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Abstract. Today’s SAT solvers have an enormous importance and impact in many
practical settings. They are used as efficient back-end to solve many NP-complete
problems. However, many computational problems are located at the second level of
the Polynomial Hierarchy or even higher, and hence polynomial-time transformations
to SAT are not possible, unless the hierarchy collapses. In certain cases one can break
through these complexity barriers by fixed-parameter tractable (fpt) reductions which
exploit structural aspects of problem instances in terms of problem parameters. Recent
research established a general theoretical framework that supports the classification
of parameterized problems on whether they admit such an fpt-reduction to SAT or
not. We use this framework to analyze some problems that are related to Boolean
satisfiability. We consider several natural parameterizations of these problems, and
we identify for which of these an fpt-reduction to SAT is possible. The problems that
we look at are related to minimizing an implicant of a DNF formula, minimizing a
DNF formula, and satisfiability of quantified Boolean formulas.
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1 Introduction

Modern SAT solvers have an enormous importance and impact in many practical settings that
require solutions to NP-complete problems. In fact, due to the success of SAT, NP-complete
problems have lost their scariness, as in many cases one can efficiently encode NP-complete
problems to SAT and solve them by means of a SAT solver [8, 21, 32, 39]. However,
many important computational problems are located above the first level of the Polynomial
Hierarchy (PH) and thus considered significantly “harder” than SAT. Hence we cannot hope
for polynomial-time reductions from these problems to SAT, as such transformations would
cause the (unexpected) collapse of the PH.

Realistic problem instances are not random and often contain some kind of structure.
Recent research succeeded to exploit such structure to break the complexity barriers between
levels of the PH [16, 37]. The idea is to exploit problem structure in terms of a problem
parameter, and to develop reductions to SAT that can be computed efficiently as long as the
problem parameter is reasonably small. The theory of parameterized complexity [13, 18, 34]
provides exactly the right type of reduction suitable for this purpose, called fixed-parameter
tractable reductions, or fpt-reductions for short. Now, for a suitable choice of the parameter,
one can aim at developing fpt-reductions from the hard problem under consideration to SAT.

Such positive results go significantly beyond the state-of-the-art of current research in
parameterized complexity. By shifting the scope from fixed-parameter tractability to fpt-
reducibility (to SAT), parameters can be less restrictive and hence larger classes of inputs
can be processed efficiently. Therefore, the potential for positive tractability results is greatly
enlarged. In fact, there are some known reductions that, in retrospect, can be seen as
fpt-reductions to SAT. A prominent example is Bounded Model Checking [6, 7], which can
be seen as an fpt-reduction from the model checking problem for linear temporal logic (LTL),
which is PSPACE-complete, to SAT, where the parameter is an upper bound on the size of a
counterexample.

Recently, extending the work of Flum and Grohe [17], we initiated the development of a
general theoretical framework to support the classification of hard problems on whether they
admit an fpt-reduction to SAT or not [25]. This framework provides a hardness theory that
can be used to provide evidence that certain problems do not admit an fpt-reduction to SAT,
similar to NP-hardness which provides evidence against polynomial-time tractability [19]
and W[1]-hardness which provides evidence against fixed-parameter tractability [13]. For an
overview of the parameterized complexity classes in this framework and the relation between
them, see Figure 1.

New Contributions We use this new framework to analyze problems related to Boolean
satisfiability. We focus on problems that are located at the second level of the PH, i.e.,
problems complete for Σp

2 . This initiates a structured investigation of fpt-reducibility to SAT
of problems related to Boolean satisfiability that are “beyond NP.” Concretely, we look at
the following problems, consider several parameterizations of these problems, and identify for
which of these parameterized problems an fpt-reduction to SAT is possible and for which this
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is not possible:

• minimizing an implicant of a formula in disjunctive normal form (DNF) (parameter-
izations: the size of the minimized implicant, and the difference in size between the
original and the minimized implicant);

• minimizing a DNF formula (parameterizations: the size of the minimized formula, and
the difference in size between the original and the minimized formula); and

• the satisfiability problem of quantified Boolean formulas (QBFs) (parameterizations:
the treewidth of the incidence graph of the formula restricted to several subsets of
variables).

In particular, we show that minimizing an implicant of a DNF formula does not become
significantly easier when the minimized implicant is small (Proposition 2), nor when the
difference in size between the original and the minimized implicant is small (Proposition 3).
The problem of reducing a DNF formula in size (while preserving logical equivalence) also
does not become significantly easier when the difference in size is small (Proposition 4).
However, the problem of reducing a DNF formula to an equivalent DNF formula that is small
can be done with a small number of SAT calls (Theorem 9). Moreover, we show that deciding
satisfiability of a quantified Boolean formula with one quantifier alternation can be reduced
to a single SAT instance if the variables in the second quantifier block interact with each
other in a tree-like fashion (Theorem 11), whereas a similar restriction on the variables in the
first quantifier block does not make the problem any easier (Proposition 10).

Related work Many of the decision problems analyzed in this paper have been studied
before in a classical complexity setting [20, 42, 44]. The logic minimization problems that we
consider in this paper have been studied since the 1950s (cf. [44]). The problem of minimizing
an implicant of a DNF formula plays a central role in the analysis of logic minimization
problems [44]. Variants of the minimization problems that we consider, where a subset-
minimal solution is sought, are often solved by calling SAT solvers as subroutines. One
example of such work is related to identifying minimal unsatisfiable subsets (MUSes) of a
CNF formula [3, 24, 33]. Recent work on MUS extraction indicates that reducing the number
of SAT calls made in these algorithms is beneficial for the practical performance of these
algorithms [33]. Decision procedures using SAT solvers as a subroutine have also been used
to solve problems that lie at the second level of the PH, e.g., problems related to abstract
argumentation [15].

2 Preliminaries

Propositional Logic and Quantified Boolean Formulas A literal is a propositional
variable x or a negated variable ¬x. The complement x of a positive literal x is ¬x, and the
complement ¬x of a negative literal ¬x is x. For literals l ∈ {x,¬x}, we let Var(l) = x denote
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the variable occurring in l. A clause is a finite set of literals, not containing a complementary
pair x, ¬x, and is interpreted as the disjunction of these literals. A term is a finite set of
literals, not containing a complementary pair x, ¬x, and is interpreted as the conjunction
of these literals. We let > denote the empty clause. A formula in conjunctive normal form
(CNF) is a finite set of clauses, interpreted as the conjunction of these clauses. A formula
in disjunctive normal form (DNF) is a finite set of terms, interpreted as the disjunction
of these terms. We say that a DNF formula ϕ is a term-wise subformula of another DNF
formula ϕ′ if for all terms t ∈ ϕ there exists a term t′ ∈ ϕ′ such that t ⊆ t′. We define the
size ||ϕ|| of a DNF formula ϕ to be

∑
t∈ϕ |t|; the number of terms of ϕ is denoted by |ϕ|. For

a DNF formula ϕ, the set Var(ϕ) denotes the set of all variables x such that some term of ϕ
contains x or ¬x. We use the standard notion of (truth) assignments α : Var(ϕ)→ {0, 1} for
Boolean formulas and truth of a formula under such an assignment. We denote the problem
of deciding whether a propositional formula ϕ is satisfiable by Sat, and the problem of
deciding whether ϕ is not satisfiable by Unsat. Let ϕ be a DNF formula. We say that
a set C of literals is an implicant of ϕ if all assignments that satisfy

∧
l∈C l also satisfy ϕ.

Let γ = {x1 7→ d1, . . . , xn 7→ dn} be a function that maps some variables of a formula ϕ to
other variables or to truth values. We let ϕ[γ] denote the application of such a substitution γ
to the formula ϕ. We also write ϕ[x1 7→ d1, . . . , xn 7→ dn] to denote ϕ[γ].

A (prenex) quantified Boolean formula (QBF) is a formula of the form
Q1X1Q2X2 . . . QmXmψ, where each Qi is either ∀ or ∃, the Xi are disjoint sets of propositional
variables, and ψ is a Boolean formula over the variables in

⋃m
i=1Xi. We call ψ the matrix of

the formula. Truth of such formulas is defined in the usual way. We say that a QBF is in
QDNF if the matrix is in DNF. For the remainder of this paper, we will restrict our attention
to QDNF formulas. Consider the following decision problem.

∃∀-Sat
Instance: A QDNF ϕ = ∃X.∀Y.ψ, where ψ is quantifier-free.
Question: Is ϕ satisfiable?

The complexity class consisting of all problems that are polynomial-time reducible to ∃∀-Sat
is denoted by Σp

2, and its co-class is denoted by Πp
2. These classes form the second level of

the PH [36].

Parameterized Complexity We introduce some core notions from parameterized complex-
ity theory. For an in-depth treatment we refer to other sources [13, 18, 34]. A parameterized
problem L is a subset of Σ∗ × N for some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N,
we call I the main part and k the parameter. The following generalization of polynomial
time computability is commonly regarded as the tractability notion of parameterized com-
plexity theory. A parameterized problem L is fixed-parameter tractable if there exists a
computable function f and a constant c such that there exists an algorithm that decides
whether (I, k) ∈ L in time O(f(k)||I||c), where ||I|| denotes the size of I. Such an algorithm is
called an fpt-algorithm, and this amount of time is called fpt-time. FPT is the class of all
fixed-parameter tractable decision problems. If the parameter is constant, then fpt-algorithms
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run in polynomial time where the order of the polynomial is independent of the parameter.
This provides a good scalability in the parameter in contrast to running times of the form
||I||k, which are also polynomial for fixed k, but are already impractical for, say, k > 3. By
XP we denote the class of all problems L for which it can be decided whether (I, k) ∈ L in
time O(||I||f(k)), for some fixed computable function f .

Parameterized complexity also generalizes the notion of polynomial-time reductions.
Let L ⊆ Σ∗ × N and L′ ⊆ (Σ′)∗ × N be two parameterized problems. A (many-one) fpt-
reduction from L to L′ is a mapping R : Σ∗ × N → (Σ′)∗ × N from instances of L to
instances of L′ such that there exist some computable function g : N → N such that for
all (I, k) ∈ Σ∗ × N: (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a
yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is computable in fpt-time. Similarly, we call
reductions that satisfy properties (i) and (ii) but that are computable in time O(||I||f(k)), for
some fixed computable function f , xp-reductions.

Let C be a classical complexity class, e.g., NP. The parameterized complexity class
para-C is then defined as the class of all parameterized problems L ⊆ Σ∗ ×N, for some finite
alphabet Σ, for which there exist an alphabet Π, a computable function f : N → Π∗, and
a problem P ⊆ Σ∗ × Π∗ such that P ∈ C and for all instances (x, k) ∈ Σ∗ × N of L we
have that (x, k) ∈ L if and only if (x, f(k)) ∈ P . Intuitively, the class para-C consists of all
problems that are in C after a precomputation that only involves the parameter [17].

3 Fpt-Reductions to SAT

Problems in NP and co-NP can be encoded into SAT in such a way that the time required
to produce the encoding and consequently also the size of the resulting SAT instance are
polynomial in the input (the encoding is a polynomial-time many-one reduction). Typically,
the SAT encodings of problems proposed for practical use are of this kind (cf. [38]). For
problems that are “beyond NP,” say for problems on the second level of the PH, such
polynomial SAT encodings do not exist, unless the PH collapses. However, for such problems,
there still could exist SAT encodings which can be produced in fpt-time in terms of some
parameter associated with the problem. In fact, such fpt-time SAT encodings have been
obtained for various problems on the second level of the PH [16, 25, 37]. The classes para-NP
and para-co-NP contain exactly those parameterized problems that admit such a many-one
fpt-reduction to Sat and Unsat, respectively. Thus, with fpt-time encodings, one can go
significantly beyond what is possible by conventional polynomial-time SAT encodings.

Consider the following example. The problem of deciding satisfiability of a QBF does
not allow a polynomial-time SAT encoding. However, if the number of universal variables is
small, one can use known methods in QBF solving to get an fpt-time encoding into SAT.

QBF-Sat(# ∀-vars)
Instance: A QBF ϕ.
Parameter: The number of universally quantified variables of ϕ.
Question: Is ϕ true?
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The idea behind this encoding is to repeatedly use universal quantifier expansion [2, 5].
Eliminating k many universally quantified variables in this manner leads to an existentially
quantified formula that is at most a factor of 2k larger than the original formula.

Fpt-time encodings to SAT also have their limits. Clearly, para-Σp
2-hard and para-Πp

2-hard
parameterized problems do not admit fpt-time encodings to SAT, even when the parameter
is a constant, unless the PH collapses. There are problems that apparently do not admit
fpt-time encodings to SAT, but are neither para-Σp

2-hard nor para-Πp
2-hard. In recent work

[25] we have introduced several complexity classes for such intermediate problems, including
the following. The parameterized complexity class ∃k∀∗ consists of all parameterized problems
that can be many-one fpt-reduced to the following variant of quantified Boolean satisfiability
that is based on truth assignments of restricted weight.

∃k∀∗-WSat
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such that for
all truth assignments β to Y the assignment α ∪ β satisfies ψ?

For each problem in ∃k∀∗ there exists an xp-reduction to Unsat. However, there is evidence
that problems that are hard for ∃k∀∗ do not allow a many-one fpt-reduction to Sat [25].
Many natural parameterized problems from various domains are complete for the class ∃k∀∗,
and for none of them an fpt-reduction to Sat or Unsat has been found. If there exists an
fpt-reduction to Sat for any ∃k∀∗-complete problem then this is the case for all ∃k∀∗-complete
problems. The dual complexity class of ∃k∀∗ is denoted by ∀k∃∗, and has similar (yet dual)
properties. Note that the notion of reducibility underlying hardness for all parameterized
complexity classes mentioned above is that of many-one fpt-reductions. For a more detailed
discussion on the complexity classes ∃k∀∗ and ∀k∃∗, we refer to previous work [25].

One can also enhance the power of polynomial-time SAT encodings by considering
polynomial-time algorithms that can query a SAT solver multiple times. Such an approach
has been shown to be quite effective in practice (see, e.g., [3, 15, 33]) and extends the scope
of SAT solvers to problems in the class ∆p

2 , but not to problems that are Σp
2-hard or Πp

2-hard.
Also here, switching from polynomial-time to fpt-time provides a significant increase in power.
The class para-∆p

2 contains all parameterized problems that can be solved by an fpt-algorithm
that can query a SAT solver multiple times (i.e., by an fpt-time Turing reduction to SAT).
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para-Σp
2 para-Πp

2

para-NP para-co-NP

para-∆p
2

FPTNP[f(k)]

para-DP

∃k∀∗ ∀k∃∗

W[1] co-W[1]

FPT = para-P

Figure 1: Parameterized complexity classes up to the second level of the polynomial hierarchy.
Arrows indicate inclusion relations. (We omit the full definition of some of the parameterized
complexity classes depicted in the figure. For a detailed definition of these, we refer to other sources
[13, 18, 36].)

An overview of all relevant parameterized complexity classes can be found in Figure 1.
Locating problems in the complexity landscape as laid out in this figure can provide a
guideline for practitioners, to indicate what algorithmic approaches are possible and where
complexity theoretic obstacles lie.

There are two fundamental aspects that are relevant for an algorithm that makes queries
to a SAT solver: (i) the running time of the algorithm (which does not take into account
the time needed by the SAT solver to answer the queries) and (ii) the number of SAT calls.
Results from classical bounded query complexity [26, 45] suggests that if the running time is
polynomial, then increasing the numbers of SAT calls increases the computing power. Several
such separation results are known [12, 31]. From a practical point of view, the number of
SAT calls may seem to be relatively insignificant, assuming that the queries are easy for the
solver, and the solver can reuse information from previous calls [4, 27, 46]. For a theoretical
worst-case model, however, one must assume that all queries involve hard SAT instances, and
that no information from previous calls can be reused. Therefore, in a theoretical analysis,
it makes sense to study the number of SAT calls made by fpt-time algorithms. In the
parameterized setting, it is natural to bound the number of SAT calls by a function of the
parameter. This yields the class FPTNP[f(k)], which lies between para-DP (two calls) and
para-∆p

2 (unrestricted number of calls).
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4 Minimization Problems for DNF Formulas

We consider several problems related to minimizing implicants of DNF formulas and min-
imizing DNF formulas. We consider several parameterizations, and we show that some of
these allow an fpt-reduction to SAT, whereas others apparently do not.

The following decision problem, that is concerned with reducing a given implicant of a
DNF formula in size, is Σp

2-complete [44].

Shortest-Implicant-Core
Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer m.
Question: Does there exist an implicant C ′ ⊆ C of ϕ of size m?

We consider two parameterizations of this problem: (1) Shortest-Implicant-
Core(core size), where the parameter k = m is the size of the minimized implicant, and
(2) Shortest-Implicant-Core(reduction size), where the parameter k = n − m is the
difference in size between the original implicant and the minimized implicant. We show
that neither of these restrictions is enough to admit an fpt-reduction to SAT. All results
can straightforwardly be extended to the variant of the problem where implicants of size at
most m are accepted.

Next, consider the following decision problem, that is concerned with deciding whether
a given DNF formula ϕ is logically equivalent to a DNF formula ϕ′ of size m, and that is
Σp

2-complete [44].

DNF-Minimization
Instance: A DNF formula ϕ of size n, and an integer m.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size m such that ϕ ≡ ϕ′?

We consider the following two parameterizations of this problem: (1) DNF-
Minimization(reduction size), where the parameter k = n − m is the difference in
size between the original formula ϕ and the minimized formula ϕ′, and (2) DNF-
Minimization(core size), where the parameter k = m is the size of the minimized for-
mula ϕ′. We show that the former parameterization is not enough to allow an fpt-reduction to
SAT, but that for the latter parameterization, the problem can be solved with an fpt-algorithm
that uses at most dlog2 ke + 1 many SAT calls. Moreover, this algorithm works even for
the case where equivalent DNF formulas that are not term-wise subformulas of ϕ are also
accepted.

We will now set out to prove the complexity results mentioned in the discussion above.
In order to prove ∃k∀∗-hardness of Shortest-Implicant-Core(core size), we need the
following technical lemma (we omit its straightforward proof).

Lemma 1. Let (ϕ, k) be an instance of ∃k∀∗-WSat. In polynomial time, we can construct an
equivalent instance (ϕ′, k) of ∃k∀∗-WSat with ϕ′ = ∃X.∀Y.ψ, such that for every assignment
α : X → {0, 1} that has weight m 6= k, it holds that ∀Y.ψ[α] is true.

Proposition 2. Shortest-Implicant-Core(core size) is ∃k∀∗-complete.
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Proof (sketch). To show hardness, we give a many-one fpt-reduction from ∃k∀∗-WSat(DNF)
to Shortest-Implicant-Core(core size). Intuitively, the choice for some C ′ ⊆ C with
|C ′| = k corresponds directly to the choice of some assignment α : X → {0, 1} of weight k.
Both involve a choice between

(
n
k

)
many candidates, and in both cases verifying whether

the chosen candidate witnesses that the instance is a yes-instance involves solving a co-NP-
complete problem. Any implicant C ′ forces those variables x that are included in C ′ to be set
to true (and the other variables are not forced to take any truth value). However, by Lemma 1,
any assignment that sets more than k variables x to true will trivially satisfy ψ. Therefore,
the only relevant assignment is the assignment that sets only those x to true that are forced
to be true by some C ′ of length k, and hence the choice for such a C ′ corresponds exactly
to the choice for some assignment α of weight k. To verify whether some C ′ of length k is
an implicant of the formula ϕ is equivalent to checking whether the formula

∧
c∈C′ c ∧ ϕ is

valid, which in turn is equivalent to checking whether a formula ∀Y.ψ[α] is true, for some
assignment α.

Let (ϕ, k) be an instance of ∃k∀∗-WSat(DNF), with ϕ = ∃X.∀Y.ψ. By Lemma 1, we may
assume without loss of generality that for any assignment α : X → {0, 1} of weight m 6= k,
∀Y.ψ[α] is true. We may also assume without loss of generality that |X| > k; if this were
not the case, (ϕ, k) would trivially be a no-instance. We construct an instance (ϕ′, C, k) of
Shortest-Implicant-Core(core size) by letting Var(ϕ′) = X∪Y , C =

∧
x∈X x, and ϕ′ = ψ.

Clearly, ϕ′ is a Boolean formula in DNF. Also, consider the assignment α : X → {0, 1}
where α(x) = 1 for all x ∈ X. We know that ∀Y.ψ[α] is true, since α has weight more than k.
Therefore C is an implicant of ϕ′. We omit a detailed proof of correctness for this reduction.

To show membership in ∃k∀∗, we give a many-one fpt-reduction from Shortest-
Implicant-Core(core size) to ∃k∀∗-WSat. This reduction uses exactly the same simi-
larity between the two problems, i.e., the fact that assignments of weight k correspond
exactly to implicants of length k, and that verifying whether this choice witnesses that the
instance is a yes-instance in both cases involves checking validity of a propositional formula.
We describe the reduction, and omit a detailed proof of correctness. Let (ϕ,C, k) be an
instance of Shortest-Implicant-Core(core size), where C = {c1, . . . , cn}. We construct
an instance (ϕ′, k) of ∃k∀∗-WSat, where ϕ′ = ∃X.∀Y.ψ, by defining X = {x1, . . . , xn}, Y =
Var(ϕ), ψ = ψX,Ycorr → ϕ, and ψX,Ycorr =

∧
1≤i≤n(xi → ci).

Proposition 3. Shortest-Implicant-Core(reduction size) is ∃k∀∗-complete.

Proof (sketch). As an auxiliary problem, we consider the parameterized problem
∃n−k∀∗-WSat, which is a variant of ∃k∀∗-WSat. Given an input consisting of a QDNF ϕ =
∃X.∀Y.ψ with |X| = n and an integer k, the problem is to decide whether there exists an
assignment α to X with weight n − k such that ∀Y.ψ[α] is true. The parameter for this
problem is k. We claim that this problem has the following properties. We omit a proof of
these claims.

Claim 1. ∃n−k∀∗-WSat is ∃k∀∗-complete.

Claim 2. Let (ϕ, k) be an instance of ∃n−k∀∗-WSat. In polynomial time, we can construct an
equivalent instance (ϕ′, k) of ∃n−k∀∗-WSat with ϕ′ = ∃X.∀Y.ψ, such that for any assignment
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α : X → {0, 1} that has weight m 6= (|X| − k), it holds that ∀Y.ψ[α] is true.

Using these claims, both membership and hardness for ∃k∀∗ follow straightforwardly using
arguments similar to the ∃k∀∗-completeness proof of Shortest-Implicant-Core(core size).
The fpt-reductions in the proof of Proposition 2 show that Shortest-Implicant-
Core(reduction size) fpt-reduces to and from ∃n−k∀∗-WSat.

We can now turn to proving complexity results for the problems of minimizing DNF formulas.

Proposition 4. DNF-Minimization(reduction size) is ∃k∀∗-complete.

Proof (sketch). To show ∃k∀∗-hardness, we use the reduction from the literature that is used
to show Σp

2-hardness of the unparameterized version of DNF-Minimization(reduction size).
The polynomial-time reduction from the unparameterized version of Shortest-Implicant-
Core(reduction size) to the unparameterized version of DNF-Minimization(reduction size)
given by Umans [44, Theorem 2.2] is an fpt-reduction from Shortest-Implicant-
Core(reduction size) to DNF-Minimization(reduction size).

To show membership in ∃k∀∗, one can give an fpt-reduction to ∃k∀∗-WSat. We describe
the main idea behind this reduction, and we omit a detailed proof. Given an instance (ϕ, k) of
DNF-Minimization(reduction size) we construct an instance (ϕ′, k) of ∃k∀∗-WSat where
the assignment to the existentially quantified variables of ϕ′ represents the k many literal
occurrences that are to be removed, and where universally quantified part of ϕ′ is used to
verify the equivalence of ϕ and the formula obtained from ϕ by removing the k literals chosen
by the assignment to the existential variables.

The following result, which we give without proof, gives some first upper and lower bounds
on the complexity of DNF-Minimization(core size).

Proposition 5. DNF-Minimization(core size) is para-co-NP-hard and is in ∃k∀∗.

Next, we turn our attention to an fpt-algorithm that solves DNF-Minimization(core size)
by using f(k) many SAT calls, for some computable function f . In order to so, we will define
the notion of relevant variables, and establish several lemmas that help us to describe and
analyze the algorithm (the first of which we state without proof).

Let ϕ be a DNF formula and let x ∈ Var(ϕ) be a variable occurring in ϕ. We call x
relevant in ϕ if there exists some assignment α : Var(ϕ)\{x} → {0, 1} such that ϕ[α ∪ {x 7→
0}] 6= ϕ[α ∪ {x 7→ 1}].

Lemma 6. Let ϕ be a DNF formula and let ϕ′ be a DNF formula of minimal size that it is
equivalent to ϕ. Then for every variable x ∈ Var(ϕ) it holds that x ∈ Var(ϕ′) if and only if x
is relevant in ϕ.

Lemma 7. Given a DNF formula ϕ and a positive integer m (given in unary), deciding
whether there are at least m variables that are relevant in ϕ is in NP.
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Proof. We describe a guess-and-check algorithm that decides the problem. The algorithm
first guesses m distinct variables occurring in ϕ, and for each guessed variable x the algorithm
guesses an assignment αx to the remaining variables Var(ϕ)\{x}. Then, the algorithm verifies
whether the guessed variables are really relevant by checking that, under αx, assigning different
values to x changes the outcome of the Boolean function represented by ϕ, i.e., ϕ[αx ∪ {x 7→
0}] 6= ϕ[αx ∪ {x 7→ 1}]. It is straightforward to construct a SAT instance ψ that implements
this guess-and-check procedure. Moreover, from any assignment that satisfies ψ it is easy to
extract the relevant variables.

Lemma 8. Let x1, . . . , xk be propositional variables. There are 2O(k log k) many different DNF
formulas ψ over the variables x1, . . . , xk that are of size k.

Proof. Each suitable DNF formula ψ = t1 ∨ · · · ∨ t` can be formed by writing down a
sequence σ = (l1, . . . , lk) of literals li over x1, . . . , xk, and splitting this sequence into terms,
i.e., choosing integers 1 = d1 < · · · < d`+1 = k + 1 such that ti = {ldi , . . . , ldi+1−1} for
each 1 ≤ i ≤ `. To see that there are 2O(k log k) many formulas ψ, it suffices to see that there
are O(kk) many sequences σ, and O(2k) many choices for the integers di.

Theorem 9. DNF-Minimization(core size) can be solved by an fpt-algorithm that
uses (dlog2 ke+ 1) many SAT calls, where the SAT solver returns a model for satisfiable for-
mulas. Moreover, the first dlog2 ke many calls to the solver use SAT instances of size O(k2n2),
whereas the last call uses a SAT instance of size 2O(k log k) · n, where n is the input size.

Proof. The algorithm given in pseudo-code in Algorithm 1 solves the problem DNF-
Minimization(core size) in the required time bounds. To obtain the required running
time, we assume that each call to a SAT solver takes only a single time step. By Lemma 6,
we know that any minimal equivalent formula of ϕ must contain all and only the variables
that are relevant in ϕ. The algorithm firstly determines how many variables are relevant in ϕ.
By Lemma 7, we know that this can be done with a binary search using dlog2 ke SAT calls.
If there are more than k relevant variables, the algorithm rejects. Otherwise, the algorithm
will have computed the set rvars of relevant variables. Next, with a single SAT call, it checks
whether there exists some DNF formula ψ of size k over the variables in rvars. By Lemma 8,
we know that there are 2O(k log k) many different DNF formulas ψ of size k over the variables
in rvars. Verifying whether a particular DNF formula ψ is equivalent to the original formula ϕ
can be done by checking whether the formula ϕψ = (ψ ∧ ¬ϕ) ∨ (¬ψ ∧ ϕ) is unsatisfiable.
Verifying whether there exists some suitable DNF formula ψ that is equivalent to ϕ can be
done by making variable-disjoint copies of all ϕψ and checking whether the conjunction of
these copies is unsatisfiable.

Note that the algorithm requires that the SAT solver returns a model if the query is
satisfiable. Also, the algorithm can be modified straightforwardly to return a DNF formula ψ
of size at most k that is equivalent to an input ϕ if such a formula ψ exists. It would need
to search for this ψ that is equivalent to ϕ, for which it would need an additional O(k log k)
many SAT calls (with instances of size 2O(k log k) · ||ϕ||).
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Algorithm 1: Solving DNF-Minimization(core size) in fpt-time using (dlog2 ke+ 1)
many SAT calls.

input : an instance (ϕ, k) of DNF-Minimization(core size)
output : YES iff (ϕ, k) ∈ DNF-Minimization(core size)

rvars ← ∅ ; // variables relevant in ϕ
i← 0; j ← k + 2 ; // bounds on # of rvars

while i+ 1 < j do // logarithmic search for the # of rvars

`← d(i+ j)/2e ;
query the SAT solver whether there exist at least ` variables

that are relevant in ϕ ; // for idea behind encoding, see Lemma 7

if the SAT solver returns a model M then
rvars← the ` many relevant variables encoded by the model M ;

else break;

if |rvars| > k then
return NO ; // too many rvars for any DNF of size ≤ k

else
foreach DNF formula ψ of size k over var’s in rvars do // 2O(k log k) many

construct a formula ϕψ that is unsatisfiable iff ψ ≡ ϕ;
// the formulas ϕψ must be variable disjoint

query the SAT solver whether
∧
ψ ϕψ is satisfiable ;

if the SAT solver returns YES then
return NO ; // no candidate ψ is equivalent to ϕ

else
return YES ; // some candidate ψ is equivalent to ϕ

From a practical point of view, the algorithm given in Algorithm 1 might not be the
best approach to solve the problem. The (single) instance produced for the last SAT call in
the algorithm is rather large (exponential in k). However, this instance is equivalent to the
conjunction of 2O(k log k) many instances of linear size, and these instances can be solved in
parallel. Such a parallel approach involves more (yet easier) SAT calls, but might be more
efficient in practice.

An interesting topic for further research is to investigate how many SAT calls are needed for
an fpt-algorithm to solve DNF-Minimization(core size) when the SAT solver only returns
whether or not the input is satisfiable, and does not return a satisfying assignment in case the
input is satisfiable, i.e., whether DNF-Minimization(core size) is contained in FPTNP[f(k)].
The difference between SAT solvers that return a yes-or-no answer and a satisfying assignment
is (theoretically) not relevant when the number of calls is unrestricted, but it seems to make
a difference in cases where the number of calls is bounded to logarithmically many in the
input size (cf. [22, Theorem 5.4]) or bounded by a function of the parameter.

From a practical point of view, the algorithm given in Algorithm 1 might not be the
best approach to solve the problem. The (single) instance produced for the last SAT call in
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the algorithm is rather large (exponential in k). However, this instance is equivalent to the
conjunction of 2O(k log k) many instances of linear size, and these instances can be solved in
parallel. Such a parallel approach involves more (yet easier) SAT calls, but might be more
efficient in practice.

5 QBF Satisfiability and Treewidth

The graph parameter treewidth measures in a certain sense the tree-likeness of a graph (for a
definition of treewidth, see, e.g., [10, 11]). Many hard problems are fixed-parameter tractable
when parameterized by the treewidth of a graph associated with the input [11, 23]. By
associating the following graph with a QDNF formulas one can apply the parameter treewidth
also to QDNF formulas (for QCNF formulas the graph can be defined analogously, taking
clauses instead of terms).

The incidence graph of a QDNF formula ϕ is the bipartite graph where one side of the
partition consists of the variables and the other side consists of the terms; a variable and a
term are adjacent if the variable appears positively or negatively in the term. The incidence
treewidth of ϕ, in symbols incid.tw(ϕ), is the treewidth of the incidence graph of ϕ. It is well
known that checking the truth of a QDNF formula whose number of quantifier alternations
is bounded by a constant is fixed-parameter tractable when parameterized by incid.tw (this
can be easily shown using Courcelle’s Theorem [23]).

Bounding the treewidth of the entire incidence graph is very restrictive. In this section
we investigate whether bounding the treewidth of certain subgraphs of the incidence graph is
sufficient to reduce the complexity. To this aim we define the existential incidence treewidth
of a QDNF formula ϕ, in symbols ∃-incid.tw(ϕ), as the treewidth of the incidence graph
of ϕ after deletion of all universal variables. The universal incidence treewidth, in symbols
∀-incid.tw(ϕ), is the treewidth of the incidence graph of ϕ after deletion of all existential
variables.

The existential and universal treewidth can be small for formulas whose incidence treewidth
is arbitrarily large. Take for instance a QDNF formula ϕ whose incidence graph is an n× n
square grid, as in Figure 2. In this example, ∃-incid.tw(ϕ) = ∀-incid.tw(ϕ) = 2 (since
after the deletion of the universal or the existential variables the incidence graph becomes
a collection of trivial path-like graphs), but incid.tw(ϕ) = n [10]. Hence, a tractability
result in terms of existential or universal incidence treewidth would apply to a significantly
larger class of instances than a tractability result in terms of incidence treewidth. In the
following we pinpoint the exact complexity of checking the satisfiability of ∃∀-QDNF formulas
parameterized by ∃-incid.tw and ∀-incid.tw. We let QSat2(∀-incid.tw) denote the problem
∃∀-Sat parameterized by ∀-incid.tw, and similarly we let QSat2(∃-incid.tw) denote the
problem ∃∀-Sat parameterized by ∃-incid.tw. We show that parameterizing by ∃-incid.tw
does not decrease the complexity and leaves the problem on the second level of the PH, but
for QSat2(∀-incid.tw) we get an fpt-reduction to SAT.

Proposition 10. QSat2(∃-incid.tw) is para-Σp
2-complete.
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(a) (b) (c)

Figure 2: Incidence graph of a QDNF formula (a). Universal variables are drawn with black round
shapes, existential variables with grey round shapes, and terms are drawn with square shapes.
Both deleting the universal variables (b) and the existential variables (c) significantly decreases the
treewidth of the incidence graph.

Proof. Membership in para-Σp
2 is obvious. To show para-Σp

2-hardness, it suffices to show that
the problem is already Σp

2-hard when the parameter value is restricted to 1 [17]. We show
this by means of a reduction from ∃∀-Sat. The idea of this reduction is to introduce for each
existentially quantified variable x a corresponding universally quantified variable zx that is
used to represent the truth value assigned to x. Each of the existentially quantified variables
then only directly interacts with universally quantified variables.

Take an arbitrary instance of ∃∀-Sat, specified by ϕ = ∃X.∀Y.ψ(X, Y ), where ψ(X, Y )
is in DNF. We introduce a new set Z = { zx : x ∈ X } of variables. It is straightforward
to verify that ϕ = ∃X.∀Y.ψ(X, Y ) is equivalent to the formula ∃Z.∀X.∀Y.χ, where χ =∨
x∈X [(x ∧ ¬zx) ∨ (¬x ∧ zx)] ∨ ψ(X, Y ). Clearly, if we now delete all universally quantified

variables, the incidence graph of χ consists only of isolated paths of length 2, and therefore
the treewidth is 1. This proves that QSat2(∃-incid.tw) is para-Σp

2-hard.

Theorem 11. QSat2(∀-incid.tw) is para-NP-complete.

Proof. Hardness for para-NP can be proven by showing that the problem is already NP-hard
when restricted to instances where the parameter value is 1 [17]. In order to do this, one can
reduce an instance of Sat to an instance of ∃∀-Sat whose matrix is in DNF by using the
standard Tseitin transformation, resulting in tree-like interactions between the universally
quantified variables. Therefore, the resulting formula has universal incidence treewidth 1.

We now show para-NP-membership of QSat2(∀-incid.tw). We construct a CNF formula
ϕ′ that is satisfiable if and only if ϕ is true. The idea is to construct a formula that encodes
the following guess-and-check algorithm. Firstly, the algorithm guesses an assignment γ to
the existential variables. Note that the incidence graph of the formula instantiated with γ has
a small treewidth, because instantiating with γ removes all existentially quantified variables.
Then, the algorithm employs dynamic programming to exploit the fact that the incidence
graph of the remaining formula has small treewidth to decide validity of the remaining
formula. This dynamic programming approach is widely used to solve problems for instances
where some graph representing the structure of the instance has small treewidth (cf. [9]).

Next, we show how to encode this guess-and-check algorithm into a formula ϕ′ that is
satisfiable if and only if the algorithm accepts. In order to do so, we formally define treewidth
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and tree decompositions of graphs. A tree decomposition of a graph G = (V,E) is a pair
(T , (Bt)t∈T ) where T = (T, F ) is a rooted tree and (Bt)t∈T is a family of subsets of V such
that: (i) for every v ∈ V , the set B−1(v) = { t ∈ T : v ∈ Bt } induces a nonempty subtree
of T ; and (ii) for every edge {v, w} ∈ E, there is a t ∈ T such that v, w ∈ Bt. In order to
simplify the proof, we will consider the following normal form of tree decompositions. We
call a tree decomposition (T , (Bt)t∈T ) nice if every node t ∈ T is of one of the following
four types: (leaf node) t has no children and |Bt| = 1; (introduce node) t has one child t′

and Bt = Bt′ ∪ {v} for some vertex v 6∈ Bt′ ; (forget node) t has one child t′ and Bt = Bt′\{v}
for some vertex v ∈ Bt′ ; or (join node) t has two children t1, t2 and Bt = Bt1 = Bt2 . Given
any graph G and a tree decomposition of G of width k, a nice tree decomposition of G of
width k can be computed in polynomial time [11, 28].

Let ϕ = ∃X.∀Y.ψ be a quantified Boolean formula where ψ = δ1 ∨ · · · ∨ δu, and
let (T , (Bt)t∈T ) be a tree decomposition of width k of the incidence graph of ϕ after dele-
tion of the existentially quantified variables. We may assume without loss of generality
that (T , (Bt)t∈T ) is a nice tree decomposition. We may also assume without loss of generality
that for each t ∈ T , Bt contains some y ∈ Y .

We let Var(ϕ′) = X ∪ Z where Z = { zt,α,i : t ∈ T, α : Var(t) → {0, 1}, 1 ≤ i ≤ u }.
Intuitively, the variables zt,α,i represent whether at least one assignment extending α (to the
variables occurring in nodes t′ below t) violates the term δi of ψ. We then construct ϕ′ as
follows by using the structure of the tree decomposition. For all t ∈ T , all α : Var(t)→ {0, 1},
all 1 ≤ i ≤ u, and each literal l ∈ δi such that Var(l) ∈ X, we introduce the clause (I):
(l → zt,α,i). Then, for all t ∈ T , all α : Var(t) → {0, 1}, and all 1 ≤ i ≤ u such that for
some l ∈ δi it holds that Var(l) ∈ Y and α(l) = 0, we introduce the clause (II): (zt,α,i).
Next, let t ∈ T be any introduction node with child t′, and let α : Var(t′) → {0, 1} be
an arbitrary assignment. For any assignment α′ : Var(t) → {0, 1} that extends α, and for
each 1 ≤ i ≤ u, we introduce the clause (III): (zt′,α,i → zt,α′,i). Then, let t ∈ T be any
forget node with child t′, and let α : Var(t) → {0, 1} be an arbitrary assignment. For any
assignment α′ : Var(t′) → {0, 1} that extends α, and for each 1 ≤ i ≤ u, we introduce
the clause (IV): (zt′,α′,i → zt,α,i). Next, let t ∈ T be any join node with children t1, t2, and
let α : Var(t) → {0, 1} be an arbitrary assignment. For each 1 ≤ i ≤ u, we introduce
the clauses (V): (zt1,α,i → zt,α,i) and (zt2,α,i → zt,α,i). Finally, for the root node troot ∈ T
and for each α : Var(troot) → {0, 1} we introduce the clause (VI):

∨
1≤i≤u ¬ztroot,α,i. It is

straightforward to verify that ϕ′ contains O(2k|T |) many clauses. We claim that this reduction
is correct, i.e., that ϕ is true if and only if ϕ′ is satisfiable. We omit a detailed proof of
this.

Instead of incidence graphs one can also use primal graphs to model the structure of QBF
formulas (see, e.g., [1, 35]). One can define corresponding parameters primal treewidth,
universal primal treewidth, and existential primal treewidth. The proof of Proposition 10
shows that ∃∀-Sat is para-Σp

2-hard when parameterized by existential primal treewidth. The
parameter incidence treewidth is more general than primal treewidth in the sense that small
primal treewidth implies small incidence treewidth [29, 40], but the converse does not hold in
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general. Hence, Theorem 11 also holds for the parameter universal primal treewidth.

6 Conclusion

We studied the fpt-reducibility to SAT for several problems beyond NP under natural
parameters. Our positive results show that in some cases it is possible to utilize structure
in terms of parameters to break through the barriers between classical complexity classes.
Parameters that admit an fpt-reduction to SAT can be less restrictive than parameters that
provide fixed-parameter tractability of the problem itself, hence our approach extends the
scope of fixed-parameter tractability. Additionally, we show that fpt-time algorithms that
can query a SAT solver (i.e., fpt-time Turing reductions to SAT) exist for some problems
that cannot be solved in polynomial-time with the help of queries to a SAT solver (unless the
PH collapses), hence our approach also extends the scope of algorithms using SAT queries.
Our negative results point out the limits of the approach, showing that some problems do,
most likely, not admit fpt-reductions to SAT under certain natural parameters.
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