all newly introduced values are null values, the loop at (f) introduces only finitly many new
values because all remaining vectors y will eventually become homomorphic to some previously processed
input vector. Thus each iteration of the loop at (c) terminates. As k is finite, also the loop at (b) terminates.
2

We are now ready to prove our main result on Shy-programs in Theorem 16.

Proof of Theorem 16. Soundness of the algorithm follows from Lemmas 25 and 26 (GroundDatalog∃(Π, k)
yields a subset of a universal model of Π), in combination with Proposition 2.4 by [33]. Completeness fol-
lows from Lemma 27. Termination follows from Lemma 28. 2

Proof of Proposition 17. Suppose Π is strongly safe. We show that for any attribute α of Π, we have
a ∈ Sn(Π) for some n ≥ 0, i.e., a is domain-expansion safe.

Let a be an attribute of Π and let j be the number of malign cycles wrt. ∅ in GA(Π) from which a is
reachable. We prove by induction that if a is reachable from j ≥ 0 malign cycles wrt. ∅ in GA(Π), then a is
domain-expansion safe.

If j = 0 we make a case distinction. Case 1: if a is of form p�i, then there is no information flow
from a malign cycle wrt. ∅ to p�i. Therefore, for every rule r with p(t1, . . . , t`) ∈ H(r) we have that
ti ∈ Bn+1(r,Π, bsynsem) for all n ≥ 0 due to Condition (i) in Definition 14. But then p�i is domain-
expansion safe.

Case 2: if a is of form &g [Y]r�Ii, then for every Yi ∈ Y with type(&g , i) = const we have Yi ∈
Bn+1(r,Π, bsynsem) due to Condition (i) in Definition 14, and for every predicate pi ∈ Y with type(&g , i) =
pred we have that pi�j is domain-expansion safe for every 1 ≤ j ≤ ar(pi) by Case 1; note that pi�j is
not reachable from any malign cycle wrt. ∅ because this would by transitivity of reachability mean that also
&g [Y]r�Ii is reachable from such a cycle, which contradicts our assumption. But then also &g [Y]r�Ii is
domain-expansion safe by Definition 8.

Case 3: if a is of form &g [Y]r�Oi, then no &g [Y]r�Ij for 1 ≤ j ≤ ar I(&g) is reachable from a malign
cycle wrt. ∅, because then also &g [Y]r�Oi would be reachable from such a cycle. But then by Definition 8,
&g [Y]r�Oi is domain-expansion safe. Hence, attributes of any kind, which are not reachable from malign
cycles wrt. ∅, are domain-expansion safe.

Induction step j 7→ j + 1: If a is reachable from j + 1 malign cycles wrt. ∅, then there is an attribute
α′ in such a cycle C from which a is reachable. The malign cycle C wrt. ∅ contains an attribute of kind
&g [Y]r�Oi, corresponding to an external atom &g [Y](X) in rule r. Since &g [Y]r�Oi is cyclic in GA(Π),
&g [Y](X) is cyclic in ADG(Π). Then by strong safety of Π, each variable in Y occurs in a body atom
p(t1, . . . , t`) ∈ B+(r) which is not part of C, i.e., it is captured by p�k for some 1 ≤ k ≤ ar(p). But since

54 INFSYS FB 14-02

p(t1, . . . , t`) is not part of the cycle C in ADG(Π), also p�k is not part of it. Therefore p�k is reachable
from (at least) one malign cycle wrt. ∅ less than a, i.e., it is reachable from at most j malign cycles. Thus
p�k is domain-expansion safe by induction hypothesis. But then by Condition (ii) in Definition 9, also a is
domain-expansion safe. 2

Proof of Proposition 18. We first reformulate the definitions of blocking and savior attributes in an induc-
tive way, which is possible because criteria are monotonic.

Blocking:

• blocked0(r) = ∅ for all r ∈ Π

• blockedn+1(r) =
{
p�i | p�i is dangerous in r and p�i captures X in r and

for every &g [Y](X) with X ∈ X,
for every Y ∈ Y there is a body atom
q(t1, . . . , t`) such that X = ti
for some 1 ≤ i ≤ ar(q) and q�i ∈ saviorn

}
,

for all n ≥ 0

• blocked∞(r) =
⋃

n≥0 blockedn(r)

Savior attributes:

• savior0 = ∅

• saviorn+1 =
{
p�i | for all r ∈ Π with p(t1, . . . , t`) ∈ H(r), either

ti is a constant; or
ti is captured by some q�j ∈ saviorn in B+(r); or
p�i ∈ blockedn(r)

}
,

for all n ≥ 0

• savior∞ =
⋃

n≥0 saviorn

We show now by induction on n for all n ≥ 0:

• If p�i ∈ blockedn(r) and p�i captures X in r, then X ∈ Bn(r,Π, S, bsynsem).

• If p�i ∈ saviorn for some n ≥ 0, then p�i ∈ Sn(Π).

For n = 0 this is trivial.
For the induction step n 7→ n + 1, suppose p�i ∈ blockedn+1(r). Then p�i is dangerous and captu-

res some X in r. For every &g [Y](X) with X ∈ X and for every variable Y ∈ Y there is a body atom
q(t1, . . . , t`) such that X = tj for some 1 ≤ j ≤ ar(q) and q�j ∈ saviorn Then, by the induction hypothe-
sis, q�j is domain-expansion safe. But then by Condition (ii) in Definition 9 all input variables Y ∈ Y are
declared bounded in the first step, i.e., Y ∈ Bn+1,1(r,Π, bsynsem). Then by Condition (iii) in Definition 9
also all output variables X ∈ X are declared bounded in the second step, i.e., X ∈ Bn+1,2(r,Π, bsynsem).
Thus we have X ∈ Bn+1(r,Π, Sn(Π), bsynsem).

Now suppose p�i in saviorn+1. Then we have for all r ∈ Π with p(t1, . . . , t`) ∈ H(r) that

(i) ti is a constant; or

INFSYS FB 14-02 55

(ii) ti is captured by some q�j ∈ saviorn in B+(r); or

(iii) p�i ∈ blockedn(r).

In Case (i), ti ∈ Bn+1(r,Π, Sn(Π), bsynsem) by Condition (i) in Definition 9. In Case (ii), q�j is domain-
expansion safe by the induction hypothesis and thus ti is declared bounded by Condition (ii) in Definition 9.
In Case (iii), it holds that ti ∈ Bn+1(r,Π, S, bsynsem) as shown above.

This shows that all dangerous (but blocked) attributes are domain-expansion safe. It remains to show that
also all non-dangerous attributes are lde-safe. Let a be such an attribute. If it occurs in a cycle inGA(Π), then
it occurs also in a cycle in GĀ(Π) because in this graph nodes from GA(Π) may be merged, i.e., the graph
is less fine-grained. If it is of type p�i, then it is dangerous and we already know that it is domain-expansion
safe. Otherwise it is an external input attribute of form &g [X]r�Ii or an output attribute of form &g [X]r�Oi.
If it is an input attribute, then we know that its cyclic input depends (possibly transitively) on domain-
expansion safe ordinary attributes. As the output attributes of external atoms become domain-expansion
safe as soon as the input becomes domain-expansion safe by Definition 8, domain-expansion safety will be
propagated by Condition (iii) in Definition 9 along the cycle, beginning at the ordinary predicates, i.e., the
input parameter will be declared domain-expansion safe after finitely many steps (since the cycle is of finite
length). This shows that all attributes in cycles in GA(Π) are domain-expansion safe.

As all attributes in cycles are domain-expansion safe, the remaining attributes (attributes which depend
on a cycle but are not in a cycle) will also be declared domain-expansion safe after finitely many steps by
Definition 8. 2

Proof of Proposition 19. By Theorem 7 by [8] F (Π) is VI-restricted, and thus by Proposition 18 it is also
lde-safe using bsynsem(Π, r, S,B). 2

