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Abstract. Multi-Context Systems (MCS) are a powerful framework for interlinking possibly hetero-
geneous, autonomous knowledge bases, where information can be exchanged between knowledge
bases by designated bridge rules with negation as failure. An acknowledged issue with MCS is
inconsistency that arises due to the information exchange. To remedy this problem, inconsistency
removal has been proposed in terms of repairs, which modify bridge rules based on suitable notions
for diagnosis of inconsistency. In general, multiple diagnoses and repairs do exist; this leaves the
user, who arguably may oversee the inconsistency removal, with the task of selecting some repair
among all possible ones. To aid in this regard, we extend the MCS framework with preference in-
formation for diagnoses, such that undesired diagnosis are filtered out and diagnosis that are most
preferred according to a preference ordering are selected. We consider preference information at a
generic level and develop meta-reasoning techniques on diagnoses in MCS that can be exploited to
reduce preference-based selection of diagnoses to computing ordinary subset-minimal diagnoses in
an extended MCS. We describe two meta-reasoning encodings for preference orders, where one is
conceptually simple but may incur an exponential blowup, and one increasing only linearly in size,
which is based on duplicating the original MCS. The latter requires nondeterministic guessing if a
subset-minimal among all most preferred diagnoses should be computed. However, a complexity
analysis of diagnoses shows that this is worst-case optimal, and that in general, preferred diagnoses
have the same complexity as subset-minimal ordinary diagnoses. Furthermore, (subset-minimal)
filtered diagnoses and (subset-minimal) ordinary diagnoses also have the same complexity.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,weinzierl}@kr.tuwien.ac.at.

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF) project P27730.

Copyright c© 2016 by the authors



2 INFSYS RR 16-02

Contents

1 Introduction 3

2 Preliminaries 5

3 Preferences 10
3.1 Filters on Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Protecting Bridge Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Filters in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Preferences on Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Sample Instantiations of Preference Orders . . . . . . . . . . . . . . . . . . . . . . 14

4 Meta-Reasoning for Diagnosis 16
4.1 Relayed Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Injecting Diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Preference Realization 22
5.1 Filter Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Plain-Preference Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Clone-Preference Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Computational Complexity 31
6.1 Complexity Classes and Context Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Derivation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Discussion and Related Work 38
7.1 Decomposing the central observation context . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Conclusion 42

A Proofs 48
A.1 Proofs of Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Proofs of Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3 Proofs of Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3.1 Proofs of Section 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3.2 Proofs of Section 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.3.3 Proofs of Section 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.4 Proofs of Section 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Detailed Examples 72



INFSYS RR 16-02 3

1 Introduction

At the dawn of an age with growing information connectivity, the issue of interlinking and combining
information from various knowledge sources is of increasing importance, posing a challenge to Artificial
Intelligence and to Knowledge Representation and Reasoning in particular. Indeed, with the rise of the
internet sharing information has become as easy as never before, and a wealth of knowledge and information
sources is available that can be accessed via communicating devices. Multi-Context Systems [38, 51, 12, 4]
are a well-known approach to address the challenge of sharing information, where individual knowledge
bases, called contexts, are interlinked with special bridge rules which govern the information exchange,
such that a global semantics of the system emerges from the local semantics of the constituent knowledge
bases. Some practical applications of MCS are defeasible reasoning in ambient intelligence [4], cooperation
in distributed information systems [20], and the METIS system for maritime situational awareness support
[56].

Rooted in the seminal work of McCarthy [48], which proposed an explicit representation of context
where combining different views may give a holistic picture of a situation, the Trento School around
Giunchiglia and Serafini developed in [38, 37, 51, 17] a notion of multi-context system that is geared to
interlink possibly non-monotonic knowledge bases and can be utilized for query answering. Brewka and
Eiter [12] generalized this to a powerful framework in which contexts can have heterogeneous knowledge
bases that are described using a very abstract notion of logic; Context Knowledge Repositories [54] evolved
MCS in a different direction for the Semantic Web, where meta and object knowledge can be intermingled.
For a more detailed overview of MCS, see [13].

As the contexts of an MCS are typically autonomous and host knowledge bases that are inherited legacy
systems, it may happen that the information exchange leads to unforeseen conclusions and in particular
to inconsistency; to anticipate and handle all such situations at design time is difficult if not impossible,
especially if sufficient details about the knowledge bases are lacking. Inconsistency of an MCS means that
it has no model (called equilibrium) where a global model is composed of local models at the contexts such
that all bridge rules governing the information exchange are satisfied; thus, the whole MCS becomes useless.

To repair an inconsistent MCS, basic notions for inconsistency management have been developed in
[28, 29]. Most notably, the notion of diagnosis formalizes the removal of an inconsistency by modifying
the information exchange, that is, the bridge rules for the information flow between the contexts. However,
while an arbitrary diagnosis restores consistency, the modified information exchange that it affects may have
serious consequences, as shown in the following example.

Example 1. Consider an MCS employed in a hospital, which interconnects three systems: (1) a patient
knowledge base storing e.g. illnesses, insurance companies, and potential allergies of patients; (2) an expert
system suggesting proper treatments to illnesses; and (3) a system billing the insurance company of patients
for the administered treatments (a formal account is given later, cf. Example 3, Figure 1). The expert
system only recommends treatments to which patients are not allergic, while the billing system only allows
administered treatments that are covered by the insurance companies. Now suppose a patient with specific
allergies can be cured only with a drug that is not covered by his/her insurance; this makes the whole
MCS inconsistent and hence no treatment for any patient can be soundly inferred. It is easy to repair this
inconsistency, e.g. by modifying the information flow such that either the illness or allergy of the patient is
ignored, which results in either not treating the patient or causing an allergic reaction. An alternative repair
is to not inform the billing system about the uncovered administration of the drug, so the patient is correctly
treated at potential financial loss of the hospital.
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Fully-automated, unreflected inconsistency removal may ignore vital information and lead to dangerous
results. It is thus desirable – or even necessary – to keep a human operator in the loop while selecting a
suitable diagnosis for repair. However, in realistic scenarios often a large (even exponential) number of
diagnoses exists, which makes careful manual selection a very time consuming task if not infeasible under
time and cognitive constraints. The risk of choosing an improper diagnosis or ending up with no (approved)
diagnosis clearly is an obstacle to the deployment of MCS to a broader range of application domains.

The goal of this work thus is to develop some machinery for automatic identification of preferred diag-
noses and pruning of those that are unwanted, in order to only require from the human operator that he or
she selects from a much smaller set (of most preferred diagnoses) the best diagnosis manually. What consti-
tutes a preferred or best diagnosis, cannot be decided in general since it will be different for each MCS and
depends on the environment into which an MCS is embedded. In the above example, the health of patients
may be considered paramount, but from an economic perspective billing correctly may be considered of
highest importance. In any case, we observe that such a decision is up to the person or institution employing
the MCS.

Automatic selection of the preferred diagnoses according to some preference requires in turn a formalism
for expressing and evaluating preferences. Many such formalisms are available; a prominent and important
one are ceteris paribus preferences [25], CP-nets [10, 24, 39], or utility [57] widely used in economics.
As there is no one-fits-all preference formalism that suits every use case, it is a challenge to accommodate
any preference formalism that a user deems to fit for selecting most preferred diagnoses. Our approach
is based on the idea that a user-customized preference on diagnoses, specified in a formalism chosen by
the user, can be seen as a knowledge-base or context of an MCS. This context must be enabled to “see”
the diagnoses of the MCS, which is technically challenging. Furthermore, the selection of most preferred
diagnoses according to the preference context turns out to be computationally harder than originally thought.
As we show, this complexity increase is not due to our meta-reasoning approach, but is intrinsic to the
problem, and our approach is worst-case optimal.

Our main contributions are briefly summarized as follows:

• We propose two basic methods for selection of preferred diagnoses: one allows to filter out diagnoses
that fail some properties (similar to hard constraints); the other method compares diagnoses with each other
in a binary relation and identifies the most preferred one(s). We call the functionalities of these method as fil-
ters and preference orders, respectively. Both are general concepts that can capture many concrete instances
to express unwanted or preferred diagnoses. In the flexible and open spirit of the MCS framework, we do
not commit to a particular formalism in which filters and preference orders are specified, but remain at an
abstract level and leave the choice of a particular formalism to the user. As illustrative sample instantiations,
we consider here CP-nets and a custom-defined preference order based on groups of bridge rules.

• To realize the selection of diagnoses in such an open way, we develop three transformations to enable
meta-reasoning about diagnoses in MCS, i.e., given an MCS and a filter or preference order, a transformed
MCS is constructed such that the diagnoses of the original MCS also occur in the transformed MCS, but
an additional context is able to observe these diagnoses and apply custom (preference) reasoning. Since the
observer context is not restricted to any particular formalism, this allows one to express filters and preference
orders in any formalism that can be couched into a context of an MCS.

• For the selection of (most) preferred diagnoses, three extensions of the notion of diagnosis are intro-
duced, namely protected-minimal, prioritized-minimal, and subset-minimal prioritized minimal diagnosis.
We investigate the computational complexity of these notions and show by polynomial-time reductions that
the first two are of the same complexity as checking whether a pair of sets of bridge rules constitutes a
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subset-minimal diagnosis. For the third notion, we provide a genuine non-deterministic refutation algorithm
that works in polynomial time with the help of an oracle for one of the other notions. Still the algorithm
is worst-case optimal in a number of settings, as it matches the complexity of the underlying problem. A
byproduct of these results are concrete algorithms that can exploit an existing implementation of inconsis-
tency explanation [8].

The results of this work may be applied for concrete instances of MCS, and the basic notions and results
may be carried over to generalizations and recent extensions of MCS, as we shall discuss; furthermore, they
may be of use for formalisms that can be modeled using (extensions or variants of) MCS, such as hybrid
MKNF knowledge bases [47], knowledge base networks [31], or Boolean networks ([45, 46], cf. [43]), to
mention a few.

Organization. The remainder of this work is structured as follows. After recalling preliminary notions and
fixing notation in Section 2, we introduce in Section 3 filters and preference orders and consider some sample
instantiations. In Section 4 we investigate how an (extended) MCS can be enabled to select diagnoses of
the original MCS. In Section 5 we show how diagnoses may be selected according to a filter or a preference
order and prove the correctness of these realizations, while in Section 6 their computational complexity is
investigated. Section 7 discusses related work and in Section 8 we conclude with a summary and an outlook.
Proofs of theorems and propositions as well as some detailed examples are in the appendix. This work is
strongly based on [59], which in turn is a significant extension and revision of [30].

2 Preliminaries

In this section we recall the framework of Multi-Context Systems (MCS) from [12] and notions for inconsis-
tency management in MCS from [29]. The MCS framework is based on three basic concepts: abstract logics
to capture knowledge-representation formalisms, contexts which represent concrete instances of knowledge
bases, and bridge rules to specify the information exchange; an MCS then simply is a collection of such
contexts and their respective bridge rules. Finally, the semantics of an MCS is given in terms of equilibria.

To capture all kinds of knowledge-representation formalisms, the concept of an abstract logic is used,
which reduces it to the set-theoretic level.

Definition 1 (cf. [12]). An abstract “logic” L, is a triple L = (KB,BS,ACC) where:

• KB is the set of knowledge bases of L, where each knowledge base kb ∈ KB is a set of elements
called “formulas”.

• BS is the set of possible belief sets, where each S ∈ BS is a set of elements called “beliefs”.

• ACC : KB → 2BS is a function describing the “semantics” of the logic, by assigning to each
knowledge base a set of acceptable belief sets.

Intuitively, each knowledge base kb ∈ KB is a set of well-formed formulas while each belief set
bs ∈ BS is a set of beliefs (statements) that a reasoner may jointly hold. The acceptability function
ACC(kb) singles out, given a knowledge base kb ∈ KB, those sets of beliefs that are acceptable according
to some reasoning method for kb. ACC is a multi-valued function in order to capture also nonmonotonic
formalisms, where a knowledge base may have multiple acceptable belief sets (as e.g. for Answer-Set Pro-
gramming [36], Default Logic [50], or in Abstract Argumentation [26]).
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Depending on the concrete situation, e.g. given an existing legacy system or a theorem prover for a
specific logic, different formalizations for some logic might be used. There is no fixed mapping between a
given logic and an abstract logic representing it, and the mapping may be adjusted to specific application
needs. The approach allows one to capture flexibly, e.g., a knowledge-base, an expert system using a logic
program, and a billing system using a description logic ontology as they might occur in scenario in the
Introduction. Let us consider two examples for abstract logics

Example 2. Classical propositional logic might be modeled as follows:

• KB is the set of all (well-formed) formulas over a signature Σ built using ∧,∨,¬,→;

• BS is the set of deductively closed sets S of Σ-formulas (i.e., S = Cn(S)); and

• ACC(kb) is the singleton set {Cn(kb)}.

Disjunctive logic programs under answer set semantics over a function-free first order signature Σ may
be modeled as follows:

• KB is the set of disjunctive logic programs over Σ, i.e., each kb ∈ KB is a set of rules r

a1 ∨ . . . ∨ an ← b1, . . . , bi, not bi+1, . . . , not bm. n+m > 0, (1)

also written H(r) ← B(r), where all ai, bj , are atoms over Σ and “not” is negation as failure; we
further require that each variable in r occurs also in b1, . . . , bi (safety).

• BS is the set of Herbrand interpretations over Σ, i.e, each S ∈ BS is a set of ground (variable-free)
atoms from Σ, and

• ACC(kb) is the set of answer sets of kb, i.e., consists of all S ∈ BS such that (i) S is a model of kbS

and (ii) no S′ ⊂ S is a model of kbS [34], where kbS = {r ∈ grnd(P ) | S |= B(r)} is the set of
all ground instances r of rules in P whose body B(r) is satisfied by S; here for evaluation, “not” is
treated like classical negation ¬.

We denote these modelings by LplΣ and LaspΣ , respectively.

We remark that each rule r with n = 0 is a constraint; its headsH(r) amounts to⊥, where⊥ is a falsity.
We view the latter as a special atom that is false in every Herbrand interpretation.

In the remainder of this work we often omit the explicit definition of the signature Σ for an abstract logic
if it is clear from the context.

To specify information exchange between contexts, so-called bridge rules are used. Bridge rules are
similar in form and behavior to rules in logic programming. They differ from each other by the fact that
bridge rules are based on beliefs from (possibly) different abstract logics and corresponding contexts. Based
on the presence (or absence) of beliefs at other contexts, a bridge rule can add information to a context.

Definition 2 (cf. [12]). Given a sequence L = (L1, . . . , Ln) of abstract logics Lj = (KBj ,BSj ,ACCj),
1 ≤ j ≤ n, an Lk-bridge rule over L, with k ∈ {1, . . . , n} is of form:

(k : s)←(c1 : p1), . . . , (ci : pi),not (ci+1 : pi+1), . . . ,not (cm : pm). (2)

where for each 1 ≤ i ≤ m we have that ci ∈ {1, . . . , n}, pi ∈
⋃

BSci is an element of some belief set of
Lci , and s ∈

⋃
KBk is a knowledge base formula of Lk.

Each bridge rule in an MCS is associated to a certain context in such a way that all Lk bridge rules
belong to the context with identifier k.
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Notation. We denote by ϕ (r) the formula s in the head of r and by Ch (r) the context k where r be-
longs to. The full head of r is denoted by head(r) = (k : s), thus head(r) = (Ch (r) :ϕ (r)). The
literals in the body of r are referred to by body±(r), body+(r), body−(r), body(r), which denotes the set
{(c1 : p1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj)}, {(cj+1 : pj+1), . . . , (cm : pm)}, {(c1 : p1), . . . , (cj : pj),
not (cj+1 : pj+1), . . . ,not (cm : pm)}, respectively.

Furthermore, Cb (r) denotes the set of contexts referenced in r’s body, i.e., Cb (r) = {ci | (ci : pi) ∈
body±(r)}. Note that different from [12], the head of r contains not only the knowledge-base formula s
but also the context identifier k. This choice merely is syntactic sugar and allows easier identification of
the context where r belongs to. For later technical use, we denote by cf (r) the condition-free bridge rule
resulting from r by removing all elements in its body, i.e., cf (r) is (k : s)← . and for any set of bridge rules
R, we let cf (R) =

⋃
r∈R cf (r).

Observe that bridge rules only deal with elements of knowledge bases and elements of belief sets, both
of which are considered to be atomic expressions from the perspective of MCS. Incorporating variables
into bridge rules is possible but requires restrictions on context logics or additional machinery for variable
substitution (cf. [35, 2, 53] for details).

With bridge rules to connect contexts at hand, Multi-Context Systems are defined as follows.

Definition 3 (cf. [12]). A Multi-Context System is a collection M = (C1, . . . , Cn) of contexts Ci =
(Li, kbi, br i), 1 ≤ i ≤ n, where (i) Li = (KBi,BSi,ACCi) is an abstract logic, (ii) kbi ∈ KBi is
a knowledge base, and (iii) br i is a set of Li-bridge rules over L = (L1, . . . , Ln). Furthermore, for each
H ⊆ {ϕ (r) | r ∈ br i} it holds that kbi ∪H ∈ KBi (i.e., knowledge bases are closed under adding bridge
rule heads).

Notation. In the sequel, br(M) =
⋃n
i=1 br i denotes the set of all bridge rules ofM ; C (M) = {1, . . . , n}

denotes the set of all context identifiers of M ; and br i(M) denotes the set of bridge rules of context i of M ,
i.e., br i(M) = {r ∈ br(M) | Ch (r) = i}.

Example 3. The MCS described in Example 1 can now be formalized. Let M = (C1, C2, C2) be an MCS
with three contexts: a patient knowledge-base C1, a logic program C2 suggesting proper medication, and
a logic program C3 handling the billing. Context C1 uses the abstract logic LplΣ , while both C2 and C3 use
Lasp

Σ . We restrict our example to a single patient with the knowledge bases kb1, kb2, and kb3 as given in
Figure 1 for the contexts C1, C2, and C3, respectively. Intuitively, the knowledge base kb1 of context C1

states that the patient has severe hyperglycemia, that she is allergic to animal insulin, and that her health
insurance is with company B. Context C2’s knowledge base kb2 suggests to apply either human or animal
insulin if the patient has hyperglycemia and requires that the applied insulin does not cause an allergic
reaction. Context C3 does the billing and encodes that insurance B only pays animal insulin.

The MCS M contains five rather simple bridge rules shown in Figure 1. Their task is to carry informa-
tion from one context into another. Bridge rule r1, for example, carries information about hyperglycemia
of the patient from the patient knowledge-base C1 to the medication recommender system C2. Bridge rule
r2 is the sole non-monotonic one and it turns the absence of an allergy to animal insulin (in C1) into the
allowance to administer this kind of insulin (in C2). A graphical depiction of M is shown in Picture 1 inside
Figure 1. The latter also shows the minimal diagnoses of M (cf. below for further details).

The semantics of an MCS M = (C1, . . . , Cn) is based in terms of special belief states, which are
sequences S = (S1, . . . , Sn) of belief sets Si ∈ BSi, 1 ≤ i ≤ n; intuitively, each Si must be a locally
accepted belief set where the bridge rules of context Si are respected.
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Figure 1: The Hospital MCS M = (C1, C2, C3) with knowledge bases kbi and bridge rules rj .

kb1 = {hyperglycemia, allergic animal insulin, insurance B}
kb2 = { give human insulin ∨ give animal insulin ← hyperglycemia.

⊥ ← give animal insulin, not allow animal insulin}
kb3 = { bill ← bill animal insulin.

bill more ← bill human insulin.

⊥ ← insurance B , bill more.}

r1: (2 : hyperglycemia)← (1 : hyperglycemia).

r2: (2 : allow animal insulin)← not (1 : allergic animal insulin).

r3: (3 : bill animal insulin)← (2 : give animal insulin).

r4: (3 : bill human insulin)← (2 : give human insulin).

r5: (3 : insurance B)← (1 : insurance B).

Patient dataC1 Medication C2

Billing C3

r1

r2 r3r4

r5

Picture 1: The MCS M visualized.

The set of minimal diagnoses of M is:

D±m(M) =
{ (
{r1} , ∅

)
,
(
{r4} , ∅

)
,
(
{r5} , ∅

)
,
(
∅,
{
r2

}) }
.

Application of these diagnoses intuitively results in:

({r1} , ∅) — illness of the patient is ignored.
({r4} , ∅) — medication is not billed.
({r5} , ∅) — insurance company receives bill it will not pay.
(∅, {r2}) — patient is given medication she is allergic to.

No diagnosis is clearly the best, it depends on one’s preferences.
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To formalizes this, we call a bridge rule r of form (2) applicable in a belief state S, denoted by S r,
if (i) for each (j : p) ∈ body+(r) it holds that p ∈ Sj , and (ii) for each (j : p) ∈ body−(r) it holds that
p /∈ Sj . For a set R of bridge rules and a belief state S, app(R,S) denotes the set of bridge rules of R that
are applicable in S, i.e., app(R,S) = {r ∈ R | S r}.

We can now define the desired belief states of an MCS as follows.

Definition 4 (cf. [12]). A belief state S = (S1, . . . , Sn) of M is an equilibrium if for every belief set Si,
1 ≤ i ≤ n, it holds that Si ∈ ACCi

(
kbi ∪ {ϕ (r) | r ∈ app(br i, S)}

)
. The set of all equilibria of an MCS

M is denoted by EQ(M).

To create bridge rules that are always resp. never applicable, we also allow r = (k : s)← >, resp. r′ =
(k : s) ← ⊥, where S r resp. S 6 r′ for every belief state S. Here > denotes the empty body and
and ⊥ a body containing (` : p),not (` : p) where p is any belief of any context C`. For simplicity, we
assume body(r) = {>} resp. body(r′) = {⊥}, as well as Cb (r) = Cb (r′) = ∅, body−(r) = body+(r) =
body±(r) = ∅, and body−(r′) = body+(r′) = body±(r′) = ∅, i.e., bridge rules r and r′ are considered to
have no body literals.

Given an MCS M = (C1, . . . , Cn) over abstract logics L = (L1, . . . , Ln), a set R of bridge rules is
compatible with M , if a partitioning R1, . . . , Rn of R =

⋃n
k=1Rk exists where every r ∈ Rk is an Lk-

bridge rule over L. For such R, we write M [R] for the MCS that results by replacing its bridge rules with
R. E.g., M [br(M)] = M and M [∅] is M with no bridge rules.

We say that M is inconsistent, denoted M |= ⊥, if M has no equilibrium, i.e., EQ(M) = ∅. The
converse, that M is consistent, is denoted by M 6|= ⊥, i.e., EQ(M) 6= ∅.

For a consistency-based explanation of inconsistency pairs (D1, D2) of sets of bridge rules are consid-
ered, such that if we deactivate the rules in D1 and add the rules in D2 in unconditional form, the MCS
becomes consistent (i.e., admits an equilibrium).

Definition 5. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ br(M), such that
M [br(M) \D1 ∪ cf (D2)] 6|= ⊥. We denote by D±(M) the set of all diagnoses.

An alternative reading of Def. 5 is that a diagnosis indicates which bridge rules are assumed to require
modification in order to obtain a consistent MCS, i.e., a diagnosis constitutes a way to repair an MCS if its
bridge rules are modified according to the diagnosis. Adding rules unconditionally is the most severe form
of modification of a rule’s body, but as shown in [29], this notion also allows to capture more fine-grained
forms of modification.

We call any pair D = (D1, D2) ∈ 2br(M) × 2br(M) a diagnosis candidate (regardless of whether D ∈
D±(M) holds). We denote the MCS resulting from the application of a diagnosis candidate (D1, D2) ⊆
(br(M), br(M)) by M [D1, D2], which equals the MCS M [br(M) \D1 ∪ cf (D2)].

Among all diagnoses, by Occam’s razor those preferable that require the least modifications; this moti-
vates the notion of minimal diagnosis.

Definition 6. Given an MCS M , a diagnosis D ∈ D±(M) is (pointwise) subset minimal, if no D′ ⊂ D is
in D±(M); by D±m(M) we denote all such D, i.e., D±m(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : D′ ⊆
D ⇒ D ⊆ D′}.

Here, given pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B holds
iff A1 ⊆ B1 and A2 ⊆ B2; moreover, A ⊂ B holds iff A ⊆ B ∧ A 6= B, where A = B holds iff
A1 = B1 ∧A2 = B2.
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Example 4. Reconsider the MCS M of Example 3. Since the patient has hyperglycemia and is allergic
to animal insulin, the belief set containing give human insulin is the only one acceptable at C2, i.e., the
human insulin must be given. Since the insurance company does not cover human insulin, the billing context
C3 admits no acceptable belief set and the MCS M therefore is inconsistent. The minimal diagnoses of M
are D±m(M) = {D(1), D(2), D(3), D(4)} with D(1) = ({r1}, ∅), D(2) = ({r4}, ∅), D(3) = ({r5}, ∅), and
D(4) = (∅, {r2}).

Applying the diagnosisD(i) for 1 ≤ i ≤ 4, i.e., considering forD(i) = (D
(i)
1 , D

(i)
2 ) the MCSM [br(M)\

D
(i)
1 ∪ cf (D

(i)
2 )], yields that the illness of the patient is ignored (D(1)), that the medication is not billed

(D(2)), that the insurance receives a bill it will not pay (D(3)), and that the patient is given a medication
she is allergic to (D(4)).

3 Preferences

Clearly, in general not all diagnoses of an MCS are equally appealing, as applying the selected repair might
have serious consequences. E.g., in the MCS M of Example 4 if the patient is treated as being all healthy. It
is not easy to identify the best diagnosis inD±m(M): if the health of the patient is most important, then those
diagnoses only causing a wrong billing are preferred; on the other hand, if costs matter, one might consider
any diagnosis leading to a wrong billing as unacceptable.

In the literature two basic ways occur frequently: one is to separately consider each outcome (i.e.,
diagnosis) and discard it whenever it fails some preference condition; the other is to compare outcomes with
each other and decide which is the most appealing. We call the former a filter, since it filters unwanted
diagnoses, and the other a preference. Preference on diagnoses can be defined in general by relying on some
notion of plausibility (see e.g., for abduction [18]).

Many formalisms have been developed for specifying preference and in order to capture a large number
of these, we abstract and resort to using mathematical order relations. We also consider two sample instanti-
ations, namely CP-nets (cf. [10]) where preference is specified by statements like “if bridge rules r1 and r2

are removed, I prefer bridge rule r3 to be condition-free” and an approach based on units of modified bridge
rules.

Since preferences allow to compare diagnoses, but they do not allow the exclusion of diagnoses from
being considered, preferences alone are not sufficient. If one wants to ensure that certain diagnoses are
excluded from being considered acceptable, the need arises for a way to filter out certain diagnoses. For
specifying a filter, we again use the most general approach, which is a Boolean function on diagnoses.

In this section we introduce the definitions of filters and preference orders in general, as well as some
specific preference formalisms. The following sections then show how they can be realized in MCS in such
a way that any formalism used to define the preference order or filter can be incorporated thanks to using
the abstract logic of an MCS context. Furthermore, our approach preserves core properties of MCS like
information hiding and decentralized evaluation.

3.1 Filters on Diagnoses

Filters allow the MCS designer to apply sanity checks on diagnoses; they act as hard constraints: diagnoses
that fail to satisfy the conditions are filtered out and discarded for consistency restoration.
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3.1.1 Protecting Bridge Rules

In a first attempt, we may consider protecting some bridge rules from modification, i.e., we disallow a
diagnosis to contain them. The adapted notion of diagnosis is as follows.

Definition 7. Let M be an MCS with protected rules brP ⊆ br(M). A diagnosis excluding protected rules
brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆ br(M) \ brP . We denote the set of all, resp. all
minimal, such diagnoses by by D±(M, brP ), resp. D±m(M, brP ).

Example 5. Consider the hospital MCS M of Example 3 again. One might decide that bridge rules for
health-related information-flow are protected, i.e., brP = {r1, r2}.

The set of minimal protected diagnoses then is:

D±m(M, brP ) = {({r4}, ∅), ({r5}, ∅)}

In the following we also write diagnosis with protected bridge rules meaning a diagnosis excluding
protected rules. The following property is easy to see.

Proposition 1. Let M be an inconsistent MCS with protected rules brP . Then D±(m)(M, brP ) ⊆ D±(m)(M),
i.e., every (minimal) diagnosis excluding protected rules is a (minimal) diagnosis.

Proof. Let D ∈ D±(M, brP ), then by definition D ∈ D±(M). Given D = (D1, D2) with D ∈
D±m(M, brP ), assume towards contradiction that there exists (D′1, D

′
2) ∈ D±m(M) such that (D′1, D

′
2) ⊂

(D1, D2). Observe that D′1, D
′
2 ⊆ br(M) \ brP , hence (D′1, D

′
2) ∈ D±(M, brP ). This contradicts that

D ∈ D±m(M, brP ), thus it follows that D ∈ D±m(M).

Note that D±m(M, brP ) not necessarily contains cardinality-minimal diagnoses, consider for example an
MCS M with two diagnoses D = ({r1}, ∅) and D′ = ({r2, r3}, ∅) and brP = {r1}, then D is cardinality-
minimal but it holds that D /∈ D±m(M, brP ) and D′ ∈ D±m(M, brP ).

In Section 6 it is shown that deciding whether D ∈ D±(M, brP ) and D ∈ D±(M) have the same
complexity, i.e., protected bridge rules do not increase the complexity.

3.1.2 Filters in General

We now introduce filters in general.A whole diagnosis candidate (D1, D2) is considered whether it fails
some conditions; if so, it is filtered out and not considered for consistency restoration; thus a filter can be
seen as hard constraints on diagnoses.

Example 6. Consider two scientists, Prof. K and Dr. J, who plan to write a paper. We formalize their
reasoning in an MCS M with two contexts C1 and C2 that employ Lasp

Σ for answer set semantics. Dr. J
will write most of the paper and Prof. K will engage if she finds time or if Dr. J thinks the paper needs
improvement (r1). Dr. J knows that involving Prof. K results in a good paper (r2 and kb1) and he will list
her as an author if she participates (r3). The knowledge bases of the contexts are:

kb1 = {contribute ← improve.; contribute ← has time.}
kb2 = { good ← coauthored .}
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Prof. KC1 Dr. J C2

r1

r2

r3

Figure 2: Contexts and bridge rules of the MCS M = (C1, C2) from Example 6.

The bridge rules of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name K )← (1 : contribute).

Figure 2 depicts the contexts and bridge rules of M . It appears that M is inconsistent, intuitively because
the cycle through bridge rules r1 and r2 has an odd number of negations.

The set of minimal diagnoses of M is: D±m(M) = {({r1} , ∅) , ({r2} , ∅) , (∅, {r2}) , (∅, {r1})} . The
first two diagnoses break the cycle by removing a rule, the last two “stabilize” it.

We aim for a general notion of a filter, therefore we define a filter to be a Boolean function on diagnosis
candidates.

Definition 8. Let M be an MCS with bridge rules br(M). A diagnosis filter for M is a function
f : 2br(M) × 2br(M) → {0, 1} and the set of filtered diagnoses is D±f (M) = {(D1, D2) ∈ D± (M) |
f(D1, D2) = 1}. By D±m,f (M) we denote the set of all subset-minimal such diagnoses.

Given a diagnosis candidateD = (D1, D2) ∈ 2br(M)×2br(M), we also write f(D) to denote f(D1, D2).
Writing the set D±f,m(M) explicitly, we obtain:

D±m,f (M) =
{
D ∈ D±(M) | f(D) = 1 ∧ @D′ ∈ D±(M) :

(
D′ ⊂ D ∧ f(D′) = 1

)}
(3)

Example 7. Consider the MCS of Example 6 and the diagnoses D = ({r2} , ∅) and D′ = (∅, {r2}), where
the contribution of Prof. K is either enforced or forbidden. For both cases, the authorship information
conveyed by r3 is wrong. Using a filter, we can declare diagnoses undesired if they modify r2 without
modifying r3 accordingly as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1;

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2;

1 otherwise.

In particular it holds that f(D) = 0 = f(D′).

Note that filters generalize diagnoses with protected bridge rules. Indeed, let M be an MCS with pro-
tected bridge rules brP . Then we construct a filter f brP in the following way:

f brP (D1, D2) =

{
0 if ∃r ∈ brP : r ∈ (D1 ∪D2);

1 otherwise.
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It is easy to see that D ∈ D±(M, brP ) holds iff f brP (D) = 1. From the definition of f brP one can also
see that diagnoses with protected bridge rules are some kind of modular filter, where each bridge rule of a
diagnosis D can be checked independently of the other bridge rules.

It also holds that every filtered diagnosis is an ordinary diagnosis, but minimal filtered diagnoses are not
necessarily minimal diagnoses. Thus an analogous to Proposition 1 does not hold as shown by following
example.

Example 8. Reconsider the MCS M and the filter f of Example 7. The set of minimal filtered diagnoses is
as follows: D±m,f (M) =

{
({r1}, ∅), (∅, {r1}), ({r2, r3}, ∅), (∅, {r2, r3})

}
. While ({r2, r3}, ∅) is not in

D±m(M), it is a subset-minimal diagnosis respecting the condition expressed by the filter f . Intuitively, the
latter diagnoses modify the authorship information in a consistent way and are minimal in the sense that no
unnecessary modification is applied.

One could argue whether minimal filtered diagnoses should select from the set of regular minimal diag-
noses only those which pass the filter, i.e., select the set {D ∈ D±m(M) | f(D) = 1}. This looks appealing,
but no minimal diagnosis may pass the filter while (non-minimal) diagnoses do. The resulting set of filtered
minimal diagnoses then is empty while there are useful diagnoses that satisfy the filter and do not incur un-
necessary modifications other than to satisfy the filter condition and to make the MCS consistent. Therefore
D±m,f consists of the latter diagnoses, and thus seems to be more appropriate.

3.2 Preferences on Diagnoses

To compare diagnoses and select the most appealing one(s), we use preferences. In the spirit of MCS we
also want this approach to be open to any kind of formalism for specifying preference. In general, preference
is just a binary order relation on diagnoses. To avoid counter-intuitive results like A being preferred over B
and B being preferred over C, but A not being preferred over C, we require that preferences are transitive.
Since virtually every other preference formalism yields an order relation, we first introduce the general
formalization and later show how two specific formalisms fit into our approach.

Definition 9. A preference order over diagnoses for an MCSM is a transitive binary relation� on 2br(M)×
2br(M); for D,D′ ∈ 2br(M) × 2br(M) we say that D is preferred to D′ if D � D′.

Given a preference order �, we denote by ≺ the irreflexive version of �, i.e., D ≺ D′ holds iff D � D′
and D 6= D′ hold. Using a preference order �, we now define what constitutes a most preferred diagnosis.
The intuition is that such a diagnosis incurs a minimal set of modifications and no other diagnosis exists that
is strictly more preferred. We first introduce �-preferred diagnoses, which are those diagnoses such that no
other diagnosis is strictly more preferred. The most preferred diagnoses then are the subset-minimal ones
from the set of �-preferred diagnoses.

Definition 10. Let M be an inconsistent MCS and let D ∈ D±(M). Then D is called �-preferred if for all
D′ ∈ 2br(M) × 2br(M) with D′ ≺ D ∧ D 6� D′ it holds that D′ /∈ D±(M). Furthermore, D is minimal
�-preferred if D is subset-minimal among all �-preferred diagnoses. The set of all �-preferred diagnoses
is denoted by D±�(M) and the set of all minimal �-preferred by D±m,�(M).

Observe that we do not require that � is acyclic and therefore we consider all diagnoses in a cycle to be
equally preferred; this justifies the condition of D′ ≺ D ∧D 6� D′ for defining D±�(M).
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Example 9. Consider the hospital MCS M of Example 3 again, where bridge rules r1 and r2 transport
information regarding the patient’s health and bridge rules r3, r4, and r5 cover the information flow for
billing. If we consider it most important that the information flow regarding health information is changed
as little as possible, a preference order � as follows might be used:

(D1, D2) � (D′1, D
′
2) iff {r1, r2} ∩ (D1 ∪D2) ⊆ (D′1 ∪D′2) ∩ {r1, r2}

We observe that following this definition, the following preferences (and several more) hold:

({r4, r5}, ∅) � ({r1}, ∅) ({r4}, ∅) � ({r1}, ∅) ({r5}, ∅) � ({r1}, ∅)
({r4, r5}, ∅) � (∅, {r2}) ({r4}, ∅) � (∅, {r2}) ({r5}, ∅) � (∅, {r2})

({r4}, ∅) � ({r5}, ∅) ({r5}, ∅) � ({r4}, ∅)

Note that � indeed yields cyclic preferences among those diagnosis candidates that are incomparable; in
particular ({r4}, ∅) ≺ ({r5}, ∅) and ({r5}, ∅) ≺ ({r4}, ∅). We have that

D±�(M) = {(D1, D2) | D1, D2 ⊆ {r3, r4, r5} and r4 ∈ D1 \D2 or r5 ∈ D1 \D2}

Note that ({r5}, ∅), ({r4}, ∅), and ({r4, r5}, ∅) are all in D±�(M). Selecting the subset-minimal diagnoses
from D±�(M) we obtain D±m,�(M) = {({r5}, ∅), ({r4}, ∅)}. This agrees with our intuition that a minimal
set of modifications should be applied and we favor to modify bridge rules for billing information rather
than modifying health-related bridge rules.

For use in the following sections, we also state the sets D±�(M) and D±m,�(M) explicitly.

D±�(M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ � D ∧D′ 6= D ∧D 6� D′)} (4)

D±m,�(M) = {D ∈ D±�(M) | ∀D′ ∈ D±�(M) : D′ ⊆ D ⇒ D′ = D}

In Section 5 we show how preferences can be realized in general.

3.2.1 Sample Instantiations of Preference Orders

We now briefly demonstrate how our notion of preference can capture some practical preference formalisms.
An in-depth exemplification can be found in [59].

CP-nets One preference formalism which exhibits appealing features of locality and privacy are condi-
tional preference networks (CP-nets) [10]. CP-nets capture a natural class of preference statements like
“If my new car is from Japan, I prefer hybrid over diesel engine, assuming all else is equal”. A CP-net
consists of a set of outcome variables where each variable ranges over some domain. In our example, we
have the variables “origin country” and “engine type” with origin country including “Japan”and engine type
including “diesel” and “hybrid”. A distinguishing feature of CP-nets is the dependency of preferences, e.g.,
the above preference on the engine type only upholds if the outcome of the origin country is “Japan”. This
dependency is expressed in CP-nets as a directed graph N = (V,E) on outcome variables V .

Note that dependencies in CP-nets are natural to humans as CP-nets have successfully been used for
preference elicitation (e.g. [24]). CP-nets also allow to compare total outcomes, so we may ask whether an
outcome o is always preferred to an outcome o′ according to the conditional preference specified in a CP-net
N . If this is the case, then o is said to dominate o′, written as N |= o - o′.
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CP-nets may be used to specify preference among diagnoses of an MCS M as follows: each bridge rule
r ∈ br(M) is assigned two outcome variables V r

1 and V r
2 , where the domain of V r

1 is {inD1 ,not inD1}
and the domain of V r

2 is {inD2 ,not inD2}. Then every total outcome of this CP-net corresponds one-to-
one to a diagnosis candidate of M . We call such a CP-net N fully compatible to M .

Note that other possibilities of using CP-nets to compare diagnoses also exist, e.g. by assigning each
bridge rule r only one variable V r and a domain of {unmodified , removed , condition-free} as in [59]. The
latter kind, however, cannot represent a diagnosis candidate (D1, D2) with r ∈ D1∩D2, i.e., where a bridge
rule is both removed and condition-free. Fully compatible CP-nets can represent all diagnosis candidates.

Definition 11. Given an MCS M and a CP-net N that is fully compatible to M , we say a diagnosis D ∈
D±(M) is N -preferred iff there exists no D′ ∈ D±(M) such that N |= D′ - D holds and N |= D - D′

does not hold. Let DN (M) denote the set of all N -preferred diagnoses of M . Then the set D±ird (M,N)
of irredundant N -preferred diagnoses, consists of the subset-minimal diagnoses of DN (M). Formally,
D±ird (M,N) = {D ∈ DN (M) | ∀D′ ∈ DN (M) : D′ ⊆ D ⇒ D = D′}.

Observe that given a CP-net N that is compatible to the MCS M , we can readily define a preference
order �N that is equivalent to N as follows: for all D,D′ ∈ 2br(M) × 2br(M) it holds that D �N D′ ⇔
N |= D - D′. Since the entailment of the CP-net is transitive, �N is transitive and is a preference relation
in the sense of Definition 9. Hence, we can use �N and the notion of most preferred diagnosis to select the
irredundant N -preferred diagnoses, formally:

Proposition 2. Given a CP-net N compatible to an MCS M , let D �N D′ hold iff N |= D - D′ holds.
Then DN (M) = D±�N (M) and D±

m,�N (M) = D±ird (M,N).

Deciding whether a global outcome o is preferred over o′ by a given CP-net N , i.e., deciding N |=
o′ - o, is no easy task in general. In [39] it is shown that this task is PSpace-complete. Restricting the
CP-net, however, decreases the computational complexity, e.g., the same decision problem is NP-complete
for binary-valued directed-path singly connected CP-nets and even in quadratic time for binary-valued tree-
structured CP-nets as shown in [10]. Notice that fully-compatible CP-nets are binary-valued.

Unit-based Groups of Bridge Rules Like in practical logic programming, often several bridge rules are
needed to correctly describe some real-world entity in an MCS. For example in the hospital MCS (cf. Fig-
ure 1), we can identify two real-world entities, namely the health of the patient and the billing of the treat-
ment. The bridge rules r1 and r2 deal with the health of the patient, while bridge rules r3, r4, and r5 deal
with billing information. If one of the first two bridge rules is disregarded, then some vital information about
the health of the patient may get lost, while disregarding one of the latter three bridge rules results in the
billing information no longer being correct. We thus may group bridge rules according to the real-world
entities about which they carry information. Notice that such a grouping is not directly visible from the
MCS, but at the time of creation of the MCS the person specifying a bridge rule may also declare which
real-world entities the bridge rule is about. (Semi-automatic construction might also be possible.)

Observe that if a bridge rule considering a real-world entity is modified, the whole information about that
entity may be broken. This suggests that a diagnosis is preferred if it modifies information on a least set of
real-world entities. Furthermore, one group of bridge rules may depend on another one, e.g. the information
on billing may be considered wrong if the patient is wrongly treated, in turn because of modifications to the
health-related bridge rules. We can define a preference on diagnoses based on the grouping of bridge rules
and their dependency. For space reasons we refer to [59] for details and present just an example.
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Example 10. For the hospital MCS (cf. Figure 1) we have two groups of bridge rules: health-related (r1 and
r2) and billing-related (r3, r4, and r5). Furthermore, billing information depends on health information.
Diagnosis candidates then either modify (and possibly break) no group, the billing group, or health and
billing group together. Since billing depends on health, it is impossible to modify health without possibly
breaking billing. Only the diagnosis candidate (∅, ∅) is of the first kind. The second kind consists of all
diagnosis candidates (D1, D2) with D1 ∪ D2 ⊆ {r3, r4, r5} and D1 ∪ D2 6= ∅. All other diagnosis
candidates are of the third kind.

Preferring those diagnoses which (possibly) break only the least set of groups, then prefers diagnoses
of the first kind over all others, and the second over the third. Formally, we obtain a preference order
�U such that (D1, D2) �U (D′1, D

′
2) holds iff one of the following is the case: 1) D1 ∪ D2 = ∅, or

2) D1 ∪D2 ⊆ {r3, r4, r5} and D′1 ∪D′2 6= ∅. In later examples we use this preference order to demonstrate
our transformations.

4 Meta-Reasoning for Diagnosis

To realize filters and preference orders inside an MCS, some MCS context must be able to reason on di-
agnoses of the MCS. We achieve this by a rewriting technique, transforming an MCS M into an extended
MCS M ′, where certain new context(s) can do meta-reasoning on diagnoses of the original MCS M . The
underlying idea here is that a diagnosisD applied toM ′ has the same effects as ifD would be applied toM ,
but in M ′ there are additional contexts that observe the behavior of the bridge rules in M to reason about
the observed diagnosis D. A significant advantage of this approach is that the observation contexts may use
any abstract logic for reasoning about the observed diagnoses. Thus our approach can capture a wide range
of formalisms to specify preferences by filters or preference orders, and it allows the creator of an MCS to
use whichever formalism she or he sees to fit best.

We introduce two different transformations, where the idea of the first is to only add bridge rules and
contexts to observe the information exchange between contexts of M . The disadvantage of this transforma-
tion is that there are MCS where the observation is not able to identify each diagnosis correctly. The second
transformation is more general and allows correct identification of diagnoses, but it requires the rewriting
of all bridge rules. This rewriting is not intrusive, since it only requires that each rule is duplicated and one
additional positive literal added in it.

Both transformation approaches realize filters in general by using diagnoses with protected bridge rules.
Since the realization of preference orders is more involved, we show it here only using the second transfor-
mation. Preferences also require some additional notions of diagnoses that allow to prioritize some bridge
rules. This prioritization in principle establishes a lexicographic order on diagnosis candidates. We present
in fact two possible ways to realize general preferences using the second transformation. The first adds
exponentially many bridge rules, while the second adds only linearly many bridge rules but comes at the
cost of duplicating the contexts of the original MCS.

Furthermore, for preference orders and filters that are not inherently centralized, the realization allows
that preferred solutions are found in a decentralized, localized manner, maintaining privacy and information
hiding. Thus we preserve key properties of MCS also for inconsistency assessment and selection of preferred
diagnoses.
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4.1 Relayed Observations

We now present the first transformation to enable meta-reasoning about diagnoses in an MCS. This approach
is called the meta-reasoning transformation. The objective is to enable the observation of bridge rules
that are applicable, i.e., to have some observation contexts which know whether certain bridge rules are
applicable in a belief state. The idea behind this is a follows: given a minimal diagnosis (D1, D2) of an
inconsistent MCSM , r ∈ D1 implies that the body of r is satisfied inM [br(M)\D1∪cf (D2)] while ϕ (r)
is not added to the context Ck with k = Ch (r), since r is removed and (D1, D2) is a minimal diagnosis.
Similarly for r ∈ D2 it holds that ϕ (r) is added to Ck with k = Ch (r) while the body of r is not satisfied.
Therefore, observing the body and head of a bridge rule is sufficient to detect whether it has been modified
by a diagnosis, given that the diagnosis is minimal.

Observing the body of a bridge rule r is possible by using a protected bridge rule whose body is the same
as that of r. The observation of the addition of the head formula, however, is not always possible, since the
resulting belief set not necessarily exposes information about the (input) knowledge base. The observation
of the presence of the head of ϕ (r) requires that there is a belief of Ck with k = Ch (r) that is present in
every acceptable belief set of Ci if and only if ϕ (r) is added to the knowledge base of Ci. Note that such a
behavior occurs naturally in many logics; e.g. every context using the logic Lasp

Σ for Answer-set programs
shows this behavior for all atoms which occur only in the head of a single bridge rule.

To observe all logics, the approach here uses a two-step transformation. First, a given MCS M is
enlarged with so-called relay contexts to allow the observation of bridge rules. Then, the enlarged/relayed
MCS is enhanced with observation contexts that detect the applicability of bridge rules and whether and
how a bridge rule occurs in a minimal diagnosis.

We now present how to extend an MCS by relay contexts. We first introduce the notion of a relayed
MCS M

r
of an MCS M and then show that the belief states and applicable bridge rules of M and M

r

are in 1-1 correspondence. Furthermore, we show that the same also holds if both systems are modified
according to a diagnosis candidate of M and the corresponding diagnosis candidate of M

r
.

All relay contexts are based on an abstract logic L
r

, which intuitively is an identity function. Formally,
given an MCS M , the relay logic L

r
wrt. M is the logic L

r
= (2H , 2H ,ACC

r
) where H = {headr |

r ∈ br(M)} contains a new symbol headr for every bridge rule r ∈ br(M) and ACC
r
(kb) = {kb} for

any kb ⊆ H . Hence a context employing a relay logic exhibits its input knowledge-base formulas as the
only acceptable belief set and all bridge rules are identifiable by a distinguished element.

The relayed MCS M
r

then contains all contexts Ci of M (with their bridge rules being relayed) and a
relay context Cn+i for each Ci, i.e., M

r
contains twice as many contexts as M , but half of these are simple

relay contexts using the logic L
r

. Let r ∈ br(M) with head(r) = (i : s), then its relayed version are
two bridge rules r′ ∈ br(M

r
) and r

r ∈ br(M
r
) which intuitively just route r through the relay context

Cn+i. Formally, r
r

is (n+i : headr) ← body(r) and r′ is (i : s) ← (n+i : headr), where headr is the
distinguished element to identify the bridge rule r.

Example 11. Consider the MCS M = (C1, C2) of Example 6 where C1 = (Lasp
Σ , kb1, {r1}), C2 =

(Lasp
Σ , kb2, {r2, r3}), and the bridge rules br(M) of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name K )← (1 : contribute).
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Figure 3: The relayed version M
r

= (C ′1, C
′
2, C

′
3, C

′
4) of the MCS M = (C1, C2) of Example 6, which is

depicted in Figure 2.

The relay version of M is M
r

= (C ′1, C
′
2, C

′
3, C

′
4) as follows:

C ′1 = (Lasp
Σ , kb1, {r

r

1 }) C ′2 = (Lasp
Σ , kb2, {r

r

2 , r
r

3 }

C ′3 = (L
r
, ∅, {r′1}) C ′4 = (L

r
, ∅, {r′2, r′3})

The bridge rules of M
r

are as follows:

r
r

1 : (3 : headr1)← not (2 : good). r′1 : (1 : improve)← (3 : headr1).

r
r

2 : (4 : headr2)← (1 : contribute). r′2 : (2 : coauthored)← (4 : headr2).

r
r

3 : (4 : headr3)← (1 : contribute). r′3 : (2 : name K )← (4 : headr3).

Figure 3 shows the bridge rules and contexts of M
r

.

By considering for r ∈ br(M) the belief headr of the corresponding relay, it is now possible to observe
whether the head of r is present; observing whether r is applicable, is possible simply by adding a rule whose
body is a duplicate of body(r). This means that given M , M

r
, and some bridge rule r ∈ br(M) of context

Ci, we may observe modifications of r in M
r

using a new observation context Cj by the following two
bridge rules: (j : bodyr) ← body(r) and (j : headr) ← (n+i : headr). Notice that bodyr is a knowledge-
base element while body(r) is the set of literals in the body of r.

Assuming that in a minimal diagnosis (D1, D2) no bridge rule is modified except the relayed one r
r

,
i.e., all other bridge rules are protected, then Cj can now observe whether r has been modified by (D1, D2).
In case that r ∈ D1, it holds that r is applicable but the head of r is not present, i.e., bodyr is added to Cj
and headr is not added to Cj . In case that r ∈ D2 it holds that bodyr is not added because r is not applicable
but headr is added because r is made condition-free.

However, if (D1, D2) is no minimal diagnosis, e.g., in case that there exists some r ∈ D1∩D2, then this
observation is not perfect, because, depending on the witnessing equilibrium, it can be the case that headr
and bodyr are both added to Cj and hence r is considered to be not modified at all. It is also possible that
headr is added while bodyr is not and hence the observation context assumes r ∈ D2 but does not observe
that r ∈ D1 also holds.

For a restricted class of filters, called deletion-parsimonious filters, however, it is still possible to select
minimal filtered diagnoses using the above meta-reasoning transformation. Intuitively, such a filter does not
enforce diagnoses where unnecessary bridge rules or bridge rule bodies are removed.
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Definition 12. Let M be an MCS and let f be a filter for M . A pair of bridge rules (D1, D2) ∈ 2br(M) ×
2br(M) is deletion-parsimonious iff f(D1, D2) = 1 and there exists S ∈ EQ(M [D1, D2]) such that ∀r ∈
D1 : S r and ∀r ∈ D2 : S 6 r both hold.

The filter f is a deletion-parsimonious filter if for every (D1, D2) ∈ D±(M) it holds that: either
(D1, D2) is deletion-parsimonious or there exists (D′1, D

′
2) ⊂ (D1, D2) which is deletion-parsimonious.

An example of such a deletion-parsimonious filter is given in Example 7. In general, however, a filter is
not deletion-parsimonious and since this property is a semantic one depending on the given MCS, it is not
verify that a filter is deletion-parsimonious. Nevertheless, one can show that the relay-based meta-reasoning
transformation allows to correctly select minimal filtered diagnoses of deletion-parsimonious filters (cf. [59]
for formal statements and a full proof).

4.2 Injecting Diagnoses

Instead of observing a (minimally) changed MCS, we can encode the modifications of a diagnosis directly
in an MCS such that observations are perfect, but the original system is no longer just observed but actively
modified instead. Conceptually, given an MCS M = (C1, . . . , Cn) all its bridge rules are rewritten and
protected such that a diagnosis is applied only to the bridge rules of an additional context Cn+1. This
context Cn+1 then is able to definitely observe the modifications and to exhibit this observation to all other
contexts via its acceptable belief set.

The bridge rules of the original system are modified to consider the belief set of Cn+1. So they either
behave like removed or like made unconditional, depending on what Cn+1 believes. For these two modes
of behavior, each bridge rule r ∈ br(M) is replaced by two bridge rules in the meta-reasoning system: one
bridge rule for becoming unconditional and one that behaves like r or like being removed, i.e., it simply
does not fire when Cn+1 believes that r is removed.

Since this meta-reasoning encoding is used as foundation for filters and preferences, we introduce a
property θ that describes the additional behavior of the context Cn+1. This allows us to later specify the
required behavior for filters and preferences. The preference encoding requires further bridge rules for
mapping preferences to bridge rules; this set of additional bridge rules is called K, so we obtain an MCS
Mmr(θ,K) as the meta-reasoning encoding ofM . The definition ofMmr(θ,K) and the following propositions
are thus more general than necessary for encoding filters only. The advantage of this approach is that we have
a common foundation for both encodings and several propositions hold for both encodings. Furthermore,
(as later shown in full detail), the property θ to realize a filter f is simply stating that θ(D1, D2, ∅) holds iff
f(D1, D2) = 1.

To encode (observe) diagnoses, the context Cn+1 needs bridge rules to which a diagnosis can be applied
and which can be observed reliably. To that end, for every r ∈ br(M) we have the following two bridge
rules to encode/observe whether r is removed or made unconditional.

d1(r) : (n+1 : not removedr)← >. (5)

d2(r) : (n+1 : uncondr)← ⊥. (6)

For a set R ⊆ br(M), let d1(R) = {d1(r) | r ∈ R} and d2(R) = {d2(r) | r ∈ R}. Furthermore, for a set
of bridge rules R, we say that the heads of R are unique, if it holds for any r, r′ ∈ R that ϕ (r) = ϕ (r′) and
Ch (r) = Ch (r′) implies that r = r′. The meta-reasoning encoding Mmr(θ,K) is then as follows.

Definition 13. Let M = (C1, . . . , Cn) be an MCS, let K be a set of bridge rules such that the following
holds for all r ∈ K: body(r) = {⊥}, Ch (r) = n+1, and for all r′ ∈ br(M) holds ϕ (r) 6= not removedr′
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and ϕ (r) 6= uncondr′ . Furthermore, let θ be a ternary property over 2br(M)×2br(M)×2K. Then, the MCS
Mmr(θ,K) = (C ′1, . . . , C

′
n, Cn+1) is a meta-reasoning encoding if the following holds:

(i) for every Ci = (Li, kbi, br i) with 1 ≤ i ≤ n it holds that C ′i = (Li, kbi, br ′i) where br ′i contains for
every r ∈ br i of form (2) the following two bridge rules:

(i : s)←(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm),

not (n+1 : removedr). (7)

(i : s)←(n+1 : uncondr). (8)

(ii) Cn+1 = (Ln+1, kbn+1, brn+1) is any context such that:

(a) brn+1 = d1(br(M)) ∪ d2(br(M)) ∪ K and the only rules with head formulas
not removedr and uncondr are of form (7) and (8).

(b) the semantics ACCn+1 of Ln+1 fulfills for every H ⊆ {ϕ (r) | r ∈ brn+1} that Sn+1 ∈
ACCn+1(kbn+1 ∪H) iff θ(R1, R2, R3) holds where:

R1 = {r ∈ br(M) | not removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ K | ϕ (r) ∈ H}, and

Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2}

The protected bridge rules brP of Mmr(θ,K) are all rules of form (7) and (8).

Note that the heads of brn+1 are unique, because the bridge rules r of K are all of the same form except
for their head formula ϕ (r) and the remaining bridge rules of brn+1 also have unique heads. The condition
about acceptable belief sets, namely that Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2} at first
seems to be a strong restriction on possible belief sets, since it disallows the occurrence of any other belief.
Since the applicability of bridge rules does not depend on beliefs that do not occur in any bridge rule, this
restriction can be easily lifted to allow for auxiliary beliefs. This intuition is formally captured by so-called
output-projected belief states and Lemma 2 in [29] shows that these auxiliary beliefs do not interfere with
consistency. Consequently, one can allow that Cn+1 exhibits other beliefs and all of the following results
still hold.

Example 12. Recall the MCS M = (C1, C2) of Example 6. LetK = ∅ and θ(D1, D2, ∅) always hold. Then
the meta-reasoning encoding Mmr(θ,K) = (C ′1, C

′
2, C3) is such that the context C1, C2, equals modulo

bridge rules the context C ′1, C ′2, respectively. Recall that the bridge rules of M are:

r1 : (1 : improve)← not (2 : good).

r2 : (2 : coauthored)← (1 : contribute).

r3 : (2 : name K )← (1 : contribute).
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r′1
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Figure 4: Contexts of the meta-reasoning encoding Mmr(θ,K) = (C1, C2, C3) from Example 12. Only
bridge rules r′1, r

′′
1 , d1(r1), d2(r1) of Mmr(θ,K) that stem from bridge rule r1 ∈ br(M) are shown.

The bridge rules of Mmr(θ,K) then are as follows:

r′1 : (1 : improve)← not (2 : good),not (3 : removedr1).

r′′1 : (1 : improve)← (3 : uncondr1).

(2 : coauthored)← (1 : contribute),not (3 : removedr2).

(2 : coauthored)← (3 : uncondr2).

(2 : name K )← (1 : contribute),not (3 : removedr3).

(2 : name K )← (3 : uncondr3).

d1(ri) : (3 : not removedri)← >. i ∈ {1, 2, 3}
d2(ri) : (3 : uncondri)← ⊥. i ∈ {1, 2, 3}

Notice that only the last six bridge rules of Mmr(θ,K) are not protected, i.e., the first six bridge rules are
guaranteed to be not modified in a diagnosis with protected bridge rules. Figure 4 depicts the contexts and,
for better visibility, only those bridge rules of Mmr(θ,K) that stem from r1 ∈ br(M) are shown.

In the remainder of this section, we show some properties of Mmr(θ,K) which are the basis for proving
the correctness of the subsequent preference realizations.

First, there is a one-to-one correspondence between diagnoses of M and diagnoses of Mmr(θ,K).

Proposition 3. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding with protected bridge rules
brP , and let D1, D2 ⊆ br(M), K ⊆ K. Then,

(1) let S = (S1, . . . , Sn) be a belief state of M and let S′ = (S1, . . . , Sn, Sn+1) where Sn+1 =
{removedr | r ∈ D1} ∪ {uncondr | r ∈ D2}. Then, S ∈ EQ(M [D1, D2]) and θ(D1, D2,K)
holds if and only if S′ ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]) holds.

(2) (d1(D1), d2(D2)∪K) ∈ D±(Mmr(θ,K), brP ) holds if and only if (D1, D2)∈D±(M) and θ(D1, D2,K)
hold.

From this, the following correspondence between between minimal θ-satisfying diagnoses of M and
minimal diagnoses of Mmr(θ,K) holds.



22 INFSYS RR 16-02

Proposition 4. Let Mmr(θ,K) be a meta-reasoning encoding of an MCS M . Then the set of minimal θ-
satisfying diagnoses with protected bridge rules brP of Mmr(θ,K) is

D±m(Mmr(θ,K), brP ) ={(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M), θ(D1, D2,K) holds,[
@(D′1, D

′
2) ∈ D±(M),K ′ ⊆ K :

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′) holds
]
}.

This result can be strengthened given that θ obeys some property. We say that θ is functional (or a
function), if for every D1, D2 ⊆ br(M) there exists at most one K ⊆ K such that θ(D1, D2,K) holds. We
say that θ is functional increasing if θ is functional and if θ(D1, D2,K), θ(D′1, D

′
2,K

′), and (D1, D2) ⊆
(D′1, D

′
2) implies that K ⊆ K ′, where D1, D2, D

′
1, D

′
2 ⊆ br(M),K,K ′ ⊆ K.

Proposition 5. LetMmr(θ,K) be a meta-reasoning encoding of an MCSM such that θ is functional increas-
ing. Then, the set of minimal θ-satisfying diagnoses with protected bridge rules brP of Mmr(θ,K) is

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K,K ′⊆K}.

Given these relationships between diagnoses of M and Mmr(θ,K) with respect to property θ, we show
in the next section several ways how Mmr(θ,K) can be used to realize preferences.

5 Preference Realization

In the previous section we introduced two transformations that enable meta-reasoning on diagnoses. The
first, however, is not able to perfectly observe all diagnoses correctly, which is the reason why we use
the second, the meta-reasoning encoding, where diagnosis candidates are injected. We first present how
filters can be realized and then proceed to preferences, where we first introduce a plain encoding using
exponentially many bridge rules to realize total preference orders and then introduce an encoding that allows
to realize arbitrary preference orders at the expense of cloning the contexts of the original MCS.

5.1 Filter Encoding

We use the meta-reasoning encoding to realize filters, by simply requiring that the observation context
becomes inconsistent if the observed diagnosis does not pass the filter, i.e., we use Mmr(θ,K) where K = ∅
and θ is such that θ(D1, D2,K) holds if and only if f(D1, D2) = 1. Since no further bridge rules are
needed to realize filtered diagnoses, it is sufficient to pick K = ∅.

Definition 14. Let M be an MCS and let f be a filter. Let K = ∅ and let θ(D1, D2, ∅) hold iff f(D1, D2) =
1. Then Mmr(θ,K) is the filter-encoding of M wrt. f , which we also denote by Mf .

Example 13. Reconsider the MCS M = (C1, C2) of Example 7 where two scientists write a paper and
diagnoses are to be filtered by a filter f if the authorship information is modified by a diagnosis in an
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incoherent way. The filter f (see Example 7) is defined as follows:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2

1 otherwise

The resulting filter encoding Mf is the MCS Mmr(θ,K) = (C ′1, C
′
2, C3), which has the same shape as

the MCS of Example 12. It only differs in the contents of the observation/encoding context C3 which now
realizes the filter f . We use ASP again for the logic of C3 = (Lasp

Σ , kb3, br3).
Recall that the knowledge-base formulas added by bridge rules to C3 are either of the form uncondr or

not removedr and this information has to be exposed accordingly in the accepted belief set. Also remember
that the definition of the meta-reasoning encoding requires that every accepted belief set only consists of
beliefs in {removedr, uncondr | r ∈ br(M)}, but since no other bridge rule of Mmr(θ,K) uses any other
belief, we may allow further beliefs in the accepted belief set, i.e., our ASP program may use additional
atoms.

The knowledge base kb3 of C3 then is:

kb3 = { removedr1 ← notnot removedr1 . ⊥ ← removedr3 , not removedr2 .

removedr2 ← notnot removedr2 . ⊥ ← not removedr3 , removedr2 .

removedr3 ← notnot removedr3 . ⊥ ← uncondr3 , not uncondr2 .

⊥ ← not uncondr3 , uncondr2 . }

The first three rules of kb3 ensure that the removal information in correct while nothing is needed to ensure
that the information about condition-free bridge rules is exposed (if bridge rule ri is made unconditional,
then the fact uncondri is added to kb3 by the bridge rule d2(ri) ∈ br3(Mmr(θ,K)) being applicable and
hence uncondri is also present in the answer set and thus in the belief set of C3.

The four constraints of kb3 finally encode the filter condition and they ensure that the context has no
acceptable belief set if the corresponding diagnoses are applied.

Observe that the definition of θ follows the one of f as f is an abstraction / generalization of some
desired actual behavior, it is possible to use the desired actual behavior directly to realize the context Cn+1

of Mmr(θ,K), i.e., for a concrete use case where some logic is used to describe which diagnoses should
be filtered out, it is not really necessary to first abstract the concrete case to a filter f , build θ accordingly
and then derive a concrete instantiation of Cn+1. Rather it is sufficient to take the definition of the meta-
reasoning encoding and interpret it as the definition of the interfacing between the logic that does the filtering
and the rest of the MCS framework. The reason why we introduced filters in general lies in the fact that this
allows us to prove that all such filterings can be realized correctly. The following theorem now shows that
diagnoses with protected bridge rules of Mf indeed correspond one-to-one to filtered diagnoses of M .

Theorem 1. Let M be an MCS, let f be a filter and let Mf be the corresponding filter-encoding. Then,
D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.

To obtain all minimal-filtered diagnoses of an MCS M wrt. the filter f , it is therefore sufficient to com-
pute all subset-minimal diagnoses (with protected bridge rules) of the MCS Mf = Mmr(θ,K). Note that
this encoding does not come with increased computational cost, since M and Mf have the same number
of bridge rules that possibly occur in a diagnosis with protected bridge rules. Consider Mf and the re-
spective bridge rules, i.e., the set br(Mf ) \ brP = d1(br(M)) ∪ d2(br(M)): since body(r) = {>} for
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r ∈ d1(br(M)) and body(r) = {⊥} for r ∈ d2(br(M)), it holds for every (R1, R2) ∈ D±m(Mf , brP ) that
r ∈ R1 implies r ∈ d1(br(M)) and r ∈ R2 implies r ∈ d2(br(M)) (this follows from Lemma 8 in Ap-
pendix A.2). Hence, there are 2|d1(br(M))|× 2|d2(br(M))| possibly relevant diagnoses for Mf while there are
2|br(M)|× 2|br(M)| possible diagnoses for M ; since |d1(br(M))| = |d2(br(M))| = |br(M)|, the candidate
space, i.e., the number of diagnosis candidates, for deciding whether a minimal-filtered diagnosis exists for
M has the same size as the candidate space for deciding whether a minimal diagnosis with protected bridge
rules exists for Mf .

5.2 Plain-Preference Encoding

We now show how to use the meta-reasoning encoding Mmr(θ,K) for realizing preference orders. The set
K plays a crucial role, since it is used to map a given preference order on diagnoses to the ⊆ relation on K.
This allows us to select minimal �-preferred diagnoses by considering ⊆-minimal diagnoses of Mmr(θ,K).
Since the⊆-minimality onK should take precedence over the remaining modified bridge rules ofMmr(θ,K),
we introduce a lexicographic order on bridge rules in which the latter are after those of K. As we show in
Section 6, the complexity of identifying a diagnosis with respect to prioritized bridge rules K is not higher
than identifying a minimal diagnosis.

In the remainder of this section, we present two approaches to realize preferences. The first approach
is plain and simple, but comes at the cost of K being exponentially larger than br(M), i.e., Mmr(θ,K)

contains exponentially many more bridge rules than M . We also prove that the approach is correct for
total preference orders. The second approach adds only linearly many bridge rules, specifically it holds that
|K| = 4|br(M)| + 1, but it requires that the original MCS M is cloned. So, first an MCS 2.M is built
that consists of two independent copies of M , and then the meta-reasoning encoding is applied on 2.M ,
i.e., the resulting MCS is (2.M)mr(θ,K). We show that the minimal �-preferred diagnoses can be selected
from (2.M)mr(θ,K) using this MCS and a slightly more involved diagnosis with prioritized bridge rules.
The complexity of selecting these diagnoses increases, but as it is later shown, it is still worst-case optimal.
Before presenting the plain encoding, first we introduce the notion of a prioritized-minimal diagnosis, and
second we show how a total order can be mapped to the ⊆ relation.

Notation. In the following, we write (D1, D2) ⊆brH (D′1, D
′
2) as shorthand for (D1 ∩ brH , D2 ∩ brH) ⊆

(D′1 ∩ brH , D′2 ∩ brH), i.e., we denote by ⊆brH the restriction of ⊆ to the set brH ; furthermore, we write
=brH for an analogous restriction on =.

To realize a total preference order, the following definition is sufficient where we select from the set
of minimal diagnoses with protected bridge rules those that are minimal with respect to the prioritized
bridge rules. The bridge rules that are marked as prioritized take precedence for minimality. A prioritized-
minimal diagnosis is subset-minimal with respect to prioritized bridge rules (regardless of minimality of the
remaining bridge rules).

Definition 15. Let M be an MCS with bridge rules br(M), protected rules brP ⊆ br(M), and prior-
itized rules brH ⊆ br(M). The set of prioritized-minimal diagnoses is D±(M, brP , brH) =

{
D ∈

D±m(M, brP )
∣∣∀D′ ∈ D±m(M, brP ) : D′ ⊆brH D ⇒ D′ =brH D

}
.

We now show how an arbitrary order relation over a pair of sets may be mapped to the ⊆-relation on an
exponentially larger set, i.e., we map � on the diagnoses of an MCS M , to another exponentially larger set.

Definition 16. Let � be a preference relation on 2br(M) × 2br(M) and let g : 2br(M) × 2br(M) → K be
a bijective mapping where K is arbitrary. Then, the subset-mapping mapg� : 2br(M) × 2br(M) → 2K is
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defined as follows. For every (D1, D2) ∈ 2br(M) × 2br(M):

mapg�(D1, D2) =
{
K ∈ K | K=g(D′1, D

′
2) for some (D′1, D

′
2) � (D1, D2)

}
∪
{
g(D1, D2)

}
.

Observe that mapg�(D1, D2) collects g(D′1, D
′
2) of all (D′1, D

′
2) “below” (D1, D2). Furthermore, by

adding g(D1, D2) it establishes reflexivity regardless of the reflexivity of �.
The following lemma shows that the subset-mapping correctly maps a preference relation on diagnoses

to the subset-relation on an exponentially larger set. This allows to decide whether a diagnosis is more
preferred than another solely based on subset relationship.

Lemma 1. Let � be a preference on diagnosis candidates of an MCS M , and let g be a bijective mapping
g : 2br(M) × 2br(M) → K for any set K. Then, for any (D1, D2) 6= (D′1, D

′
2) ∈ 2br(M) × 2br(M) it holds

that (D1, D2) � (D′1, D
′
2) iff mapg�(D1, D2) ⊆ mapg�(D′1, D

′
2).

We now use mapg� to map the preference of a total order � to the set K which occurs in the meta-
reasoning transformation Mmr(θ,K). To that end, we choose θ(D1, D2,K) such that it holds if and only if
mapg�(D1, D2) = K. By that, every diagnosis of Mmr(θ,K) with protected bridge rules (d1(D1), d2(D2)∪
K) contains the preference � encoded in K. Selecting a diagnosis of Mmr(θ,K) where K is minimal then
selects a preferred diagnosis according to �.

Definition 17. Let M be an MCS and let � be a preference relation. Furthermore, let

K = {(n+1 : diagD1,D2
)← ⊥. | D1, D2 ⊆ br(M)} (9)

and let g : 2br(M) × 2br(M) → K be a bijective function such that g(D1, D2) = (n+1 : diagD1,D2
) ← ⊥.

for all D1, D2 ⊆ br(M). Let θ(D1, D2,K) hold iff mapg�(D1, D2) = K. Then the MCS Mmr(θ,K) is
called the plain encoding of M wrt.�, which we also denote by Mpl�; all bridge rules of K are prioritized,
i.e., brH = K.

Note that since mapg� is a function, also θ is equivalent to a function 2br(M) × 2br(M) → K.

Example 14. We consider the hospital MCS M of Example 3 again using a preference order on diagnoses
similar to the one of Example 9, i.e., we prefer changing bridge rules regarding health, r1, r2, as little as
possible. To make the preference total, we use cardinality-minimality, i.e.,

(D1, D2) � (D′1, D
′
2) iff

∣∣{r1, r2} ∩ (D1 ∪D2)
∣∣ ≤ ∣∣(D′1 ∪D′2) ∩ {r1, r2}

∣∣.
The resulting MCS Mmr(θ,K) is outlined in Figure 5, where only bridge rules stemming from r5 of

br(M) and some of the bridge rules of the observation context C4 are indicated. Note that br4(Mmr(θ,K))
contains for every possible diagnosis of M a distinguished bridge rule. For C4 = (Lasp

Σ , kb4, br4), we use
ASP again to show a possible realization; kb4 consists of the rules:

removedr ← notnot removedr. r ∈ br(M)
⊥ ← cur diagD1,D2

, not diagD1,D2
. D1, D2 ⊆ br(M),

cur diagD′1,D′2 ← cur diagD1,D2
. (D′1, D

′
2) � (D1, D2),

cur diagD1,D2
← removedr1 , . . . , removedrk , uncondr′1 , . . . , uncondr′m .

D1, D2 ⊆ br(M), D1 = {r1, . . . , rk}, D2 = {r′1, . . . , r′m}.
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Figure 5: Contexts and some bridge rules of the plain encoding Mpl� = (C1, C2, C3, C4) of the hospital
MCS wrt. � from Example 14. For illustration purposes, only bridge rules stemming from r5 and some
from K are shown; dashed lines indicate bridge rules r1, . . . , r4 from M whose corresponding bridge rules
in Mpl� are not shown.

Intuitively, the rules of the first line ensure that diagnosis observation is exposed correctly in an accepted
belief set ofC4; the constraints following ensure the presence of condition-free bridge rules Rules of the third
line guarantee that all bridge rules corresponding to more-preferred diagnoses also need to be condition-
free; under ASP semantics, these rules effect mapg�(D1, D2). Finally, the rules of the last line recognize
one of the exponentially many diagnosis candidates.

The next theorem shows the relation between minimal �-preferred diagnoses of M wrt. a total prefer-
ence � and prioritized-minimal diagnoses of Mpl�. Observe that mapg� is injective since mapg�(D1, D2)
contains g(D1, D2), which by g being a bijection is different for every diagnosis candidate (D1, D2). There-
fore, mapg� is bijective on its range and it allows to establish a one-to-one relation between minimal �-
preferred diagnoses of M and prioritized-minimal ones of Mpl�. Intuitively, this shows that for a total
preference order, the set of prioritized-minimal diagnoses of the plain encoding of M wrt. � can be used to
select the minimal �-preferred diagnoses of M .

Theorem 2. For every MCS M and total preference � on its diagnoses, it holds that

D±(Mpl�, brP , brH) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±m,�(M),mapg�(D1, D2) = K}.

To select minimal �-preferred diagnoses based on an arbitrary preference order, another encoding can
be utilized, which we describe next.
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5.3 Clone-Preference Encoding

The basic idea of the clone encoding is that the original MCS is duplicated such that the observation context
sees two diagnoses of the original MCS at the same time and is able to compare them. Intuitively, if we
combine two MCS M and M ′ into a single one M ′′, then every diagnosis of the combined MCS M ′′ is
the combination of a diagnosis of M with a diagnosis of M ′. Establishing this technically requires some
care, since one needs to account for the fact that contexts are identified by their position: Hence, M ′′ cannot
simply contain the bridge rules of M and M ′. We thus introduce context shifting and build an operator
⊗ to combine two MCS. We then show some general properties of the operator, and finally give the clone
encoding, which adds a certain observation context to the combination M ⊗ M of the MCS M whose
minimal �-preferred diagnoses we are interested in.

For shifting contexts, we use a permutation I : N → N, i.e., I is a bijective mapping. Given a bridge
rule r of form (2), then I(r) is the bridge rule

(I(k) : s)← (I(c1) : p1), . . . , (I(cj) : pj),not (I(cj+1) : pj+1), . . . ,not (I(cm) : pm);

furthermore, for a setR of bridge rules we have I(R) = {I(r) | r ∈ R} and for a contextCi = (Li, kbi, br i)
we have I(Ci) = (Li, kbi, I(br i)). Given an MCS M = (C1, . . . , Cn), a permutation I is compatible with
M if I(x) ≤ n holds for all x ≤ n, i.e., I is a permutation on C (M); the “shuffled” version of M wrt. a
compatible I then is I(M) = (I(CI−1(1)), . . . , I(CI−1(n))). Given a belief state S = (S1, . . . , Sn) we have
I(S) = (SI−1(1), . . . , SI−1(n)).

To combine two existing MCS M = (C1, . . . , Cn) and M ′ = (C ′1, . . . , C
′
m) into a new one, we use the

following ⊗ operator:

M ⊗M ′ = (C1, . . . , Cn, I(C ′1), . . . , I(C ′m)) where I(x) =


n+ x for 1 ≤ x ≤ m,
x−m for m+ 1 ≤ x ≤ n+m,

x otherwise.

In the following, we call I the permutation wrt. M ⊗ M ′. Note that by construction the permutation I
wrt. M ⊗M ′ is compatible with M ⊗M ′. Recall that M [R1, R2] = M [br(M) \R1 ∪ cf (R2)]. Regarding
modifications and diagnosis candidates, we then observe that M [A1, A2]⊗M ′[B1, B2] = (M ⊗M ′)[A1 ∪
I(B1), A2 ∪ I(B2)] where I is the mapping wrt. M ⊗M ′.

The following lemma shows that shifting has no influence on acceptability.

Lemma 2. Given an MCS M = (C1, . . . , Cn) and a compatible permutation I , it holds that S ∈ EQ(M)
iff I(S) ∈ EQ(I(M)). Furthermore, S ∈ EQ(M [D1, D2]) iff I(S) ∈ EQ(I(M [D1, D2])).

The main observation on the ⊗ operator is that M ⊗M ′ admits exactly those diagnoses which are a
combination of a diagnosis of M and a diagnosis of M ′.

Proposition 6. Given two MCSM andM ′, thenD±(M⊗M ′) = {(A1∪I(B1), A2∪I(B2)) | (A1, A2) ∈
D±(M), (B1, B2) ∈ D±(M ′)} where I is the permutation wrt. M ⊗M ′.

We now present an approach to meta-reasoning in MCS which allows to select minimal �-preferred
diagnoses with respect to an arbitrary preference order. This approach, called clone encoding, uses the
meta-reasoning encoding Mmr(θ,K) as before, but it is applied to M ⊗M ; note that this MCS consists of
two independent copies of M . Any diagnosis of M ⊗M thus contains two possible diagnoses of M and
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hence the observation/encoding context is able to observe and compare two diagnoses. The advantage of
this approach is that it provably is correct for all preference orders and the resulting MCS is only linearly
larger than M . A drawback, however, is that cloning the original MCS may be expensive if implementing
the contexts of M is.

Given an MCS M = (C1, . . . , Cn), we define the MCS 2M = (C1, . . . , C2n) by 2M = M ⊗ M .
For easier reference, we write 2.r to denote the clone of the bridge rule r, i.e., 2.r = I(r) where I is the
permutation wrt. M ⊗M . Note that 2.br(M) is the set of bridge rules of M shifted by n, i.e., 2.br(M) is
the set of bridge rules of the second clone of M .

The next lemma, which follows from Proposition 6, shows that diagnoses of 2M correspond to diagnoses
of M in such a way that every diagnosis of 2M is composed of two diagnoses of M .

Lemma 3. Let M be an MCS. Then (D1, D2) ∈ D±(2M) holds iff there exist (D′1, D
′
2) ∈ D±(M) and

(D′′1 , D
′′
2) ∈ D±(M) such that D1 = D′1 ∪ 2.D′′1 and D2 = D′2 ∪ 2.D′′2 .

The underlying idea of the encoding is that a specific prioritized bridge rule tmax indicates whether the
diagnosis applied to the second clone is preferred over the diagnosis applied to the first clone. Additionally,
the diagnosis of the first clone is exhibited via prioritized bridge rules, while the diagnosis of the second
clone is only exhibited via non-prioritized bridge rules.

If the diagnosis applied to the second clone is more preferred than the one applied to the first, then
tmax needs not become condition-free. Thus, if for a given diagnosis of the first clone, there exists some
more preferred diagnosis of the second clone, then there exists a diagnosis where tmax is not included. A
diagnosis D such that no more preferred diagnosis D′ exists is maximal wrt. the inclusion of tmax , because
there exists no more preferred diagnosisD′ ofM that could occur at the second clone. Selecting a diagnosis
that modifies a minimal set of prioritized bridge rules and that contains tmax thus selects a �-preferred
diagnosis. We define tmax as follows:

tmax : (2n+1 : ismax )← ⊥.

To represent the diagnosis of the first clone, we use the following prioritized bridge rules. For a bridge rule
r ∈ br(M) let in1(r), in1(r), in2(r), and in2(r) denote the following bridge rules:

in1(r) : (2n+1 : in1(r))← ⊥. in2(r) : (2n+1 : in2(r))← ⊥.
in1(r) : (2n+1 : in1(r))← ⊥. in2(r) : (2n+1 : in2(r))← ⊥.

We identify a diagnosis candidate (D1, D2)∈ 2br(M)×2br(M) using these bridge rules by the setK(D1, D2)=
{in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1} ∪ {in2(r) | r ∈ D2} ∪ {in2(r) | r /∈ D2}. The clone encoding
then formally is as follows.

Definition 18. Let M = (C1, . . . , Cn) be an MCS and � a preference order. The clone encoding of M
wrt. � is the MCS 2Mmr(θ,K) where 2M = (C1, . . . , C2n) = M ⊗M ,

K =
⋃

r∈br(M)

{
(2n+1 : q)← ⊥., | q ∈ {in1(r), in1(r), in2(r), in2(r)}

}
∪ {tmax}

and for any R1, R2 ⊆ br(2M), and R3 ⊆ K, θ(R1, R2, R3) holds iff R1 = D1 ∪ 2.D′1, R2 = D2 ∪ 2.D′2
and either

• (D1, D2) = (D′1, D
′
2) and R3 = K(D1, D2) ∪ {tmax} or
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Figure 6: The MCS M� = (C1, C2, . . . , C7) of Example 15. Some bridge rules of the observation context
C7 are shown and the bridge rules stemming from r5; dashed and gray lines indicate the other bridge rules
of M ⊗M whose resulting bridge rules in M� are omitted. The prioritized bridge rules of M� are tmax

and all bridge rules ini(rj) and ini(rj).

• (D′1, D
′
2) � (D1, D2), (D1, D2) 6� (D′1, D

′
2), and R3 = K(D1, D2).

We denote the clone encoding of M wrt. � by M� = 2Mmr(θ,K).

Note that the second case above with (D′1, D
′
2) � (D1, D2) implies that (D1, D2), (D′1, D

′
2) are two

diagnoses of M , because the MCS 2M only admits a diagnosis if (D1, D2) ∈ D±(M) and (D′1, D
′
2) ∈

D±(M) both hold (cf. Lemma 3). Also observe that M� = (2M)mr(θ,K) = (M ⊗M)mr(θ,K) is linear
in the size of M , as for every bridge rule in M there exist 2 · 4 + 4 bridge rules in M�, (the factor 2 is
from M ⊗M , the factor 4 is from the meta-reasoning encoding itself and the +4 is due to K). In total
|br(M�)| = 12 · |br(M)|+ 1, where the +1 is due to tmax .

Example 15. Reconsider the MCS M from Example 3 shown in Figure 1. Applying the clone encoding on
M wrt. a preference order � results in the MCS M� = (C1, C2, C3, C4, C5, C6, C7) depicted in Figure 6.
It is based on two clones ofM , where the first comprises the contexts C1, C2, C3 and the second the contexts
C4, C5, C6. The context C7 finally is the observation/encoding context.

A detailed description for a concrete preference order � is given in Appendix B (Example 18).
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For selecting minimal �-preferred diagnoses based on an arbitrary preference order, we strengthen
Definition 15 in two steps: first, if two diagnoses are equal considering their prioritized bridge rules, then
subset-minimality on the remaining bridge rules is taken into account. Second, since we only want to select
diagnoses where no more preferred ones exist, we consider only prioritized-minimal diagnoses that contain
the bridge rule tmax .

For the first step, let M be an MCS with bridge rules br(M), protected rules brP , and prioritized rules
brH ⊆ br(M). The set of subset-minimal prioritized-minimal diagnoses then is:

D±m(M, brP , brH) =
{
D ∈ D±m(M, brP ) | MinbrH ,brP (M,D) ∧ ∀D′ ∈ D±m(M, brP ) :

MinbrH ,brP (M,D′)⇒
(
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

)}
(10)

where MinbrH ,brP (M,X) denotes that X is minimal among all protected diagnoses with respect to brH ,
i.e., MinbrH ,brP (M,X) = ∀D ∈ D±m(M, brP ) : D ⊆brH X ⇒ X =brH D. The first condition ensures
that a diagnosis D is prioritized-minimal and for all other prioritized-minimal diagnoses D′ it holds that D
is minimal wrt. non-prioritized bridge rules.

For the second step, we just add toD±m(M, brP , brH) the condition thatD andD′ make tmax condition-
free. Formally:

Definition 19. Given an MCS M with protected bridge rules brP and prioritized bridge rules brH , the set
of subset-minimal prioritized-minimal (mpm) diagnoses wrt. tmax is

D±m,tmax
(M, brP , brH) =

{
D ∈ D±m(M, brP ) | MinbrH ,brP (M,D) ∧ tmax ∈ D
∧∀D′ ∈ D±m(M, brP ) : (MinbrH ,brP (M,D′) ∧ tmax ∈ D′)

⇒
(
D′ ⊆br(M)\brH D ⇒ D =br(M)\brH D′

)}
where tmax ∈ D stands for D = (D1, D2) ∧ tmax ∈ D2 and MinbrH ,brP (M,X) is as above.

Intuitively, D is an mpm-diagnosis, if it respects protected bridge rules and contains tmax , if it is pre-
ferred, i.e., it is minimal wrt. prioritized bridge rules brH among all other diagnoses of the MCS M , and
if for all other preferred diagnoses that contain tmax it holds that D is subset-minimal wrt. regular bridge
rules.

As we show in the next section, this notion is computationally harder than the notion of prioritized-
minimal diagnosis. Nevertheless, the problem itself (i.e., identifying a minimal �-preferred diagnosis) is
shown to be as hard as this notion, which means the notion is worst-case optimal.

Note that D,D′ ∈ D±(M, brP ) implies that D ⊆br(M)\brH D′ holds iff D ⊆br(M)\brH\brP D′ holds,
because D = (D1, D2) ∈ D±(M, brP ) implies that D1 ∩ brP = ∅ = D2 ∩ brP . The same also holds for
=br(M)\brH and =br(M)\brH\brP .

As it appears, D±(M�, brP , brH) suffices to obtain those diagnoses of M that are �-preferred accord-
ing to �. In the following, we write t(D1, D2) as a shorthand for the corresponding diagnosis candidate in
the MCS M�, i.e., t(D1, D2) = (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪K(D1, D2) ∪ {tmax}).

Theorem 3. Let M be an MCS and let � be a preference order on the diagnoses of M . Then D ∈ D±(M)
is �-preferred iff t(D) ∈ D±(M�, brP , brH) holds.

Note that t(D) ∈ D±(M�, brP , brH) implies that tmax ∈ t(D); but there also are diagnoses T ∈
D±(M�, brP , brH) such that tmax /∈ T . Nevertheless, it follows directly from the definition of M� that
for any T ∈ D±(M�, brP , brH) with tmax ∈ T there exist D1, D2 ⊆ br(M) such that T = t(D1, D2).
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Hence, diagnoses of D±(M�, brP , brH) that contain tmax correspond one-to-one to �-preferred diagnoses
of M .

The next theorem shows that the clone encoding M� and the notion of mpm-diagnosis D±m,tmax
allows

to select all minimal �-preferred diagnoses of M according to �. This theorem therefore establishes that
the clone encoding is sound and complete.

Theorem 4. Let M be an MCS and let � be a preference order on diagnoses of M . Then (D1, D2) ∈
D±m,�(M) holds iff t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) holds.

Recall that given a CP-net N that is compatible with an MCS M , the minimal �-preferred diagnoses
according to �N and the irredundant N -preferred diagnoses coincide, i.e., D±ird (M,N) = D±

m,�N (M)
(cf. Proposition 2). One thus can realize the selection of “optimal” diagnoses according to a CP-net using
the clone encoding M�

N
and the methods provided in this section. Also note that M�

N
has size only

linearly larger than M .
Since the approaches only specify some of the behavior of the observation context, the concrete choice

of a logic to realize the observation remains to the user. This is especially useful for preference formalisms
like CP-nets where algorithms may be chosen according to the computational complexity of the employed
CP-net.

6 Computational Complexity

To select preferred and most preferred diagnoses, the previous section introduced several advanced notions
of diagnosis. In this section we investigate the computational complexity of these notions. investigated here.
As it turns out, considering protected bridge rules as well as prioritized bridge rules does not increase the
computational complexity of identifying a diagnosis.1 Identifying subset-minimal diagnoses among those
with protected and prioritized bridge rules, however, incurs additional cost. Since selecting most preferred
diagnoses is hard for the same complexity class in the basic case, the additional cost are expected and our
approach is thus worst-case optimal. We begin by recalling the necessary notions of complexity analysis in
MCS.

6.1 Complexity Classes and Context Complexity

Recall that P, ExpTime, and PSpace are the classes of problems that can be decided using a deterministic
Turing machine in polynomial time, exponential time, and polynomial space, respectively. Furthermore
NP (resp., coNP) is the class of problems that can be decided on a non-deterministic Turing machine
in polynomial time, where one (resp., all) computation paths accept. The polynomial hierarchy is built as
follows: ΣP

0 = ΠP
0 = P, and for all i ≥ 1, ΣP

i = NPΣP
i−1 is NP with a ΣP

i−1 oracle and ΠP
i is co-ΣP

i .
Given a complexity class C, D(C) denotes the “difference class” of C, i.e., D(C) = {L1 × L2 |

L1 ∈ C, L2 ∈ co-C} is the complexity class of decision problems that are the “conjunction” of a problem
L1 in C and a problem L2 in co-C. We use the notation that D(NP) = DP

1 and D(ΣP
i ) = DP

i . A
prototypical problem that is complete for DP

1 is deciding, given a pair (F1, F2) of propositional Boolean
formulas, whether F1 is satisfiable and F2 is unsatisfiable.

1In line with and for comparability to [29], we concentrate on recognizing diagnoses and omit deciding (advanced) diagnosis
existence. Briefly, the latter problem is for context complexity C in NPC for polynomial-time filters f (in particular, for protected
bridge rules), which collapses to C if C is closed under conjunction and projection; thus for all considered notions, the existence
problem is in this case C-complete.
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Since MCS are composed of contexts where each context is a KR formalism, the complexity of deciding
whether an MCS is consistent clearly depends on the complexity of the KR formalisms employed in its
contexts. This intuition is captured by the notion of context complexity, which measures deciding whether a
set of beliefs is acceptable under a given knowledge-base of a context and a given set of formulas added via
bridge rules.

Let OUT i = {p | (i : p) ∈ body(r), r ∈ br(M)} denote the set of beliefs of context Ci which occur
in some bridge rule of the MCS. Context complexity is defined wrt. output-projected beliefs, i.e., belief sets
projected to output beliefs (for details see [29]), formally:

Definition 20 (cf. [29]). Given a contextCi = (kbi, br i, Li) and a pair (H,Ti), withH ⊆ {ϕ (r) | r ∈ br i}
and Ti ⊆ OUT i, the context complexity CC(Ci) of Ci is the computational complexity of deciding whether
there exists an Si ∈ ACCi(kbi ∪H) such that Si ∩OUT i = Ti.

Furthermore, the logics Li of all contexts are considered to be given implicitly and thus the instance size
of a given MCS M is |M | = |kbM | + |br(M)| where |kbM | denotes the size of the knowledge bases in M
and |br(M)| denotes the size of its set of bridge rules.

Given an MCS M , we say M has upper context complexity C, denoted CC(M) ≤ C, if CC(Ci) ⊆ C for
every context Ci of M ; we say M has lower context complexity C, denoted CC(M) ≥ C, if C ⊆ CC(Ci)
for some context Ci of M . We say that M has context complexity C, denoted CC(M) = C, iff CC(M) ≤ C
and CC(M) ≥ C. That is, if CC(M) = C all contexts in M have complexity at most C, and some context
in M has C-complete complexity, provided the class C has complete problems.

Restricting disjunctive ASP to the ground case admits ΣP
2 -complete acceptability checking (cf. [22, 42]),

hence the context complexity of a context using Lasp
Σ is ΣP

2 -complete given that all kb-elements are ground;
in the non-ground case the context complexity is NExpNP. Acceptability checking of a context using LplΣ
amounts to entailment checking for all literals present in the belief set and non-entailment checking for all
literals absent in the belief set, i.e., it amounts to an UNSAT and an independent SAT check, hence the
context complexity is DP.

Example 16. The MCS M = (C1, C2, C3) of Example 3 is such that CC(C1) = NP and CC(C2) =
CC(C3) = ΣP

2 . As NP ⊆ ΣP
2 , it holds that CC(M) ≤ ΣP

2 , and as C2 is ΣP
2 -complete, we obtain

CC(M) ≥ ΣP
2 ; hence CC(M) = ΣP

2 .

The problem of deciding whether for a given MCS M and a pair (D1, D2) of bridge rules, it holds
that (D1, D2) is a minimal diagnosis, i.e., deciding whether (D1, D2) ∈ D±m(M), is denoted by MCSDm.
As shown in [Prop. 9, [29]] if CC(M) = P, then MCSDm is NP-complete; if CC(M) = C and C is a
class with complete problems and closed under conjunction and projection, then the problem of MCSDm
is D(C)-complete. Intuitively, a class C is closed under conjunction, if all its decision problems are such
that checking multiple instances of the problem at the same time is a problem in C. For example, checking
whether a propositional formula F is satisfiable is in NP; given two independent formulas F and G, check-
ing whether both are satisfiable also is in NP since it amounts to checking whether F ∧G is satisfiable. A
class C is closed under projection, if intuitively for every problem in C, the decision problem on projected
instances (similar as for output-projected equilibria) is contained in C. For example, given a formula F in
propositional logic over variables var(F ), finding an assignment VA over (projected) variablesA ( var(F )
such that (i) there exists an assignment VĀ to the variables Ā = var(F ) \ A and (ii) VA ∪ VĀ |= F , is as
hard as finding an (overall) assignment V over var(F ) such that V |= F . For further details we refer to
[29]. Specifically, for CC(M) = ΣP

i it holds that MCSDm is in DP
i . Furthermore, since DP

i is closed under
conjunction and projection, it holds that MCSDm is DP

i -complete if at least one context in M is complete
for ΣP

i .
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Context Deciding (D1, D2)
?
∈

complexity D±m(M) D±m(M, brP ) D±(M, brP , brH) D±m,tmax
(M, brP , brH)

CC(M) MCSDm MCSDPm MCSDPH MCSDPHm,tmax

P DP
1 -complete DP

1 -complete DP
1 -complete ΠP

2 -complete

NP DP
1 -complete DP

1 -complete DP
1 -complete ΠP

2 -complete

ΣP
i , i ≥ 1 DP

i -complete DP
i -complete DP

i -complete ΠP
i+1-complete

PSpace PSpace-complete

ExpTime ExpTime-complete

Shown in [29] Theorem 5 Theorem 6 Theorems 7 + 8

Table 1: Complexity results of deciding whether a diagnosis candidate is subset-minimal, additionally pro-
tected, prioritized-minimal, or an mpm-diagnosis. Problem MCSDMPREF has the same complexity as MCS-
DPHm,tmax if deciding D � D′ ∧D 6� D′ is in CC(M).

6.2 Overview of Results

We now investigate the complexity of our enhanced notions of diagnosis. More specifically, we study the
complexity of the following decision problems, given an MCS M , a diagnosis candidate D ∈ 2br(M) ×
2br(M), and depending on the problem additionally given protected bridge rules brP ⊆ br(M), prioritized
bridge rules brH ⊆ br(M), and tmax ∈ br(M):

• MCSDPm: deciding whether D is a subset-minimal diagnosis with protected bridge rules, i.e., decid-
ing whether D ∈ D±m(M, brP ) holds.

• MCSDPH: deciding whether D is a prioritized-minimal diagnosis, that is, deciding whether D ∈
D±(M, brP , brH) holds.

• MCSDPHm,tmax : deciding whether D is an mpm-diagnosis (a subset-minimal prioritized-minimal
diagnosis wrt. tmax ), i.e., deciding whether D ∈ D±m,tmax

(M, brP , brH) holds.

• MCSDMPREF: given an arbitrary preference order � deciding whether D ∈ D±m,�(M) holds.

We show that MCSDPm is not harder than MCSDm, i.e., deciding whether a diagnosis candidate D is
a subset-minimal diagnosis with protected bridge rules is not harder than deciding whether D is a subset-
minimal diagnosis (Thm. 5). We also demonstrate that the same is true for prioritized-minimal diagnoses,
i.e., MCSDPH is as hard as MCSDm (Thm. 6). This notion of diagnosis can be applied to the plain encoding
Mpl� for total preference orders to select minimal �-preferred diagnoses according to a total preference
order �. The drawback of this approach, however, are the exponentially many bridge rules in Mpl�.

Since the clone encoding M� incurs no exponential blow-up of bridge rules, it is reasonable to expect
that the computational complexity of MCSDPHm,tmax is higher than the one of MCSDm. Indeed, for context
complexity CC(M) in ΣP

i we prove that MCSDPHm,tmax is in ΠP
i+1 while MCSDm is in DP

i (Thm. 7).
Specifically, for CC(M) in NP the complexity of MCSDPHm,tmax is ΠP

2 while MCSDm is in DP
1 .
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Since deciding t(D) ∈ D±m,tmax
(M�, brP , brH) only serves to decide D ∈ D±m,�(M), we also inves-

tigate the lower bound for the latter problem, i.e., MCSDMPREF. We prove that it is ΠP
2 -hard (Thm. 8) if

CC(M) is in P; hence we obtain that the clone encoding using M� and D±m,tmax
(M�, brP , brH) is in fact

worst-case optimal. Furthermore, we also show that MCSDMPREF is hard for ΠP
i+1 if CC(M) is hard for ΣP

i .
Table 1 summarizes the results for the introduced notions of diagnosis and for context complexity being

in one of several complexity classes. Note that the results for PSpace and ExpTime in the last column
follow from the fact that coNPPSpace = PSpace and coNPExpTime = ExpTime for membership
while hardness can be shown using a trivial MCS where the acceptability function of some context is hard
for PSpace resp. ExpTime. Our results are derived using several reductions and a genuine algorithm,
which are presented in the remainder of this section; proofs can be found in the appendix.

6.3 Derivation of Results

For the problem of recognizing minimal diagnoses with protected bridge rules we have the following result.

Theorem 5. MCSDPm is equivalent to MCSDm under polynomial-time reductions.

Indeed, MCSDPm is polynomially reducible to MCSDm, by simply checking first whether the diagnosis
candidate contains protected bridge rules and then solve MCSDm to check whether it is subset-minimal.
Conversely, every instance of MCSDm is an instance of MCSDPm with brP = ∅, and thus MCSDm trivially
reduces to MCSDPm in polynomial time.

Next we consider the problem MCSDPH. We will show that this problem has the same complexity
as MCSDPm. To this end we first present a polynomial-time reduction from MCSDPH to MCSDPm. We
remark that a direct membership proofing would be simpler, but the reduction is of interest in its own.

The underlying idea of the reduction is that, given an MCS M with protected bridge rules brP and
prioritized bridge rules brH , we simulate the modifications of regular bridge rules inside the resulting MCS.
The set Rreg of regular (non-prioritized, non-protected) bridge rules is Rreg = br(M) \ brH \ brP and their
modifications can be simulated by using a meta-reasoning transformation Mmr(θ,K) = (C1, . . . , Cn+1),
where the bridge rules of Cn+1 correspond to modifications of bridge rules in Rreg . They take their values
from an additional context Cn+2 that generates all possible modifications, i.e., every possible modification
corresponds to an acceptable belief set of Cn+2. We protect in the resulting MCS M ′ = (C1, . . . , Cn+2)
all bridge rules except those that correspond to modifications of bridge rules in brH , i.e., every diagnosis
of M ′ corresponds to one (or more) diagnoses of M , but the diagnoses of M ′ only contain bridge rules
corresponding to subsets of brH . Consequently, any minimal diagnosis of M ′ is ⊆brH -minimal wrt. M .
To ensure that the diagnosis indeed is ⊆-minimal, we further add a copy of M , i.e., the resulting MCS is
M ′ ⊗M where M ′ ensures minimality wrt. ⊆brH and M ensures minimality wrt. ⊆. An illustration of the
resulting MCS is given in Figure 7.

We now give the formal details of the reduction. Given an MCS M and a set Rreg ⊆ br(M), let K = ∅
and let θ be such that for all D1, D2 ⊆ br(M) the property θ(D1, D2, ∅) holds. We craft an MCS based on
the meta-reasoning MCS Mmr(θ,K) = (C1, . . . , Cn, Cn+1) to obtain an MCS where the modification of all
bridge rules in Rreg is hidden in the set of possible belief states. To this end, we introduce another context
Cn+2 without bridge rules whose acceptable belief sets encode all respective modifications of bridge rules
of Rreg . Formally, Cn+2 = (Lasp

Σ , kbn+2, ∅) where

kbn+2 =

{
not removedr ← not removedr. removedr ← notnot removedr.
uncondr ← notnot uncondr. not uncondr ← not uncondr.

∣∣∣∣ r ∈ Rreg

}
.
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C1

C2

C3

Cn+1 Cn+2

C1

C2

C3

r1

r2

r′1

r′2

d1(r2) d2(r2)

Mmr(θ,K) M

r2 ∈ brH

r1 ∈ Rreg

M ′

M ′ ⊗M

Figure 7: The reduction from MCSDPH to MCSDPm exemplified on the MCS M = (C1, C2, C3) with two
bridge rules br(M) = {r1, r2}, with r1 : (2 : b) ← (1 : a)., and r2 : (3 : d) ← (2 : c)., protected bridge
rules brP = ∅, and prioritized bridge rules brH = {r2}, thus Rreg = {r1}. Shown is the resulting MCS
M ′ ⊗M ; its components are indicated in gray.

Observe that for every D1, D2 ⊆ Rreg , there is a belief set Sn+2 with

Sn+2 ∩
(
{not removedr, uncondr | r ∈ Rreg}

)
= {not removedr | r ∈ Rreg \D1}

∪ {uncondr | r ∈ D2}.

In addition to that, sinceCn+2 has no bridge rules, it follows that Sn+2 ∈ ACCn+2(kbn+2∪app(brn+2, S
′))

holds for all belief states S′ = (S′1, . . . , S
′
n+2) where S′n+2 = Sn+2.

Recall that all bridge rules of Cn+1 are either of the form (n + 1 : not removedr) ← >. or (n + 1 :
uncondr) ← ⊥. where r ∈ br(M). Let Cn+1 = (L, kbn+1, brn+1); then C ′n+1 = (L, kbn+1, br ′n+1)
where

br ′n+1 = {(n+ 1 : not removedr)← (n+ 2 : not removedr). | r ∈ br(M), r ∈ Rreg} (11)

∪ {(n+ 1 : uncondr)← (n+ 2 : uncondr). | r ∈ br(M), r ∈ Rreg} (12)

∪ {(n+ 1 : not removedr)← >. | r ∈ br(M), r /∈ Rreg} (13)

∪ {(n+ 1 : uncondr ← ⊥. | r ∈ br(M), r /∈ Rreg}. (14)

Intuitively, C ′n+1 equals Cn+1 but the bridge rules occurring in Rreg refer to Cn+2. Similar to the meta-
reasoning encoding, we denote by d1(r) and d2(r) the corresponding bridge rule of the form in (13) and in
(14), respectively. We extend these notions to sets of bridge rules and let di(R) = {di(r) | r ∈ R} for any
R ⊆ br(M) and i = 1, 2. For example, d1(br(M) \R1) denotes all bridge rules of line (13).

Finally, we callM ′ = (C1, . . . , Cn, C
′
n+1, Cn+2) the meta-guessing MCS forM andRreg . The effect of

the redirection to Cn+2 is that the acceptable belief sets of Cn+2 guess all possible modifications. The rest
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of M ′ behaves like an ordinary meta-reasoning encoding, where protected bridge rules of M ′ are brP ′ =
brM ′ \ (d1(br(M) \ Rreg) ∪ d2(br(M) \ Rreg)), i.e., all bridge rules are protected except those in Cn+1

that do not correspond to bridge rules in Rreg .
Now the reduction ≤pm from MCSDPH to MCSDPm is as follows:

(M, (D1, D2), brP , brH) 7→ (M ′ ⊗M, (D′1, D
′
2), brP

′′)

where M ′ is the meta-guessing MCS wrt. Rreg = br(M) \ brP \ brH and brP ′′ = brP
′ ∪ I(brP ) where I

is the mapping wrt. M ′ ⊗M and brP ′ is the set of protected bridge rules of the meta-guessing MCS M ′;
furthermore D′1 = I(D1) ∪ d1(D1 ∩ brH) and D′2 = I(D2) ∪ d2(D2 ∩ brH), i.e., (D′1, D

′
2) contains a

diagnosis candidate of M and a diagnosis candidate over brH with modifications to the remaining bridge
rules of M being simulated by M ′.

Observe that the size of (M ′ ⊗M, (D′1, D
′
2), brP

′′) is polynomial in the size of (M, (D1, D2),
brP , brH), because M ′ ⊗M only has four times as many bridge rules as M and all other sets are subsets
of these bridge rules. Furthermore, (M ′ ⊗M, (D′1, D

′
2), brP

′′) can be computed in polynomial time in the
size of (M, (D1, D2), brP , brH); more precisely, even in linear time.

The following lemma shows that ≤pm indeed is a correct reduction from MCSDPH to MCSDPm.

Lemma 4. ≤pm is a polynomial-time reduction from MCSDPH to MCSDPm.

On the other hand, one can easily reduce MCSDPm to MCSDPH. We thus obtain that MCSDPH indeed
has the same complexity as deciding D ∈ D±m(M, brP )and hence whether D ∈ D±m(M) holds.

Theorem 6. MCSDPH is equivalent to MCSDPm under polynomial-time reductions.

A stepping stone for analyzing MCSDPHm,tmax is the decision problem MCSDPHtmax , which we con-
sider next. MCSDPHtmax is defined as follows: given an MCS M , a diagnosis candidate D ∈ 2br(M) ×
2br(M) with D = (D1, D2), protected bridge rules brP ⊆ br(M), prioritized bridge rules brH ⊆ br(M),
and tmax ∈ br(M); decide whether (i) tmax ∈ D2 and (ii) for all T ∈ D±m(M, brP ) it holds that
T ⊆brH D ⇒ T =brH D. Notice that MCSDPHtmax basically amounts to checking the presence of
tmax in a diagnosis candidate of MCSDPH. As the following lemma shows, former is not harder than the
latter.

Lemma 5. MCSDPHtmax is polynomial-time reducible to MCSDPH and thus in the complexity class C, if
MCSDPH is in C and C is closed under polynomial reductions.

Note that all classes in Section 6.1 above are closed under polynomial-time reductions.
We use an MCSDPHtmax -oracle in Algorithm 1 to obtain membership results of MCSDPHm,tmax .

Theorem 7. If MCSDPH is in C, then MCSDPHm,tmax is in coNPC.

Proof. Algorithm 1 decides whether (D1, D2) 6∈ D±m,tmax
(M, brP , brH) holds using an oracle for MCS-

DPHtmax . Intuitively, (D1, D2) is not an mpm-diagnosis if it either is no subset-minimal prioritized-minimal
containing tmax , which is checked in the first line using the oracle, or if there exists a subset-minimal
prioritized-minimal diagnosis (T1, T2) ⊂ (D1, D2) that also contains tmax . In the second line such a
(T1, T2) is guessed and in the third line it is verified that the guessed candidate indeed has the above prop-
erties. Checking whether (D1, D2) ∈ D±m,tmax

(M, brP , brH) holds is possible by Algorithm 1 and negating
its output.
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Algorithm 1: Deciding whether (D1, D2) 6∈ D±m,tmax
(M, brP , brH) holds.

Input : MCS M , (D1, D2), brP , and brH with D1, D2 ⊆ br(M), brP , brH ⊆ br(M).
Output: YES if (D1, D2) 6∈ D±(M, brP , brH)

1 if oracleMCSDPHtmax

(
(D1, D2),M, brP , brH

)
= NO then output YES

2 guess T1, T2 ⊆ br(M)
3 if oracleMCSDPHtmax

(
(T1, T2),M, brP , brH

)
= YES ∧∧∧ (T1, T2) 6= (D1, D2)

∧∧∧ (T1, T2) ⊆br(M)\brH (D1, D2) ∧∧∧ (T1, T2) 6=br(M)\brH (D1, D2) then output YES

By assumption MCSDPH is in C, thus by Lemma 5 it holds that MCSDPHtmax is in C, i.e., the com-
plexity of the oracle in Algorithm 1 is in C. Since Algorithm 1 uses a polynomial-size guess for (T1, T2)
its complexity clearly is NPC. Consequently, deciding whether (D1, D2) ∈ D±m,tmax

(M, brP , brH) holds
is in coNPC.

The previous decision problems arise from our approach to realize the selection of preferred and filtered
diagnoses of an MCS. To give a full picture, we also investigate the complexity of the basic problem, i.e., of
MCSDMPREF.

As the following theorem shows, MCSDMPREF itself is ΠP
2 -hard even if both the context complexity and

deciding whether D � D′ holds are tractable. This result also shows that our approach of realizing the
selection of minimal �-preferred diagnoses is worst-case optimal.

Theorem 8. If CC(M) is hard for ΣP
i (ΠP

i ) then MCSDMPREF is hard for ΠP
i+1 (ΠP

i+2) with i ≥ 0. In
particular, MCSDMPREF is ΠP

2 -hard even if both CC(M) and deciding D′ � D′′ are in P.

For establishing completeness of MCSDMPREF, we use the clone encoding of the previous section as a
polynomial-time reduction to MCSDPHm,tmax .

Corollary 1. Let M be an MCS with CC(M) = ΣP
i , i ≥ 0 (resp., CC(M) = PSpace,ExpTime), and a

preference order� such that decidingD � D′ andD 6� D′ together is in ΣP
i (resp., PSpace, ExpTime).

Then MCSDMPREF is complete for ΠP
i+1 (resp., PSpace, ExpTime). In particular, MCSDMPREF is ΠP

i+1-
complete if deciding D � D′ is in P and CC(M) = ΣP

i , i ≥ 0.

Examples of preference orders as hard as PSpace are CP-nets in general while restricted variants are
in NP or even P (cf. Section 3.2.1).

We can also use the clone encoding to show the completeness of MCSDPHm,tmax .

Corollary 2. MCSDPHm,tmax is ΠP
i+1-complete if CC(M) = ΣP

i , i ≥ 1, and ΠP
2 -complete if CC(M) = P

or CC(M) = NP.

The hardness result of ΠP
i+2 for MCSDMPREF with CC(M) = ΠP

i might seem to contradict Corollary 2,
which shows, using the clone encoding, that MCSDMPREF is in ΠP

i+1 for CC(M) = ΣP
i . However this is no

contradiction since the basic problem of recognizing minimal diagnoses, i.e., MCSDm, is not known to be
in ΣP

i for CC(M) = ΠP
i . In [29] it is shown that MCSDm is in D(C) if C is closed under conjunction and

projection, which presumably is not the case for ΠP
i , i ≥ 0 (while it is for ΣP

i ). Hence for CC(M) = ΠP
i ,

MCSDm is not in D(ΠP
i ), thus MCSDPHtmax is presumably not in ΠP

i+1. On the other hand, ΠP
i is in

ΣP
i+1, consequently MCSDm is in D(ΣP

i+1) and MCSDPHtmax in ΠP
i+2.
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7 Discussion and Related Work

7.1 Decomposing the central observation context

A key strength of MCS is the capability of integrating different knowledge bases in a decentralized man-
ner. Accordingly, scenarios for MCS where a centralized specification of preferences on diagnoses may be
unwanted, e.g., if different companies agree to share data their preferences might expose some information
they are actually not willing to share. The approaches presented here use a central observation context that
knows all bridge rules and for each of them whether and how it is modified. Although it does not know the
actual status of the information exchange, it is still violating information hiding to some extent.

Criteria for decomposing a context have been investigated in [59]. The results there, specifically Propo-
sition 3.11, can be applied to the meta-reasoning transformation that we described above in order to decom-
pose the observation context of the filter encoding Mf . If the underlying filter can be broken up, the central
observation context thus may be replaced by several contexts, each covering only a partition of the bridge
rules in br(M). If there is a partition br(M) = A ∪B (where A,B are disjunct and nonempty) such that a
given filter f satisfies that for all D1, D2 ⊆ br(M) it holds that f(D1, D2) = 1 iff f(D1 ∩A,D2 ∩A) = 1
and f(D1 ∩ B,D2 ∩ B) = 1, then the observation context of Mf is decomposable. Informally, f is such
that the modifications of bridge rules in A can be checked independently from those in B and vice versa.

Notice that for any “reasonable” logical formalism which realizes f , the checks whether f(D1∩A,D2∩
A) = 1 resp. f(D1 ∩B,D2 ∩B) = 1 can be realized by two (independent) knowledge bases; the latter are
the decomposition of the observation context. Depending on f , this decomposition may be repeated several
times, where each time one context is decomposed into two independent contexts until the observation of
diagnoses is fully decentralized. We briefly sketch here a concrete decomposition method but refer to [59]
for more details.

Example 17. Consider the MCS Mf = (C1, C2, C3) of Example 13 realizing the filter f on the MCS M
whose bridge rules are br(M) = {r1, r2, r3}. Recall that f is defined by:

f(D1, D2) =


0 if r3 ∈ D1, r2 /∈ D1 or r3 /∈ D1, r2 ∈ D1,

0 if r3 ∈ D2, r2 /∈ D2 or r3 /∈ D2, r2 ∈ D2,

1 otherwise.

Obviously, br(M) can be partitioned into A = {r2, r3} and B = {r3}, because for all D1, D2 ⊆ br(M)
holds that f(D1 ∩B,D2 ∩B) = 1 and f(D1 ∩A,D2 ∩A) = f(D1, D2).

The resulting bridge rules for decomposing C3 are: brA3 = {d1(r2), d2(r2), d1(r3), d2(r3)} and brB3 =
{d1(r1), d2(r1)}. Since the knowledge base kb3 of Mf uses ASP, we can easily get the knowledge bases
kbA3 and kbB3 by partitioning kb3:

kbA3 =


removedr2 ← notnot removedr2 . removedr3 ← notnot removedr3 .
⊥ ← removedr3 , not removedr2 . ⊥ ← not removedr3 , removedr2 .
⊥ ← uncondr3 , not uncondr2 . ⊥ ← not uncondr3 , uncondr2 .}


kbB3 = {removedr1 ← notnot removedr1 .}

The resulting decomposed MCS is M ′ = (C ′1, C
′
2, C

A
3 , C

B
3 ), where all bridge rules from C3 either belong to

CA3 or CB3 and all beliefs of C3 that are referred to in other bridge rules of Mf either refer to CA3 or CB3 in
M ′. The diagnoses of M ′ correspond one-to-one to those of Mf . As diagnoses with protected bridge rules
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are directly based on ordinary diagnoses, these results thus extend to diagnoses with protected bridge rules.
The MCS M ′ can be used to obtain minimal filtered diagnoses of M , where the filter itself is realized in a
decentralized way.

In principle, decomposition may also be applied to the clone encoding M�, but the bridge rule tmax

disallows a simple decomposition. Nonetheless, it seems possible to achieve decomposition using additional
protected bridge rules for information exchange between the decomposed contexts; a formal result, however,
remains to be established.

7.2 Related Work

Below we discuss two closely related approaches that rely on preference to ensure consistency of MCS. We
also sketch how our approach can be applied to further extensions of the MCS framework and we relate our
approach to preference-based inconsistency management in other KR formalisms.

Preferential MCS. In [49] an approach at preference-based inconsistency management in MCS is in-
troduced: Preferential Multi-Context Systems (PMCS) are similar to ordinary MCS where an additional
preference order ≤s restricts the information flow. The relation ≤s is a total preorder on a partitioning of
the contexts of M , i.e., ≤s compares sets of contexts and all contexts in the same set are treated as equally
preferred. The information flow then is restricted from more preferred to less-or-equally preferred contexts,
i.e., a PMCS is stratified. Note that this total preorder differs from our notion of a total preference, since we
consider preference over diagnosis candidates, not over sets of contexts.

Based on the ordering, one may ask for a maximal consistent section, which is the maximal initial
segment of the ordering of preferred contexts that still admit an equilibrium. Furthermore, the notion of a
c-diagnosis is introduced, which is a diagnosis that does not modify bridge rules of the maximal consistent
section. Note that [49] only consider diagnoses that remove bridge rules, i.e., diagnoses of the form (D1, ∅).

In the same work, it is noted that a filter f on diagnoses may be used to select c-diagnoses, by simply fil-
tering out all diagnoses that modify bridge rules of the maximal consistent section. This however, requires to
know the maximal consistent section in advance. Intuitively, c-diagnoses can be fully captured by preference
orders as follows. We recall the notation of an i-cut for PMCS first: given a PMCSM with total preorder≤s
on sets of contexts ofM , the i-cut ofM , denoted byM(i) contains all contexts that are in the i-th and lower
stratum according to ≤s. For example, M(1) contains the most preferred contexts, M(2) contains contexts
of M(1) and all that are less preferred than the ones in M(1) but more preferred than any other contexts,
and so on. Notice that M(2) ⊇ M(1) holds, i.e., M(i) contains all contexts of M(j) for j ≤ i. Now a
preference order � is defined on diagnosis candidates as follows: (D1, D2) � (D′1, D

′
2) iff D2 = ∅ and for

every 1 ≤ i ≤ m such thatD1∩{r ∈ br ` | C` ∈M(i)} 6= ∅, it holds thatD′1∩{r ∈ br ` | C` ∈M(i)} 6= ∅.
The intuition is that � prefers (D1, D2) over (D′1, D

′
2) if every i-cut M(i) that is modified by the former

is also modified by the latter. This effectively guarantees that the most preferred diagnoses according to �
only modify bridge rules from less preferred contexts. In fact, no most preferred diagnosis modifies any
bridge rule of the maximal consistent section, because such a diagnosis is always preferred. Thus, the set of
most preferred diagnoses according to � should coincide with the set of c-diagnoses. Clarifying this and a
more extensive comparison to PMCS remains for future work.

Defeasible MCS. In ordinary MCS, all bridge rules that are applicable in a belief state add their head
formulas to the respective contexts. Different from that, Defeasible MCS (dMCS) have bridge rules which



40 INFSYS RR 16-02

only add their head formulas if no inconsistency arises, i.e., bridge rules are defeasible. By that, defeasible
MCS are an important contribution to inconsistency management in MCS since these MCS are inherently
consistent. They have been investigated in [3, 4, 5, 6], which address inconsistency in a homogeneous MCS
setting. The semantics of dMCS is given in [4] by resorting to an argumentation-inspired approach. Each
context is a local theory composed of strict and defeasible rules, where the conclusion of an applicable
strict rule is always considered while for defeasible rules their conclusion is only considered if there is no
contrary evidence. Bridge rules, or mapping rules, are (local) defeasible rules whose body literals refer to
other contexts. The decision which rules to ignore is based for every context on a strict total order of all
contexts.

The set of (mapping) rules that are ignored thus corresponds to a unique deletion-only diagnosis whose
declarative description is more involved compared to our notion. Since local information is important for
identifying the defeasible rules that are ignored, an encoding within our framework is possible but requires
an involved MCS where contexts expose private information. One notable advantage of defeasible MCS is
that for acyclic systems, only a polynomial number of computation steps is required for answering queries
that are a single literal. The second component of diagnoses, i.e., rules that are forced to be applicable,
however, have no counterpart in the inconsistency management approach for dMCS. Furthermore, the strict
total order over contexts forces the user to make (perhaps unwanted) decisions at design time; alternative
orders would require a redesign and separate evaluation. Our approach avoids this and allows to respect
various kinds of orderings and preferences; it is not committed to a particular formalism and in principle
any formalism that can be couched into a context of an MCS can be employed.

Further MCS extensions. In recent years, some significant extensions of the Multi-Context Systems
framework itself have been proposed. We give a short overview of these extensions and sketch how the
notions of diagnosis and preference can be adapted.

Managed Multi-Context Systems (mMCS) are an extension of MCS where each context is equipped with
a management component called a context manager (cf. [14]). This manager allows applicable bridge rules
to not only add information, but to apply arbitrary operations on the knowledge base. In mMCS the heads of
bridge rules are operational statements of the form o(s), where s is a knowledge-base element as in ordinary
MCS and o is the name of an operation to apply, e.g., revise(¬p) indicates that the knowledge base is to
be revised with the formula ¬p. Many kinds of operations can be captured by mMCS, e.g. updating logic
programs, belief revision, or database view updates. Most notably, if all context managers ensure locally
that some acceptable belief set exists for the context, then inconsistency in an mMCS may only arise from
cyclic information flow. Notably, mMCS can be translated faithfully to MCS, hence the diagnosis notion of
MCS and the techniques for selecting most preferred diagnoses also extend to mMCS. For more discussion
and details we refer to [59].

Reactive Multi-Context Systems (rMCS) and evolving Multi-Context Systems (eMCS) have been intro-
duced and investigated in [11, 32, 15, 16] and [41, 40], respectively. Both are an extension of mMCS to
allow change over time; although rMCS and eMCS have been developed independently and their formal-
izations differ somehow, they are in essence are quite similar. Both adopt a discrete time ontology where
at each step a set of observations is taken into account. Observations then either influence sensor atoms in
bridge rules (rMCS) or the knowledge bases of designated sensor contexts with fixed acceptability functions
(eMCS). A semantics is defined that pairs at each time step the observations with an equilibrium for that
step, taking into account the equilibrium of the previous step, i.e., semantics is an incremental sequence of
equilibria. For eMCS this sequence is called an evolving equilibrium while for rMCS it is called a run.

We note that one may “unroll” the time steps of a given rMCS or eMCS M such that for an observation
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sequence of k time steps, the unrolled MCS Mu contains k copies of the ordinary contexts and bridge
rules of M . Sensor atoms and sensor contexts are at each time step according to the step in the observation
sequence and additional bridge rules for inertia and incremental change of beliefs and knowledge bases carry
information from copy i to copy i + 1 in the unrolled system Mu. Then, Mu is an ordinary MCS where
the notions of diagnosis, filter, and preference can be applied, hence these notions also extend to rMCS and
eMCS.

Since any ordinary bridge rule r ∈ br(M) is duplicated k times in Mu, a diagnosis can independently
modify the copy of r at time i from the copy of r at time j, for i 6= j. Such independent modifications
may be unwanted and one may consider only a diagnosis to be valid that modifies all copies uniformly, or
alternatively consider only diagnoses that keeps bridge rules unmodified until some time point ` and for
all time points i ≥ ` the same modification is applied. Notice that one can easily craft a filter f for such
unrolled Mu that ensures either of the above conditions. Vice versa, it is also possible to define notions
of diagnosis with those properties directly for rMCS and eMCS, each yielding another notion of diagnosis.
More work on this is required, but outside the scope of this work.

In [55] the notion of supported equilibrium semantics has been introduced which requires a notion of
support throughout contexts. In principle, this notion of support enables a new notion of diagnosis that also
considers modifications of knowledge bases to restore global consistency. Preferences and filter may then
be defined on top of such a diagnosis notion.

An event-based approach to the semantics of MCS is given in [33], where so-called asynchronous Multi-
Context Systems (aMCS) are introduced. However, the semantics of aMCS is highly operational, which
makes it rather difficult to see how the declarative notion of diagnosis could be reasonably extended to this
setting.

Other KR formalisms. Clearly, the use of preferences to resolve inconsistency has been suggested and
elaborated for rule-based systems and knowledge-exchange systems in numerous works before. We briefly
mention here two, but note that they are only remotely related to MCS; again for more information we refer
to [59].

In [1] the ASP-based language A-Prolog is extended by consistency-restoring (CR) rules. Such rules
are normally not applicable, but if the head restores consistency of an otherwise inconsistent ASP program,
then a rule may become applicable. The semantics of CR-Prolog is given via a translation to abductive logic
programs (cf. [44]) and takes a ranking over the CR rules into account. We note that consistency-restoring
rules are similar in behavior to making a bridge rule condition-free. Hence, the diagnoses of an MCS under
a specifically crafted preference order are capable of capturing the semantics of CR rules in certain cases.

Peer-to-peer data integration systems, e.g. [21], allow for dynamically changing the data integration
scenario in which peers can enter or leave the system anytime. An automatic approach for reasoning with
inconsistent knowledge in a peer-to-peer system was presented in [7] where knowledge from other peers is
ranked according a preference order. A semantics is given in terms of extensions of a Dung-style abstract
argumentation framework [26] designates formulas that are “distributed entailed”. In principle, preference
orders over diagnoses of an MCS can be used to simulate the ranking of formulas that occur in the head
of bridge rules, yet this approach is limited to contexts where a notion of peer support can be defined and
successfully incorporated into the preference order.
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MCS M and . . . Transformation Size Diagnosis notion Complexity

filter f Mf (Def. 14) linear D±m(Mf , brP ) DP
i

total pref. order � Mpl� (Def. 17) exponential D±m(Mpl�, brP , brH) DP
i

preference order � M� (Def. 18) linear D±m,tmax
(M�, brP , brH) ΠP

i+1

Table 2: Overview of the meta-reasoning transformations to select filtered and most-preferred diagnoses.
Size is in terms of |br(M)|, and complexity wrt. context complexity of M if CC(M) = ΣP

i , i ≥ 1, and

deciding f(D)
?
= 1 resp. D � D′ ∧D 6� D′ is in CC(M).

8 Conclusion

In this work we addressed the problem of identifying and selecting those repairs of an inconsistent Multi-
Context System (MCS), which are most preferred. In general, there are too many possible repairs (also
called diagnoses) to manually consider each one and select the best by hand. Supporting a preference mech-
anism to select the best diagnoses therefore is vital for inconsistency management in MCS. To identify and
select among all diagnoses of an MCS the most preferred ones, we considered filters, which allow to dis-
card diagnoses that do not fulfill certain criteria, and preference orders, which allow to compare diagnoses.
As MCS are a flexible framework for interlinking information from heterogeneous formalisms in different
application contexts, in this spirit the user should have a choice for the formalism to specify both types of
preferences.

To achieve this, we followed an internalization approach: if the required conditions or preferences can
be expressed via a context of an MCS, then they can be employed for the selection of preferred diagnoses,
where in principle any (abstract) context logic may be used. To this end, several techniques for meta-
reasoning about diagnoses in MCS have been developed which transform a given MCS M and a filter
(resp., preference order) into an MCSM ′ such that the diagnoses ofM ′ correspond one-to-one to the filtered
(resp., most-preferred) diagnoses ofM . We first presented filters and preference orders on diagnoses in their
most general form, which allows to capture well-known formalisms for preferences specification like CP-
nets [10]. We then presented two approaches at meta-reasoning where the first observes the beliefs in the
body and knowledge-base formulas in the heads of existing bridge rules, while the second approach uses
a more direct encoding of bridge rule modifications. While the former approach is less intrusive, it does
not allow for perfect observation, which is why we focused on the latter in this work. Both approaches
require some enhanced notions of diagnosis, namely diagnoses where some bridge rules are protected and
diagnoses where some bridge rules are considered to be of higher priority than the rest. An analysis of the
computational complexity of these notions revealed that (subset-)minimal diagnoses with protected bridge
rules have the same complexity as (subset-)minimal diagnoses; prioritized-minimal diagnoses have the same
complexity, but are not sufficiently strong to characterize the most-preferred diagnoses in general. The
respective notion are mpm-diagnoses, which have higher complexity than subset-minimal diagnoses. On
the other hand, identifying most-preferred diagnoses is as hard as identifying mpm-diagnoses; hence our
meta-reasoning approach is worst-case optimal from a complexity point of view. Table 2 gives an overview
of the developed meta-reasoning techniques and their respective overall complexities.

Outlook. Regarding future work, some issues are still open. First, we currently allow arbitrary preferences
on diagnoses, but these preferences cannot take the behavior of the repaired MCS into account. For example,
a diagnosis of the hospital MCS might be less preferred if vital information is “lost” due to the diagnosis,
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e.g., a patient having some illness is known to the context with patient data, but the medication context sug-
gests no treatment for the patient. In this case, the required preference cannot be defined on sets of bridge
rules alone, but needs to take into account the resulting equilibrium. In principle, the meta-reasoning trans-
formation presented here can be extended to consider also beliefs resulting from the witnessing equilibrium,
e.g. by adding protected bridge rules from all contexts of the original MCS to the observer context. Since a
diagnosis possibly admits multiple equilibria, a correct encoding is neither obvious nor is it independent of
the formalization of said preferences.

Another issue concerns an implementation of the presented transformations as well as an implementa-
tion of the advanced notions for diagnosis selection. Due to our complexity results, one can in principle
exploit the implementation of subset-minimal diagnoses in the MCS-IE tool [8] together with our polyno-
mial reductions for all but mpm-diagnoses to get an implementation of all advanced notions of diagnosis,
except for mpm-diagnoses; moreover, even a distributed evaluation method [52], based on the results of [23]
can be conceived. Practical restrictions may allow for additional optimizations, which however we did not
consider in this foundational analysis of the problems. Indeed, such restrictions may also lower the com-
plexity. For example, total preference orders potentially warrant this, as on the one hand, for such orders
the computationally easier notion of prioritized-minimal diagnoses is sufficient to select the most-preferred
diagnoses, and on the other hand, the hardness results for general preference orders rely on a non-total
preference order. Further work is needed to refine the picture in this regard.
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A Proofs

A.1 Proofs of Section 3

Proof of Proposition 2. We first show that DN (M) = D±�N (M). We write down DN (M) in set-notation
and obtain:

DN (M) = {D ∈ D±(M) | @D′ ∈ D±(M) : N |= D′ - D ∧ ¬(N |= D - D′)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′}

Regarding D±�N (M) we have that:

D±�N (M) = {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(D′ -N D ∧D 6-N D′ ∧D′ 6= D)}

= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬(N |=D′-D ∧ ¬N |=D-D′ ∧D′ 6=D)}
= {D ∈ D±(M) | ∀D′ ∈ D±(M) : ¬N |= D′ - D ∨N |= D - D′ ∨D′ = D}

It remains to show that given any D,D′ ∈ D±(M), the following two formulas are equivalent:

¬N |= D′ - D ∨N |= D - D′ (15)

¬N |= D′ - D ∨N |= D - D′ ∨D′ = D (16)

Clearly, (15) implies (16), it thus remains to show that (16) implies (15). The latter clearly holds if ¬N |=
D′ - D holds or N |= D - D′ holds. Therefore, it only remains to show that in the case where both do
not hold, (15) is implied by (16): from N |= D′ - D and ¬N |= D - D′ follows D′ = D, hence by
N |= D′ - D it then follows that N |= D - D′, i.e., (15) is satisfied in this case. Consequently, (16)
implies (15) and thus, both conditions are equivalent. Therefore, it holds that DN (M) = D±�N (M).

It then follows trivially from the definitions of D±ird (M,N) and D±
m,�N (M) that they are the same,

because D±ird (M,N) is the set of ⊆-minimal diagnoses of D±�N (M) while D±
m,�N (M) is the set of ⊆-

minimal diagnoses of DN (M).

A.2 Proofs of Section 4

The following lemma shows that the applicable bridge rules of M under a diagnosis (D1, D2) add exactly
those knowledge-base elements that are also added under the corresponding diagnosis (d1(D1), d2(D2)∪K)
of Mmr(θ,K), where K ⊆ K is arbitrary.
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Lemma 6. Let M be an MCS and Mmr(θ,K) be a meta-reasoning encoding wrt. θ and K. Furthermore, let
D1, D2 ⊆ br(M), letK ⊆ K, let S = (S1, . . . , Sn) be a belief state ofM , and let S′ = (S1, . . . , Sn, Sn+1)
be a belief state of Mmr(θ,K) where Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1}. Then, for all
1 ≤ i ≤ n, {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)} = {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪
K]), S′)}.

Proof. Let D1, D2 ⊆ br(M), let K ⊆ K, let S = (S1, . . . , Sn) be a belief state of M , and let S′ =
(S1, . . . , Sn, Sn+1) be a belief state of Mmr(θ,K) where Sn+1 = {uncondr | r ∈ D2} ∪ {removedr |
r ∈ D1}. Furthermore, let i be arbitrary such that 1 ≤ i ≤ n holds. We show that {ϕ (r) | r ∈
app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)} = {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)} holds.
“⊇”: Let s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. Then s = ϕ (r) for some bridge rule r such

that either r ∈ br(M) \ D1 and S r, or r = cf (r2) where r2 ∈ D2. In the former case, consider the
bridge rule r1 of form (7) wrt. r. By construction, body(r1) = body(r) ∪ {not (n+1 : removedr)}
and ϕ (r1) = ϕ (r). Since r /∈ D1, removedr /∈ Sn+1, and since S and S′ agree on Si for i ∈
{1, . . . , n}, i.e., S ={1,...,n} S

′, it follows that S′ r1. Therefore ϕ (r1) = ϕ (r) = s ∈ {ϕ (r) | r ∈
app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′)}. In the latter case, where r = cf (r2) and r2 ∈ D2 hold,
observe that r2 ∈ D2 implies that uncondr2 ∈ Sn+1. Consider the bridge rule r′2 of form (8) wrt. r2 and
observe that ϕ (r′2) = ϕ (r2) = swhile body(r′2) = {(n+1 : uncondr2)}. Since uncondr2 ∈ Sn+1, it holds
that S′ r′2, hence s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}. Thus it follows that
{ϕ (r) | r ∈ app(br i(M [D1, D2]), S)} ⊆ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}.
“⊆”: Let s ∈ {ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′)}. Then there exists some
r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪K]), S′) such that s = ϕ (r). Note that r either is of form (7) or
of form (8). In the former case, it holds that S′ r and removedr1 /∈ Sn+1 where r1 ∈ br i(M) and r is the
bridge rule of form (7) wrt. r1. Since S and S′ agree on all belief sets from S1 to Sn, i.e., S ={1,...,n} S

′,
and body(r) = body(r1) ∪ {not (n+1 : removedr)}, it holds that S r. Since removedr1 /∈ Sn+1 it
furthermore holds that r1 /∈ D1. This implies that r1 ∈ br i(M [D1, D2]) and consequently it holds that
r1 ∈ app(br i(M [D1, D2]), S), thus s = ϕ (r) = ϕ (r1) ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. If r is
of form (8), body(r) = {(n+1 : uncondr2)}where r2 ∈ br i(M) and r is the bridge rule of form (8) wrt. r2.
Since r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′) and r /∈ d2(D2) ∪ K, it follows that S′ r,
hence uncondr2 ∈ Sn+1 and thus r2 ∈ D2. Therefore, it holds that cf (r2) ∈ app(br i(M [D1, D2]), S) and
consequently ϕ (r2) = ϕ (r) = s ∈ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}. In both cases it holds that
{ϕ (r) | r ∈ app(br i(M

mr(θ,K)[d1(D1), d2(D2) ∪ K]), S′)} ⊆ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.

The next lemma shows that every protected diagnosis of a meta-reasoning MCS is exhibited in the belief
set of the observation context of every witnessing equilibrium of said diagnosis.

Lemma 7. Let M = (C1, . . . , Cn) be an MCS and Mmr(θ,K) = (C1, . . . , Cn, Cn+1) be a meta-reasoning
encoding. Given that D1, D2 ⊆ br(M), K ⊆ K, and S = (S1, . . . , Sn, Sn+1) is a belief state of Mmr(θ,K),

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)})

holds iff Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and θ(D1, D2,K) holds.

Proof. By definition of ACCn+1 (cf. Definition 13)

Sn+1 ∈ ACCn+1(kbn+1 ∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)})
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holds iff Sn+1 = {removedr | r ∈ R1} ∪ {uncondr | r ∈ R2} and θ(R1, R2, R3) is true, where

R1 = {r ∈ br(M) | not removedr /∈ H},
R2 = {r ∈ br(M) | uncondr ∈ H},
R3 = {r ∈ K | ϕ (r) ∈ H}, and

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)}.

To prove this lemma, it therefore suffices to show that R1 = D1, R2 = D2, and R3 = K.
Consider the set B of bridge rules of context Cn+1 in the MCS resulting from the application of the

diagnosis:

B = brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K])

=
(

brn+1(Mmr(θ,K)) \ d1(D1)
)
∪ cf

(
d2(D2) ∪K

)
=
((
d1(br(M)) ∪ d2(br(M)) ∪ K

)
\ d1(D1)

)
∪ cf

(
d2(D2) ∪K

)
.

Observe that every bridge rule r ∈ B is such that either body(r) = {⊥} or body(r) = {>}. Hence, for
any belief state S the set of applicable bridge rules, call it Bapp , is exactly the set of rules whose body is >.
Formally,

Bapp = {r ∈ B | body (r) = {>}} = app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S).

Recall that r ∈ d1(br(M)) ∪ d1(D1) ∪ cf
(
d2(D2) ∪ K

)
implies that body(r) = {>}, while r ∈

d2(br(M)) ∪ K implies that body(r) = {⊥}. Therefore,

Bapp = d1(br(M)) \ d1(D1) ∪ cf
(
d2(D2) ∪K

)
and consequently it holds for the set H of heads of applicable bridge rules that

H = {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S)}
= {ϕ (r) | r ∈ Bapp}
= {ϕ (r) | r ∈

(
d1(br(M)) \ d1(D1) ∪ cf (d2(D2) ∪K)

)
}

= {not removedr | r ∈ br(M) \D1} ∪ {uncondr | r ∈ D2} ∪ {ϕ (r) | r ∈ K}.

Since the heads of brn+1 are unique, it holds for any rK ∈ K and r ∈ br(M) that uncondr 6= ϕ (rK) 6=
not removedr and it also holds for any K ′ ⊆ K that the heads of K ′ are unique. Consequently, it holds that

R1 = {r ∈ br(M) | not removedr /∈ H} = {r ∈ br(M) | r ∈ D1} = D1

R2 = {r ∈ br(M) | uncondr ∈ H = {r ∈ br(M) | r ∈ D2} = D2

R3 = {r ∈ K | ϕ (r) ∈ H} = {r ∈ K | r ∈ K} = K.

Since it only remained to show that R1 = D1, R2 = D2, and R3 = K, the lemma is therefore proven.

Proof of Proposition 3. (1) Since Sn+1 = {uncondr | r ∈ D2} ∪ {removedr | r ∈ D1} and S′ =
(S1, . . . , Sn, Sn+1), all pre-conditions of Lemma 7 and Lemma 6 are satisfied; hence we conclude the
following.
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By Lemma 7, θ(D1, D2,K) holds iff

Sn+1 ∈ ACCn+1

(
kbn+1

∪ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}
)
. (17)

By Lemma 6, for all 1 ≤ i ≤ n holds

{ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′)}

= {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}.

which implies that for all 1 ≤ i ≤ n it holds that

ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))})

= ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}).

This in turn implies that for all 1 ≤ i ≤ n, it holds that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))})

iff Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S)}). (18)

From (18) and (17) we therefore obtain that: θ(D1, D2,K) holds and for all 1 ≤ i ≤ n it holds that
Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M [D1, D2]), S) if and only if for all 1 ≤ j ≤ n+ 1 it holds
that

Si ∈ ACCi(kbi ∪ {ϕ (r) | r ∈ app(br i(M
mr(θ,K)[d1(D1), d2(D2) ∪K]), S′))}).

This is equivalent to: θ(D1, D2,K) and S ∈ EQ(M [D1, D2]) hold iff it holds that
S′ ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]).

(2) This is a direct consequence of (1) and the fact that a diagnosis implies the existence of a wit-
nessing equilibrium and vice versa, i.e., (D1, D2) ∈ D±(M) iff there exists a belief state S ∈
EQ(M [D1, D2]), for any M,D1, D2, and S. Thus

(D1, D2) ∈ D±(M) and θ(D1, D2,K) hold
iff θ(D1, D2,K) and (S1, . . . , Sn) ∈ EQ(M [D1, D2]) hold
iff (by (1)) (S1, . . . , Sn, Sn+1) ∈ EQ(Mmr(θ,K)[d1(D1), d2(D2) ∪K]) holds
iff (d1(D1), d2(D1) ∪K) ∈ D±(Mmr(θ,K)) holds.

It remains to show that (d1(D1), d2(D1) ∪ K) ∈ D±(Mmr(θ,K)) iff (d1(D1), d2(D1) ∪ K) ∈
D±(Mmr(θ,K), brP ). This follows from (d1(D1) ∪ d2(D2) ∪ K) ∩ brP = ∅ (see Definition 13)
and Proposition 1, which shows that D±(Mmr(θ,K), brP ) ⊆ D±(Mmr(θ,K)), i.e, every diagnosis
with protected bridge rules also is a diagnosis.

The following lemma shows that the bridge rules of context Cn+1 in the MCS Mmr(θ,K) are such that
for a minimal diagnosis (D1, D2) ∈ D±m(Mmr(θ,K), brP ), a bridge rule r with body(r) = {>} is only
contained in D1 (or not modified at all), and a bridge rule r with body(r) = {⊥} is only contained in D2

(or not modified at all).
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Lemma 8. LetMmr(θ,K) be a meta-reasoning encoding with protected bridge rules brP , and let (D1, D2) ∈
D±m(Mmr(θ,K), brP ). Then, for every r ∈ br(Mmr(θ,K)) \ brP holds that:

(i) body(r) = {>} implies r /∈ D2 and

(ii) body(r) = {⊥} implies r /∈ D1.

Proof. Since (D1, D2) ∈ D±m(Mmr(θ,K), brP ), there exists a witnessing equilibrium
S ∈ EQ(Mmr(θ,K)[D1, D2]) of (D1, D2). Since (D1, D2) is a diagnosis with protected bridge rules, it
holds that (D1 ∪D2) ∩ brP = ∅, which by construction of Mmr(θ,K) implies that r ∈ brn+1.

For a proof by contradiction, we now show the following:

(i) if body(r) = {>} and r ∈ D2 then (D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,K), brP );

(ii) if body(r) = {⊥} and r ∈ D1 then (D1 \ {r}, D2) ∈ D±(Mmr(θ,K), brP ).

To show that the respective smaller diagnosis admits a witnessing equilibrium it suffices in the following to
consider only applicable bridge rules of Cn+1, because it is the only context of Mmr(θ,K) with bridge rules
that are not protected.

(i) Case body(r) = {>} and r ∈ D2. Then

ϕ (r) ∈ {ϕ (r) | r ∈ app(brn+1(Mmr(θ,K)[D1, D2]), S)}

since cf (r) ∈ app(brn+1(Mmr(θ,K)[D1, D2]), S). Now consider (D1 \ {r}, D2 \ {r}) ⊂ (D1, D2)
and observe that r ∈ app(brn+1(Mmr(θ,K)[D1 \ {r}, D2 \ {r}]), S) since r is a bridge rule of the
modified system and body(r) = {>}. Consequently, S ∈ EQ(Mmr(θ,K)[D1 \ {r}, D2 \ {r}]) and
(D1 \ {r}, D2 \ {r}) ∈ D±(Mmr(θ,K), brP ). Note that this reasoning applies regardless of whether
r ∈ D1 holds.

(ii) Case body(r) = {⊥} and r ∈ D1. Then

app(brn+1(Mmr(θ,K)[D1 \ {r}, D2]), S) = app(brn+1(Mmr(θ,K)[D1, D2]), S)

since r either is not applicable (left-hand side), or it is not a bridge rule of the modified MCS (right-
hand side). Consequently, S ∈ EQ(Mmr(θ,K)[D1 \ {r}, D2]) and therefore (D1 \ {r}, D2) ∈
D±(Mmr(θ,K), brP ).

Each of these statements contradicts that (D1, D2) ∈ D±m(Mmr(θ,K), brP ), hence the statement of the
lemma follows.

The following lemma shows that there are no diagnoses in D±m(Mmr(θ,K), brP ) other than those which
correspond to diagnoses of M .

Lemma 9. LetM be an MCS andMmr(θ,K) be some meta-reasoning encoding forM . For every (R1, R2) ∈
D±m(Mmr(θ,K), brP ) there exist D1, D2 ⊆ br(M) and K ⊆ K such that R1 = d1(D1) and R2 = d2(D2)∪
K.
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Proof. Recall that brP contains all bridge rules of form (7) and (8), hence the only bridge rules not in brP
are those of brn+1, because brMmr(θ,K) = brP ∪ brn+1. Since brn+1 = d1(br(M)) ∪ d2(br(M)) ∪ K, it
follows directly that for every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) there exist D1, D

′
1, D2, D

′
2 ⊆ br(M) and

K,K ′ ⊆ K such thatR1 = d1(D1)∪d2(D′1)∪K ′ andR2 = d1(D′2)∪d2(D2)∪K. Observe that for all r ∈
d2(D′1)∪K ′ it holds that body(r) = {⊥}, hence by Lemma 8 it follows that d2(D′1)∪K ′ = ∅. Furthermore,
it holds for all r ∈ d1(D′2) that body(r) = {>}, hence by Lemma 8 it follows that d1(D′2) = ∅. Together,
this means that D′1 = D′2 = K ′ = ∅ and therefore it holds for every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) that
there exist D1, D2 ⊆ br(M) and K ⊆ K such that R1 = d1(D1) and R2 = d2(D2) ∪K.

Proof of Propostion 4. By definition of minimal diagnosis, it holds that

D±m(Mmr(θ,K), brP ) =

{(R1, R2) |(R1, R2) ∈ D±(Mmr(θ,K), brP )

and there exists no (R′1, R
′
2) ∈ D±(Mmr(θ,K), brP )

such that (R′1, R
′
2) ⊂ (R1, R2)}

By Lemma 9, it holds for every (R1, R2) ∈ D±m(Mmr(θ,K), brP ) that there exist D1, D2 ⊆ br(M) and
K ⊆ K such that R1 = d1(D1) and R2 = d2(D2) ∪K, hence we obtain that

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(d1(D1), d2(D2) ∪K) ∈ D±(Mmr(θ,K), brP )

and there exists no (d1(D′1), d2(D′2) ∪K ′) ∈ D±(Mmr(θ,K), brP )

such that (d1(D′1), d2(D′2) ∪K ′) ⊂ (d1(D1), d2(D2) ∪K)

holds for some K,K ′ ⊆ K}

By Proposition 3 we know that (d1(D1), d2(D2)∪K) ∈ D±(Mmr(θ,K), brP ) holds iff (D1, D2) ∈ D±(M)
and θ(D1, D2,K) hold. Therefore we obtain

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪K ′)⊂ (d1(D1), d2(D2) ∪K) and θ(D′1, D
′
2,K

′)

holds for some K,K ′ ⊆ K}.

Since d1 and d2 are bijective, (d1(D′1), d2(D′2)∪K ′) ⊂ (d1(D1), d2(D2)∪K) holds iff (D′1, D
′
2 ∪K ′) ⊂

(D1, D2 ∪K) holds.

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′)

holds for some K,K ′ ⊆ K}.
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Proof of Proposition 5. From Proposition 4 we know that

D±m(Mmr(θ,K), brP ) ={(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M), θ(D1, D2,K) holds,[
@(D′1, D

′
2) ∈ D±(M),K ′ ⊆ K :

(D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) and θ(D′1, D

′
2,K

′)holds
]
}.

Because θ is functional increasing, it holds that (D′1, D
′
2 ∪K ′) ⊂ (D1, D2 ∪K) holds iff (D′1, D

′
2) ⊂

(D1, D2). We therefore obtain that:

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K,K ′⊆K}.

A.3 Proofs of Section 5

A.3.1 Proofs of Section 5.1

Proof of Theorem 1. Recall that Mf = Mmr(θ,K) where θ is defined such that θ(D1, D2, ∅) holds iff it
holds that f(D1, D2) = 1, hence θ is functional increasing. By Lemma 5 it therefore holds that

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2)∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2)⊂ (D1, D2) and θ(D′1, D

′
2,K

′) holds for some K ′,K ′⊆K}

which in case of Mf becomes

D±m(Mf , brP ) = {(d1(D1), d2(D2)) |(D1, D2) ∈ D±(M) and θ(D1, D2, ∅) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and θ(D′1, D

′
2, ∅) holds}.

By definition of Mf it furthermore holds that θ(D1, D2, ∅) holds iff f(D1, D2) = 1, hence we obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) |(D1, D2) ∈ D±(M) and f(D1, D2) = 1

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(D′1, D
′
2) ⊂ (D1, D2) and f(D′1, D

′
2) = 1}

Applying the definition of minimal-filtered diagnoses, we thus obtain that

D±m(Mf , brP ) = {(d1(D1), d2(D2)) | (D1, D2) ∈ D±m,f (M)}.

Note that this statement is equivalent to

D±m,f (M) = {(D1, D2) | (d1(D1), d2(D2)) ∈ D±m(Mf , brP )}.
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A.3.2 Proofs of Section 5.2

Proof of Lemma 1. “⇒”: Suppose that (D1, D2) � (D′1, D
′
2). We have to show that for every K ∈

mapg�(D1, D2) it holds that K ∈ mapg�(D′1, D
′
2). Let K ∈ mapg�(D1, D2) hold. Then it follows by defi-

nition that K = g(D′′1 , D
′′
2) for some (D′′1 , D

′′
2) ∈ 2br(M) × 2br(M). In the case that (D′′1 , D

′′
2) = (D1, D2)

it trivially follows that (D′′1 , D
′′
2) � (D′1, D

′
2) and thus by definition of mapg�(D′1, D

′
2) it holds that K ∈

mapg�(D′1, D
′
2). In the case that (D′′1 , D

′′
2) 6= (D1, D2) it follows by the definition of mapg�(D1, D2)

that (D′′1 , D
′′
2) � (D1, D2). Since (D1, D2) � (D′1, D

′
2) and � is transitive, it follows that (D′′1 , D

′′
2) �

(D′1, D
′
2) and consequently, it holds that K ∈ mapg�(D′1, D

′
2). Thus for any K ∈ mapg�(D1, D2) it holds

that K ∈ mapg�(D′1, D
′
2), i.e., mapg�(D1, D2) ⊆ mapg�(D′1, D

′
2).

“⇐”: Suppose that mapg�(D1, D2) ⊆ mapg�(D′1, D
′
2). We have to show that (D1, D2) � (D′1, D

′
2).

By definition g(D1, D2) ∈ mapg�(D1, D2) and hence g(D1, D2) ∈ mapg�(D′1, D
′
2). By definition of

mapg�(D′1, D
′
2) and since (D1, D2) 6= (D′1, D

′
2), it then follows that (D1, D2) � (D′1, D

′
2).

The following lemma shows that the set D±m(Mpl�, brP ) of minimal diagnoses with protected bridge
rules of Mpl� corresponds to those diagnoses of M which are at the same time, preferred according to �
and ⊆-minimal. These diagnoses not yet correspond to minimal �-preferred diagnoses since preference
among ⊆-incomparable diagnoses is not captured by D±m(Mpl�, brP ).

Lemma 10. Given an MCS M and a preference � on its diagnoses, it holds that

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.

Proof. By Proposition 4 it holds that:

D±m(Mmr(θ,K), brP ) =

{(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) and θ(D1, D2,K) holds

and there exists no (D′1, D
′
2) ∈ D±(M) such that

(d1(D′1), d2(D′2) ∪K ′) ⊂ (d1(D1), d2(D2) ∪K) and

θ(D′1, D
′
2,K

′) holds for some K ′ ⊆ K}
= {(d1(D1), d2(D2) ∪K) |(D1, D2) ∈ D±(M) ∧ θ(D1, D2,K) ∧ ∀(D′1, D′2) ∈ D±(M):(

∃K ′ : θ(D′1, D′2,K ′)∧
(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)

)
⇒ (d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K)}

Next we substitute θ by its definition, i.e., θ(D1, D2,K) iff mapg�(D1, D2) = K.

D±m(Mmr(θ,K), brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K ′ : mapg�(D′1, D

′
2) = K ′∧

(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)
)

⇒ (d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K)}
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Since d1 and d2 both are bijective, mapg�(D1, D2) = K, and mapg�(D′1, D
′
2) = K ′, it follows that

(d1(D′1), d2(D′2) ∪K ′) = (d1(D1), d2(D2) ∪K) holds iff (D′1, D
′
2) = (D1, D2). Hence,

D±m(Mmr(θ,K), brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M):(
∃K ′ : (mapg�(D′1, D

′
2) = K ′∧

(d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)
)

⇒ (D1, D2) = (D′1, D
′
2)}

Towards the next step, we need to show that the following is true for (D1, D2) ∈ D±(M), (D′1, D
′
2) ∈

D±(M), and mapg�(D1, D2) = K:(
mapg�(D′1, D

′
2) = K ′ ∧ (d1(D′1), d2(D′2) ∪K ′) ⊆ (d1(D1), d2(D2) ∪K)

)
⇒ (D1, D2) = (D′1, D

′
2) (19)

iff(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2) (20)

Observe that (d1(D′1), d2(D′2)∪K ′) ⊆ (d1(D1), d2(D2)∪K) holds iff (D′1, D
′
2) ⊆ (D1, D2) andK ′ ⊆ K

both hold. Furthermore, by Lemma 1 it holds that K ′ = mapg�(D′1, D
′
2) ⊆ mapg�(D1, D2) = K iff

(D′1, D
′
2) � (D1, D2), given that (D1, D2) 6= (D′1, D

′
2). In the case that (D1, D2) = (D′1, D

′
2), the

implication of (19) is trivially true; in this case, (20) also holds since its consequent is the same. Therefore,
(19) holds iff (20) holds. After substitution, it therefore holds that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2)∪K) | (D1, D2) ∈ D±(M)

∧mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}

Proof of Theorem 2. In the following, let θ, K, and mapg� be according to Mpl� = Mmr(θ,K).
“⇒”: Let (R1, R2) ∈ D±(Mpl�, brP , brH), i.e., (R1, R2) ∈ D±m(Mpl�, brP ) and for all (R′1, R

′
2) ∈

D±m(Mpl�, brP ) holds that (R′1, R
′
2) ⊆brH (R1, R2) ⇒ (R′1, R

′
2) =brH (R1, R2). By Lemma 10 it holds

that (R1, R2) = (d1(D1), d2(D2) ∪ K) where K = mapg�(D1, D2) and (D1, D2) ∈ D±(M). To show
that (D1, D2) ∈ D±m,�(M), we have to show that (D1, D2) is �-preferred and subset minimal among all
�-preferred diagnoses. Assume that (D1, D2) is not �-preferred. Then by (4) there exists a diagnosis
(D′1, D

′
2) ∈ D±(M) such that (D′1, D

′
2) � (D1, D2), (D1, D2) 6= (D′1, D

′
2), and (D1, D2) 6� (D′1, D

′
2) all

hold. Let mapg�(D′1, D
′
2) = K ′ and mapg�(D1, D2) = K. Since it holds that (D′1, D

′
2) 6= (D1, D2) and

(D′1, D
′
2) � (D1, D2) it follows from Lemma 1 that K ′ ⊆ K. From (D1, D2) 6� (D′1, D

′
2) it also follows

that K 6⊆ K ′ holds and thus K ′ ⊂ K holds. This means that (R′1, R
′
2) = (d1(D′1), d2(D′2) ∪ K ′) ⊂brH

(d1(D1), d2(D2) ∪K) = (R1, R2) holds.
Now suppose (R′1, R

′
2) ∈ D±m(Mpl�, brP ) holds; then (R1, R2) ∈ D±(Mpl�, brP , brH) contra-

dicts that (R′1, R
′
2) ⊂brH (R1, R2). On the other hand, (R′1, R

′
2) /∈ D±m(Mpl�, brP ) implies that some

(R′′1 , R
′′
2) ∈ D±m(Mpl�, brP ) exists with (R′′1 , R

′′
2) ⊂ (R′1, R

′
2), i.e., there exist D′′1 , D

′′
2 ⊆ br(M) such
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that (D′′1 , D
′′
2) � (D′1, D

′
2) � (D1, D2) and K ′′ ⊆ K ′ ⊂ K both hold where K ′′ = mapg�(D′′1 , D

′′
2),

R′′1 = d1(D′′1), andR′′2 = d2(D′′2)∪K ′′. SinceK ′′ ⊂ K it therefore holds that (R′′1 , R
′′
2) ⊂brH (R1, R2) and

together with (R′′1 , R
′′
2) ∈ D±m(Mpl�, brP ) this contradicts that (R1, R2) ∈ D±(Mpl�, brP , brH). Since

every case yields a contradiction, it therefore follows that there exists no such (D′1, D
′
2), i.e., (D1, D2)

indeed is a �-preferred diagnosis.
It remains to show that (D1, D2) is subset-minimal among all �-preferred diagnoses. Towards contra-

diction, assume there exists (D′1, D
′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2). We distinguish on how

� relates (D1, D2) and (D′1, D
′
2).

• case (D1, D2) � (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): since (R1, R2) ∈ D±m(Mpl�, brP ), it holds

by Lemma 10 that (D′1, D
′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2) ⇒ (D′1, D

′
2) = (D1, D2) which

directly contradicts that (D′1, D
′
2) ⊂ (D1, D2).

• case (D1, D2) � (D′1, D
′
2)∧(D′1, D

′
2) 6� (D1, D2): in this case, (D′1, D

′
2) is not�-preferred, because

(D1, D2) ≺ (D′1, D
′
2). Hence, it contradicts that (D′1, D

′
2) ∈ D±�(M).

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) � (D1, D2): this case is analogous to the first one, i.e.,

(R1, R2) ∈ D±m(Mpl�, brP ) contradicts that (D′1, D
′
2) � (D1, D2) and (D′1, D

′
2) ⊂ (D1, D2) both

hold.

• case (D1, D2) 6� (D′1, D
′
2) ∧ (D′1, D

′
2) 6� (D1, D2): this case contradicts with � being total.

Consequently, there exists no (D′1, D
′
2) ∈ D±�(M) such that (D′1, D

′
2) ⊂ (D1, D2) and therefore it holds

that (D1, D2) ∈ D±m,�(M).
“⇐”: Let (D1, D2) ∈ D±m,�(M). We have to show that

(d1(D1), d2(D2) ∪K) ∈ D±(Mpl�, brP , brH)

holds with mapg�(D1, D2) = K. By definition, it holds that

D±(Mpl�, brP , brH) = {D ∈ D±m(Mpl�, brP ) | ∀D′ ∈ D±m(Mpl�, brP ) :

D′ ⊆brH D ⇒ D′ =brH D}.

While by Lemma 10 it holds that:

D±m(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) | (D1, D2) ∈ D±(M)∧
K = mapg�(D1, D2) ∧ ∀(D′1, D′2) ∈ D±(M) :(
(D′1, D

′
2)� (D1, D2)∧ (D′1, D

′
2)⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2)}.

Observe that brH = K and
(
d1(br(M)) ∪ d2(br(M))

)
∩ K = ∅, hence (d1(D1), d2(D2) ∪ K) ⊆brH

(d1(D′1), d2(D′2) ∪K ′) holds iff K ⊆ K ′ holds.
Therefore, it also holds that:

D±(Mpl�, brP ) = {(d1(D1), d2(D2) ∪K) ∈ D±m(Mpl�, brP ) | (21)

∀(D′1, D′2) ∈ D±(M) :[
∀(D′′1 , D′′2) ∈ D±(M) :

(
(D′′1 , D

′′
2) � (D′1, D

′
2)

∧ (D′′1 , D
′′
2) ⊆ (D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2)
]

⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
}.
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First, we show that (d1(D1), d2(D2) ∪ K) ∈ D±m(Mpl�, brP ), which by Lemma 10 holds iff the
following holds: (D1, D2) ∈ D±(M) ∧ mapg�(D1, D2) = K ∧ ∀(D′1, D′2) ∈ D±(M) :

(
(D′1, D

′
2) �

(D1, D2) ∧ (D′1, D
′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2). Since it holds that (D1, D2) ∈ D±m,�(M), it

also holds that (D1, D2) ∈ D±(M), and K = mapg�(D1, D2) by construction.
It remains to show that ∀(D′1, D′2) ∈ D±(M) :

(
(D′1, D

′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2)

)
⇒ (D1, D2) = (D′1, D

′
2). Assume towards contradiction that there exists some (D′1, D

′
2) ∈ D±(M)

such that (D′1, D
′
2) � (D1, D2) ∧ (D′1, D

′
2) ⊆ (D1, D2) and (D1, D2) 6= (D′1, D

′
2), i.e., it holds for

(D′1, D
′
2) that (D′1, D

′
2) ⊂ (D1, D2) ∧ (D′1, D

′
2) � (D1, D2). We distinguish whether (D1, D2) �

(D′1, D
′
2) also holds: if (D1, D2) � (D′1, D

′
2) holds, (D′1, D

′
2) is �-preferred since (D1, D2) is. Since

(D1, D2) ∈ D±m,�(M), (D1, D2) is subset-minimal among all �-preferred diagnoses, which contradicts
that (D′1, D

′
2) ⊂ (D1, D2) holds. In the case that (D1, D2) 6� (D′1, D

′
2), it holds that (D1, D2) 6∈ D±�(M),

since it holds that (D′1, D
′
2) � (D1, D2) ∧ (D1, D2) 6= (D′1, D

′
2) ∧ (D1, D2) 6� (D′1, D

′
2). This contradicts

that (D1, D2) ∈ D±m,�(M). Hence it follows that no such (D′1, D
′
2) exists. Consequently, it holds that

(d1(D1), d2(D2) ∪K) ∈ D±m(Mpl�, brP ).
According to (21), it remains to show that for all (D′1, D

′
2) ∈ D±(M) it holds that[

∀(D′′1 , D′′2) ∈ D±(M) :
(
(D′′1 , D

′′
2) � (D′1, D

′
2) ∧ (D′′1 , D

′′
2) ⊆ (D′1, D

′
2)
)

⇒ (D′1, D
′
2) = (D′′1 , D

′′
2)
]
⇒
(
mapg�(D′1, D

′
2) ⊆ K ⇒ K = mapg�(D′1, D

′
2)
)
.

Towards contradiction, assume that there exists (D′1, D
′
2) ∈ D±(M) such that ∀(D′′1 , D′′2) ∈ D±(M) :(

(D′′1 , D
′′
2)�(D′1, D

′
2)∧(D′′1 , D

′′
2)⊆(D′1, D

′
2)
)
⇒ (D′1, D

′
2) = (D′′1 , D

′′
2) holds and also mapg�(D′1, D

′
2) (

K holds. Since mapg�(D′1, D
′
2) ( K, it follows that (D1, D2) 6= (D′1, D

′
2) and hence by Lemma 1 that

(D′1, D
′
2) � (D1, D2) and (D1, D2) 6� (D1

′, D2
′) both hold, which implies (D1, D2) /∈ D±m,�(M), in

contradiction to the assumption. Therefore, no such (D′1, D
′
2) can exist. This proves that (d1(D1), d2(D2)∪

K) ∈ D±(Mpl�, brP , brH), which completes the proof.

A.3.3 Proofs of Section 5.3

Proof of Lemma 2. Observe that I is a bijection on {1, . . . , n} which simply renames context identifiers.
Therefore, one can directly conclude that S ∈ EQ(M) holds iff I(S) ∈ EQ(I(M)) holds. In the following,
we show in full detail that this renaming indeed is correct.

Let S = (S1, . . . , Sn) and I(S) = (SI−1(1), . . . , SI−1(n)) = (S′1, . . . , S
′
n). and let 1 ≤ i ≤ n. Note

that S ∈ EQ(M) holds iff for all 1 ≤ i ≤ n holds Si ∈ ACCi(kbi ∪ app(br i(M), S)); additionally
I(S) ∈ EQ(I(M)) holds iff for all 1 ≤ j ≤ n holds Sj ∈ ACCj(kbj ∪ app(br j(I(M), I(S)). Given
that I is bijective and compatible to M , there exists j ∈ {1, . . . , n} for every i ∈ {1, . . . , n} such that
j = I(i) and vice versa, i.e., for every j ∈ {1, . . . , n} exists a i ∈ {1, . . . , n} such that i = I−1(j). We
now show that for any 1 ≤ i, j ≤ n such that j = I(i) it holds that Si ∈ ACCi(kbi ∪ app(br i(M), S) iff
Sj ∈ ACCj(kbj ∪ app(br j(I(M)), I(S)). Observe that by construction of I(M) it holds that Si = Sj ,
ACCi = ACCj , and kbi = kbj . Hence it suffices to show that app(br i(M), S) = app(br j(I(M)), I(S)).
Note that br j(I(M)) = I(br i(M)), hence there exists a bijection from br j(I(M)) to br i(M), namely I;
furthermore I also maps bijectively each r ∈ br i(M) and every (c : p) ∈ body±(r) to I(r) and (I(c) : p).
Since ϕ (r) = ϕ (I(r)) it suffices to show that p ∈ Sc holds iff p ∈ S′I(c) holds. This is true since
S′I(c) = SI−1(I(c)) = Sc, thus it follows that app(br i(M), S) = app(br j(I(M)), I(S)) which in turn
implies that S ∈ EQ(M) iff I(S) ∈ EQ(I(M)).
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From this we also conclude that S ∈ EQ(M [D1, D2]) holds iff I(S) ∈ EQ(I(M [D1, D2])) holds,
because M [D1, D2] is an MCS, hence the above statement also applies to M [D1, D2].

To show that the set of diagnoses of M ⊗M ′ is the product of the set of diagnoses of M and of M ′, we
use the following lemma, which states that if M ′ has no bridge rules, the set of diagnoses of M coincides
with the set of diagnoses of M ⊗M ′.

Lemma 11. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
m) with br(M ′) = ∅. Then

for every belief state (S1, . . . , Sn) of M exist belief sets Sn+1, . . . , Sn+m such that
(S1, . . . , Sn+m) ∈ EQ(M ⊗M ′) holds iff (S1, . . . , Sn) ∈ EQ(M) holds.

Proof. Let Mo = M ⊗M ′.
“⇒”: Let S = (S1, . . . , Sn+m) ∈ EQ(M ⊗ M ′) be such that for every 1 ≤ i ≤ n + m holds

Si ∈ ACCi(kbi ∪ app(br i(M
o), S)). Note that by construction of Mo it holds for every bridge rule

r ∈ br i(M
o) with 1 ≤ i ≤ n that (c : p) ∈ body±(r) implies that c ∈ {1, . . . , n} holds. Hence

by br i(M
o) = br i(M) follows that app(br i(M

o), S) = app(br i(M), (S1, . . . , Sn)). Therefore, for all
i ∈ C (M) it holds that Si ∈ ACCi(kbi ∪ app(br i(M), (S1, . . . , Sn))), i.e., (S1, . . . , Sn) ∈ EQ(M).

“⇐”: Let S = (S1, . . . , Sn) ∈ EQ(M) hold. Since br(M ′) = ∅, it holds for all n+1 ≤ j ≤ n+m that
br j(M

o) = ∅. Recall that contexts are consistent without bridge rules, i.e., there exists S∅j ∈ ACCj(kbj∪∅)
for all n+ 1 ≤ j ≤ n+m. Consider the belief state S′ = (S1, . . . , Sn, S

∅
n+1, . . . , S

∅
n+m) and observe that

for all 1 ≤ i ≤ n it holds that app(br i(M
o), S′) = app(br i(M), S) since br i(M

o) = br i(M). It therefore
follows that S′ ∈ EQ(Mo) holds.

Since shifting has no influence on acceptability, we can turn around the above lemma to show that the
set of diagnoses of M ⊗M ′ equals the set of diagnoses of M ′ if br(M) = ∅.

Corollary 3. Given an MCS M = (C1, . . . , Cn) and an MCS M ′ = (C ′1, . . . , C
′
n′) with br(M) = ∅. Then,

for every belief state (S′1, . . . , S
′
n′) of M ′ exist belief sets S1, . . . , Sn such that

(S1, . . . , Sn, S
′
1, . . . , S

′
n′) ∈ EQ(M ⊗M ′) holds iff (S′1, . . . , S

′
n′) ∈ EQ(M ′) holds.

Proof. Consider a permutation I ′ that exchanges the positions of contexts of M and M ′ in M ⊗ M ′,
formally: let I be the permutation wrt. M ⊗ M ′ and recall that I is compatible with M ⊗ M ′. Let
I ′ = I−1 and M s = I ′(M ⊗ M ′). Note that M s equals M ′ ⊗ M , hence by Lemma 2 we obtain that
(S1, . . . , Sn, S

′
1, . . . , S

′
n′) ∈ EQ(M ⊗M ′) iff I ′((S1, . . . , Sn, S

′
1, . . . , S

′
n′)) ∈ EQ(M s) iff

(S′1, . . . , S
′
n′ , S1, . . . , Sn) ∈ EQ(M ′ ⊗M).

Since br(M) = ∅ it holds by Lemma 11 that for every belief state (S′1, . . . , S
′
n′) of M ′ exist belief

sets Sn′+1, . . . , Sn′+n such that (S′1, . . . , S
′
n′ , Sn′+1, . . . , Sn′+n) ∈ EQ(M ′ ⊗M) holds iff (S′1, . . . , S

′
n′) ∈

EQ(M ′) holds. In summary, (S1, . . . , Sn, S
′
n+1, . . . , S

′
n+n′) ∈ EQ(M⊗M ′) holds iff (S′n+1, . . . , S

′
n+n′) ∈

EQ(M ′) holds.

The proof of Proposition 6 makes use of Lemma 4 and Lemma 5 occurring in the appendix of [29] about
splitting sets in MCS. For convenience, we recap them here as well as the definition of a splitting set (which
is similar to the notion of a splitting set in answer-set programming).

Definition 21 (cf. [29]). A set of contexts U ⊆ C (M) is a splitting set of an MCS M , if every rule
r ∈ br(M) is such that Ch (r) ∈ U satisfies Cb (r) ⊆ U . More formally, U is a splitting set iff
U ⊇

⋃
{Cb (r) | r ∈ br(M), Ch (r) ∈ U}.
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Lemma 12 (cf. [29]). Let U be a splitting set of an MCS M and let R1, R2 ⊆ br(M). Then, U is also a
splitting set of M [R1 ∪ cf (R2)].

Lemma 13 (cf. [29]). Let M be an MCS, let B be a set of bridge rules compatible with M , and let U
be a splitting set for M [B]. Furthermore, let S = (S1, . . . , Sn) and S′ = (S′1, . . . , S

′
n) be belief states

of M , and let bU ⊆ R ⊆ B. Then, S =U S′ and i ∈ U implies ACCi(kbi ∪ app(br i(M [B]), S)) =
ACCi(kbi ∪ app(br i(M [R]), S′)).

Proof of Proposition 6. W.l.o.g. let M = (C1, . . . , Cn), let M ′ = (C ′1, . . . , C
′
n′), and let Mo = M ⊗M ′.

Observe that by construction, there is no bridge rule whose head belongs to M (resp. M ′) and whose body
contains a belief from M ′ (resp. M ). Consequently, U = {1, . . . , n} and U ′ = {n + 1, . . . , n + n′} =
C (Mo) \ U are both splitting sets of Mo. Let S∅ = (S∅1 , . . . , S

∅
n+n′) be an equilibrium of Mo[∅], which

exists by our assumption that all contexts (of M and M ′) are consistent without bridge rules; additionally
let B = br(Mo) \D1 ∪ cf (D2).

“⇒”: Let (D1, D2) ∈ D±(Mo) hold. Then there exists a belief state S = (S1, . . . , Sn+n′) such that for
every 1 ≤ i ≤ n+ n′ it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[D1, D2]), S)).
Consider SU = (S1, . . . , Sn, S

∅
n+1, . . . , S

∅
n+n′) and observe that SU =U S; hence by Lemma 13 it

follows for all i ∈ U that

ACCi(kbi ∪ app(br i(M
o[B]), S)) = ACCi(kbi ∪ app(br i(M

o[R]), SU ))

holds for all bU ⊆ R ⊆ B, specifically for R = bU . Note that U,U ′, and bU meant here are relative to the
MCS Mo[B], where by Lemma 12 U and U ′ are also splitting sets of Mo[B]. Consequently, for all i ∈ U
it holds that Si ∈ ACCi(kbi ∪ app(br i(M

o[bU ]), SU )) and for all j ∈ C (Mo) \ U it holds that S∅j ∈
ACCj(kbj ∪ app(br j(M

o[bU ]), SU )), because br j(M
o[bU ]) = ∅; thus it holds that SU ∈ EQ(Mo[bU ]).

Recall that bU is defined relative to Mo[B], hence bU = br(M) \ (D1 ∩ br(M)) ∪ cf (D2 ∩ br(M)), i.e.,
for A1 = D1 ∩ br(M) and A2 = D2 ∩ br(M) it holds that Mo[bU ] = Mo[br(M) \ A1 ∪ cf (A2)] and it
follows that SU ∈ EQ(Mo[br(M) \ A1 ∪ cf (A2)]), i.e., it holds that (A1, A2) ∈ D±(Mo[br(M)]). Since
Mo[br(M)] = M ⊗M ′[∅], Lemma 11 applies, i.e., it holds that (S1, . . . , Sn) ∈ EQ(M [A1, D2]) and we
conclude that (A1, A2) ∈ D±(M).

The proof that (B1, B2) ∈ D±(M ′) forB1 = D1∩I(br(M ′)) andB2 = D2∩I(br(M ′)) is analogous;
it is based on the belief state SU ′ = (S∅1 , . . . , S

∅
n, Sn+1, . . . , Sn+n′) which is a witness of (I(B1), I(B2)) ∈

D±(Mo[bU ′ ]); applying Corollary 3 (for (M ⊗M ′)[bU ′ ] = M ⊗M ′[B1, B2]) then yields that (B1, B2) ∈
D±(M ′).

“⇐”: Let (A1, A2)∈D±(M) and (B1, B2)∈D±(M ′) hold. Then there exists some SA = (SA1 , . . . , S
A
n )

with SA ∈ EQ(M [A1, A2]) and SB = (SB1 , . . . , S
B
n′) ∈ EQ(M ′[B1, B2]). Consider the belief state

S = (S1, . . . , Sn+n′) such that Si = SAi for 1 ≤ i ≤ n and Sn+j = SBj for 1 ≤ j ≤ n′. Observe that S
is a belief state of the MCS Md = Mo[A1 ∪ I(B1), A2 ∪ I(B2)]. Thus it suffices to show S ∈ EQ(Md),
because this implies that (A1 ∪ I(B1), A2 ∪ I(B2)) ∈ D±(M ⊗M ′).

We first show that for all 1 ≤ i ≤ n it holds that Si ∈ ACCi(kbi ∪ app(br i(M
d), S)). Let B =

br(Md); hence Md = Md[B], and note that U and U ′ are splitting sets of Md[B] by Lemma 12. Next
we consider Md[bU ] (with bU relative to Md) and R = bU . Since Md[R] = Md[bU ] = (M [A1, A2] ⊗
M ′[∅]) and SA ∈ EQ(M [A1, A2]), it holds by Lemma 11 that there exist S′n+1, . . . , S

′
n+n′ such that SM =

(S1, . . . , Sn, S
′
n+1, . . . , S

′
n+n′) ∈ EQ(M [A1, A2] ⊗ M ′[∅]), i.e., for all 1 ≤ i ≤ n it holds that Si ∈

ACCi(kbi ∪ app(br i(M
d[R]), SM ))
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It holds that SM =U S and bU ⊆ R ⊆ B; hence by Lemma 13 it holds for all 1 ≤ i ≤ n that
ACCi(kbi ∪ app(br i(M

d[B]), S)) = ACCi(kbi ∪ app(br i(M
d[R]), SM )). Consequently, it holds that

Si ∈ ACCi(kbi ∪ app(br i(M
d[B]), S)) for all 1 ≤ i ≤ n.

Second, we show that for all n + 1 ≤ j ≤ n′ it holds that Sj ∈ ACCi(kbi ∪ app(br i(M
d), S). Con-

sider Md[bU ′ ] (with bU ′ relative to Md) and R′ = bU ′ . Since Md[R′] = Md[bU ′ ] = M [∅] ⊗M ′[B1, B2]
and SB ∈ EQ(M [B1, B2]) hold, it follows by Corollary 3 that there exist S′1, . . . , S

′
n such that SM

′
=

(S′1, . . . , S
′
n, Sn+1, . . . , Sn+n′) ∈ EQ(M [∅] ⊗ M ′[B1, B2]), i.e., for all n + 1 ≤ j ≤ n′ it holds that

Sj ∈ ACCi(kbi ∪ app(br i(M
d), SM

′
)). Since it holds that SM

′
=U ′ S and bU ′ ⊆ R′ ⊆ B, Lemma 13

applies and it follows that for all n + 1 ≤ j ≤ n + n′ it holds that ACCj(kbj ∪ app(br j(M
d[B]), S)) =

ACCj(kbj∪app(br j(M
d[R′]), SM

′
)). Consequently, it holds that Sj ∈ ACCj(kbj∪app(br j(M

d[B]), S))
with n+ 1 ≤ j ≤ n+ n′.

In summary, it holds for every 1 ≤ i ≤ n + n′ that Si is accepted, i.e, S ∈ EQ(Md), hence (A1 ∪
I(A2), B1 ∪ I(B2)) ∈ D±(M ⊗M ′).

Proof of Lemma 3. Observe that 2M = M ⊗M and that 2.R = I(R) where I is the mapping wrt. M ⊗M .
The statement then follows directly from Proposition 6.

Towards proving that D±m,tmax
applied on M� allows to select ⊆-minimal, preferred diagnoses of M

according to �, we use the following lemmas about the set K(D1, D2). Recall that K(D1, D2) is the set of
prioritized bridge rules of M� that represent the diagnosis candidate (D1, D2) of M , i.e., K(D1, D2) is as
follows:

K(D1, D2) ={in1(r) | r ∈ D1} ∪ {in1(r) | r /∈ D1}∪
{in2(r) | r ∈ D2} ∪ {in2(r) | r /∈ D2}

The next lemma shows that the set K(D1, D2) is unique for every D1, D2 ⊆ br(M).

Lemma 14. Let M� be a clone encoding, D1, D2 ⊆ br(M), and R = K(D1, D2). Then, there exists no
D′1, D

′
2 ⊆ br(M) with (D1, D2) 6= (D′1, D

′
2) such that R = K(D′1, D

′
2).

Proof. Towards contradiction, let (D1, D2) 6= (D′1, D
′
2) be such that K(D1, D2) = K(D′1, D

′
2). By

(D1, D2) 6= (D′1, D
′
2) follows that either D1 6= D′1 or D2 6= D′2. Let D1 6= D′1 and observe that

K(D1, D2) ∩ {in1(r) | r ∈ br(M)} = {in1(r) | r ∈ D1} 6= {in1(r) | r ∈ D′1} = K(D′1, D
′
2) ∩

{in1(r) | r ∈ br(M)}. Consequently K(D1, D2) 6= K(D′1, D
′
2) which contradicts the assumption.

The case D2 6= D′2 is similar. It therefore follows that for R = K(D1, D2) no D′1, D
′
2 ⊆ br(M) with

(D1, D2) 6= (D′1, D
′
2) exists such that R = K(D′1, D

′
2).

The next lemma shows that two sets K(D1, D2) and K(D′1, D
′
2) are incomparable iff (D1, D2) is dif-

ferent from (D′1, D
′
2).

Lemma 15. Given Mmr(θ,K) and some D1, D2, D
′
1, D

′
2 ⊆ br(M), let R = K(D1, D2) and let R′ =

K(D′1, D
′
2); then R ⊆ R′ or R′ ⊆ R holds iff (D1, D2) = (D′1, D

′
2).

Proof. Let M be an MCS, D1, D2, D
′
1, D

′
2 ⊆ br(M), R = K(D1, D2), and R′ = K(D′1, D

′
2). Observe

that by definition of K it holds that |R| = |R′|. Hence, R ⊆ R′ or R′ ⊆ R only holds iff R = R′. By
Lemma 14 it holds that K is injective, i.e., R = R′ iff (D1, D2) = (D′1, D

′
2). Consequently, R ⊆ R′ or

R′ ⊆ R holds iff (D1, D2) = (D′1, D
′
2).
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The following lemma shows the relationship between �-preferred diagnoses of M and prioritized-
minimal ones of M�.

Lemma 16. Given an MCS M and a preference order �, D ∈ 2br(M) × 2br(M) is �-preferred iff both
(1) t(D) ∈ D±m(M�, brP ) and (2) for every D′ ∈ D±m(M�, brP ) : D′ ⊆brH t(D)⇒ D′ =brH t(D) hold.

Proof. “⇒”: Let D be �-preferred, then D ∈ D±(M) holds. We first show that t(D) ∈ D±m(M�, brP )
holds: by Proposition 4 and the definition of M� = Mmr(θ,K) it holds that (d1(D1 ∪ 2.D1), d2(D2 ∪
2.D2) ∪K(D1, D2) ∪ {tmax}) ∈ D±(M�, brP ) iff

1. (D1 ∪ 2.D1, D2 ∪ 2.D2) ∈ D±(2M) holds,

2. θ(D1 ∪ 2.D1, D2 ∪ 2.D2,K(D1, D2) ∪ {tmax}) holds, and

3. there exists no (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) such that (i) (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪ 2.D′′2)∪

K ′) ⊂ (d1(D1∪2.D1), d2(D2∪2.D2)∪K(D1, D2)∪{tmax}) and (ii) θ(D′1∪2.D′′1 , D
′
2∪2.D′′2 ,K

′)
holds for some K ′ ⊆ K.

We show that each of those statements holds:

1. Since D ∈ D±(M) holds, it follows from Lemma 3 that (D1 ∪ 2.D1, D2 ∪ 2.D2) ∈ D±(2M) holds.

2. Recall that θ(R1, R2, R3) for M� = (2M)mr(θ,K) is defined such that it holds if R1 = D1 ∪ 2.D1,
R2 = D2 ∪ 2.D2, and R3 = K(D1, D2) ∪ {tmax}, hence θ(D1 ∪ 2.D1, D2 ∪ 2.D2,K(D1, D2) ∪
{tmax}) holds.

3. Towards contradiction, assume that there exists (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) and K ′ ⊆ K

such that it holds that (d1(D′1 ∪ 2.D′′1), d2(D′2 ∪ 2.D′′2) ∪K ′) ⊂ (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪
K(D1, D2) ∪ {tmax}) and θ(D′1 ∪ 2.D′′1 , D

′
2 ∪ 2.D′′2 ,K

′) holds. Note that from this it follows that
K ′ ⊆ K(D1, D2) ∪ {tmax} and from the definition of θ that K ′ ⊆ K(D′1, D

′
2) ∪ {tmax}. Hence by

Lemma 15, it follows that (D′1, D
′
2) = (D1, D2). If (D′′1 , D

′′
2) = (D1, D2) then it holds by definition

of θ that tmax ∈ K ′, i.e., (d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2) ∪ K(D1, D2) ∪ {tmax}) = (d1(D′1 ∪
2.D′′1), d2(D′2 ∪ 2.D′′2) ∪ K ′) which contradicts that the latter is a proper subset of the former. If
(D′′1 , D

′′
2) 6= (D1, D2) holds, then by definition of θ it follows that (D′′1 , D

′′
2) � (D1, D2) = (D′1, D

′
2)

and (D1, D2) = (D′1, D
′
2) 6� (D′′1 , D

′′
2) both hold, which contradicts that (D1, D2) is �-preferred. It

therefore follows that no such (D′1 ∪ 2.D′′1 , D
′
2 ∪ 2.D′′2) ∈ D±(2M) exists.

Since all three statements hold, it follows that t(D) ∈ D±m(M�, brP ) holds.
It remains to show that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH t(D) holds. Assume

that T ∈ D±m(M�, brP ) is such that T ⊆brH t(D) holds. Then by definition of θ it holds that T =
(d1(T1 ∪ 2.T ′1), d2(T2 ∪ 2.T ′2) ∪ K(T1, T2) ∪ Tm) for some T1, T2, T

′
1, T

′
2 ⊆ br(M) and Tm ⊆ {tmax}.

Since K(T1, T2) ⊆ K, it holds by T ⊆brH t(D) that K(T1, T2) ⊆ K(D1, D2), hence by Lemma 15 it
follows that (T1, T2) = (D1, D2). Since (D1, D2) is �-preferred, i.e., there exists no (D′1, D

′
2) ∈ D±(M)

such that (D′1, D
′
2) � (D1, D2) and (D1, D2) 6� (D′1, D

′
2) both hold, it follows from the definition of θ that

(T ′1, T
′
2) = (D1, D2) and consequently it holds that Tm = {tmax}. Altogether this means that T = t(D)

and thus it holds that T =brH t(D). It therefore holds that ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D)⇒ T =brH

t(D).
“⇐”: Suppose t(D1, D2) ∈ D±m(M�, brP ) and ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D)⇒ T =brH t(D)

with D = (D1, D2) hold. Since t(D1, D2) ∈ D±m(M�, brP ) holds, it follows from Proposition 4 that
(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) ∈ D±(2M), hence by Lemma 3 it holds that (D1, D2) ∈ D±(M).
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To show that D is�-preferred, consider the set F of diagnoses that are more preferred than D, i.e., F =
{D′′ ∈ D±(M) | D′′ � D,D 6� D′′}. Towards contradiction, assume that F is non-empty, hence there
exists some subset-minimal D′ ∈ F , i.e., D′ ∈ F and for all D′′ ∈ F holds D′′ 6⊆ D′. Next we consider
(T ′1, T

′
2) = (d1(D1 ∪D′1), d2(D2 ∪D′2)∪K(D1, D2)) and observe that θ(D1 ∪D′1, D2 ∪D′2,K(D1, D2))

holds, because D′ � D and D 6� D′ both hold.
Since (D1, D2) ∈ D±(M) and (D′1, D

′
2) ∈ D±(M) it holds that (D1 ∪ 2.D′1, D2 ∪ 2.D′2) ∈ D±(2M).

Observe that there exists no other D′′ ⊂ D′ with D � D′′, D′′ 6� D, and D′′ ∈ D±(M). Therefore, there
exists no (D′′1 , D

′′
2) ∈ D±(M) such that (d1(D1 ∪ 2.D′′1), d2(D2 ∪ 2.D′′2) ∪K(D1, D2)) ⊂ (T ′1, T

′
2) and

θ(D1 ∪ 2.D′′1 , D2 ∪ 2.D′′2 ,K(D1, D2)) both hold. Thus Proposition 4 applies and it follows that (T ′1, T
′
2) ∈

D±m(M�, brP ). Observe that (T ′1, T
′
2) ⊆brH t(D) since T ′2 ∩ brH = K(D1, D2) ∪ {tmax} and for t(D) =

(T1, T2) holds T2 ∩ brH = K(D1, D2). This directly contradicts that ∀T ∈ D±m(M�, brP ) : T ⊆brH
t(D) ⇒ T =brH t(D) holds. Thus the set F cannot be non-empty, i.e., there exists no D′ ∈ D±(M) such
that D′ � D and D 6� D′ both hold. Therefore, D is �-preferred.

Proof of Theorem 3. Recall that D±(M, brP , brH) =
{
D ∈ D±m(M, brP )

∣∣ ∀D′ ∈ D±m(M, brP ) :
D′ ⊆brH D ⇒ D′ =brH D

}
. Hence, t(D) ∈ D±(M�, brP , brH) holds iff t(D) ∈ D±m(M�, brP )

holds and for every D′ ∈ D±m(M�, brP ) it holds that D′ ⊆brH t(D) ⇒ D′ =brH t(D)
}

. By Lemma 16
this condition holds iff D is �-preferred. In summary, D is �-preferred iff t(D) ∈ D±(M�, brP , brH)
holds.

Proof of Theorem 4. “⇒”: Let D = (D1, D2) ∈ D±m,�(M) hold. Then D ∈ D±�(M) holds, i.e., D is
�-preferred and D ∈ D±(M) holds. From Lemma 16 we then conclude that t(D) ∈ D±m(M�, brP )
and that the following holds: ∀T ∈ D±m(M�, brP ) : T ⊆brH t(D) ⇒ T =brH t(D). By construction
of t(D) it furthermore holds that tmax ∈ t(D). Hence it remains to show that ∀T ′ ∈ D±m(M�, brP ) :[(
∀T ′′ ∈ D±m(M�, brP ) : T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′

)
∧ tmax ∈ T ′

]
⇒
[
T ′ ⊆br(M�)\brH t(D) ⇒

t(D) =br(M�)\brH T ′
]
.

Towards contradiction, assume that T ′ ∈ D±m(M�, brP ) exists with
(
∀T ′′ ∈ D±m(M�, brP ) : T ′′ ⊆brH

T ′ ⇒ T ′′ =brH T ′
)
∧ tmax ∈ T ′ and T ′ ⊂br(M�)\brH t(D). Note that the definition of θ and tmax ∈ T ′

together imply that there exists some D′ = (D′1, D
′
2) with D′1, D

′
2 ⊆ br(M) such that T ′ = t(D′) holds.

Further note that T ′ = t(D′) satisfies all conditions of Lemma 16, thus it holds that D′ ∈ D±(M) and that
D′ is �-preferred.

From T ′ = t(D′) ⊂br(M�)\brH t(D) it follows that (d1(D′1 ∪ 2.D′1), d2(D′2 ∪ 2.D′2)) ⊂
(d1(D1 ∪ 2.D1), d2(D2 ∪ 2.D2)) and since d1, d2, and 2. are bijective, it holds that (D′1, D

′
2) ⊂ (D1, D2).

Since D′ is �-preferred, this contradicts that D is subset-minimal among all �-preferred diagnoses, i.e., it
contradicts thatD ∈ D±m,�(M). Therefore no such T ′ can exist and t(D) ∈ D±m,tmax

(M�, brP , brH) holds.
“⇐”: Let t(D1, D2) ∈ D±m,tmax

(M�, brP , brH) hold. Since t(D1, D2) ∈ D±m(M�, brP ) and tmax ∈
t(D1, D2) hold, it follows from Lemma 16 that D = (D1, D2) ∈ D±(M) and that D is �-preferred. It
remains to show that D is subset-minimal among diagnoses in D±�(M).

Towards contradiction, assume that there exists D′ ∈ D±�(M) with D′ ⊂ D. Since D′ is �-preferred
andD′ ∈ D±(M) holds, it follows from Lemma 16 that t(D′) ∈ D±m(M�, brP ) and ∀T ∈ D±m(M�, brP ) :
T ⊆brH t(D′) ⇒ T =brH t(D′) holds. Let T ′ = t(D′). Then it holds for T ′ that

(
∀T ′′ ∈ D±m(M, brP ) :

T ′′ ⊆brH T ′ ⇒ T ′′ =brH T ′
)
∧ tmax ∈ T ′. Let T = t(D). Because d1, d2, and 2. are bijective and

D′ ⊂ D, it follows that
[
T ′ ⊆(br(M)\brH) T ⇒ T =br(M)\brH T ′

]
does not hold. This contradicts that

t(D1, D2) ∈ D±m,tmax
(M�, brP , brH) holds. Therefore no such D′ exists and it holds that D is subset-

minimal among D±�(M), i.e., D ∈ D±m,�(M) holds.
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A.4 Proofs of Section 6

Proof of Theorem 5. In the remainder of this proof we assume C to be the computational complexity of
MCSDm.

Membership: In the following we give a polynomial-time reduction ≤pm from MCSDPm to MCSDm.
Given an instance of MCSDPm, i.e., given an MCS M , a set brP ⊆ br(M), and a diagnosis candidate
D ∈ 2br(M) × 2br(M), we define ≤pm such that

(M, brP , D) 7→

{
(M,D) if D1 ∩ brP = ∅ = D2 ∩ brP where D = (D1, D2)

(M⊥, (∅, ∅)) otherwise

where M⊥ = (C⊥), C⊥ = (Lasp
Σ , kb⊥, br⊥), br⊥ = {(1 : a) ← >.}, and kb⊥ = {⊥ ← a.} is such that

(∅, ∅) /∈ D±m(M⊥). Intuitively, the reduction checks whether D contains bridge rules from brP and if so,
maps to an instance which is not in MCSDm. If D contains no bridge rules from brP , then ≤pm simply
drops brP . Since the check whether D contains bridge rules of brP is possible in polynomial time, ≤pm is a
polynomial-time many-one reduction.

It remains to show that indeed (M, brP , D) is a yes-instance of MCSDPm iff ≤pm (M, brP , D) is a
yes-instance of MCSDm.

“⇒”: Let (M, brP , D) be a yes-instance of MCSDPm, i.e., D ∈ D±m(M, brP ) holds. Then, D =
(D1, D2) is such that D1 ∩ brP = ∅ = D2 ∩ brP , hence ≤pm (M, brP , D) = (M,D). By Proposition 1 it
holds that D±m(M, brP ) ⊆ D±m(M), hence it follows that D ∈ D±m(M) holds, i.e., (M,D) is a yes-instance
of MCSDm.

“⇐”: Let ≤pm (M, brP , D) be a yes-instance of MCSDm. Note that it cannot be the case that ≤pm
(M, brP , D) = (M⊥, (∅, ∅)), because (∅, ∅) /∈ D±m(M⊥) contradicts that≤pm (M, brP , D) is a yes-instance
of MCSDm. Consequently, it holds that ≤pm (M, brP , D) = (M,D) and thus D = (D1, D2) is such that
D1 ∩ brP = ∅ = D2 ∩ brP . Furthermore, D ∈ D±m(M) holds, thus it follows that D ∈ D±(M, brP ) holds.
Assume that D /∈ D±m(M, brP ) holds. Then there exists D′ ⊂ D such that D′ ∈ D±m(M, brP ) holds. By
Proposition 1 then follows that D′ ∈ D±m(M), which contradicts that D ∈ D±m(M). Therefore no such D′

exists and it follows that D ∈ D±m(M, brP ) holds.
Since ≤pm is a polynomial reduction from MCSDPm to MCSDm, it follows that the computational

complexity of MCSDPm is in C, i.e., the same complexity class where MCSDm is in.
Hardness: Let D ∈ D±m(M) be hard for some complexity class C. Observe that by definition of

diagnoses with protected bridge rules, it holds that D ∈ D±m(M) is true iff D ∈ D±m(M, ∅) is true. Since
deciding whether D ∈ D±m(M) is C-hard, it thus follows that deciding whether D ∈ D±m(M, brP ) also is
C-hard.

Proof of Lemma 4. “⇒”: Let (M, (D1, D2), brP , brH) be a yes-instance of MCSDPH, i.e., it holds that
(D1, D2) ∈ D±(M, brP , brH). We have to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗M, brP

′′) holds.
From (D1, D2) ∈ D±(M, brP , brH) and (10) it follows that (D1, D2) ∈ D±m(M, brP ) holds.
By Proposition 1 it then holds that (D1, D2) ∈ D±m(M), thus there exists S = (S1, . . . , Sn) with

S ∈ EQ(M [D1, D2]). We now show that (d1(D1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP
′) holds; to that

end consider the belief state S′ = (S1, . . . , Sn, Sn+1, Sn+2) where

Sn+1 = {removedr | r ∈ r ∈ D1} ∪ {uncondr | r ∈ D2}
Sn+2 = {not removedr | r ∈ D1 \ brH} ∪ {uncondr | r ∈ D2 \ brH}.
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By construction of Cn+2, it holds that

Sn+2 ∈ ACCn+2(kbn+2 ∪ app(brn+2(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).

Consider the set of applicable bridge rules ofCn+1 under S′ and the diagnosis candidate (D1∩brH , D2∩
brH) (where Rreg = (br(M) \ brP \ brH):

{ϕ (r) | r ∈app(brn+1(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′)}
= {not removedr | r ∈ br(M), r /∈ Rreg , r /∈ D1 \ brH}
∪ {not removedr | r ∈ br(M), r ∈ Rreg , r /∈ D1 ∩ brH}
∪ {uncondr | r ∈ br(M), r /∈ Rreg , r ∈ D2 ∩ brH}
∪ {uncondr | r ∈ br(M), r ∈ Rreg , r ∈ D2 \ brH}

= {not removedr | r ∈ br(M), r /∈ D1}
∪ {uncondr | r ∈ br(M), r ∈ D2}

=:H

Since Sn+1 = {removedr | r ∈ r ∈ D1} ∪ {uncondr | r ∈ D2} and θ(D1, D2, ∅) holds, it follows from
the definition of Cn+1 (cf. Definition 13 and Lemma 7) that Sn+1 ∈ ACCn+1(kbn+1 ∪H) holds.

Following the reasoning in Lemma 6 it is then possible to construct a proof showing that for all 1 ≤ i ≤
n it holds that

app(br i(M [D1, D2]), S) = app(br i(M
′[d1(D1 ∩ brH), d2(D2 ∩ brH)]), S′).

Since the semantics ACCi and knowledge base kbi of each context Ci are the same in M and M ′, it then
follows from S ∈ EQ(M [D1, D2]) that for all 1 ≤ i ≤ n holds Si ∈ ACCi(kbi ∪ app(br i(M

′[d1(D1 ∩
brH), d2(D2 ∩ brH)]), S′)).

In summary, it holds that S′ ∈ EQ(M ′[d1(D1 ∩ brH), d2(D2 ∩ brH)]).
Since (D1, D2) ∈ D±(M) holds, we then conclude from Proposition 6 that

(
I(D1) ∪ d1(D1 ∩ brH),

I(D2)∪d2(D2∩ brH)
)

= (D′1, D
′
2) ∈ D±(M ′⊗M) holds. Note that D′1∩ brP ′′ = ∅ = D′2∩ brP ′′, hence

(D′1, D
′
2) ∈ D±(M ′ ⊗M, brP

′′) also holds.
It remains to show that (D′1, D

′
2) ∈ D±m(M ′ ⊗ M, brP

′′). Towards contradiction assume that there
exists (T1, T2) ∈ D±(M ′ ⊗ M, brP

′′) with (T1, T2) ⊂ (D′1, D
′
2), i.e., by construction of M ′ ⊗ M it

either is the case that (T1 ∩ I(br(M)), T2 ∩ I(br(M)) ⊂ (D′1 ∩ I(br(M)), D′2 ∩ I(br(M))) holds or
(T1 ∩ brM ′ , T2 ∩ brM ′) ⊂ (D′1 ∩ brM ′ , D

′
2 ∩ brM ′) holds.

In the former case, Proposition 6 implies that (I−1(T1 ∩ I(br(M))), I−1(T2 ∩ I(br(M)))) ∈ D±(M);
furthermore, since (D′1 ∩ I(br(M)), D′2 ∩ I(br(M))) = (D1, D2) it holds that

(
I−1(T1 ∩ I(br(M))),

I−1(T2 ∩ I(br(M)))
)
⊂ (D1, D2). This contradicts that (D1, D2) ∈ D±(M, brP , brH).

In the latter case, i.e., (T1 ∩ brM ′ , T2 ∩ brM ′) ⊂ (D′1 ∩ brM ′ , D
′
2 ∩ brM ′), it holds that (T1 ∩

brM ′ , T2 ∩ brM ′) ⊂ (brH , brH) since all other bridge rules of brM ′ are contained in brP
′′. Let S be

a witnessing equilibrium, i.e., let S = (S1, . . . , Sn+2) ∈ EQ(M ′[(T1 ∩ brM ′ , T2 ∩ brM ′)]) hold. Con-
sider the modifications of bridge rules in br(M) \ brP \ brH which are represented by S, i.e., consider
T ′1 = {r ∈ br(M) \ brP \ brH | not removedr /∈ Sn+2} and T ′2 = {r ∈ br(M) \ brP \ brH |
uncondr ∈ Sn+2}. It holds that ((T1 ∩ brM ′) ∪ T ′1, (T2 ∩ brM ′) ∪ T ′2) is a diagnosis candidate of M .
Since S ∈ EQ(M ′[(T1 ∩ brM ′ , T2 ∩ brM ′)]) holds and M ′ stems from Mmr(θ,K), one can show us-
ing Lemma 6 that ((T1 ∩ brM ′) ∪ T ′1, (T2 ∩ brM ′) ∪ T ′2) ∈ D±(M, brP ) holds. This contradicts that
(D1, D2) ∈ D±(M, brP , brH), because ((T1 ∩ brM ′) ∪ T ′1, (T2 ∩ brM ′) ∪ T ′2) ⊂brH (D1, D2).
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Therefore, no such (T1, T2) exists and it holds that (D′1, D
′
2) ∈ D±m(M ′ ⊗M, brP

′′).
“⇐”: We prove the converse, i.e., we assume that (M, (D1, D2), brP , brH) is not a yes-instance of

MCSDPH and show that ≤pm (M, (D1, D2), brP , brH) = (M ′ ⊗ M, (D′1, D
′
2), brP

′′) also is not a yes-
instance of MCSDPm. By assumption it therefore holds that (D1, D2) /∈ D±(M, brP , brH) holds. From
the definition of D±(M, brP , brH) we then obtain that either (i) (D1, D2) /∈ D±m(M, brP ) holds or (ii) that
there exists (D′1, D

′
2) ∈ D±m(M, brP ) with (D′1, D

′
2) ⊂brH (D1, D2).

In case (i) (D1, D2) /∈ D±m(M, brP ), hence by Proposition 6 it holds that (I(D1)∪d1(D1∩brH), I(D2)∪
d2(D2 ∩ brH)) /∈ D±m(M ⊗M ′, brP ′′).

In case (ii) (D′1, D
′
2) ∈ D±m(M, brP ) with (D′1, D

′
2) ⊂brH (D1, D2). W.l.o.g. we assume that (D′1, D

′
2)

is minimal wrt. ⊂brH , i.e., there exists no (D′′1 , D
′′
2) ∈ D±m(M, brP ) with (D′′1 , D

′′
2) ⊂brH (D′1, D

′
2). This

means that (M, (D′1, D
′
2), brP , brH) is a yes-instance of MCSDPH. We can further assume that (D1, D2) ∈

D±m(M, brP ) from (i).
Now consider (T1, T2) = (I(D1) ∪ d1(D′1 ∩ brH), I(D2) ∪ d2(D′2 ∩ brH)). Since

(M, (D′1, D
′
2), brP , brH) is a yes-instance of MCSDPH, the “⇒” direction above can be applied to it; this

yields that (d1(D′1 ∩ brH), d2(D2 ∩ brH)) ∈ D±m(M ′, brP
′) holds. Applying Proposition 6 and the fact

that T1 ∩ brP ′′ = ∅ = T2 ∩ brP ′′ then implies that (T1, T2) ∈ D±m(M ′ ⊗ M, brP
′′) holds. Note that

(T1, T2) ⊂ (D′1, D
′
2) holds which in turn implies that (D′1, D

′
2) /∈ D±m(M ′ ⊗M, brP

′′) holds. In other
words, (M ′ ⊗M, (D′1, D

′
2), brP

′′) is not a yes-instance of MCSDPm.
In all cases, we showed that ≤pm (M, (D1, D2), brP , brH) is not a yes-instance of MCSDPm, which

concludes the “⇐” direction of the proof.
In summary, we showed that (M, (D1, D2), brP , brH) is a yes-instance of MCSDPH if and only if

(M ′ ⊗M, (D′1, D
′
2), brP

′′) = ≤pm(M, (D1, D2), brP , brH) is a yes-instance of MCSDPm, i.e., ≤pm is a
reduction from MCSDPH to MCSDPm. Since (M ′ ⊗M, (D′1, D

′
2), brP

′′) can be computed in time linear
in the size of (M, (D1, D2), brP , brH), it furthermore holds that ≤pm a polynomial-time reduction.

Proof of Theorem 6. Membership: By Lemma 4 it holds that ≤pm is a polynomial-time reduction from
MCSDPH to MCSDPm, hence membership immediately follows.

Hardness: LetM ′ andD′ be any MCS and diagnosis candidate, respectively, used for showing hardness
of MCSDm for C (i.e., M ′ is the result of the reduction showing C-hardness of MCSDm and D′ is the
diagnosis resulting from the reduction of M ′). Now pick brP ′ = brH

′ = ∅.
By definition, it holds for allM, brP , brH andD, thatD ∈ D±(M, brP , brH) impliesD ∈ D±m(M, brP )

which in turn implies D ∈ D±m(M). Therefore, D′ ∈ D±(M ′, brP
′, brH

′) implies that D′ ∈ D±m(M ′)
holds. Furthermore, since brP ′ = brH

′ = ∅ it also follows from the definition of prioritized-minimal
diagnosis and protected diagnosis that D′ ∈ D±m(M ′) implies D′ ∈ D±(M ′, brP

′, brH
′). In summary,

D′ ∈ D±m(M ′) holds iff D′ ∈ D±(M ′, brP
′, brH

′) holds. Therefore MCSDPH also is C-hard.

Proof of Lemma 5. For membership, we give a reduction ≤pm from MCSDPHtmax to MCSDPH as follows:

(M,D, brP , brH , tmax ) 7→

{
(M,D, brP , brH) if D = (D1, D2), tmax ∈ D2

(M⊥, (∅, ∅), brM⊥ , ∅) otherwise

where M⊥ is the inconsistent MCS from the proof of Theorem 5, i.e., (M⊥, (∅, ∅), brM⊥ , ∅) is not a yes-
instance of MCSDPH since the MCS is inconsistent but all its bridge rules are protected. Clearly, ≤pm is a
polynomial-time reduction.

“⇒”: Let (M,D, brP , brH , tmax ) be a yes-instance of MCSDPHtmax , i.e., D ∈ D±(M, brP , brH) and
tmax ∈ D2 with D = (D1, D2) hold. Then D ∈ D±(M, brP , brH) also holds, i.e., (M,D, brP , brH) is a
yes-instance of MCSDPH.
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“⇐”: Let (M,D, brP , brH , tmax ) be not a yes-instance of MCSDPHtmax , i.e., let it not be the case that
D ∈ D±(M, brP , brH) and tmax ∈ D2 with D = (D1, D2) both hold. In case tmax /∈ D2 it holds that
(∅, ∅) /∈ D±(M⊥, brM⊥ , ∅) since M⊥ is inconsistent but all its bridge rules are protected, i.e., ≤pm maps
to a no-instance of MCSDPH. In case tmax ∈ D2 holds, it follows that D ∈ D±(M, brP , brH) does not
hold by the assumption. Therefore (M,D, brP , brH) is not a yes-instance of MCSDPH. Hence in all cases,
≤pm (M, brP , brH , tmax ) is not a yes-instance of MCSDPH.

Proof of Theorem 8. Since QBF problems correlate to complexity classes in the polynomial hierarchy, we
reduce (different) QBF problems to MCSDMPREF to prove the following hardness statements: if CC(M) is
hard for ΣP

i (ΠP
i ) then MCSDMPREF is hard for ΠP

i+1 (ΠP
i+2) with i ≥ 0; and MCSDMPREF is ΠP

2 -hard even
if CC(M) and deciding whether D′ � D′′ hold are both in P.

QBF: A formula G is a quantified Boolean formula (QBF) if it is of the form Q1
~X1 . . . Qn ~Xn : F

where for each 1 ≤ i ≤ n, Qi ∈ {∀, ∃} is a quantifier, ~Xi is a set of Boolean variables, and F is a
propositional formula over the set of variables V =

⋃
i∈{1,...,n}

~Xi. We assume that the quantifiers alternate,
i.e., Qi 6= Qi+1 for all 1 ≤ i < n. QBFk denotes all QBF with k ≥ 1 quantifiers, QBF2,∀ denotes all
QBF with 2 quantifiers and Q1 = ∀, and QBFk,∀ denotes all QBF with k quantifiers and Q1 = ∀. Given a
formula G in QBFk,∀ of the form as above, we denote the sub-formula ∀ ~X3 . . . Qk ~Xk : F by rem2,∀(G).
Note that for a QBF2,∀ formulaG, rem2,∀(G) = F . For readability and simplicity, we denote the variables
~X1 by ~X and the variables ~X2 by ~Y .

A valuation is an assignment of variables to {>,⊥}, we denote a assignment to variables X by VX :
X → {>,⊥}. Let ψ[x/t] denote the substitution of the propositional variable x by t ∈ {>,⊥} in ψ.
Then the substitution by an assignment VX over X = {x1, . . . , xk} is ψ[x1/VX(x1)] . . . [xk/VX(xk)], with
shorthand notation ψ[VX ]. The semantics of QBF is inductively given in terms of valuations. A QBF G
of the above form with n quantifiers evaluates to true if: G is quantifier-free (n = 0) and G is a true
propositional formula; if Q1 = ∀ (Q1 = ∃) and for all (for some) valuations VX1 it holds that G′[VX1 ]
evaluates to true where G′ = Q2

~X2 . . . Qn ~Xn : F . Note that G being in QBFk implies that G′[VX1 ] is in
QBFk−1 for any valuation VX1 .

Reduction: We define a logicLqbf
Σ = (KB,BS,ACC) for QBFs over a set of variables Σ, which enables

QBF as a query language (cf. [27]) and is based on the idea of combining a database, under the closed-world
assumption, with a theory (cf. [9]). Formally, KB = 2Q withQ being the set of quantified Boolean formulas
that can be built over Σ, i.e., each kb ∈ KB is a set of QBF; BS = {∅}, i.e., the only belief set is the empty
set indicating evaluation to true; and ACC(kb) intuitively takes the conjunction CF of all formulas in kb
except those that are unit, i.e., of the form (χ) with some variable χ, creates an assignment V from the unit
clauses, and accepts the single belief set if and only if CF [V ] evaluates to true. Formally, ACC(kb) = {∅}
if the QBF CF [V ] evaluates to true with CF =

∧
f∈{f∈kb|f is not unit} f and valuation VZ : Z → {>,⊥}

such that V (χ) = > if (χ) ∈ kb and V (χ) = ⊥ otherwise where Z is the set of free (un-quantified)
variables of CF .

Note that if each f ∈ kb is in QBFk then CF [V ] is in QBFk since CF [V ] contains no more quantifier
alternations than any f ∈ kb. By that, the computational complexity of evaluating ACC is in ΣP

k and ΠP
k if

each f ∈ kb is in QBFk,∃ and QBFk,∀, respectively. Also note that the construction of CF [V ] is possible
in linear time.

We now define an MCSMG whose single context utilizes the evaluation of rem2,∀(G) given a valuation
of all variables in ~X and ~Y . Given a QBFk-formula G with k ≥ 2, and ~X , ~Y , and rem2,∀(G) as above.
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Let brX1 and brY1 be defined as follows:

brX1 =
⋃
x∈ ~X

{(1:(x))← >., (1:(x̄))← >.} brY1 =
⋃
y∈~Y

{(1:(y))← >., (1:(ȳ))← >.}

Then MG = (C1) with the context C1 = (Lqbf
Σ , kb1, br1), br1 = brX1 ∪ brY1 , and kb1 as follows:

kb1 =
{ ( ∧

χ∈ ~X∪~Y

(χ↔ ¬χ̄) ∧
∧

χ∈ ~X∪~Y

(χ↔ χ′) ∧ rem2,∀(G
t)
)

∨
( ∧
χ∈ ~X

(¬χ ∧ ¬χ̄)
)

∨
( ∧
χ∈ ~X

(χ↔ ¬χ̄) ∧
∧
χ∈~Y

(χ ∧ χ̄)
)}

where Gt is equal to G except that every variable χ ∈ ~X ∪ ~Y is replaced with a new variable χ′. Intuitively,
C1 evaluates the remainder of G if a consistent valuation in terms of χ and χ̄ is given for ~X ∪ ~Y (first line)
and it becomes true also for two other cases: (i) no value for any variable in ~X is given (second line), and
(ii) a consistent valuation for ~X is given and all values for ~Y are present (third line). Note that br1 and kb1

are both polynomial (even linear) in the size of G.
Notation: For a set R of bridge rules ϕ(R) denotes the set of head-formulas of the bridge rules of R,

i.e., ϕ(R) = {ϕ (r) | r ∈ R}. For H ⊆ ϕ(br1) we say that H is consistent wrt. a set of variables X if
for all χ ∈ X it holds that (χ) ∈ H iff (χ̄) /∈ H . We call H consistent if it is consistent wrt. ~X ∪ ~Y . If
H is consistent, then the corresponding valuation VH : ~X ∪ ~Y → {>,⊥} is VH(χ) = > if (χ) ∈ H and
VH(χ) = ⊥ otherwise.

One can show that the semantics of C1 is as follows for any H ⊆ ϕ(br1):

ACC(kb1 ∪H) =


{∅} if H is consistent and rem2,∀(G)[VH ] evaluates to true, or

if H ∩ ϕ(brX1 ) = ∅, or
if H is consistent wrt. ~X and H ⊇ ϕ(brY1 ),

∅ otherwise.

Intuitively, the above holds for the following reasons: kb1 ∪ H is such that all formulas f ∈ H are
unit clauses, the variables in each clause are distinct, and each variable inside a unit clause is free wrt. kb1,
because the only quantifiers occur in rem2,∀(G

t) which does quantify over χ′ but neither quantifies χ nor
χ̄, for any χ ∈ ~X ∪ ~Y .

We use a certain diagnosis of MG, namely Dvalid = (brX1 , ∅), to indicate whether G evaluates to true.
In order to obtain that Dvalid ∈ D±m,�(MG) iff G evaluates to true, we use the following preference order
�:

(D1, D2) � (D′1, D
′
2) holds iff D2 = D′2 = ∅, (D1, D2) 6= Dvalid 6= (D′1, D

′
2),

D1 ∩ brX1 = D′1 ∩ brX1 , and D1 ∩ brY1 ⊆ D′1 ∩ brY1 all hold.
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Correctness of reduction: We now show for any QBF in QBFk,∀ with k ≥ 2 that Dvalid ∈ D±m,�(MG)
holds iff G evaluates to true. In some abuse of notation, in the following we write M [D] to denote the MCS
obtained from modifying M according to a diagnosis candidate D, i.e., M [D] with D = (D1, D2) here
denotes M [D1, D2]. Furthermore, if H ⊆ br(MG) is consistent wrt. a set Z of variables, we denote by V H

Z

the corresponding valuation, i.e., V H
Z (χ) = > iff χ ∈ ϕ(H) and V H

Z (χ) = ⊥ iff χ̄ ∈ ϕ(H) with χ ∈ Z.
“⇒”: Let Dvalid ∈ D±m,�(MG) hold. Towards contradiction, assume that G does not evaluate to true,

i.e., there exists a valuation VX for ~X such that no valuation VY for ~Y makes rem2,∀(G)[VX ∪VY ] evaluate
to true. Let R ⊆ brX1 be such that V ϕ(R)

X = VX and consider the diagnosis D = (brX1 \ R, ∅). Let H =

{ϕ (r) | r ∈ app(br1(MG[D]), S∅)} and observe that H is consistent wrt. ~X since R is consistent. Since
(brX1 \R)∩ brY1 = ∅, it follows that H ∩ ϕ(brY1 ) = ϕ(brY1 ) and it thus holds that {∅} ∈ ACC(kb1 ∪H),
i.e., S∅ is an equilibrium of MG[D], hence D ∈ D±(MG). Further note that D ⊂ Dvalid holds. Since
Dvalid ∈ D±m,�(MG) and D ⊂ Dvalid , it follows that D /∈ D±�(MG) holds; i.e. there exists a diagnosis
D′ ∈ D±(MG) such that D′ � D and D 6� D′ both hold, which implies that D′ 6= D.

Let D′ = (D′1, D
′
2) and D = (D1, D2); from the definition of � we obtain that D′2 = ∅, D′ 6= Dvalid ,

D′1∩brX1 = D1∩brX1 , andD′1∩brY1 ⊆ D1∩brY1 all hold. LetH ′ = {ϕ (r) | r ∈ app(br1(MG[D′]), S∅)}
and observe that H ′ is consistent wrt. ~X since D1 is consistent wrt. ~X and D′1 ∩ brX1 = D1 ∩ brX1 . Since
D′ 6= D holds, it is the case that D′1 ∩ brY1 ⊂ D1 ∩ brY1 and thus D1 ∩ brY1 6= ∅, i.e., H ∩ ϕ(brY1 ) 6=
ϕ(brY1 ). This contradicts with H ∩ ϕ(brY1 ) = ϕ(brY1 ) established earlier. Therefore no such D exists and
consequently no valuation VX exists such that all valuations VY make rem2,∀(G)[VX ∪ VY ] not evaluate to
true, i.e., G evaluates to true.

“⇐”: Let G evaluate to true, i.e., for every valuation of ~X there exists a valuation of ~Y such that
rem2,∀(G)[VX ∪ VY ] evaluates to true. Observe that br1(MG[Dvalid ]) = brY1 , hence we have that H =
app(br1(MG[Dvalid ]), S∅) is such thatH∩ϕ(brX1 ) = ∅, thus ACC(kb1∪H) = {∅} and S∅ is a witnessing
equilibrium of Dvalid ∈ D±(MG). Furthermore, since Dvalid is, by definition of �, in no relation to any
other diagnosis candidate it thus follows that Dvalid ∈ D±�(MG).

It remains to show that Dvalid is subset-minimal among all diagnoses in D±�(MG). Consider any D′ ⊂
Dvalid , i.e., D′ = (D′1, ∅) where D′1 ⊂ brX1 . Recall that D′ is not a diagnosis, if there exists no witnessing
equilibrium; since S∅ is the only belief state of MG, it follows that D′ is a diagnosis if and only if S∅ is
an equilibrium of MG[D′]. In the following, let H ′ = app(br1(MG[D′]), S∅). Since D′1 ⊂ brX1 holds, it
follows that H ′ ⊇ ϕ(brY1 ), because for any r ∈ brY1 it holds that body(r) = {>}, i.e., r is applicable in
any belief state. Since H ′ ⊇ ϕ(brY1 ) holds, it cannot be the case that H ′ is consistent wrt. ~Y ; thus H ′ is not
consistent. Furthermore, by D′1 ⊂ brX1 it follows that H ′ ∩ ϕ(brX1 ) 6= ∅. By the definition of ACC it then
follows that D′ only is a diagnosis if H ′ is consistent wrt. ~X .

Assume that H ′ is consistent wrt. ~X then V H′
X is a consistent valuation for variables in ~X . Since G

evaluates to true and all variables in ~X are ∀-quantified, there exists a valuation VY for the variables of
~Y such that rem2,∀(G)[V H′

X ∪ VY ] evaluates to true . Let R ⊂ brY1 be the set of bridge rules consistent
wrt. ~Y such that V ϕ(R)

Y = VY and consider the diagnosis candidate D′′ = (D′1 ∪ (brY1 \ R), ∅). Let
H ′′ = {ϕ (r) | r ∈ app(br1(MG[D′′]), S∅)} and observe that H ′′ is consistent since D′1 and R both are
consistent. Furthermore, V H′′

X = V H′
X and V H′′

Y = VY , thus rem2,∀(G)[V H′′
X ∪ V H′′

Y ] evaluates to true,
hence S∅ is an equilibrium of M [D′′] and D′′ ∈ D±(MG) holds.

Now consider whether D′′ � D′ holds: D′ = (D′1, ∅), D′′ = (D′1 ∪ (brY1 \R), ∅), D′′ 6= Dvalid 6= D′,
D′1 ∩ brX1 = (D′1 ∪ (brY1 \ R)) ∩ brX1 , and D′1 ∩ brY1 ⊆ (D′1 ∪ (brY1 \ R)) ∩ brY1 all hold. Therefore
D′′ � D′ holds. Since R ⊂ brY1 holds, it follows that brY1 \ R 6= ∅ and by D′1 ⊂ brX1 it then follows that
(D′1 ∪ (brY1 \R))∩ brY1 ⊆ D′1 ∩ brY1 does not hold. Therefore D′ � D′′ does not hold and consequently, it
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holds that D′ /∈ D±�(MG). Since D′ ⊂ Dvalid was chosen arbitrary, it follows that Dvalid is subset-minimal
among all diagnoses in D±�(MG), hence Dvalid ∈ D±m,�(MG) holds.

In summary, this proves that Dvalid ∈ D±m,�(MG) holds iff G evaluates to true.

Complexity: Observe that deciding whether D � D′ holds for the above � clearly is in P. Further note
that MG is polynomial in the size of G since kb1 and br1 are both polynomial (even linear) in the size of G.
In the following we assume wlog. that all QBFs are in prenex normal form.

Let G be an arbitrary formula in QBF2,∀, then rem2,∀(G) contains no quantifiers, hence deciding
whether rem2,∀(G) evaluates to true under an assignment for ~X ∪ ~Y amounts to evaluating a propositional
formula under a given assignment; this is possible in P, hence CC(MG) = P. Since Dvalid ∈ D±m,�(MG)

iff G evaluates to true, it thus follows that MCSDMPREF is ΠP
2 -hard if CC(M) = P.

Let G be an arbitrary formula in QBFi+2,∀ for i ≥ 0, then rem2,∀(G) contains i quantifiers, hence
rem2,∀(G) is a formula of QBFi,∀ and checking whether it evaluates to true is in ΠP

i , i.e., CC(MG) being
hard for ΠP

i is sufficient for MCSDMPREF to decide whether G evaluates to true. Thus MCSDMPREF is
ΠP

i+2-hard for CC(M) being hard for ΠP
i , i ≥ 0.

Similarly, ifG is an arbitrary formula in QBFi+1,∃ for i ≥ 1, then rem2,∀(G) contains i−1 quantifiers,
i.e., rem2,∀(G) is a formula in QBFi−1,∀. Since QBFi,∃ contains all formulas of QBFi−1,∀ it follows
that ΣP

i is sufficient for checking whether rem2,∀(G) evaluates to true. Thus, CC(MG) being hard for ΣP
i

is sufficient for MCSDMPREF to decide whether G evaluates to true. Thus MCSDMPREF is ΠP
i+1-hard for

CC(M) = ΣP
i , i ≥ 1.

In summary it thus follows that if CC(M) is hard for ΣP
i (ΠP

i ) then MCSDMPREF is hard for ΠP
i+1

(ΠP
i+2) with i ≥ 0 and that MCSDMPREF is ΠP

2 -hard even if CC(M) and deciding whether D′ � D′′ hold
are both in P.

For hardness in case that CC(M) = P it is sufficient to use a stratified logic program and the logic Lasp
Σ

as the context C1 in the MCS MG. Let G be in QBF2,∀, then rem2,∀(G) is a SAT formula and wlog. we
assume rem2,∀(G) to be in CNF. Let F = rem2,∀(G) = {c1, . . . , cm} be given as a set of clauses each of
the form c` = (l`1 ∨ l`2 ∨ . . . ∨ l`k) with k ∈ N. We associate with each clause c` of this form a set of rules

lp(c`) =
{

clause c` ← l`1 . . . . clause c` ← l`j .

clause c` ← l`j+1
. . . . clause c` ← l`k .

}

where l`1 to l`j are the positive literals and l`j+1
to l`k are the negative literals of c`.
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Finally, C1 = (Lasp
Σ , kb1, br1) uses the abstract logic of ASP and kb1 is as follows:

kb1 = { consistentX ← not inconsistentX .

inconsistentX ← x, x̄. ∀x ∈ ~X

consistentY ← not inconsistentY .

inconsistentY ← y, ȳ. ∀y ∈ ~Y
⊥ ← not ok .

ok ← consistentX , consistentY , trueF .

ok ← notnonempty intersect .

ok ← consistentX , notnotfullY .

nonempty intersect ← x. ∀x ∈ ~X

nonempty intersect ← x̄. ∀x ∈ ~X

notfullY← not y. ∀y ∈ ~Y
notfullY← not y. ∀y ∈ ~Y

trueF ← clause c1, . . . , clause ck. for F = {c1, . . . , ck}
} ∪ {r ∈ lp(c`) | c` ∈ F}

Observe that kb1 is a stratifiable logic program while bridge rules only add facts, thus ACC(kb1 ∪H) can
be computed in polynomial time. Also note that kb1 is linear in the size of G.

Proof of Corollary 1. For the membership part, observe that the size of the clone-encoding M� is polyno-
mial in the size of M . As in M� all contexts apart from the observation context have the same knowledge
bases and logics as in M , their complexities are in CC(M); thus it remains to show that also the com-
plexity of the observation context is in CC(M). Definition 18 specifies which belief sets are acceptable
for the latter in terms of the following conditions for which the property θ(R1, R2, R3) holds, namely: if
R1 = D1 ∪ 2.D′1, R2 = D2 ∪ 2.D′2 and either (D1, D2) = (D′1, D

′
2) and R3 = K(D1, D2) ∪ {tmax} or

(D′1, D
′
2) � (D1, D2), (D1, D2) 6� (D′1, D

′
2) and R3 = K(D1, D2).

The equalities are trivially checked in polynomial time; thus if deciding D � D′ ∧ D 6� D′ is in ΣP
i ,

then checking all conditions, i.e., whether θ(R1, R2, R2) holds, is in ΣP
i ; note in particular that deciding

D 6� D′ is in P if deciding D � D′ is in P. By construction of M�, it thus follows that CC(M) = ΣP
i .

The argument for PSpace and ExpTime in place of ΣP
i is analogous.

By Theorem 4, we have (D1, D2) ∈ D±m,�(M) iff t(D1, D2) ∈ D±m,tmax
(M�, brP , brH) and from The-

orem 7 it follows that deciding t(D1, D2) ∈ D±m,tmax
(M�, brP , brH) is in ΠP

i+1 (resp., coNPPSpace =

PSpace, coNPExpTime = ExpTime); hence deciding (D1, D2) ∈ D±m,�(M) is in ΠP
i+1 (resp. PSpace,

ExpTime). The hardness follows directly from Theorem 8 (resp. a trivial MCS where the acceptability
function of some context is hard for PSpace resp. ExpTime); consequently, MCSDMPREF is complete for
ΠP

i+1 (resp. PSpace, ExpTime).

Proof of Corollary 2. The membership follows from Theorem 7. As for the hardness part, let CC(M) be
equal to P, NP, or ΣP

i with i ≥ 1 then by Theorem 8 MCSDMPREF is hard for ΠP
2 , ΠP

2 , or ΠP
i+2, respec-

tively. Let � be any preference order on M such that deciding whether D � D′ holds is in P. Consider the
clone encoding M� and any diagnosis candidate (D1, D2). By Theorem 4, we have (D1, D2) ∈ D±m,�(M)
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iff t(D1, D2) ∈ D±m,tmax
(M�, brP , brH). Therefore the clone encoding induces a polynomial-time reduc-

tion of MCSDMPREF to MCSDPHm,tmax , because t(D1, D2) and M� are both linear in the size of (D1, D2)
plus M as well as CC(M�) is P, NP, or ΣP

i (i ≥ 1) given that CC(M) is P, NP, or ΣP
i (i ≥ 1). The

hardness results of Theorem 8 thus also hold for MCSDPHm,tmax .

B Detailed Examples

Example 18. Consider the unit-based preference order �U of Example 10 over the MCS M from Exam-
ple 3. The resulting MCS M� = (C1, C2, C3, C4, C5, C6, C7) is based on two clones of M , where the first
comprises the contexts C1, C2, C3 and the second the contexts C4, C5, C6. The context C7 finally is the
observation/encoding context.

We first recall the bridge rules of 2M = M ⊗M using the permutation I corresponding to M ⊗M .
Accordingly br(2M) is:

r1 : (2 : hyperglycemia)← (1 : hyperglycemia).

r2 : (2 : allow animal insulin)← not (1 : allergic animal insulin).

r3 : (3 : bill animal insulin)← (2 : give animal insulin).

r4 : (3 : bill human insulin)← (2 : give human insulin).

r5 : (3 : insurance B)← (1 : insurance B).

I(r1) : (5 : hyperglycemia)← (4 : hyperglycemia).

I(r2) : (5 : allow animal insulin)← not (4 : allergic animal insulin).

I(r3) : (6 : bill animal insulin)← (5 : give animal insulin).

I(r4) : (6 : bill human insulin)← (5 : give human insulin).

I(r5) : (6 : insurance B)← (4 : insurance B).

A graphical rendering of M� is given in Figure 6, where for readability only some of the bridge rules of
M� are shown. The set of bridge rules of the observation context C7 is as follows:

br7(M�) =
{

(7 : not removedr1)← >. (7 : uncondr1)← ⊥.
(7 : not removedr2)← >. (7 : uncondr2)← ⊥.

· · ·
(7 : not removed I(r4))← >. (7 : uncond I(r4))← ⊥.
(7 : not removed I(r5))← >. (7 : uncond I(r5))← ⊥.
(7 : in1(r1))← ⊥. (7 : in1(r1))← ⊥.
(7 : in2(r1))← ⊥. (7 : in2(r1))← ⊥.

· · ·
(7 : in1(r5))← ⊥. (7 : in1(r5))← ⊥.
(7 : in2(r5))← ⊥. (7 : in2(r5))← ⊥.

}
To fully realize the property θ and the preference order �U based on real-world entities patient’s health
/ treatment, and billing, we may use for the observation context C7 an ASP program that consists of the
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following rules:

removedr ← notnot removedr. ∀r ∈ br(M ⊗M) (22)

⊥ ← removedr, not in1(r). ∀r ∈ {r1, . . . , r5} (23)

⊥ ← not removedr, in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← not removedr, not in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← removedr, in1(r). ∀r ∈ {r1, . . . , r5}
⊥ ← uncondr, not in2(r). ∀r ∈ {r1, . . . , r5}
⊥ ← uncondr, in2(r). ∀r ∈ {r1, . . . , r5}
⊥ ← not uncondr, not in2(r). ∀r ∈ {r1, . . . , r5}
⊥ ← uncondr, in2(r). ∀r ∈ {r1, . . . , r5} (24)

mod(clone1 , billing)← removedr. ∀r ∈ {r3, . . . , r5} (25)

mod(clone1 , billing)← uncondr. ∀r ∈ {r3, . . . , r5}
mod(clone2 , billing)← removedr. ∀r ∈ {I(r3), . . . , I(r5)}
mod(clone2 , billing)← uncondr. ∀r ∈ {I(r3), . . . , I(r5)}

mod(clone1 , treatment)← removedr. ∀r ∈ {r1, r2}
mod(clone1 , treatment)← uncondr. ∀r ∈ {r1, r2}
mod(clone2 , treatment)← removedr. ∀r ∈ {I(r1), I(r2)}
mod(clone2 , treatment)← uncondr. ∀r ∈ {I(r1), I(r2)} (26)

mod(clone1 , billing)← mod(clone1 , treatment). (27)

mod(clone2 , billing)← mod(clone2 , treatment). (28)

clones different ← removedr, not removedr′ . ∀r ∈ br(M), ∀r′ ∈ I(br(M)) (29)

clones different ← not removedr, removedr′ . ∀r ∈ br(M), ∀r′ ∈ I(br(M))

clones different ← uncondr, not uncondr′ . ∀r ∈ br(M), ∀r′ ∈ I(br(M))

clones different ← not uncondr, uncondr′ . ∀r ∈ br(M), ∀r′ ∈ I(br(M)) (30)

clone1 modifies more ← mod(clone1 , U), notmod(clone2 , U). (31)

clone2 modifies more ← mod(clone2 , U), notmod(clone1 , U).

clone1 less preferred ← clone1 modifies more, not clone2 modifies more. (32)

⊥ ← not ismax , clone1 less preferred , clones different . (33)

⊥ ← not clone1 less preferred , clones different . (34)

The intuition of the above rules is as follows: rules of form (22) expose the diagnoses of both clones; the
constraints of form (23)–(24) ensure that the diagnosis of the first clone is exhibited via prioritized bridge
rules; rules of form (25)–(26) deduce which units of bridge rules have been modified in the first and second
clone; rules (27) and (28) take care of the dependency between the units treatment and billing; rules of
form (29)–(30) infer whether the diagnosis of the first clone is different from the diagnosis of the second
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clone; rules (31)–(32) infer whether the modified units of the first clone is a superset of the modified units
of the second clone, which means the diagnosis of the second clone is more preferred than the one of the
first clone. Finally, the constraint (33) ensures that tmax is made condition-free if the diagnosis of the
second clone is more preferred than the diagnosis of the first clone, and the constraint (34) ensures that only
comparable diagnoses (or if both diagnoses are equal) yield a diagnosis of the MCS M�.


