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Abstract. We propose Q(D)-resolution, a proof system for Quantified Boolean
Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by
a dependency scheme D. This system is motivated by the generalization of the
QDPLL algorithm using dependency schemes implemented in the solver DepQBF.
We prove soundness of Q(D)-resolution for a dependency scheme D that is strictly
more general than the standard dependency scheme; the latter is currently used
by DepQBF. This result is obtained by proving correctness of an algorithm that
transforms Q(D)-resolution refutations into Q-resolution refutations and could be
of independent practical interest. We also give an alternative characterization of
resolution-path dependencies in terms of directed walks in a formula’s implication
graph which admits an algorithmically more advantageous treatment.
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1 Introduction

The satisfiability problem of Quantified Boolean Formulas (QBFs) is a canonical PSPACE-com-
plete decision problem [17]. QBFs offer a convenient language for representing problems from
domains such as model checking, planning, or knowledge representation and reasoning. In
practice, QBF solvers are expected to generate certificates witnessing the satisfiability or
unsatisfiablity of input formulas. These certificates serve a dual purpose:

1. Certificates encode information that is valuable in applications settings (e.g., a plan, or
a counterexample in model checking).

2. Certificates can be used to verify that the answer given by the solver is correct.

Search-based QBF solvers implementing the QDPLL algorithm [7] typically use variants of
Q-resolution [5] as a certificate language [13]. When assigning variables during the search
process, the QDPLL algorithm observes the order induced by the nesting of quantifiers
in the input formula. This is often needlessly restrictive, in particular for formulas in
the common QCNF format which places all quantifiers in a single, linear quantifier prefix.
An appealing approach to dealing with this restriction is the generalization of QDPLL by
means of dependency schemes implemented in DepQBF [2, 12]. A dependency scheme maps
each QCNF formula to a binary relation on its variables that represents potential variable
dependencies [14, 15]. This relation is used by DepQBF to gain additional freedom in
decision making and in the definition of more powerful rules for constraint learning and
unit propagation. The latter correspond to a generalization of the forall-reduction rule of
Q-resolution [2]. Since certificates produced by DepQBF may involve applications of this
more general rule, they do not correspond to ordinary Q-resolution proofs. With respect to
the two purposes of certificates mentioned above, this has the following consequences.

1. The canonical algorithm for extracting Skolem/Herbrand models from Q-resolution
refutations [1] does not work for certificates generated by DepQBF.

2. It is unclear whether certificates can serve as proofs of truth or falsity, that is, whether
the underlying proof system is sound.

In this paper, we introduce Q(D)-resolution to study the proof system used by DepQBF to
generate proofs. We define the reflexive resolution-path dependency scheme Drrs and prove
correctness of an algorithm that transforms Q(Drrs)-resolution refutations into Q-resolution
refutations, thus establishing soundness of Q(Drrs)-resolution. Since Drrs is strictly more
general than the standard dependency scheme Dstd currently implemented in DepQBF,
the soundness result carries over to Q(Dstd)-resolution. We also provide an alternative
characterization of resolution-path dependencies [16, 18] in terms of directed walks in a
formula’s implication graph which admits an algorithmically more advantageous treatment in
terms of strongly connected components. The dependency scheme Drrs is a variant of the
resolution path dependency scheme Dres [16]. We justify our working with Drrs instead of Dres

by demonstrating that Q(Dres)-resolution is unsound.
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2 Preliminaries

Sequences. We write ε for the empty sequence. If s = s1 . . . sk and r = r1 . . . rl are
sequences then by s ∗ r we denote the sequence s1 . . . skr1 . . . rl. Let r be a sequence such that
r = p ∗ s. Then p is a prefix of r and s is a suffix of r. If t is a prefix (suffix) of r then t is a
proper prefix (suffix) of r if t 6= r. The length of a sequence s1 . . . sk is k. A shortest sequence
with property P is a sequence of minimum length with property P . If pi is a sequence for
every i ∈ {1, . . . , k} we use 〈pi〉ki=1 as a shorthand for the sequence p1 ∗ p2 ∗ · · · ∗ pk. At the
cost of introducing some ambiguity we write a for both the singleton set {a} and the sequence
containing only a.

Graphs. A directed graph G is a pair (V (G), E(G)) consisting of a finite set V (G) and an
irreflexive binary relation E(G) ⊆ V (G)× V (G). The elements of V (G) and E(G) are called
vertices and edges of G, respectively. If E(G) is symmetric then G is an undirected graph.
We may write vw or {v, w} for an edge (v, w) ∈ E(G) if G is an undirected graph. A walk
(in G) from v1 to vk is a sequence v1 . . . vk such that vi ∈ V (G) for every i ∈ {1, . . . , k} and
(vi, vi+1) ∈ E(G) for every i ∈ {1, . . . , k − 1}. If X ⊆ V (G) we write G[X] for the subgraph
of G induced by X with vertex set V (G[X]) = X and edge set E(G[X]) = E(G) ∩ (X ×X).
We define an equivalence relation ∼G on V (G) as v ∼G w if and only if there is a walk from
v to w in G and a walk from w to v in G. The equivalence classes of ∼G are called strongly
connected components of G.

Trees. A rooted binary tree is a directed graph G such that (a) there exists a vertex r ∈ V (G)
(called the root of G) such that for every w ∈ V (G) there is a unique walk from r to w in G,
and (b) for every v ∈ V (G) there are at most two distinct vertices u,w ∈ V (G) such that
(v, u) ∈ E(G) and (v, w) ∈ E(G). A labelled rooted binary tree is a triple T = (V (T ), E(T ), λ)
where (V (T ), E(T )) is a rooted binary tree and λ is a function with domain V (T ) ∪ E(T ).
We say x ∈ V (T ) ∪ E(T ) is labelled with λ(x).

Formulas. We consider quantified Boolean formulas in quantified conjunctive normal form
(QCNF). A QCNF formula is a pair QF , where Q is a (quantifier) prefix and F is a CNF
formula, called the matrix of F . A CNF formula is a finite set of clauses, where each
clause is a finite set of literals. Literals are negated or unnegated propositional variables.
If x is a variable, we put x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. If X
is a set of literals, we write X for the set { a : a ∈ X }. For a clause C, we let var(C)
be the set of variables occuring (negated or unnegated) in C. For a QCNF formula F
with matrix F , we put var(F) = var(F ) =

⋃
C∈F var(C). We call a clause tautological if

it contains the same variable negated as well as unnegated. We assume that the matrix
of a formula contains only non-tautological clauses. The prefix of a QCNF formula F
is a sequence Q1x1 . . . Qnxn, where x1 . . . xn is a permutation of var(F) and Qi ∈ {∀, ∃}
for 1 ≤ i ≤ n. We define a total order <F on var(F) by letting xi <F xj if and only
if i < j. The sets of existential and universal variables occurring in F are given by
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var∃(F) = {xi : 1 ≤ i ≤ n,Qi = ∃ } and var∀(F) = {xi : 1 ≤ i ≤ n,Qi = ∀ }. Relative
to F , a literal a is existential (universal) if var(a) is existential (universal). We define
RF = { (x, y) : x <F y } and let RF(x) = { y ∈ var(F) : (x, y) ∈ RF } for x ∈ var(F).
Moreover, we let Dtrv

F = { (xi, xj) ∈ RF : Qi 6= Qj }. If F is a CNF formula and a is a literal
then F [a] = {C \ a : C ∈ F, a /∈ C }. We extend this to QCNF formulas F = QF by letting
F [a] = Q′F [a], where Q′ is obtained from Q by deleting var(a) and its associated quantifier.
Let F be a QCNF formula. If var(F) = ∅ then F is true (or satisfiable) if F = ∅. Otherwise,
let F = Qxx F ′. If Qx = ∀ then F is true if both F ′[x] and F ′[¬x] are true. If Qx = ∃ then
F is true if at least one of F ′[x] and F ′[¬x1] is true. If F is not true then F is false (or
unsatisfiable).

3 Q(D)-Resolution

A proto-dependency scheme is a mapping D that associates each QCNF formula F with a
binary relation DF ⊆ Dtrv

F . The trivial dependency scheme is the mapping Dtrv : F 7→ Dtrv
F . A

proto-dependency scheme D is tractable if the relation D(F) can be computed in polynomial
time for each QCNF formula F .

We will represent Q(D)-resolution derivations as labelled rooted binary trees constructed
by means of the following operations.1

• If C is a clause then 4(C) denotes a labelled rooted binary tree consisting of a single
(root) vertex labelled with C.

• Let T1 = (V1, E1, λ1) and T2 = (V2, E2, λ2) be labelled rooted binary trees. For every
literal a, we define the operation �a as follows. We assume without loss of generality
that V1 and V2 are disjoint. Let r1 and r2 denote the roots of T1 and T2, respectively,
and let C1 = λ1(r1) and C2 = λ2(r2). Then T1 �a T2 denotes the labelled rooted binary
tree obtained by taking the union of T1 and T2, adding a new vertex r labelled with
C = (C1 \a)∪ (C2 \a), and making r the root by adding edges (r, r1) and (r, r2) labelled
with a and a, respectively.

• Let T = (V,E, λ) be a labelled rooted binary tree with root r and λ(r) = C. For a
literal a we construct the labelled rooted binary tree T‖a starting from T by adding a
fresh vertex r′ labelled with C \ a and an edge (r′, r) labelled with a.

Definition 1 (Tree-like Q(D)-resolution derivation). Let D be a proto-dependency scheme
and let F = QF be a QCNF formula. A tree-like Q(D)-resolution derivation from F is a
labelled rooted binary tree that can be constructed using the following rules.

1. If C ∈ F then 4(C) is a tree-like Q(D)-resolution derivation from F .

1Our notation is inspired by [3].
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2. Let T1, T2 be Q(D)-resolution derivations from F whose roots are labelled with C1 and
C2, respectively. If a ∈ C1 is an existential literal such that a ∈ C2, and (C1\a)∪(C2\a)
is non-tautological then T1 �a T2 is a tree-like Q(D)-resolution derivation from F .

3. Let T be a Q(D)-resolution derivation with root label C. If a ∈ C is a universal literal
and there is no existential literal b ∈ var(C) such that (var(a), var(b)) ∈ D(F) then
T‖a is a tree-like Q(D)-resolution derivation from F .

Rules 2 and 3 are known as resolution and forall-reduction, respectively. We will usually refer
to tree-like Q(D)-resolution derivations as Q(D)-derivations (or simply as derivations if D is
clear from the context). Let T = (V,E, λ) be a Q(D)-derivation from F with root r. We say
that T is a derivation of λ(r) or that T derives λ(r), and call λ(r) the conclusion of T . We
call T a refutation of F if T derives the empty clause ∅. If T1 and T2 are derivations from F
of clauses C1 and C2 such that C1 ⊆ C2 we say T1 subsumes T2. The size of T , denoted |T |,
is defined to be |V |. A position of T is either a sequence of edge labels occurring on a walk
in T starting from r or the empty sequence ε. Let π be a position of T . We let T [π] denote
the subderivation of T at π defined as

T [π] =


T if π = ε,

T1[σ] if T = T1 �` T2 and π = ` ∗ σ,

T ′[σ] if T = T ′‖` and π = ` ∗ σ.

If T [π] = T1�`T2 we refer to T [π] as a resolution step (on var(`)); if T [π] = S‖a then T [π] is a
forall-reduction step (on `). Let F be a QCNF formula, let x be a universal variable of F , and
let y be an existential variable of F . Then (x, y) ∈ Dtrv(F) if and only if x <F y. It follows
that the forall-reduction rule of “ordinary” Q-resolution [5] corresponds to forall-reduction in
Q(Dtrv)-resolution. Accordingly, we define Q-resolution as follows.

Definition 2 (Q-resolution). Let F be a QCNF formula. A Q-resolution derivation from F
is a Q(Dtrv)-derivation from F , and a Q-resolution refutation of F is a Q(Dtrv)-refutation of
F .

In spite of its simplicity, Q-resolution is a sound and complete proof system for unsatisfiable
QCNF formulas.

Fact 1 ([5]). Let F be a QCNF formula. There exists a Q-resolution refutation of F if and
only if F is unsatisfiable.

Let F be a QCNF formula, let a be a universal literal, and let b be an existential literal.
We say that b blocks a (relative to F) if var(a) <F var(b). We extend this to clauses C
and say that C blocks a if there is a literal b ∈ C such that b blocks a. If T = S‖a is
a Q(D)-derivation from F and C blocks a we say that C blocks T . In Q(D)-derivations,
forall-reduction can be applied even in the presence of blocking literals. We refer to such
occurrences of forall-reduction as D-reductions.
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Definition 3 (D-reduction). Let D be a proto-dependency scheme, let F be a QCNF formula,
and let T be a Q(D)-derivation from F . Let T [π] = S‖a be a derivation of clause C. If C
blocks S‖a then S‖a is a D-reduction (of T ). If, in addition, there is no D-reduction R‖b of
T such that var(b) <F var(a), then T [π] is an outermost D-reduction (of T ).

A Q(D)-derivation that does not contain D-reductions is already a Q-resolution derivation.

4 Dependency Schemes and Q(D)-resolution

In the literature, there are two definitions of Dependency Scheme that refine our abstract
notion of a proto-dependency scheme:

1. Dependency schemes and so-called cumulative dependency schemes that characterize
truth-value preserving permutations of a formula’s prefix [15].

2. Dependency schemes based on a semantic notion of independence [14].

It turns out these notions are too weak to characterize soundness of Q(D)-resolution. For
dependency schemes of type 2, this can be shown using the following formula:

F = ∀x∀y∃z {{x, y,¬z}, {¬x,¬y, z}}

The formula F is true if the value assigned to z matches the value assigned to x or the value
assigned to y. Accordingly, both fz(x, y) = x and f ′z(x, y) = y are models [6] of F . This
implies that z is both independent of x and independent of y in the sense of [14]. Let D
be the proto-dependency scheme such that D(F) = ∅ and D(G) = Dtrv(G) for every QCNF
formula G 6= F . Then D is a dependency scheme of type 2, but Q(D)-resolution is unsound:
since (x, z) /∈ D(F) and (y, z) /∈ D(F), forall-reduction derives the clauses {x} and {¬x}
which yield a Q(D)-resolution refutation of F .

The dependency scheme D in the above example is constructed with the counterexample
in mind. For dependency schemes of type 1, we do not have to come up with artificial
proto-dependency schemes. We will now show that Q(Dres)-resolution is unsound, where Dres

is the resolution-path dependency scheme [16, 18] (we give a simplified but equivalent version
of the definition in [16]).

Definition 4 (Resolution Path). Let F = QF be a QCNF formula and let X ⊆ var∃(F). A
resolution path (from a1 to a2k) via X (in F) is a sequence p = a1 . . . a2k of literals satisfying
the following conditions.

1. There is a Ci ∈ F such that a2i−1, a2i ∈ Ci, for all i ∈ {1, . . . , k}.

2. var(a2i−1) 6= var(a2i) for all i ∈ {1, . . . , k}.

3. a2i, a2i+1 ∈ X ∪X for all i ∈ {1, . . . , k − 1}.

4. a2i = a2i+1 for all i ∈ {1, . . . , k − 1}.
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{¬x, ¬u, ¬y} {x, u, ¬y}
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{z}{¬z}

{¬z, ¬u}

{¬u, ¬y}{¬z, ¬u, y} {z, u, y}

Figure 1: Q(Dres)-refutation of F from Example 1.

For every i ∈ {1, . . . , k} we say that p goes through var(a2i).

Definition 5 (Resolution-Path Dependency Pair). Let F be a QCNF formula and let
X ⊆ var(F). We call (x, y) a resolution-path dependency pair of F with respect to X if there
are literals a and b such that var(a) = x and var(b) = y and there exist resolution paths
from a to b and from a to b via X.

Definition 6 (Resolution-Path Dependency Scheme). The resolution path dependency scheme
Dres maps each QCNF formula F to the relation Dres

F = { (x, y) ∈ RF : (x, y) is a
resolution-path dependency pair of F with respect to (RF(x) ∩ var∃(F)) \ y }.

The resolution-path dependency scheme is a cumulative dependency scheme [16]. However,
the following example (taken from [14]) demonstrates that Q(Dres)-resolution is unsound.

Example 1. Let F = ∀x∃z∀u∃y F , where F contains the clauses {x, u,¬y}, {¬x,¬u,¬y},
{z, u, y}, {¬z, u,¬y}, {¬z,¬u, y}, and {z,¬u,¬y}.

The formula F is satisfiable, but Figure 4 shows a Q(Dres)-refutation of F . It is straight-
forward to verify that the pair (x, y) is not in Dres(F) since every resolution path from x or
¬x to y goes through y. As a consequence, one can derive the clause {u,¬y} from {x, u,¬y},
and the clause {¬u,¬y} from {¬x,¬u,¬y} by forall-reduction in Q(Dres)-resolution.

5 The Reflexive Resolution-Path Dependency Scheme

Motivated by Example 1, we define the following variant of Dres for which resolution paths
inducing an (x, y)-dependency may also go through y.

Definition 7 (Reflexive Resolution-Path Dependency Scheme). The reflexive resolution-path
dependency scheme Drrs maps each QCNF formula F to the relation Drrs

F = { (x, y) ∈ RF :
(x, y) is a resolution-path dependency pair of F with respect to RF(x) ∩ var∃(F) }.
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Proto-dependency schemes can be partially ordered by a pointwise comparison of the
relations they associate with QCNF formulas: we say that a proto-dependency scheme D1

is at least as general as a proto-dependency scheme D2 if D1(F) ⊆ D2(F) for every QCNF
formula F . If this inclusion is strict for some formulas we say D1 is strictly more general than
D2. One can show that Drrs is strictly more general than the Standard Dependency Scheme
Dstd used in DepQBF (the following definition is a streamlined version of the definition of
Dstd in [15]).

Definition 8 (Primal Graph). Let F be a QCNF formula with matrix F . The primal graph
of F is the undirected graph with vertex set var(F) and edge set {xy : x, y ∈ var(F), x 6= y,
and there is a clause C ∈ F such that x, y ∈ var(C) }.
Definition 9 (Standard Dependency Pair). Let F be a QCNF formula and let X ⊆ var(F).
We call (x, y) ∈ Dtrv

F a standard dependency pair of F with respect to X if there is a walk
from x to y in G[X ∪ {x, y}], where G denotes the primal graph of F .

Definition 10 (Standard Dependency Scheme). The standard dependency scheme Dstd maps
every QCNF formula F to the relation Dstd

F = { (x, y) ∈ RF : (x, y) is a standard dependency
pair of F with respect to RF(x) ∩ var∃(F) }.
Proposition 1. Dres is strictly more general than Drrs, and Drrs is strictly more general
than Dstd.

Proof. By definition, Dres is at least as general as Drrs. In combination with Example 1 this
implies that Dres is strictly more general than Drrs. To see that Drrs is strictly more general
than Dstd, let F = QF be a QCNF formula and let G denote the primal graph of F . Let
(x, y) ∈ Drrs(F) and let X = RF(x) ∩ var∃(F). Then (x, y) is resolution-path dependency
pair with respect to X. Assume without loss of generality that there is a resolution path
p = a1 . . . a2k from x to y via X. By condition 1 of Definition 4 there is a Ci ∈ F such
that a2i−1, a2i ∈ Ci for every i ∈ {1, . . . , k}. It follows that {var(a2i−1), var(a2i)} is an edge
in G for every i ∈ {1, . . . , k}. Since var(a2i) = var(a2i+1) for every i ∈ {1, . . . , k − 1} by
condition 4 of Definition 4 the sequence p′ = var(a1) ∗ 〈var(a2i−1)〉k−1i=1 ∗ var(a2k) is a walk
from x to y in G. Since var(a2i) ∈ X for every i ∈ {1, . . . , k−1} by condition 3 of Definition 4
the path p′ is even a walk in G[X ∪ {x, y}]. So (x, y) is a standard dependency pair with
respect to X and thus (x, y) ∈ Dstd(F). This proves that Drrs is at least as general as Dstd.
Let G = ∀x∃y {{x, y}}. It is not difficult to see that (x, y) ∈ Dstd(G) but (x, y) /∈ Dres(G).
We conclude that Drrs is strictly more general than Dstd. It is not difficult to see
that if D1 is at least as general as D2 and Q(D1)-resolution is sound then Q(D2)-resolution
is sound as well. Thus soundness of Q(Drrs)-resolution (proved in Section 6) carries over to
Q(Dstd)-resolution.

We now give an alternative characterization of resolution paths in terms of walks in the
implication graph of a formula (also known as the formula’s associated graph [11].)

Definition 11 (Implication graph). Let F = QF be a QCNF formula. The implication
graph of F is the directed graph with vertex set var(F)∪ var(F) and edge set { (a, b) : there
is a C ∈ F such that a, b ∈ C and a 6= b }.



INFSYS RR 1843-14-09 9

Lemma 2. Let F be a QCNF formula and let a, b ∈ var(F) ∪ var(F) be distinct literals.
Let X ⊆ var(F) and let G denote the implication graph of F . The following statements are
equivalent.

1. There is a resolution path from a to b via X.

2. There is a walk from a to b in G[X ∪X ∪ {a, b}].
Proof. Let p = a1 . . . a2k be a resolution path from a to b via X. The sequence p′ = a1∗〈a2i〉ki=1

is a walk in the implication graph of F . We have {a2, . . . , a2k−1} ⊆ X ∪X by Definition 4,
so p is even a walk in G[X ∪ X ∪ {a, b}]. For the converse, let p = a1 . . . ak be a shortest
walk from a to b in G[X ∪ X ∪ {a, b}]. Then the sequence p′ = a1 ∗ 〈aiai〉k−1i=2 ∗ ak is a
resolution path in F . Since p is a shortest walk we have a, b /∈ {a2, . . . , ak−1}. This implies
{a2, . . . , ak−1} ⊆ X ∪X as well as {a2, . . . , ak−1} ⊆ X ∪X. So p′ is a resolution path from
a1 = a to b via X.

The implication graph of a formula can be constructed in time quadratic in the size of F
and directed reachability can be decided in linear time, so we obtain the following result.

Proposition 3. Both Dres and Drrs are tractable.

For practical purposes the explicit construction of the implication graph can be avoided.
Moreover, the following result shows that an overapproximation of Drrs can be represented in
terms of the strongly connected components of the implication graph.

Proposition 4. Let F be a QCNF formula and let (x, y) ∈ Dtrv(F). Let X ⊆ var(F) and
let G denote the implication graph of F . If (x, y) is a resolution-path dependency pair with
respect to X there is strongly connected component C of G[X ∪ X ∪ {x, y,¬y}] such that
x, y ∈ C or x,¬y ∈ C.

Proof. Let (x, y) be a resolution-path dependency pair with respect to X. Assume without
loss of generality that there are resolution paths p1 and p2 such that p1 is a resolution path
from ¬x to y via X and p2 is a resolution path from ¬y to x via X. By Lemma 2 there are
walks p′1 from x to y and p′2 from y to x in G[X ∪X ∪ {x, y}], so x and y are in the same
strongly connected component of G[X ∪X ∪ {x, y,¬y}].

6 Soundness of Q(Drrs)-resolution

This section is devoted to proving our main result, stated below.

Theorem 5. For every QCNF formula F there is a Q(Drrs)-resolution refutation of F if
and only if F is unsatisfiable.

In fact, we are going to prove the following, stronger statement.

Proposition 6. Given a QCNF formula F and a Q(Drrs)-refutation T of F , one can compute
a Q-resolution refutation of F of size at most 3|T |.
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We prove this proposition by demonstrating correctness and termination of an algorithm
(Algorithm 3) that turns Q(Drrs)-refutations into Q-resolution refutations in Lemma 13. An
outline of this algorithm is given below.

Algorithm outline. Let a be the universal literal removed by an outermost D-reduction
of the input Q(D)-derivation. There are two cases.

1. If there is no clause containing a on the path from the D-reduction to the root of the
derivation, we simply skip the D-reduction and add it at the root. If the clause derived
at the root does not contain any literals blocking a, the D-reduction is turned into
an ordinary forall-reduction. (This condition is satisfied by a refutation, and we can
ensure that it holds for subderivations and their outermost D-reductions as well.)

2. Otherwise, the derivation must contain a resolution step on a variable x such that
x <F var(a) (see Lemma 12). We drop the lowermost such resolution step to the
root of the derivation. This may introduce x-literals to the clauses on the path from
the resolution step to the root. But since the D-reduction picked in the first step is
outermost these literals will not interfere with D-reductions. Moreover, because the
resolution step is lowermost, every clause on the path contains an existential variable y
such that var(a) <F y, so introducing x to these clauses will not turn a forall-reduction
into a D-reduction.

In this way, we obtain a derivation whose immediate subderivations are (a) strictly smaller
than the original derivation and which (b) do not contain new D-reductions. We run the
algorithm on these subderivations to rewrite them into Q-resolution derivations and add a
final resolution or forall-reduction step.

Example 2. Consider the QCNF formula F = ∃e1∀u∃e2∃e3 {{u, e2}, {¬u, e3}, {¬e3, e1},
{¬e1,¬e2}}. Derivation TA of Figure 2 shows a Q(Drrs)-refutation of F with D-reductions at
positions e2 and ¬e2. At the root of the derivation case 1 applies, so we skip the D-reduction
TA[e2] and add it at the root of the derivation, which leads to derivation TB. We continue
with the subderivation TB[u]. Since u occurs on the path from the D-reduction TB[u¬e2] to
the root, case 2 applies and we drop the resolution step TB[u¬e2¬u¬e3] on e1 <F u to the
root, resulting in the Q-resolution derivation TC .

Example 2 also illustrates that known rewrite strategies for removing long-distance
resolution steps from Q-resolution proofs [1, 8] cannot be applied to remove D-reductions
from Q(D)-resolution refutations. If a long-distance resolution step leads to a clause containing
a universal variable u in both polarities, one can assume that the variable resolved on does
not block u. In a refutation, the literals blocking u have to be resolved out eventually, so one
can remove the long-distance resolution step by successively lowering it [1] or by (recursively)
resolving out blocking literals using clauses resolved closer to the root of the derivation [8].
In refutation TA, resolving {u, e2} and {¬u,¬e2} would amount to a long-distance resolution
step. But e2 is both the variable resolved on and the variable blocking u in the premises, and
we cannot further lower this resolution step.
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Figure 2: Rewriting a Q(Drrs)-resolution refutation (Example 2).

We now turn to a formal proof of Proposition 6. In order to state Algorithm 3 and prove
its correctness and termination, we are going to define and characterize the following two
operations:

1. Substitution (Definition 14 and Lemma 7).

2. Dropping a resolution step (Algorithm 2 and Lemma 11).

The second operation can in turn be represented by a successive “lowering” of a resolution
step (Algorithm 1, Lemmas 9 and 10). This lowering operation essentially corresponds to
the rewrite rules presented in [1] for turning long-distance resolution proofs into ordinary
Q-resolution proofs.2

For the remainder of this section, let D be an arbitrary but fixed proto-dependency scheme,
and let F be an arbitrary but fixed QCNF formula. In order to make formal statements
to the effect that operations “do not create new D-reductions”, we introduce the notion of
narrowing.

Definition 12 (Narrowing). Let R1 = S1‖a and R2 = S2‖a be Q(D)-derivations from F
with conclusions C1 and C2, respectively. We write R1 � R2 if every literal in C1 that blocks
a is contained in C2. For Q(D)-derivations T1 and T2 we say that T1 narrows T2 if, for every
forall-reduction step T1[π1], there is a forall-reduction step T2[π2] such that T1[π1] � T2[π2].

The narrowing relation defines a preorder on derivations. Throughout the rewriting process,
we make sure that intermediate derivations narrow earlier ones, so as to not introduce “new”
or “more complicated” D-reductions. The following statements are easily proved using the

2The cases covered in lines 5-8 of Algorithm 1 are not explicitly dealt with in [1].
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definition of narrowing. Rewriting a derivation may cause literals to disappear from the
derivation’s conclusion, so that subsequent resolution or forall-reduction steps may become
inapplicable. To suppress explicit case distinctions needed for situations of this kind we define
“lazy” versions of resolution and forall-reduction as follows (cf. [9]).

Definition 13. Let T1, T2, and T be Q(D)-derivations from F of clauses C1, C2, and C.

T1 �L
a T2 =


T1 �a T2 if a ∈ C1 and a ∈ C2,

T1 if a /∈ C1,

T2 if a /∈ C2.

T‖La =

{
T‖a if a ∈ C,

T otherwise.

Definition 14 (Substitution). Let T and S be Q(D)-derivations from F . For a position π
of T we define T [π ← S] recursively as follows.

T [π ← S] =


S if π = ε,

T1[σ ← S]�L
a T2 if T = T1 �a T2 and π = a ∗ σ,

T ′[σ ← S]‖La if T = T ′‖a and π = a ∗ σ.

Definition 15. Let T be a Q(D)-derivation from F , let π is a position of T , and let a be
a literal. We say that T does not contain a below π if, for every proper prefix σ of π, the
conclusion of T [σ] does not contain a.

Lemma 7. Let T be a Q(D)-derivation from F of a clause C such that T [π] = S‖a. If T
does not contain a below π then T [π ← S] is a Q(D)-derivation from F of a clause C ′ ⊆ C∪a
and T [π ← S] narrows T .

Proof. The derivation T [π ← S] simply omits the forall-reduction step on a, introducing a
to clauses on the path from π to the root of the derivation (not necessarily all the way to
the root, since there may be another forall-reduction step on a). By assumption, T does not
contain a below π, so the result will be a Q(D)-derivation.

Lemma 8. Let T and S be Q(D)-derivations from F . Let π be a position such that S
subsumes and narrows T [π]. Then T [π ← S] subsumes and narrows T .

Proof. One can prove that T [π ← S] subsumes T by an induction on the length of π. For
the narrowing part, observe that every forall-reduction step R‖a of T [π ← S] not already
in T occurs in S or on the path from S to the root of T [π ← S]. If R‖a = S[σ] there is
position ρ of T [π] such that S[σ] � T [π][ρ] since S narrows T [π]. Otherwise, R derives a
clause subsuming the clause to which the corresponding reduction is applied in T .
For the lowering operation, we distinguish two cases based on whether the resolution step is
lowered past a forall-reduction step (Lemma 9) or another resolution step (Lemma 10).
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1 Function lower(T, b)
input : A Q(D)-derivation T and a literal b.

2 if T = (T1 �a T2)�b T3 then

3 let Ci be the conclusion of Ti for i ∈ {1, 2, 3}
4 if a /∈ C3 and a /∈ C3 then

5 return (T1 �L
b T3)�a (T2 �L

b T3)

6 else if a ∈ C3 then

7 return T1 �L
b T3

8 else

9 return T2 �L
b T3

10 else if T = (T1 �a T2)‖b then

11 return T1‖Lb �a T2‖Lb
12 else

13 return T

Algorithm 1: Lowering a resolution step.

Lemma 9. Let T = (T1 �a T2)‖b be a Q(D)-derivation from F such that a does not block b.
Then lower(T, b) is a Q(D)-derivation from F that subsumes and narrows T .

Proof. It is readily verified that lower(T, b) is a Q(D)-derivation that subsumes T . The
derivation lower(T, b) may contain new forall-reduction steps T1‖b and T2‖b, but since a does
not block b we have T1‖b � (T1�aT2)‖b and T2‖b � (T1�aT2)‖b, so lower(T, b) narrows T .

Lemma 10. Let T = (T1 �a T2)�b T3 be a Q(D)-derivation of from F . Then lower(T, b) is
a Q(D)-derivation of from F that subsumes and narrows T .

Proof. The case distinction in lines 2-8 of Algorithm 1 is exhaustive, and for each case the
derivation returned subsumes the original derivation. Every forall-reduction step of the
resulting derivation is already present in T , so lower(T, b) narrows T .

Definition 16. Let T be a Q(D)-resolution derivation from F , let a be an existential literal,
and let π be a position of T . We say that a does not block in T below π if, for every prefix ρ
of π, whenever T [ρ] = S‖b then a does not block b.

Lemma 11. Let T be a Q(D)-derivation from F , and let T [π] be a resolution step on a such
that a does not block in T below π. Then T ′ = drop(T, π, a) is a Q(D)-derivation from F
that subsumes and narrows T , and at least one of the following conditions3 holds.

3The proof of Lemma 13 is by induction on the size of the input derivation. These conditions ensure that
we can apply the induction hypothesis after dropping a resolution step.
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1 Function drop(T, π, a)
input : A Q(D)-derivation T , a position π of T , and a literal a.

2 if π = ε then

3 return T

4 else if π = b ∗ ρ then

5 R := drop(T [b], ρ, a)

6 S := T [b← R]

7 if R = S1 �a S2 then

8 return lower(S, b)

9 else

10 return S

Algorithm 2: “Dropping” a resolution step.

1. T ′ = T1 �a T2, and |T1| < |T | as well as |T2| < |T |

2. |T ′| < |T |

Proof. We proceed by induction on the length of π. The base case is trivial. For the inductive
case, we use the induction hypothesis in line 5 and Lemma 8 in line 6 to conclude that
S = T [b← R] subsumes and narrows T [b]. If R 6= S1 �a S2 then |R| < |T [b]| by induction
hypothesis and |drop(T, π, a)| = |T [b← R]| < |T |. Otherwise, |S1| < |T [b]| and |S2| < |T [b]|
by induction hypothesis. Suppose S is a forall-reduction step. Since a does not block in
T below π it follows from Lemma 9 that lower(S, b) = S1‖Lb �a S2‖Lb is a Q(D)-resolution
derivation that subsumes and narrows T , and |S1‖Lb | < |T | as well as |S2‖Lb | < |T |. Now
suppose S is a resolution step. Then lower(S, b) is a Q(D)-resolution derivation that subsumes
and narrows T by Lemma 10, and it is straightforward to verify that the derivation satisfies
one of the above conditions.

Lemma 12. Let T be a Q(Drrs)-derivation from F with conclusion C. If T [π] is a forall-re-
duction step on literal a and a ∈ C then there is a position π of T such that T [σ] is a
resolution step on a variable x with x <F var(a).

Sketch. The proof is by an induction on the length of π, using the following claim (cf. [16, 18]).

Claim 1. Let S be a Q(D)-derivation from F with conclusion E, and let resvar(S) denote
the set of variables resolved on in S. If a, b ∈ E are distinct literals, there is a resolution path
from a to b via resvar(S).

Suppose |π| = 1 and let π = b. Then T = T1�b T2 is a resolution step since the conclusion
of T [π ∗ a] is non-tautological. Let C1 be the clause derived by T [π ∗ a] = T [ba] and let
C2 be the clause derived by T2. Then a, b ∈ C1 and a, b ∈ C2. It follows from the above
claim that there are resolution paths from a to b and from a to b via resvar(T ). That is,
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1 Function normalize(F , T)
input : A QCNF formula F and a Q(Drrs)-derivation T from F .

2 if T does not contain a D-reduction then

3 return T

4 else if T = S‖a then

5 return normalize(F , S)‖La
6 else if T = T1 �a T2 then

7 let T [π] = T ′‖b be an outermost D-reduction of T

8 if T does not contain b below π then

9 S := T [π ← T ′]

10 return normalize(F , S)‖Lb
11 else

12 let σ be a shortest position such that T [σ] = R1 �c R2 and var(c) <F var(b)

13 S := drop(T, σ, c)

14 if S 6= S1 �c S2 then

15 return normalize(F , S)

16 else

17 return normalize(F , S1)�L
c normalize(F , S2)

Algorithm 3: Converting Q(Drrs)-derivations to Q-resolution derivations.

(var(a), var(b)) is a resolution-path dependency pair of F with respect to resvar(T ). If
resvar(T ) ⊆ RF(var(a)) then (var(a), var(b)) ∈ Drrs(F), a contradiction. Thus there must
be an x ∈ resvar(T ) such that x <F var(a). The inductive case is proved by a straightforward
generalization of this argument.

Lemma 13. Let T be a Q(Drrs)-derivation of C from F such that C does not block a
D-reduction of T . Then normalize(F , T ) returns a Q-resolution derivation of size at most
3|T | that subsumes T .

Proof. By induction on the size of T . If T consists of a single node it does not contain a
D-reduction, and the algorithm simply returns T (line 2). Suppose the lemma holds for
derivations of size strictly less than |T |. If T does not contain a D-reduction it is already
a Q-resolution derivation (line 2). Otherwise, if T ends with a forall-reduction step the
induction hypothesis implies that the derivation returned in line 5 is a Q-resolution derivation
from F that subsumes T . Suppose T ends with a resolution step (line 6). There must be
some outermost D-reduction T [π] = T ′‖b of T (line 7). There are two cases. (a) If T does
not contain b below π (line 8) then by Lemma 7 the derivation S = T [π ← T ′] narrows T
and derives a clause C ′ ⊆ C ∪ b. Since by assumption C does not block a D-reduction of T
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the clause C ′ does not block a D-reduction of S. Moreover |S| < |T |, so we can apply the
induction hypothesis and conclude that normalize(F , S) is a Q-resolution derivation that
subsumes S. It follows that normalize(F , S)‖Lb is a Q-resolution derivation that subsumes T
(line 10). (b) If T contains b below π then by Lemma 12 there must be a (shortest) position
σ of T such that T [σ] is a resolution step on var(c) for some literal c, and var(c) <F var(b)
(line 12). We claim that c does not block in T below σ. Towards a contradiction assume that
there is a proper prefix ψ of σ such that T [ψ] = R‖d and var(d) <F var(c). By choice of σ
the conclusion of R must contain an existential literal e such that var(b) <F var(e). Thus
var(d) <F var(c) <F var(b) <F var(e) and e blocks d, so R‖d must be a D-reduction. But
T [π] = T ′‖b is an outermost D-reduction of T and var(d) <F var(b), a contradiction. So c
does not block in T below σ. Thus by Lemma 11 the derivation S = drop(T, σ, c) subsumes
and narrows T (line 13). Since T ′‖b is an outermost D-reduction of T and c <F var(b),
neither c nor ¬c block a D-reduction of S because S narrows T . If S 6= S1 �c S2 then
|S| < |T | by Lemma 11 and by induction hypothesis normalize(F , S) is a Q-resolution
derivation that subsumes T (line 15). Otherwise |S1| < |T | and |S2| < |T | by Lemma 11 and
the conclusions of S1 and S2 do not block D-reductions of S by choice of c. By induction
hypothesis normalize(F , S1) and normalize(F , S2) are Q-resolution derivations subsuming
S1 and S2, respectively, so normalize(F , S1)�L

c normalize(F , S2) is a Q-resolution derivation
that subsumes T (line 17). It is easy to verify that the output of normalize(F , T ) satisfies
the size bound claimed in the statement of the lemma.
Proof of Proposition 6. Immediate from Lemma 13 and the observation that the empty clause
cannot not block a D-reduction.

7 Conclusion

We proposed and studied Q(D)-resolution, a generalization of Q-resolution, to capture the
certificates generated by DepQBF. We introduced the reflexive resolution-path dependency
scheme Drrs, proved soundness of Q(Drrs)-resolution, and provided an alternative characteri-
zation of resolution paths that lends itself to an efficient implementation. In this manner,
we hope to have created a solid theoretical basis for future incarnations of DepQBF using
dependency schemes more general than Dstd.

QBF solvers based on quantifier expansion can also benefit from an analysis of variable
dependencies [4, 12, 14, 15]. Recently, Janota et al. [10] introduced a proof system to capture
the behavior of these solvers. We plan to study how such systems can be augmented with
dependency schemes as part of future work. Another intriguing topic for further research is
the relative complexity of Q-resolution and Q(D)-resolution.
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