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INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG WISSENSBASIERTE SYSTEME

SMALL UNSATISFIABLE SUBSETS

IN CONSTRAINT SATISFACTION

Ronald de Haan Iyad Kanj Stefan Szeider

INFSYS RESEARCH REPORT 1843-14-05

DECEMBER 2014





INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-14-05, DECEMBER 2014

SMALL UNSATISFIABLE SUBSETS

IN CONSTRAINT SATISFACTION

Ronald de Haan1∗ Iyad Kanj2 Stefan Szeider1∗

Abstract. The problem of finding small unsatisfiable subsets of a set of constraints is im-
portant for various applications in computer science and artificial intelligence. We study
the problem of identifying whether a given instance to the constraint satisfaction problem
(CSP) has an unsatisfiable subset of size at most k from a parameterized complexity point
of view. We show that the problem of finding small unsatisfiable subsets of a CSP in-
stance is harder than the corresponding problem for CNF formulas. Moreover, we show
that the problem is not fixed-parameter tractable when restricting the problem to any max-
imal tractable Boolean constraint language (for which the problem is nontrivial). We show
that the problem is hard even when the maximum number of occurrences of any variable is
bounded by a constant, a restriction which leads to fixed-parameter tractability for the case
of CNF formulas. Finally, we relate the problem of finding small unsatisfiable subsets to the
problem of identifying variable assignments that are enforced already by a small number
of constraints (backbones), or that are ruled out already by a small number of constraints
(anti-backbones).
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1 Introduction

Finding small or unsatisfiable cores (subsets) of an unsatisable set of constraints is useful for a
variety of purposes, such as verifying the correctness of a solver or computational tasks arising in
various applications (formal verification, repairing inconsistencies in knowledge bases, maximal
satisfiability solving, etc). There has been much research on the topic of developing fast algo-
rithms to find minimal (subset-minimal) or minimum (cardinality-minimal) unsatisfiable cores for
propositional formulas (cf. [2, 1, 3]), possibly over an underlying theory (SMT) [4], as well as
for instances of the Constraint Satisfaction Problem (CSP) [5]. We focus on the CSP, and we in-
vestigate the problem of finding small unsatisfiable subsets of constraints from a parameterized
complexity point of view. This extends the research of Fellows, Szeider and Wrightson [6] and
De Haan, Kanj and Szeider [7] on the parameterized complexity of identifying small unsatisfiable
subsets in propositional formulas.

The problem consists of deciding, given a finite set of constraints and a positive integer k,
whether there exists a subset of k many constraints that is unsatisfiable. It is straightforward to
devise an xp-algorithm to solve the problem (i.e., an algorithm that runs in time O(nf(k)), where n
is the input size). This can, for instance, be done by iterating over all possible subsets of k many
constraints, and for each subset checking satisfiability in a brute-force manner. However, to de-
velop practical algorithms, it would be much more desirable to identify in what cases the problem
becomes fixed-parameter tractable (i.e., solvable in time f(k)nc, where f is some computable
function and c is some fixed constant). This important distinction between xp-solvability and
fixed-parameter tractability is the focus of parameterized complexity theory [10, 11, 12, 13], a
field of research that is becoming increasingly popular in the domain of artificial intelligence and
constraint satisfaction (cf. [14, 15, 16]).

Unsurprisingly, the problem of finding an unsatisfiable subset in its most general setting is not
fixed-parameter tractable. A special case of the problem is to identify whether a 3CNF formula
has an unsatisfiable subset of size k, and this problem is already W[1]-hard [6], that is, it is not
fixed-parameter tractable, under complexity-theoretic assumptions. For this reason, we direct our
attention to several restrictions of the problem for which it can be decided in polynomial time
whether a given set of constraints is satisfiable or not. In particular, we focus on several classes of
Boolean constraint languages that have been identified in the seminal work of Schaefer [17] as the
maximal constraint languages for which the satisfiability problem is polynomial-time tractable.

For an overview of the parameterized complexity results obtained in this paper, see Table 1.
Interestingly, the problem of identifying small unsatisfiable subsets of CSP instances is fixed-
parameter intractable (W[1]-hard or W[2]-hard) for all nontrivial restrictions that we consider.
Since we consider constraint languages for which deciding satisfiability is tractable, this suggests
that the selection of a small subset of constraints comprises a source of complexity by itself. For
the unrestricted case, the problem of identifying small unsatisfiable subsets is harder when deal-
ing with CSP instances (W[2]-hard; Proposition 1) than when dealing with propositional formulas
(W[1]-complete [6]). Similarly, for the restriction to Krom formulas and correspondingly bijunc-
tive constraint languages, the problem increases in complexity when moving from propositional
formulas (poly-time [9]) to CSP instances (W[1]-hard; Theorem 5). The problem is W[1]-hard
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Boolean language C SMALL-UNSAT-SUBSET[C] SMALL-CSP-UNSAT-SUBSET[C]

unrestricted W[1]-hard [6] W[2]-hard (Prop 1)
0-valid, 1-valid trivial (Obs 2) trivial (Obs 2)
Horn, anti-Horn W[1]-hard [7] W[1]-hard (Prop 3, Cor 4)
bijunctive (Krom) poly-time [9] W[1]-hard (Thm 5)
affine W[1]-hard (Thm 7) W[1]-hard (Cor 6)
bounded degree FPT [7] W[1]-hard (Prop 8)

Table 1: Map of parameterized complexity results for the problems SMALL-UNSAT-SUBSET and SMALL-
CSP-UNSAT-SUBSET. For each Boolean language C, the table contains results for the restriction of the
problems to the corresponding class of propositional formulas and Boolean constraint languages, respec-
tively. (We slightly abuse notation: technically, the class of CSP instances with bounded degree is not
generated by any constraint language.)

both for the case of affine propositional formulas and for the case of affine constraint languages
(Corollary 6, Theorem 7). Upper bounding the degree (i.e., the maximum number of occurrences
of any variable) by a constant leads to fixed-parameter tractability in the case of propositional for-
mulas [6, 7]. However, in the case of constraint satisfaction, the problem of finding small unsatisfi-
able subsets remains W[1]-hard even when restricted to Boolean CSP instances of bounded degree
(Proposition 8). Finally, the problem of finding small unsatisfiable subsets is trivially tractable
when restricted to 0-valid or 1-valid constraint languages. However, for the related problem of
identifying variable assignments that are implied by a small subset of constraints (see Section 4),
the restriction to 0-valid or 1-valid constraint languages yields W[2]-hardness (Proposition 12).
We would like to point out that the differences in complexity between the cases of propositional
formulas and Boolean CSP instances are not related to the domain size, since in both cases the
domain is Boolean.

2 Preliminaries

2.1 Parameterized Complexity

We introduce the relevant concepts of parameterized complexity theory. For more details, we refer
to textbooks on the topic [10, 13, 11, 12]. An instance of a parameterized problem is a pair (I, k)
where I is the main part of the instance, and k is the parameter. A parameterized problem is fixed-
parameter tractable if instances (I, k) of the problem can be solved by a deterministic algorithm
that runs in time f(k)|I|c, where f is a computable function of k, and c is a constant (algorithms
running within such time bounds are called fpt-algorithms). FPT denotes the class of all fixed-
parameter tractable problems. Using fixed-parameter tractability, many problems that are classified
as intractable in the classical setting (i.e., NP-hard) can be shown to be tractable for small values
of the parameter.

Parameterized complexity also offers a completeness theory, similar to the theory of NP-
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completeness, that provides a way to obtain strong theoretical evidence that a parameterized prob-
lem is not fixed-parameter tractable. Hardness for parameterized complexity classes is based on
fpt-reductions, which are many-one reductions where the parameter of one problem maps into the
parameter for the other. More specifically, a parameterized problem L is fpt-reducible to another
parameterized problem L′ if there is a mapping R that maps instances of L to instances of L′ such
that (i) (I, k) ∈ L if and only if R(I, k) = (I ′, k′) ∈ L′, (ii) k′ ≤ g(k) for a computable function g,
and (iii) R can be computed in time f(k)|I|c for a computable function f and a constant c.

Central to the completeness theory is the hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.
Each intractability class W[t] contains all parameterized problems that can be reduced to a certain
parameterized satisfiability problem under fpt-reductions. The intractability class XP includes all
xp-solvable parameterized problems, which are those parameterized problems that can be solved
by an xp-algorithm, i.e., an algorithm with running timeO(nf(k)), for some computable function f ,
where n is the input size and k is the parameter value. Fixed-parameter tractability of any problem
hard for any of these intractability classes is very unlikely as it would violate commonly-believed
assumptions in complexity theory, such as the Exponential Time Hypothesis [11, 18] (i.e., the
existence of a 2o(n) algorithm for n-variable 3SAT).

We use the following problems to prove some fixed-parameter intractability results. MULTI-
COLORED-CLIQUE is a W[1]-complete problem [19]. The instances are tuples (V,E, k), where V
is a finite set of vertices partitioned into k subsets V1, . . . , Vk, (V,E) is a simple graph, and k is a
positive integer. The parameter is k. The question is whether there exists a k-clique in (V,E) that
contains a vertex in each Vi. HITTING-SET is a W[2]-complete problem [20]. The instances are
tuples (U, T , k), where U is a finite universe, T is a collection of subsets of U , and 1 ≤ k ≤ |U |
is a positive integer. The parameter is k. The question is whether there exists a hitting set H ⊆ U
such that |H| ≤ k and H ∩ T 6= ∅ for all T ∈ T .

2.2 Propositional Logic

A literal is a propositional variable x or a negated variable ¬x. A clause is a finite set of literals,
not containing a complementary pair x, ¬x, and unless stated otherwise, it is interpreted as the
disjunction of these literals. A CNF formula is a finite set of clauses, and is interpreted as the
conjunction of these clauses.

A CNF formula ϕ is a k-CNF formula if the size of each of its clauses is at most k. A 2-CNF
formula is also called a Krom formula. A clause is a Horn clause if it contains at most one positive
literal. CNF formulas containing only Horn clauses are called Horn formulas. A clause is an anti-
Horn clause if it contains at most one negative literal. CNF formulas containing only anti-Horn
clauses are called anti-Horn formulas. A CNF formula is 0-valid if each clause contains at least
one negative literal, and 1-valid if each clause contains at least one positive literal.

The degree of a propositional variable x in CNF formula ϕ is the number of clauses of ϕ
in which it occurs (positively or negatively). The degree of ϕ is the maximum degree of any
variable that occurs in ϕ. We say that a class of CNF formulas has bounded degree if there exists
a constant d ≥ 1 such that each formula in the class has degree at most d.

A CNF formula ϕ is satisfiable if there exists a truth assignment τ : Var(ϕ)→ {0, 1} such that
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every clause c ∈ ϕ contains some literal l such that τ(l) = 1 (we say that such an assigment τ
satisfies ϕ); otherwise, ϕ is unsatisfiable.

An affine clause is a finite set of literals, not containing a complementary pair x, ¬x, and is
interpreted as the exclusive disjunction (denoted by the symbol ⊕) of these literals. An affine
formula is a finite set of affine clauses, and is interpreted as the conjunction of these clauses. An
affine formula ϕ is a k-affine formula if the size of each of its affine clauses is at most k.

An affine formula ϕ is satisfiable if there exists a truth assignment τ : Var(ϕ) → {0, 1} such
that every clause c ∈ ϕ contains an odd number of literals l such that τ(l) = 1. (we say that such
an assigment τ satisfies ϕ); otherwise, ϕ is unsatisfiable.

We say that a CNF or affine formula ϕ containing variables x1, . . . , xn is equivalent to a
Boolean relation R ⊆ {0, 1}n if the set of assignments to the variables x1, . . . , xn that satisfy ϕ
corresponds exactly to the tuples in R.

We denote the parameterized problem of identifying whether a given CNF or affine formula ϕ
has an unsatisfiable subset of size at most k, parameterized by k, by SMALL-UNSAT-SUBSET.
Moreover, for a given set C of formulas, we denote the restriction of this problem to formulas in C
by SMALL-UNSAT-SUBSET[C].

2.3 Constraint Satisfaction

Let D be a finite set of values (called the domain). An n-ary relation on D is a set of n-tuples of
elements from D; we use RD to denote the set of all relations on D with finite arity. A constraint
language is a subset of RD.

Let V be an infinite set of variables. A constraint (over a constraint language Γ ⊆ RD)
of arity n is a pair (S,R) where S = (v1, . . . , vn) is a sequence of variables from V and R ∈
Γ is a relation in the constraint language Γ (called the constraint relation). The set Var(C) =
{v1, . . . , vn} is called the scope of C. An assignment α : V → D is a mapping defined on a
set V ⊆ V of variables. An assigment α : V → D satisfies a constraint C = ((v1, . . . , vn), R)
if Var(C) ⊆ V and (α(v1), . . . , α(vn)) ∈ R. For a set I of constraints, we write Var(I) =⋃
C∈I Var(C), and we write Rel(I) = {R : (S,R) ∈ C,C ∈ I }. If the domain D is not explicitly

given, we can derive it from any set I of constraints by taking the set of all values occurring in the
constraint relation of any constraint in I.

An assignment α : Var(I)→ D is a solution for a finite set I of constraints if it simultaneously
satisfies all the constraints in I. A finite set I of constraints is satisfiable if there exists a solution
for it. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite set I of constraints,
whether I is satisfiable. By CSP(Γ) we denote the CSP restricted to instances I with Rel(I) ⊆ Γ.
A constraint language is tractable if for every finite subset Γ′ ⊆ Γ, the problem CSP(Γ) can be
solved in polynomial time.

We call a constraint language Γ Boolean if its underlying domain is {0, 1}, i.e., if it is a subset
of R{0,1}. We consider the following properties of Boolean constraint languages. Let R be an
n-ary relation. We say that R is:

• 0-valid if (0, . . . , 0) ∈ R;
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• 1-valid if (1, . . . , 1) ∈ R;

• Horn if R is equivalent to a CNF formula that is Horn;

• anti-Horn if R is equivalent to a CNF formula that is anti-Horn;

• bijunctive if R is equivalent to a CNF formula that is Krom;

• affine if R is equivalent to an affine formula; and

• 2-affine if R is equivalent to a 2-affine formula.

We say that a constraint language Γ is 0-valid, 1-valid, Horn, anti-Horn, bijunctive, affine or 2-
affine, respectively, if all relations R ∈ Γ have this property.

In his seminal paper [17], Schaefer showed that for all constraint languages Γ over the Boolean
domain {0, 1}, the CSP restricted to Γ is either NP-complete or solvable in polynomial time. In
fact, he showed that a Boolean constraint language Γ is tractable if and only if it is 0-valid, 1-valid,
Horn, anti-Horn, bijunctive or affine. A Boolean language that satisfies any of these six properties
is called a Schaefer language.

Let α : X → D be an assignment. For an n-ary constraint C = (S,R) with S = (x1, . . . , xn)
we denote by C|α the constraint (S ′, R′) obtained from C as follows. R′ is obtained from R by
(i) deleting all tuples (d1, . . . , dn) from R for which there is some 1 ≤ i ≤ n with α(xi) 6= di,
and removing from all remaining tuples all coordinates di with xi ∈ X . S ′ is obtained from S by
deleting all variables xi with xi ∈ X . For a set I of constraints we define I|α as {C|α : C ∈ I }.
We say that a constraint language Γ is closed under partial assignment if for any constraint C
over Γ and any assignment α : X → D it holds that C|α is also a constraint over Γ.

3 Small Unsatisfiable Subsets for the CSP
Consider the decision problem of finding an unsatisfiable subset of a given CSP instance. It is well-
known that this problem is co-NP-complete in general (since this involves deciding whether the
CSP instance is unsatisfiable), but polynomial-time solvable when restricted to one of the Schaefer
languages. In this section, we consider the following parameterization of this problem, for various
constraint languages.

SMALL-CSP-UNSAT-SUBSET

Instance: a CSP instance I, and a positive integer k.
Parameter: k.
Question: Is there a subset I ′ of I with k many constraints that is unsatisfiable?

3.1 Complexity Results for Boolean Domains
Proposition 1. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances is W[2]-hard.
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Proof. We give an fpt-reduction from HITTING-SET. Let (U, T , k) be an instance of HITTING-
SET, where T = {T1, . . . , Tm} is a family of subsets of the universe U = {u1, . . . , un}. The
idea behind this reduction is the following. We introduce a variable for each subset Tj ∈ T .
Moreover, we have one constraint C0 that ensures that exactly one of these variables is assigned
the value 1. Then, for each element u of the universe U we add a constraint that ensures that all
variables corresponding to subsets Tj ∈ T containing this element u are assigned the value 0.
Any unsatisfiable subset of constraints must then include both the constraint C0, and some other
constraints that correspond to a hitting set.

We construct a CSP instance I over the domainD = {0, 1}, as follows. We let the set Var(I) =
{ v1, . . . , vm } of variables correspond to the universe U . Firstly, we add the constraint C0 =
(S0, R0) to C, with scope S0 = (v1, . . . , vm), and where R0 = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1)}. Then, for each ui ∈ U , we add a constraint Ci = (Si, Ri) to C. We con-
sider W (ui) = {Tj : 1 ≤ j ≤ m,ui ∈ Tj } and we write W (ui) = {ui1 , . . . , ui`}. We then
let Si = (vi1 , . . . , vi`), and we let Ri = {(0, . . . , 0)}. Finally, we let k′ = k + 1. We claim
that (U, T , k) ∈ HITTING-SET if and only if (I, k′) ∈ SMALL-CSP-UNSAT-SUBSET.

(⇒) Suppose that there exist 1 ≤ i1 < . . . < ik ≤ n such that U ′ = {ui1 , . . . , uik} is a hitting
set of T . Now consider the subset I ′ = {C0} ∪ {Cij : 1 ≤ j ≤ k }. Clearly, I ′ has k′ many
constraints, and it is straightforward to verify that I ′ is unsatisfiable.

(⇐) Assume that there exists some subset I ′ of I that has k′ many constraints and that is
unsatisfiable. Then C0 ∈ I ′, because otherwise setting all variables to 0 would satisfy I ′. This can
only be the case if I ′ includes k many constraints Ci that together force all variables v ∈ V to get
the value 0. This would correspond to a hitting set of T of size k.

Observation 2. SMALL-CSP-UNSAT-SUBSET can be solved (trivially) in polynomial time when
restricted to Boolean CSP instances that are 0-valid or 1-valid. SMALL-UNSAT-SUBSET can be
solved (trivially) in polynomial time when restricted to CNF formulas that are 0-valid or 1-valid.

Proof. Any Boolean CSP instance that is 0-valid or 1-valid is clearly satisfiable, so the problem
SMALL-CSP-UNSAT-SUBSET restricted to 0-valid and 1-valid CSP instances is trivial. Similarly,
CNF formulas that are 0-valid or 1-valid are clearly satisfiable, and thus the same argument holds
for SMALL-UNSAT-SUBSET.

Proposition 3. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances that are Horn
is W[1]-hard.

Proof. We know that the problem of identifying whether a given propositional formula that is Horn
and in 3CNF has an unsatisfiable subset of size at most k is W[1]-hard [7]. Since any propositional
formula that is Horn and in 3CNF can be equivalently expressed as a Boolean CSP instance that is
Horn (where each clause is expressed by a single constraint), the W[1]-hardness result follows.

Corollary 4. SMALL-CSP-UNSAT-SUBSET restricted to Boolean CSP instances that are anti-
Horn is W[1]-hard.

Proof. We know that consistency of CSP instances is invariant under swapping of domain values.
Then, by swapping the two values 0 and 1, we can transform any Boolean Horn CSP instance into
an equivalent anti-Horn CSP instance.
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For the case of propositional formulas, the problem of identifying small unsatisfiable subsets
becomes fixed-parameter tractable when restricted to formulas where the degree (i.e., the maxi-
mum number of times that any variable appears in the formula) is bounded by a constant [6, 7].
We consider a similar restriction for CSP instances. Let I be a CSP instance. For any v ∈ Var(I),
we define the degree of v to be the number of constraints where v appears in the scope. More-
over, we let the degree of I be the maximum degree of any variable v ∈ Var(I). Unlike the
case of propositional formulas, it turns out that the problem restricted to instances whose degree is
bounded by a constant is W[1]-hard.

Theorem 5. SMALL-CSP-UNSAT-SUBSET restricted to bijunctive Boolean CSP instances is W[1]-
hard.

Proof. We provide an fpt-reduction from MULTI-COLORED-CLIQUE. Let (G, k) be an instance
of MULTI-COLORED-CLIQUE, where G = (V,E) and where V is partitioned into V1, . . . , Vk.
We construct a bijunctive Boolean CSP instance I, and an integer k′. We let Var(I) consist of
variables xv,j for each v ∈ V , each 1 ≤ j ≤ k + 1, plus a variable z0. We then let I consist of
the following constraints. For each e = (vi, vj) ∈ (Vi × Vj) ∩ E, for i < j, we introduce the
constraint Ce = (Se, Re), where Se = (xvi,j, xvi,j+1, xvi,j, xvj ,i+1) and where Re is equivalent to
the following Krom formula:

Re ≡ (xvi,j ↔ xvi,j+1) ∧ (xvj ,i ↔ xvj ,i+1)
≡ (xvi,j → xvi,j+1) ∧ (xvi,j+1 → xvi,j) ∧

(xvj ,i → xvj ,i+1) ∧ (xvj ,i+1 → xvj ,i).

For each 1 ≤ i ≤ k, and each vi ∈ Vi, we introduce the constraint Cvi = (Svi , Rvi), where Svi =
(xvi,i, xvi,i+1) and where Rvi is equivalent to the following Krom formula:

Rvi ≡ (xvi,i ↔ xvi,i+1)
≡ (xvi,i → xvi,i+1) ∧ (xvi,i+1 → xvi,i).

Then, for each 1 ≤ i < k, each vi ∈ Vi and each vi+1 ∈ Vi+1, we introduce the constraintCvi,vi+1
=

(Svi,vi+1
, Rvi,vi+1

), where Svi,vi+1
= (xvi,k+1, xvi+1,1) and where Rvi,vi+1

is equivalent to the follow-
ing Krom formula:

Rvi,vi+1
≡ (xvi,k+1 ↔ xvi+1,1)
≡ (xvi,k+1 → xvi+1,1) ∧ (xvi+1,1 → xvi,k+1).

Finally, for each v1 ∈ V1 and each vk ∈ Vk, we introduce the constraint Cvk,v1 = (Svk,v1 , Rvk,v1),
where Svk,v1 = (z0, xv1,1, xvk,k+1) and where Rvk,v1 is equivalent to the following Krom formula:

Rvk,v1 ≡ (z0 ↔ xv1,1) ∧ (xvk,k+1 ↔ z0)
≡ (z0 → xv1,1) ∧ (xv1,1 → z0) ∧
≡ (xvk,k+1 → z0) ∧ (z0 → xvk,k+1).

Note that the scope of each constraint is of constant size, so the constraints are all of constant size
when spelled out. Finally, we let k′ =

(
k
2

)
+ 2k.
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We claim that (G, k) ∈ MULTI-COLORED-CLIQUE if and only if there exists some sub-
set I ′ ⊆ I of k′ many constraints that is unsatisfiable. The intuition behind this construction
is the following. Any unsatisfiable subset needs to force z0 to be true and false at the same time.
This can only be done with a chain of equivalences. Any chain of equivalences with this property
that is represented by at most k′ many constraints corresponds to a multi-colored k-clique in G.

(⇒) Assume that G has a multi-colored k-clique, i.e., there exists some set {v1, . . . , vk} ⊆ V
of vertices such that for each 1 ≤ i ≤ k, vi ∈ Vi, and for each 1 ≤ i < i′ ≤ k, (vi, vi′) ∈ E.
Consider the subset I ′ ⊆ I consisting of the following constraints:

I ′ = {Ce : 1 ≤ i < j ≤ k, e = (vi, vj) } ∪
{Cvi : 1 ≤ i ≤ k } ∪
{Cvi,vj : 1 ≤ i ≤ k, j = i+ 1 (mod k) }.

It is easy to verify that I ′ consists of k′ many constraints. Moreover, it is straightforward to verify
that any solution α of I ′ must satisfy that α(z0) = α(z0). Thus, I ∈ SMALL-CSP-UNSAT-
SUBSET.

(⇐) Conversely, assume that there is some inconsistent subset I ′ ⊆ I of at most k′ many
constraints. We show that (G, k) ∈ MULTI-COLORED-CLIQUE. We know that I ′ must include
the constraint Cvk,v1 , for some vk ∈ Vk and some v1 ∈ V1. Otherwise, the assignment setting all
variables to 1 would satisfy I ′. Moreover, we know that I ′ must include a sequence of constraints
that together enforce the equivalence (xv1,1 ↔ xvk,k+1); otherwise I ′ would be satisfiable. Then
we also know that I ′ must include, for each 1 ≤ i < k, a constraint Cvi,vi+1

for some vi ∈ Vi and
some vi+1 ∈ Vi+1; otherwise, the equivalence (xv1,1 ↔ xvk,k+1) would not be enforced. Finally, I ′
must enforce the equivalences (xvi,1 ↔ xvi,k+1), for each 1 ≤ i ≤ k. It is straightforward to verify
that the only way to do this with k+

(
k
2

)
additional constraints, is to choose Cvi for each 1 ≤ i ≤ k,

and the constraints Ceij for each eij = (vi, vj), for 1 ≤ i < j ≤ k. If such constraints Ceij are
present, then clearly, by construction of the set I, the set {v1, . . . , vk} is a multi-colored k-clique
of G. Therefore, (G, k) ∈ MULTI-COLORED-CLIQUE.

Corollary 6. SMALL-CSP-UNSAT-SUBSET restricted to 2-affine Boolean CSP instances is W[1]-
hard.

Proof. The result follows from the fpt-reduction in the proof of Theorem 5. All propositional for-
mulas used to define the constraints of the resulting CSP instance are conjunctions of equivalences
of the form (l1 ↔ l2). Each such equivalence can be expressed by the affine clause ¬(l1 ⊕ l2) ≡
(l1 ⊕ l2), containing only two literals. Therefore the resulting CSP instance is also a 2-affine
Boolean CSP instance.

Theorem 7. SMALL-CSP-UNSAT-SUBSET is W[1]-hard when restricted to Boolean CSP in-
stances where each constraint is equivalent to a single affine clause.

Proof. We provide an fpt-reduction from MULTI-COLORED-CLIQUE. This reduction is similar to
the reduction given in the proof of Theorem 5. Let (G, k) be an instance of MULTI-COLORED-
CLIQUE, where G = (V,E) and where V is partitioned into V1, . . . , Vk. We construct a bijunctive
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Boolean CSP instance I, and an integer k′. We let Var(I) consist of variables xv,j for each v ∈ V ,
each 1 ≤ j ≤ k + 1, and variables z0, z1. We then let I consist of the following constraints. For
each e = (vi, vj) ∈ (Vi × Vj) ∩ E, for 1 ≤ i < j ≤ k, we introduce the constraint Ce = (Se, Re),
where Se = (xvi,j, xvi,j+1, xvi,j, xvj ,i+1) and where Re is equivalent to the following affine clause:

Re ≡ ¬(xvi,j ⊕ xvi,j+1 ⊕ xvj ,i ⊕ xvj ,i+1)
≡ (xvi,j ⊕ xvi,j+1 ⊕ xvj ,i ⊕ xvj ,i+1).

For each 1 ≤ i ≤ k, and each vi ∈ Vi, we introduce the constraint Cvi = (Svi , Rvi), where Svi =
(xvi,i, xvi,i+1) and where Rvi is equivalent to the following affine clause:

Rvi ≡ ¬(xvi,i ⊕ xvi,i+1) ≡ (xvi,i ⊕ xvi,i+1).

Then, for each 1 ≤ i < k, each vi ∈ Vi and each vi+1 ∈ Vi+1, we introduce the constraintCvi,vi+1
=

(Svi,vi+1
, Rvi,vi+1

), where Svi,vi+1
= (xvi,k+1, xvi+1,1) and where Rvi,vi+1

is equivalent to the follow-
ing affine clause:

Rvi,vi+1
≡ ¬(xvi,k+1 ⊕ xvi+1,1) ≡ (xvi,k+1 ⊕ xvi+1,1).

Finally, for each v1 ∈ V1 and each vk ∈ Vk, we introduce the constraint Cvk,v1 = (Svk,v1 , Rvk,v1),
where Svk,v1 = (z0, xv1,1, xvk,k+1) and where Rvk,v1 is equivalent to the following affine clause:

Rvk,v1 ≡ ¬(z0 ⊕ xv1,1 ⊕ xvk,k+1 ⊕ z1)
≡ (z0 ⊕ xv1,1 ⊕ xvk,k+1 ⊕ z1).

Finally, we add the constraint C0 = (S0, R0), where S0 = (z0, z1) and where R0 is equivalent to
the affine clause R0 ≡ (z0 ⊕ z1). Note that the scope of each constraint is of constant size, so the
constraints are all of constant size when spelled out. Finally, we let k′ =

(
k
2

)
+ 2k + 1.

The intuition behind this construction is the following. Any unsatisfiable subset needs to
force z0 to be assigned the same value as z1, which then leads to unsatisfiability due to the con-
straint C0. This can only be done with a path from z0 to z1 in the incidence graph of the instance.
The incidence graph of an instance I is the graph GI = (Var(I ′), EI′), where {x, x′} ∈ EI′ if and
only if x and x′ occur together in some clause C ∈ I ′. Any such path corresponding to at most k′

many constraints corresponds to a multi-colored k-clique in G.
We claim that (G, k) ∈ MULTI-COLORED-CLIQUE if and only if there exists some subset I ′ ⊆

I of k′ many constraints that is unsatisfiable.
(⇒) Assume that G has a multi-colored k-clique, i.e., there exists some set {v1, . . . , vk} ⊆ V

of vertices such that for each 1 ≤ i ≤ k, vi ∈ Vi, and for each 1 ≤ i < i′ ≤ k, (vi, vi′) ∈ E.
Consider the subset I ′ ⊆ I consisting of the following constraints:

I ′ = {Ce : 1 ≤ i < j ≤ k, e = (vi, vj) } ∪
{Cvi : 1 ≤ i ≤ k } ∪ {C0} ∪
{Cvi,vj : 1 ≤ i ≤ k, j = i+ 1 (mod k) }.
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It is easy to verify that I ′ consists of k′ many constraints. Moreover, consider the following se-
quence of literals over variables in Var(I ′).

σ = (l1, . . . , lm)
= (z0, xv1,1, . . . , xv1,k+1, xv2,1, . . . , xvk,k+1, z1).

The reader can easily verify that (i) each pair (li, li+1) of literals, for 1 ≤ i < m, occurs in exactly
one constraint in I ′\{C0}, (ii) that each literal li, for 1 < i < m, occurs in exactly two constraints
in I ′\{C0}, and (iii) that the literals l1 and lm each occur in exactly one constraint in I ′\{C0}. Due
to these properties, the constraints in I ′\{C0} together enforce that for any solution α of I ′ there
must be an even number of indices 1 ≤ i < m such that α(li) 6= α(li+1). This entails that for any
solution α of I ′ it must hold that α(z0) = α(z1). However, since C0 ∈ I ′, we get that I ∈ SMALL-
CSP-UNSAT-SUBSET.

(⇐) Conversely, assume that there is some inconsistent subset I ′ ⊆ I of at most k′ many
constraints. We show that (G, k) ∈ MULTI-COLORED-CLIQUE. We know that I ′ must include
the constraint C0. Otherwise, the assignment setting all variables to 1 would satisfy I ′.

Next, we consider the incidence graphGI′ of I ′. We then know that there must be a path inGI′
from z0 to z1. Otherwise I ′ would be satisfiable; a solution for I ′ would be the assignment that
sets all variables connected in GI′ to z0 to the value 0, and all other variables to the value 1.

By an argument similar to the one in the proof of Theorem 5, we then know that if such a
path can be constructed with k′ − 1 many constraints (in addition to C0), then G must contain a
multi-colored k-clique, and thus (G, k) ∈ MULTI-COLORED-CLIQUE.

Proposition 8. Let d ≥ 2 be a constant. SMALL-CSP-UNSAT-SUBSET is W[1]-hard, even when
restricted to Boolean CSP instances with degree ≤ d.

Proof. We know that the problem of finding an unsatisfiable subset of a propositional formula
of size ≤ k is W[1]-hard. We give an fpt-reduction from this problem to SMALL-CSP-UNSAT-
SUBSET. The idea behind this reduction is to introduce many copies of each variable (one copy for
each occurrence) and to introduce for each variable a single constraint that ensures that all copies
of this variable are assigned the same value.

Let ϕ = {c1, . . . , cm} be a propositional formula in 3CNF, and let k be a positive integer.
Without loss of generality, we may assume that ϕ contains no unsatisfiable subsets of size < k,
that any unsatisfiable subset of ϕ of size k contains exactly ` variables, where ` can be computed
in polynomial time [7, Lemmas 2 and 3 and Theorem 2].

We now construct an instance (I, k′) over the domain D of SMALL-CSP-UNSAT-SUBSET as
follows. We let Var(I) = { vx,c : x ∈ Var(ϕ), c ∈ ϕ }, and we let D = {0, 1}. Then, for
each c ∈ ϕ, we add a constraint Cc = (Sc, Rc) to I. Let c = (lx ∨ ly ∨ lz), where lx is a literal over
variable x, ly a literal over y and lz a literal over z. We let Sc = (vx,c, vy,c, vz,c), and we define Rc

to be set of 3-tuples satisfying c. Next, for each variable x ∈ Var(ϕ), we add a constraint Cx =
(Sx, Rx) to I. We let Sx = (vx,c1 , . . . , vx,cm), and we let Rx = {(0, . . . , 0), (1, . . . , 1)}. Finally,
we define k′ = k + `. It is straightforward to verify that I has degree 2.

We now claim that ϕ has an unsatisfiable subset of size k if and only if I has an unsatisfiable
subset of size k′.
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(⇒) Assume that ϕ has an unsatisfiable subset of size k. Let ϕ′ = {c′1, . . . , c′k} be such a
subset. We know that exactly ` variables appear in ϕ′. Now consider the set I ′ = {Cc′i : 1 ≤ i ≤
k } ∪ {Cx : x ∈ Var(ϕ′) } of constraints. It is straightforward to verify that I ′ is an unsatisfiable
subset of I containing k′ many constraints.

(⇐) Conversely, assume that I has an unsatisfiable subset of size at most k′. Let I ′ be such a
subset, and let I ′ be minimal. Then, let I ′1 = I ′ ∩ {Cc : c ∈ ϕ } and let I ′2 = I ′ ∩ {Cx : x ∈
Var(ϕ) }. Then let k1 = |I ′1| and let k2 = |I ′2|. We show that k1 = k and k2 = `. We proceed
indirectly. Firstly, suppose that k1 < k. It is then straightforward to verify that ϕ′ = { c ∈
ϕ : Cc ∈ I ′1 } is an unsatisfiable subset of ϕ of size < k, which is a contradiction. Thus, k1 ≥ k.
Next, suppose that k2 < `. Then, we know that ϕ′ is an unsatisfiable subset of ϕ. However, by
minimality of I ′, we then know that ϕ′ contains k2 < ` many variables, which is a contradiction.
Now, since k′ = k+` ≥ k1+k2, we can conclude that k1 = k and k2 = `. It is now straightforward
to verify that ϕ′ is an unsatisfiable subset of ϕ of size k.

3.2 Complexity Results for Non-Boolean Domains
When we lift our restriction to Boolean domains, the problem of identifying a small unsatisfiable
subset of a CSP instance is W[2]-hard already when restricted to unary constraints. Note that in
this case, the domain D is given as part of the input.

Proposition 9. SMALL-CSP-UNSAT-SUBSET restricted to CSP instances with maximum arity 1
is W[2]-hard.

Proof. We give an fpt-reduction from HITTING-SET. Let (U, T , k) be an instance of HITTING-
SET, where T = {T1, . . . , Tm} is a family of subsets of the universe U = {u1, . . . , un}. The
idea behind this reduction is the following. We introduce a single variable, and we introduce one
domain element for each subset Tj ∈ T . Moreover, we introduce a single constraint for each
element u in the universe U . Intuitively, the constraint for element u rules out that the variable
is assigned values corresponding to subsets Tj that are hit by the element u. Then, any set of
constraints that rules out all assignments of the variable corresponds to a hitting set.

Formally, we construct a CSP instance I over a domain D as follows. We let Var(I) = {v}
consist of a single variable, and we let its domain D = {d1, . . . , dm} consist of one value dj for
each set Tj . We construct the set I of constraints as follows. The scope of all constraints contains
only the variable v. Next, for each element ui ∈ U we introduce a constraint Ci that ensures
that v ∈ { dj : 1 ≤ j ≤ m,ui 6∈ Tj }. This constraint Ci rules out the values dj corresponding
to the sets Tj that contain ui. Ruling out all sets Tj with at most k of these constraints then
corresponds exactly to finding a hitting set of size at most k. We claim that (I, k) ∈ SMALL-CSP-
UNSAT-SUBSET if and only if (U, T , k) ∈ HITTING-SET.

(⇒) Assume that there exists an unsatisfiable subset I ′ ⊆ I that contains k constraints. Then
there is some ` ≤ k and some 1 ≤ i1 < · · · < i` ≤ n such that Cij ∈ I ′ for all 1 ≤ j ≤ `.
We claim that U ′ = {ui1 , . . . , ui`} is a hitting set of T of size ` ≤ k. We proceed indirectly, and
assume that there is a set Tj ∈ T such that U ′ ∩ Tj = ∅. Then the assignment α with α(v) = dj is
a solution for I ′, which is a contradiction.
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(⇐) Conversely, assume that there exists some ` ≤ k and some 1 ≤ i1 < · · · < i` ≤ n such
that U ′ = {ui1 , . . . , ui`} is a hitting set of T . We claim that the subset I ′ ⊆ I with I ′ = {Cij : 1 ≤
j ≤ ` }, containing at most k constraints, is unsatisfiable. We proceed indirectly and assume that
there is a solution α for I ′. Then, α(v) = dj for some 1 ≤ j ≤ m. From this we can conclude
that Tj ∩ U ′ = ∅, which contradicts the assumption that U ′ is a hitting set of T .

4 Local Backbones and Anti-Backbones

A concept related to unsatisfiable subsets are backbones. A backbone (with truth value d) of a
propositional formula ϕ is a variable v ∈ Var(ϕ) that is assigned value d in all solutions of ϕ. The
term originates in computational physics [21], and the notion of backbones has been studied for
propositional formulas in various contexts. Backbones have also been considered in other contexts
(e.g., knowledge compilation [22]) and for other combinatorial problems [23].

In a similar way, we can define backbones of CSP instances. A backbone (with value d) of a
CSP instance I is a variable v ∈ Var(I) that is assigned value d in all solutions of I. For constraint
satisfaction, one could also consider the (dual) notion of anti-backbones. An anti-backbone (with
value d) of a CSP instance I is a variable v ∈ Var(I) that is assigned value d in no solution of I.

If a backbone and its value are known, or if an anti-backbone and its value are known, then we
can simplify the instance without removing solutions, or the number of solutions. Therefore, it is
desirable to have an efficient algorithm for detecting backbones and anti-backbones. In general,
however, it is straightforward to verify that the problem of identifying backbones or anti-backbones
is coNP-complete.

A variable can be a backbone or an anti-backbone because of local properties of the instance
(such (anti-)backbones we call local backbones and local anti-backbones). As an extreme example
consider a CSP instance that contains a unary constraint with only one tuple (d) (a unit constraint).
In this case we know that the variable v appearing in this constraint clause is a backbone of the
CSP instance (with value d). Additionally, the variable v is an anti-backbone of the CSP instance
(with any value d′ 6= d). More generally, we define the order of a backbone x of a CSP instance I
to be the cardinality of a smallest subset I ′ of constraints such that x is a backbone of I ′, and we
refer to backbones of order ≤ k as k-backbones. We define the notion of order for anti-backbones
and the notion of k-anti-backbones similarly. Thus, unit constraints give rise to 1-backbones and
1-anti-backbones for Boolean CSP instances. Now consider the following parameterized decision
problem, concerned with the identification of local (anti-)backbones.

LOCAL-CSP-BACKBONE

Instance: a CSP instance I over a domain D, a variable v ∈ Var(I), a
value d ∈ D and a positive integer k.
Parameter: k.
Question: Is there a subset I ′ ⊆ I with k many constraints such that all solu-
tions α of I ′ satisfy that α(v) = d?
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LOCAL-CSP-ANTI-BACKBONE

Instance: a CSP instance I over a domain D, a variable v ∈ Var(I), a
value d ∈ D and a positive integer k.
Parameter: k.
Question: Is there a subset I ′ ⊆ I with k many constraints such that all solu-
tions α of I ′ satisfy that α(v) 6= d?

We investigate the parameterized complexity of these problems, restricted to the various Schae-
fer languages that we also considered in the previous section. We firstly show that these problems
are at least as hard as the problem SMALL-CSP-UNSAT-SUBSET, for all constraint languages.

Proposition 10. The problem SMALL-CSP-UNSAT-SUBSET is fpt-reducible to the problems LOCAL-
CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE.

Proof (sketch). We first give an fpt-reduction to LOCAL-CSP-BACKBONE. The main idea behind
this reduction is that if a CSP instance I has a small unsatisfiable subset, then any variable of I
is a local backbone. Let (I, k) be an instance of SMALL-CSP-UNSAT-SUBSET. We construct an
equivalent instance I ′ of LOCAL-CSP-BACKBONE by introducing an additional fresh variable v
to I (for instance, by adding an additional constraint C with Var(C) = {v}). We may assume
without loss of generality that {0, 1} ⊆ D, and that the variable v is unconstrained and can get
either value 0 or 1 in any solution. Since there is no constraint in I ′ that directly enforces variable v
to take any particular value, the only possibility for v to be a backbone is if I ′ has no solutions, and
thus is unsatisfiable. We then know that I contains an unsatisfiable subset of at most k constraints
if and only if I ′ contains an unsatisfiable subset of at most k constraints, which holds if and only
if some subset of I of at most k constraints forces each solution α to satisfy α(v) = 0.

This reductions is also an fpt-reduction to LOCAL-CSP-ANTI-BACKBONE, since I contains
an unsatisfiable subset containing at most k constraints if and only if some subset of I ′ containing
at most k constraints forces each solution α to satisfy α(v) 6= 0.

Most Schaefer languages are closed under partial assignment, i.e., the Horn, anti-Horn, bijunc-
tive and affine languages. For these languages, the complexity of these problems is closely related
to the complexity of SMALL-CSP-UNSAT-SUBSET.

Proposition 11. When restricted to Boolean constraint languages that are closed under partial
assignment, the problems LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE are both
fpt-reducible to SMALL-CSP-UNSAT-SUBSET.

Proof (sketch). We firstly give an fpt-reduction for the case of LOCAL-CSP-BACKBONE.
Let (I, v, d, k) be an instance of LOCAL-CSP-BACKBONE. We construct an equivalent instance
of SMALL-CSP-UNSAT-SUBSET as follows. We define the assignment α : {v} → D by let-
ting α(v) = d′, where d′ is the unique value in {0, 1}\{d}. We then let I ′ = I|α. It is
straightforward to verify that (I ′, k) is a yes-instance of SMALL-CSP-UNSAT-SUBSET if and only
if (I, v, d, k) is a yes-instance of LOCAL-CSP-BACKBONE.

A similar fpt-reduction works for the case of LOCAL-CSP-ANTI-BACKBONE, with the differ-
ence that α(v) = d.
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The Schaefer languages that are not conservative are the 0-valid and 1-valid constraint lan-
guages. It turns out that the problems LOCAL-CSP-BACKBONE and LOCAL-CSP-ANTI-BACKBONE

are W[2]-hard when restricted to 0-valid or 1-valid Boolen CSP instances. This is in contrast with
the polynomial-time solvability of SMALL-CSP-UNSAT-SUBSET with the same restrictions. We
prove the hardness result for the restriction to 0-valid instances. The result for 1-valid instances
then follows by a symmetry argument.

Proposition 12. LOCAL-CSP-BACKBONE is W[2]-hard, when restricted to Boolean CSP in-
stances that are 0-valid.

Proof (sketch). The proof of Proposition 1 can be straightforwardly modified to show this result.
The idea of this modification is to introduce an additional variable that is forced to be assigned the
value 0 if and only if the instance would contain an unsatisfiable subset otherwise.

We modify the definition of C0 as follows. We introduce an additional variable v0, and we
let S0 = (v0, v1, . . . , vn). We let R0 = {(1, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), . . . , (1, 0, . . . , 0, 1),
(0, . . . , 0)}. It is straightforward to verify that the constructed instance I ′ now is 0-valid. Moreover,
it can straightforwardly be verified that there is a subset I ′ ⊆ I of k′ many constraints that enforces
that v0 is assigned value 0 if and only if (U, T , k) ∈ HITTING-SET.

Corollary 13. LOCAL-NECESSARY-ASSIGNMENT and LOCAL-IMPOSSIBLE-ASSIGNMENT are
W[2]-hard, when restricted to Boolean CSP instances that are 1-valid.

5 Conclusion
We studied the problem of identifying whether a given instance of the constraint satisfaction prob-
lem has an unsatisfiable subset of size at most k from a parameterized complexity point of view.
We showed that the problem is W[1]-hard or even harder when restricting the problem to any
maximal tractable Boolean constraint language (for which the problem is nontrivial), and that the
problem is hard even when the degree of instances is bounded by a constant. For non-Boolean
domains, we showed that the problem is already W[2]-hard when restricted to unary constraints.
We also related the problem of finding a small unsatisfiable subset to the problem of identifying
local backbones and local anti-backbones, and showed that these latter problems are of the same
parameterized complexity (or even harder).

Future research includes investigating the relation between local backbones and anti-backbones
and local consistency notions, such as arc consistency and hyper-arc consistency.
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