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Abstract. Not all NP-complete problems share the same practical hardness with
respect to exact computation. Whereas some NP-complete problems are amenable to
efficient computational methods, others are yet to show any such sign. It becomes a
major challenge to develop a theoretical framework that is more fine-grained than the
theory of NP-completeness, and that can explain the distinction between the exact
complexities of various NP-complete problems. This distinction is highly relevant for
constraint satisfaction problems under natural restrictions, where various shades of
hardness can be observed in practice.

Acknowledging the NP-hardness of such problems, one has to look beyond
polynomial time computation. The theory of subexponential time complexity provides
such a framework, and has been enjoying increasing popularity in complexity theory.
Recently, a first analysis of the subexponential time complexity of classical CSPs
(where all constraints are given extensionally as tables) was given.

In this paper, we extend this analysis to CSPs in which constraints are given
intensionally in the form of global constraints. In particular, we consider CSPs that
use the fundamental global constraints AllDifferent, AtLeastNValue, AtMostNValue,
and constraints that are specified by compressed tuples (cTable). We provide
tight characterizations of the subexponential time complexity of the aforementioned
problems with respect to several natural structural parameters.
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1 Introduction

It has been observed in various practical contexts that some NP-hard problems are accessible
to efficient exact computational methods, whereas for others such methods are futile. In
particular, there seem to be various grades of “empirical hardness” among several NP-
complete variants of the constraint satisfaction problem (CSP). It is a central challenge
for theoreticians to develop a framework, that is more fine graded than the theory of NP-
completeness, and that can explain the distinction between the exact complexities of NP-hard
problems. Subexponential time complexity is a framework of complexity theory that provides
such a distinction [27]. It is based on the observation that for some NP-complete problems,
one can improve the exponent in the exponential term of the upper bound on their running
time indefinitely—such problems admit subexponential time algorithms—whereas for others
this is apparently not possible under commonly-believed hypotheses in complexity theory.
In particular, subexponential time algorithms were developed for many graph problems,
including Independent Set and Dominating Set, under natural structural restrictions
(see [8, 12]). The benchmark problem for subexponential time computation is the satisfiability
problem for CNF formulas, where each clause contains at most three literals, denoted 3-CNF-
Sat. The Exponential Time Hypothesis (ETH), proposed by Impagliazzo and Paturi [21],
states that 3-CNF-Sat with n variables is not decidable in subexponential time, i.e., not
decidable in time 2o(n) (omitting polynomial factors).

In a recent paper, Kanj and Szeider [23] provided a first analysis of the subexponential
time complexity of the classical CSP, where all constraints are given extensionally in the form
of tables. In this paper, we extend this line of research by considering CSPs where constraints
are specified intensionally using global constraints. This extension is highly relevant since
it is central for the modeling and the solving of real-world problems, to use various global
constraints that come along with efficient propagation and filtering techniques [33, 36].

In particular, we consider CSPs in which the global constraints are all either AllDifferent
constraints, NValue constraints, AtLeastNValue constraints, AtMostNValue constraints, or
constraints that are specified by tables with compressed tuples (cTable). We provide tight
characterizations of the subexponential time complexity of the aforementioned CSPs with
respect to several natural parameters of the problem instance. For example, we show that
the CSP with AllDifferent constraints is solvable in subexponential time if the domain size
is ω(1) (that is, lower bounded by any nondecreasing unbounded function of the number of
variables), whereas, unless the ETH fails, the problem is not solvable in subexponential time
for any constant domain size that is at least 3. For the CSP with AtLeastNValue constraints,
we show that the problem is solvable in subexponential time if the number of constraints is
constant and the domain size is ω(1), and unless the ETH fails, the problem is not solvable
in subexponential time if the number of constraints is linear and the domain size is constant.
The results in this paper shed some light on which instances of the aforementioned CSPs
with global constraints are feasible with respect to exact computation.
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2 Preliminaries

2.1 CSP

An instance I of the Constraint Satisfaction Problem (or CSP, for short) is a
triple (V,D, C), where V is a finite set of variables, D is a mapping that assigns each variable
v ∈ C a finite set D(v) of domain values, and C is a finite set of constraints. We write
D =

⋃
v∈V D(x).

Each constraint in C is a pair (S,R), where S, the constraint scope, is a non-empty
sequence of distinct variables of V , and R, the constraint relation, is a relation over D whose
arity matches the length of S; a relation is considered as a set of tuples. Therefore we also
call such a constraint a table constraint. The size of a CSP instance I = (V,D, C) is the
sum

∑
(S,R)∈C |S| · |R|. We write var(C) for the set of variables that occur in the scope of

constraint C.
An assignment or instantiation is a mapping from the set V of variables to the domain D.

An assignment τ satisfies a constraint C = ((x1, . . . , xn), R) if
(τ(x1), . . . , τ(xn)) ∈ R, and τ satisfies the CSP instance if it satisfies all its constraints. An
instance I is consistent or satisfiable if it is satisfied by some assignment. CSP is the problem
of deciding whether a given instance of CSP is consistent.

Bounding the treewidth is a classical method for restricting the structure of CSP instances.
The method dates back to Freuder [15]. Treewidth is a graph parameter that can be applied
to CSP in terms of primal graphs or incidence graphs giving rise to the CSP parameters
primal treewidth (also called induced width [11]) and incidence treewidth, respectively [35].
For self-containment we give the definitions. The primal graph of a CSP instance I has as
vertices the variables of I, and two variables are joined by an edge if and only if the variables
occur together in some constraint of I. The incidence graph is a bipartite graph, one side of
which consists of the variables and the other side consists of the constraints; a variable and a
constraint are joined by an edge if the variable occurs in the constraint. A tree decomposition
of a graph G = (V,E) is a pair (T, χ) consisting of a tree T and a mapping χ that assigns to
each node t of T a subset χ(t) ⊆ V such that the following conditions are satisfied: (i) for
every edge {u, v} ∈ E there is a node t of T such that u, v ∈ χ(t); and (ii) for any three
nodes t1, t2, t3 of T we have χ(t2) ⊆ χ(t1) ∩ χ(t3) if t2 lies on a path between t1 and t3. The
width of (T, χ) is the size of a largest set χ(t) minus 1. The treewidth of G is the smallest
width over all its tree decompositions.

For an instance I = (V,D, C) of CSP we define the following basic parameters:

• vars: the number |V | of variables, usually denoted by n;

• dom: the number |D| of values;

• cons: the number |C| of constraints;

• arity: the maximum size of a constraint scope;

• tw: the treewidth of the primal graph of I;
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• tw∗: the treewidth of the incidence graph of I.

Boolean CSP denotes the CSP with the Boolean domain {0, 1}. CNF-Sat is the
satisfiability problem for propositional formulas in conjunctive normal form (CNF). k-CNF-
Sat denotes CNF-Sat restricted to formulas where each clause is of width at most k, i.e.,
contains at most k literals.

2.2 Global Constraints

It is often preferred to represent a constraint more succinctly than by listing all the tuples
of the constraint relation. Such an intensionally represented constraint is called a global
constraint [33, 36]. The Global Constraints Catalogue [1] lists several hundred of global
constraints. In this paper we focus on the following global constraints.

• The AllDifferent global constraint is probably the best-known, most influential, and
most studied global constraint in constraint programming [36]. It admits efficient
matching based filtering algorithms [31]. An AllDifferent constraint over a set S of
variables is satisfied if each variable in S is assigned a different value.

• The global constraints NValue [29], AtLeastNValue [32], and AtMostNValue [2] are
widely used in constraint programming [1]. Each such constraint C is associated with
an integer nC ∈ N. The NValue constraint C over a set S of variables is satisfied
if the number of distinct values assigned to the variables in S is exactly nC . The
AtLeastNValue and AtMostNValue constraints are satisfied if the number of distinct
values is ≤ nC or ≥ nC , respectively. The special case of an NValue or AtLeastNValue
constraint C where nC equals the arity of C is equivalent to an AllDifferent constraint.

• The global constraint cTable is a table constraint with compressed tuples. This global
constraint admits a potentially exponential reduction in the space compared to an
extensional table constraint and can be propagated using a variant of the GAC-schema
algorithm [24]. cTable constraints have also been studied under the name generalized
DNF constraints [6]. A cTable constraint is a pair (S, U) where S = (v1, . . . , vr) is a
non-empty sequence of distinct variables, and U is a set of compressed tuples, which are
sequences of the form (V1, . . . , Vr), where Vi ⊆ D(vi), 1 ≤ i ≤ r. One compressed tuple
(V1, . . . , Vr) represents all the tuples (d1, . . . , dr) with di ∈ Vi. Thus, by “decompression”
one can compute from (S, U) a (unique) equivalent table constraint (S,R) where R
contains all the tuples that are represented by the compressed tuples in U .

The CSP where all constraints are AllDifferent constraints is denoted CSP6=. This variant of
the CSP was studied by Fellows et al. [13] who called it MAD-CSP (multiple all different CSP).
The CSP where all constraints are NValue, AtLeastNValue, or AtMostNValue constraints, is
denoted CSP=, CSP≥, and CSP≤, respectively. The CSP where all constraints are cTable
constraints is denoted CSPc.
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We note that all the problems CSP6=, CSP=, CSP≥, CSP≤, CSPc, are NP-complete. In
fact, CSP6= (and therefore the more general problems CSP≥, CSP≤) is even NP-hard for
instances consisting of two constraints only [26], and CSP≤ is even NP-hard for instances
consisting of a single constraint [3]. CSPc is clearly NP-hard as it contains the classical
CSP (with table constraints) as a special case. Hence all the considered problems admit the
representation of NP-hard combinatorial problems.

Consider a CSP instance that models some real-world problem and uses, among others,
some of the global constraints considered above, say the AllDifferent constraint. Then, we
can combine all the AllDifferent constraints in the instance into a new global constraint, a
multi-AllDifferent constraint. Filtering this combined constraint is polynomial time equivalent
to solving one instance of CSP6=. Such a combination of several global constraints into a new
one has been considered for several different global constraints (see, e.g., [20, 34]).

Guarantees and limits for polynomial-time preprocessing for single NValue, AtLeastNValue,
and AtMostNValue constraints have been given by Gaspers and Szeider [18].

The Boolean versions of the above global constraints problems, and the parameters vars,
dom, cons, arity, tw, and tw∗, are defined as in the CSP.

2.3 Subexponential Time Complexity

The time complexity functions used in this paper are assumed to be proper complexity
functions that are unbounded and nondecreasing.

It is clear that CSP and CNF-Sat are solvable in time domn|I|O(1) and 2n|I|O(1), respec-
tively, where I is the input instance and n is the number of variables in I. We say that the
CSP (resp. CNF-Sat) problem is solvable in (uniform) subexponential time if there exists an
algorithm that solves the problem in time domo(n)|I|O(1) (resp. 2o(n)|I|O(1)). Using the results
of [9, 14], the above definition is equivalent to the following: The CSP (resp. CNF-Sat)
problem is solvable in subexponential time if there exists an algorithm that for all ε = 1/`,
where ` is a positive integer, solves the problem in time domεn|I|O(1) (resp. 2εn|I|O(1)). This
means that we can improve the exponent in the exponential-term of the running time of the
algorithm indefinitely.

Let Q and Q′ be two problems, and let µ and µ′ be two parameter functions defined on
instances of Q and Q′, respectively. In the case of CSP and CNF-Sat, µ and µ′ will be
the number of variables in the instances of these problems. A subexponential time Turing
reduction family (SERF-reduction) [14, 22] is an algorithm A with an oracle to Q′ such that
there are computable functions f, g : N −→ N satisfying: (1) given a pair (I, ε) where I ∈ Q
and ε = 1/` (` is a positive integer), A decides I in time f(1/ε)domεµ(I)|I|O(1) (for CNF-Sat
dom = 2); and (2) for all oracle queries of the form “I ′ ∈ Q′” posed by A on input (I, ε), we
have µ′(I ′) ≤ g(1/ε)(µ(I) + log |I|).

Since we focus on the super-polynomial factor in the running time, we will often use the
O∗ notation, which suppresses the polynomial factor in the input length |I|.

The optimization class SNP consists of all search problems expressible by second-order
existential formulas whose first-order part is universal [30]. [22] introduced the notion of
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completeness for the class SNP under serf-reductions, and identified a class of problems which
are complete for SNP under serf-reductions, such that the subexponential time solvability for
any of these problems implies the subexponential time solvability of all problems in SNP. Many
well-known NP-hard problems are proved to be complete for SNP under the serf-reduction,
including 3-Sat, Vertex Cover, and Independent Set, for which extensive efforts have
been made in the last three decades to develop subexponential time algorithms with no
success. This fact has led to the exponential-time hypothesis, ETH, which is equivalent to the
statement that not all SNP problems are solvable in subexponential time:

Exponential-Time Hypothesis (ETH): The problem k-CNF-Sat, for any k ≥ 3, cannot
be solved in time 2o(n), where n is the number of variables in the formula. Therefore, there
exists c > 0 such that k-CNF-Sat cannot be solved in time 2cn.

The following result is implied, using the standard technique of renaming variables,
from [22, Corollary 1] and from the proof of the Sparsification Lemma [22], [14, Lemma
16.17].

Lemma 1. k-CNF-Sat (k ≥ 3) is solvable in 2o(n) time if and only if k-CNF-Sat with a
linear number of clauses and in which the number of occurrences of each variable is at most
3 is solvable in time 2o(n), where n is the number of variables in the formula (note that the
size of an instance of k-CNF-Sat is polynomial in n). In particular, choosing k = 3 we get:
3-CNF-Sat in which every variable occurs at most 3 times, denoted 3-3-Sat, is not solvable
in 2o(n) time unless the ETH fails.

The ETH has become a standard hypothesis in complexity theory [27].

Remark 1. In this paper, when we consider the CSP with global constraints restricted to
instances in which a certain parameter is Ω(g(n)) (resp. ω(g(n)), O(g(n)), o(g(n))), for some
proper complexity function g(n) of the number of variables n in the instance, we mean the
CSP restricted to all the instances in which the parameter is upper bounded by a (prespecified)
function that is Ω(g(n)) (resp. ω(g(n)), O(g(n)), o(g(n))).

3 The Problem CSP 6=

Let I be an instance of CSP6= with constraints C1, . . . , Cc for some integer c > 0, over the
set of variables {x1, . . . , xn}. Denote by Di, i = 1, . . . , n, the domain of xi.

Proposition 2. CSP6= can be solved in time O∗(2n).

Proof. We reduce the instance I to an instance of List Coloring. Construct the graph G
whose vertices are x1, . . . , xn (without loss of generality, we label the vertices in G with their
corresponding variables’ names in I) and such that there is an edge between two vertices xi
and xj, 1 ≤ i < j ≤ n if and only if xi and xj appear together in some constraint in I. For
each vertex xi in G, associate with it a list of colors Li = Di. It is not difficult to see that I
is a yes-instance of CSP6= if and only if the graph G has a proper list coloring. It is known
that List Coloring is solvable in time O∗(2n) [4], and hence so is CSP 6=.
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Corollary 3. Let d(n) = ω(1) be a proper complexity function. The CSP6= restricted to
instances in which dom ≥ d(n) is solvable in subexponential time.

Proof. Let d(n) = ω(1) be a proper complexity function, and consider the CSP6= restricted
to instances in which dom ≥ d(n). By Proposition 2, CSP 6= is solvable in time
O∗(2n) = O∗(d(n)n/ log (d(n))) ⊆ O∗(domo(n)).

By Corollary 3, we can focus our investigation of the subexponential time complexity
of the problem CSP6= on instances in which dom = O(1) = d, for some constant d. Note
that dom is an upper bound on arity because each constraint must have arity at most dom
(otherwise it cannot be satisfied). If d ≤ 2, then each constraint can have arity at most 2, and
CSP6= in this case reduces to 2-CNF-Sat, which is in P. Therefore, we can assume in the
remainder of this section that d ≥ 3.

Proposition 4. Unless the ETH fails, CSP6= restricted to instances in which dom = d ≥ 3
and cons = Ω(n) is not solvable in subexponential time.

Proof. It suffices to prove the result for cons = s(n), where s(n) is any specific function such
that s(n) = Θ(n), as the result would extend using a padding argument to any function
that is linear in n (we can add new “dummy” variables and new “dummy” constraints on
those new variables to make the relation between the constraints and the variables satisfy
the desired function s()).

By Lemma 1, 3-3-Sat is not solvable in subexponential time unless ETH fails. The
standard polynomial-time reduction from 3-Sat to 3-Colorability (see [10]), establishing
the NP-hardness of 3-Colorability, reduces an instance of 3-Sat on n variables and m
clauses to an instance of 3-Colorability with O(n + m) vertices and O(n + m) edges.
Therefore, if we use the same reduction but start from 3-3-Sat instead of 3-Sat, we end
up with an instance of 3-Colorability in which the number of vertices is O(n) and
the number of edges is O(n) as well. Let Linear-3-Colorability be the restriction of
3-Colorability to instances in which the number of edges is linear in the number of
vertices. The previous argument shows that if Linear-3-Colorability is solvable in
subexponential time then so is 3-3-Sat, and then the ETH would fail. Now if we use the
standard reduction from 3-Colorability to CSP6= (in which each vertex becomes a variable,
each edge becomes a constraint of arity 2, and the domain is the set of 3 colors), but instead
we start from an instance of Linear-3-Colorability, we obtain an instance of CSP6= on n
variables (the same as the number of vertices in the graph), linear number of constraints,
and domain size dom = 3. Therefore, the previous reduction is a SERF-reduction from
Linear-3-Colorability to the restriction of CSP6= to instances in which the number of
constraints is linear, and dom = 3. Combining the above sequence of arguments proves the
proposition.

Remark 2. We do not consider the restriction of CSP6= to instances in which cons = o(n)
and dom = O(1). This is because each constraint must have arity ≤ dom, and hence, if
cons = o(n) then it would follow that the total number of variables is o(n). It follows that
Proposition 4 and Corollary 3 provide tight characterizations of the subexponential time
complexity of CSP 6= with respect to each of cons and dom.
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The following proposition provides a tight characterization of the subexponential time
complexity of CSP 6= with respect to the treewidth of the primal graph:

Proposition 5. CSP6= is solvable in subexponential time for instances in which tw = o(n),
and unless the ETH fails, CSP6= is not solvable in subexponential time for instances in which
tw = Ω(n).

Proof. Let I be an instance of CSP 6= such that the treewidth of its primal graph is o(n).
Since the arity of each constraint in I is at most d and the domain size is d, in polynomial
time we can reduce I to an instance of CSP on the same set of variables, and with the same
domain, constraints, and primal treewidth. It is well known [16] that CSP is solvable in time
O∗(dtw) ⊆ O∗(do(n)), and hence I can be decided in subexponential time.

The hardness result follows from a general observation about the primal treewidth of the
CSP. First note that the number of variables n is an upper bound on the primal treewidth;
that is, tw ≤ n. Therefore, for any upper bound s(n) = Ω(n) on tw, using a padding
argument (adding a linear number of dummy new variables and singleton constraints that do
not increase the primal treewidth) we can reduce a general instance of CSP6= to an instance
in which tw ≤ s(n) at the cost of a linear increase in the number of variables and the instance
size. This provides a SERF-reduction from a general instance of CSP 6= to an instance in
which tw ≤ s(n) = Ω(n). The result now follows from the same result for CSP6= on general
instances (implied, e.g., from Proposition 4).1

It is well-known that (see [25]) tw ≤ arity · (tw∗ − 1) and tw∗ ≤ tw + 1. If arity = O(1),
then tw and tw∗ are within a multiplicative constant from one another. Therefore, from
Proposition 5 we can infer the following tight result:

Proposition 6. CSP 6= is solvable in subexponential time for instances in which tw∗ = o(n),
and unless the ETH fails, CSP6= is not solvable in subexponential time for instances in which
tw∗ = Ω(n).

Remark 3. There are several width parameters for CSP that are even more general than tw∗

in the sense that any instances for which tw∗ is small, also the other width parameter is
small; but there are instances for which the other width parameter is small but tw∗ can be
arbitrarily large. Prominent examples for such with parameters are hypertree width [19] and
submodular width [28]. The lower bound statement of Proposition 6 clearly carries over to
the more general width parameters. The same holds true for the lower bound statements in
Proposition 14 and Theorem 17.

4 The Problems CSP=, CSP≥, and CSP≤

We start by presenting an exact algorithm for CSP≥; we do so by reducing CSP≥ to CSP6=.
We use the example illustrated in Figure 1 as a running example to explain the idea behind this

1This padding argument applies as well to the other variants of the CSP with global constraints considered
in this paper, and will prove useful for the hardness results on their subexponential time complexity when
tw ≤ s(n) = Ω(n).
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reduction. In this example, the instance I of CSP≥ consists of three constraints C1, C2, C3,
where the variables in C1 are x1, x2, x3, x4, the variables in C2 are x4, x5, and the variables
in C3 are x1, x5, x6, x7. The domain of x1 is {a, b}, the domain of both x2 and x3 is {b}, the
domain of x4 is {b, c}, the domain of x5 is {a}, and the domain of both x6 and x7 is {d, e}.
The number of distinct values that need to be assigned to the variables of C1 is at least 3, to
the variables of C2 is at least 2, and to the variables of C3 is at least 3.

In a solution S (i.e., an assignment of variables to domain values) to an instance I of
CSP≥, and for a constraint C in I, it is possible for several variables in C to be assigned the
same value by the solution S (in the running example we are forced to assign both x2 and
x3 the value b). Therefore, if we attempt a straightforward reduction from CSP≥ to CSP6=

that produces the same instance I, the solution S to I as an instance of CSP≥ may not be
a solution to I as an instance of CSP6=. It is possible that the above happens due to the
fact that there are variables in I that can be removed without affecting the satisfiability of
I, because there is a solution to I in which each constraint will still be satisfied without
considering the values assigned to those variables.

The algorithm starts by trying each subset of the variables as a subset for which there
exists a solution in which each of those variables is “essential” for this solution; the algorithm
then removes all the other (nonessential) variables, updates the instance, and works toward
finding a solution under this assumption in the resulting instance. (In the running example,
we remove x3 from C1; see the Venn diagram on the left in Figure 1.) Even with the above
assumption, it is still possible that in a solution to the resulting instance, two variables in a
constraint C are assigned the same value. One cannot simply ignore (remove) one of these
variables on the basis that removing it will not affect the satisfiability of C, because the
removed variable may contribute to the satisfiability of a constraint other than C, in which
this variable appears as well. (In the running example, we are forced to assign both x1 and
x5 the same value, which would violate constraint C3 of CSP6=.) Therefore, the resulting
instance, even though it may be a satisfiable instance of CSP≥, it may not be a satisfiable
instance of CSP6=. However, as it will be shown in Lemma 7, it is possible in such an instance
to “reassign” each variable to a subset of the constraints that it appears in, so that after this
reassignment/repartitioning each variable contributes to the satisfiability of each constraint
that it appears in. After such a reassignment, the resulting instance of CSP≥ becomes an
equivalent instance of CSP6=. (In the running example, variable x5 is not contributing to C3,
and can be safely reassigned to C2; see the Venn diagram on the right in Figure 1.) We now
proceed to the formal proofs.

Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer value c > 0,
over the variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer associated with
constraint Ci. Denote by Di, i = 1, . . . , n, the domain of variable xi, and let D =

⋃n
i=1Di.

Set k = |D|. If we consider each Ci, i = 1, . . . , c, as a set consisting of all the variables in Ci,
and we draw the Venn diagram for the Ci’s, then this Venn diagram consists of at most s ≤ 2c

many nonempty regions, where each region Rj, j = 1, . . . , s, is defined as the intersection
of all the sets containing the variables that lie in Rj in the Venn diagram. For a solution S
to the instance I, we call a variable xi essential (to S) if discounting the value assigned to
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C1

C2

C3

x2 x1

x4 x5

x6 x7

C ′1

C ′2

C ′3

x2 x1

x4

x5

x6 x7

Figure 1: Illustration of the example of the reduction from CSP≥ to CSP 6=.

xi by S violates at least one of the constraints (containing xi), and hence no longer gives
a solution to I. It is clear that by enumerating every subset of the variables in I, which
takes O(2n) time, we can work under the assumption that we are looking for a solution such
that every variable is essential to S. Since we are working on an instance of CSP≥, adding
the nonessential variables to the solution afterwards (and assigning them values from their
domains) will not hurt the solution. Therefore, without loss of generality, we will assume
that each of the variables x1, . . . , xn is essential to the solution sought (if any exists). We
start with the following lemma.

Lemma 7 (The Repartitioning Lemma). Let I be an instance of CSP≥. There is a
solution to I if and only if there is an instance I ′ on the same set of variables as I, and
whose constraints are C ′1, . . . , C

′
c, such that:

(1) the variables in C ′i are a subset of those in Ci, for i = 1, . . . , c;

(2) the numbers n1, . . . , nc are the same in both I and I ′; and

(3) there is a solution to I ′ satisfying that for every value v, and for any two distinct
variables xi, xj that are assigned the value v in the solution for I ′, the set of constraints
that xi belongs to in I ′ is disjoint from that that xj belongs to in I ′.

Proof. Suppose that I has a solution S; by the discussion preceding this lemma, we can
assume that every variable is essential to S. We define the instance I ′ on the same set of
variables as I as follows. The constants n1, . . . , nc remain the same in I ′. We define the
constraints in I ′ by a sequence of changes performed to the constraints in I; initially the
constraints of I ′ are identical to those of I. For every value v ∈ D assigned to some variable
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by the solution S, let x1v, . . . , x
`
v be the variables assigned the value v by S. For each xjv,

j = 1, . . . , `− 1, considered in the listed order, let Cjv be the set of constraints containing xjv
in I ′, and let Cjv,∪ be the union of all constraints containing any of the variables xj+1

v , . . . , x`v.

Remove xjv from each constraint in Cjv ∩ C
j
v,∪.

We claim that the same solution to I is a solution to I ′ that satisfies all the conditions in
the statement of the lemma. First, from the construction of the constraints in I ′, for any
value v in the solution, the set of constraints containing each variable assigned the value v are
mutually disjoint because each variable xiv (i < `) assigned a value v is removed from each
constraint that some subsequent variable in xi+1

v , . . . , x`v is contained in. Moreover, because
each constraint C ′i is obtained from Ci only by (possibly) removing variables from Ci, we have
C ′i ⊆ Ci, for i = 1, . . . , c. Finally, when a variable xiv that is assigned a value v is removed
from a constraint C ′j, this removal will not affect the number of different values assigned to
the variables in C ′j by S; this is because we know for sure that there will be a subsequent
variable xpv, p ∈ {i+ 1, . . . , `}, that is assigned value v and that will remain in C ′j, namely
the variable xpv with the maximum index p that appears in C ′j.

Conversely, because each C ′i is a subset of Ci, for i = 1, . . . , c, it is easy to see that any
solution to I ′ is also a solution to I.

Theorem 8. CSP≥ can be solved in time O∗((2(cons+1) + 1)n).

Proof. Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer c > 0,
over the variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer associated with
constraint Ci.

We first enumerate each subset of the variables {x1, . . . , xn} as the subset of essential
variables for the solution S sought. Fix such an enumerated subset X, remove the other
variables from I, and update the instance accordingly (i.e., update the constraints); without
loss of generality, we will still refer to the resulting instance as I.

By Lemma 7, there is a solution to I if and only if there is an instance I ′ on the same
set of variables as I, and whose constraints are C ′1, . . . , C

′
c, such that: (1) the variables in

C ′i form a subset of those in Ci, for i = 1, . . . , c, (2) the numbers n1, . . . , nc are the same in
both I and I ′, and (3) there is a solution to I ′ satisfying that for every value v, and for any
two distinct variables xi, xj that are assigned the value v in the solution for I ′, the set of
constraints that xi belongs to in I ′ is disjoint from that that xj belongs to in I ′.

To find the instance I ′, we will try every possible partitioning of the variables in X into c
constraints to determine the new constraints C ′1, . . . , C

′
c in I ′. For each such partitioning π

in which C ′i ⊆ Ci and at least ni variables are in C ′i, for i = 1, . . . , c, we form the instance
of CSP6= on the set of variables X and the set of constraints C ′1, . . . , C

′
c, and invoke the

algorithm for CSP6= described in Proposition 2 on this instance; if the algorithm returns a
solution then we return the same solution as a solution to I. If for each enumerated subset
X and each enumerated partitioning π the algorithm for CSP6= rejects, then we reject the
instance I.

It is easy to see the correctness of the above algorithm. Clearly, if there is a solution
to the CSP6= instance then there is a solution to I ′, and hence to I. This is because each
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constraint contains at least ni variables, which must receive ni distinct values in the solution
to the CSP6= instance, hence satisfying each constraint Ci and satisfying I. On the other
hand, if I has a solution, then there is an enumerated partitioning of the variables in X that
will correspond to the constraints in I ′. Now because there is a solution to I ′ that satisfies
properties (1)-(3) in Lemma 7, no two variables in the same constraint of I ′ receive the same
value v in this solution (by property (3)). Therefore, this solution will also be a solution to
the constructed instance of CSP 6=. This shows the correctness of the above algorithm.

The running time of the algorithm is the time taken to enumerate all subsets of the
variables, and for each subset X, the time to enumerate all partitions of X into c constraints,
and finally for each such partition the time taken to invoke the CSP6= algorithm on the
resulting instance. The number of subsets of variables of {x1, . . . , xn} is

∑n
i=0

(
n
i

)
. For each

subset of cardinality i, there are at most 2ci many ways of partitioning it into c constraints.
Finally, for each instance on i variables, the CSP6= algorithm takes O∗(2i) time. Putting
everything together, the overall running time of the algorithm is a polynomial factor multiplied
by:

n∑
i=0

(
n

i

)
· 2ci · 2i =

n∑
i=0

(
n

i

)
· 2(c+1)i = (2(c+1) + 1)n.

Therefore, the running time of the algorithm is O∗((2(cons+1) + 1)n) as claimed.

Corollary 9. CSP≥ restricted to instances in which cons = O(1) is solvable in O∗(2O(n))
time.

Corollary 10. CSP≥ restricted to instances in which cons = o(log dom) is solvable in
subexponential time.

Proof. The result follows from Theorem 8 after noticing that if cons = o(log dom) then
2cons = domo(1).

Proposition 11. Let d(n) = ω(1) be a proper complexity function. Then CSP≥ restricted to
instances in which cons = O(1) and dom ≥ d(n) is solvable in subexponential time, and unless
the ETH fails, CSP≥ restricted to instances in which cons = Ω(n) (even when dom = O(1))
is not solvable in subexponential time.

Proof. The positive result follows from Corollary 10. The hardness result follows from the
hardness result for CSP6= in Proposition 4 (CSP 6= is a special case of CSP≥).

Theorem 12. CSP≤ restricted to instances where dom = O(1) and cons = Ω(n) is not
solvable in subexponential time, unless the ETH fails.

Proof. We give a SERF-reduction from 3-3-Sat to CSP≤; the result will then follow by
Lemma 1. Take an instance ϕ of 3-3-Sat with n variables. We construct in polynomial
time an instance of CSP≤, with cons = O(n) and dom = O(1) that is a yes-instance if
and only if ϕ ∈ 3-3-Sat. We proceed in two steps: firstly, we modify the well-known



INFSYS RR 1843-14-06 13

polynomial-time reduction from 3-Sat to Vertex Cover [17] to a reduction from 3-3-Sat
to CSP≤, resulting in an instance with cons = O(n) and dom = O(n); secondly, we transform
this instance of CSP≤ to an equivalent instance of CSP≤ with cons = O(n) and dom = O(1).

We start with the first step. Let ϕ consist of the clauses c1, . . . , cm, where ci = li1∨li2∨li3 for
each 1 ≤ i ≤ m. The well-known reduction to Vertex Cover produces a graph G = (V,E),
containing vertices vx, vx for each variable x occurring in ϕ, and a vertex vij for each literal
occurrence, where 1 ≤ i ≤ m and 1 ≤ j ≤ 3. The variables vx and vx are adjacent, for each
variable x, and the vertices vi1, v

i
2, v

i
3 form a triangle, for each 1 ≤ i ≤ m. Moreover, there is

an edge between vij and vl, where l = lij. Then ϕ is satisfiable if and only if G has a vertex
cover consisting of n+ 2m vertices. More specifically, ϕ is satisfiable if and only if G has a
vertex cover containing exactly one vertex from vx, vx for each variable x and exactly two
vertices from vi1, v

i
2, v

i
3 for each 1 ≤ i ≤ m. We now construct an instance of CSP≤ as follows.

For each edge e = {v1, v2} ∈ E, we introduce a variable ue with domain {v1, v2}. Then, for
each clause ci, we define the set Eci to consist of all edges between vi1, v

i
2, v

i
3, between vij

and vlij and between vlij and v
lij

, for each 1 ≤ j ≤ 3. Then, we add a constraint ensuring

that the variables ue for all nine e ∈ Eci take at most 5 different values. The assignments
to the variables ue that satisfy all these constraints exactly correspond to the vertex covers
of G containing exactly one vertex from vx, vx for each variable x and exactly two vertices
from vi1, v

i
2, v

i
3 for each 1 ≤ i ≤ m. These particular vertex covers, in turn, correspond exactly

to truth assignments (which set one of x, x to true, for each variable x) satisfying ϕ. The
construction of such a constraint is illustrated in Figure 2.

◦ •
vi2

•
vi1

• vi3

◦◦

◦•
vx4

•
vx4

◦•
vx1

•
vx1

◦•
vx5

•
vx5

◦
◦

◦

◦ •
vj2

•
vj1

• vj3

◦◦

◦•
vx6

•
vx6

◦•
vx7

•
vx7

◦
◦

◦

Figure 2: The CSP≤ constraints corresponding to example clauses ci = (x1∨x4∨x5) and cj =
(x5 ∨ x6 ∨ x7). Variables are denoted by ◦, and values by •. The constraints are indicated by
dashed lines. The nine variables in each constraint must be assigned to at most 5 different
values. The double lines indicate an assignment to the variables satisfying the constraint that
corresponds to the truth assignment {x1 7→ >, x4 7→ ⊥, x5 7→ >, x6 7→ >, x7 7→ ⊥}.

In the second step, we transform the instance of CSP≤ in such a way that dom = O(1).
In order to do so, we will use the following observation. Whenever two vertices v1, v2 ∈ V
have the property that there is no constraint both containing a variable ue1 for some edge e1
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incident with v1 and a variable ue2 for some edge e2 incident with v2, then we can safely
identify the domain values v1 and v2 in the instance of CSP≤. Consequently, we can identify
all m many domain values v11, . . . , v

m
1 into a single value, and similarly identify all domain

values v12, . . . , v
m
2 and v13, . . . , v

m
3 . Next, to reduce dom even more, we will identify a number

of domain values vx with each other (and similarly identify their complementary values vx
with each other). Consider the primal graph of ϕ, i.e., the graph Gp

ϕ containing as vertices the
variables of ϕ where two vertices x, x′ are adjacent if and only if x and x′ occur together in a
clause (positively or negatively). Since each variable occurs at most 3 times in ϕ, we know
that the maximum degree of Gp

ϕ is bounded above by 8. Then, by Brooks’ Theorem [5], we
know that there exists a proper coloring of Gp

ϕ by at most 9 colors, and that such a coloring
can be computed in linear time. Take such a proper coloring c of Gp

ϕ. Now, for each color b
used by the coloring c, we let Xb ⊆ Var(ϕ) be the set of variables x such that c(x) = b. Then,
since c is a proper coloring of the primal graph Gp

ϕ of ϕ, we know that for any color b no two
variables x, x′ ∈ Xb occur together in any clause of ϕ. Therefore, for each color 1 ≤ b ≤ 3 we
can safely identify all domain values vx for x ∈ Xb with each other in the instance of CSP≤,
and similarly we can safely identify all domain values vx for x ∈ Xb with each other. This
results in an equivalent instance of CSP≤ with cons = O(n) and dom = O(1).

We next consider the subexponential time complexity of the CSP=, CSP≥, and CSP≤

with respect of the primal treewidth. We have the following tight result:

Proposition 13. CSP=, CSP≥, and CSP≤ restricted to instances in which tw = o(n)
are solvable in subexponential time, and unless the ETH fails, CSP=, CSP≥, and CSP≤

restricted to instances in which tw = Ω(n) are not solvable in subexponential time.

Proof. The proof of this proposition for each of the CSP=, CSP≥, and CSP≤ is exactly the
same as the proof of Proposition 5.

Finally, the following hardness result for CSP= and CSP≥ with respect to tw∗ follows
from Proposition 6 since CSP 6= is a special case of each of CSP= and CSP≥:

Proposition 14. Unless the ETH fails, CSP= and CSP≥ are not solvable in subexponential
time for instances in which tw∗ = Ω(n).

5 The Problem CSPc

We start by providing strong evidence that Boolean CSPc is not solvable in subexponential
time. By SAT[3] we denote the satisfiability of normalized propositional formulas of depth 3
(see [14]), that is, propositional formulas that are the conjunction-of-disjunction-of-conjunction
of literals. It is well known that if SAT[3] is solvable in time O∗(2o(n)) then the W -hierarchy
in parameterized complexity collapses at the second level [7], that is, W [2] = FPT, which is
a consequence that is deemed very unlikely and would imply that the ETH fails [14]. We
have the following result:

Proposition 15. Unless W [2] = FPT, Boolean CSPc is not solvable in time O∗(2o(n)).
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Proof. It is easy to see that an instance of SAT[3] is polynomial-time reducible to an instance
of Boolean CSPc on the same set of variables. In this reduction, every disjunction of
conjunction of literals in the Boolean formula is associated with a cTable constraint, where
each compressed tuple (V1, . . . , Vr) of this constraint represents a conjunction of literals: a
positive literal xi is represented by Vi = {1}, a negative literal ¬xi is represented by Vi = {0},
and if a variable xi does not occur in the conjunction, it is represented by Vi = {0, 1}.
Therefore, there is a SERF-reduction from SAT[3] to Boolean CSPc. The statement now
follows from the result in [7].

Next, we consider the subexponential time complexity of CSPc with respect to the number
of constraints cons. We have the following proposition:

Proposition 16. CSPc restricted to instances in which cons = O(1) is solvable in subexpo-
nential time (even in P), and unless the ETH fails, CSPc restricted to instances in which
cons = ω(1) is not solvable in subexponential time.

Proof. If the number of constraints in an instance is O(1), then in polynomial time we can
enumerate each subset of tuples T such that T contains exactly one compressed tuple from
each constraint in the instance (because the size of T is O(1)). We can then verify consistency,
and deduce an instantiation of the set of variables if it exists in polynomial time. The
hardness result follows from the same hardness result for CSP [23] since CSP is a special
case of CSPc.

The following theorem provides a tight characterization of the subexponential time
complexity of CSPc with respect to the primal and incidence treewidth.

Theorem 17. The following statements are true:

(i) CSPc restricted to instances in which tw = o(n) is solvable in subexponential time, and
unless the ETH fails, CSPc restricted to instances in which tw = Ω(n) is not solvable
in subexponential time.

(ii) CSPc restricted to instances in which tw∗ = O(1) is solvable in subexponential time
(even in P), and unless the ETH fails, CSPc restricted to instances in which tw∗ = ω(1)
is not solvable in subexponential time.

Proof. (i) Note that an upper bound on the primal treewidth implies the same upper bound
on the arity. Let I be an instance of CSPc whose tw = o(n). Since arity = o(n), each constraint
contains at most d(n)o(n) many satisfying tuples. By decompressing compressed tuples, i.e.,
by enumerating all the satisfying tuples in each constraint in time O∗(d(n)o(n)) we can reduce
the instance I to an instance of CSP on the same set of variables, domain, and primal tree
width. It is well known [16] that CSP is solvable in time O∗(d(n)tw) ⊆ O∗(d(n)o(n)), and
hence I can be decided in subexponential time. The hardness result follows from the same
hardness result for the CSP [23].

(ii) The hardness result is a direct consequence of the hardness result in Proposition 16,
since cons is an upper bound on tw∗. Establishing the first statement requires some work.
Consider an instance I of CSPc whose incidence treewidth is a constant w.
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We apply a construction of [35] to transform I into an equivalent instance I ′ of CSPc

whose incidence treewidth is at most w + 1 and where each variable appears in the scope of
at most 3 constraints. The construction keeps all constraints of I and adds binary equality
constraints and copies of variables. The equality constraints enforce that a variable and all
its copies get assigned the same value. The construction in [35] is stated for table constraints
but clearly works also for cTable, since the constraints of I are not changed at all, and the
newly introduced constraints are binary.

Consider the dual graph Gd of I ′ which has as vertices the constraints of I ′, and where
two constraints are joined by an edge if and only if they share at least one variable. Because
each variable appears in the scope of at most 3 constraints, a further result of [35, Lemma
2(5)] applies, which is based on a construction due to Kolaitis and Vardi [25], and from which
it follows that the treewidth of Gd is at most 2w + 2.

Next we obtain the CSP instance I ′′ which is “dual” to the instance I ′. This construction
is a straightforward generalization of a known construction for CSP with table constraints
(see, e.g., [11, Definition 2.1]). Each constraint C = (S, U) of I ′ gives rise to a variable x[C]
of I ′′; the domain D(x[C]) is U , a set of compressed tuples. Between any two variables
x[C1], x[C2] of I ′′ corresponding to constraints C1 = (S1, U1) and C2 = (S2, U2), respectively,
of I ′ that share at least one variable we add a binary table constraint ((x[C1], x[C2]), R).
Here, the relation R contains all pairs (t1, t2) ∈ U1 × U2 that are consistent in the sense
that for all variables x that appear in the scopes of C1 and C2, the coordinate V 1

i of t1
corresponding to x and the coordinate V 2

j of t2 corresponding x have a nonempty intersection.
It is straightforward to see that I ′ and I ′′ are equivalent. It remains to observe that Gd is
isomorphic to the primal graph of I ′′, and hence the primal treewidth of I ′′ is 2w + 2, a
constant. Hence we can solve I ′′ in polynomial time [16].

As it turns out, both CSP and CSPc exhibit the same subexponential time complexity
behavior with respect to the same restrictions on the structural parameters considered above.
On the other hand, the negative result proved in Proposition 15 for the Boolean CSPc

is stronger than that known for Boolean CSP [23], the latter of which states that a
(nonuniform) subexponential time algorithm for CSP implies a (nonuniform) subexponential
time algorithm for CNF-Sat.

6 Conclusion

We have provided a first analysis of the subexponential time complexity of CSP with global
constraints, focusing on instances that are composed of the fundamental global constraints
AllDifferent, AtLeastNValue, AtMostNValue, and cTable, respectively. Our results show a
detailed complexity landscape for these problems under various natural structural restrictions.
In most cases, we were able to obtain tight bounds that exactly determine the borderline
between the classes of instances that can be solved in subexponential time, and those for
which the existence of subexponential time algorithms is unlikely. There are several ways
for extending the current work such as considering other global constraints, the combination
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of different global constraints, and other structural restrictions on the primal or incidence
graphs.
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