INFSYS
RESEARCH
REPORT

Institut fir Informationssysteme
AB Wissensbasierte Systeme
Technische Universitat Wien
FavoritenstraBe 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

REASONING WITH FOREST LOGIC
PROGRAMS USING FULLY ENRICHED
AUTOMATA

CRISTINA FEIER THOMAS EITER

INFSYS RESEARCH REPORT 1843-15-02
JUNE 2015

kbs®

Knowledge-Based
Systems Group

INFSYS RESEARCH REPORT
INFSYS RESEARCH REPORT 1843-15-02, JUNE 2015

REASONING WITH FOREST LOGIC PROGRAMS
USING FULLY ENRICHED AUTOMATA

Cristina Feier! Thomas Eiter?

Abstract. Forest Logic Programs (FoLP) are a decidable fragment of Open Answer Set Programming
(OASP) which have the forest model property. OASP extends Answer Set Programming (ASP) with
open domains—a feature which makes it possible for FoLPs to simulate reasoning with the expressive
description logic SHOQ. At the same time, the fragment retains the attractive rule syntax and the
non-monotonicity specific to ASP. In the past, several tableau algorithms have been devised to reason
with FoLPs, the most recent of which established a NEXPTIME upper bound for reasoning with the
fragment. While known to be EXPTIME-hard, the exact complexity characterization of reasoning
with the fragment was still unknown. In this paper we settle this open question by a reduction of
reasoning with FoLPs to emptiness checking of fully enriched automata, a form of automata which
run on forests, and which are known to be EXPTIME-complete.

lDepartment of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, United
Kingdom; email: feier@cs.ox.ac.uk

2Institut fiir Informationssysteme, Technische Universitit Wien, Favoritenstrae 9-11, A-1040 Vienna, Austria;
email: eiter@kr.tuwien.ac.at.

Acknowledgements: This work is partially supported by the EPSRC grants Score! and DBOnto and the
Austrian Science Fund (FWF) grant P24090.

A short version of this paper has been accepted for publication at LPNMR’15.
Copyright (©) 2015 by the authors

2 INFSYS RR 1843-15-02

1 Introduction

Open Answer Set Programming (OASP) [Heymans et al.| 2008] extends (function-free) Answer Set Program-
ming (ASP) [Gelfond and Lifschitz, |1988|] with an open domain semantics: programs are interpreted with
respect to arbitrary domains that might contain individuals which do not occur explicitly in the program. This
makes it possible to state generic knowledge using OASP. At the same time, OASP inherits from ASP the
negation under the stable model semantics. Thus, OASP bridges two important knowledge representation
paradigms: the classical First Order Logic (FOL) open world and the non-monotonic rules closed world. It
is part of a broad line of research which includes other approaches like DL-safe rules [Motik et al., 2005],
DL+log [Rosatil, [2006]], dl-programs [Eiter et al., [2008]|], Description Logic Rules [Krotzsch et al., [2008]],
DaltallogjE [Cali et al., 2009], MKNFT knowledge bases [Motik and Rosati, 2010], and Nonmonotonic
Existential Rules [Magka et al.,[2013]].

In general, OASP is undecidable. To achieve decidability, several fragments have been defined by
imposing syntactical restrictions on the shape of rules. Such a fragment are Forest Logic Programs (FoLP)
which enjoy the forest model property: a unary predicate is satisfiable iff it is satisfied by a model that can be
represented as a labeled forest, where nodes and arcs are labeled with sets of unary predicates and binary
predicates, resp.

FoLPs are quite an expressive fragment as they allow, for instance, the simulation of standard reasoning
tasks (like concept satisfiability and KB consistency) with SHOQ ontologies [Feier and Heymans, 2013]].
This property of FoLPs led to the f-hybrid KBs, a combination of rules and ontologies which distinguish
themselves among other approaches like dl-safe rules, r-hybrid knowledge bases [Rosati, 2008]], or MKNF™
knowledge bases, by the fact that they impose no restrictions on the interaction between the signatures of
the two components. Such restrictions prevent the need for reasoning with unknown individuals in the rule
component. As f-hybrid KBs are based on the simulation of SHOQ KBs within FoLPs, no such restriction
is needed. Conceptual modeling using FoLPs is not restricted to simulating reasoning with SHOQ KBs: it is
also possible to translate object-role modeling (ORM) models as sets of FoLP rules, e.g. [Heymans, [2006].

As they can simulate reasoning within the Description Logic (DL) SHQOQ, it follows that reasoning
with FoLLPs is EXPTIME-hard. However, the exact complexity characterization of FoLPs was still open.
Previously, reasoning with FoLPs was addressed by means of tableau-based algorithms: [Feier and Heymans)
2013]] described a 2NEXPTIME tableau algorithm, while an improved algorithm which runs in the worst case
in NEXPTIME has been described in [Feier, |2012]]. While in the latter work it has been speculated that the
non-deterministic tableau algorithm can be determinized in order to lead to an EXPTIME procedure which
would be worst-case optimal, the determinization in the case of FoLPs proved elusive. Such a deterministic
worst-case optimal algorithm has been devised for CoL.Ps, which restrict FOLPs to programs without constants,
and simple FoLPs, a fragment in which recursion is restricted: the technique does not scale up to FoLPs (see
[Feier, 2014]).

In this paper, we settle the open question regarding the exact complexity characterization of FoLPs: by
using a reduction to emptiness checking of Fully Enriched Automata (FEAs), we show that satisfiability
checking of unary predicates with respect to FoLPs is EXPTIME-complete. Hence, reasoning with FoL.P
rules and SHOQ ontologies is not harder than reasoning with SHOQ ontologies themselves.

Fully enriched automata have been introduced in [Bonatti et al., |2008] as a tool to reason with hybrid
graded p-calculus, which extends p-calculus with graded modalities and nominals. They offer an elegant
device for our encoding as they accept forests as inputs and also feature a parity acceptance condition that is
useful in distinguishing well-supported models [Fages, [1991], a fundamental characteristic of (open) answer
sets. However, FoLPs exhibit a specific form of the forest model property, in which every node can point

INFSYS RR 1843-15-02 3

back to any root of the forest, and as such the encoding is not without its challenges.

The automata-based method has been previously applied to reason with CoLPs [Heymans et al., 2006]:
satisfiability checking of unary predicates with respect to a CoLP has been reduced to non-emptiness checking
of two-way alternating tree automata (2ATA) [Vardi, [1998]]. 2ATAs have also been used to check consistency
of normal bidirectional ASP programs (bd-programs) [Eiter and Simkus, 2009], which are a decidable
fragment of ASP extended with function symbols that also exhibit the tree model property. In the context of
DL, 2ATAs have been employed to check concept satisfiability [[Calvanese et al., 2002[] and satisfiability of
ALCQOLb, .4 KBs [Calvanese et al.,2007]—in the latter case, canonical models are forest-shaped, and as such
they were encoded as trees in order to be processed using 2ATAs. In the case of FoLPs, it is not clear how
such an encoding would work due to their special form of the forest model property. Finally, FEAs were used
to encode satisfiability checking of ZOZQ concepts [Calvanese et al.,[2009].

2 Preliminaries

We start by introducing the open answer set syntax and semantics [Heymans et al., 2008[]. We assume
countably infinite disjoint sets of constants, variables, and predicate symbols. Terms and atoms are defined as
usual. We refer to an atom where the predicate symbol is unary or binary, as a unary or binary atom, resp. A
literal is an atom a or a negated atom not a. We allow for inequality literals of the form s = ¢, where s and ¢
are terms. A literal that is not an inequality literal will be called a regular literal.

For a set S of literals or (possibly negated) predicates, St = {a | a € S} and S~ = {a | not a € S}.
If S is a set of (possibly negated) predicates of arity n and ¢1,...,t, are terms, then S(t1,...,t,) =
{l(t1,...,ty) | L € S}. Foraset S of atoms, not S = {nota|a € S}.

A program is a countable set of rules r : o < (3, where « is a finite set of regular literals and £ is a finite
set of literals. We denote as head(r) the set a, where « stands for a disjunction, and as body(r) the set £,
where 3 stands for a conjunction.

Atoms, literals, rules, and programs that do not contain variables are ground. For a rule, program, set
of literals, or set of atoms R, let vars(R), preds(R), and cts(R) be the sets of variables, predicates, and
constants that occur in R, resp. A universe U for P is a non-empty countable superset of the constants in P:
U D cts(P). We call Py the ground program obtained from P by substituting every variable in P by every
element in U. Let Bp be the set of regular atoms that can be formed from a ground program P.

Aninterpretation I of a ground program P is a subset of Bp. We write I |= p(t1,...,t,) ifp(t1,...,tn) €
Iand I |= not p(t1,...,t,) if I = p(t1,...,t,). Also, for ground terms s, t, we write I |= s # tif s # t.
For a set of ground literals L, [= L if I = [forevery [€ L. A ground rule r : a < 3 is satisfied with
respect to I, denoted I |= r, if I |= [for some | € o whenever I |= /3. A ground constraint <« [is satisfied
with respect to [if I [~ .

For a positive ground program P, i.e., a program without not, an interpretation I of P is a model of
P if T satisfies every rule in P; it is an answer set of P if it is a C- minimal model of P. When P is
definite (does not contain disjunction) the minimal model of P can be computed using the well-known T’p
operator: for a set of atoms B, let Tp(B) = BU{a | a + 8 € P\ B = (}. Then, let Tp(B) = B
and Tp™ (B) = Tp(Th(B)); the minimal model (answer set) of P, M(P), is defined as [J2, T%(0). The
derivation level of an atom a in M(P), level(a, M(P)), is the least integer k such that a € TE((). For
ground programs P containing not, the GL-reduct |Gelfond and Lifschitz, |1988]] with respect to [is defined
as P!, where P! contains ot + 3+ fora < fin P, I |= not 3~ and I |= a~. I is an answer set of a
ground program P if I is an answer set of P?.

4 INFSYS RR 1843-15-02

An open interpretation of a program P is a pair (U, M) where U is a universe for P and M is an
interpretation of Pr;. An open answer set of P is an open interpretation (U, M) of P, with M an answer set
of Py. For every atom a € M, where (U, M) is an open answer set of P, level(a, M(P}) = M) is finite
[Heymans, [2006]].

We introduce notation for trees and forests which extend those in [Vardi, [1998]]. Let - be a concatenation
operator on constants and natural numbers, NT be the set of positive integers, and (NT) be the set of all
sequences of positive integers formed using the concatenation operator. We denote with ¢ the empty sequence:
for a sequence of constants and/or natural numbers s, s - € = s, where - is concatenation; also, by convention,
s-c-—1 = s, where c is a natural number, and ¢ - —1 is undefined. A tree T" with root c, also denoted as T,
is a set of nodes, where each node is a sequence of the form ¢ - s, where s € (N1), and for every = - d € T,
d € N*, it must be the case that x € T.. When the root of the tree is irrelevant, we will simply refer to
the tree as T. Given a tree T, its set of arcs is Ay = {(z,y) | x,y € T,3In € NT.y = 2 - n}. We denote
with sucer(z) = {y € T |y = x-i,i € N1} the successors of anode x in 7. Foranode y =z -i € T,
precr(y) = x.

A forest F is a set of trees {7, | ¢ € C'}, where C'is a finite set of arbitrary constants. The set of nodes,
Np, and the set of arcs, Ap, of a forest F' are defined as: Np = UpcpT, and Ap = Upcp Ap, resp. For a
node x € Np, let succp(x) = sucer(z), wherex € Tand T € F. Foranodey =x-i € Tand T € F,
precp(y) = precr(y) = . An interconnected forest EF is a tuple (F, ES), where F' = {1, | ¢ € C'}
is a forest and £S C N x C. The sets of nodes Ngr and arcs Agr of an interconnected forest EF are
defined as: Ngp = Np, and Agp = Ap U ES, resp. A X-labelled forest is a tuple (F, f) where F' is an
interconnected forest/tree and f : Ng — X is a labelling function, with X being a set of arbitrary symbols.

3 Forest Logic Programs

Forest Logic Programs (FoLPs) are a fragment of OASP which have the forest model property. They allow
only for unary and binary predicates and tree-shaped rules. The tree-like structure of rules refers to the
chaining pattern of rule variables: one variable can be seen as the root of a tree and the others as descendants
such that for every arc in the tree, there is a positive binary literal in the body which connects the two
corresponding variables. Inequalities between ‘successor’ variables can also appear in the body of such a rule;
we will refer to the set of literals in the body of a rule formed only with the ‘root’ variable as the ‘local part’
and to the remaining part as the ‘successor part’. FoLPs allow also for rules of the form: p() V not p(t) <,
where p is a unary/binary predicate.

Definition 3.1. A forest logic program (FoLP) is an open answer set program with only unary and binary
predicates, and such that a rule is either:

e a free rule:
a(s) V not a(s) <, (1)
or

f(s,t)V not f(s,t) + (2)

e a unary rule:
a(s) < B(s), (vi(s, i), 6i(ti)) 1<i<m, ¥ 3)
with) C Uycizjem{ti # tj} andm € N,

INFSYS RR 1843-15-02 5

e or a binary rule:

f(s,t) = B(s),v(s, 1), 6(2), @)

where in each rule above:

a is a unary predicate, and f is a binary predicate,

s, t, and (t;)1<i<m are distinct terms,

B, 6, and (8;)1<i<m are sets of (possibly negated) unary predicates,

7, and (7;)1<i<m are sets of (possibly negated) binary predicates,

inequality does not appear in any v: #¢ ;, for 1 < i < m, and #¢ ~;

there is a positive atom that connects the head term s with any successor term which is a variable:
7; £ (0, if t; is a variable, for every 1 < i < m, and v # 0, ift is a variable.

A predicate g in a FoLLP P is said to be free if it occurs in a free rule in P.

Example 3.2. The following program P is a FoLP: it describes the fact that somebody who has read two
different novels is a literature lover (unary rule 1), a novel is something written by a novelist (unary rule r2),
and a novelist is somebody who wrote at least one novel (unary rule rs). There are three free rules describing
binary predicates read, written By, and wrote as being free. Finally, there are two facts (unary rules with
empty bodies):

Ty LitLover(X) < read(X, Y;),read(X, Ys), Novel(Yy),
Novel(Y),Y: # Yo

ro : Novel(X) <+ wrBy(X,Y), Novelist(Y)

s : Novelist(X) <« wrote(X,Y), Novel(Y)

Ty read(X,Y)V not read(X,Y) <+

rs . wrBy(X,Y)Vnot wrBy(X,Y) <«

re 1 wrote(X,Y)V not wrote(X,Y) <«

f1: Novel(a) —

fo: Novelist(b) <«

For a FoLP P, we will denote with upr(P), bpr(P), urul(P), and brul(P), the sets of unary and binary
predicates and unary and binary rules which occur in P, resp. For a unary rule r of type (3), the degree of r,
denoted by degree(r), is the number & of successor variables which appear in the rule. Intuitively, it indicates
the maximum number of successor individuals needed to make the body of the rule true. The degree of a
free rule is 0. For a unary predicate p: degree(p) = max{degree(r) | p € preds(head(r))}. Finally, the
degree of a FOLP P is defined as: degree(P) =} ¢ ,,.(p) degree(p). It is an over-approximation of the
maximum number of successor individuals needed to satisfy all atoms of the form p(x), where p € upr(P),
for a given individual z.

Example 3.3. Let P be the FoLP from Example[3.2| Then, degree(LitLover) = 2, degree(Novel) = 1,
degree(Novelist) = 1, and thus, degree(P) = 4.

Forest models: The forest model property of an OASP P is as follows: if a unary predicate p is satisfiable,
then there exists a model which satisfies p that can be seen as an interconnected forest. The forest contains
for each constant in P a tree having the constant as root, and possibly an additional tree with an anonymous
root. The predicate checked to be satisfiable, p, belongs to the label of one of the root nodes.

6 INFSYS RR 1843-15-02

LitLover Nowvel Nowelist LitLover Novel Novelist
) _read /p-l\ wr By @ wrote

read

Novel Novel
a) b)

Figure 1: Forest model a) and tentative forest model b) for P

Definition 3.4. Ler P be a program. A predicate p € upr(P) is forest satisfiable with respect to P if there
exist an open answer set (U, M) of P; an interconnected forest EF = ({T,} U{T, | a € cts(P)}, ES),

where p is a constant, possibly from cts(P); and a labelling function ef : {T,}U{T, | a € cts(P)}UAgr —
gpreis(P) .y

e peef(p)

e U = Ngr,

o ef(z) €2 P) whenx € T,U{T, | a € cts(P)},

o cf(z) € 2%"(P) whenx € Ar,

o M ={p(x) |z e Ngr,peef(z)y U{f(z,y)](z,y) € Apr, f € ef(z,y)}, and
o forevery (z,z i) € App: ef (2,2 1) £ 0.

We call such a pair (U, M) a forest model. A program P has the forest model property if every unary
predicate p that is satisfiable with respect to P, is forest satisfiable with respect to P.

Proposition 3.5 ([Heymans et al., 2007]]). FoLPs have the forest model property.

Example 3.6. Consider again the FOLP P from Example Figure|l|a) depicts a forest model which
satisfies the unary predicate Lit Lover. Intuitively, the predicate is satisfied at the anonymous root p as there
are two distinct read-successors of p where Novel holds: a and pl, and thus Lit Lover(p) is ‘supported’ by
a ground version of rule r1. In turn, Novel holds at pl as it is supported by rule o grounded such that X is
replaced with pl and Y is replaced with b. Note that every atom in the model is finitely supported: there is
no infinite chain of dependencies of atoms in the model. This is a property of (open) answer sets also known
as ‘well-supportedness’ [[Fages, |[991|].

Consider in contrast the tentative model depicted in Figure|l|b). There, Novel(pl) is motivated by a
wr By-successor where N ovelist holds, which at its turn is motivated by a wrote-successor where N ovel
holds, etc. The interpretation is not a model, as Novel(pl) is not finitely motivated. One of the main
challenges when designing algorithms to reason with FOLPs is ensuring that every atom in a model is
well-supported.

INFSYS RR 1843-15-02 7

As explained in the Introduction, FoLPs can be used to simulate reasoning with SHOQ ontologies.
Thus, they can be viewed as an integrative formalism for reasoning with both ontologies and rules: [Feier
and Heymans, [2009] introduces so-called f-hybrid knowledge bases (fKBs) which are pairs of the form
(3, P), where ¥ is a SHOQ KB and P is a FoLP. The semantics of fKBs is defined in terms of pairs of
interpretations, one for each component, which share the same domain and which agree on the interpretation
of common symbols between the two components. The salient feature of f-hybrid KBs is that they impose no
restriction on the occurrence of DL symbols in the FOLP KB.

A concept/unary predicate satisfiability preserving, polynomial, and modular translation © from SHOQ
to FoLPs is provided in [Feier and Heymans, 2009]. The translation extends to fKBs as follows: given an
fKB (X, P), its translation is simply ©(X) U P. Thus, any reasoning procedure for FOLPs can be employed
to reason with fKBs. More details about the semantics, translation, and an extended example can be found in
[Feier and Heymans), 2013|].

4 Fully Enriched Automata

Fully enriched automata (FEAs) were introduced in [Bonatti et al., 2008] as a tool to reason in hybrid graded
p-calculus. They accept forests as input. We describe them following [Bonatti et al., 2008]].

For a set Y, we denote with BT (Y") the set of positive Boolean formulas over Y, where true and false
are also allowed and where A has precedence over V. For a set X C Y and a formula § € B*(Y'), we say
that X satisfies 6 iff assigning true to elements in X and assigning false to elements in Y — X makes 6 true.
For b > 0, let Dy, = {(0), (1),...,(b)} U{[0],[1],...,[b]} U{—1,¢, (root),[root]}.

A fully enriched automaton (FEA) is a tuple A = (X,b, @, 0, qo, F), where X is a finite input alphabet,
b > 0 is a counting bound, @ is a finite set of states, § : Q x ¥ — BT(D,, x Q) is a transition function,
qo € @ is an initial state, and F = {Fi, Fa,...,Fr}, where F1 C Fo C ... C Fr = Q is a parity
acceptance condition. The number k of sets in F is the index of the automaton.

A run of a FEA on a labeled forest (F, V') is an Np x @Q-labeled tree (1¢,) such that:

e 7(c) = (d, qo), for some root d in F', and

e forally € T, with r(y) = (x,q) and §(g, V(x)) = 0, there is a (possibly empty) set S C D} x Q
such that S satisfies # and for all (d, s) € S, the following hold:

ifd € {—1,¢}, then z-d is defined and there is j € NT such thaty-j € T, and 7(y-j) = (x-d, s);

if d = (n), then there is a set M C succp(z) of cardinality n + 1 such that for all z € M, there
isj € Nt suchthaty -j € T.and r(y - j) = (2, 5);

if d = [n], then there is a set M C succp(x) of cardinality n such that for all z € succp(z) — M,
there is j € N such thaty - j € T.and r(y - j) = (2, 8);

if d = (root) (d = [root]), then for some (all) root(s) ¢ € F there exists j € Nt such that
y-j€Teandr(y-j) = (¢, s);

If 6 above is true, then y does not need to have successors. Moreover, since no set S satisfies § = false,
there cannot be any run that takes a transition with § = false. A run is accepting if each of its infinite
paths 7 is accepting, that is if the minimum 4 for which Inf(7) N F; # (), where Inf(r) is the set of states
occurring infinitely often in 7, is even. The automaton accepts a forest iff there exists an accepting run of the
automaton on the forest. The language of A, denoted L£(A), is the set of forests accepted by A. We say that
A is non-empty if L(A) # (.

8 INFSYS RR 1843-15-02

Theorem 4.1 (Corollary 4.3 [Bonatti et al., 2008]). Given a FEA A = (¥,b,Q, 0, qo, F) with n states and
index k, deciding whether L(A) = () is possible in time (b + 2)O(° k> logklogh?)

S From Forest Logic Programs to Fully Enriched Automata

In this section we show how satisfiability checking of unary predicates with respect to FOLPs can be reduced
to emptiness checking for FEAs.

We start by introducing for every FOLP P and unary predicate p a class of FEAs Ai’ 5 , where p is one

of cts(P) or a new anonymous individual and 6 : cts(P) U {p} — 2upr(P)Ucts(P)U{p} ig a function which
has the following properties: 0; € §(0;), and o; ¢ 6(0;), for every 0;, 0; € cts(P) U {p}, such that o; # o;.
Furthermore, p € 6(c), where c is one of cts(P) U {p} and cis pif p ¢ cts(P). Intuitively Aif will accept
forest models of p with respect to P encoded in a certain fashion: in particular, for every root in the forest
model, the root node will appear in its own label; function 0 fixes a content for the label of each root of
accepted forest models.

In the following, let d = degree(P). We will also denote with PATp the set {x} U cts(P) of term
patterns, where * stands for a generic anonymous individual: we say that a term ¢ matches a term pattern
pt, and write ¢t — pt iff ¢ = pt, when ¢ is a constant. In all other cases, the match trivially holds. Term
patterns will be used in our encoding as a unification mechanism: a variable will match with a constant or an
anonymous individual, but a constant will match only with itself. The automaton Aﬁ:g will run on forests
labelled using the following alphabet: ¥ = 2°, where S = upr(P) U {1,...,d} Ucts(P)U {p} U {191 f €
bpr(P)} U {¢§c\ f € bpr(P),t € PATp}.

Unlike the case for forest models, the arcs of forests accepted by FEAs are not labelled: as such, binary
predicates occur in the label of nodes in an adorned form. These adorned predicates are either of the form
i’}, in which case they represent an f-link between the predecessor of the labelled node, which has term
pattern ¢ and the node itself, or of the form T?, in which case the current node is linked to a constant o
from P via the binary predicate f. Additionally, besides unary predicates, labels might contain natural
numbers and constants, which will be used as an addressing mechanism for successors of a given node and
nodes which stand for constants in accepted forests, resp. The set of states of the automaton are as follows:

Q=0Q;UQsUQ._, with:
e Qi={a0, 0} U{a | o€ cts(P)U{p}} Ufaw | 1<k <d),

® Qi+ ={Gta>Gtra> Gtr tous Gtr ta,rps Gt | Eit1,t2 € PATp, a € upr(P), f € bpr(P),u is of the form
a, f,not aornot f,1 <k <d,r, € urul(P),ry € brul(P)}, and

o)_ = {Wt,aaﬁt,raaqtl,tz,u’qtl,tg,rf’qk,t,*,u | t1,t2,t,a, f,u,k,r,, and ry as above}.

We will refer to Q1 and ()_ as the positive and the negative states of Aﬁ’ 5 , resp. Intuitively, positive states
are used to motivate the presence of atoms in an open answer set while rfegative states are used to motivate
the absence of atoms in an open answer set. (; contains some additional states, like ¢, the initial state, ¢, a
state which will be visited recursively in every node of the forest, g, a state corresponding to the initial visit
of constant nodes, and ¢g_, a state which asserts that for every node in an accepted forest there must be at
most one successor which has k in the label.

INFSYS RR 1843-15-02 9

We next describe the transition function of Aﬁ’g . The initial transition prescribes that the automaton
visits a root of the forest in state q,, for every o € cts(P) U {p}:

a0, 0) = \ ((root), o) 5)
o€cts(P)U{p}

In every such state q,, it should hold that o and only o is part of the label. Furthermore, the automaton justifies
the presence and absence of each unary predicate a and adorned upward binary predicate in the labe by
entering states g q, Go,o', f» qo,a> and 5o 7 TESP. At the same time every successor of the constant node is
visited in state ¢ :

3(¢o,0) =0 € T A /\ o ¢on /\ (€,G0,a) N /\ (¢, g5a) N\

o'ects(P)U{p}—{o} a€b(o) a¢6(o)
(6)
/\ (€7QO,O’,f)/\ /\ (anm)/\([o]uch)
1% €6(0) 1% ¢0(0)

Whenever the automaton finds itself in state ¢; it tries to motivate the presence and absence of each unary
and each adorned binary predicate in its label and then it recursively enters the same state into each successor
of the current node. It also ensures that for each integer 1 < k£ < d, the labels of each but one successor do
not contain k:

5(a1,0) = A (Egea) A N\ Ertma) A N Eoainn) AN (g

aco ag¢o li€o Voo o
/\ (67 Q*,o’,f) N /\ (57 qm) N ([O]a Q1) N /\ ([1}7 q—\k)
19 €0 1§ ¢o tshsd
5(Qﬁk’70-) =k ¢ g 3

To motivate the presence of a unary/binary predicate in the label of a node, the automaton checks whether
the given predicate is free (we assume that free(a) evaluates to true if a is free, and, to false, otherwise) or
finds a unary/binary rule which supports the predicate. Note in both cases, the distinction concerning the
term pattern for the node where the predicate has to hold. In the case of unary predicates, if the node is a
constant, there is first a preliminary check that we are at the right node - this is needed as later the automaton
will visit all roots in this state. In the case of binary predicates, depending on the term pattern, the label is
checked for different types of adorned binary atoms. In all cases, only rules whose head terms match the
given term patterns are chosen to motivate the presence of predicates in the label.

0(Gu,a,0) =a € o A (free(a) \Y \/ (e,q*,ra)) 9)

rq:a(s)«pBeP

8(Go,a,0) =0 ¢ o Vaecbo) <f7"ee(a,) v \/ (a,qo%)) (10)

rq:a(s)«BEP,s—o

! As constants have no predecessors in the forest, there will be no adorned downward predicates in the label.

10 INFSYS RR 1843-15-02

8(n,g,0) =15€ 7 A (free(f) v \/ (&, Guvery)) (1)

r:f(8,0)BEP,s—t, %

8(eo.s0) =15 o A (free(f) v \ (& dtor) (12)

r¢:f(s,0)BEP,s—t,v—0

Let v, : a(s) < B(s), (’Yz(s,vi),éi(vi))lgigm,w be a unary rule. Then, we denote with .J,, a multiset
{7il1<i<m,j;€{1,...,d} Ucts(P)} such that:

e forevery j; € J,,, v; € cts(P) implies j; = v;, and
e forevery j;, j; € Jr,, vi # vy € ¥ implies j; # j.

Intuitively, a multiset provides a way to satisfy the successor part of a unary rule in a forest model by
identifying the successor terms of the rule with either successors of the current element in the model or
constants in the program. Let M7 be the set of all such multisets. The following transition describes how
the body of such a rule is checked to be satisfiable:

5(Qt,ma U) = /\ (57 Q*,t,u) A \/ < /\ /\ /\ Qk t,x u /\

u€eB Jrg EMT k=1 ji=k,j; €EJrq u€y;US; (13)

A A A o)

o€cts(P) ji=0,ji € Jrq u€Y;US;

The state gy, ¢ «,, checks that the (possibly negated) unary or adorned binary predicate w is (is not) part of the
label of the k-th successor of a given node; we thus define:

Qo ty tou,0) =k €T A /\ J& o N a ton) (14)
ik

The state g4, ¢, can be seen as a multi-state with different transitions depending on its arguments (two
transitions have already been introduced as rules (11) and (12) above): if 3 = *, one has the justify the
presence/absence of w in the label of the current node; otherwise, when ¢ = o, one has to justify it from the
label of the root node corresponding to constant o: note that, as it is not possible to jump directly to a given
root node in the forest, nor to enforce that there will be a single root node corresponding to each constant, in
transition (17) we visit each root node in state g, 4:

(€,Gx.a), ifto=+andu = a (15)
([root], qoq), ifta=o0andu=a (16)
a¢ o, if t9 = * and u = not a 17)
0(aty tou,0) = e _
a ¢ 6(o), if to = oand u = not a (18)
i’}gé o, if to = x and u = not f (19)
[19¢ 0(0), if to = oand u = not f (20)

INFSYS RR 1843-15-02 11

For binary rules: 7 : f(s,v) « B(s),7(s,v),d(v), where v is grounded using an anonymous individual,
the check involves looking also to the predecessor node to see if the local part of the rule is satisfied. When v
is grounded using a constant, the local part of the rule is checked at the current node and the successor part
at the respective constant. Note that the first term pattern in the first conjunct in both rules 21)) and 22) is
irrelevant as the set 8 contains only unary predicates:

8o 0) = N\ (~Ligera) A\ (6 Qo) 1)
u€ep uEYUS

3(ator; o) = N\ (Eqra) A\ (6 o) (22)
uep ueEYUI

The transitions of the automaton in the negative states, i.e. the states which are used to motivate the absence
of certain unary/binary predicates in the labels of the forest can be seen as dual versions of the ones for the
counterpart positive states:

gza,0) =a ¢ o A /\ (¢, qx77) (23)
rq:a(s)«BEP

5(qear0) =0 ¢ cVagbo)A N (&, o) (24)

rq:a(s)«BEP,s—o

3(gsgr0) =45 o A A\ (€: qory) (25)
rp:f(8,0)BEP,s—t,v—k

(g7, 0) =T3¢ o A A\ (e, quay) (26)

r5:f(8,0)BEP,s—t,v—0

d
Sazmo)=\ eV N (V V V (O.go)V

u€ep Jra €EMT k=1 ji=k,j; EJry uEY;US; 27)

VooV Ve

o€cts(P) ji=0,ji€Jrq UEY; Ud;

Gz) =k E oV (e, a55) (28)
((¢,q%a), ifto=+andu = a (29)

([root],gsa), ifta=o0andu=a (30)

a € o, if to = xand u = not a 31

O o 7) = a € 0(o), ifto =oand u = not a (32)
e o, if to = % and v = not f (33)

1%€ 0(0), if to = oand u = not f (34)

12 INFSYS RR 1843-15-02

m0) =\ (L) vV V (6 a2 (35)
u€ef u€eYUS

(dror70) = Vesmv V Eag) (36)
uep ueYUS

Finally we specify the parity acceptance condition. The index of the automaton is 2, with F; =
{@t,a: 401405 | @ € upr(P), f € bpr(P),t,t1,t2 € PATp} and Fo = Q. Intuitively, paths in a run of the
automaton correspond to dependencies of literals in the accepted model and by disallowing the infinite
occurrence on a path of states associated to atoms in the model we ensure that only well-supported models
are accepted.

Theorem 5.1. Let P be a FoLP and p be a unary predicate symbol. Then, p is satisfiable with respect to P
iff there exists an automaton Aﬁ’g such that /J(Aﬁ’g) # 0.

Proof Sketch. (=): Assume p is satisfiable with respect to P. Then, by Prop. p is satisfied by
a forest model (U, M). Let (EF,ef), with EF = (F, ES) be the labelled forest which induces (U, M),
as in Definition Then, let [: {T. | ¢ € cts(P) U {p}} be a labelling function such that for every
y € {T. | c € cts(P) U{p}}, U(y) is the least set containing: (i) e f(y), (ii) {1%| f € ef(y,0),0 € cts(P)},
(iii) {}5| f € ef(z,y),z = precp(y),z ¢ cts(P)}, {{7| f € ef(z,9).2 = precr(y),z € cts(P)},
(iv) {y}, when y € cts(P)Up, and (v) {i} ify = z - i.

We define an automaton A”’ 5 which accepts (F,[). Let p be the same as its homonym in the considered
forest model and let 6 be such that 6(0) = (o), for every o € cts(P) U {p}. We construct a run (T}, r)
of AP'F oo on (F1) by first setting 7(c) = (¢, qo), where ¢ is the root of some forest in F". Then, for each
o€ cts()U{p}, we introduce a successor of ¢, ¢, such that r(c-i) = (0, g,). We then proceed inductively
with the construction by maintaining an invariant which ensures the existence of a run. More precisely, for
every w € T it holds that:

o r(w) = (Y, qsq) implies a € I(y);
e r(w) = (Y,q0,a) implies 0 ¢ I(y) or a € 0(0);

o r(w) = (y,qsr,) implies a € I(y), a is not free, and there is a rule s € P} derived from r,, such that
head(s) = a(y), M = body(s), and maTyepody(s)(level(b, M)) < level(a(y), M);

o 7(w) = (Y, qtu) implies a € [(y), if u = a; a ¢ I(y), if u = not a; isce ly),ifu=f; il}gé l(y), if
u = not f;

o r(w) = (Y, Gt0u) implies a € l(0), if u = a; a ¢ [(0), if u = not a; 19€ I(y), if u = f; T?gé l(y),if
u = not f;

o r(w) = (Y, k) implies k € I(y), and j ¢ l(y), forevery 1 < j # k < d; a € I(y), if u = a;
a ¢ l(y), if u = not a; J}E ly),ifu=f; iﬁeg‘é l(y), if u = not f;

o 7(w) = (Y, Gt ;) implies U € I(y), f is not free, and there is a rule s € P} derived from r such that
head(s) = f(precr(y),y), M = body(s), and mazpepoay(s) level (b, M) < level(f(precr(y),y), M);

INFSYS RR 1843-15-02 13

e r(w) = (Y, qr,0,;) implies 13€ I(y), f is not free, and there is arule s € PM derived from r such that
head(s) = f(y,0), M |= body(s), and mazyepoqy(s) level(b, M) < level(f(y,0), M);

o 7(w) = (y, ¢rz) implies a ¢ I(y);
o 7(w) = (¥, azz,) implies a ¢ I(y);

o 7(w) = (y,qszy) implies a ¢ I(y), if u = a5 a € l(y), if u = not a; }5¢ U(y), if u = f; %€ U(y), if
u = not f;

o 7(w) = (¥, gi57) implies a ¢ I(0), if u = a; a € l(0), if u = not a; 19¢ U(y), if u = f; T}E I(y),if
u = not f;

o r(w) = (y,q5757) implies k & I(y) ora ¢ l(y), if u = a; a € l(y), if u = not a; i’}% I(y),ifu=f;
\Ltfe l(y), if u = not f;

o r(w) = (y, gz 5) implies [¢ I(y);

o r(w) = (y. grs7;) implies 19¢ 1(y).

We show how the invariant is preserved in two cases of the construction:

e Assume r(w) = (y,qiq), for some w € T.. Then, from the IH: @« € I(y), and a(y) € M.
Then, there must be a finite n such that level(a(y), M) = n and some rule s in P} such that
MaTpepody(s) (level(b, M)) = n — 1 (from which a(y) has been derived at iteration n). Let 7,4
be the rule in P from which s has been derived and let w - 7 be a successor of w in 7. such that
r(w -4) = (Y, gt,r,). The invariant is preserved.

e Assume r(w) = (y, qt,r,), for some w € T,. Then, from the IH: a € [(y), a is not free, and there
exists some rule s in P}’ derived from rq: a(y) < B7(y) U Uicicn (i (4, 2i) U 67 (2:)) such
that M = body(s) and mazyepoqy(s)(level(b, M)) < level(a(y), M). Note that M |= B(y) U
Uity (vi(y, zi) U i(2:)). As (U, M) is a forest model, each z,, must be of the form y - k, for some
1 < k < d, or of the form o € cts(P). Let J,, be a multiset such that j; = z;, if z; € cts(P) and
Ji = k if z; = y - k. Then, we introduce the following successors of w in T, (denoted just by their
label):

= (¥, ¢« tu), for every u € [3: the invariant holds as M = [(y).

- (v -k, Qrtxu) forevery 1 < k < d, i such that j; = k, and u € ; U §;: the invariant holds
as M = vi(y,y - k)Ud;(y - k). Itis also the case that k € I(y - k) and j ¢ I(y - k), for every
1< j#kleqd.

- (¥, qt,0,u), for every o and i such that j; = o and u € ~; U §;: the invariant holds as M =
71(y7 O) U 61(0)

To see that the run is accepting, i.e. that on every path of 7, there are finitely many occurrences of
states of the form gy, or g4, ¢, f, assume that every w € T for which r(w) = (¥, ¢t.a), 7(w) = (¥, @t.5.f)
or r(w) = (Y, qt,0,¢) is annotated with level(a(y), M), level (f(prec(y),y), M), or level(f(y, o), M), resp.
From the invariant, it follows that level annotations decrease along each path of 7¢.. But the level of every
atom in an open answer set is finite. Thus, the number of level annotations, and consequently the number of
occurrences of such states must be finite.

14 INFSYS RR 1843-15-02

(<): Assume that there exists an automaton Ap "o such that £(Az:5) # (). Then, there exists a labelled
forest (F’, f') and an accepting run (T, r) on (F’ f7) such that r(¢) = (¢, qo), for some root ¢ in F’.
Let F' be the forest containing the nodes y € Ngr for which either (i) there exists some w € T, such
that r(w) = (y, qo) or (ii) precp/(y) € Np and there exists some w € T, such that r(w) = (y, qk.t, tou)-
Assume C' is the set of roots in F.. Then let n : Np — Np U cts(P) U {p} be as follows: n(y) =

{oi, if o; € l(y), and 0; ¢ l(y), for oj € cts(P) U {p} — {0;}

(0) " f o and let [be the following labeling
n(c)-s, ify=c-s, force

0(n(y)), ifn(y) € cts(P) '
'), ifn(y) € Np — cts(P)

Also, let: U = {n(y) | y € Nr}, M ={a(n(y)) | a € l{y)Nupr(P)Ay € NptU{f(n(z),n(z)-i) N}
Wy) Ny ==z-iNy € Np}U{f(n(y),0) [t} €l(y) Ay € Np}.

We show that (U, M) is a forest model of P by showing that:

function for Ng: I(y) = {

(i) M is amodel of PV, i.e every rule in ng is satisfied by M.

Let ' : a(n(y)) < BYw)), (v (n(y), n(y:)), 6;(1(y:)))1<i<m be arule in PY derived from a unary
rule r : a(s) < B(s), U (7i(s,ti),0i(ti)), 1 in P. Let J, be the multiset formed of elements j;,
1 < 7 < m, such that:

j,::{nuhx if 1(yi) € cts(P),
ok i) = n() -k

Assume M | body(r'), but M = a(n(y)). Then, a ¢ I(y) and there must be some w € T, such that
either:

- r(w) = (y, ¢za). Then, for every rule r, : a(s) < § € P, there must be a node w,, € T, such that
r(wr,) = (Y, gz7;)- This holds also for rule r. Then, one of the following holds:

* there exists w’ € T, such that r(w') = (y, ¢zz), for some u € J: then, either v = a and
(y,¢va) € Tc and thus a ¢ I(y) or M [~ a(n(y)) — contradiction, or for some v = not a,
a € l(y) or M = a(n(y)) — contradiction.
* for every multiset J,, as in transition rule (14) (including .J, above) and every j; € J,, either:
- thereexist 1 < k < d,1 <i< m,andu € y; Ud; such that j;, = k and for every
y-g € F, there is a node wy, € T, such that r(w,) = (y - g,qm): then, there is
wy, € T¢ such that r(wy) = (y - k, gr757;) and either (1) k ¢ I(y - k) — contradiction,
@ u=aa¢lly-k):ally-k) ¢ M or M I a(n(y)), and thus M I o(n(yi))
— contradiction, (3) u = not a, a € l(y - k): a(n(y - k)) € M or M = a(n(y;)), and
thus M = 6;(n(y;)) — contradiction, (4) u = f, i’}gé Wy -k): f(ny),n(y- k) ¢ M
or M [~ f(n(y),n(yi)), and thus M = ~;(n(y),n(y;)) — contradiction, (5) for some
u = not f, 15€ Uy - k): f(n(y),n(y - k)) € M or M = f(n(y),n(yi)), and thus
M = ~i(n(y),n(y;)) — contradiction.
- there exists 1 < ¢ < m such that j; = o, for some o € cts(P), a node w, € T, and

u € 7y; U d; such that 7(w,) = (y, ¢;57): similar to above we reach a contradiction with
the fact that M = v;(n(y), 0) U d;(0).

- r(w) = (y,9sa) With n(y) = o. Then, o ¢ I(y) = (o) — contradiction or a ¢ #(o) and for
every rule 7, : a(s) < B € P, such that s — o there must be a node w,, € T, such that
r(wr,) = (Y, go;) — similar to above.

INFSYS RR 1843-15-02 15

Thus, in each case we obtained a contradiction and M |= a(n(y)): every unary rule is satisfied by M.
Similarly it can be shown that every binary rule is satisfied as well.

(i) M is minimal: M is a minimal model of P}: from the fact that (7, r) is accepting, it follows that every
path starting at a state in Q" must be finite. For every node w € T, such that r(w) = (y, q), for some

g€ QT letd(w) = {

0, if w has no successors in T,

1+ maxy.ier, (d(w - 7)), otherwise.

We show by induction on d(w) that the following hold:

- r(w) = (Y, ¢z,a) implies a(n(y)) € M(Pg/[)’

- 7(w) = (Y, go,a) implies o & I(y) or a(0) € M(P}),

- 7(w) = (¥, g,) implies P}! contains a rule a(n(y)) <+ B such that M(P}) = B,

- r(w) = (¥, qt,z,r,) implies y = 2 - i, for some i, and PM contains f(n(z),n(z) - i) + B such that
M(PJ) = B,

- r(w) = (¥, qt,0r;) implies PM contains f(n(y),0) < B such that M(PY) & B,

- r(w) = (Y, qktzu) impliesy = z -4, k € l(y), forevery j # k: j ¢ l(y), and: a(()

S
MPH), if u = a; a(nly)) ¢ M(PY), if u = not a; f(n(z),n(2) - i) € M(P}), ifu = f;
f(n(z),n(2) - i) ¢ M(P}"), if u = not f;
(w) (Y, t,».u) implies y = z - 4, and: a(n(y)) € M(Py), ifu=a;a(nly)) ¢ M(Pg/[), if
not a; f(1(z),n(2) - i) € M(PY), if u = f; f(n(2),n(2) - i) ¢ M(P"), if u = not f;
- r(w) = (Y, t,0,u) implies: a(o) € M(Pg[),ifu =a;a(o) ¢ M(Pg/[),ifu = not a; f(n(y),o) €
MPH), it u= f; f(n(y),0) § M(P"),if u=not f.

|
<

Induction base: assume w is a leaf in T and r(w) = (y, q), for some ¢ € Q* (d(w) = 0). Then, one of
the following holds:

- 7(w) = (¥, qt,0) and a is free: in this case a(n(y)) € M and thus P}Y will contain rule a(n(y)) +.
Thus, a(n(y)) € M(P}").

= r(w) = (

- r(w) = (Y, Gt to,u) and u = not a or u = not f: from the fact that (7., ¢) is a run and transition

rules (17-20), it follows that a ¢ [(y) or ii? (t2 = *)/ 1% (t2 = 0) ¢ l(y). Then, the claim follows
from the definition of M.

Y, Gty to,¢) and f is free: similar to above.

Induction step: consider a non-leaf node w € T, (d(w) > 0). We will analyse the case when r(w) =
(¥, Gt,r,): then, for every u € 3 there is a successor w - ig, of w such that r(w - ig) = (¥, ¢x,t,u) and
there exists a multiset .J;,, and successors w - my,; ., and w - M, ; ,, for w such that:

= r(w-mgiu) = (Y- 2kiu Qktaw) for all pairs (k,7) such that j; = k and u € ; U ;3
- r(w-moin) = (Y, qto.u), for all pairs (o, 1) such that j; = oand u € v; U ;.

From the IH, it follows that:

- M(PY") = u(n(y)), for every u € 3, and thus M(PY) k= B(n(y)) (*1),

16 INFSYS RR 1843-15-02

- M(PM) & un(y),n(y) - 2kiu), for every u € ~; and M(PM) | u(n(y) - zkiw). for every
uw € d0;and k € I(n(y) - 2k,i): as there is a unique successor y - z;, of y such that k € I(y - 2x),
it follows that: M(PM) = u(n(y),n(y) - zx), for every u € ~; and M(PH) |= u(n(y) - 2x), for
every u € ¢; and thus M(Ply) Evi(n(y),n(y) - zk) Udi(n(y) - zk) (¥2),

- M(PM) = u(n(y), o), for every u € v; and M(P}) = u(0)), for every u € &;, where j; = o,
and thus M(PM) = v:(n(y), 0) Ui (o) (*3).

From (*1)-(*3) and the fact that j; # j, implies zj, # zj, it follows that M(P}) & B(n(y)) U
Urcreca(i(n(y), 1(y) - 21) Ui (1(y) - 2)) ji=k U Uoects(p) (Vi (1(Y), 0)U 8i(0)) j;=o, ¥, which is the body
of a grounding of r, in Py with head a(n(y)). Then, by applying the reduct one obtains that M (P}) =
BT0(Y) U Urereai), n(y) - 26) U6 (0(y) - 28))ji=t U Upeerspy Vi (1(9)5 0) U 677 (0))ji=os
which is the body of a rule with head a(n(y)) in P}

The other cases can be treated similarly.

Then, as a € I(y) N upr(P) implies that there exists a node w € T} such that r(w) = (v, ¢t.q). isce l(y)
implies that there exists a node w € T’ such that r(w) = (y, ¢t 4,f), and 13€ I(y) implies that there exists
anode w € T, such that 7(w) = (y, g 0. f) (from transition rule (7)), it follows that M C M(P}), and
thus M is a minimal model of Pg/l .

O
Theorem 5.2. Satisfiability checking of unary predicates with respect to FoLPs is EXPTIME-complete.

Proof Sketch. That the task is EXPTIME-hard follows from the fact that satisfiability checking of unary
concepts with respect to SHOQ ontologies is EXPTIME-complete [[Schild, [1991]]; the latter has been reduced
to satisfiability checking of unary predicates with respect to FoLPs [Feier and Heymans, [2013]].

For the upper bound, we observe that for a given P and p, there is an exponential number of automata Az’ 5
(as there are an exponential number of possible §). Each such automaton can be constructed in exponentfal
time, and emptiness checking for Aﬁ:g can be performed again in exponential time. The latter follows from

Theorem and the fact that the branching factor and the number of states of Aﬁ’ 5 are polynomial in the
size of P, while its index is constant (viz. 2). Then, from Theorem @it follows that satisfiability checking
of unary predicates with respect to FoLPs is in EXPTIME. O

6 Discussion and Conclusion

We have described a reduction of the satisfiability checking task of unary predicates w.r.t. FOLPs to emptiness
checking of FEAs. This enabled us to establish a tight complexity bound on this reasoning task for FoLPs.
Other reasoning tasks like consistency checking of FoLPs and skeptical and brave entailment of ground
atoms can be polynomially reduced to satisfiability checking of unary predicates [Heymans, [2006]]; thus, the
complexity result applies to those tasks as well. Also, by virtue of the translation from fKBs to FoLPs, the
result applies to fKBs as well: satisfiability checking of unary predicates w.r.t. fKBs is EXPTIME-complete.
Thus, reasoning with FOLP rules and SHOQ ontologies is not harder than reasoning with SHOQ ontologies
themselves.

In the introduction, we mentioned the special form of forest model property as one of the reasons
FoLPs cannot be dealt with using 2ATAs. An additional technical difficulty we had to overcome compared
to both encodings using 2ATAs and other encodings using FEAs, is the fact that FEAs, unlike 2ATAs,

INFSYS RR 1843-15-02 17

cannot explicitly address successor nodes in runs: they are suitable for encoding graded modalities/number
restrictions where the same property has to hold/not to hold at a given number of successors. In our encoding,
in order to assert that different properties hold at different successors (as the structure of FOLP rules allows),
we had to devise an addressing mechanism for successors. Furthermore, as terms occurring in any position in
FoLP rules might be constants, our encoding also made use of a unification mechanism.

Finally, as our result shows that FoLPs have the same complexity as CoLPs, we plan to further investigate
the extension of the deterministic AND/OR tableau algorithm for CoLPs [Feier, 2014]] to FoLPs. As explained
in [Feier, 2014]], such an extension is far from trivial.

References

P. A. Bonatti, C. Lutz, A. Murano, and M. Y. Vardi. The complexity of enriched u-calculi. Logical Methods
in Computer Science, 4(3):1-27, 2008.

A. Cali, G. Gottlob, and T. Lukasiewicz. Datalog+ : A unified approach to ontologies and integrity constraints.
In ICDT, volume 9, pages 14-30, 2009.

D. Calvanese, G. D. Giacomo, and M. Lenzerini. 2ATAs make DLs easy. In Proc. DL, pages 107-118, 2002.

D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics: An
automata-theoretic approach. In Proc. AAAI, pages 391-396, 2007.

D. Calvanese, T. Eiter, and M. Ortiz. Regular path queries in expressive description logics with nominals.
Proc. 1JCAI, pages 714-720, July 2009.

T. Eiter and M. Simkus. Bidirectional answer set programs with function symbols. In Proc. IJCAI, pages
765-771, 20009.

T. Eiter, G. lanni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with
description logics for the semantic web. Al, 172(12-13), 2008.

F. Fages. A new fix point semantics for generalized logic programs compared with the well-founded and the
stable model semantics. New Generation Computing, 9(4), 1991.

C. Feier. Worst-case optimal reasoning with Forest Logic Programs. In Proc. KR 2012, pages 208-212, 2012.
C. Feier. Reasoning with Forest Logic Programs. PhD thesis, TU Wien, 2014.

C. Feier and S. Heymans. Hybrid reasoning with Forest Logic Programs. In Proc. ESWC, volume 5554,
pages 338-352. Springer, 2009.

C. Feier and S. Heymans. Reasoning with Forest Logic Programs and f-hybrid knowledge bases. TPLP, 3
(13):395-463, 2013.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of ICLP’88, pages
1070-1080, 1988.

S. Heymans. Decidable Open Answer Set Programming. PhD thesis, Theoretical Computer Sci-
ence Lab (TINF), Department of Computer Science, Vrije Universiteit Brussel, 2006. URL http:
//stijnheymans.net/pubs/doasp_phd.pdf.

http://stijnheymans.net/pubs/doasp_phd.pdf
http://stijnheymans.net/pubs/doasp_phd.pdf

18 INFSYS RR 1843-15-02

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual Logic Programs. AMAI (Special Issue on
Answer Set Programming), 47(1-2):103—-137, 2006.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Programming for the Semantic Web.
Journal of Applied Logic, 5(1):144-169, 2007.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Programming with guarded programs.
Transactions on Computational Logic, 9(4):1-53, August 2008.

M. Krétzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. ECAI, pages 80—84. IOS Press,
2008.

D. Magka, M. Krotzsch, and 1. Horrocks. Computing stable models for nonmonotonic existential rules. In
IJCAI 2013.

B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the ACM, 57(5):30:1-30:62,
2010.

B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. Journal of Web Semantics, 3
(1):41-60, July 2005.

R. Rosati. DL+log: Tight integration of description logics and disjunctive Datalog. In Proc. KR, pages 68—78,
2006.

R. Rosati. On combining description logic ontologies and nonrecursive datalog rules. In Proc. RR, pages
13-27, 2008.

K. Schild. A correspondence theory for terminological logics: Preliminary report. In IJCAI, pages 466471,
1991.

M. Y. Vardi. Reasoning about the past with two-way automata. In Proc. ICALP, pages 628—641. Springer,
1998.

	Introduction
	Preliminaries
	Forest Logic Programs
	Fully Enriched Automata
	From Forest Logic Programs to Fully Enriched Automata
	Discussion and Conclusion

