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Abstract. Epistemic negation along with default negation plays a key role in knowledge
representation and nonmonotonic reasoning. However, the existing epistemic approaches
such as those by Gelfond (1991), Truszczyński (2011) and Kahl [18] (2014) behave not
satisfactorily in that they suffer from either epistemic circular justifications or the multiple
world view problem and thus produce undesired results for some logic programs. In this
paper we propose a new approach to handling epistemic negation which is free of epistemic
circular justifications and the multiple world view problem, and thus offers a solution to
evaluate epistemic specifications which were introduced by Gelfond (AAAI 1991) over two
decades ago. We consider general logic programs consisting of rules of the form H ← B,
where H and B are arbitrary first-order formulas possibly containing epistemic negation,
and define an extended FLP answer set semantics for general logic programs, called epis-
temic FLP semantics, by introducing a novel program transformation and a new definition
of world views. The proposed approach can readily be adapted to any other existing an-
swer set semantics for extension with epistemic negation, such as those by Pearce (1996,
2006), Pearce et al. (2007), Truszczyński (2010), Bartholomew et al. (2011), Ferraris et al.
(2011), and Shen et al. (2014). We also consider the computational complexity of epis-
temic FLP semantics and show that for a propositional program Π with epistemic negation,
deciding whether Π has epistemic FLP answer sets is Σp

3-complete and deciding whether
a propositional formula F is true in Π under epistemic FLP semantics is Σp

4-complete in
general.
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1 Introduction
Answer set programming (ASP) is a major logic programming paradigm rooted in knowledge
representation and reasoning (KR) for modeling and solving knowledge-intensive search and op-
timization problems such as product configuration and planning [4]. In ASP, the semantics of a
logic program is given by a set of intended models, called stable models or answer sets [17, 14].
Such answer sets can be defined in different ways; Lifschitz [21] listed 13 of them in the literature.
These semantics agree for normal logic programs, but show discrepancies for more general logic
programs such as logic programs with aggregates [29, 9], with external sources such as description
logic programs (dl-programs) [8], and with propositional or first-order formulas [24, 26, 31, 3, 11].
Most recently Shen et al. [28] introduced a new one called the well-justified FLP answer set se-
mantics, which is fundamentally distinct from other existing answer set semantics in that it is free
of circular justifications, i.e., every answer set of a general logic program has a level mapping. This
semantics has been implemented over the well-known ASP reasoner DLVHEX.1

Negation is a key mechanism in ASP for reasoning with incomplete knowledge. There are two
major types of negation, default negation and epistemic negation. A third, called strong negation,
also appears in the literature; when default negation is available, strong negation is easily compiled
away using new predicate symbols [14] and thus it can be omitted. By abuse of notation, in this
paper we use ¬, not and ∼ to denote the three negation operators, respectively.2 For a formula
F , the default negation ¬F of formula F expresses that there is no justification for adopting F
in an answer set and thus F can be assumed false by default in the answer set; in contrast, the
epistemic negation notF of F expresses that there is no evidence proving that F is true, i.e., F
is false in some answer set. Justification in ASP is a concept defined over individual answer sets,
while provability is a meta-level concept defined over a collection of answer sets. This means the
two types of negation are orthogonal operations, where default negation works locally on each
individual answer set, and epistemic negation works globally at a meta level over all answer sets.

With both default and epistemic negation, ASP is enabled to reason with different incomplete
knowledge. For example, we can use the rule

innocent(X)← not guilty(X)

to concisely express the presumption of innocence, which states that one is presumed innocent if
there is no evidence proving s/he is guilty. We can also use rules of the form

¬p(X)← not p(X)

to explicitly state Reiter’s closed-world assumption (CWA) [27], i.e., if there is no evidence proving
p(X) is true we jump to the conclusion that p(X) is false.

However, observe that most of the existing answer set semantics, such as [14, 24, 26, 31, 3, 9,
11, 28], only support default negation and they do not allow for epistemic negation.

Epistemic negation and specifications. In fact, the need for epistemic negation was long recog-
nized in ASP by Gelfond [15] and recently revisited in [16, 32, 18, 6]. In particular, [15] showed
that formalization of CWA using default and strong negations with rules of the form

1www.kr.tuwien.ac.at/research/systems/dlvhex
2In many texts, not and ¬ are used to denote the default and strong negation operators, respectively.
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∼p(X)← ¬p(X)

as presented in [14], is problematic. He then proposed to address the problem using two epistemic
modal operators K and M. Informally, for a formula F , KF expresses that F is true in every
answer set, and MF expresses that F is true in some answer set. Note that MF can be viewed as
shorthand for ¬K¬F .3

In the sequel, by an object literal we refer to an atom A or its strong negation ∼A; a default
negated literal is of the form ¬L, and a modal literal is of the form KL, ¬KL, ML or ¬ML,
where L is an object literal.

Gelfond [15] considered disjunctive logic programs with modal literals, called epistemic spec-
ifications, which consist of rules of the form

L1 ∨ · · · ∨ Lm ← G1 ∧ · · · ∧Gn (1)

where each L is an object literal and each G is an object literal, a default negated literal, or a modal
literal. Given a collection A of interpretations as an assumption, a logic program Π is transformed
into a modal reduct ΠA w.r.t. the assumption A by first removing all rules with a modal literal G
that is not true in A, then removing the remaining modal literals. The assumption A is defined to
be a world view of Π if it coincides with the collection of answer sets of ΠA under [14].

Epistemic circular justification problem. More recently, Gelfond [16] addressed the problem
that applying the above approach to handle modal literals may produce unintuitive results. For
example, consider a logic program Π = {p ← Kp}. The rule expresses that for any collection
A of answer sets of Π and any I ∈ A, if p is true in all answer sets in A, then p is true in I .
This amounts to saying that if p is true in all answer sets, then p is always true (in particular in
all answer sets). Obviously, this rule is not informative and does not contribute to constructively
building any answer set; thus it can be eliminated from Π, leading to Π = ∅. As a result, Π is
expected to have a unique answer set ∅. However, {p} would be an answer set of Π when applying
the approach of [15]. To illustrate, consider an assumptionA = {{p}}, i.e., p is assumed to be true
in all interpretations in A. Then, Kp is true in A and we obtain the modal reduct ΠA = {p}. This
reduct has a unique answer set {p}, which coincides with the assumption A. Thus A is a world
view of Π under [15]. Observe that this world view has an epistemic circular justification:

∃I∈A p ∈ I ⇐ Kp ⇐ ∀I∈A p ∈ I

i.e., p being true in an interpretation I = {p} of the world view A is due to Kp being treated true
in the program transformation for the modal reduct ΠA (via the rule p← Kp), which in turn is due
to p being true in all interpretations of the assumption A.

In general, a world view A is said to have an epistemic circular justification if some object
literal L being true in some interpretation I ∈ A is due to KL (or its equivalent modal literals
expressing that L is true in every interpretation J ∈ A) being treated true in the program transfor-
mation for the modal reduct of Π w.r.t. A.

3Note that ¬KF and ∼KF are semantically equivalent. In [15], MF is shorthand for ∼K ∼F , while in [16], it
is shorthand for ∼K¬F , which is semantically equivalent to ¬K¬F .
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G G is true in A Otherwise
KL replace it with L delete the rule
¬KL replace it with > replace it with ¬L
ML replace it with > replace it with ¬¬L
¬ML replace it with ¬L delete the rule

Table 1: The program transformation of [18], where G is a modal literal in the body of a rule. Note
that ¬¬L is a nested expression defined in [19], which is not equivalent to L as in classical logic.

To remedy the epistemic circular justification problem, Gelfond [16] revised the program trans-
formation such that a modal reduct ΠA is obtained from Π by first removing all rules of form (1)
with a modal literal G that is not true in A, then removing all modal literals ¬KL and ML, and
finally replacing all modal literals KL by L and ¬ML by ¬L.

It is easy to check that the logic program Π = {p ← Kp} has a unique world view {∅} when
applying the revised program transformation. Unfortunately, the epistemic circular justification
problem persists in other logic programs, such as Π = {q←¬Kp, p←¬q}. Consider an assump-
tion A = {{p}}. Since Kp is true in A, the modal literal ¬Kp is not true in A and thus the first
rule is removed, yielding the modal reduct ΠA = {p ← ¬q}. This reduct has a unique answer set
{p}, which coincides with A, hence A is a world view of Π. Note that this world view has also an
epistemic circular justification:

∃I∈A p ∈ I ⇐ ¬q ⇐ ¬Kp ⇐ ∀I∈A p ∈ I

i.e., p being true in an interpretation I = {p} of the world view A is (via the rule p←¬q) due to
q being false in I , which in turn (via the rule q←¬Kp) is due to Kp being treated true and thus
¬Kp treated false in the program transformation, which is due to p being true in all interpretations
of the assumption A.

Multiple world view problem. In addition to epistemic circular justifications, the approach of
[16, 15] also suffers from the multiple world view problem caused by so called M-cycles. Consider
the logic program Π = {p←Mp}, which expresses that for any world view A and any I ∈ A, if
p is true in some answer set inA, then p is true in I . This amounts to saying that if p is true in some
answer set, then p is always true, in particular in every answer set. Note that this statement for p is
not circularly justified, and thus {{p}} is expected to be the only world view of Π (see Example 1
for more explanation). However, under the approach of [16, 15] this program has two world views,
{{p}} and {∅}. Due to this the approach is said to have the multiple world view problem [18].

Recent advance. Most recently, [18] further studied both epistemic circular justifications and the
multiple world view problem with the approach of [16, 15] and proposed a new program transfor-
mation by appealing to nested expressions of [19]. Let Π be a logic program with rules of form (1)
and A a collection of interpretations as an assumption. The Kahl modal reduct ΠA of Π w.r.t. A is
a nested logic program (i.e., a logic program with nested expressions), which is obtained from Π
by replacing all modal literals or deleting rules according to Table 1. The assumption A is defined
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to be a Kahl world view of Π if it coincides with the collection of answer sets of the nested logic
program ΠA under the semantics of [19].

Kahl [18] listed sixty-two interesting logic programs with modal literals and illustrated the
approach with these programs. As a typical example, given an assumption A = {∅}, the Kahl
modal reduct of the logic program Π = {p←Mp} w.r.t. A is ΠA = {p← ¬¬p}, which has two
answer sets ∅ and {p} under the semantics of [19]. Thus {∅} is not a Kahl world view.

However, our careful study reveals that the approach of [18] may also produce undesired an-
swer sets for some logic programs, even including a few of his sixty-two example logic programs.
To sum up, we observe the following three critical shortcomings of the approach:

(1) The definition of the Kahl program transformation/modal reduct looks a bit ad hoc, and the
variety of replacements for modal literals (see Table 1) lacks a deeper discussion or justification.4

(2) It is undesired to transform a logic program into a reduct containing nested expressions.
As shown in [28], the existing semantics for nested expressions, such as [19, 12, 11], suffer from
circular justifications. For example, for the logic program Π = {p ← ¬¬p}, I = {p} is an
answer set under these semantics. Observe that this answer set has a circular justification via the
self-supporting loop p ⇐ ¬¬p ⇐ p, i.e., p being true in I is due to I satisfying ¬¬p (via the rule
p← ¬¬p), which in turn is due to p being true in I .

For a logic program with rules of form (1), it is desirable to transform it to a regular disjunctive
logic program so that the standard answer set semantics of [17, 14] can be applied.

(3) The approaches of [15, 16] are said to suffer from the multiple world view problem be-
cause they yield for the logic program Π = {p ← Mp} two world views, viz. A1 = {{p}} and
A2 = {∅}; however, to the best of our knowledge there has been no deeper discussion or jus-
tification in the literature for why A1 is the right world view of this program and A2 is not. In
fact, there has been no formal definition of the multiple world view problem in the literature; cf.
[16, 32, 18, 6]. Moreover, we observe that the approach of [18] also suffers from the multiple
world view problem and produces undesired answer sets for some logic programs, as illustrated in
the following example.

Example 1 Consider again the logic program Π = {p ← Mp}. Intuitively, for this program it
is expected to find all world views A such that Mp is true in A and every I ∈ A is an answer
set of Π after Mp is replaced by >. We have indeed one such world view A = {{p}}. Note
that {∅} should arguably not be a world view for this program, as it does not satisfy the above
intuitive expectation. Applying the approach of [18] to this program will yield a unique world
view A = {{p}}, as expected.

Now consider another very similar logic program, which is borrowed from Example 29 in
Appendix D of [18]:

Π : p←Mq ∧ ¬q r1

q ←Mp ∧ ¬p r2

4In fact, no existing approaches to epistemic specifications, such as [15, 16, 32, 18], have ever provided a deeper
discussion or justification for the replacements of modal literals in their program transformations.
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Following the same intuition as {p←Mp}, for this program it is expected to find all world views
A such that both Mq and Mp are true in A and every I ∈ A is an answer set of Π after Mq
and Mp are replaced by >. It is easy to check that A = {{p}, {q}} is such a world view that
satisfies the intuitive expectation, but {∅} does not satisfy the expectation and thus should not be
a world view. However, applying the approach of [18] will produce both as the world views of
this program, contradicting the expectation. This example suggests that the approach of [18] also
suffers from the multiple world view problem.

Our contributions. The goal of this paper is to address the above problems and provide a better
solution to epistemic negation as well as epistemic specifications of [15]. Our main contributions
are summarized as follows:

(1) We use modal operator not to directly express epistemic negation and define general logic
programs consisting of rules of the formH ← B, whereH andB are arbitrary first-order formulas
possibly containing epistemic negation. Modal formulas KF and MF are viewed as shorthand for
¬notF and not¬F , respectively, and thus epistemic specifications of [15] are a special class of
general logic programs.

(2) We propose to apply epistemic negation to minimize the knowledge in world views of a gen-
eral logic program Π, i.e., we apply epistemic negation to formulas w.r.t. a world view and assume
notF in Π to be true in the world view whenever possible; this is analogous to applying default
negation to minimize the knowledge in answer sets, i.e., one applies default negation to formulas
w.r.t. an answer set and assumes ¬F in Π to be true in the answer set whenever possible (CWA
or minimal models). To this end, we introduce a novel and very simple program transformation
based on epistemic negation and present a new definition of world views. Given a subset Φ of the
epistemic negations notF in Π, called a guess, we transform Π into an epistemic reduct based on
Φ, denoted ΠΦ, by replacing every notF with > if it is in Φ, and with ¬F , otherwise. Let A be
the set of all answer sets of ΠΦ. A is called a candidate world view w.r.t. Φ if it agrees with Φ in
the sense that every notF in Π is true in A if it is in Φ, and false, otherwise. A candidate world
view A w.r.t. a guess Φ is defined to be a world view under our approach if Φ is maximal (i.e.,
there is no candidate world view w.r.t. any guess Φ′ ⊃ Φ). Note that it is by applying a maximal
guess Φ that we minimize the knowledge in the world view w.r.t. Φ. Obviously, such definitions of
program transformations and world views fundamentally differ from those of [15, 16, 18].

We will give a formal definition for the multiple world view problem based on epistemic negation
and show that world views under our approach are free of epistemic circular justifications and the
multiple world view problem.

(3) The proposed approach can be used to extend any existing answer set semantics with epis-
temic negation, such as [24, 26, 31, 3, 9, 11, 28]. For illustration, we extend here as a show case
the well-known FLP semantics of [9], yielding a new semantics called epistemic FLP semantics.

(4) As satisfiability of an arbitrary general logic program is undecidable, we address the compu-
tational complexity of epistemic FLP semantics for propositional programs. In particular, we show
that deciding whether a propositional program Π has epistemic FLP answer sets is Σp

3-complete.
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Furthermore, we show that query evaluation, i.e., deciding whether a propositional formula is true
in every epistemic FLP answer set of some world view of Π, is Σp

4-complete in general; impor-
tant fragments, e.g. programs that match normal epistemic specifications as in [15], have lower
complexity.

The paper is organized as follows. In Section 2, we introduce a first-order logic language
and define logic programs with first-order formulas and epistemic negation. In Section 3, we
present a novel program transformation and define epistemic reducts. In Section 4 we extend FLP
answer set semantics with epistemic negation, and in Section 5 we study in depth the computational
complexity of the extended semantics. In Section 6, we discuss related work, and in Section 7 we
conclude and mention some ongoing work.

In order not to distract from the flow of reading, proofs of theorems are in the appendix.

2 Preliminaries
In this section, we introduce a first-order logic language and define logic programs with first-order
formulas and epistemic negation.

2.1 A First-Order Logic Language
We follow the notation in [28] and define a first-order logic language LΣ with equality over a
signature Σ = (P ,F), where P and F are countable sets of predicate and function symbols, re-
spectively; C ⊆ F denotes the set of 0-ary function symbols, which are called constants. Variables,
terms, atoms and literals are defined as usual. We denote variables with strings starting with X , Y
or Z.

First-order formulas (briefly formulas) are constructed as usual from atoms using connectives
¬, ∧, ∨, ⊃, >, ⊥, ∃ and ∀, where > and ⊥ are two 0-place logical connectives expressing true
and false, respectively. Formulas are closed if they contain no free variables, i.e., each variable
occurrence is in the scope of some quantifier. A first-order theory (or theory) is a set of closed
formulas. Terms, atoms and formulas are ground if they have no variables, and propositional if
they contain no variables, no function symbols except constants, and no equalities. By NΣ we
denote the set of all ground terms of Σ, and byHΣ the set of all ground atoms.

In this paper we consider SNA interpretations, i.e., interpretations which employ the well-
known standard names assumption (SNA) [5, 23]. An SNA interpretation (or interpretation for
short) I of LΣ is a subset of HΣ such that for any ground atom A, I satisfies A if A ∈ I , and I
satisfies ¬A if A 6∈ I . The notion of satisfaction/models of a formula/theory in I is defined as
usual. A theory T is consistent or satisfiable if T has a model. T entails a closed formula F ,
denoted T |= F , if all models of T are models of F . F is true (resp. false) in an interpretation I if
I satisfies (resp. does not satisfy) F .
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2.2 Logic Programs with Epistemic Negation
Based on the first-order logic language LΣ defined above, we introduce the syntax of a logic
program with epistemic negation and define its grounding, satisfaction and models.

2.2.1 Syntax

As in [28] and early AI literature, default negation will be expressed by giving the connective ¬
a special meaning; i.e., we use ¬ to denote the default negation operator. We further extend the
language LΣ to include the epistemic negation operator not and the rule operator←.

Epistemic formulas are constructed from atoms using the connectives ¬,∧,∨,⊃,>,⊥, ∃,∀
together with the operator not in the same way as first-order formulas. An epistemic negation is
an epistemic formula of the form notF , where F is an epistemic formula; it is non-nested if F
contains no epistemic negation, and nested, otherwise. An epistemic formula is closed if it contains
no free variables.

Let E be an epistemic formula and E ′ be E with every free variable replaced by a constant
(this process is called grounding). E is instance-closed (w.r.t. epistemic negation) if for every
epistemic negation notF in E ′, F itself is a closed epistemic formula. For instance, person(X)∧
not guilty(X) is an instance-closed epistemic formula, as when the free variable X is replaced by
a constant, the epistemic negation not guilty(X) will become closed; however, ∀X(person(X)∧
not guilty(X)) is not instance-closed because X is not a free variable and the epistemic negation
not guilty(X) will not become closed after grounding.

We use instance-closed epistemic formulas to construct rules and logic programs.

Definition 1 (General logic program) A general logic program (logic program for short) is a
finite set of rules of the form H ← B, where H and B are instance-closed epistemic formulas
without nested epistemic negations.

Note that like the approaches of [16, 18], where modal operators K and M are not nested in
logic programs, we do not consider logic programs with nested epistemic negations (not is also
a modal operator); a nested epistemic negation like not (notF ) intuitively expresses ”That F
cannot be proved to be true cannot be proved to be true” and such expressions seem to have rare
applications in practical scenarios.

For convenience, for a rule r : H ← B we refer toB andH as the body and head of r, denoted
body(r) and head(r), respectively. When head(r) is empty, we rewrite the rule as ⊥ ← body(r);
when body(r) is empty, we omit the rule operator←.

Definition 2 (Normal epistemic program) A normal epistemic program is a logic program con-
sisting of rules of the form

A0 ← A1 ∧ ... ∧ Am ∧ notAm+1 ∧ ... ∧ notAn (2)

where n ≥ m ≥ 0 and each Ai is an atom without equality and function symbols except constants.
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Furthermore, as usual a normal logic program consists of rules of the above form (2) except
that epistemic negation not is replaced by default negation ¬; a positive logic program is a ¬-free
normal logic program.

Definition 3 (Propositional program) A propositional program Π is a logic program which con-
tains no variables, no function symbols except constants, and no equalities. The Herbrand base of
Π is defined as usual. Any subset of the Herbrand base is a Herbrand interpretation of Π.

2.2.2 Grounding

In a logic program Π, some rules may contain free variables. In ASP, these free variables will be
instantiated by constants from a finite set − usually the set CΠ of constants occurring in Π. With
no loss in generality, we assume that CΠ consists of all constants in Π (in case that some constant
a of the domain does not appear in Π, we may have it by adding to Π a dummy rule p(a)← p(a)).
Then for any logic program Π, CΠ is unique.

A closed instance of a rule r is r with all free variables replaced by constants in CΠ. The
grounding of Π, denoted ground(Π), is the set of all closed instances of all rules in Π.

Note that each rule H ← B with the set S of free variables may also be viewed as a globally
universally quantified rule ∀S(H ← B), where the domain of each variable in S is CΠ while
the domain of the other (locally quantified) variables is NΣ. Only globally universally quantified
variables will be instantiated over their domain CΠ for the grounding ground(Π).

To sum up, a logic program Π is viewed as shorthand for ground(Π), where each free variable
in Π is viewed as shorthand for constants in CΠ.

As rule bodies and heads in Π are instance-closed epistemic formulas, for every epistemic
negation notF in ground(Π), F itself is a closed epistemic formula. Therefore, in the sequel
unless otherwise stated, for any epistemic negation notF we assume F is a closed epistemic
formula.

2.2.3 Satisfaction and Models

Next, we extend the satisfaction relation of LΣ to logic programs. As epistemic negation works at
a meta level over a collection of interpretations, the definition of satisfaction/models of epistemic
formulas should be based on a collection of interpretations.

Definition 4 Let A be a collection of interpretations and I ∈ A.

(1) Let F be a closed formula. notF is satisfied by/true in A if F is false in some J ∈ A, and
false, otherwise. I satisfies notF w.r.t. A if notF is true in A.

(2) I satisfies a closed epistemic formula E w.r.t. A if I satisfies E as in first-order logic except
that the satisfaction of epistemic negations in E is determined by (1).

(3) I satisfies a closed instance r of a rule w.r.t. A if I satisfies head(r) w.r.t. A once I satisfies
body(r) w.r.t. A.
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(4) A is a collection of models of a logic program Π if every J ∈ A satisfies all rules in ground(Π)
w.r.t. A. In this case, every J ∈ A is a model of Π (w.r.t. A). Π is consistent if it has a model.

(5) A closed epistemic formula E is true in Π if Π has some collection A of models such that
every J ∈ A satisfies E w.r.t. A.

Observe the following properties of satisfaction of a logic program Π.
First, when Π contains no epistemic negation, satisfaction in Definition 4 reduces to that in

first-order logic. In this case, we omit A. Then I satisfies a closed rule instance r if I satisfies
head(r) or I does not satisfy body(r), and I is a model of Π if it satisfies all rules in ground(Π);
moreover, a model I is minimal if Π has no model J that is a proper subset of I .

Second, satisfaction of an epistemic negation notF in I w.r.t.A is determined only byA, i.e.,
I can be ignored.

Finally, when A consists of a single interpretation I , the notions of satisfaction, models and
consistency are the same as in first-order logic, i.e., they are determined only by I and A can be
ignored. In this special case, the epistemic negation operator not coincides with the operator ¬,
i.e., I satisfies notF w.r.t. A iff I satisfies ¬F iff F is false in I , where F is a closed formula.
Hence the following proposition is immediate.

Proposition 1 Let Π be a logic program and Π¬ be Π with all epistemic negations notF replaced
by default negations ¬F . For any interpretation I , A = {I} is a collection of models of Π iff I is
a model of Π¬.

The following theorem is important, as it lays a theoretical basis for the introduction of our
novel program transformation, which is described in the next section.

Theorem 2 Let Π be a logic program such that for every notF in ground(Π), F is true in every
model of Π. Let Π¬ be Π with each epistemic negation notF replaced by default negation ¬F .
Then Π and Π¬ have the same models.

3 Program Transformation and Epistemic Reducts
In ASP, it is common to transform a logic program into a reduct which is free of negation or modal
operators. For instance, for a normal logic program Π, the seminal GL-reduct ΠI w.r.t. a given
interpretation I is obtained from ground(Π) by removing first all rules whose bodies contain a
default negation ¬A with A ∈ I , and then all ¬A from the remaining rules [17]. Similarly,
when Π is a logic program extended with modal operators K and M, [15, 16, 32, 18] defined a
transformation w.r.t. a given set A of interpretations by eliminating/replacing all modal literals in
ground(Π) in terms of whether they are true or not in A.

Note that these existing definitions of program transformations are based on an assumption
which is either a given interpretation or a given set of interpretations.

In this paper we define a program transformation in an alternative way, which is based on
a notion of guess on provability of epistemic negation, instead of on an assumption of a set of
interpretations. Recall that an epistemic negation notF expresses that there is no evidence proving
that F is true, where F is proved true if it is true in every answer set.
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Definition 5 (Guess on provability of epistemic negation) Let Π be a logic program, and fur-
thermore let Ep(Π) denote the set of epistemic negations notF in ground(Π). A guess of Π
on provability of epistemic negation is a subset Φ of Ep(Π) such that for every notF ∈ Φ, it is
guessed that F couldn’t be proved true, and for every notF ∈ Ep(Π) \ Φ, it is guessed that F
would be proved true.

Once a guess Φ is given, we can transform program Π by replacing all epistemic negations
in terms of Φ. There would be different replacements for epistemic negations, which would lead
to different program transformations. The simplest yet naive one is to replace notF with > if
notF ∈ Φ, and with ⊥, otherwise. It turns out that this transformation incurs both epistemic
circular justifications and the multiple world view problem, analogously to the cases in [15].

The key idea of our program transformation is as follows. We first assume that the guess on all
notF ∈ Φ is correct and thus replace them with >. Then, for every notF ∈ Ep(Π) \ Φ, instead
of replacing it with⊥, we replace it with ¬F . The intuition and rationale for the latter replacement
is as follows: if Φ is a correct guess, once all epistemic negations notF ∈ Φ in ground(Π) are
replaced with >, which leads to a new program Π>, for every notF in Π>, the formula F is
supposed to be true in every answer set of Π>. Let ΠΦ be Π> with each notF replaced by ¬F ;
then by Theorem 2, where model is analogously replaced by answer set, we expect that Π> and ΠΦ

have the same answer sets. This rational justification of the replacements for epistemic negations
leads to the following novel program transformation.

Definition 6 (Epistemic reducts) Let Π be a logic program and let Φ ⊆ EP (Π) be a guess of
Π on provability of epistemic negation. The epistemic reduct ΠΦ of Π w.r.t. Φ is obtained from
ground(Π) by replacing every notF ∈ Φ with >, and every notF ∈ Ep(Π) \ Φ with ¬F . We
call Π consistent w.r.t. Φ if ΠΦ is consistent.

In the Introduction we mentioned that a world view A is said to have an epistemic circular
justification if some object literal L being true in some interpretation I ∈ A is due to KL (or its
equivalent modal literals expressing that L is true in every interpretation J ∈ A) being treated true
in the program transformation w.r.t. A. In our language, KL is shorthand for ¬notL, and in our
program transformation w.r.t. a guess Φ, ¬notL will be either treated ¬> (when notL ∈ Φ),
which evaluates to false, or treated ¬¬L (when notF ∈ Ep(Π) \ Φ), which evaluates to L.
This means that our definition of the program transformation would never incur epistemic circular
justifications and thus guarantees that world views based on the epistemic reducts will be free of
epistemic circular justifications.

4 FLP Answer Set Semantics with Epistemic Negation
Now that all epistemic negations have been removed from a logic program Π, leading to an epis-
temic reduct ΠΦ w.r.t. a guess Φ, we can apply any existing answer set semantics to compute all
answer sets A of ΠΦ. Such answer sets are our expected ones if they agree with the guess Φ, i.e.,
every notF ∈ Φ is true and every notF ∈ Ep(Π) \ Φ is false in A.



INFSYS RR 1843-15-04 12

For simple illustration, in this section we extend the well-known FLP answer set semantics of
[9] to logic programs with epistemic negation. The following definition is from [28], which lifts
Faber et al.’s FLP semantics to general logic programs without epistemic negation.

Definition 7 Let Π be a logic program without epistemic negation and I an interpretation. The
FLP-reduct of Π w.r.t. I is fΠI = {r ∈ ground(Π) | I satisfies body(r)}, and I is an FLP answer
set of Π if I is a (subset-)minimal model of fΠI .

Our epistemic FLP answer set semantics (EFLP semantics for short) is defined as follows.

Definition 8 (EFLP semantics) Let Π be a logic program and Φ a guess such that ΠΦ is a consis-
tent epistemic reduct. The collection A of all FLP answer sets of ΠΦ is a candidate world view of
Π w.r.t. Φ if (a) A 6= ∅, (b) every notF ∈ Φ is true in A, and (c) every notF ∈ Ep(Π) \ Φ is
false inA. A candidate world viewA w.r.t. a guess Φ is a world view if Φ is maximal (i.e., there is
no candidate world view w.r.t. any guess Φ′ ⊃ Φ). Every FLP answer set in a world view is called
an EFLP answer set.

Obviously, for logic programs without epistemic negation, Ep(Π) = ∅ and EFLP semantics
reduces to FLP semantics.

The rationale for the maximality condition of a guess for a world view is twofold. On the one
hand, intuitively we expect to find world views A of Π such that all epistemic negations notF in
Ep(Π) are satisfied by A. This intention is often violated because no such a world view would
exist for some logic programs, such as Π = {p ← not q, q ← not p}. Therefore, in Definition 8
we relaxed the condition by requiring that a maximal subset Φ ⊆ Ep(Π) of epistemic negations
are satisfied by A.

On the other hand, from a theoretical angle, since epistemic negation is at a meta level, towards
a “type theory” or higher-order theory of epistemic negation, it makes sense to assume that notF
in Π is preferably true. This is analogous to the situation for type-0 objects (answer sets), where we
apply default negation to formulas w.r.t. an answer set and assume ¬F in Π to be true in the answer
set whenever possible (CWA or minimal models); epistemic negation applies the same principle on
type-1 objects (world views), i.e., we apply epistemic negation to formulas w.r.t. a world view and
assume notF in Π to be true in the world view whenever possible (maximal guesses). As a result,
by applying default negation we minimize the knowledge in every answer set, and by applying
epistemic negation we minimize the knowledge in every world view.

It is with this condition of maximal epistemic guesses for world views that we are ready to
introduce the following formulation of the multiple world view problem.

Definition 9 (Multiple world view problem) An epistemic answer set semantics is said to have
the multiple world view problem if some logic program may have two world views such that one
satisfies a proper superset of epistemic negations of the other.

Obviously, due to the condition of maximal guesses EFLP semantics is free of the multiple
world view problem. This will be further illustrated in Example 6.
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Definition 10 (Query evaluation) Let Π be a logic program and F a closed formula. We say F is
true in Π under EFLP semantics if Π has a world viewA such that F is true in every EFLP answer
set in A.

The following result shows that EFLP answer sets of Π are models of Π.

Theorem 3 Let Π be a logic program and A a world view of Π w.r.t. a guess Φ. Then A is a
collection of models of Π.

Let Π be a normal epistemic program and Π¬ be the normal logic program obtained from Π by
replacing epistemic negation not with default negation ¬. Let I be an interpretation and (Π¬)I be
the GL-reduct of Π¬; then I is a standard answer set of Π¬ if I is the least model of (Π¬)I [17].

The following result shows that answer sets of Π under EFLP semantics coincide with those of
Π¬ under the standard answer set semantics.

Theorem 4 Let Π be a normal epistemic program and let Π¬ be the normal logic program ob-
tained from Π by replacing not with ¬. Then (1) every world view A of Π fulfills |A| = 1 (i.e.,
A is a singleton), and (2) A = {I} is a world view of Π iff I is an FLP answer set of Π¬ iff I is a
standard answer set of Π¬.

Next we consider a few simple examples to illustrate the novelty and suitability of our approach.

Example 2 The following logic program uses epistemic negation to formalize the well-known pre-
sumption of innocence:

Π1 : innocent(John) ∨ guilty(John) r1

innocent(X)← not guilty(X) r2

The first rule r1 says that John is either innocent or guilty. The rule r2 asserts that one is
presumed innocent if there is no evidence proving s/he is guilty; specifically it means that if
guilty(John) cannot be proved to be true from r1, then conclude innocent(John). Evidently,
guilty(John) cannot be proved true from r1; therefore all intuitive answer sets of Π1 should con-
tain innocent(John), i.e., John is innocent.

The grounding of Π1 is

ground(Π1) : innocent(John) ∨ guilty(John) r1

innocent(John)← not guilty(John) r′2

It contains only one epistemic negation, thus Ep(Π1) = {not guilty(John)}. So we have two
guesses: Φ1 = {not guilty(John)} and Φ2 = ∅.

We start with the largest guess Φ1 and check if there is a world view w.r.t. Φ1. Note Ep(Π1) \
Φ1 = ∅. The epistemic reduct w.r.t. Φ1 is

ΠΦ1
1 : innocent(John) ∨ guilty(John) r1

innocent(John)← > r′′2
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ΠΦ1
1 is consistent and has a unique FLP answer set I = {innocent(John)}. Let A = {I}. As

guilty(John) is false in I , not guilty(John) is true inA, thusA is a candidate world view of Π1.
Since Φ1 is the largest guess, A is a world view of Π1 w.r.t. Φ1.

As Φ2 ⊂ Φ1, there would be no world view w.r.t. Φ2. Hence, Π1 has only one world view
A = {{innocent(John)}}, meaning that under the presumption of innocence, John is innocent.
This conforms to our expectation.

Example 3 To demonstrate the necessity of epistemic reasoning with epistemic negation, [15]
introduced the following well-known college scholarship awarding problem with the program:

Π2: eligible(X)← highGPA(X) r1

eligible(X)← minority(X) ∧ fairGPA(X) r2

∼ eligible(X)← lowGPA(X) r3

interview(X)← ¬eligible(X) ∧ ¬∼eligible(X) r4

fairGPA(Mike) ∨ highGPA(Mike) r5

Gelfond argued that Mike was intended to be interviewed, i.e., interview(Mike) should be in-
cluded in every answer set of Π2; however, he observed that the fourth rule r4 was not powerful
enough to formalize the intended statement that the students whose eligibility is not determined by
the college rules should be interviewed by the scholarship committee. It was due to this observation
that [15, 16] proposed his modal formalism in which r4 was replaced by the rule

interview(X)← ¬K eligible(X) ∧ ¬K ∼eligible(X).
Next, we show that this problem can be suitably handled using epistemic negation under EFLP

semantics. As shown in [14], for any atom p(X), the strong negation ∼p(X) can be compiled
away by introducing a fresh predicate p′(X) along with a rule ⊥ ← p(X) ∧ p′(X). We formulate
the above problem by rewriting Π2 by replacing ¬ with not and ∼eligible(X) with eligible′(X),
and adding the rule ⊥ ← eligible(X) ∧ eligible′(X); this yields a new program Π′2 with the
grounding

ground(Π′2): eligible(Mike)← highGPA(Mike) r′1
eligible(Mike)←minority(Mike) ∧ fairGPA(Mike) r′2
eligible′(Mike)← lowGPA(Mike) r′3
interview(Mike)← not eligible(Mike) ∧ not eligible′(Mike) r′4
fairGPA(Mike) ∨ highGPA(Mike) r5

⊥ ← eligible(Mike) ∧ eligible′(Mike) r6

Ep(Π′2) = {not eligible(Mike), not eligible′(Mike)}, so there are four guesses. We start with
the largest guess Φ1 = {not eligible(Mike),not eligible′(Mike)} and check if Π′2 has a world
view w.r.t. Φ1.

The epistemic reduct Π′Φ1
2 w.r.t. Φ1 is ground(Π′2) except that r′4 is replaced by the rule

interview(Mike)← >∧> r′′4

Π′Φ1
2 is consistent and has the following two FLP answer sets:
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I1 = {fairGPA(Mike), interview(Mike)}
I2 = {highGPA(Mike), eligible(Mike), interview(Mike)}

Let A = {I1, I2}. As the atoms eligible(Mike) and eligible′(Mike) are both false in I1, both
not eligible(Mike) and not eligible′(Mike) are true in A. As Ep(Π′2) \ Φ1 = ∅ and Φ1 is the
largest guess, A is a unique world view of Π′2.

Note that interview(Mike) appears in every answer set inA, meaning Mike should be inter-
viewed, as we expected.

Remark 1 We can also formulate the above problem without using strong negation by rewriting
Π2 with ¬ replaced by not , and ∼ by ¬; thus r4 is rewritten as

interview(X)← not eligible(X) ∧ not¬eligible(X).
This rule directly expresses that a student should be interviewed if we can neither prove s/he is
eligible nor not eligible. Then, the grounding of the new program consists of r′1, r

′
2, r5, and the

following two rules:

¬eligible(Mike)← lowGPA(Mike) r¬3
interview(Mike)← not eligible(Mike) ∧ not¬eligible(Mike) r¬4

It is easy to check that this new program has a unique world view A = {I1, I2} w.r.t. the largest
guess Φ1 = {not eligible(Mike),not¬eligible(Mike)}, where

I1 = {fairGPA(Mike), interview(Mike)}
I2 = {highGPA(Mike), eligible(Mike), interview(Mike)}

which shows that Mike should be interviewed, as expected.

Example 4 (Closed world rules) Under EFLP semantics, we can directly formulate the closed
world assumption using closed world rules of the form ¬p ← not p, which expresses that when
failing to prove p to be true, we assert ¬p. Moreover, we can also state its opposite using rules
of the form p ← not¬p. We can further combine them, leading to the following interesting logic
program.

Π : ¬p← not p r1

p← not¬p r2

It is easy to check that this program has two world views: A1 = {∅} w.r.t. the guess Φ1 = {not p}
and A2 = {{p}} w.r.t. Φ2 = {not¬p}. This conforms to our intuition that either ¬p or p can be
concluded from Π, depending on whether we choose to apply CWA on p (rule r1) or on ¬p (rule
r2).

Remark 2 Gelfond [14] used a rule ∼p ← ¬p (instead of ¬p ← not p) to formalize CWA on
an atom p, which achieves the effect that if p is not in an answer set I , then ∼p is in I . As
indicated by [15], this formalization of CWA is problematic. For example, by this formalization
the logic program Π = {p ∨ q} extended with the rule ∼p← ¬p would have two answer sets, viz.
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I1 = {∼p, q} and I2 = {p}; thus both p and q are unknown in Π under the semantics of [14].5 In
contrast, if Π is extended with the CWA rule ¬p ← not p, we would obtain a unique world view
{{q}} under EFLP semantics, so p is false and q is true in Π, as expected.6

Example 5 Let Π = {r ← not p ∧ ¬r, p ← ¬q, q ← ¬p}. Intuitively, the last two rules say
that either {p} or {q} is an answer set of Π, and the first rule is a constraint that every answer set
of Π should contain p. Therefore, Π intuitively should have a single answer set {p}. It is easy to
check that under EFLP semantics this program has a single world viewA = {{p}} w.r.t. the guess
Φ = ∅. Note that A is not a world view under the approach of [16], where not p in Π is replaced
by ¬Kp.

Example 6 Consider again the logic program Π = {p ← Mp} in Example 1. As mentioned
earlier, Mp is shorthand for not¬p, so this program can be rewritten as Π = {p ← not¬p}.
Φ = {not¬p} is the largest guess and it is easy to check that {{p}} is a unique world view of Π
w.r.t. Φ under EFLP semantics.

Similarly, the second logic program in Example 1 can be rewritten as

Π : p← not¬q ∧ ¬q r1

q ← not¬p ∧ ¬p r2

It has a single world view A = {{p}, {q}} w.r.t. the guess Φ = {not¬q,not¬p}.
For the second program, as shown in Example 1 applying the approaches of [15, 16, 18] will

produce two world views, including the undesired one {∅}.
Note that EFLP semantics minimizes the knowledge in world views by requiring that every

world view should satisfy as many epistemic negations as possible; this provides a satisfying jus-
tification for the above two programs why A1 = {{p}} is the right world view and A2 = {∅} is
not.

Example 7 Consider the logic program Π = {p← not p∨p}.7 Note that not p∨p is a tautology
in that for any collection A of interpretations, every I ∈ A satisfies not p∨ p w.r.t. A. Then p can
be inferred by applying the rule p ← not p ∨ p; thus Π is supposed to have a unique world view
A = {{p}}.

This program has two guesses: Φ1 = {not p} and Φ2 = ∅. It is easy to check that Π has no
world view w.r.t. Φ1, but has a world view A = {{p}} w.r.t. Φ2.

Note that the approaches of [15, 16, 18] are not applicable to this program.

5Under the semantics of [14], p is true in an answer set I if p ∈ I , false if ∼p ∈ I , and unknown, otherwise. p is
true/false in a logic program Π if it is true/false in all answer sets of Π, and unknown, otherwise.

6 Alternatively, one might want to extend Π with the rule ∼p ← not p. Then ∼p can be compiled away similarly
as in Example 3. The resulting program Π′ = {p ∨ q, p′ ← not p, ⊥ ← p ∧ p′} has a unique world view {{q, p′}}
under EFLP semantics, meaning p is false and q is true in Π.

7Note that ∨ is classical logic disjunction connective, instead of epistemic one. Epistemic disjunctions are usually
expressed using the epistemic operator | in the literature. A classical disjunction ¬p∨p is a tautology, but an epistemic
disjunction ¬p | p is not a tautology since it does not follow the law of the excluded middle (see [13] for detailed
explanations).
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Observe that in our logic language LΣ the formula ¬p∨ p is also a tautology, and p← ¬p∨ p
is not equivalent to {p ← ¬p, p ← p}. Therefore, under EFLP semantics the rule p ← not p ∨ p
is not equivalent to {p← not p, p← p}.

5 Computational Complexity
For a logic program Π, each guess Φ leads to at most one candidate world view w.r.t. Φ. As there
are at most 2|Ep(Π)| guesses (where |Ep(Π)| is the number of epistemic negations in Ep(Π)), Π has
at most 2|Ep(Π)| candidate world views. In view of the fact that if Π has a world view w.r.t. Φ then
it will have no world view w.r.t. any Φ′ ⊃ Φ or Φ′ ⊂ Φ, the following result is immediate.

Proposition 5 A logic program Π has at most
(

n
bn/2c

)
many world views under EFLP semantics,

where n = |Ep(Π)|.

Indeed,
(

n
bn/2c

)
is the maximal size of an antichain in the powerset lattice of a set of cardinality

n [30]. In the two most extreme cases that Π has a world view w.r.t. Φ, where Φ = Ep(Π) or
Φ = ∅, Π has only one world view.

As the satisfiability of arbitrary first-order theories is undecidable, we only address the com-
putational complexity of EFLP answer sets for propositional programs under Herbrand interpreta-
tions. Recall that in this case, deciding the existence of FLP answer sets of a given logic program
Π without epistemic negation is Σp

2-complete [28], where the Σp
2-hardness is inherited from dis-

junctive logic programs [9, 7].
We first consider the complexity of recognizing a suitable guess.

Theorem 6 Given a propositional program Π and a guess Φ for it, deciding whether Π has a
candidate world view w.r.t. Φ is Dp

2-complete.

The class Dp
2 consists of all problems (P!, P2) whose instances are pairs (I1, I2) of instances I1

of a problem P1 in Σp
2 and I2 of a problem P2 in Πp

2, respectively.
Informally, we must check the conditions (a)-(c) of a candidate world view in Definition 8,

where (a) establishes a fortiori also consistency of ΠΦ; as ΠΦ is constructible in polynomial time,
we can solve (a) and (b) in Σp

2 and (c) in Πp
2, as deciding whether ΠΦ has some FLP answer set that

satisfies (resp. does not satisfy) a formula F is in Σp
2; thus, the problem is in Dp

2. The Dp
2-hardness

is shown by a reduction from deciding whether, given a pair (Π1,Π2) of propositional programs,
both Π1 has some FLP-answer set and Π2 has no FLP answer set; this problem is Dp

2-complete.
Informally, Π2 is modified to a program Π′2 whose answer sets amount to those of Π2 plus an extra
answer set {A}, where A is a fresh atom; Π contains Π1 and Π′2 and has a candidate world view
w.r.t. Φ = ∅, where EP (Π) = {notA}, just if Π1 has some FLP answer set and A is true in all
FLP answer sets of Π′2 (i.e., Π2 has no FLP answer set).

From this result, we obtain that deciding program consistency under candidate world views is
at the third level of the polynomial hierarchy. More precisely,

Theorem 7 Given a propositional program Π, deciding whether Π has (i) some candidate world
view and (ii) some world view, i.e., deciding EFLP answer set existence, are both Σp

3-complete.
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Indeed, a guess Φ ⊆ Ep(Π) such that Π has some candidate world view w.r.t. Φ can be verified
in polynomial time with an oracle for Dp

2, and hence also with one for Σp
2. This places the problem

in Σp
3. The matching Σp

3-hardness can be shown by a reduction from evaluating quantified Boolean
formulas of the form ∃Z∀Y ∃Zφ. Informally, epistemic negations notX , not X̄ are used to guess
an assignment to the X atoms, and some other epistemic negation serves to check that for each
assignment to the Y atoms, some assignment to Z makes φ true; this test for Y and Z is encoded to
cautious reasoning from the FLP answer set of a disjunctive logic program, which is Πp

2-complete
[7].

Note that some world view exists iff some candidate world view exists; this justifies the second
part of Theorem 7, and consistency checking under candidate world view and world view semantics
are equally hard. On the other hand, under EFLP semantics formula evaluation is harder.

Theorem 8 Given a propositional program Π and a propositional formula F , deciding whether
F is true in Π (i) w.r.t. candidate world views is Σp

3-complete and (ii) w.r.t. world views, i.e., under
EFLP semantics, is Σp

4-complete.

While under candidate world views, it suffices to guess Φ ⊆ EP (Π) such that Π has a candidate
world view A w.r.t. Φ and ΠΦ cautiously entails F (which can be checked with an Σp

2 oracle), in
case of EFLP semantics, in addition maximality of Φ must be tested, i.e., no Φ′ ⊃ Φ has some
candidate world view; this however turns out to be Πp

3-complete, which lifts the problem to the
fourth level of the polynomial hierarchy.

We note that the above results hold for propositional programs that amount to epistemic spec-
ifications, i.e., the rules match the syntax of form (1), where KF amounts to ¬notF and MF to
not¬F ; in case of normal rules, i.e., m = 1, the complexity drops by one level of the polynomial
hierarchy, and we obtain Dp

1-, Σp
2 and Σp

3-completeness in place of Dp
2-, Σp

3 and Σp
4-completeness,

respectively (for details, see B). Indeed, as ¬¬A = A under FLP semantics, for normal speci-
fications the reduct ΠΦ amounts to a normal logic program, for which deciding FLP answer set
existence is NP-complete. Furthermore, we remark that similar complexity results can be derived
for other answer set semantics, and in particular for well-justified FLP answer sets [28].

6 Related Work
The need for using epistemic negation in knowledge representation and reasoning was long rec-
ognized by [15] and recently further emphasized in [16, 32, 10, 33, 18, 6]. In particular, [15] first
introduced modal operators K and M to ASP and interpreted them in three-valued interpretations
(called three-valued possible worlds). Formulas with such modal operators are called strongly in-
trospective and logic programs with rules of form (1) called epistemic specifications. Truszczyński
[32] revisited this formalism and redefined its semantics in two-valued interpretations.

It turns out that the approaches of [15, 32] suffer from epistemic circular justifications in logic
programs like Π = {p ← Kp}, where an undesired world view {{p}} is produced. To remedy
this, [16] further updated his program transformation. However, the epistemic circular justification
problem persists in other logic programs, such as Π = {q ← ¬Kp, p← ¬q}, where an undesired
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world view {{p}} is produced when applying the approaches of [16, 15, 32]. In addition, these
approaches also suffer from the multiple world view problem in logic programs like Π = {p ←
Mp}, where two world views, {{p}} and {∅}, are produced.

To address both circular justifications and the multiple world view problem, [18] proposed a
more involved program transformation by appealing to nested expressions of [19]. However this
approach has some clear shortcomings as listed in the Introduction. Specifically, as shown in
[28] logic programs with nested expressions suffer from circular justifications under the existing
semantics such as [19, 12, 11]. Moreover, as illustrated in Example 1, this approach also suffers
from the multiple world view problem.

In an alternative venue, [34] developed epistemic equilibrium models for epistemic specifi-
cations by introducing modal operators K and M to Pearce’s equilibrium logic [25, 24]. This
approach suffers from epistemic circular justifications and the multiple world view problem; for
example, both {{p}} and {∅} are world views of Π = {p ← Kp} and Π = {p ← Mp}. Very
recently, [6] presented a new definition of epistemic equilibrium models (EEMs) and further de-
fined autoepistemic equilibrium models (AEEMs) as world views that are maximal EEMs under set
inclusion and a special partial preorder over S5 models. A dozen of logic programs were listed all
of which except for that program in Example 1 have the AEEMs that coincide with the world views
of [18]; the AEEM of the program in Example 1 coincides with the world view under our EFLP se-
mantics. On the one hand, it is unclear whether AEEMs are free of epistemic circular justifications
and the multiple world view problem for general logic programs. On the other hand, as discussed
in [28], Pearce’s equilibrium semantics coincides with the answer set semantics of [12] for propo-
sitional logic programs and with that of [11] in the first-order case, and these semantics suffer from
circular justifications. Since AEEMs are epistemic extensions of Pearce’s equilibrium models, cir-
cular justifications inevitably convey to AEEMs, thus sometimes leading to undesired world views.
For example, for the program Π = {p ← ¬¬p, p ← ¬p}, {p} is a unique minimal equilibrium
model/answer set under [24] and thus {{p}} is an AEEM under [6]. This answer set/world view
is undesired because it has a circular justification via the self-supporting loop p ⇐ ¬¬p ⇐ p.
Finally, this approach may miss some desired world views; for instance, {{p}} is expected to be
a world view of the program Π = {p ← not p ∨ p} (see Example 7), but it is not an AEEM of Π
where not p is replaced by ¬Kp.

Finally, we mention that [20] defined a modal logic of Minimal Knowledge and Negation as
Failure (MKNF), which has two modal operators, viz. K as defined above and not like our epis-
temic negation operator. MKNF logic has recently been exploited for the integration of description
logics and rules in the Semantic Web [23]. As indicated in the end of [20], “MKNF does not cover
the important concept of strong introspection introduced in [15].” Thus, applying it to handle epis-
temic negation would yield unintuitive results. For instance, the logic program in Example 2 will
be identified with P1 consisting of the following formulas:

K innocent(John) ∨K guilty(John) f1

not guilty(X) ⊃ K innocent(X) f2

Under MKNF, P1 has two possible collections of models (where each is viewed as an S5 structure):
A1 = {{innocent(John)}, {innocent(John), guilty(John)}}
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A2 = {{guilty(John)}, {guilty(John), innocent(John)}}
The first collection means John is innocent, while the second says John is guilty, which violates
our intuition.

7 Summary and Future Work
We have presented a novel approach to evaluating epistemic negation; specifically, we introduced
a novel program transformation based on epistemic negations and presented a new definition of
epistemic answer set semantics for general logic programs which minimizes the knowledge in
world views by requiring that every world view should satisfy as many epistemic negations as
possible. Thus this approach overcomes both the epistemic circular justification problem and the
multiple world view problem, and provides an appropriate solution to epistemic specifications
introduced by [15].

We considered general logic programs consisting of rules of the form H ← B, where H and
B are arbitrary first-order formulas possibly containing epistemic negation, and defined epistemic
FLP answer set semantics for general logic programs. The proposed approach can readily be
adapted to any other existing answer set semantics for extension with epistemic negation, such as
those in [24, 26, 31, 3, 11, 28].

We showed that for a propositional program Π with epistemic negation, deciding whether Π
has EFLP answer sets is Σp

3-complete and deciding whether a propositional formula F is true in Π
under EFLP semantics is Σp

4-complete in general, but has lower complexity for important program
classes.

As ongoing work, we are considering an implementation of EFLP semantics on some state-of-
the-art ASP solvers, such as DLVHEX or CLASP.8 Specifically we are interested in implementing
the well-justified FLP semantics [28] extended with epistemic negation. The well-justified FLP
semantics enhances FLP semantics with a level mapping mechanism such that every answer set of
a general logic program has a level mapping and thus is free of circular justifications.
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[22] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM, 38(3):588–619,
1991.

[23] B. Motik and R. Rosati. Reconciling description logics and rules. J. ACM, 57(5), 2010.

[24] D. Pearce. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47(1-2):3–
41, 2006.

[25] D. Pearce. A new logical characterisation of stable models and answer sets. In Jürgen Dix,
Luı́s Moniz Pereira, and Teodor C. Przymusinski, editors, Non-Monotonic Extensions of
Logic Programming, NMELP ’96, Bad Honnef, Germany, September 5-6, 1996, Selected
Papers, volume 1216 of Lecture Notes in Computer Science, pages 57–70. Springer, 1996.

[26] W. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming, 7(3):301–353, 2007.

[27] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, eds., Logic and Data
Bases, pages 119–140. Plenum, New York, 1978.

[28] Y. D. Shen, K. Wang, T. Eiter, M. Fink, C. Redl, T. Krennwallner, and J. Deng. FLP answer
set semantics without circular justifications for general logic programs. Artificial Intelligence,
213:1–41, 2014.



INFSYS RR 1843-15-04 23

[29] T. C. Son, E. Pontelli, and P. H. Tu. Answer sets for logic programs with arbitrary abstract
constraint atoms. Journal of Artificial Intelligence Research, 29:353–389, 2007.

[30] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift,
XXVII:544–548, 1928.
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A Proofs
Proof of Theorem 2.

LetA =
⋃
iAi be the union of all collectionsAi of models of Π; thenA consists of all models

of Π. By the condition that for every epistemic negation notF in ground(Π), F is true in every
model of Π, for every interpretation I ∈ A, as I satisfies all rules in ground(Π) w.r.t. some Ai, I
also satisfies these rules w.r.t. A. This means A itself is a collection of models of Π.

For any interpretation I , if AI = {I} is a collection of models of Π, then I ∈ A; conversely,
if I ∈ A, i.e., I satisfies all rules in ground(Π) w.r.t. A, then I also satisfies these rules w.r.t.
AI = {I} and thus AI = {I} is a collection of models of Π. Hence for any interpretation I ,
AI = {I} is a collection of models of Π iff I ∈ A iff I is a model of Π. Moreover, by Proposition
1, for any interpretation I , AI = {I} is a collection of models of Π iff I is a model of Π¬. Thus I
is a model of Π iff I is a model of Π¬. This concludes the proof. 2

Proof of Proposition 3.
Consider an EFLP answer set I ∈ A w.r.t. guess Φ. As I is an FLP answer set of the epistemic

reduct ΠΦ, it is a model of ΠΦ. Let ΠΦnot be ΠΦ with all ¬F replaced by notF . Since for every
notF in ΠΦnot , F is true in all I ∈ A, by Theorem 2, ΠΦnot and ΠΦ have the same models.
This means I is a model of ΠΦnot w.r.t. A. Note that ΠΦnot is ground(Π) with every notF ∈ Φ
replaced by >. Then r is a rule in ground(Π) iff r> is a rule in ΠΦnot , where r> is r with every
notF ∈ Φ replaced by >. Since for every notF ∈ Φ, F is false in some J ∈ A, I satisfies r
w.r.t. A iff I satisfies r> w.r.t. A. This shows I is also a model of ground(Π) w.r.t. A. Hence A is
a collection of models of Π. 2
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Proof of Theorem 4.
(1) Let A be a world view of Π w.r.t. a guess Φ. Then A is also the set of all FLP answer sets

of the epistemic reduct ΠΦ. Rules in ΠΦ are of the form
A0 ← A1 ∧ ... ∧ Am ∧ ¬B1 ∧ ... ∧ ¬Bn

where every Bi is true in every I ∈ A because notBi ∈ Ep(Π) \ Φ. This means ΠΦ and ΠΦ+

have the same set of FLP answer sets, where ΠΦ+ is ΠΦ with all rules containing a negative literal
¬Bi removed. Since ΠΦ+ is a positive logic program, it has a unique FLP answer set. Hence A
has only one FLP answer set, i.e., |A| = 1.

(2) For normal logic programs, FLP semantics coincides with the standard answer set seman-
tics. So it suffices to show that A = {I} is a world view of Π iff I is a standard answer set of
Π¬.

We first show thatA = {I} is a candidate world view of Π iff I is a standard answer set of Π¬.
(=⇒) Assume A = {I} is a candidate world view of Π w.r.t. a guess Φ. Then I is also the FLP
answer set of the epistemic reduct ΠΦ, and for every notB in ground(Π), notB ∈ Φ iff B is
false in I iff B 6∈ I . Let r be a rule in ΠΦ. For every negative literal ¬Bi in the rule body of r, Bi

is true in I , i.e., Bi ∈ I . Let ΠΦ+ be ΠΦ with all rules containing a negative literal ¬Bi removed.
Then I is also the FLP answer set of ΠΦ+ , which is the least model of ΠΦ+ . Note that ΠΦ+ is in
fact the GL-reduct of Π¬. This means I is also a standard answer set of Π¬.
(⇐=) Assume I is a standard answer set of Π¬. Let Φ be a guess such that for every notB in
ground(Π), notB ∈ Φ iff B is false in I iff B 6∈ I . Let r be a rule in ground(Π) such that I
satisfies body(r) w.r.t. A = {I}. r must be of the form

H ← A1 ∧ ... ∧ Am ∧ notB1 ∧ ... ∧ notBn

with every Ai ∈ I and every Bi 6∈ I (i.e., notBi ∈ Φ). Then Π¬ must have a rule r′ of the form
H ← A1 ∧ ... ∧ Am ∧ ¬B1 ∧ ... ∧ ¬Bn

Note that I satisfies body(r′). As I is a model of Π¬, H is in I . This means I satisfies r w.r.t. A.
Hence A = {I} is a candidate world view w.r.t. Φ.

We have proved that A = {I} is a candidate world view of Π iff I is a standard answer set of
Π¬. To show that A = {I} is a world view of Π iff I is a standard answer set of Π¬, it suffices to
show that every candidate world view of Π is a world view of Π.

Assume on the contrary that there are two guesses Φ′ ⊃ Φ such that A′ = {I ′} and A = {I}
are candidate world views w.r.t. Φ′ and Φ, respectively. For each notB ∈ Φ′ \ Φ, B 6∈ I ′ and
B ∈ I . This means I ′ 6= I . By the above proof, I ′ and I are standard answer sets of Π¬. We have
the following two GL-reducts w.r.t. I ′ and I respectively:

(Π¬)I
′
= {A0 ← A1 ∧ · · · ∧ Am | A0 ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn

is a rule in ground(Π¬) and for every Bi, notBi is in Φ′},
(Π¬)I = {A0 ← A1 ∧ · · · ∧ Am | A0 ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn

is a rule in ground(Π¬) and for every Bi, notBi is in Φ}.

As the two GL-reducts are positive logic programs, I ′ and I are their least fixpoints, respectively.
As Φ′ ⊃ Φ, every rule in (Π¬)I must be in (Π¬)I

′ . This implies I ⊂ I ′ (I ′ 6= I , as shown above),
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which contradicts the fact that every standard answer set of a normal logic program is a minimal
model of the program. We then conclude the proof. 2

Proof of Theorem 6.
Membership. The proof of Dp

2 membership is in the discussion.
Hardness. The Dp

2-hardness is shown by the reduction of the Dp
2-complete problem where,

given a pair (Π1,Π2) of programs, we must decide whether Π1 has some FLP answer set and Π2

has no FLP answer set. (This result in turn is easily obtained by a reduction of evaluating QBFs of
the form ∃X∀Y φ to FLP answer set existence of disjunctive logic programs [7].

Assume w.l.o.g. that Π1 and Π2 are on disjoint signatures and let A, Ā, C be fresh atoms. Then
we claim that

Π = Π1 ∪ {H ← B ∧ ¬A | H ← B ∈ Π2}
∪ {A← ¬Ā, Ā← ¬A, C ← notA}

has a candidate world view w.r.t. Φ = ∅ iff Π1 has some FLP answer set and Π2 has no FLP answer
set. Notice that the epistemic reduct is

ΠΦ = (Π \ {C ← notA}) ∪ {C ← ¬A}.

(=⇒) Suppose Π has a candidate world view A w.r.t. Φ = ∅. Then Π1 must have an FLP answer
set. Furthermore, A must be true in every FLP answer set of ΠΦ. In particular, this means that
the guess Ā from A ← Ā, Ā ← A, does not lead to an FLP answer set of Π; this means that the
program {H ← B ∧ ¬A | H ← B ∈ Π2} has no FLP answer set, from which in turn it follows
that Π2 has no FLP answer set.

(⇐=) For each FLP answer set I1 of Π1, the set I1 ∪ {A} is an FLP answer set of ΠΦ, and if since
Π2 has no FLP answer set, each answer set in the collection A of FLP answer sets of ΠΦ has this
form. As Π1 has some FLP answer set I1, it follows that A 6= ∅ and notA is false in A; hence A
is a candidate world view of Π w.r.t Φ = ∅ 2

Proof of Theorem 7.
(i) Membership. A nondeterministic Turing machine can make a guess Φ ⊆ EP (Π) such that

Π has some candidate world view w.r.t. Φ in polynomial time, and then continue to check that Φ
is indeed proper with an oracle for Dp

2 in polynomial time, by Theorem 6. As each problem in Dp
2

can be decided with two calls of an Σp
2 oracle, it follows that the problem is in Σp

3.
Hardness. The Σp

3-hardness of deciding candidate world view existence can be shown by a
reduction from evaluating QBFs of the form

∃X∀Y ∃Zφ, (3)

where X = X1, . . . , XnX
, Y = Y1, . . . , YnY

, and X = Z1, . . . , ZnZ
are lists (viewed as sets) of

distinct atoms, and φ =
∧k
j=1(Lj,1∨Lj,2∨Lj,3) is a CNF over atomsX∪Y ∪Z, by lifting a reduction

in [7] that proved Πp
2-completeness of deciding whether an atom U is false in all answer sets of a

disjunctive logic program. Without loss of generality, we assume that by assigning each Yi ∈ Y
the value true, the formula φ evaluates to true for every assignment to the remaining variables, i.e.,
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the formula ∀X,Zφ[Y/>] evaluates to true; hence, regardless of a concrete assignment σ to X the
formula φ[X/σ, Y/>] will be satisfiable.

For each atom A ∈ X ∪ Y ∪ Z, we introduce a fresh atom Ā, and we use further fresh atoms
U and V . Let

ΠX = {Xi ← not X̄i; X̄i ← notXi | Xi ∈ X}, (4)
ΠY = {Yi ← ¬Ȳi; Ȳi ← ¬Yi | Yi ∈ Y }, (5)
ΠZ = {Zi ∨ Z̄i ← | Zi ∈ Z}, (6)
Πφ = {U ← L∗j,1 ∧ L∗j,3 ∧ L∗j,3 | 1 ≤ j ≤ k} ∪ (7)

{Zi ← U ; Z̄i ← U | Zi ∈ Z} ∪ (8)
{V ← notV,not¬U} (9)

where the operation ∗ converts each positive literalA into Ā and each negative literal ¬A intoA. If
we suppose thatX is void, the program ΠY ∪ΠZ∪Πφ\{(9)} amounts to a (variant of) the program
ΠΦ in [7] for evaluating Ψ = ∀Y ∃Zφ such that U is false in all answer sets of ΠΨ iff Ψ evaluates
to true; for each assignment µ to Y , which is guessed by the rules (5) the program ΠΨ has some
answer set candidate Iµ = {Yi ∈ Y | µ(Yi) = true} ∪ {Ȳi ∈ Y | µ(Yi) = false} ∪Z ∪ Z̄ ∪ {U},
where S̄ = {Ā | A ∈ S}, that is an answer set if φ[Y/σ] is unsatisfiable; otherwise, if φ[Y/µ] is
satisfiable, some answer set I ⊂ Iµ exists and U is false in each such I . By our assumption, for
µ = > (i.e., µ(Yi) = true for every Yi ∈ Y ) such an answer set exists, thus ΠΨ has some answer
set.

Now let us consider the case whereX is non-void, and let Π = ΠX∪ΠY ∪ΠZ∪Πφ. Intuitively,
the rules in ΠX guess an assignment σ to X , and the candidate world view conditions amount to
evaluating the QBF ∀Y ∃Zφ[X/σ]. Here, the rule (9) plays a crucial role; informally, it checks that
in all answer sets of (Π \ {(9)})Φ the atom U is false, without pruning answer sets in which U is
true (note that a constraint ⊥ ← not¬U or V ← ¬V,not¬U would not work). Indeed, the rule
(9) can be satisfied only by a guess Φ such that Φ ∩ {notV,not¬U} = {notV }, which means
that V ← ¬¬U is in ΠΦ; the candidate world conditions (a)-(c) are then met iff U is false in every
answer set of (Π \ {(9)})Φ. Otherwise, if notV /∈ Φ, we have a rule V ← ¬V, · · · in ΠΦ, and
as V occurs in no other rule head, ΠΦ has no answer set in which V is true, and thus Φ violates
condition (a) or (c); if not¬U,notV ∈ Φ, then V ← is in ΠΦ, and hence Φ violates condition
(b).

Having clarified the working of (9) for guesses Φ that have some candidate world views, we
can verify that any such guess encodes a truth assignment σ to X . For not X̄i and notXi, we
have four possible cases for Φj = Φ ∩ {not X̄i, notXi}: 1. Φ1 = ∅, 2. Φ2 = {not X̄i,notXi},
3. Φ3 = {not X̄i}, and 4. Φ4 = {notXi}. Of these, Φ1 means that condition (c) is violated, as
the program (Π \ {(9)})Φ will contain rules

Xi ← ¬X̄i; X̄i ← ¬Xi,

i.e., a choice between Xi and X̄i; as these atoms do not occur in other rule heads, our assumption
about φ implies that (Π \ {(9)})Φ has answer sets in which Xi resp. X̄i is false. Likewise, Φ2
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does not yield a candidate world view: ΠΦ contains the facts Xi and X̄i, and thus condition (b) is
violated. Thus, only Φ3 and Φ4 remain. In case of Φ3, the reduct ΠΦ contains

Xi ← ; X̄i ← ¬Xi.

and thus each FLP answer set of ΠΦ must contain Xi but not X̄i; that is, Φ3 encodes that Xi is true
in it. Similarly, for Φ4 each FLP answer set of ΠΦ must contain X̄i but not Xi; that is Φ4 encodes
that Xi is false.

Putting things together, if Φ is guess that has some world view, then Φ encodes a truth assign-
ment σ to X such that the formula ∀Y ∃Zφ[X/σ] evaluates to true; that is, ∃X∀Y ∃Zφ evaluates to
true. Conversely, if σ is a truth assignment to X such that ∀Y ∃Zφ[X/σ] evaluates to true, then the
guess Φ = {not X̄i | σ(Xi) = true} ∪{notXi | σ(Xi) = false} ∪{not¬U} has some candidate
world view. As Π is clearly constructible in polynomial time from (3), this proves Σp

3-hardness of
deciding candidate world view existence; furthermore, note that the rules in Π match the syntax of
(1).

(ii) Follows from (i), as some world view exists iff some candidate world view exists. 2

Proof of Theorem 8
(i) Membership. As in the discussion, it suffices to guess Φ ⊆ EP (Π) such that Π has a

candidate world view A w.r.t. Φ and ΠΦ cautiously entails F . From Theorem 6 and [28] it follows
that the guess can be verified with an Σp

2 oracle in polynomial time; this proves membership in Σp
3.

Hardness. Σp
3-hardness is a trivial from Theorem 7: a given program Π has some candidate

world view iff A is true in Π ∪ {A← } w.r.t. candidate world views, i.e., in some candidate world
view of Π, where A is a fresh atom.

(ii) Membership. For a guess Φ as in (i), we must in addition test that no Φ′ ⊃ Φ exists that
has a candidate world view; by Theorem 7, the latter is in Πp

3. Thus in summary, a guess Φ that has
a world view A in which F is true can be verified with a Σp

3 oracle in polynomial; this proves Σp
4

membership.
Hardness. Σp

4-hardness is shown by generalizing the reduction in Theorem 7 to encode the
evaluation of a QBF

∃W∀X∃Y ∀Zψ, (10)

where ψ =
∨k
j=1 Lj,1∧Lj,2∧Lj,3 is a DNF over atoms W ∪X∪Y ∪Z. Without loss of generality,

we assume that ψ is unsatisfiable if we assign each Yi ∈ Y the value true, i.e., ∀W,Y, Z¬ψ[Y/>]
evaluates to true.

Assume for the moment that W is void; then the negation of the QBF ∀X∃Y ∀Zψ, i.e.,
∃X∀Y ∃Zφ were φ = ¬ψ, is encoded by the program Π in the proof of Theorem 7. That is,
Π has some candidate world view iff ∀X∃Y ∀Zψ evaluates to false. A modification of Π yields
that maximality testing of a guess Φ is Πp

3-hard. To this end, let

Π0 = {H ← B ∧ A | H ← B ∈ Π} ∪ (11)
{Xi ← ¬A; X̄i ← ¬A | Xi ∈ X} ∪ {V ← ¬A} ∪ (12)
{A← not¬A}, (13)
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where A is a fresh atom, and Φ = ∅. It is easy to see that Φ has a candidate world view: I0 =
X∪X̄∪{V } is the single answer set of Π0

Φ, and for each epistemic negation notF in EP (Π0) =
{notV , not¬U , not¬A, notXi, not X̄i | Xi ∈ X} the formula F is true in I .

Furthermore, it holds that no guess Φ′ ⊃ Φ has a candidate world view iff Π has no candidate
world view. To see the only if part, suppose some Φ′ ⊃ Φ has a candidate world view. Then
not¬A ∈ Φ′ must hold, as otherwise I0 is the single answer set of ΠΦ′

0 ; this would imply Φ′ = Φ,
a contradiction. Now ΠΦ′

0 contains A ← and amounts to ΠΦ′ (simply eliminate A); it follows that
Π has a candidate world view w.r.t. Φ′∩EP (Π). Conversely, if Π has a candidate world view w.r.t.
Φ, then it is easy to see that Π0 has a candidate world view w.r.t. Φ′ = Φ ∪ {not¬A}.

Thus, Π0 has a world view w.r.t. Φ = ∅ iff the QBF ∀X∃Y ∀Zψ evaluates to true (which proves
Πp

3-hardness of world view checking, i.e., deciding given a program Π and Φ ⊆ EP (Π) whether Π
has some world view w.r.t. Φ). Note that since any other guess Φ′ ⊃ Φ that has a candidate world
view w.r.t. Π0 must contain not¬A, we can equivalently ask whether ¬A is true in Π0 under EFLP
semantics.

Now we generalize Π0 to accommodate non-void W , i.e., to encode evaluating the QBF (10).
To this end, we let

Π1 = Π0
∗ ∪ {Wi ← not W̄i; W̄i ← notWi | Wi ∈ W}

where W̄i is a fresh atom for Wi and Π0
∗ is constructed like Π0 where in the construction of the

rules (7) of Π each Wi (resp. ¬Wi) literal is replaced by W̄i (resp. Wi).9 Note that Wi and W̄i

do not occur in Π∗0 in rule heads; combined with the assumption that ∀W,X,Z¬ψ[Y/>] evaluates
to true, by similar reasoning as in the proof of Theorem 7 for Wi and W̄i in place of Xi and X̄i,
we obtain that every guess Φ ⊆ EP (Π1) such that Π1 has a candidate world view w.r.t. Φ must
contain exactly one of notWi and not W̄i, and thus Φ encodes a truth assignment ν to W where
ν(Wi) = true if not W̄i ∈ Φ (as Wi ←; W̄i ← ¬Wi is in ΠΦ

1 ) and ν(Wi) = false if notWi ∈ Φ
(as W̄i ←; Wi ← ¬W̄i is in ΠΦ

1 ). Furthermore, if not¬A /∈ Φ, then Φ contains no other epistemic
negations, and we denote it by Φν ; if not¬A ∈ Φ, then the QBF ∀X∃Y ∀Zψ[W/ν] must evaluate
to false. Thus, if Φν has a world view, then ∀X∃Y ∀Zψ[W/ν] evaluates to true. On the other hand,
every truth assignment to W is encoded by some Φν ; thus, it follows that some Φν has a world
view iff the QBF (10) evaluates to true. As ¬A is true in the candidate world view of a guess Φ
iff Φ = Φν for some ν, it follows that ¬A is true in Π1 under EFLP semantics iff the QBF (10)
evaluates to true. As Π1 is constructible in polynomial time from (10), this proves Σp

4-hardness. 2

B Programs Matching Normal Epistemic Specifications
We show that the complexity of world view existence drops by one level in the polynomial hierar-
chy for epistemic specifications with rules of the form

L0 ← L1 ∧ . . . ∧ Lm ∧ (¬)notLm+1 ∧ . . . ∧ (¬)notLn (14)

9As φ = ¬ψ, the final rules (11) that emerge from (7) are of the form U ← L†
j,1 ∧ L

†
j,3 ∧ L

†
j,3 ∧ A where for any

atom C we have C† = C and ¬C† = C̄.
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where L0 is an atom and each Li is an atom A or default negated atom ¬A; i.e., the rules match
the syntax of (1) with m = 1 (the modal atom MA amounts to not¬A, and ¬¬A = A under FLP
semantics).10

Formally, we obtain, were Dp = Dp
1 is the analog of Dp

2 where Σp
2/Πp

2 is replaced by NP/coNP:

Theorem 9 Given a propositional program Π that is an normal epistemic specification and a
guess Φ for it, deciding whether Π has a candidate world view w.r.t. Φ is Dp-complete.

Proof. Membership. The proof of Dp membership is analogous to the one of Theorem 6, where
NP/coNP replaces Σp

2/Πp
2.

Hardness. The Dp-hardness follows from the reduction in the proof of Theorem 6: if the pair
(Π1,Π2) consists of normal logic programs, deciding whether Π1 has some FLP answer set and
Π2 has no FLP answer set is Dp-complete. Furthermore, the program Π constructed from (Π1,Π2)
matches a normal epistemic specification. 2

Theorem 10 Let Π be a propositional program that matches normal epistemic specifications.
Then deciding whether Π has (i) some candidate world view and (ii) some world view are both
Σp

2-complete.

Proof. Membership. The membership proof is analogous to the one of Theorem 7, but uses
Theorem 10 instead of Theorem 6.

Hardness. The Σp
2-hardness is inherited from the reduction in Theorem 7: if we consider a

QBF (3) in which Z is void, the resulting program Π matches normal epistemic specifications, and
has some candidate world view iff ∃X∀Y ¬φ, where φ is a CNF, evaluates to true. Evaluating such
QBFs is Σp

2-complete, and remains Σp
2-hard even if φ is unsatisfiable if each Yi ∈ Y is assigned

true, i.e., the QBF ∀X¬φ[Y/>] evaluates to true. 2

Theorem 11 Given a propositional program Π that matches a normal epistemic specification and
a propositional formula F , deciding whether F is true in Π (i) w.r.t. candidate world views is
Σp
s-complete, and (ii) w.r.t. world views, i.e., under EFLP semantics, is Σp

3-complete.

Proof. Membership. The membership proofs are analogous to the one of Theorem 8, but use
Theorem 10 instead of Theorem 6 and the fact that for any guess Φ, ΠΦ is a normal logic program,
and cautious inference form the answer sets of such programs is coNP-complete [22].

Hardness. The Σp
2-hardness of (i) is immediate from the reduction in the proof of item (i) of

Theorem 8 and Theorem 10. The Σp
3-hardness of (ii) is shown by generalizing the encoding of

evaluating a QBF ∃X∀Y ψ to deciding candidate world existence for a program Π that matches
normal epistemic specifications in Theorem 10 in the same way as in the proof of item (ii) in
Theorem 8; note that all rules created match normal epistemic specifications. 2

10Recall that we omit strong negation∼; however, strongly negated literals∼A can be compiled away in polynomial
time (cf. Example 3), and thus the results of this section extend to a respective extension.


