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Abstract. Description Logic (DL) ontologies and non-monotonic rules are two prominent Knowl-
edge Representation (KR) formalisms with complementary features, essential for various applica-
tions. A natural idea of getting the best out of two worlds by combining them led to Nonmono-
tonic Description Logic (DL) programs, which are a powerful approach that supports rule-based
reasoning on top of DL ontologies, using a well-defined query interface represented by so-called
DL-atoms. Unfortunately, interaction of the rules and the ontology may incur inconsistencies such
that a DL-program lacks answer sets (i.e., models), and thus yields no information. To address this,
recently repair answer sets have been introduced, and a practical algorithm for computing them was
proposed for DL-LiteA ontologies reducing a repair computation to constraint matching based on
so-called support sets. However, the algorithm exploits particular features of DL-LiteA and can not
be readily applied to repairing DL-programs over other important widely used DLs like EL. Com-
pared to DL-LiteA, in EL support sets may neither be small nor there might be few of them, and
completeness may need to be given up in favor of sound repair computation on incomplete support
information. We thus provide an approach for computing repairs for DL-programs over EL ontolo-
gies based on partial (not complete) support families. The latter are constructed using datalog query
rewriting techniques as well as ontology approximation based on logical difference between EL-
terminologies. Furthermore, we show how the maximal size and number of support sets for a given
DL-atom can be estimated by analyzing the properties of a support hypergraph, which characterizes
a relevant set of TBox axioms needed for query derivation. We present a declarative implementation
of the repair approach and experimentally evaluate it on a set of benchmark problems; the promising
results witness practical feasibility of the extended repair approach.
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1 Introduction

Description Logics (DLs) are a powerful formalism for Knowledge Representation (KR) that is used to
formalize domains of interest by describing the meaning of terms and relationships between them. They
are well-suited for terminological modelling in contexts such as, e.g. the Semantic Web, data integration
and ontology-based data access (Calvanese, De Giacomo, Lenzerini, Lembo, Poggi, & Rosati, 2007b; Cal-
vanese, De Giacomo, Lembo, Lenzerini, Poggi, & Rosati, 2007a), reasoning about actions (Baader, Lutz,
Milicic, Sattler, & Wolter, 2005), spatial reasoning (Özccep & Möller, 2012), or runtime verification and
program analysis (Baader, Bauer, & Lippmann, 2009; Kotek, Simkus, Veith, & Zuleger, 2014), to mention
a few.

As most DLs are fragments of classical first-order logic, they have some shortcomings for modelling
application settings, where nonmonotonicity or closed-world reasoning need to be expressed. Rules in the
sense of nonmonotonic logic programming offer these features. In addition they serve well for specifying
and reasoning about individuals and modelling nondeterminism. To get the best out of the two worlds of DLs
and rules the natural idea of combining the two led to a number of approaches for such a combination (called
hybrid knowledge bases; see (Motik & Rosati, 2010) and references therein). Among them, Nonmonotonic
Description Logic (DL-)programs (Eiter, Ianni, Lukasiewicz, Schindlauer, & Tompits, 2008) are a prominent
approach in which so-called DL-atoms serve as query interfaces to the ontology in a loose coupling and
enable a bidirectional information flow between rules and ontology. The possibility to add information from
the rules part prior to query evaluation allows for adaptive combinations. However, the loose interaction
between rules and ontology can easily lead to inconsistency, that is the lack of models or answer sets.

Example 1 Consider the DL-program Π = 〈O,P〉 in Figure 1 formalizing an access policy over an on-
tology O = 〈T ,A〉 (Bonatti, Faella, & Sauro, 2010), whose taxonomy (TBox) T is given by (1)-(3), while
(4)-(9) is a sample data part (ABox) A. Besides facts (10), (11) and a simple rule (12), the rule part P
contains defaults (13), (14) expressing that staff members are granted access to project files unless they are
blacklisted, and a constraint (15), which forbids that owners of project information lack access to it. Both
parts, P andO, interact via DL-atoms such as DL[Project ] projfile; StaffRequest ](X). The latter spec-
ifies an temporary update ofO via the operator ], prior to querying it; i.e. additional assertions Project(c)
are considered for each individual c, such that projfile(c) is true in an interpretation of P , before all in-
stances X of StaffRequest are retrieved from O. Inconsistency arises as john , the chief of project p1 and
owner of its files, has no access to them.

Inconsistency is a well-known problem in logic-based and data intensive systems, and the problem
of treating logically contradicting information has been studied in various fields, e.g. belief revision (Al-
chourrón, Gärdenfors, & Makinson, 1985; Gärdenfors & Rott, 1995), knowledge base updates (Eiter, Er-
dem, Fink, & Senko, 2005), diagnosis (Reiter, 1987), nonmonotonic reasoning (Brewka, 1989; Sakama &
Inoue, 2003) and many others (e.g., (Bertossi, Hunter, & Schaub, 2005; Nguyen, 2008; Martinez, Molinaro,
Subrahmanian, & Amgoud, 2013; Bertossi, 2011)). In hybrid formalisms so far inconsistency management
has concentrated mostly on inconsistency tolerance. For instance, for MKNF knowledge bases paraconsis-
tent semantics was developed in (Knorr, Alferes, & Hitzler, 2008; Huang, Li, & Hitzler, 2013; Kaminski,
Knorr, & Leite, 2015). For DL-programs inconsistency tolerance issues were targeted in (Fink, 2012),
where a paraconsistent semantics based on the Logic of Here and There was introduced. Furthermore,
(Pührer, Heymans, & Eiter, 2010) considered suppressing certain problematic DL-atoms. These approaches
aimed at reasoning within an inconsistent system rather then making required changes within the system
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O =





(1) Blacklisted v Staff

(2) StaffRequest ≡ ∃hasAction.Action u ∃hasSubject .Staff u ∃hasTarget .Project

(3) BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject .Blacklisted

(4) StaffRequest(r1 ) (5) hasSubject(r1 , john) (6) Blacklisted(john)

(7) hasTarget(r1 , p1 ) (8) hasAction(r1 , read) (9) Action(read)





P =





(10) projfile(p1 ); (11) hasowner(p1 , john);

(12) chief (Y )← hasowner(Z ,Y ), projfile(Z );

(13) grant(X)← DL[Project ] projfile; StaffRequest ](X),not deny(X);

(14) deny(X)← DL[Staff ] chief ; BlacklistedStaffRequest ](X);

(15) ⊥ ← hasowner(Y, Z),not grant(X),

DL[; hasTarget ](X,Y ),DL[; hasSubject ](X,Z).





Figure 1: DL-program Π over a policy ontology

to arrive at a consistent state. This is in contrast to repair techniques that have been recently developed in
(Eiter, Fink, & Stepanova, 2013, 2014b; Eiter, Fink, Redl, & Stepanova, 2014b).

A theoretical framework for repairing inconsistent DL-programs was proposed in (Eiter et al., 2013),
where the ontology ABox (a likely source of errors) is changed such that the modified DL-program has
answer sets, called repair answer sets. Different repair options including deletion of ABox formulas and
various restricted forms of addition have been considered together with a naive algorithm for computing
repair answer sets (Eiter et al., 2013) which lacked practicality.

An effective repair algorithm for the class of deletion repairs was presented in (Eiter et al., 2014b;
Eiter, Fink, & Stepanova, 2015), in which all DL-atoms can be decided without dynamic ontology access.
It is based on support sets (Eiter et al., 2014b) for DL-atoms, the portions of the input that together with
the ABox determine the truth value of the DL-atom. The algorithm exploits complete support families, i.e.
stocks of support sets from which the value of an DL-atom under every interpretation can be determined,
such that an (repeated) ontology access can be avoided. The approach works well for DL-LiteA DL, which
is a prominent tractable DL, since complete support families are small and easy to compute.

However, unfortunately, for other DLs this approach is not readily usable, because in general there can
be large or infinite support families. This applies even for a well-known DL EL, which is another important
simple DL that offers tractable reasoning and is widely applied in many domains, including biology (e.g.,
(Schulz, Cornet, & Spackman, 2011), (Aranguren, Bechhofer, Lord, Sattler, & Stevens, 2007)), medicine
(e.g., (Steve, Gangemi, & Mori, 1995)) chemistry, policy, etc. Due to range restrictions and concept con-
junctions on the left-hand side of inclusion axioms in EL, a DL-atom accessing an EL ontology can have
arbitrarily large and infinitely many support sets in general. While for acyclic TBoxes (which is a property
often met in practice (Gardiner, Tsarkov, & Horrocks, 2006)) the latter is excluded, complete support fami-
lies can be still very large, and constructing as well as managing them might be impractical. This obstructs
the deployment of the approach in (Eiter et al., 2014b) to EL ontologies. In this paper we tackle this issue
and develop repair computation techniques for DL-programs over ontologies in EL. We focus on EL, since
apart from being simple and widely used, this DL is well-researched, and effective algorithms for query
rewriting and other important reasoning tasks are available that can be readily used.

More specifically, we introduce here a more general algorithm for repair answer set computation that
operates on partial (incomplete) support families along with techniques how such families can be effec-
tively computed. The problem of computing repair answer sets for DL-programs over EL ontologies is
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ΣP
2 -complete (in its formulation as a decision problem; we refer to (Stepanova, 2015) for details on the

complexity).
Our contributions and advances over previous works (Eiter et al., 2014b, 2014b, 2015) are summarized

as follows:

• For effective computation of repair answer sets we exploit the support sets of (Eiter et al., 2014b). In
contrast to (Eiter et al., 2014b, 2015), however, where TBox classification is invoked, we use datalog
rewritings of queries for computing support sets (see also (Hansen, Lutz, Seylan, & Wolter, 2014)).
We introduce the notion of partial support families, with which ontology reasoning access can be
completely eliminated.

• As in general constructing complete support families is not always feasible for EL ontologies, we
provide novel methods for computing partial support families by exploiting ontology approxima-
tion techniques based on logical difference between EL-terminologies (Konev, Ludwig, Walther, &
Wolter, 2012; Ludwig & Walther, 2014).

• To capture restricted classes of TBoxes, for which complete support families can still be effectively
computed, we consider a support hypergraph for DL-atoms, which is inspired by the ontology hy-
pergraph (Nortje, Britz, & Meyer, 2013; Ecke, Ludwig, & Walther, 2013). The support hypergraph
serves the purpose of characterizing TBox parts relevant for a query derivation. Analysis of support
hypergraphs allows one to estimate a maximal size and number of support sets needed to form a
complete support family.

• We generalize the algorithm for repair answer set computation in (Eiter et al., 2014b), such that
EL ontologies can be handled. The novel algorithm operates on partial support families, and in
principle can be applied to the ontologies in any DLs beyond EL. It uses hitting sets to disable
known support sets of negative DL-atoms and performs evaluation postchecks if needed to compensate
incompleteness of support families. Moreover, it trades answer completeness for scalability by using
minimal hitting sets; however completeness may be ensured by a simple extension.

• We provide a system prototype with a declarative realization of the algorithm dealing with partial
support families for repair answer set computation. Our repair approach has been evaluated using
some novel benchmarks; the results show very promising potential of the proposed approach.

Organization. The rest of the paper is organized as follows. In Section 2 we recall basic notions and
preliminary results. Section 3 deals with support sets and their computation, while Section 4 discusses partial
support family construction based on TBox approximation techniques. In Section 5 we analyze properties
of a support hypergraph for estimating the maximal size and number of support sets in a complete support
family of it. In Section 6 the algorithm for repair answer set computation and a declarative implementation
are introduced. Experiments are presented in Section 7, followed by a discussion of related work in Section 8
and concluding remarks in Section 9.

2 Preliminaries

In this section, we recall basic notions of Description Logics (for more background on Description Logics,
see (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003)), where we focus on EL (Baader,
Brandt, & Lutz, 2005), and DL-programs (Eiter et al., 2008).
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Tnorm =





(1∗) StaffRequest v ∃hasAction.Action
(2∗) StaffRequest v ∃hasSubject .Staff
(3∗) StaffRequest v ∃hasTarget .Project
(4∗) ∃hasAction.Action v C∃hasA.A

(5∗) ∃hasSubject .Staff v C∃hasS .St

(6∗) ∃hasTarget .Project v C∃hasT .P

(7∗) C∃hasA.A u C∃hasS .St v C∃hasA.Au∃hasS .St

(8∗) C∃hasA.Au∃hasS .St u C∃hasT .P v StaffRequest





Figure 2: Normalized TBox

2.1 Description Logic Knowledge Bases

We consider Description Logic (DL) knowledge bases (KBs) over a signature ΣO = 〈I,C,R〉 with a set I
of individuals (constants), a set C of concept names (unary predicates), and a set R of role names (binary
predicates) as usual. A DL knowledge base (or ontology) is a pairO = 〈T ,A〉 of a TBox T and an ABoxA,
which are finite sets of formulas capturing taxonomic resp. factual knowledge, whose form depends on the
underlying DL. In abuse of notation, we also write O = T ∪ A viewing O as a set of formulas.

Syntax. In EL, concepts C, denoting sets of objects, and roles R, denoting binary relations between
objects, obey the following syntax, where A ∈ C is an atomic concept and R ∈ R an atomic role:

C → A | > | C u C | ∃R.C

EL TBox axioms are of the form C1 v C2 (generalized concept inclusion axiom, GCI), where C1, C2 are
EL-concepts. ABox formulas are of the form A(c) or R(c, d), where A ∈ C, R ∈ R, and c, d ∈ I. In the
sequel, we use P as a generic predicate from C ∪ R (if the distinction is immaterial).

An example of an EL ontology is given in Figure 1.

Definition 2 (normalized TBox) A TBox is normalized, if all of its axioms have one of the following forms:

A1 v A2 A1 uA2 v A3 ∃R.A1 v A2 A1 v ∃R.A2,

where A1, A2, A3 are atomic concepts.

E.g., the axiom (1) in Example 1 is in normal form, while the axioms (2) and (3) are not. For any
EL TBox, an equivalent TBox in normal form is constructible in linear time (Stuckenschmidt, Parent, &
Spaccapietra, 2009) (over an extended signature)1 (Baader et al., 2005).

A special class of TBoxes widely studied in literature are EL-terminologies, defined as follows:

Definition 3 (EL-terminology) An EL-terminology is an EL TBox T , satisfying the following conditions:

(1) T consists of axioms of the forms A ≡ C and A v C, where A is atomic and C is an arbitrary EL
concept;

(2) no concept name occurs more then once on the left hand side of axioms in T .

1Linear complexity results are obtained under the standard assumption in DLs that each of the atomic concepts is of constant
size, i.e., the length of a binary string representing an atomic concept does not depend on the particular knowledge base.
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For example, the TBox of the ontology in Figure 1 is an EL-terminology.
Semantics. The semantics of DL ontologies is based on first-order interpretations (Baader et al., 2005).
An interpretation is a pair I = 〈∆I , ·I〉 of a non-empty domain ∆I and an interpretation function ·I that
assigns to each individual c ∈ I an object cI ∈ ∆I , to each concept name C a subset CI of ∆I , and to each
role name R a binary relation RI over ∆I . I extends inductively to non-atomic concepts C and roles R
according to the concept resp. role constructors; as for EL, (∃R.C)I = {o1 | 〈o1, o2〉 ∈ RI , o2 ∈ CI} and
(C uD)I = {o1 | o1 ∈ CI , o1 ∈ DI}.

Satisfaction of an axiom resp. assertion ω w.r.t. an interpretation I, i.e. I |= ω, is as follows: (i) I |=
C v D, if CI ⊆ DI ; (ii) I |= C(a), if aI ∈ CI ; (iii) I |= R(a, b), if (aI , bI) ∈ RI . Furthermore, I
satisfies a set of formulas Γ, denoted I |= Γ, if I |= α for each α ∈ Γ.

A TBox T , an ABox A respectively an ontology O is satisfiable (or consistent), if some interpretation
I satisfies it; we call A consistent with T , if T ∪ A is consistent.

Since negation is neither available nor expressible in EL, all EL ontologies are consistent.

Example 4 The ontologyO in Figure 1 is consistent; a satisfying interpretation I = 〈∆I , ·I〉 exists, where
∆I = {john, read , p1 , r1}, ActionI = {read}, BlacklistedI = Staff I = {john}, hasSubjectI =
{r1 , john}, StaffRequestI = BlacklistedStaffRequestI = {r1}, hasActionI = {r1 , read}, hasTargetI =
{r1 , p1}.

Throughout the paper, we consider ontologies in EL under the unique names assumption, i.e., o1
I 6= o2

I

whenever o1 6= o2 holds in any interpretation.

2.2 DL-programs

A DL-program Π = 〈O,P〉 is a pair of a DL ontologyO and a set P of DL-rules, which extend rules in non-
monotonic logic programs with special DL-atoms. They are formed over a signature ΣΠ = 〈C,P, I,C,R〉,
where ΣP = 〈C,P〉 is a signature of the rule part P with a set C of constant symbols and a (finite) set P of
predicate symbols (called lp predicates) of arities ≥ 0, and ΣO = 〈I,C,R〉 is a DL signature. The set P is
disjoint with C,R. For simplicity, we assume C = I.
Syntax. A (disjunctive) DL-program Π = 〈O,P〉 consists of a DL ontology O and a finite set P of
DL-rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm (1)

where not is negation as failure (NAF)2 and each ai, 0 ≤ i ≤ n, is a first-order atom p(~t) with predicate
p ∈ P (called ordinary or lp-atom) and each bi, 1 ≤ i ≤ m, is either an lp-atom or a DL-atom. The
rule is a constraint, if n = 0, and normal, if n ≤ 1. We call H(r) = {a1, . . . , an} the head of r, and
B(r) = {b1, . . . , bk,not bk+1, . . . ,not bm} the body of r.

A DL-atom d(~t) is of the form

DL[λ; Q](~t), (2)

where

(a) λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0 is the input list and for each i, 1 ≤ i ≤ m, Si ∈ C ∪ R,
opi ∈ {]} is an update operator, and pi ∈ P is an input predicate of the same arity as Si; intuitively,
opi =] increases Si by the extension of pi;

2Strong negation ¬a can be added resp. emulated as usual (Eiter et al., 2008).
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(b) Q(~t) is a DL-query, which has one of the forms (i) C(t), where C is a concept and t is a term;
(ii) R(t1, t2), where R is a role and t1, t2 are terms; (iii) C1 v C2 and ~t = ε.

Note that inclusion DL-queries of the form C1 v C2 can be easily reduced to instance queries.3 Thus
for simplicity in this work we consider only instance DL-queries.

Example 5 Consider a DL-atom DL[Project ] projfile; StaffRequest ](X ) in the rule (13) of Π in Fig-
ure 1 for X = r1 . It has a DL-query StaffRequest(r1 ); its list λ = Project ] projfile contains an input
predicate projfile which extends the ontology predicate Project via an update operator ].

Semantics. The semantics of a DL-program Π = 〈O,P〉 is in terms of its grounding gr(Π) = 〈O, gr(P)〉
over C, i.e., gr(P) =

⋃
r∈P gr(r) contains all possible ground instances of all rules r in P over C. In the

remainder, by default we assume that Π is ground.
A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms, where HBΠ is the Herbrand base

for ΣP=〈C,P〉 (i.e. all ground atoms over ΣP ); I satisfies an lp- or DL-atom a, if

(i) a ∈ I , if a is an lp-atom, and
(ii) O ∪ λI(a) |= Q(~t) where O = 〈T ,A〉, if a is a DL-atom of form (2), where

λI(d) =
m⋃

i=1

Ai(I) and Ai(I) = {Si(~t) | pi(~t) ∈ I}, 1 ≤ i ≤ m. (3)

Satisfaction of a DL-rule r resp. set P of rules by a Herbrand interpretation I of Π = 〈P,O〉 is then as
usual, where I satisfies not bj , if I does not satisfy bj ; I satisfies Π, if it satisfies each r ∈ P . We denote
that I satisfies (is a model of) an object ω (atom, rule, etc.) with I |=Oω. A model I of ω is minimal, if no
model I ′ of ω exists such that I ′ ⊂ I .

Example 6 The DL-atom d = DL[Project ] projfile; StaffRequest ](r1 ) is satisfied by the interpretation
I = {projfile(p1 ), hasowner(p1 , john)}, sinceO |= StaffRequest(r1 ). ForO′ = O\{StaffReqeust(r1 )}
it still holds that I |=O′ d, as O′ ∪ λI(d) |= StaffRequest(r1 ).

Repair Answer Sets. Various semantics for DL-programs extend the answer set semantics of logic programs
(Gelfond & Lifschitz, 1991) to DL-programs, e.g. (Eiter et al., 2008; Lukasiewicz, 2010; Wang, You, Yuan,
& Shen, 2010; Shen, 2011). We concentrate here on weak answer sets (Eiter et al., 2008), which treat DL-
atoms like atoms under NAF, and flp answer sets (Eiter, Ianni, Schindlauer, & Tompits, 2005), which obey a
stronger foundedness condition. Both are like answer sets of an ordinary logic program interpretations that
are minimal models of a program reduct, which intuitively captures that assumption-based application of
the rules can reconstruct the interpretation.

The weak -reduct PI,Oweak of P relative toO and to I ⊆ HBΠ results from gr(P) by deleting (i) all rules
r such that either I 6|=O d for some DL-atom d ∈ B+(r), or I |=O l for some l ∈ B−(r); (ii) all DL-atoms
in B+(r) and all literals in B−(r).

The flp-reduct PI,Oflp of P results from gr(P) by deleting all rules r, whose bodies are not satisfied by
I , i.e. I 6|=O bi, for some bi, 1 ≤ i ≤ k or I |=O bj , for some bj , k < j ≤ m. We illustrate the notions on
an example.

3Evaluating d = DL[λ; C1 v C2]() over O = T ∪A reduces to evaluating d′ = DL[λ; AC2 ](a) over O′ = T ∪{AC1 vC1,
C2 vAC2} ∪ A ∪ {AC1(a)}, where a is a fresh constant and AC1 , AC2 are fresh concepts (similar as in TBox normalization).
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Example 7 Let O be as in Figure 1, and let the rule set P contain the facts (10), (11) and the rules (12),
(13) with X,Y, Z instiantiated to r1 , john, p1 respectively. Consider the interpretation I = {projfile(p1 ),
hasowner(p1 , john), chief (john), grant(r1 )}. While the flp-reduct PI,Oflp contains all rules of P , in the

weak -reduct PI,Oweak the rule (13) is replaced by the fact grant(r1 ).

Definition 8 (x-deletion repair answer set) An interpretation I is an x-deletion repair answer set of Π =

〈T ∪ A,P〉 for x ∈ {flp,weak}, if it is a minimal model of PI,T ∪A′x , where A′ ⊆ A; any such A′ is called
an x-deletion repair of Π. If A′ = A then I is a standard x-answer set.

Example 9 I = {projfile(p1 ), chief (john), hasowner(p1 , john), grant(john)} is both a weak and flp-
repair answer set of Π in Example 1 with a repair A′ = A\{Blacklisted(john)}.

Notation. We denote for any normal logic program P by AS (P) the set of all answer sets of P , and for any
DL-program Π by ASx(Π) (resp. RASx(Π)) the set of all x-answer sets (resp. x-repair answer sets) of Π.

In general an flp-answer set is a weak -answer set, but not vice versa, i.e. flp-answer sets are a more
restrictive notion, but in many cases weak and flp answer sets coincide. For more information on the reducts
see (Eiter et al., 2008; Wang et al., 2010).
Shifting Lemma. To simplify matters and avoid dealing with the logic program predicates separately,
we shall shift as in (Eiter et al., 2014b) the lp-input of DL-atoms to the ontology. Given a DL-atom
d = DL[λ; Q](~t) and P ] p ∈ λ, we call Pp(c) an input assertion for d, where Pp is a fresh ontology
predicate and c ∈ C; Ad is the set of all such assertions. For a TBox T and a DL-atom d, we let Td =
T ∪ {Pp v P | P ] p ∈ λ}, and for an interpretation I , let OId = Td ∪ A ∪ {Pp(~t) ∈ Ad | p(~t) ∈ I}. We
then have:

Proposition 10 ((Eiter et al., 2014b)) For every O = T ∪ A, DL-atom d = DL[λ; Q](~t) and interpreta-
tion I , it holds that I |=O d iff I |=OId DL[ε; Q](~t) iff OId |= Q(~t).

Unlike O ∪ λI(d), in OId there is a clear distinction between native assertions and input assertions for d
w.r.t. I (via facts Pp and axioms Pp v P ), mirroring its lp-input. Note that if T is in normal form, so is Td.

3 Support Sets for DL-atoms

In this section we recall support sets for DL-atoms from (Eiter et al., 2014b) which are effective optimization
means for (repair) answer set computation (Eiter et al., 2014b). Intuitively, a support set for a DL-atom
d = DL[λ; Q](~t) is a portion of its input that, together with ABox assertions, is sufficient to conclude that
the query Q(~t) evaluates to true; i.e., given a subset I ′ ⊆ I of an interpretation I and a set A′ ⊆ A of
ABox assertions from the ontology O, we can conclude that I |=O Q(~t). Basically, our method suggests
precomputing support sets for each DL-atom at a nonground level. During DL-program evaluation, for each
candidate interpretation ground instantiations of support sets are effectively obtained. They help to prune
the search space for (repair) answer sets.

Exploiting Proposition 10 we have the following definition of support sets using only ontology predi-
cates.

Definition 11 (ground support sets) Given a ground DL-atom d = DL[λ;Q](~t), a set S ⊆ A ∪ Ad is a
support set for d w.r.t. an ontology O = 〈T ,A〉, if Td ∪ S |= Q(~t). By SuppO(d) we denote the set of all
support sets S for d w.r.t. O.
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Support sets are grouped into families of support sets or simply support families. More formally,

Definition 12 (support family) Any collection S ⊆ SuppO(d) of support sets for a DL-atom d w.r.t. an
ontology O is a support family of d w.r.t. O.

In general, (and for EL in particular) even ⊆-minimal support sets can be arbitrarily large and there can
be infinitely many (exponentially many for acyclic T ) support sets. However, we still can exploit them for
the repair answer set computation algorithms in Section 6.

Support sets are linked to interpretations by the following notion.

Definition 13 (coherence) A support set S of a DL-atom d is coherent with an interpretation I , if for each
Pp(~c) ∈ S it holds that p(c) ∈ I .

Example 14 For the DL-atom d = DL[Project ] Projfile; StaffRequest ](r1 ) from Figure 1 the set S1 =
{StaffRequest(r1 )} is a support set and so is S2 = {hasSubject(r1 , john),Projectprojfile(p1 ),Staff (john),
hasAction(r1 , read),Action(read)}. S1 is coherent with any interpretation, while S2 is coherent only with
interpretations I ⊇ projfile(p1 ).

The evaluation of d w.r.t. I then reduces to the search for coherent support sets.

Proposition 15 Let d = DL[λ;Q](~t) be a ground DL-atom, let O = 〈T ,A〉 be an ontology, and let I be
an interpretation. Then, I |=O d iff some S ∈ SuppO(d) exists s.t. S is coherent with I .

Using a sufficient portion of support sets, we can completely eliminate the ontology access for the
evaluation of DL-atoms. In a naive approach, one precomputes all support sets for all ground DL-atoms
with respect to relevant ABoxes, and then uses them during the repair answer set computation. This does
not scale in practice, since support sets may be computed that are incoherent with all candidate repair answer
sets.

An alternative is to fully interleave the support set computation with the search for repair answer sets.
Here we construct coherent ground support sets for each DL-atom and interpretation on the fly. As the input
to a DL-atom may change in different interpretations, its support sets must be recomputed, however, since
reuse may not be possible; effective optimizations are not immediate.

A better solution is to precompute support sets at a nonground level, that is, schematic support sets, prior
to repair computation. Furthermore, in that we may leave the concrete ABox open; the support sets for a
DL-atom instance are then easily obtained by syntactic matching.

Definition 16 (nonground support sets) Let T be a TBox, and let d( ~X) = DL[λ; Q]( ~X) be a nonground
DL-atom. Suppose V ⊇ ~X is a set of distinct variables and C is a set of constants. A nonground support set
for d w.r.t. T is a set S = {P1( ~Y1), . . . , Pk( ~Yk)} of atoms such that

(i) ~Y1, . . . , ~Yk ⊆ V and
(ii) for each substitution θ : V → C, the instance Sθ = {P1( ~Y1θ), . . . , Pk(~Ykθ)} is a support set for

d( ~Xθ) w.r.t. OC = T ∪ AC , where AC is the set of all possible ABox assertions over C.

For any ontologyO = T ∪AC , we denote by SuppO(d) the set of all nonground support sets for d w.r.t. T .

Here AC takes care of any possible ABox, by considering the largest ABox (since O⊆O′ implies that
SuppO(d)⊆SuppO′(d)).
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Example 17 For d = DL[Project ] projfile; StaffRequest ](X ) the set S1 = {StaffRequest(X )} is a
nonground support set, and likewise the set S2 = {Action(W ), hasSubject(X ,Y ), hasTarget(X ,Z ),
Staff (Y ),Projectprojfile(Z ), hasAction(X ,W )}.

If a sufficient portion of nonground support sets is precomputed, then the ontology access can be fully
avoided. We call such a portion a complete support family.

Definition 18 (complete support family) A family S ⊆ SuppO(d) of nonground support sets for a (non-
ground) DL-atom d( ~X) w.r.t. an ontology O is complete, if for every support set S ∈ SuppO(d( ~Xθ)),
where θ: ~X → C, some S′ ∈ S and an extension θ′ : V → C of θ to V ⊇ ~X exist such that S = S′θ′.

Example 19 Consider the DL-atom d(X) = DL[Project ] projfile; StaffRequest ](X) from Figure 1. The
family S = {S1, S2, S3, S4, S5, S6} is complete for d w.r.t. O, where hT = hasTarget , hS = hasSubject
and hA = hasAction:

– S1 = {StaffRequest(X )};
– S2 = {Project(Y ), hT (X ,Y ), hS (X ,Z ),Staff (Z ), hA(X ,Z ′),Action(Z ′)};
– S3 = {Projectprojfile(Y ), hT (X ,Y ), hS (X ,Z ),Staff (Z ), hA(X ,Z ′),Action(Z ′)};
– S4 = {Project(Y ), hT (X ,Y ), hS (X ,Z ),Blacklisted(Z ), hA(X ,Z ′),Action(Z ′)};
– S5 = {Projectprojfile(Y ), hT (X ,Y ), hS (X ,Z ),Blacklisted(Z ), hA(X ,Z ′),Action(Z ′)};
– S6 = {BlacklistedStaffRequest(X )}. �

We say that two nonground support sets (resp. support families) are ground-identical, if their groundings
coincide. E.g., the support sets S1 = {P (X), r(X,Y )} and S2 = {P (X), r(X,Z)} are ground-identical
for a DL-atom d(X) = DL[λ; Q](X), and so are the respective support families {S1} and {S2}.

A nonground support set S is subsumed by S′, denoted by S′ ⊆θ S, if for every ground instance Sθ of
S some ground instance S′θ′ of S′ exists such that S′θ′ ⊆ Sθ. For nonground support families, we say that
S1 is subsumed by S2, denoted S2 ⊆θ S1, if for each instance Sθ of S ∈ S1 some instance S′θ′ of S′ in S2

exists such that S′θ′ ⊆ Sθ. holds.

Example 20 S= {BlacklistedStaffRequest(X ), hasSubject(X ,Y ),Blacklisted(Y )} is a support set for
the DL-atom d(X) = DL[Staff ] chief ; BlacklistedStaffRequest ](X) w.r.t. T from Figure 1, which is
subsumed by S′ = {BlacklistedStaffRequest(X )}, i.e. S′ ⊆θ S. Moreover, S′ ⊆θ S, where S′ = {S′} and
S={S}, while the support families S′′ = {S, S′} and S′′′ = {S, {hasSubject(X ,Z ), Blacklisted(Z ),
BlacklistedStaffRequest(X )}} mutually subsume each other.

The maximal support set size of a DL-atom d w.r.t. T , denoted by maxsup(d), is the smallest integer
n ≥ 0 such that for every complete nonground support family S for d w.r.t. T and support set S ∈ S with
|S| > n, a support set S′ ⊆θ S exists for d w.r.t. T in Suppd(O) with |S′| ≤ n. For instance, for d and T
from Example 19, the maximal support set size is 6. i.e. maxsup(d) = 6.

3.1 Computing Support Sets

In this section we provide methods for constructing nonground support sets. A natural computation of
nonground support sets is by exploiting (conjunctive) query answering methods in EL (e.g., (Rosati, 2007;
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Axiom Datalog rule
A1 v A2 A2(X)← A1(X)

A1 uA2 v A3 A3(X)← A1(X), A2(X)
∃R.A2 v A1 A1(X)← R(X,Y ), A2(Y )
A1 v ∃R.A2 R(X, oA2)← A1(X)

A2(oA2)← A1(X)

Table 1: EL TBox Rewriting

ProgQ,Tdnorm
=





(4′) C∃hasA.A(X )← hasAction(X ,Y ),Action(Y ).
(5′) C∃hasS .St(X )← hasSubject(X ,Y ),Staff (Y ).
(6′) C∃hasT .P (X )← hasTarget(X ,Y ),Project(Y ).
(7′) C∃hasA.Au∃hasS .St(X )← C∃hasA.A(X ),C∃hasS .St(X ).
(8′) StaffRequest(X )← C∃hasA.Au∃hasS .St(X ),C∃hasT .P (X ).
(9) Project(X )← Projectprojfile(X ).





Figure 3: DL-query Rewriting for DL[Project ] projfile; StaffRequest ](X) over Tdnorm

Lutz, Toman, & Wolter, 2009; Kontchakov, Lutz, Toman, Wolter, & Zakharyaschev, 2010; Stefanoni, Motik,
& Horrocks, 2012)).

Suppose we are given a DL-program Π = 〈O,P〉, whereO = 〈T ,A〉 is an EL ontology, and a DL-atom
d( ~X) = DL[λ; Q]( ~X). Our method to construct nonground support sets for d( ~X) has the following three
steps.

Step 1. DL-query Rewriting over the TBox. The first step exploits the rewriting of the DL-query Q
of d( ~X) over the TBox Td = T ∪ {Pp v P | P ] p ∈ λ} into a set of datalog rules of Table 1. At the
preprocessing stage the TBox Td is normalized. This technique restricts the syntactic form of TBoxes by
decomposing complex axioms into syntactically simpler axioms. For this purpose, a set of fresh concept
symbols is introduced. Once the normalized form Tdnorm of Td is computed, we rewrite the part of the
TBox that is relevant for the query at hand into a datalog program ProgQ,Tdnorm using the translation given
in Table 1, which is a variant of a translation from (Pérez-Urbina, Motik, & Horrocks, 2010; Zhao, Pan, &
Ren, 2009). When rewriting axioms of the form A1 v ∃R.A2 (fourth axiom in Table 1) we introduce fresh
constants (oA2) to represent “unknown” objects. A similar rewriting is exploited in the REQUIEM system
(Pérez-Urbina et al., 2010) (where function symbols are used instead of fresh constants). As a result we
obtain:

Lemma 21 For every data part, i.e., ABox A, and every ground assertion Q(~c), deciding whether
ProgQ,Tdnorm ∪ A |= Q(~c) is equivalent to checking Tdnorm ∪ A |= Q(~c).

Step 2. Query Unfolding. The second step proceeds with the standard unfolding of the rules of ProgQ,Tdnorm
w.r.t. the target DL-query Q. We start with a rule that has Q in the head and expand its body using other
rules of the program ProgQ,Tdnorm . By applying this procedure exhaustively, we get a number of rules which
correspond to the rewritings of the query Q over Tdnorm. Note that it is not always possible to obtain all of
the rewritings effectively, since in general there might be exponentially many of them (even infinitely many
for cyclic T ). We discuss the techniques for computing partial support families in the next section.

Step 3. Support Set Extraction. The last step extracts nonground support sets from the rewritings of Step
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2. We select those containing only predicates from Td and obtain rules r of the form

Q( ~X)← P1( ~Y1), . . . , Pk( ~Yk), Pk+1pk+1
(~Yk+1), . . . , Pnpn( ~Yn), (4)

where each Pi is a native ontology predicate if 1 ≤ i ≤ k, and a predicate mirroring lp-input of d otherwise.
The bodies of such rules correspond to the support sets for a given DL-atom, i.e.

S = {P1( ~Y1), . . . , Pk( ~Yk), Pk+1pk+1
(~Yk+1), . . . , Pnpn(~Yn)} (5)

Now the following holds.

Proposition 22 Let d( ~X) = DL[λ; Q]( ~X) be a DL-atom of a program Π = 〈O,P〉 with an EL ontology
O = 〈T ,A〉. Every set S constructed in Steps 1-3 is a nonground support set for d( ~X).

By the shifting lemma, when working with support sets we can focus on the ontology predicates and operate
only on them. More specifically, rules of the form (4) for k ≤ n fully reflect nonground support sets as
of Definition 16, and ground instantiations of such a rule over constants from C implicitly correspond to
ground support sets.

We now illustrate the computation of nonground support sets for DL-atoms over EL ontologies.

Example 23 Consider a DL-atom DL[Project ] projfile; StaffRequest ](X) accessing an EL ontology
O = 〈T ,A〉 from Figure 1. The datalog rewriting for d computed at Step 1 is given in Figure 3. In Step 2
we obtain the following query unfoldings for StaffRequest:

(1) StaffRequest(X)← StaffRequest(X);

(2) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),
Staff (Y ′), hasTarget(X,Y ′′),Projectprojfile(Y ′′);

(3) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),
Staff (Y ′), hasTarget(X,Y ′′),Project(Y ′′);

(4) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),
Blacklisted(Y ′), hasTarget(X,Y ′′),Project(Y ′′);

(5) StaffRequest(X)← hasAction(X,Y ),Action(Y ), hasSubject(X,Y ′),
Blacklisted(Y ′), hasTarget(X,Y ′′),Projectprojfile(Y ′′).

In Step 3 we thus get from the rule (2) S2 = {hasAction(X,Y ),Action(Y ),Staff (Y ′),
hasSubject(X,Y ′), hasTarget(X,Y ′′),Projectprojfile(Y ′′)} and from rule (3) S3={Action(Y ),
hasAction(X,Y ),Staff (Y ′), hasSubject(X,Y ′),Project(Y ′′), hasTarget(X,Y ′′)}. From (1), (4) and (5)
the remaining support sets are similarly obtained. �

3.2 Partial Support Families

Finding all support sets for a DL-atom is tightly related to computing all solutions to a logic-based abduction
problem. Abduction is an important mode of reasoning widely applied in different areas of AI including
planning, diagnosis, natural language understanding and many others (see (Console, Sapino, & Dupré, 1995)
for overview). Various variants of this problem were actively studied (see e.g. (Eiter, Gottlob, & Leone,
1997), (Bienvenu, 2008)). Unfortunately, most of the practically important problems in the context of
abduction are intractable even for restricted propositional theories (Eiter & Makino, 2007). The abduction
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problem for EL TBoxes has been considered in (Bienvenu, 2008), where it is given as a tuple 〈T ,H, O〉, with
a TBox T , a set of atomic conceptsH and an atomic conceptO. An explanation is a set {A1, . . . , An} ⊆ H,
such that T |= A1 u . . .uAn v O. If the ABox A∪Ad contains only atomic concepts, then computing all
nonground support sets for d = DL[λ; Q](X) accessing O = 〈T ,A〉 corresponds to an abduction problem
〈Td, sig(A ∪ Ad), Q〉. If roles occur in A ∪ Ad, then one has to introduce new fresh concepts to construct
the complex concepts as hypothesis, e.g., for ∃R.A an inclusion C∃R.A v ∃R.A can be added to Td, and
C∃R.A toH, where C∃R.A is a fresh concept.

Unlike for DL-LiteA, support families for DL-atoms over EL ontologies have no particular structure;
they can be large, and maximal support set size can be exponential in the size of T .

Example 24 Consider the following acyclic TBox T , which contains the axioms:

(1) ∃r.B0 u ∃s.B0 v B1

(2) ∃r.B1 u ∃s.B1 v B2

. . .

(n) ∃r.Bn−1 u ∃s.Bn−1 v Bn
For d1 = DL[λ; B1](X1), the maximal support set size is 4, which is witnessed by

S1 = {r(X1, X2), B0(X2), s(X1, X3), B0(X3)}.

For the DL-atom d2 = DL[λ; B2](X1), we have maxsup(d2) = 10, due to S2 = {r(X1, X2), r(X2, X3),
B0(X3), s(X2, X4), B0(X4), s(X1, X5), r(X5, X6), B0(X6), s(X5, X7), B0(X7)}. Moreover, for di =
DL[λ; Bi](X), we have maxsup(di) = maxsup(di−1)× 2 + 2, 1 ≤ i ≤ n.

Note that the maximal support set for dn involves n+3 predicates. Therefore, if the TBox is of the above
form, and |sig(T )|= k, a lower bound for the worst case support set size for d is 2k−1 + 2 = Ω(2k), which
is single exponential in the size of T . �

While in general many unfoldings can be produced at Step 2, according to recent results (Hansen et al.,
2014), complete support families for EL can be computed for large classes of ontologies. Therefore, we still
exploit support families, but unlike in (Eiter et al., 2014b) we do not require them to be complete, and de-
velop techniques for computing partial (i.e. incomplete) support families for DL-atoms. A natural approach
in this context is to aim at finding support sets of bounded size. In general, due to cyclic dependencies
such as ∃r.C v C, which are possible in EL but not in DL-LiteA, support sets can be arbitrary large. An
analysis of a vast number of ontologies has revealed that in many realistic cases they do not contain (nor
imply) cyclic axioms (Gardiner et al., 2006); we thus assume for practical considerations that the TBox of
the ontology in a given DL-program is acyclic, i.e., it does not entail inclusion axioms of form ∃r.C v C.
However, even under this restriction support sets can be large as Example 24 shows.

If computing complete support families is computationally too expensive, a natural approach is to pro-
duce only support sets of a certain size k using e.g. limited program unfolding. When an unfolding branch
reaches the depth k, we stop and expand a different branch. Similarly, we can compute a limited number
k of support sets by stopping the rule unfolding of the program ProgQ,Tdnorm

once the k-th support set is
produced. An alternative approach, based on TBox approximation techniques, is pursued in the next section.

4 Partial Support Family Construction via TBox Approximation

We now provide practical methods to construct partial support families using TBox approximation.
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4.1 TBox Approximation

To approximate DL ontologies of a source languageL in a less expressive target languageL′ is a well-known
and important technique in ontology management. Existing approaches for such approximation are roughly
divided into syntactic and semantic. The former, e.g. (Tserendorj, Rudolph, Krötzsch, & Hitzler, 2008;
Wache, Groot, & Stuckenschmidt, 2005) focus on the syntactic form of the axioms of the original ontology
and appropriately rewrite the axioms not complying with the syntax of the target language. They are rather
effective in general but can produce unsound answers (Pan & Thomas, 2007). Semantic approaches focus
on the model-based entailment from the original ontology, rather then on its syntactic structure. They aim at
preserving these entailments as much as possible while transforming the ontology into the target language;
in general they are sound, but might be computationally more expensive (Console, Mora, Rosati, Santarelli,
& Savo, 2014).

Sound ontology approximation techniques are of relevance for our task of computing partial support
families. We choose DL-LiteA as the target approximation language, as complete support families for
DL-atoms accessing DL-LiteA ontologies can be effectively identified (Eiter et al., 2014b). Our approach
for approximating a TBox in EL to DL-LiteA exploits the logical difference between EL TBoxes (Konev
et al., 2012). The idea behind it is to decide whether two ontologies give the same answers to queries
over a given vocabulary (called signature) Σ, and compute a succinct representation of the difference if it
is not empty. Typical queries include subsumption between concepts, instance and conjunctive queries. In
our setting subsumption queries are of particular interest, as based on them nonground support families are
constructed.

Our approach is as follows. Given a DL-atom d = DL[λ; Q]( ~X) and an ontology O = 〈T ,A〉,
we eliminate from the TBox Td axioms outside the DL-LiteA language, and obtain a simplified TBox
T ′d . We then compute a succinct representation of the logical difference between Td and T ′d w.r.t. Σ =
{sig(Ad ∪ A) ∪ Q}. Those axioms in the logical difference that fall into DL-LiteA are then added to T ′d .
By restricting Σ to predicates that can potentially appear in support sets we avoid redundant computations,
and approximate only the relevant part of the TBox. This approach is particularly attractive, as the logical
difference for EL was intensively studied, e.g. (Grau, Horrocks, Kazakov, & Sattler, 2007; Lutz, Walther, &
Wolter, 2007; Konev et al., 2012) and polynomial algorithms are available for EL-terminologies; we thus
confine ourselves here to the latter.

To present our approximation approach formally, we first recall some notions.

Definition 25 (cf. (Konev et al., 2012)) The Σ-concept difference between EL-terminologies T1 and T2 is
the set cDiffΣ(T1, T2) of all EL-inclusions α over Σ such that T1 |= α and T2 6|= α.

Example 26 For the terminologies T1 = {B v E, E v ∃r.>, C v AuB} and T2 = {C v A, D v
B, D ≡ C} it holds that cDiffΣ(T1, T2) = ∅ for Σ = {A,B,C}, while cDiffΣ′(T1, T2) = {B v ∃r.>}
for Σ′ = {B, r}. �

If two EL-terminologies entail the same concept subsumptions over the signature Σ, i.e. it holds that
cDiffΣ(T1, T2) = cDiffΣ(T2, T1) = ∅, then they are called Σ-concept inseparable, which is denoted by
T1 ≡CΣ T2. E.g. in Example 26 we have that T1 ≡CΣ T2 and T1 6≡CΣ′ T2.

The logical difference in terms of instance queries is defined as follows.

Definition 27 (cf. (Konev et al., 2012)) The Σ-instance difference between terminologies T1 and T2 is the
set iDiffΣ(T1, T2) of pairs of the form (A, α), where A is a Σ-ABox and α a Σ-instance assertion, such that
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Algorithm 1: PartSupFam : compute partial support family

Input: DL-atom d = DL[λ; Q]( ~X), ontologyO = 〈T ,A〉
Output: Partial nonground support family S ⊆ SuppO(d) for d

(a) Σ← {sig(A ∪Ad) ∪Q}
(b) Td ← T ∪ {Pp v P | P ] p ∈ λ}
(c) T ′

d ← Td\{C v D | C 6∈ {A, ∃r.>} orD 6∈ {A, ∃r.>}}
(d) lrw ← cWTnrhs

Σ (Td,T ′
d) ∪ cWTnlhs

Σ (Td,T ′
d)

(e) T ′′
d ← T ′

d ∪ {C v D ∈ lrw | C,D ∈ {A, ∃r.>}}
(f) S← {ComplSupFam(d,T ′′

d }
return S

T1 ∪ A |= α and T2 ∪ A 6|= α. We say that T1 and T2 are Σ-instance inseparable, in symbols T1 ≡iΣ T2 if
iDiffΣ(T1, T2) = iDiffΣ(T2, T1) = ∅.

As easliy seen, T1 ≡iΣ T2 implies T1 ≡CΣ T2. The converse is not obvious but also holds.

Theorem 28 (Lutz & Wolter, 2010) For any EL-terminologies T1 and T2 and signature Σ, T1 ≡CΣ T2 iff
T1 ≡iΣ T2.

4.2 Partial Support Family Construction

We now show that a DL-atom has the same set of support sets under Σ-concept inseparable terminologies.
Prior to that, we establish the following lemma.

Lemma 29 Let d = DL[λ; Q](~t) be a DL-atom, let O = 〈T1,A〉 be an EL ontology, and let T2 be a TBox.
If T1 ≡CΣ T2, where Σ =sig(A)∪Q ∪ {P | P ◦ p ∈ λ}, then T1d ≡CΣ′ T2d, where Σ′ = Σ∪ sig(Ad).

Armed with this we obtain

Proposition 30 Let d = DL[λ; Q]( ~X) be a DL-atom and let T1, T2 be EL-terminologies such that T1 ≡CΣ
T2 where Σ = sig(A∪Ad ∪ Q ∪{P | P ◦ p ∈ λ}). If S1 and S2 are complete nonground support families
for d w.r.t. O1 = 〈T1,A〉 and O2 = 〈T2,A〉, respectively, then S1 and S2 are ground-identical.

Given two EL-terminologies T1 and T2 the inclusions C v A ∈ cDiffΣ(T1, T2) (resp. A v C ∈
cDiffΣ(T1, T2)) are called in (Konev et al., 2012) left (resp. right) witnesses and denoted as cWTnrhsΣ (T1, T2)
(resp. cWTnlhsΣ (T1, T2)). As shown there, every inclusion C v D in the Σ-concept difference of T1 and T2

“contains” either a left or a right witness.

Theorem 31 ((Konev et al., 2012)) Let T1 and T2 be EL-terminologies and let Σ be a signature.
If φ ∈ cDiffΣ(T1, T2), then either C v A or A v D is a member of cDiffΣ(T1, T2), where A ∈ sig(φ) is a
concept name and C and D are EL-concepts occurring in φ.

The logical difference between two EL-terminologies in its compact representation consists only of
inclusions with an atomic concept name on either the left or the right hand side. Some may have inclusions
with atomic concepts on both sides or role restrictions of the form ∃r.>, which fall into our target language
of DL-LiteA DL, and can be therefore reintroduced.
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We are now ready to describe the algorithm PartSupFam (see Algorithm 1) to compute partial families
of support sets. As an input we are given a DL-atom d = DL[λ; Q]( ~X) and an ontologyO = 〈T ,A〉, where
T is an EL-terminology. We first set the signature Σ in (a) to predicates relevant for support set computation
for d. We then construct the TBox Td in (b) and its simplified version T ′d in (c) by removing from Td all
axioms of the form C v D, where C or D is a complex concept, i.e. axioms not falling into DL-LiteA
fragment. In (d) we compute right-hand side and left-hand side witnesses between Td and T ′d for Σ and
store them in lrw . Then in (e) we construct the TBox T ′′d by extending T ′d with all axioms from lrw , having
concepts of the form A or ∃r on both sides of inclusions. Based on the support set construction method
for DL-LiteA in (Eiter et al., 2014b), we then obtain a complete support family S for T ′′d in (f), which is a
partial support family for T .

Proposition 32 The family S computed by Algorithm 1 fulfills S ⊆ SuppO(d), i.e., S is a partial support
family for a given DL-atom d w.r.t. T where O = T ∪ A.

If lwr = ∅ in (d) or cDiffΣ(Td, T ′′d ) = ∅ in (e), then S is guaranteed to be complete by Proposition 30.
While in general Algorithm 1 can be used for computing support families for DL-atoms accessing arbitrary
TBoxes4, practically effective procedures for (d) are available only for acyclic EL-terminologies (Konev
et al., 2012).

5 Bounded Support Sets

In this section, we analyze the size and the number of support sets that a given DL-atom can have. With
bounds on these quantities at hand, one can limit the search space of support sets. More precisely, we aim
at support set families that are sufficient for evaluating the DL-atom. As support sets S′ that are (properly)
subsumed by another support set S can be dropped (i.e., S ⊆θ S′), we consider non-ground support families
that subsume any other (in particular, any complete) support family. More formally, we say a nonground
support family S for a DL-atom d is θ-complete w.r.t. an ontology O, if S ⊆θ S′ for S′ ∈ SuppO(d). Thus
the question are bounds on the size of support sets in S and the cardinality of a smallest S.

Throughout this section, we tacitly assume that TBoxes are acyclic, i.e. they do not entail inclusions of
the form ∃R.C v C.

5.1 Estimation of Support Set Size Bounds

We first consider an estimate on the maximal size of support sets in the smallest θ-complete support family
by analyzing the syntactic properties of a given TBox. To start with, we recall from (Konev et al., 2012)
that an atomic concept A is primitive in a terminology T , if it occurs in no axiom of T on the left-hand side,
and pseudo-primitive, if it is either primitive or occurs on the left-hand side of axioms A v C only, where
C is an arbitrary EL concept.

According to (Konev et al., 2012, Lemma 15), for an EL-terminology T and every pseudo-primitive A
such that T |= D v A, where D = A1 u . . . u An u ∃r1.C1 . . . ∃rm.Cm, some (atomic) conjunct Ai in D
exists such that T |= Ai v A. From this we obtain

Proposition 33 Let d = DL[λ; Q](~t) be a DL-atom, and let T be an EL-terminology. If Q is pseudo-
primitive in T , then maxsup(d) = 1.

4For computing logical difference between arbitrary TBoxes recent results from (Feng, Ludwig, & Walther, 2015) might be
exploited.
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Figure 4: Hypergraph GΣ
T from Example 36

Proposition 33 exploits a specific case, in which the support set size bound is 1. For providing more
liberal syntactic conditions on T that ensure bounded size of support sets, we use ontology hypergraphs
(Nortje et al., 2013; Ecke et al., 2013). The latter have been widely studied for extracting reachability
based modules of ontologies (Nortje et al., 2013), determining concept difference between EL terminologies
(Ecke et al., 2013), efficient reasoning in OWL 2 QL (Lembo, Santarelli, & Savo, 2013) and other important
tasks.

First let us recall the notion of a directed hypergraph, which is a natural generalization of a directed
graph, proposed in the context of databases to represent functional dependencies (Ausiello, D’Atri, & Saccà,
1983).

Definition 34 A directed hypergraph is a pair G = (V, E), where V is a set of nodes of the graph and E is a
set of directed hyperedges of the form e = (H,H ′), whereH,H ′ ⊆ V are nonempty sets called hypernodes.

Given a hyperedge e = (H,H ′), we call H the tail of e, and H ′ the head of e, denoted by tail(e) and
head(e) respectively. A hypernode is a singleton, if |H| = 1, and a binary hypernode, if |H| = 2; in abuse
of notation, for a singleton {v}, we also simply write v. The notion of an ontology hypergraph for DL EL
is as follows.

Definition 35 (cf. (Ecke et al., 2013)) Let T be an EL TBox in a normal form, and let Σ ⊆ C ∪R. The
ontology hypergraph GΣ

T of T is a directed hypergraph GΣ
T = (V, E), where

V = {xA |A ∈ C ∩ (Σ ∩ sig(T ))} ∪ {xr | r ∈ R ∩ (Σ ∩ sig(T ))} ∪ {x>}, and

E = {({xA}, {xB}) |A v B ∈ T , 1 ≤ i ≤ n} ∪
{({xA}, {xr, xY }) |A v ∃r.Y ∈ T , Y ∈ C ∪ {>}}∪
{({xr, xY }, {xA}) | ∃r.Y v A ∈ T , Y ∈ C ∪ {>}} ∪
{({xB1 , xB2}, {xA}) |B1 uB2 v A ∈ T }.
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Example 36 Consider the following TBox in a normal form:

T =





(1) ∃r1 .A1 v C1 (4) C1 u C2 v D

(2) ∃r2 .A2 v C2 (5) A3 v A2

(3) ∃r3 .A3 v A1 (6) D v ∃r4 .A4





The ontology hypergraph GΣ
T for Σ=sig(T ) is depicted in Figure 4. �

We now define the notions of directed path between two nodes and incoming path to a singleton node
in an ontology hypergraph; both are natural generalizations of a path in a standard graph.

Definition 37 Suppose that T is an EL TBox in a normal form, GΣ
T = (V, E) is an ontology hypergraph,

and x, y ∈ V are singleton nodes occurring in GΣ
T . Then a directed path between x and y in GΣ

T is a sequence
π = e1, e2, . . . , en of (hyper)edges, such that: (i) tail(e1) ⊇ x; (ii) head(en) ⊇ y; (iii) for every ei, i < n,
some successor s(ei) = ej of ei exists in GΣ

T such that j > i, head(ei) ⊆ tail(ej), and s(ei) = s(ei′)
implies head(ei) 6= head(ei′) for i 6= i′. An incoming path to a singleton node x ∈ V in GΣ

T = (V, E) is a
directed path π = e1, . . . , en from any node y ∈ V to x, such that head(en) = x. The set of all incoming
paths to a node x in a hypergraph G is denoted by Paths(x ,G).

Intuitively, hyperedges in an ontology hypergraph GΣ
T model inclusion relations between (complex) concepts

over Σ in T . Consequently, an incoming path to a singleton node xC in GΣ
T models a chain of inclusions

that logically follow from T , such that C is the rightmost element of the chain.

Example 38 Let us look at the ontology hypergraph GΣ
T in Figure 4. The sequence of edges

π1 = ({xr3 , xA3}, xA1), ({xr1 , xA1}, xC1)

is an incoming path to xC1 in GΣ
T that reflects the inclusions ∃r1.A1 v C1 and ∃r1.(∃r3.A3) v C1; the

sequence

π2 = ({xr3 , xA3}, xA1), ({xr1 , xA1}, xC1), ({xr2 , xA2}, xC2), ({xC1 , xC2}, xD)

is an incoming path to the singleton xD, from which the following set of inclusions can be extracted:
(1) C1uC2vD, (2) ∃r2.A2uC1vD, (3) ∃r2.A2u∃r1.A1vD, and (4) ∃r2.A2u∃r1.(∃r3.A3) v D. �

We now introduce our notion of a support hypergraph for a DL-atom.

Definition 39 A support hypergraph GΣ
supp(d),T for a DL-atom d = DL[λ; Q](~t) over a normal ontology

O = 〈T ,A〉 is a hypergraph constructed as follows:

1. build the ontology hypergraph GΣ
Td = (V, E), where Σ = sig(A ∪Ad) ∪ {Q};

2. leave all nodes and edges in Paths(xQ ,GΣ
Td

) and remove all other nodes and edges;

3. for xC ∈ GΣ
Td withC 6∈ Σ, if in Paths(xC ,GΣ

Td
) a (hyper)nodeN exists such that {P | xP ∈ N} ⊆ Σ

then leave xC , otherwise remove it and all of its corresponding edges;

4. for xr ∈ GΣ
Td , such that r 6∈ Σ, leave e = ({xr, y}, xC′) if (xC , {xr, y}) exists in GΣ

Td , where y ∈
{xD,>}, otherwise remove e.
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Figure 5: Examples of support hypergraphs

We now introduce our notion of a support hypergraph for a DL-atom.

Definition 39 A support hypergraph GΣ
supp(d),T for a DL-atom d = DL[λ; Q](~t) over a normal

ontology O = 〈T ,A〉 is a hypergraph constructed as follows:

1. build the ontology hypergraph GΣ
Td = (V, E), where Σ = sig(A ∪Ad) ∪ {Q};

2. leave all nodes and edges in Paths(xQ ,GΣ
Td

) and remove all other nodes and edges;

3. for xC ∈ GΣ
Td with C 6∈ Σ, if in Paths(xC ,GΣ

Td
) a (hyper)node N exists such that {P | xP ∈

N} ⊆ Σ then leave xC , otherwise remove it and all of its corresponding edges;

4. for xr ∈ GΣ
Td , such that r 6∈ Σ, leave e = ({xr, y}, xC′) if (xC , {xr, y}) exists in GΣ

Td , where
y ∈ {xD,>}, otherwise remove e.

Let us illustrate the notion of a support hypergraph on the following example:

Example 40 Let T from Example 36 be accessed by the DL-atom d = DL[A3 ] p3; D]( ~X),
and Td = T ∪ {A3p3

v A3}. The support hypergraph GΣ
supp(d),T for d with Σ = sig(Td) is

shown in Figure 5a. The node xD colored in blue corresponds to the DL-query of d. The edge
({xD}, {xr4 , xA4}) is not in GΣ

supp(d),T , as it does not lie on the incoming path to xD. �

Before describing the approach of extracting support sets for a DL-atom from a hypergraph,
we introduce a tree-acyclicity notion (see, e.g. (Ausiello, D’Atri, & Saccà, 1986; Gallo, Longo, &
Pallottino, 1993; Thakur & Tripathi, 2009) for alternative definitions of hypergraph acyclicity).

Definition 41 A hypergraph G = (V, E) is called tree-acyclic, if (i) at most one directed path
exists in G between any singleton nodes x, y ∈ V , and (ii) G has no paths π = e1, . . . , ek such that
tail(e1) ∩ head(ek) 6= ∅.
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We now introduce our notion of a support hypergraph for a DL-atom.

Definition 39 A support hypergraph GΣ
supp(d),T for a DL-atom d = DL[λ; Q](~t) over a normal

ontology O = 〈T ,A〉 is a hypergraph constructed as follows:

1. build the ontology hypergraph GΣ
Td = (V, E), where Σ = sig(A ∪Ad) ∪ {Q};

2. leave all nodes and edges in Paths(xQ ,GΣ
Td

) and remove all other nodes and edges;

3. for xC ∈ GΣ
Td with C 6∈ Σ, if in Paths(xC ,GΣ

Td
) a (hyper)node N exists such that {P | xP ∈

N} ⊆ Σ then leave xC , otherwise remove it and all of its corresponding edges;

4. for xr ∈ GΣ
Td , such that r 6∈ Σ, leave e = ({xr, y}, xC′) if (xC , {xr, y}) exists in GΣ

Td , where
y ∈ {xD,>}, otherwise remove e.

Let us illustrate the notion of a support hypergraph on the following example:

Example 40 Let T from Example 36 be accessed by the DL-atom d = DL[A3 ] p3; D]( ~X),
and Td = T ∪ {A3p3

v A3}. The support hypergraph GΣ
supp(d),T for d with Σ = sig(Td) is

shown in Figure 5a. The node xD colored in blue corresponds to the DL-query of d. The edge
({xD}, {xr4 , xA4}) is not in GΣ

supp(d),T , as it does not lie on the incoming path to xD. �

Before describing the approach of extracting support sets for a DL-atom from a hypergraph,
we introduce a tree-acyclicity notion (see, e.g. (Ausiello, D’Atri, & Saccà, 1986; Gallo, Longo, &
Pallottino, 1993; Thakur & Tripathi, 2009) for alternative definitions of hypergraph acyclicity).

Definition 41 A hypergraph G = (V, E) is called tree-acyclic, if (i) at most one directed path
exists in G between any singleton nodes x, y ∈ V , and (ii) G has no paths π = e1, . . . , ek such that
tail(e1) ∩ head(ek) 6= ∅.
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(b) GΣ
supp(d),T from Example 42

Figure 5: Examples of support hypergraphs

Let us illustrate the notion of a support hypergraph on the following example:

Example 40 Let T from Example 36 be accessed by the DL-atom d = DL[A3 ] p3; D]( ~X), and Td =
T ∪ {A3p3

v A3}. The support hypergraph GΣ
supp(d),T for d with Σ = sig(Td) is shown in Figure 5a.

The node xD colored in blue corresponds to the DL-query of d. The edge ({xD}, {xr4 , xA4}) is not in
GΣ

supp(d),T , as it does not lie on the incoming path to xD. �

Before describing the approach of extracting support sets for a DL-atom from a hypergraph, we introduce
a tree-acyclicity notion (see, e.g. (Ausiello, D’Atri, & Saccà, 1986; Gallo, Longo, & Pallottino, 1993;
Thakur & Tripathi, 2009) for alternative definitions of hypergraph acyclicity).

Definition 41 A hypergraph G = (V, E) is called tree-acyclic, if (i) at most one directed path exists in
G between any singleton nodes x, y ∈ V , and (ii) G has no paths π = e1, . . . , ek such that tail(e1) ∩
head(ek) 6= ∅.

We refer to hypergraphs that are not tree-acyclic as tree-cyclic.

Example 42 GΣ
supp(d),T in Fig. 5a is tree-acyclic, while G′ = GΣ′

supp(d),T ′ with T ′ = T ∪{B v A3, B v A2}
and Σ′ = Σ ∪ {B} is not, and neither is G′′ = GΣ

supp(d),T ′′ , where T ′′ = T ∪ {A1 v C2}.
The hypergraph GΣ

supp(d),T for d = DL[; Q](X), T = {D v C;C v A;C u B;A u B v Q} and
Σ = sig(T ) given in Figure 5b is tree-cyclic, since it contains two paths between xD and xQ, namely
π1 = xD, xC , xA, {xA, xB}, xQ and π2 = xD, xC , xB, {xA, xB}, xQ. �

The support hypergraph GΣ
supp(d),T = (V, E) for a DL-atom d = DL[λ; Q](X) contains all incoming

paths to xQ that start from nodes corresponding to predicates in A ∪ Ad by construction, i.e. it reflects all
inclusions with Q on the right-hand side and predicates over A ∪ Ad on the left hand-side that are entailed
from Td. Hence, by traversing edges of all incoming paths to xQ, we can construct sufficiently many query
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rewritings of Q over the TBox Td corresponding to nonground support sets that allow to subsume every
nonground support family w.r.t. O.

If a support hypergraph for a given DL-atom is tree-acyclic, then support sets can be conveniently
constructed from it by annotating nodes with variables Xi, i ∈ N in a way as described below. We use
subscripts for annotations, e.g. x

〈Xi〉
C means that the node xC is annotated with the variable Xi, while

x
〈Xi,Xj〉
r states that xr is annotated with the ordered pair of variables Xi, Xj .

The approach proceeds as follows. We start from the node xQ, which we annotate with X0, i.e. x〈X0〉
Q ;

then we traverse the hypergraph backwards, going from a head of an edge to its tail. For every edge e that
we encounter we annotate tail(e) based on its form and on the annotation of head(e), with variable names
that occur in annotation of head(e) and/or fresh variable names Xi, i ∈ N in the following way:

(1) if |tail(e)| = 1 then

(1.1) if head(e) = {x〈Xi〉C1
}, then tail(e) is annotated with 〈Xi〉;

(1.2) if head(e) = {x〈Xi1 ,Xi2 〉r1 , x
〈Xi3 〉
C1
}, then tail(e) = xC2 is annotated with 〈Xi1〉, i.e. we obtain

x
〈Xi1 〉
C2

;

(2) if |tail(e)| = 2 and head(e) = {x〈Xi〉C }, then

(2.1) if tail(e) = {xC1 , xC2}, then both xC1 and xC2 are annotated with Xi, i.e. {x〈Xi〉C1
, x
〈Xi〉
C2
};

(2.2) if tail(e) = {xr1 , xC1}, then we get {x〈Xi,Xi1 〉r1 , x
〈Xi1 〉
C1
},

From every annotated hypernodeN one can create a set of nonground atoms with predicate names extracted
from labels of hypernodes and variable names from their annotations. The nonground support sets for
d = DL[λ; Q](X0) are then constructed from the incoming paths to xQ.

We pick some incoming path π1 to xQ containing n edges, and start traversing it from the edge en
with head(en) = {xQ}. The first immediate support set is S1 = {Q(X0)}; the next one, S2, is extracted
from the annotated tail of en by taking nonground predicates of labels and variables. We then pick an edge
ek such that head(ek) ⊆ tail(en), and obtain further support sets by substituting nonground atoms that
correspond to head(ek) ∩ tail(en) in S2 with the atoms extracted from tail(ek); this is repeated. One can
in fact construct the incoming path backwards along with the support set extraction, until a maximal path is
obtained.

Example 43 Consider the maximal incoming path to xD of GΣ
supp(d),T from Figure 5a:

π = (xA3p3
, xA3)

︸ ︷︷ ︸
e1

, ({xr3 , xA3}, xA1)︸ ︷︷ ︸
e2

, ({xr1 , xA1}, xC1)︸ ︷︷ ︸
e3

, ({xr2 , xA2}, xC2)︸ ︷︷ ︸
e4

, ({xC1 , xC2}, xD)︸ ︷︷ ︸
e5

.

We traverse the path backwards, i.e. the edges in the order e5, e4, e3, e2, e1 and obtain: (x
〈X3〉
A3p3

, x
〈X3〉
A3

)
︸ ︷︷ ︸

e1

,

({x〈X2,X3〉
r3

, x
〈X3〉
A3
}, {x〈X2〉

A1
})

︸ ︷︷ ︸
e2

,({x〈X0,X2〉
r1

, x
〈X2〉
A1
}, x〈X0〉

C1
)

︸ ︷︷ ︸
e3

,({x〈X0,X1〉
r2

, x
〈X1〉
A2
}, x〈X0〉

C2
)

︸ ︷︷ ︸
e4

,({x〈X0〉
C1

, x
〈X0〉
C2
}, x〈X0〉

D )
︸ ︷︷ ︸

e5

. The

nonground support sets for d are extracted from the resulting annotated path as follows:

• S0 = {D(X0)} is immediately obtained from head(xD);
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• the first incoming path to be considered is π1 = e5, from which we get S1 = {C1(X0), C2(X0)};
• next is the path π2 = e4, e5 as head(e4) ⊆ tail(e5), yielding the support set S2 = {C2(X0),
r2(X0, X1), A2(X0, X1)};
• then, from π3 = e3, e5 we get S3 = {C1(X0), r1(X0, X2), A1(X2)};
• π4 = e5, e4, e3 yields S4 = {r2(X0, X1), A2(X1), r1(X0, X2), A1(X2)};
• from π5 = e2, e3, e5, we extract S5 = {r1(X0, X2), r3(X2, X3), A3(X3), C2(X0)};
• π6 = e2, e3, e4, e5 yields S6 = {r1(X0, X2), r3(X2, X3), A3(X3), r2(X0, X1), A2(X1)};
• from π7 = e1, e2, e3, e5, we extract S7 = {r1(X0, X2), r3(X2, X3), A3p3

(X3), C2(X0)};
• finally, from π8 = e1, e2, e3, e4, e5 we get S8 = {r1(X0, X2), r3(X2, X3), A3p3

(X3),
r2(X0, X1), A2(X1)}. �

The following lemma formally asserts the correctness of the procedure.

Lemma 44 Let SG be the support family constructed from the tree-acyclic hypergraph G=GΣ
supp(d),T for

d= DL[λ; Q]( ~X). Then SG is θ-complete for d w.r.t. O, i.e., SG ⊆θ S for every S ∈ SuppO(d).

In particular, Lemma 44 holds for each complete S for d w.r.t. the ontology O = 〈T ,A〉. Thus we can
determine sufficiently many nonground support sets for d by just looking at its support hypergraph. Note
that the restriction to tree-acyclic TBoxes is crucial for correctness of the procedure from above, as it ensures
that every node of a hypergraph is annotated only once.

Lemma 44 allows us to reason about the structure and size of support sets by analyzing only parameters
of the support hypergraph. One such parameter, for instance, is the maximal number n(π,G) of hyper-
edges with a singleton head node excluding ({xr,>}, xA), occurring on some incoming path π to xQ of a
hypergraph G.

Proposition 45 Let O = 〈T ,A〉 be an EL ontology with the TBox T in a normal form, and let, moreover,
d = DL[λ; Q]( ~X) be a DL-atom with a tree-acyclic support hypergraph GΣ

supp(d),T . Then it holds that
maxsup(d) ≤ maxπ∈GΣ

supp(d),T
(n(π,GΣ

supp(d),T )) + 1.

For tree-cyclic hypergraphs, the bound from above is not tight, which we illustrate next.

Example 46 Consider the DL-atom d(X) = DL[; Q](X) accessing the TBox Td:

Td =





(1) A uD v F (4) E u F v L

(2) A u C v K (5) E uK v M

(3) A u B v E (6) M u L v Q





.

The support hypergraph for d is depicted in Figure 6, where Σ = sig(Td). There are six hyperedges with
singleton head nodes, but the maximal support set size for d(X) is 4, e.g. S = {A(X), B(X), D(X),K(X)}.
�

We next define out- and in-degrees of nodes in a hypergraph.
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Figure 6: Support hypergraph GΣ
supp(d),T from Example 46

Now let us define that smax(x,G) = maxπ∈Paths(x,G)(n(π,G)−m(π,G)+1), where m(π,G) =∑
xA∈π(hdc+(xA) − 1), and hdc+(xA) is the number of hyperedges of form ({xA, xB}, xC)

on π.

Example 49 Consider GΣ
supp(d),T in Figure 5a. Then Paths(xD,GΣ

supp(d),T ) contains a sin-

gle maximal path to xD, viz. π = (xA3p3
, xA3), ({xr3 , xA3}, xA1), ({xr2 , xA2}, xC2), ({xr1 , xA1},

xC1), ({xC1 , xC2}, xD). We have n(π,G) = 4, as four hyperedges on π have a single-
ton head node, and m(π,G) = 0, as all nodes have hyper-outdegree at most 1; hence
smax(xQ,G) = 4 − 0 + 1 = 5. The hypergraph in Figure 6 has a single maximal incom-
ing path π to xQ, and n(π,G) = 6, m(π,G) = (hdc+(xA) − 1) + (hdc+(xE) − 1) = 3; thus
smax(xQ,G) = 6− 3 + 1 = 4. �

We generalize the bound on the maximal support set size for d from Proposition 45
using the parameter smax(xQ,G) for a node corresponding to the DL-query Q of a DL-atom
d, and obtain the following results for hypergraphs that are possibly tree-cyclic:

Proposition 50 Let O = 〈T ,A〉 be an EL ontology with T in a normal form, and let
d = DL[λ; Q]( ~X) be a DL-atom with support hypergraph GΣ

supp(d),T , such that Σ has no role

predicates. Then maxsup(d) ≤ smax(xQ,GΣ
supp(d),T ).

Example 51 For the tree-cyclic hypergraph in Figure 6 we have smax(xQ,GΣ
supp(d),T ) = 4,

and 4 is indeed the maximal support set size for d = DL[; Q](X). The hypergraph in Fig-
ure 5a has 3 hyperedges, and for every node x ∈ V, hd+(x) ≤ 1. Thus, smax(xQ,GΣ

supp(d),T ) =

4, which coincides with maxsup(d), where d = DL[A3 ] p3; Q](X). �
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Figure 6: Support hypergraph GΣ
supp(d),T from Example 46

Definition 47 (hyper-outdegree and -indegree) Given a directed hypergraph G = (V, E), the hyper-outdegree
denoted by hd+(x) (resp., hyper-indegree hd−(x))) of a singleton node x ∈ V is the number of hyperedges
e ∈ E such that tail(e) ⊇ x (resp., head(e) ⊇ x) and either |tail(e)| = 2 or |head(e)| = 2. Similarly, the
outdegree d+(x) (resp., indegree d−(x)) of x is the number of edges e ∈ E such that tail(e) = {x} (resp.,
head(e) = {x}) and |head(e)| = |tail(e)| = 1.

Example 48 All nodesX ∈ V\{xA3p
, xD} in the hypergraph GΣ

supp(d),T of Figure 5a have hyper-outdegree
1, while for xAp3 and xD we have hd+(xAp3 ) = hd+(xD) = 0, furthermore, d+(xAp3 ) = 1. For hyper-
indegrees we have hd−(xA3) = hd−(xA1) = hd−(xC1) = hd−(xC2) = 1. In the graph G′ = GΣ

supp(d),T ∪
({xC2 , xA2}, xD), it holds that hd+(xC2) = hd+(xA2) = hd−(xD) = 2, moreover, d−(xA3) = 1. �

Now let smax(x,G) = maxπ∈Paths(x,G)(n(π,G)−m(π,G)+1),wherem(π,G) =
∑

xA∈π(hdc+(xA)−1),
and hdc+(xA) is the number of hyperedges of form ({xA, xB}, xC) on π.

Example 49 Consider GΣ
supp(d),T in Figure 5a. Paths(xD,GΣ

supp(d),T ) contains a single maximal path to
xD, viz. π = (xA3p3

, xA3), ({xr3 , xA3}, xA1), ({xr2 , xA2}, xC2), ({xr1 , xA1}, xC1), ({xC1 , xC2}, xD). We
have n(π,G) = 4, as four hyperedges on π have a singleton head node, and m(π,G) = 0, as all nodes have
hyper-outdegree at most 1; hence smax(xQ,G) = 4 − 0 + 1 = 5. The hypergraph in Figure 6 has a single
maximal incoming path π to xQ, and n(π,G) = 6, m(π,G) = (hdc+(xA)− 1) + (hdc+(xE)− 1) = 3; thus
smax(xQ,G) = 6− 3 + 1 = 4. �

We generalize the bound on the maximal support set size for d from Proposition 45 using the parameter
smax(xQ,G) for a node corresponding to the DL-query Q of a DL-atom d, and obtain the following results
for hypergraphs that are possibly tree-cyclic:

Proposition 50 Let O = 〈T ,A〉 be an EL ontology with T in a normal form, and let d = DL[λ; Q]( ~X)
be a DL-atom with support hypergraph GΣ

supp(d),T , such that Σ has no role predicates. Then maxsup(d) ≤
smax(xQ,GΣ

supp(d),T ).
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Example 51 For the tree-cyclic hypergraph in Figure 6 we have smax(xQ,GΣ
supp(d),T ) = 4, and 4 is indeed

the maximal support set size for d = DL[; Q](X). The hypergraph in Figure 5a has 3 hyperedges, and for
every node x ∈ V , hd+(x) ≤ 1. Thus, smax(xQ,GΣ

supp(d),T ) = 4, which coincides with maxsup(d), where
d = DL[A3 ] p3; Q](X). �

Note that in Proposition 50 when computing m(π,G), we take into account only outgoing hyperedges
of the form ({xC , xD}, xE), where C,D,E are concepts, and moreover, no roles occur in Σ. Multiple
outgoing hyperedges involving roles r with r ∈ Σ do not influence the support set size.

Example 52 Let a support hypergraph for d = DL[λ; Q](X) have the hyperedges ({xr, xC}, xD),
({xC , xs}, xM ), ({xD, xM}, xQ) where r ∈ Σ, reflecting the axioms ∃r.C v D, ∃s.C vM andMuDvQ.
A largest minimal support set for d is S={r(X,Y ), C(Y ), s(X,Z), C(Z)}; its size is n+ 1, where n is the
number of hyperedges with a singleton head node, while hd+(xC) = 2. �

5.2 Number of Support Sets

Orthogonal to the question considered in the previous section is under which conditions a given number n
of support sets is sufficient to form a θ-complete support family. This problem is tightly related to counting
minimal solutions for an abduction problem, which was analyzed in (Hermann & Pichler, 2010) for propo-
sitional theories under various restrictions. In particular, counting ⊆-minimal explanations was shown to be
# · CO-NP-complete for general propositional theories and #P -complete for Horn propositional theories;
as EL subsumes propositional Horn logic, determining the size of a smallest θ-complete support family is
at least #P -hard and thus intractable.

Like for the size of support sets, the support hypergraph can be fruitfully exploited for estimating the
maximal number of support sets for a given DL-atom. To provide such an estimate, we traverse the support
hypergraph forward starting at the leaves and label every node xP with the number of rewritings for P . To
conveniently compute the labels, we introduce support weight functions.

Definition 53 (support weight function) Let GΣ
supp(d),T = (V, E) be a support hypergraph for a DL-atom

d. A support weight function ws : V → N assigns to every node xA ∈ V the number ws(xA) of rewritings
of A over T w.r.t. Σ.

For every node in a tree-acyclic support hypergraph the value of ws can be conveniently computed in a
recursive manner.

Proposition 54 Let GΣ
supp(d),T be a tree-acyclic support hypergraph for a DL-atom d over a (normalized)

ontology O = 〈T ,A〉. Then ws is given as follows, where VC ⊆ V is the set of nodes for concepts:

ws(x) =





1, if hd−(x) = 0 and d−(x) = 0 or x /∈ VC,
1 +

∑
T∈T−(x)

∏
x′∈T ws(x

′)

+
∑

T∈T−(x),T 6⊆VC
∑

({x′},T )∈E ws(x
′), otherwise.

(6)

where T−(x) = {T | (T, {x}) ∈ E}.

We demonstrate the usage of Proposition 54 by the following example.
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Example 55 To compute ws(x) for the nodes of GΣ
supp(d),T in Figure 5a, we traverse the graph from leaves

to the root, and for x ∈ {xr1 , xA2 , xC2 , xr2 , xA3p3
, xr3} we obtain ws(x) = 1; furthermore, ws(xA3) =

ws(xC2) = 2, ws(xA1) = 3, ws(xC1) = 4. Finally, ws(xD) = 1 + ws(xC1) ∗ ws(xC2) = 1 + 4 ∗ 2 = 9,
which is the number of rewritings for D(X) (and hence support sets for d(X) = DL[A3 ] p3; D](X))
identified in Example 43.

Example 56 Consider the TBox T = {AuB v Q;C v A;D v A;E v A;F v B;G v B;H v B;A v
L} and a DL-atom d = DL[; Q](X), whose support hypergraph for Σ = sig(T ) is in Figure 7. We have
that ws(xQ) = 1 + ws(xB) ∗ ws(xA) = 1 + 4 ∗ 4 = 17, and indeed there are 17 rewritings for Q(X),
namely S1 = {A(X), B(X)}, S2 = {C(X), B(X)}, S3 = {D(X), B(X)}, S4 = {E(X), B(X)},
S5 = {A(X), F (X)}, S6 = {A(X), G(X)}, S7 = {A(X), H(X)}, S8 = {C(X), F (X)}, S9 =
{C(X), G(X)}, S10 = {C(X), H(X)}, S11 = {D(X), F (X)}, S12 = {D(X), G(X)}, S13 = {D(X),
H(X)}, S14 = {E(X), F (X)}, S15 = {E(X), G(X)}, S16 = {E(X), H(X)}, and S17 = {Q(X)}.

As an immediate corollary of Proposition 54, we obtain

Corollary 57 Let GΣ
supp(d),T = (V, E) be a tree-acyclic support hypergraph for the DL-atom d = DL[λ; Q]( ~X)

over an EL ontology O = 〈T ,A〉. If each edge e ∈ E satisfies |tail(e)|=|head(e)|=1, then

ws(v) =
∑

e∈E | head(e)=v

ws(tail(e)) + 1. (7)

Thus for the query node xQ, we get ws(xQ) = |E|+1. In fact, Proposition 54 leads to this simple bound
on the size of ⊆θ-minimal complete support families in more general cases.

Proposition 58 Let GΣ
supp(d),T = (V, E) be a tree-acyclic support hypergraph for d = DL[λ; Q]( ~X) over

an EL ontology, such that for every edge e = ({x, y}, z) ∈ E and edges e1, e2 ∈ E such that head(ei) ⊆
{x, y}, i ∈ {1, 2}, it holds that head(e1) = head(e2). Then |SGΣ

supp(d),T
| = |E|+ 1.

Example 59 The hypergraph GΣ
supp(d),T in Figure 5a has a single maximal path of length 5, and its hyper-

edges satisfy the condition of Corollary 58. As d has 6 support sets, |S| = |E|+ 1 holds. �

If the condition of Proposition 58 on e and e1, e2 is violated, then the maximal size of a ⊆θ-minimal
complete support family can not be assessed that easily. For instance, the support hypergraph GΣ

supp(d),T
from Figure 7 contains 7 edges, but d has 17 support sets. It can be shown that if k nodes in GΣ

supp(d),T
violate the condition, then SGΣ

supp(d),T
contains at most |E|k+1 + 1 support sets; for the considered example,

this yields a bound of 72 + 1 = 50, which is far from tight.
We note that Proposition 54 can not be applied for tree-cyclic support hypergraphs.

Example 60 Consider a tree-cyclic support hypergraph GΣ
supp(d),T for d = DL[; Q](X), T = {D v

C; C v A; C v B; A u B v Q} and Σ = sig(T ), which is shown in Figure 5b. Using Proposition 54
we get ws(xD) = 1, ws(xC) = 2, ws(xA) = 3, ws(xB) = 3, ws(xQ) = 3 ∗ 3 + 1 = 10. However,
Q(X) has only 4 rewritings: (1) S1 = {Q(X)}, (2) S2 = {A(X), B(X)}, (3) S3 = {C(X)}, and
(4) S4 = {D(X)}.

Intuitively, for tree-cyclic hypergraphs the support weight functionwsmay also account for non-minimal
rewritings {B(X), C(X)}, {A(X), C(X)}, {A(X), D(X)}, {B(X), D(X)}, and some rewritings can be
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xQ

xA xB

xC xD xE xF xG xH

Figure 7: Hypergraph GΣ
supp(d),T

counted twice. Thus in general, ws(x) provides only an upper bound for the number of rewriting. Likewise,
the bound in Proposition 58 is not tight even for simple tree-cyclic support hypergraphs; e.g., the one for
the DL-atom d = DL[; Q](X) w.r.t. the TBox A v Bi, Bi v Q, 1 ≤ i ≤ n, contains 2 ∗ n edges, but d has
only n+ 2 support sets. �

6 Repair Computation Based on Partial Support Families

In this section we present our algorithm SoundRAnsSet for computing deletion repair answer sets. This
problem is ΣP

2 -complete for DL-programs over EL ontologies (see (Stepanova, 2015)). Clearly naively
guessing a candidate repair ABox and checking its suitability is not effective, as overall there are |2n|
ABoxes for n = |A|.

We restrict the search space of repairs in our approach as in (Eiter et al., 2014b) by exploiting support
families for DL-atoms; however, in contrast to (Eiter et al., 2014b), the support families are not required
to be complete. If the families are complete (which may be known or asserted in their construction), then
SoundRAnsSet is guaranteed to be complete; otherwise, it may miss repair answer sets (an easy extension
ensures completeness).

Our algorithm for repair answer set computation, shown as Algorithm 2, proceeds as follows.

• We start at (a) by computing a family S of nonground support sets for each DL-atom.

• Next in (b) the so-called replacement program Π̂ is constructed.

The replacement program is obtained by a simple rewriting of gr(Π), where each DL-atom d is
replaced by an ordinary atom ed (called replacement atom), and a disjunctive choice rule ed ∨ned ←
is added that informally guesses the truth value of d, where ned stands for value false. Each repair
answer set of Π augmented with the proper choice of ed resp. ned is an answer set of Π̂ (Eiter et al.,
2013, Proposition 13); thus the search can be confined to answer sets Î of Π̂, which can be found
using a standard ASP solver.

• In (c) the answer sets Î of Π̂ are computed one by one.

• For Î , we determine in (d) the sets Dp (resp. Dn) of DL-atoms that are guessed true (resp. false) in it
and then use the function Gr(S, Î,A) which instantiates S for the DL-atoms in Dp ∪Dn to relevant
ground support sets, i.e., those compatible with Î .

• In (e) we loop through all minimal hitting setsH ⊆ A of the support sets for DL-atoms inDn, formed
by ABox assertions only, and in (f) for each H we construct the set D′p of atoms from Dp, which have



INFSYS RR 15-08 27

Algorithm 2: SoundRAnsSet : compute deletion repair answer sets

Input: Π=〈T ∪ A,P〉
Output: a set of repair answer sets of Π

(a) compute a set S of nonground support families for the DL-atoms in Π

(b) construct the replacement program Π̂

(c) for Î ∈ AS(Π̂) do
(d) Dp ← {d | ed ∈ Î};Dn ← {d | ned ∈ Î}; SÎ

gr ←Gr(S, Î,A);

(e) for all minimal hitting setsH ⊆ A of
⋃

d′∈Dn
SÎ
gr(d′) do

(f) D′
p ← {d ∈ Dp | ∃S ∈ SÎ

gr(d) s.t. S ∩H = ∅}
(g) rep← evaln(Dn, Î,T ∪ A\H) ∧ evalp(Dp\D′

p, Î,T ∪ A\H)

(h) if rep and flpFND(Î, 〈T ∪ A\H,P〉) then output Î|Π
end

end

at least one support set disjoint from H , i.e. removing H from A does not affect the values of atoms
in D′p.

• Then in (g) we evaluate in a postcheck the atoms in Dn and Dp\D′p over T ∪ A\H w.r.t. Î .

A Boolean flag rep stores the evaluation result of a function evaln(resp. evalp). More specifically,
given Dn (resp. Dp), Î and T ∪ A\H , the function evaln (resp. evalp) returns true , if all atoms in
Dn (resp. Dp) evaluate to false (resp. true).

• If rep is true and the foundedness check flpFND(Î , T ∪A\H,P) succeeds, then in (h) the restriction
Î|Π of Î to the original language of Π is output as repair answer set.

We remark that in many cases, the foundedness check might be trivial or superfluous (Eiter, Fink, Kren-
nwallner, Redl, & Schüller, 2014a), e.g., when there are no loops through DL-atoms; if we consider weak
answer sets (Eiter et al., 2013), it can be entirely skipped.

Example 61 Let Π be the DL-program from Example 1 with equivalence (≡) in the axioms (2) and (3) weak-
ened tow and with additional assertions Project(p1 ) and BlacklistedStaffRequest(r1 ) in the ABoxA. Let
d1=DL[Project ] projfile; Staffrequest ](r1 ) and d2=DL[Staff ] chief ; BlacklistedStaffRequest ](r1 ),
and assume that Î = {hasowner(p1 , john), ed1 , ned2 , projfile(p1 ), chief (john)} is returned at (c). Sup-
pose at (d) we obtain the following partial support families:

– SÎgr(d1) = {S1, S2}, where S1 = {hasAction(r1 , read), hasSubject(r1 , john),hasTarget(r1 , p1 ),
Staff (john),Action(read),Projectprojfile(p1 )} and S2 = {StaffRequest(r1 )};
– SÎgr(d2) = {S′1, S′2}, where S′1 = {StaffRequest(r1 ), hasSubject(r1 , john),Blacklisted(john)} and
S′2 = {BlacklistedStaffRequest(r1 )}.
At (e) we get a hitting set H = {StaffRequest(r1 ),BlacklistedStaffRequest(r1 )}, which is disjoint with
S1. Thus in (f) we obtain D′p = {d1} and then in (g) we check whether d2 is false underA\H . As this is not
true, rep=false and we pick another hitting setH ′, e.g. {Blacklisted(john),BlacklistedStaffRequest(r1 )}.
Proceeding with H ′, we get to (g), and as evaln(d2, Î, T ∪ A ∩H) = true and the FLP check succeeds at
(f), the interpretation Î|Π is output. �

The following results state that our algorithm works properly.

Theorem 62 Algorithm SoundRAnsSet is sound, i.e., given a program Π = 〈T ∪A,P〉, every output I is
a deletion repair answer set of Π.
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If we know in addition that the support families are complete, then the postchecks at (g) are redundant.
If D′p = Dp, then we set rep = true , otherwise rep = false .

Theorem 63 Suppose that given a program Π = 〈T ∪ A,P〉, for each DL-atom in Π the support family in
S computed by SoundRAnsSet in Step (a) is θ-complete. Then Algorithm SoundRAnsSet is complete, i.e.,
it outputs every deletion repair answer set of a given program Π = 〈T ∪ A,P〉.

We can easily turn SoundRAnsSet into a complete algorithm, by modifying (e) to consider all hitting
sets and not only minimal ones. In the worst case, this means a fallback to almost the naive algorithm (note
that all hitting sets can be enumerated efficiently relative to their number).

6.1 Optimizations and Extensions

Research in repairing databases (see (Bertossi, 2011) for overview) suggests several techniques, which are
of potential interest for DL-program repairs. One of such techniques deals with localization of repairs (Eiter,
Fink, Greco, & Lembo, 2008). The set of repair candidates can be narrowed to a part which is touched by
inconsistency of the DL-program. The ontology ABox can be split into two parts: one that is safe, and
will not be influenced by any repair and, one that is (probably) affected. The general approach of repair
localization is to isolate the part of the ABox which should not be changed, and to aim at finding the repair
by eliminating assertions from the rest of the ABox. After following this procedure, the obtained repair
can be combined with the safe part for getting the final result. The important task that naturally arises in
this context is related to effective identification of the safe and affected parts of the ABox. This is clearly
a difficult problem in general; however, the meta knowledge about the ontology (e.g. modules, additional
domain information), if available, can be fruitfully exploited.

Another common approach for tackling an inconsistency problem, which proved to be effective for
databases, is decomposition (Eiter et al., 2008). This approach tries to decompose the available knowledge
into parts, such that the reasons for inconsistency can be identified in each part separately, and then the
repairs for each of the parts can be conveniently combined. While for databases decomposition is natural, it
is not clear how to decompose an inconsistent DL-program effectively. One way to approach this problem
is by analyzing the values of the DL-atoms. Given Π̂ and a replacement atom ed, one can identify whether
all answer sets of Π̂ entail ed resp. ned by cautious reasoning. Given a set of such DL-atoms, we can aim
first to find repairs that satisfy these values, and then extend the solution to obtain the final repair. Modules
of DL-programs (as identified by the dlvhex solver) can be exploited for decomposing the repair problem.

As not all repairs are equally useful for a certain setting, various filterings on repairs can be applied to get
the most relevant candidates. Qualitative and domain-specific aspects of repairs are of crucial importance
for their practicability. These can be formulated in terms of additional local restrictions put on repairs.
For example, availability of meta information about the trustfulness of certain ontology parts allows one to
instantly adjust the repair process accordingly. One might be willing to preserve certain data pieces (e.g.
facts involving particular predicates/constants) or on the contrary wish to remove facts of some type in the
first place. Bounding the number of facts/predicates/constants allowed for deletion is likewise of practical
use. These filterings are incorporated in our repair approach. Yet there are several further extensions possible
like conditional predicate dependence. For example, a user might be willing to express the condition that
StaffRequest(r) can only be eliminated if hasAction(r , read) holds in the data part, or Blacklisted staff
members can not be removed, if they own files, for modifying which a separate StaffRequest has been
issued by a non-blacklisted staff member.
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(r∗1) Supd( ~X)← SPd (~Y ) (r∗5) ⊥ ← ned( ~X), SPd (~Y )

(r∗2) Supd( ~X)← SA,P
d (~Y ) (r∗6) P̄1d(~Y ) ∨ . . . ∨ P̄nd(~Y )← ned( ~X), SA,P

d (~Y )

(r∗3) SPd (~Y ) ← rb(Sp
d(~Y )) (r∗7) evald( ~X)← ed( ~X), not Cd, not Supd( ~X)

(r∗4) SA,P
d (~Y )← rb(SA,P

d (~Y )), nd(SA,P
d (~Y )) (r∗8) evald( ~X)← ned( ~X), not Cd

(r∗9) ⊥ ← ed( ~X), Cd,not Supd( ~X)

Figure 8: RulesRd for declarative implementation

6.2 Implementation

We have implemented our repair approach in C++ in a system prototype5. As discussed the support sets
for the EL ontologies are of a rich structure, and thus for their computation TBox classification as in (Eiter
et al., 2014b) is insufficient, as we need to identify not only inclusions between atomic concepts, but also all
inclusions of the form C v B, where C is an arbitrarily complex concept and B is atomic. We thus exploit
for constructing support sets the REQUIEM tool (Pérez-Urbina et al., 2010), which rewrites the target query
over the TBox using datalog rewriting techniques. By limiting the number resp. size of the rewritings, partial
support families can be computed.

In principle some support sets may be subsumed by smaller support sets (e.g., {R(c, d),A(c)} by
{A(c)}). These support sets are redundant and thus we eliminate them in our implementation.

After the support families are constructed we use a declarative approach for determining repair answer
sets, in which the minimal hitting set computation is accomplished by rules. To this end, for each DL-atom
d( ~X) fresh predicates Supd( ~X), SPd (~Y ) and SA,Pd (~Y ) are introduced, where ~Y = ~XX ′, which intuitively
say that d( ~X) has some support set, some support set with rule predicates only, and some support set with
ABox predicates (and possibly rule predicates), called mixed support set, respectively. Furthermore, for
every DL-atom d(X) rulesRd in Figure 8 are added to the replacement program Π̂.

Here the atom Cd informally says that the support family for d( ~X) is known to be complete; such
information can be added by facts to Π. The rules (r∗1)-(r∗4) derive information about support sets of d( ~X)
under a potential repair; rb(S) stands for a rule body rendering of a support set S, i.e. rb(S) = A1, . . . Ak
if S = {A1, . . . , Ak}; nd(S) = not p̄P1d

(~Y ), . . . ,not p̄Pnd(
~Y ), where {pP1d

(~Y ), . . . , pPnd(~Y )} encodes
the ontology part of S and p̄Pid(~Y ) states that the assertion Pid(~Y ) is marked for deletion. The constraint
(r∗5) forbids d( ~X), if guessed false, to have a matching support set with only input assertions; (r∗6) means
that if d( ~X) has instead a matching mixed support set, then some assertion from its ontology part must be
eliminated. The rule (r∗7) says that if d( ~X) is guessed true, completeness of its support family is unknown
and no matching support set is available, then an evaluation postcheck is necessary (evald( ~X)); rule (r∗8) is
similar for d( ~X) guessed false. The rule (r∗9) states that a DL-atom guessed true must have some support
set, if its support family is known to be complete.

The set of facts facts(A) = {pP (~c) |P (~c) ∈ A} encoding the ABox assertions and COMP ⊆ {Cd |
Sd is a complete support family for d} are added to the program Π̂, and then its answer sets are computed.
For each such answer set Î , we proceed with an evaluation postcheck for all atoms d(~c) for which the fact
evald(~c) is in the answer set. If all evaluation postchecks succeed, then we extract the repair answer set
I = Î|Π of the original program Π from Î . This way one identifies weak repair answer sets. For FLP repair

5https://github.com/hexhex/dlliteplugin/
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Π̂ ∪R =





(1) projfile(p1 ); (2) hasowner(p1 , john); (3) issued(john, r1 );

(4) chief (john)← hasowner(p1 , john), projfile(p1 );

(5) deny(r1 )← ed(r1 );

(6) ⊥ ← hasowner(p1 , john), issued(john, r1 ), deny(r1 );

(7) ed(r1 ) ∨ ned(r1);

(8) supd(X)← pBlacklistedStaffRequest(X ),not p̄BlacklistedStaffRequest(X);

(9) p̄BlacklistedStaffRequest(X )← ned(X), pBlacklistedStaffRequest(X );

(10) supd(X)← pStaffRequest(X ),not p̄StaffRequest(X), phasSubject(X,Y ),

not p̄hasSubject(X,Y ), pBlacklisted(Y ),not p̄Blacklisted(Y );

(11) p̄StaffRequest(X ) ∨ p̄hasSubject(X ,Y ) ∨ p̄Blacklisted(Y )← ned(X), pBlacklisted(Y ),

pStaffRequest(X ),

phasSubject(X ,Y );

(12) evald(X)← ed(X),not Cd,not supd(X);

(13) evald(X)← ned(X),not Cd;

(14) ⊥ ← ed(X), Cd,not supd(X).





Figure 9: Program Π̂ ∪R from Example 65

answer sets an additional minimality check is needed. In many cases, however, the FLP and weak answer
sets coincide (cf. (Eiter et al., 2014a)); in particular, this holds for the example and benchmark programs
that we consider.

We now formally show that the described approach indeed correctly computes weak repair answer sets.

Proposition 64 Let Π = 〈O,P〉 be a ground DL-program, where O is an EL ontology, let for each DL-
atom d of Π be Sd ∈ SuppO(d), and letRd be the set of rules (r∗1)-(r∗9) for d. Define

Π1 = Π̂ ∪R ∪ facts(A) ∪ COMP,

where R =
⋃
dRd, facts(A) = {pP (~c) | P (~c) ∈ A} and COMP ⊆ {Cd | Sd is θ-complete for

d w.r.t. O}. Suppose Î ∈ AS (Π1) is such that the evaluation postcheck succeeds for every DL-atom d
with Cd 6∈ COMP . Then Î|Π ∈ RAS weak (Π). Moreover, if Cd ∈ COMP for every DL-atom d, then
RAS weak (Π) = {Î|Π | Î ∈ AS (Π1)}.

Let us demonstrate the usage of the declarative implementation by the example.

Example 65 Consider in Figure 9 the replacement program Π̂ and the rulesR of Π = 〈P,O〉, where O is
as in Example 1, and P is as follows:

P =





(1) projfile(p1 ); (2) hasowner(p1 , john); (3) issued(john, r1 );

(4) chief (john)← hasowner(p1 , john), projfile(p1 );

(5) deny(r1 )← DL[Staff ] chief ; BlacklistedStaffRequest ](r1 );

(6) ⊥ ← hasowner(p1 , john), issued(john, r1 ), deny(r1 ).





.

Assume that for d(X) = DL[Staff ] chief ; BlacklistedStaffRequest ](X) we are given an incomplete
support family Sd = {S1, S2}, where S1 = {BlackListedStaffRequest(X )} and S2 = {StaffRequest(X ),
hasSubject(X ,Y ),Blacklisted(Y )}. Then the interpretation Î ⊃ {ned(r1 ), p̄StaffRequest(r1 ), evald,

p̄Blacklisted (john), } is among the answer sets of Π̂ ∪ R ∪ facts(A). As evald ∈ Î , a post-check is needed
for d(r1 ); it succeeds, and thus Î|Π is a repair answer set.
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7 Evaluation

The repair answer set computation approach is implemented within the dlvhex system; the details are pro-
vided in (Stepanova, 2015), and the software is freely online available.6 Our approach was evaluated on
a multi-core Linux server running dlvhex 2.4.0 under the HTCondor load distribution system,7 which is
a specialized workload management system for compute-intensive tasks, using two cores (AMD 6176 SE
CPUs) and 8GB RAM.

To the best of our knowledge, no similar system for repairing inconsistent DL-programs exists. The
list of systems for evaluating DL-programs includes DReW8(Xiao, 2014) and dlplugin9. The DReW system
exploits datalog rewritings for evaluating DL-programs over EL ontologies. Our attempts to extend DReW
for computing repairs using a naive guess and check approach failed. The dlplugin of the dlvhex system
invokes RacerPro10 reasoner as a back-end for evaluating calls to the ontology. However, for lightweight
ontologies even in the standard evaluation mode without any repair extensions, it scales worse than the
dlliteplugin (Eiter et al., 2014b); thus we focus on the latter in our experiments.

7.1 Evaluation Workflow

The general workflow of the experimental evaluation was as follows. In the first step, we constructed
benchmarks by building rules and constraints on top of existing ontologies such that for some data parts the
constructed programs become inconsistent. The instances were generated using shell scripts11 with the size
of the conflicting data part as a parameter. The benchmarks were then run using the HTCondor system, and
the times were extracted from the log files of the runs. In each run, we measured the time for computing the
first repair answer set, including support set computation, with a timeout of 300 seconds.

For each benchmark we present our experimental results in tables. The first column p specifies the size
of the instance (varied according to certain parameters specific for each benchmark), and in parentheses the
number of generated instances. E.g., the value 10(20) in the first column states that a set of 20 instances of
size 10 were tested. The rest of the columns represent particular repair configurations, grouped into three
sets.

The first set refers to the settings where θ-complete support families were exploited, while the second and
the third refer to the settings in which the size resp. the number of computed support sets was restricted. For
the θ-complete setting, we in addition limit the number of facts (lim f ), predicates (lim p) and constants
(lim c) involved in facts that can be removed; e.g., lim p = 2 states that the set of removed facts can
involve at most two predicates. The parameter del p stores predicates that can be deleted; e.g., del p =
StaffRequest means that repairs can be obtained by removing only facts over StaffRequest .

In the restricted configurations, the column size = n (resp. num = n) states that in the computed partial
support families the size (resp. number) of support sets is at most n; if n = ∞, then in fact all support sets
were computed, but the system is not aware of the θ-completeness. We exploit partial θ-completeness for the
number and size restriction case, i.e. if no more support sets for an atom are computed and the number/size
limits were not yet reached, then the support family for the considered atom is θ-complete.

6https://github.com/hexhex/dlliteplugin/
7http://research.cs.wisc.edu/htcondor/
8http://www.kr.tuwien.ac.at/research/systems/drew/
9https://github.com/hexhex/dlplugin/

10http://franz.com/agraph/racer/
11https://github.com/hexhex/dlplugin/benchmarks/
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In an entry t(m)[n], t is the total average running time (including support set generation and timeouts),
m is the number of timeouts and n is the number of repair answer sets found.

7.2 Benchmarks

For the evaluation of the developed algorithms, we considered the following benchmarks.

(1) The policy benchmark is a variant of Example 1, in which the rule (14) ofP is changed to deny(X )←
DL[Staff ]chief ; UnauthorizedStaffRequest ](X), and two further axioms are added to the TBox T ,
namely UnauthorizedStaffRequest ≡ StaffRequest u ∃ hasSubject .Unauthorized and
Blacklisted v Unauthorized .

(2) The OpenStreetMap benchmark contains a set of rules over the MyITS ontology12, which is an en-
hanced personalized route planning with semantic information extended by an ABox containing data
from the OpenStreetMap project13.

(3) The LUBM benchmark comprises rules on top of the well-known LUBM14 ontology in EL.

We now describe the benchmark results in details. All experimental data are online available.15

7.2.1 Access Policy Control

We considered ABoxes An with n staff members, for n ∈ {10, 250, 500}. Each data set has 5 projects
and 3 possible actions; furthermore 20% of the staff members are unauthorized and 40% are blacklisted.
Instances vary on facts hasowner(pi , si) in P . For each si, pi such that Staff (si), Project(pi) ∈ A, a fact
hasowner(pi , si) is added to the rules part with probability p/100, where p ranges from 20, 30 etc. to 90
for A10 and from 5, 10 etc. to 40 for A500 and A250. The total average running times for these settings are
shown in Tables 2–4, where SR stands for StaffRequest .

As regardsA10, limiting in the θ-complete setting the number of predicates for removal slightly increases
the running times. Restricting repairs to removing facts only over StaffRequest does not slow down the
repair computation compared to the unrestricted case, as many of the actual repairs indeed satisfy this
condition. The results for bounded number and size of support sets are almost constant, except when the
size is limited to 5 or smaller (just size 3 and size 5 are shown). Here support sets exceed the bound and
post-evaluation checks often fail, which visibly impacts the running times. While the support sets are large,
there are just few of them; this can be seen from the insignificant difference between the times for num = 3
and num =∞.

For the significantly larger ABox A250, we get that for each value of p the considered settings perform
almost identical except that lim p = 2 is a bit slower, and that size 6 is always sufficient to find a repair.
Furthermore, the running times increase gracefully with the value of p.

For the largest setting A500, bounding the support set size to 5 produces only timeouts, thus the column
is omitted. Computing support sets of size 6 is here often sufficient to identify repairs. In the θ-complete
case finding an arbitrary repair is faster then under the restriction lim p = 2 , but only up to p = 15. From
p = 20 the results for lim p = 2 outperform the unrestricted setting, as the posed limitation restricts the
search space of repairs effectively. Removing only facts over StaffRequest is no longer always sufficient,

12http://www.kr.tuwien.ac.at/research/projects/myits/GeoConceptsMyITS-v0.9-Lite.owl/
13http://www.openstreetmap.org/
14http://swat.cse.lehigh.edu/projects/lubm/
15http://www.kr.tuwien.ac.at/staff/dasha/jair el/benchmark instances.zip
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p
θ-complete support families Incomplete sup. families

num =∞
no restr . lim p = 2 del p = SR size = 3 size = 5 num = 3

20 (20) 1.92 (0)[20] 2.70 (0)[20] 1.91 (0)[20] 38.51 (0)[20] 33.86 (0)[20] 1.93 (0)[20] 1.92 (0)[20]
30 (20) 1.94 (0)[20] 2.72 (0)[20] 1.94 (0)[20] 86.35 (1)[19] 80.52 (1)[19] 1.95 (0)[20] 1.93 (0)[20]
40 (20) 1.93 (0)[20] 2.71 (0)[20] 1.93 (0)[20] 98.69 (1)[19] 96.45 (1)[19] 1.94 (0)[20] 1.93 (0)[20]
50 (20) 1.92 (0)[20] 2.70 (0)[20] 1.92 (0)[20] 100.46 (2)[18] 98.06 (2)[18] 1.93 (0)[20] 1.91 (0)[20]
60 (20) 1.94 (0)[20] 2.72 (0)[20] 1.95 (0)[20] 182.16 (3)[17] 186.20 (3)[17] 1.96 (0)[20] 1.94 (0)[20]
70 (20) 1.95 (0)[20] 2.73 (0)[20] 1.95 (0)[20] 153.66 (2)[18] 152.66 (2)[18] 1.96 (0)[20] 1.94 (0)[20]
80 (20) 1.94 (0)[20] 2.72 (0)[20] 1.95 (0)[20] 227.81 (6)[14] 223.24 (6)[14] 1.96 (0)[20] 1.95 (0)[20]
90 (19) 1.96 (0)[19] 2.74 (0)[19] 1.96 (0)[19] 267.52 (11)[8] 267.89 (12)[8] 1.96 (0)[19] 1.95 (0)[19]

Table 2: Policy benchmark, A10

p
θ-complete support families Incomplete support families

num =∞
no restr . lim p = 2 del p = SR size = 6 num = 3

5(20) 6.06(0)[20] 8.28 (0)[20] 6.05 (0)[20] 6.06 (0)[20] 6.07 (0)[20] 6.05 (0)[20]
10(20) 6.68(0)[20] 8.90 (0)[20] 6.68 (0)[20] 6.67 (0)[20] 6.69 (0)[20] 6.67 (0)[20]
15(20) 8.37(0)[20] 10.56 (0)[20] 8.35 (0)[20] 8.33 (0)[20] 8.34 (0)[20] 8.34 (0)[20]
20(20) 9.39(0)[20] 11.61 (0)[20] 9.40 (0)[20] 9.40 (0)[20] 9.43 (0)[20] 9.41 (0)[20]
25(20) 11.41(0)[20] 13.62 (0)[20] 11.41 (0)[20] 11.46 (0)[20] 11.40 (0)[20] 11.40 (0)[20]
30(20) 14.04(0)[20] 16.24 (0)[20] 14.09 (0)[20] 14.10 (0)[20] 14.05 (0)[20] 14.04 (0)[20]
35(20) 15.17(0)[20] 17.32 (0)[20] 15.19 (0)[20] 15.12 (0)[20] 15.16 (0)[20] 15.17 (0)[20]
40(20) 17.49(0)[20] 19.64 (0)[20] 17.47 (0)[20] 17.46 (0)[20] 17.45 (0)[20] 17.43 (0)[20]

Table 3: Policy benchmark, A250

p
θ-complete support families Incomplete support families

num =∞
no restr . lim p = 2 del p = SR size = 6 num = 3

5 (20) 14.99 (0)[20] 18.71 (0)[20] 14.98 (0)[20] 15.00 (0)[20] 14.97 (0)[20] 14.97 (0)[20]
10 (20) 23.57 (0)[20] 27.14 (0)[20] 23.52 (0)[20] 23.50 (0)[20] 23.51 (0)[20] 23.43 (0)[20]
15 (20) 35.07 (0)[20] 38.85 (0)[20] 35.09 (0)[20] 35.02 (0)[20] 35.12 (0)[20] 35.13 (0)[20]
20 (20) 73.43 (2)[18] 53.27 (0)[20] 73.29 (2)[18] 73.50 (2)[18] 73.32 (2)[18] 85.33 (3)[17]
25 (20) 152.29 (8)[12] 64.91 (0)[20] 152.33 (8)[12] 164.34 (9)[11] 152.25 (8)[12] 164.32 (9)[11]
30 (20) 288.06 (19)[1] 97.32 (1)[19] 288.08 (19)[1] 276.11 (18)[2] 288.05 (19)[1] 300.00 (20)[0]
35 (20) 300.00 (20)[0] 153.03 (5)[15] 300.00 (20)[0] 300.00 (20)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 300.00 (20)[0] 206.96 (10)[10] 300.00 (20)[0] 300.00 (20)[0] 300.00 (20)[0] 300.00 (20)[0]

Table 4: Policy benchmark, A500
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p
θ-complete support families Incomplete support families

num =∞
no restr . lim f = 5 lim c = 10 size = 1 size = 3 num = 1 num = 3

10 (20) 13.01 (0)[20] 16.50 (0)[20] 16.46 (0)[20] 16.39 (0)[11] 13.03 (0)[20] 13.23 (0)[20] 13.06 (0)[20] 12.99 (0)[20]
20 (20) 13.04 (0)[20] 16.49 (0)[20] 16.48 (0)[20] 20.98 (0)[5] 13.04 (0)[20] 13.35 (0)[20] 13.01 (0)[20] 13.02 (0)[20]
30 (20) 13.05 (0)[20] 16.54 (0)[20] 16.49 (0)[20] 24.56 (0)[0] 13.06 (0)[20] 13.51 (0)[20] 13.02 (0)[20] 13.05 (0)[20]
40 (20) 13.10 (0)[20] 16.58 (0)[20] 16.47 (0)[20] 59.26 (0)[1] 13.07 (0)[20] 13.55 (0)[20] 13.09 (0)[20] 13.05 (0)[20]
50 (20) 13.04 (0)[20] 16.60 (0)[20] 16.51 (0)[20] 123.80 (0)[0] 13.10 (0)[20] 13.56 (0)[20] 13.04 (0)[20] 13.06 (0)[20]
60 (20) 13.08 (0)[20] 16.61 (0)[20] 16.55 (0)[20] 106.63 (1)[0] 13.06 (0)[20] 13.60 (0)[20] 13.08 (0)[20] 13.08 (0)[20]
70 (20) 13.11 (0)[20] 16.68 (0)[20] 16.58 (0)[20] 139.08 (2)[0] 13.07 (0)[20] 13.61 (0)[20] 13.07 (0)[20] 13.13 (0)[20]
80 (20) 13.07 (0)[20] 16.70 (0)[20] 16.53 (0)[20] 211.33 (5)[0] 13.06 (0)[20] 13.61 (0)[20] 13.06 (0)[20] 13.08 (0)[20]
90 (20) 13.12 (0)[20] 16.81 (0)[20] 16.59 (0)[20] 260.36 (11)[0] 13.10 (0)[20] 13.67 (0)[20] 13.10 (0)[20] 13.08 (0)[20]

Table 5: Open Street Map benchmark results

which is witnessed by the decreased number of identified repairs for del p = StaffRequest compared to
lim p = 2 . Again the time increases rather gracefully with p as long as repair answer sets are found.

7.2.2 Open Street Map

For the second benchmark, we added rules on top of the ontology developed in the MyITS project. The
fixed ontology contains 4601 axioms, where 406 axioms are in the TBox and 4195 are in the ABox. The
fragment T ′ of T relevant for our scenario and the rules P are shown in Figure 10. Intuitively, T ′ states that
building features located inside private areas are not publicly accessible and a covered bus stop is a bus stop
with a roof. The rules P check that public stations do not lack public access, using CWA on private areas.

We used the method in (Eiter, Schneider, Šimkus, & Xiao, 2014) to extract data from the Open-
StreetMap.16 We constructed an ABox A by extracting the sets of all bus stops (285) and leisure areas
(682) of the Irish city Cork, as well as isLocatedInside relations between them (9) (i.e., bus stops located
in leisure areas). As the data has been gathered by many volunteers, chances of inaccuracies may be high
(e.g. imprecise GPS data). Since the data about roofed bus stops and private areas was yet unavailable, we
randomly made 80% of the bus stops roofed and 60% of leisure areas private. Finally, we added for each bsi
such that isLocatedInside(bsi, laj) ∈ A the fact busstop(bsi) to P with probability p/100. Some instances
are inconsistent since in our data set there are roofed bus stops located inside private areas.

The results are shown in Table 5. For the θ-complete setting arbitrary repairs are computed about 3.5
seconds faster than the repairs with bounded changes. For the restricted configuration the times do not
vary much except for size = 1, where a significant time increase is observed, and repairs are found only
for smaller instances. Like in the previous benchmark computing a small number of support sets is often
sufficient, but the configuration num = 1 is as expected slightly slower than num = 3 (computing support
sets is here cheap, while postchecks take some time).

7.2.3 LUBM

We have also tested our approach on DL-programs Π = 〈P,O〉 built over an EL version of the LUBM
ontology, whose TBox was extended with the following axioms:

(1) GraduateStudent u ∃assists.Lecturer v TA
(2) GraduateStudent u ∃teaches.UndergraduateStudent v TA

16http://www.openstreetmap.org/
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T ′ =
{

(1) BuildingFeature u ∃isLocatedInside.Private v NoPublicAccess
(2) BusStop u Roofed v CoveredBusStop

}

P =





(9) publicstation(X)← DL[BusStop ] busstop; CoveredBusStop](X),
not DL[; Private](X);

(10) ⊥ ← DL[BuildingFeature ] publicstation; NoPublicAccess](X),
publicstation(X ).





Figure 10: DL-program over OpenStreetMap ontology

p
θ-complete support families Incomplete supp. families

num =∞
no restr . lim f = 5 lim p = 2 lim c = 20 size = 1 size = 3

5 (20) 37.14 (0)[20] 47.77 (0)[20] 43.74 (0)[20] 43.88 (0)[20] 42.57 (0)[20] 36.52 (0)[20] 36.26 (0)[20]
15 (20) 35.74 (0)[20] 34.93 (0)[11] 42.74 (0)[20] 41.51 (0)[19] 42.02 (0)[20] 35.96 (0)[20] 35.49 (0)[20]
25 (20) 35.71 (0)[20] 26.94 (0)[5] 42.80 (0)[20] 41.71 (0)[19] 41.91 (0)[20] 35.80 (0)[20] 35.49 (0)[20]
35 (20) 36.07 (0)[20] 20.53 (0)[0] 43.04 (0)[20] 26.91 (0)[7] 42.22 (0)[20] 36.00 (0)[20] 35.65 (0)[20]
45 (20) 35.98 (0)[20] 20.50 (0)[0] 43.11 (0)[20] 19.54 (0)[1] 41.94 (0)[20] 36.40 (0)[20] 35.66 (0)[20]
55 (20) 35.92 (0)[20] 20.51 (0)[0] 43.11 (0)[20] 18.47 (0)[0] 42.31 (0)[20] 35.98 (0)[20] 35.60 (0)[20]
65 (20) 36.13 (0)[20] 20.43 (0)[0] 43.44 (0)[20] 18.33 (0)[0] 41.81 (0)[20] 36.02 (0)[20] 35.92 (0)[20]
75 (20) 36.07 (0)[20] 20.63 (0)[0] 43.45 (0)[20] 18.28 (0)[0] 42.09 (0)[20] 36.21 (0)[20] 35.85 (0)[20]
85 (20) 36.11 (0)[20] 20.30 (0)[0] 43.35 (0)[20] 18.04 (0)[0] 42.22 (0)[20] 36.15 (0)[20] 35.83 (0)[20]
95 (20) 36.38 (0)[20] 20.55 (0)[0] 43.24 (0)[20] 18.20 (0)[0] 42.52 (0)[20] 36.17 (0)[20] 35.62 (0)[20]

Table 6: LUBM benchmark results

The rules of Π are as follows:

P=

{
(3) stud(X )← notDL[; Employee](X ),DL[; TA](X );

(4) ⊥ ← DL[Student ] stud ; TAof ](X ,Y ), takesexam(X ,Y )

}
;

here (3) states that unless a teaching assistant (TA) is known to be an employee, he/she is a student, while
(4) forbids teaching assistants to take exams in the courses they teach.

The ABox contains information about one university with more then 600 students, 29 teaching assistants,
constructed by a dedicated ABox generator.17 For pairs of constants t, c, such that teachingAssistantOf (t , c)
is inA, the facts takesexam(t , c) are randomly added to the rules part with probability p/100, thus the con-
tradicting part in the DL-program is growing with respect to p.

The results for this benchmark are provided in Table 6. Bounding in the θ-complete setting the number
of removed facts to 5 slows down the computation if repairs satisfying the condition exist. For instances
with p ≥ 35 (i.e., inconsistency is more entrenched), more than 5 facts must be dropped to obtain a repair;
moreover, they often involve more than 20 constants according to column 5. The absence of repairs for
lim f = 5 and lim c = 20 is found faster than a repair in the unrestricted mode.

Limiting the support set size to 1 allows one to find repairs for all instances with a delay of less than 10
seconds compared to the θ-complete setting. However, there are many support sets for this benchmark, and
thus bounding their number is less effective.

17http://code.google.com/p/combo-obda/
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7.3 General Results Discussion

One can observe that for θ-complete settings and settings where post-evaluation checks are fast, the running
times vary only slightly with growing p. This is due to our declarative implementation, in which computing
repairs is reduced to finding answer sets of the program Π1 = Π̂ ∪ R ∪ facts(A) ∪ COMP followed by
possible evaluation postchecks. In our benchmarks the difference between instances of size pi and pi+1 is
the data part of the logic program, which is small compared to the part facts(A) of Π1 that is constant for
all p. Thus as long as postchecks are not needed, the times required for repairing Π do not differ much even
though the programs become “more inconsistent.”

As expected using θ-complete support families works well in practice. Naturally, it takes more time to
compute repairs of a certain structure than arbitrary repairs; however, when the imposed restrictions are too
strong such that no repair can satisfy them, the solver may identify this faster.

As reported in (Hansen et al., 2014), EL-TBoxes that originate from real-world applications admit FO-
rewritings (of reasonable size) in almost all cases. This provides some evidence that real-world EL-TBoxes
hardly contain involving constraints on the conceptual level, and that hence either the size or number of
support sets for DL-atoms often turn out to be limited. The novel algorithms for deletion repair answer set
computation demonstrated their applicability for DL-programs over some real world data (Open Street Map
benchmark results in Table 5).

While most of the other benchmarks that we have run are synthetic, they still vary w.r.t. the size of their
TBox and ABox. The capability of our algorithms for handling such diverse DL-programs confirms the
potential of our approach.

8 Related Work

Inconsistencies in DL-programs were studied in several works (Pührer et al., 2010; Fink, 2012; Eiter et al.,
2013, 2014b). Pührer et al. proposed an inconsistency tolerant semantics in (Pührer et al., 2010). Keeping
the ontology untouched, the DL-atoms that introduce inconsistency as well as rules involving them are
deactivated. The repair problem outlined as open in (Pührer et al., 2010) was then formalized in (Eiter
et al., 2013), where the notions of repair and repair answer sets together with a naive algorithm for their
computation were proposed. The latter was then optimized in (Eiter et al., 2014b, 2015) for DL-LiteA by
effectively exploiting complete support families for DL-atoms. Our approach is more general, and it differs
from the one in (Eiter et al., 2014b, 2015) in that it uses partial (not necessarily complete) support families
and can be applied to ontologies in any DL, though with a possible impact on complexity.

In other hybrid formalisms inconsistency management has concentrated on inconsistency tolerance
rather than repair (Huang et al., 2013). For instance, Huang et al. (2013) presented a four-valued para-
consistent semantics based on Belnap’s logic (Belnap, 1977) for hybrid MKNF knowledge bases (Motik
& Rosati, 2010), which are the most prominent tightly coupled combination of rules and ontologies. In-
spired by the paracoherent stable semantics from (Sakama & Inoue, 1995), the work (Huang et al., 2013)
was extended in (Huang, Hao, & Luo, 2014) to handle also incoherent MKNF KBs, i.e. programs in which
inconsistency arises as a result of the dependency of an atom on its default negation in analogy to (Fink,
2012). Another direction of inconsistency handling for hybrid MKNF KBs is using the three-valued (well-
founded) semantics of Knorr, Alferes, and Hitzler (2011), which avoids incoherence for disjunction-free
stratified programs. Most recently, this has been extended in (Kaminski et al., 2015) with additional truth
values to evaluate contradictory pieces of knowledge. These works aim at inconsistency tolerance rather
than repair, and are geared in spirit to query answering that is inherent to well-founded semantics; as such,
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it is limited to normal logic programs, while DL-programs allow for disjunctive rule heads.
In the context of Description Logics, repairing ontologies has been studied intensively, foremost to

handle inconsistency. Our DL-program repair is related to ABox cleaning (Masotti, Rosati, & Ruzzi, 2011;
Rosati, Ruzzi, Graziosi, & Masotti, 2012). However, the latter differs in various respects: it aims at restoring
consistency of an inconsistent ontology by deleting⊆-minimal sets of assertions (i.e., computing⊆-maximal
deletion repairs); we deal with inconsistency incurred on top of a consistent ontology, by arbitrary (non-
monotonic) rules which access it with a query interface. Furthermore, we must consider multiple ABoxes at
once (via updates), and use EL instead of DL-Lite . Refining our algorithm to compute ⊆-maximal deletion
repairs is possible.

The problem of computing support families is tightly related to finding solutions to an abduction prob-
lem, which was considered in (Bienvenu, 2008) for theories T expressed in EL-terminologies. There a
hypothesis H = {A1, . . . , An} is a set of atomic concepts, and an observation is another atomic concept.
A solution to the abduction problem is a set S ⊆ H, such that T |= ⊔Ai∈S Ai v O. Our setting is more
general, and involves also roles along with atomic concepts. Abduction has been studied in various re-
lated areas e.g., for DL-Lite ontologies in (Calvanese, Ortiz, Simkus, & Stefanoni, 2013), for propositional
logic in (Eiter & Makino, 2007) and for datalog in (Eiter et al., 1997; Gottlob, Pichler, & Wei, 2007), etc.
Using incomplete support families for DL-atoms is related in spirit to approximate inconsistency-tolerant
reasoning in DLs using restricted support sets (Bienvenu & Rosati, 2013); however, we focus on repair
computation and model generation while (Bienvenu & Rosati, 2013) targets inference from all repairs.

Our methods for constructing partial support families exploit the results on the logical difference be-
tween EL terminologies in (Konev et al., 2012; Ecke et al., 2013); recently they were extended to ELHR
(Ludwig & Walther, 2014) and general TBoxes (Feng et al., 2015).

Repairing inconsistent non-monotonic logic programs has been investigated in (Sakama & Inoue, 2003),
where an approach for deleting rules based on extended abduction was studied; however, to restore con-
sistency addition of rules is also possible. Balducini and Gelfond considered the latter in (Balduccini &
Gelfond, 2003), where under Occam’s razor consistency-restoring rules may be added. Methods for ex-
plaining why the inconsistency arises in a logic program were studied, e.g. in the work (Syrjänen, 2006),
which exploited model-based diagnosis (Reiter, 1987) to debug a logic program. Generalized debugging of
logic programs was investigated e.g., in (Gebser, Pührer, Schaub, & Tompits, 2008). Most recently, (Schulz,
Satoh, & Toni, 2015) considered a characterization of reasons for inconsistency in extended logic programs
(i.e., disjunction-free logic programs with both strong (“classical”) negation and weak negation) in terms
of “culprit” sets of literals, based on the well-founded and maximal partial stable model semantics, and a
derivation-based method to explain such culprits has been described; however, it remains open how debug-
ging of logic programs based on culprit sets could be done and whether this could be fruitfully extended to
debugging DL-programs. The latter has been addressed in (Oetsch, Pührer, & Tompits, 2012) and is related
to the challenging but, to the best of our knowledge, unexplored problem of repairing the rule part of a
DL-program.

9 Conclusion

We have considered computing repair answer sets of DL-programs over EL ontologies, for which we gener-
alized the support set approach (Eiter et al., 2014b, 2014b) for DL-LiteA to work with incomplete families
of supports sets; this advance is needed since in EL complete support families can be large or even infinite.
We discussed how to generate support sets, by exploiting query rewriting over ontologies to datalog (Lutz
et al., 2009; Rosati, 2007; Stefanoni et al., 2012), which is in contrast to (Eiter et al., 2014b), where TBox
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classification is invoked. Moreover, we have developed alternative techniques for effective computation of
partial support families. Our approach is to approximate a relevant part of the TBox to DL-LiteA exploiting
a notion of logical difference between EL-terminologies, and then compute complete support families over
an approximated TBox using methods from (Eiter et al., 2014b). The obtained support family is complete,
if the approximated TBox is logically equivalent to the original one.

To estimate the maximal size of support sets, we have analyzed the properties of a novel support hy-
pergraph, which corresponds to a subgraph of an ontology hypergraph (Nortje et al., 2013; Ecke et al.,
2013), where nodes encode ontology predicates (or pairs of them), while (hyper)edges reflect TBox inclu-
sions. We have shown how traversing a support hypergraph one can conveniently compute an upper bound
for the number of support sets for a given DL-atom. If, in addition, the support hypergraph satisfies certain
conditions (e.g. tree-acyclicity), then an exact estimate can be obtained.

We developed a sound algorithm for computing deletion repair answer sets for DL-programs over EL
ontologies, which is complete in case all support families are also known to be complete. The algorithm
trades answer completeness for scalability (a simple variant ensures completeness). We have implemented
the novel algorithm using declarative means within a system prototype, that invokes a REQUIEM reasoner
for partial support family computation. For experimental assessment of our repair approach a set of novel
benchmarks has been built including real world data. While the availability of complete support families
adds to the scalability of the repair computation, partial support families work surprisingly well in practice
due to the structure of the benchmark instances: the support sets are either small or there are just few of them,
and thus post-evaluation checks do not yield much of an overhead. Overall, our experimental evaluation has
revealed a promising potential of the novel repair methodology for practical applications.

9.1 Outlook

The directions for future work in the considered area are manifold. They cover both theoretical and practical
aspects of our inconsistency handling approach. On the theoretical side, a relevant open issue are sufficient
conditions under which computing all nonground support sets for a DL-atom accessing an EL ontology
becomes tractable. Like in (Gebser et al., 2008) bounded tree-width might be considered, but also other
parameters like density of a support hypergraph or various acyclicity properties. Analyzing the complexity
of counting support sets in a complete support family might give hints to possible restricted settings, in which
support family computation is efficient, but such a complexity analysis is also an interesting problem as such.
On the practical side, optimization of the current implementation and extending the range of applications to
real use cases is another issue.

Repair may be intermingled with stepping techniques used for debugging DL-programs (Oetsch et al.,
2012). We considered the DL-programs as monolithic structures when applying our repair techniques, that is
the repair computation was performed on a DL-program taken as a whole. It is an interesting and a relevant
quest to extend the approach for dealing with modular DL-programs. Splitting a program into separate
components that can be individually evaluated is a well-known programming technique, which has been
studied in the context of DL-programs (Eiter et al., 2008). It is not clear, however, to which extent and for
which program classes the repair methods can be adapted for the modular setting.

While we have considered EL in this paper, the basic algorithm and approach is applicable also to other
DLs. Extensions of our work to EL+ and EL++ are easily possible. The main difference is negation, which
is expressible via the⊥ concept; the ontology can get inconsistent through the updates of DL-atoms, leading
to an increased number of support sets that need to be effectively computed and appropriately handled. The
extension to expressive DLs such as SHIQ, SHOIN or even SROIQ is more challenging as efficient
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methods for support set construction remain to be developed; by the relatively high complexity of these DLs,
this comes at a computational cost. On the other hand, the computation may be done once (even offline) and
can be reused; fortunately, support families need not be complete, but we may expect a return of investment
of time in support set construction for the overall running time.

Orthogonal to other DLs, one can study various additional repair possibilities, e.g. bounded addition (see
(Eiter et al., 2013) for other repair possibilities). Here we have concentrated on repairing the data part of
the ontology, but it is also natural to allow changes in rules and interfaces. For repairing rules, the works on
ASP debugging (Frühstück, Pührer, & Friedrich, 2013; Gebser et al., 2008; Syrjänen, 2006) can be used as
a starting point, but the problem is far non-trivial as the search space of possible changes is large. Priorities
on the rules and atoms involving them might be applied to ensure high quality of rule repairs. The interfaces
similarly admit numerous modifications, which makes this type of repair as difficult; user interaction is most
probably required.

Last but not least one could develop methods for repairing other hybrid formalisms including tight-
coupling hybrid KBs or even more general representations like HEX-programs (Eiter et al., 2005), where
instead of ontology arbitrary sources of computation can be accessed from a logic program. Heterogeneity
of external sources in HEX-programs makes both repair and paraconsistent reasoning a very challenging but
interesting task.
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A Proofs for Section 3

Proof of Proposition 15. (⇒) By Proposition 10, I |=O d iff Td ∪ A ∪ AI |= Q(~t), where AI = {Pp(~t) ∈
Ad | p(~t) ∈ I}. Thus, S = A ∪AI is a support set of d w.r.t. O, and it is coherent with I by construction.

(⇐) If S ∈ SuppO(d) is coherent with I , then S is of the form S = A′ ∪ A′I where A′ ⊆ A and
A′I ⊆ AI , and thus S ⊆ A ∪ AI . As Td ∪ S |= Q(~t), by monotonicity Td ∪ A ∪ AI |= Q(~t), hence by
Proposition 10 I |=O d. �

Proof of Proposition 22. Consider any instance Sθ = {P1(Y1θ), . . . , Pk(Ykθ)} of a set S of form (5) for
d( ~X), where θ : V → C. We show that Sθ is a support set w.r.t. OC = 〈T ,AC〉 (recall that AC is the
set of all possible ABox assertions over C), i.e., Sθ ⊆ AC ∪ Ad (which clearly holds) and Td ∪ Sθ |=
Q( ~Xθ). The latter is equivalent to Tdnorm ∪ Sθ |= Q( ~Xθ), which in turn by Lemma 21 is equivalent to
ProgQ,Tdnorm ∪Sθ |= Q( ~Xθ). Let Prog0 = ProgQ,Tdnorm , and let Prog i+1, for each i ≥ 0, be the program
that results from Prog i by unfolding a rule w.r.t. the target query Q( ~Xθ). Then Prog i+1 ∪ Sθ |= Q( ~Xθ)
iff Prog i ∪ Sθ |= Q( ~Xθ) holds. Now by construction of S, there is a rule r of the form (4) in some Prog i.
Clearly {rθ} ∪ Sθ |= Q( ~Xθ) and thus Prog i ∪ Sθ |= Q( ~Xθ). It follows that Prog0 ∪ Sθ |= Q( ~Xθ) and
hence Tdnorm ∪ Sθ |= Q( ~Xθ) and Td ∪ Sθ |= Q( ~Xθ). �

B Proofs for Section 4

Proof of Lemma 29. Towards a contradiction, assume T1d 6≡CΣ′ T2d. Then w.l.o.g. T1d |= P1 v P2 but
T2d 6|= P1 v P2, where P1, P2 ∈ Σ′. Observe that Σ and Σ′ differ only on predicates Pp, such that P ◦ p
occurs in λ, and that T ′ = T1d\T1 = T2d\T2 consists only of axioms Pp v P where Pp does not occur in
T1 or T2. We first show that P2 ∈ Σ must hold. Indeed, otherwise P2 ∈ Σ′ \Σ and thus P2 = Pp ∈ sig(Ad)
for some P ◦ p from λ. Now let A′ = {P1(c)} if P1 ∈ Σ, and A′ = {P1(c), P1p(c)} otherwise (i.e.,
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P1 ∈ Σ′ \ Σ), for an arbitrary c ∈ I. Then T1d ∪ A′ has a model I in which cI ∈ P I1 (resp. cI ∈ P I1 and
cI ∈ P1

I
p ) and PpI = ∅ (thus P1 6= P2), as EL is negation-free and Pp occurs in axioms only on the left.

As I 6|= P1 v Pp, it follows T1d 6|= P1 v P2, which is a contradiction. This proves P2 ∈ Σ′ \Σ. Now there
are two cases.

(i) P1 ∈ Σ: T1 ≡CΣ T2 implies T2 |= P1 v P2; by monotonicity T2d |= P1 v P2, a contradiction.
(ii) P1 ∈ Σ′ \ Σ: then P1 = Pp, where P ◦ p occurs in λ, and P ∈ Σ. We claim that T1 |= P v P2.

Indeed, otherwise T1 has a model I such that P I 6⊆ P2
I . Then as easily seen the interpretation I ′ that

coincides with I on Σ and has PpI
′

= P I \ P2
I and P ′p

I′ = ∅ for each P ′p ∈ Σ′ \ Σ is a model of T1d;
however, I ′ 6|= Pp v P2, which would be a contradiction. This proves the claim. Now from the claim and
T1 ≡CΣ T2, it follows T2 |= P v P2 and by monotonicity T2d |= P v P2. As Pp v P ∈ T2d, it follows
T2d |= P1 v P2; this is a contradiction. �

Proof of Proposition 30. Suppose that S1 is a complete nonground support family w.r.t. O1 and let Sθ
be any instance of any S ∈ S1; then Sθ = A′ ∪ A′d ⊆ AC ∪ Ad. By Lemma 29, T1d ≡CΣ T2d; thus by
Theorem 28, T1d ≡iΣ T2d as well. By definition of Σ-instance inseparability, for all Σ-ABoxes A′′ and
Σ-assertions α such that T1d ∪ A′′ |= α, it holds that T2d ∪ A′′ |= α; hence T2d ∪ A′ ∪ A′d |= Q(~c).
Consequently, Sθ = A′ ∪A′d is a (ground) support set of d w.r.t.O2. If S2 is a complete nonground support
family w.r.t. O2, it follows that Sθ is an instance of some S′ ∈ S2. The converse membership is symmetric.
Hence, S1 and S2 are ground-identical. �

Proof of Proposition 32. Towards a contradiction, assume some S′ ∈ S \ SuppO(d) exists. Then a
grounding θ exists such that S′θ ∪ Td 6|= d(Xθ). However, S′θ ∪ T ′′d |= d(Xθ), as according to (f), S′ is
a nonground support set for d w.r.t. T ′′d = T ′d ∪ lrw . Consequently, Td 6|= T ′′d , which is a contradiction,
because T ′d ⊆ Td by construction in (c) and lrw = {C ′ v D′ | Td |= C ′ v D′, T ′d 6|= C ′ v D′} ⊆ Td by
(d) and definition of cWTnrhs

Σ and cWTnlhs
Σ . �

C Proofs for Section 5

Proof of Lemma 44. The construction of nonground support sets from a given hypergraph GΣ
supp(d),T for d

w.r.t. the ontology O = 〈T ,A〉 that we have presented mimics the DL-query unfolding over the TBox Td.
We now formally show that (i) each set S extracted in the described way is indeed a nonground support sets
for d, and (ii) for each ground instance Sθ of a nonground support set S for d, a (nonground) support set S′

can be constructed following our procedure such that S′θ′ ⊆ Sθ for some suitable ground substitution θ′.
This proves that SG ⊆θ S holds.

We first prove (i) by induction on the length n of incoming paths, from which the support sets are
extracted.

Base: n=1. Consider any path π in the hypergraph GΣ
supp(d),T . Assume that there is a single (hyper-)

edge e in π. By construction, this hyperedge must have xQ as a head node, i.e. head(e) = xQ. There are
four possibilities: (1) tail(e) = {xC}, (2) tail(e) = {xr, xC}, (3) tail(e) = {xC , xD} or (4) tail(e) =
{xr,>}. We annotate the nodes of a path by variables as described above, and extract the nonground
atoms from labels and annotations of the nodes. As a result for the case (1) we obtain {C(X0)}, for (2):
{r(X0, X1), C(X1)}, for (3): {C(X0), D(X0)}, and for (4): {r(X0, X1)}, where X1 is a fresh variable.
By construction of the hypergraph the edges of the forms (1)-(4) correspond to the TBox axioms C v Q,
∃r.C v Q, C uD v Q and ∃r.> v Q respectively. Therefore, the sets that have been constructed in all of
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the considered cases reflect the DL-query unfoldings of d, and hence they represent nonground support sets
for d by Proposition 22.

Induction step: Suppose that the statement is true for n, i.e. from a path with n edges all sets extracted
in the way described above are nonground support sets for d. Consider a path π = e0, . . . , en with n + 1
edges, and let e = e0 be the first edge of π. By the induction hypothesis, all sets extracted from the path
π \ e = e1, . . . , en following our approach are support sets for d. There are several possibilities for the form
of e: (1) tail(e) = {xC} and head(e) = {xD}, (2) tail(e) = {xr, xC} and head(e) = {xD}, (3) tail(e) =
{xC , xD} and head(e) = {xB}, (4) tail(e) = {xr,>} and head(e) = {xC}, or (5) tail(e) = {xC} and
head(e) = {xr, xD}.

As for (1), by construction both xC and xD are annotated with Xi. Let S be a family of sets extracted
from π\e. We pick a set S in which C(Xi) occurs. We substitute C(Xi) in S with D(Xi), and obtain a set
S′. By the induction hypothesis S must be a support set for d. However, then clearly S′ is also a support set,
as it mimics an additional unfolding step that accounts for the rule C(X)← D(X) of the datalog rewriting
of Td.

Let us look at (2). Assume a set S ⊇ D(Xi) of nonground atoms has been constructed using our
procedure. Then Xi must be an annotation for xD. According to our construction {xr, xD} is annotated
with {〈Xi, Xj〉, 〈Xj〉}, where Xj is a fresh variable. The sets S′ that we get from π result by substituting
D(Xi) in some S with {r(Xi, Xj), C(Xj)}. The latter mimics the unfolding step for Q that accounts for
the rule D(Xi) ← r(Xi, Xj), C(Xj) of the rewriting Td. As S is a support set for d by the induction
hypothesis, S′ must be a support set for d as well. The cases (3)-(5) can be analyzed analogously. Thus all
sets of size n+ 1 extracted from π are support sets for d.

It remains to prove (ii). Towards a contradiction, assume that some ground instance Sθ of some S ∈
SuppO(d) exists, such that for each ground instance S′θ′ of every S′ ∈ SuppO(d) constructed by our
procedure we have S′θ′ 6⊆ Sθ. As Sθ is a support set, by definition Tdnorm∪Sθ |= Q(~c), thus by Lemma 21
ProgQ,Tdnorm ∪ Sθ |= Q(~c). This in turn means that Q(~c) has a backchaining proof S0, S1, . . . , Sm from
ProgQ,Tdnorm ∪ Sθ of the form S0 = Q( ~X)θ0 and Sm = ∅, where θ0 is the substitution ~X 7→ ~c, and
Si = (Si−1 − Hi + Bi)θi, i ≥ 1, where Hi ← Bi is a rule resp. fact in ProgQ,Tdnorm ∪ S and θi is the
most general unifier of Hi with some atom in Si−1. Without loss of generality, we have Hi = A2(oA2) if
Hi−1 = R2(X, oA2) and all i such thatBi is empty are at the end, i.e. at the positions k, k+1, . . . ,m. Then
each Sj resp. Sj+1, 0 ≤ j ≤ k amounts to an instance of a support set S′j resp. S′j+1 of d generated from
GΣ

supp(d),T . In particular, Sk−1 is an instance of S′k−1 and consequently {Hk, Hk+1, . . . ,Hm} (⊆ Sθ) is an
instance of S′k−1 as well. But this means S′θ′ ⊆ Sθ for some instance S′θ′ of S′ = Sk−1, a contradiction.
�

Proof of Proposition 45. We prove the statement by induction on the number n of hyperedges with a
singleton head node in G = GΣ

supp(d),T for the DL-atom DL[λ; Q](X).
Base: n = 0. We show that maxsup(d) = 1 if no hyperedges of the required form exist in G. Several

cases are possible: (i) G contains only hyperedges of the form (xC , {xr, xD}); (ii) G has only hyperedges
of the form ({xr,>}, xC) or (xC , {xr,>}); or (iii) G has no hyperedges.

(i) Consider some hyperedge in π. Then some ej must exist in π, such that head(ei) ⊆ tail(ej). The
latter implies that ej is of the form ({xr, xD}, xD′) but then n 6= 0, i.e. contradiction.

For (ii) and (iii), by construction T contains only GCIs C v D such that C,D are either atomic or of the
form ∃r.>. These axioms fall into the DL-LiteA fragment, for which all ⊆θ-minimal support sets S have
size at most 2; moreover, |S| = 2 reflects in DL-LiteA inconsistency arising in the updated ontology (Eiter
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Figure 11: Fragment of a hypergraph used for illustration in the proof of Proposition 50

et al., 2014b). As negation is not available nor expressible in EL, no such S exists and thus the maximal
support set size for d is 1.

Induction Step: Suppose that the statement is true for n; we prove it for n + 1. Let π = e1, . . . , ek be
an incoming path to xQ in GΣ

supp(d),T with a maximal number n + 1 of hyperedges with a singleton head
node. Assume that ei is the first hyperedge of the required form occurring in π. Let us split π into two parts:
e1, . . . , ei and ei+1, . . . , ek. Consider the hypergraph G′′ = (V, E ′′), where E ′′ = E \ {e1, . . . , ei}, and the
TBox T ′′ reconstructed from it. By the induction hypothesis, maxsup(d) w.r.t. O′′ = 〈T ′′,A〉 is bounded
by n + 1. Now let the hypergraph G′ = (V, E ′) with E ′ = E ′′ ∪ {ei} correspond to the TBox T ′. By our
assumption head(ei) = xA, i.e. ei either reflects B u C v A or ∃r.B v A. Two cases are possible: either
A = Q or A 6= Q. In the former case, ei is a single hyperedge on π, i.e. n = 1. Support sets obtained from
rewriting Q over B u C v Q or ∃r.B v Q are of size at most 2. The other support sets are constructed
by combining query rewritings of predicates occurring on the left hand side of GCIs reflected by ei; each of
these rewritings has size at most 1 as shown in the base case. Thus the overall support set size for d w.r.t. T ′
is bounded by 2 ≤ n+ 1.

Suppose now that A 6= Q, i.e. ei reflects either B u C v A or ∃r.B v A. By definition of an
incoming path a (hyper)edge ej must exist, such that head(ei) ⊆ tail(ej). Moreover, note that ej is a unique
(hyper)edge connected to ei on π, as otherwise the given hypergraph is tree-cyclic, i.e. contradiction. We
distinguish two cases: (1) head(ei) = tail(ej) and ej corresponds to A v . . . ; (2) head(ei) ⊂ tail(ej) and
ej reflects A uB v . . . .

1. Consider a maximal support set S for d w.r.t. T ′′, and suppose A(Y ) ∈ S holds. By induction
hypothesis |S| ≤ n. As G′′ = GΣ

supp(d),T ′′ is tree-acyclic, only a single atom over A might occur in
S. Adding the edge ei to G′′ from S we obtain a support set S′ with the atom A(Y ) substituted with
atomsB(Y ) and C(Y ), or r(Z, Y ) andB(Z) as a result of an additional query unfolding step. Hence
the support set size of S′ will be bounded by n+ 2.

2. If ej reflects A u B v . . . , then a support set S ⊇ {A(Y ), B(Y )} must exist. By unfolding the
respective datalog rule, we get the bound n+ 2 on the support set S′ for d w.r.t. T ′. �
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Proof of Proposition 50 (sketch). Observe that in tree-acyclic hypergraphs all nodes have a hyper out-
degree at most 1, and hence m(π,G) = 0. Thus, if G is tree-acyclic, then by Proposition 45 the support set
size for a given DL-atom is bounded by n(π,G)− 0 + 1, which equals smax. We now show that the claimed
bound is also correct for tree-cyclic hypergraphs. Intuitively, m(π,G) must be subtracted from n(π,G) to
avoid that certain atoms in a support set are counted multiple times. Regarding the structure of the support
hypergraph we distinguish two cases: (i) no roles appear in a hypergraph; (ii) for all xr ∈ G, it holds that
r 6∈ Σ.

First we consider (i). Since only concepts appear in the support hypergraph by our assumption, all
support sets will contain atoms in which only a single variable X0 occurs. Consider some node xCn in π
such that hdc+(xCn) = k, where k > 1, i.e., there are k outgoing hyperedges from xCn containing nodes
corresponding to concepts: ({xCn1

, xCn}, xC′n1
). . .({xCnk ,xCn}, xC′nk ) (see Figure 11). From support sets

S ⊇ {C ′n1
(X0), . . . , C ′nk(X0)} we will get support sets S′ ⊇ {Cn1(X0), . . . , Cnk(X0), Cn(X0)}. Esti-

mating the maximal support set size as the number of hyperedges in the hypergraph, Cn(X0) is counted k
times, but it appears only once (as its variable is guaranteed to be X0). To avoid such multiple countings,
m(π,G) must be subtracted from n(π,G).

Consider now (ii). By construction of G, for every hypernode {xr, xC} ∈ π edges e1 = (xA, {xr, xC})
and e2 = ({xr, xC}, xB) exist in G. Thus if xr occurs in π, then consider a support set S ⊇ {B(X)}.
Rewriting the TBox axiom reflected by e2, we get a datalog rule B(X)← r(X,Y ), C(Y ). Then the axiom
∃r.C v A reflected by e1 is rewritten to datalog rules r(X, oC) ← A(X); C(oC) ← A(X). Unifying
Y with oC we obtain an unfolding A(X). This essentially shows that if no role occurring in a support
hypergraph is in Σ, then all support sets involve only a single variable; in this case, as shown in (i), the
provided bound is correct. �

Proof of Proposition 54. The proof is by induction on the number n of (hyper)edges in G = GΣ
supp(d),T .

Base: n=0. If G has no (hyper)edges, each node has one support set.
Induction step: Suppose the statement holds for n; we show it holds for G with n + 1 (hyper)edges.

Obviously, it holds for x ∈ VR. As G is tree-acyclic and T is in normal form, G has a node x such that
hd+(x) = d+(x) = 0, i.e., there are no outgoing (hyper)edges, and hd−(x) 6= 0 or d−(x) 6= 0, i.e.,
there is some incoming (hyper)edge. As G is tree-acyclic, the rewriting of the set Q′x = {A(X)}, where
x = xA consists of Q′x and the rewritings of all sets Q′tail(e) of (hyper)nodes tail(e) such that head(e) = x.
If tail(e) is {xB} (resp., {xB, xC}, {xr, xC}) these are all rewritings of {B(X)} (resp. {B(X), C(X)},
{R(X,Y ), C(Y )}). That is, ws(xA) is the sum of the number of all rewritings of each Q′tail(e) denoted
Q′tail(e), plus 1. Consider now an arbitrary e with head(e) = xA and let G′ = G\e. As G′ has n edges and is
tree-acyclic, by the induction hypothesis for each node x ∈ V in G′, the value of ws(x), denoted wsG′(x), is
as in (6). Furthermore, ws(Q′tail(e)) and ws(x′), x′ 6= xA is in G′ the same as in G. We thus get for x = xA:

wsG(x) = wsG′(x) + ws(Q′tail(e))

= 1 +
∑

T∈T−′(x)

∏

x′∈T
wsG′(x

′) +
∑

T∈T−′(x),T 6⊆VC

∑

({x′},T )∈E ′
ws(x′) + ws(Q′tail(e))

= 1 +
∑

T∈T−′(x)

∏

x′∈T
wsG(x′) +

∑

T∈T−′(x),T 6⊆VC

∑

({x′},T )∈E ′
ws(x′) + ws(Q′tail(e))

= 1 +
∑

T∈T−(x)

∏

x′∈T
wsG(x′) +

∑

T∈T−(x),T 6⊆VC

∑

({x′},T )∈E
ws(x′)
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where T−′(x) = {T | (T, {x}) ∈ E ′} and E ′ = E \ {e}, and T−(x) is as above. To obtain ws(Q′tail (e)),
we simply need to count the combinations of the rewritings of each node in tail(e), and in case tail(e) =
{xr, xB} (where ws(xr) = 1), we need to add the number of rewritings of the tail of each hyperedge
(T, {xr, xB}) (as T is in normal form, T must be of the form {xC}). �

Proof of Corollary 57. This is immediate from Proposition 54: under the hypothesis, in (6) each T is of
form {y} ⊆ VC; thus

∏
x′∈T ws(x

′) = ws(y), i.e., ws(tail(e)) and the rightmost term is 0. �

Proof of Proposition 58 (sketch). Under the condition on e and e1, e2, every set T ∈ T−(x) in Equa-
tion (6) such that |T | = {x, y} > 1 contains (at least) one element, say x, such that ws(x) = 1, and thus∏
x′∈T wsG(x′) equals ws(y) in G = GΣ

supp(d),T . By an inductive argument, we then obtain that for every
node xA ∈ VC, ws(xA) − 1 is the number of distinct edges in G that occur on incoming paths to xA and
any xB ∈ VC such that an edge ({xB}, {xr, xA}) is in E , plus the number of all such edges. This in turn
implies that for the query node xQ, ws(xq) = |E| + 1 holds, as by construction each edge e ∈ E is among
the respective edges for xQ. From this the result follows immediately. �

D Proofs for Section 6

Proof of Theorem 62. Suppose SupRAnsSet outputs I = Î|Π. We can get to (h) only if Î is an answer
set of Π̂, and if the foundness check of I w.r.t. the ontology T ∪ A′, where A′ = A\H succeeded. It thus
remains to show that Î is a compatible set for T ∪A′, i.e., that for each DL-atom d in Π, d ∈ Dp iff I |=O′ d
and d ∈ Dn iff I 6|=O′ d. Towards a contradiction, suppose that this is not the case. In (d) we partitioned
the DL-atoms into two sets: Dp and Dn, corresponding to DL-atoms d guessed to be true and false in Î ,
respectively, and set SÎgr to Gr(S, Î,A). Since we assume that Î is not compatible, one of the following
must hold:

(1) For some DL-atom d in Dn, we have I |=O′ d. There are two possibilities: (i) either there is a support
set S ∈ SÎgr(d) or (ii) no support sets for d were identified. In case (i), we are guaranteed that all support
sets S for d are such that S ∩ A 6= ∅, since otherwise no hitting sets H are found in (e). Hence there must
exist some support set S such that S ∩ A 6= ∅. According to (e) S ∩ H 6= ∅ and thus S 6∈ Suppd(O′).
Now as rep = true at (h), a post-check of d must have succeeded in (g), i.e. I 6|=O′ d must hold. This is
a contradiction. In case (ii), likewise post-evaluation of d must have succeeded in (h), which again raises a
contradiction.

(2) For some DL-atom d in Dp, we have I 6|=O′ d. Hence SÎgr(d) = ∅, d 6∈ D′p, and post-evaluation is
performed for d in (g). The latter, however, must have succeeded, as rep= true at (h); this is a contradiction.
Hence Î is a compatible set for Π′, and thus a deletion repair answer set of Π. �

The following lemmas are useful to prove Theorem 63.

Lemma 66 Let I ∈ ASx(Π) where x ∈ {flp,weak} and Π = 〈T ,A,P〉 is a ground DL-program. Then
Î = I ∪ {ed | d ∈ DLΠ, I |=T ∪A d} ∪ {ned | d ∈ DLΠ, I 6|=T ∪A d} is an answer set of Π̂, where DLΠ is
the set of all DL-atoms occurring in Π.

This lemma follows from a more general result on compatible sets as the basis of the evaluation approach
of HEX-programs in the dlvhex-solver (cf. (Eiter et al., 2014a)).
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Lemma 67 Let Π = 〈T ,A,P〉 be a ground DL-program and let Î ∈ AS (Π̂) such that I = Î|Π ∈ ASx(Π),
where x ∈ {flp,weak}. Suppose A′ ⊇ A is such that for each DL-atom d occurring in P , it holds that
I |=T ∪A d iff I |=T ∪A′ d. Then I ∈ ASx(Π′) where Π′ = 〈T ,A′,P〉.

Proof. We note that for I = Î|Π, PI,T ∪Ax and PI,T ∪A′x coincide; as I ∈ ASx(Π), it is a minimal model of
PI,T ∪Ax . Consequently, I is also a model of PI,T ∪A′x . Moreover, I is minimal, as if some J ⊂ I satisfies
PI,T ∪A′x , then J |= PI,T ∪Ax ; hence I is not an answer set of PI,T ∪Ax , a contradiction. �

Proof of Theorem 63. Suppose I ∈ RASx(Π). This implies that I ∈ ASx(Π′) where Π′ = 〈T ∪ A′,P〉,
for some A′ ⊆ A. By Lemma 66 Î is an answer set of Π̂ and thus is considered in (c). In (d), Dp and Dn

are set to the (correct) guess for I |=O′ d for each DL-atom d, where O′ = T ∪ A′. From Proposition 15
and θ-completeness of S, we obtain for each d ∈ Dp that Gr(S, Î,A′)(d) 6= ∅ and for each d ∈ Dn

that Gr(S, Î,A′)(d) = ∅. As Gr(S, Î,A′)(d) ⊆ Gr(S, Î,A)(d) holds for each DL-atom d, it follows for
each d ∈ Dn and S ∈ SÎgr(d) that S ∩ (A \ A′) 6= ∅; this means that H ′ = A \ A′ is a hitting set of
⋃
d′∈Dn S

Î
gr(d

′), and hence some minimal hitting set H ⊆ H ′ will be considered in (e). In (f), D′p will be

set to Dp as for each d ∈ Dp some S ∈ SÎgr(d) exists such that S ∩H ′ = ∅, and hence S ∩H = ∅. Thus
in (g) the call evalp(· · · ) yields true, and likewise the call evaln(· · · ) as Gr(S, Î,A \ H)(d) = ∅; thus
rep is true. Eventually, in (h) the test flpFND(Î , 〈T ∪ A\H,P〉) will succeed, as I is an x-answer set of
Π′ = 〈T ∪ A′,P〉, and by Lemma 67 also of Π′′ = 〈T ∪ A \ H,P〉, as A′ ⊆ A \ H . Thus in step (h)
I = Î|Π is output. �

Proof of Proposition 64. We first show that for every Î ∈ AS (Π1), it holds that Î|Π ∈ RAS weak (Π).
Towards a contradiction, suppose some Î ∈ AS (Π1) exists such that Î|Π 6∈ RAS weak (Π). Then for every
A′ ⊆ A we have that Î|Π 6∈ AS weak (Π′) with Π′ = 〈T ,A′,P〉. In particular, for A′′ = A\{P (~c) | p̄P (~c) ∈
I} it holds that Î|Π 6∈ AS weak (Π′′) with Π′′ = 〈T ,A′′,P〉 There are several possibilities: (i) no extension
of Î|Π with a guess for the replacement atoms ed, ned is a model of Π̂′′; (ii) no such extension of Î|Π is a

compatible set for Π′′; (iii) some interpretation Ĵ ⊂ Î|Π is a model of P Î|Π,O
′′

weak .
The case (i) is impossible: Π̂ = Π̂′′ and hence it follows that Î|Π̂ |= Π̂′′.
Assume that (ii) is true. Consider the interpretation Î|Π̂. Towards a contradiction, assume that it is not

compatible for Π′′. Then for some DL-atom d either (1) Î|Π |=O
′′
d and ned ∈ Î|Π̂, or (2) Î 6|=O′′ d, and

ed ∈ Î|Π̂ holds. In case (1), as Î|Π |=O
′′
d, some support set S for d that is coherent with Î|Π̂ exists. Now

consider whether S ∈ Sd or S 6∈ Sd. In the former case, S must contain ABox assertions SAd , as otherwise
some constraint of the form (r∗5) is violated. Due to the rule (r∗6) at least one assertion Pid in SAd must be
marked for deletion. Note that then Pid is not present in A′′, and S is not a relevant support set for d w.r.t.
A′′. If Sd is known to be complete, then we immediately arrive at a contradiction. Otherwise, the rule
of the form (r∗8) is applied, and as the evaluation postcheck for d succeeded by our assumption, we get a
contradiction. If S 6∈ Sd, then Sd is not known to be complete, and again the rule of the form (r∗8) is applied;
due to the successful evaluation postcheck, a contradiction is obtained. Now suppose that (2) is true. As
Î|Π 6|=O

′
d, no support set for d exists w.r.t.O that is coherent with Î|Π. If Sd is known to be complete, then

the constraint (r∗9) is violated; but this contradicts Î |= Π1. Thus, the body of the rule (r∗7) is satisfied, and
an evaluation postcheck is issued for d that fails; hence we get a contradiction.

Finally, assume that (iii) holds, i.e. some interpretation Ĵ ⊂ Î|Π is a model of P Î|Π,O
′′

weak . The set M =

Î|Π\Ĵ contains only atoms over the signature of Π. Let us consider IM = Î \ M . We know that Î ∈
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AS (Π1); Hence some rule rÎgl must exist in Π1
Î
gl such that IM |= B(rÎgl), but IM 6|= H(rÎgl). Recall that

Π1 = (Π̂∪R∪facts(A)∪COMP). Now rÎgl can not be in (Π̂ ∪ facts(A) ∪ COMP)Îgl, as rÎgl ∈ P
Î|Π,O′′
weak

iff rÎgl ∈ P
Î|Π,O
weak and Ĵ 6|= P Î|Π,Oweak by construction of the GL and weak reducts, which is a contradiction.

Therefore, rÎgl must be inRÎgl. However, the latter also raises a contradiction: no rule inRÎgl has atoms over

the signature of Π in its head and IM and Î coincide on the rule head; thus it follows Î 6|= B(RÎgl), which is a
contradiction. Therefore, Î|Π ∈ AS (Π′′) holds, and we have a global contradiction, i.e. Î|Π ∈ RAS weak (Π)
follows.

We now consider the case where each support family Sd is known to be complete, and prove that then
AS|Π(Π1) = RAS weak (Π). From what has been shown above, it remains to check that AS|Π(Π1) ⊇
RAS weak (Π). Towards a contradiction, assume some I ∈ RAS weak (Π) exists such that Î /∈ AS (Π1)
for every extension Î of I . As I ∈ RAS weak (Π), some ABox A′⊆A exists such that I ∈ AS (Π′) with
Π′ = 〈T ,A′,P〉. We construct an extension Î of I as follows:

Î = I ∪ {ed | I |=O
′
d} ∪ {ned | I 6|=O

′
d} ∪

{p̄P (~c) | P (~c) ∈ A\A′} ∪ facts(A) ∪ COMP ∪
{Supd(~c) | d(~c) has some support set from Sd coherent with I} ∪
{SPd (~c) | I |= rb(SA,Pd (~c))} ∪ {SA,Pd (~c) | Î |= rb(SA,Pd (~c)), nd(SA,P(~c))}.

Since by our assumption Î 6∈ AS (Π1), one of the following must hold:

(i) Î 6|= (Π̂ ∪R ∪ facts(A) ∪ COMP)Îgl or

(ii) some Ĵ ⊂ Î exists, such that Ĵ |= (Π̂ ∪R ∪ facts(A) ∪ COMP)Îgl.

First assume that (i) is true. By construction of Î , it satisfies Π̂ and all rules of the forms (r∗1)-(r∗4). Moreover,
constraints of the form (r∗5) can not be violated, as no DL-atom d(~c) with I 6|=O′ d(~c) can have a support set
that consists only of input assertions. The rules (r∗7) and (r∗8) are not present in the reduct Π1

Î
gl, as Î |= Cd

for each DL-atom d(~c).
Thus the rule r from Π1 such that Î 6|= rÎgl could only be of the form (r∗6) or (r∗9). In case of form (r∗6),

some DL-atom d(~c) would exist such that I 6|=O′ d(~c). By Proposition 15 no support set for d(~c) would
exist that is coherent with I , and by construction SA,Pd (~c) /∈ Î . Hence, r must be of the form (r∗9); however,
as I |=O′ d(~c) by completeness of Sd and Proposition 15, by construction we have Supd(~c) ∈ Î , which
implies that r can not be violated.

Now let (ii) hold, i.e. some Ĵ ⊂ Î exists s.t. Ĵ |= Π1
Î
gl. As Ĵ contains for each DL-atom d(~c) exactly

one out of ed(~c) and ned(~c) and Π1 contains ed(~c) ∨ ned(~c), the interpretations Ĵ and Î coincide on all
replacement atoms ed(~c) and ned(~c). Suppose that Î \ Ĵ contains some atoms from the language of Π. Then
Ĵ |Π 6|= PI,O

′
weak; hence some rule rI,O

′
weak ∈ P

I,O′
weak, exists such that Ĵ |Π |= B(rI,O

′
weak), but Ĵ |Π 6|= H(rI,O

′
weak).

Consider the respective rule rÎgl in Π̂Î
gl. As Ĵ 6|= H(rĴgl), we must have Ĵ 6|= B(rÎgl). By construction of

the weak and GL reduct, respectively, the positive normal atoms in B(rĴgl) and in B(rÎ,O
′

weak) are the same.

Hence, some replacement atom ed(~c) (resp. ned(~c)) must occur positively in B(rÎgl), such that ed(~c) ∈ Î \ Ĵ
(resp. ned(~c) ∈ Î \ Ĵ). As we have already argued, the latter is not possible, leading to a contradiction.

Consequently, Î \ Ĵ must contain only atoms from the language ofR. For every rule rÎgl of form (r∗3) or

(r∗4) we have Ĵ |= B(rÎgl) iff Î |= B(rÎgl), thus Î and Ĵ agree on all atoms SPd (~c) and SA,Pd (~c). Similarly,
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via (r∗1) and (r∗2) we must have that Î and Ĵ agree on all atoms Supd(~c). Finally, the same holds for all
pP (~c) and p̄P (~c) by the rules (r∗6) and the construction of Î . In conclusion, Ĵ = Î holds, which violates (ii).

Thus, it follows that Î ∈ AS (Π1). Consequently, AS (Π1) ⊇ RAS weak (Π1) holds; this proves the
result. �


