
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

REVIEWING JUSTIFICATION-BASED TRUTH

MAINTENANCE SYSTEMS FROM A LOGIC

PROGRAMMING PERSPECTIVE

HARALD BECK

INFSYS RESEARCH REPORT 17-02

JULY 2017

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 17-02, JULY 2017

REVIEWING JUSTIFICATION-BASED TRUTH MAINTENANCE

SYSTEMS FROM A LOGIC PROGRAMMING PERSPECTIVE

Harald Beck1

Abstract. This article reviews Doyle’s classic Justification-based Truth Maintenance System
(JTMS) from the perspective of logic programming. More specifically, we use terminology from
Answer Set Programming (ASP) to formalize the core JTMS algorithms, which amount to updating
an answer set for a program to which a new rule is added. We extend JTMS to analogously account
for rule removal. Moreover, we analyze shortcomings of JTMS and the partial correspondence with
ASP and give an implementation of the presented algorithms.

Keywords — Truth Maintenance Systems, Answer Set Programming, Knowledge Represen-
tation, Nonmonotonic Reasoning, Model Update, Computational Logic.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: beck@kr.tuwien.ac.at.

Acknowledgements: This research has been supported by the Austrian Science Fund (FWF) projects
P26471 and W1255-N23.

Copyright c© 2017 by the author

2 INFSYS RR 17-02

1 Introduction

Justification-based Truth Maintenance Systems (JTMS) trace back to Doyle’s seminal paper [4] which in-
troduced techniques for maintaining consistent beliefs and their well-foundedness based on justifications.
The central concern of JTMS is the incremental model update due to new information which may lead to
the retraction of previous conclusions, i.e., nonmonotonic reasoning.

The motivation for this review is that truth maintenance is a classic technique in the area of Knowl-
edge Representation and Reasoning (KR); yet a clear, modular formalization of Doyle’s informal algorithm
description seems to be lacking, as well an implementation in a state-of-the-art programming language.

Doyle’s original algorithm is more involved and allows for modelling constraints by means of contra-
diction nodes. However, the backtracking procedure to resolve them can introduce auxiliary rules which
may then lead to models that do not reflect the semantics of the original program. Since our specific interest
here is the relationship to Answer Set Programming (ASP), we focus on the core of JTMS that employs no
notion of constraints and thus always computes an admissible model, resp. answer set. (For introductions
to ASP we refer to [3, 5].) Throughout, we often depart from (resp. add to) Doyle’s original terminology.
Used terminology either stems from [2], from logic programming, or was chosen to reflect the conceptual
meaning (e.g. algorithm and function names).

2 Truth Maintenance Networks

We start by introducing key notions similarly as [2]. A truth maintenance network (TMN) T is a pair
(N,J), where N is a set of nodes and J is a set of justifications. By a justification we understand an
expression of form

J = 〈I|O → c〉 ,

where I,O ⊆ N and c ∈ N . We call I the in-list, O the out-list and c the consequent of J . Nodes may
be viewed as proposition. The intention of a justification is that the consequent c holds iff all nodes in the
in-list hold and no node in the out-list holds. What holds is determined by a model M ⊆ N , i.e., a subset of
the network’s nodes. Then,

JM = {〈I|O → c〉 | I ⊆M and O ∩M = ∅} ,

is the set of justifications that are valid in M . We say a model M is

(i) founded, if there exists a total order n1 < · · · < nk of all elements in M s.t. each nj ∈M has a
supporting justification, i.e., some 〈I|O → nj〉 ∈ JM s.t. I ⊆ {n1, . . . , nj−1};

(ii) closed, if n ∈M for all 〈I|O → n〉 ∈ JM ; and

(iii) admissible, if it is founded and closed.

Example 1. As a first example, we illustrate an application of modus ponens. Consider the truth mainte-
nance network T = (N,J), where N = {x, y} and J consists of the following two justifications.

(J1) 〈∅|∅ → x〉
(J2) 〈{x}|∅ → y〉

Justification J1 is called a premise (or fact), since both I and O are empty. A premise is valid in every
model. Consequently, every model not containing its consequent is not closed. Justification J2 reflects the

INFSYS RR 17-02 3

material implication x ⊃ y. Assuming we have x in the model, J2 is valid, so y must be concluded. Thus,
we get the admissible model M = {x, y}.

In general, admissible models are not unique, as the next example shows.

Example 2. Consider the network T = (N,J), where N = {a, b, c} and J consists of the following three
justifications (we omit set braces for I and O):

(J1) 〈b|∅ → a〉
(J2) 〈∅|c→ b〉
(J3) 〈∅|a→ c〉

First consider the empty model. We observe that J ∅ = {J2, J3}, since in-lists of these justifications are
empty. Consequently, this model is not closed, since J2 would require b and J3 would require c to be
concluded. Thus, consider next the model {b, c}. In this case, the valid justifications are J {b,c} = {J1, J3}.
The consequent of justification J1, node a, is not included in the model, so it is also not closed. Hence,
consider model {a, b, c}, for which we get J {a,b,c} = {J1}. In other words, this model is not founded: there
are no valid justifications for nodes b and c, and J1 is also not a supporting justification for a.

By removing c from the model, we get the admissible model M1 = {a, b}, for which both J1 and J2
are valid. The absence of c suffices to conclude b via J2, based on which a is founded via J1. Notably, the
network has another admissible model: M2 = {c}. From the absence of node a alone, c is concluded by J3,
which is the only valid justification in M2.

Logic programming perspective. Truth maintenance networks resemble normal logic programs in the
following way. Let J = 〈I|O → h〉 be a justification such that I = {i1, . . . , in} and O = {o1, . . . , om},
and let

rJ = h← i1, . . . , in,not o1, . . . ,not om (1)

be the corresponding rule. Moreover, let PT = {rJ | J ∈ J } be the logic program obtained by this transla-
tion. The following theorem by Elkan [6] allows for identifying admissible models with answer sets.

Theorem 1 (cf. [6]) Let T = (N,J) be a TMN and M ⊆ N . Then, (i) M is an admissible model of T iff
it is an answer set of PT . (ii) Deciding whether T has an admissible model is NP-complete.

As will be discussed below, this correspondence holds only in the absence of odd loops [6], and thus in
particular, constraints.

Elkan points out that also incremental reasoning is NP-complete, i.e., given an admissible model M
for P , deciding for a rule r whether P ∪ {r} has an admissible model.

Example 3 (cont’d). Consider again the network T = (N,J) of Example 2. We obtain the following
translated program PT :

(r1) a ← b
(r2) b ← not c
(r3) c ← not a

This program has two answer sets, {a, b} and {c}, corresponding to the admissible models of T .

In the sequel, we discuss truth maintenance techniques in terms of logic programs:

4 INFSYS RR 17-02

• a program P (i.e. a set of rules) replaces justifications, and

• atoms AP occurring in P replace nodes.

For a rule of form (1), with atoms {h, i1, . . . , in, o1, . . . , om}, H(r) = h is called the head, B+(r) =
{i1, . . . , in} is the positive body, B−(r) = {o1, . . . , om} is the negative body, and

B(r) = B+(r) ∪B−(r)

is called the body of r. For a given rule r, we also write H , B, B+, and B−, respectively. We may also
denote a rule by h← B, etc.

JTMS Data Structures

By JTMS we will refer to the following data structures based on a program P .
Labels. Each atom a ∈ AP is assigned a unique label. A model corresponds to the set of atoms with label
in , all others are (labeled with) out . During the algorithm, a third label unknown is assigned to atoms that
are not yet determined.
Justifications, consequences. The justifications J(a) = {r ∈ P | H(r) = a} of an atom a are the rules
with head a. Consequences of an atom b are heads of rules where b appears in the body, i.e.,

cons(b) = {H (r) | r ∈ P, b ∈ B(r)}.

Rule validity. Due to a given labeling label , a rule r is

• valid, if the body holds, i.e., if label(a) = in for all a ∈ B+ and label(a) = out for all a ∈ B−;

• invalid if some a ∈ B+ is out or some a ∈ B− is in; we will call any such atom a spoiler for r;

• posValid if all atoms in B+ are in and no atom in B− is in , however, B− may contain unknown
atoms.

Note that every valid rule is also posValid .
Support. The support of an atom a specifies the reason why the current label is assigned.

• If label(a) = in , then supp(a) is the body of some supporting justification, denoted by suppJ (a),
i.e., a valid rule r ∈ P with head a. If a appears as fact, we set supp(a) = ∅ since it then needs no
further support.

• If label(a) = out , then supp(a) contains a spoiler for each justification. Notably, the algorithm might
fail to find a spoiler for a given rule. Then it can also use an unknown atom a (from B+) assuming
that a will be labeled out later. We will explore this below. If a appears only in rule bodies, then we
again set supp(a) = ∅.

• If label(a) = unknown , then the conceptual intuition of support does not apply; we technically set
supp(a) = ∅.

Repercussions. If atom a supports rule head h, a label change for a might entail one for h. Thus, h is said
to be affected by a. Formally,

affected(a) = {h ∈ AP | a ∈ supp(h)}.

The repercussions denote the transitive closure of this relation, i.e., the set of atoms which might change
their label directly or indirectly due the label change of a given atom.

INFSYS RR 17-02 5

Algorithm 1: JTMS Algorithm: add(r : rule)
Input: A rule r with head h

1 register(r)
2 if label(h) = in : return
3 if invalid(r) :
4 supp(h) := supp(h) ∪ {spoiler(r)}
5 return
6 A := repercussions(h) ∪ {h}
7 update(A)

Algorithm 2: register(r : rule)
Input: A rule r 6∈ P with atoms Ar, head h, and body atoms B

1 foreach a ∈ Ar \AP // new atoms
2 label(a) := out
3 cons(a) := ∅ // consequences: heads of rules with a in the body
4 supp(a) := ∅ // sufficient atoms supporting the current label of a
5 suppJ (a) := nil // in case a is in , a valid rule with head a

6 foreach b ∈ B
7 cons(b) := cons(b) ∪ {h}
8 P := P ∪ {r}

3 The Truth Maintenance Algorithm

Algorithm 1 presents the outline of Doyle’s procedure for adding to a program P with model M a rule r.
The goal is to update the data structures such that the model M ′ obtained by atoms with label in is an answer
set of P ∪ {r}.

Example 4. Consider the following rules.

r1 = a← b. r2 = b← not c. r3 = a← d. r4 = d← c.
r5 = c← d. r6 = c← not e. r7 = e← .

Algorithm 1. We start with add(r1). For both atoms x ∈ {a, b}, the call register(r1) (Algorithm 2) assigns
label(x) := out , supp(x) := ∅ and suppJ (x) := nil . Moreover, cons(b) = {a}. Head a is not in but rule
r1 is invalid, so we reassign supp(a) := {b} in Line 4 of Alg. 1 and halt with model ∅, since no atom has
label in . Next, we call add(r2), where r2 = b← not c. Rule head b is not in but r2 is valid. Due to r1, a is
affected by b, so update (Algorithm 4) is called for A = {a, b}.

Algorithm 5. After setUnknown in Algorithm 4, we try to deterministically assign each atom label in
(resp. out) due to a valid justification (resp. by invalidity of all justifications).

Example 5 (cont’d). Assume findLabel is first called for a. The justification set is J(a)= {r1}, and r1
is neither valid nor invalid. For findLabel(b), we have J(b)= {r2} and as label(c) = out , r2 is valid and

6 INFSYS RR 17-02

Algorithm 3: spoiler(r : rule)

Input: A rule r ∈ P with atoms Ar, pos./neg. body B+/B−

Output: If r is invalid, an atom a ∈ Ar supporting the invalidity, else nil

1 if randomBoolean()
2 if ∃ a ∈ B+ : label(a) = out return a
3 else if ∃ a ∈ B− : label(a) = in return a
4 else return nil

5 else
6 if ∃ a ∈ B− : label(a) = in return a
7 else if ∃ a ∈ B+ : label(a) = out return a
8 else return nil

Algorithm 4: update(A : set of atoms)

1 foreach a ∈ A : setUnknown(a)
2 foreach a ∈ A : findLabel(a) // try to determine first
3 foreach a ∈ A : chooseLabel(a) // else make choices

we call setIn(r2). This assigns label(b) := in , supp(b) := {c} and suppJ (b) := r2. As labelSet is true,
cons(b) = {a} and a is unknown , we recursively call findLabel(a) for propagation; now r1 is valid. In
setIn(r1) we set label(a) := in , supp(a) := {b} and suppJ (a) := r1. We have the model {a, b} which
stays after adding rules r3, r4 and r5; adding r6 leads to {a, c, d}. We now call add(r7), where r7= e←.
After findLabel , only e is assigned (in), and a, b, c, d remain unknown .

Algorithm 6. Procedure chooseLabel will similarly assign label(x) := out if all justifications are not posValid .
Otherwise, if a posValid justification is found for atom x we check whether assigning label(x) := in is safe
by ensuring that nothing is affected by x so far. This may happen only if x is already used as a spoiler and
thus assumed to eventually be labeled out . Then, Lines 14-16 reset x and affected atoms to unknown and
recursively calls the subprocedure.

Example 6 (cont’d). We call chooseLabel(d) and r4 ∈ J(d) is not posValid (c is unknown). We call
setOut(d) and a, c are unknown consequences of d; chooseLabel(a) leads to setOut(a) and chooseLabel(c)
leads to setOut(c). Now b is an unknown consequence of c and chooseLabel(b) finds posValid(r2).
However, the previous call setOut(a) set supp(a) := {b, d}, thus affected(b) = {a} 6= ∅. Hence, we call
setUnknown for b, a. We enter chooseLabel(b), then setIn(b); finally chooseLabel(a), then setIn(a) and
get model {a, b, e}.

4 Extending JTMS: Removing Rules

Doyle provided no explicit means to remove rules. However, we can simulate removal: we can store a rule
r = h← B internally as h← B, not rmr, where rmr is a fresh atom. Then, removing r amounts to adding
the fact rmr ←. However, reactivating the rule can then only be done by adding a modified copy of form
h← B, not rm ′r, where rm ′r is another fresh atom. Consequently, this approach will lead to an inflation of
the knowledge base.

INFSYS RR 17-02 7

Algorithm 5: findLabel(a : atom)

1 if label(a) 6= unknown : return
2 labelSet := false
3 J(a) := {r ∈ P | H (r) = a} //H(r) is the head of r

4 if ∃ r ∈ J(a) : valid(r)
5 setIn(r)
6 labelSet := true

7 else if ∀ r ∈ J(a) : invalid(r)
8 setOut(a)
9 labelSet := true

10 if labelSet
11 foreach u ∈ unknownCons(a) : findLabel(u)

12 defn unknownCons(a) = {c ∈ cons(a) | label(c) = unknown}
13 def setIn(r) :
14 h := H (r)
15 label(h) := in
16 supp(h) := B(r)
17 suppJ (h) := r

18 def setOut(a) :
19 label(a) := out
20 supp(a) := { spoiler(r) | r ∈ P and H (r) = a }
21 suppJ (a) := nil

22 def setUnknown(a) :
23 label(a) := unknown
24 supp(a) := ∅
25 suppJ (a) := nil

A better solution is presented in Algorithm 7 which allows for removing a rule in analogy to Algorithm 1.
First, we potentially remove in deregister (Algorithm 8) obsolete entries in the TMS data structures. This
involves removal of atoms that are no longer in the program and updating consequences of the remaining
ones. Procedure remove then halts without updates if rule head h no longer occurs in the program, h has
label out , or if r was not the supporting justification of h.

Example 7 (cont’d). Suppose we delete r3 = a← d, i.e., we call remove(r3). Both a and d remain in
the program, so in deregister(r3) we only remove a from cons(d). We then halt in Line 3 (of Algorithm 7)
since suppJ (a) = r1. Consequently, the model {a, b, e} is maintained.

If no exit criterion applies, we determine repercussions as in Algorithm 1 (add) and call the same update
procedure.

8 INFSYS RR 17-02

Algorithm 6: chooseLabel(a : atom)

1 if label(a) 6= unknown : return
2 labelSet := false
3 J(a) := {r ∈ P | H (r) = a}
4 if ∃ r ∈ J(a) : posValid(r)
5 if affected(a) = ∅
6 setIn(r)
7 labelSet := true

8 else
9 setOut(a) // for support: view unknown as out

10 labelSet := true

11 if labelSet
12 foreach u ∈ unknownCons(a) : chooseLabel(u)
13 else
14 C := affected(a) ∪ {a}
15 foreach c ∈ C : setUnknown(c)
16 foreach c ∈ C : chooseLabel(c)

Algorithm 7: JTMS Extension: remove(r : rule with head h)

1 deregister(r)
2 if h 6∈ AP\{r} or label(h) = out or suppJ (h) 6= r

3 return
4 A := repercussions(h) ∪ {h}
5 update(A)

Algorithm 8: deregister(r)

Input: A rule r with atoms Ar, head h, and body atoms B(r)

1 if r 6∈ P return
2 P := P \ {r}
3 foreach a ∈ Ar \AP // deprecated rule atoms
4 remove key a in maps label , cons , supp, suppJ

5 foreach b ∈ B(r) ∩AP // body atoms that are still in use
6 if {r′ ∈ P | H (r′) = h and b ∈ B(r′)} = ∅
7 cons(b) := cons(b) \ {h}

INFSYS RR 17-02 9

5 Analysis of JTMS

Doyle’s algorithm faces some problem on its own, and some with respect to the (partial) correspondence
with Answer Set Programming.

Algorithm design. In [4], Doyle described his algorithm only informally. Our formal presentation uses new
vocabulary and is modularized into subprocedures. A design issue is the 2-step approach to deterministic
and non-deterministic label assignment in Algorithm 4. Doyle points out that findLabel (in our terms) is
subsumed by chooseLabel and only introduced for efficiency. However, from this perspective, it is unclear
why in Algorithm 6, Line 4, one would not first look for valid rules, then for posValid ones, etc. To first
compute the deterministic effects after a single choice is natural, as this reduces the probability that retraction
steps of Lines 14-16 will be needed.

Example 8. In Example 6, assume a deterministic step after the initial call chooseLabel(d), with the same
order as before: By contrast, a is now examined in findLabel and remains unknown . Next, findLabel(c)
will call setOut(c), leading label in for b and then a due to recursive calls of findLabel .

Odd loops. As pointed out in [7], the update may lead to inadmissible models. JTMS cannot handle odd
loops, i.e., an odd number of negations due to which an atom might mistakenly create a cyclic foundation
for itself. The minimal case is shown in the next example.

Example 9. Consider the rule r=x← notx, where x is a fresh atom; r is valid and findLabel(x) calls
setIn(r1) which assigns supp(x) := {x}, i.e., x supports itself. We get the inadmissible model {x} instead
of none.

Note that for odd loops as in Example 9, simple ad-hoc tests (e.g. for self-support) would suffice. In general,
however, odd loops cannot be solved that easily and require a different kind of maintenance technique.

Odd loops may not only result in inadmissible models, they may also cause non-termination.

Example 10. Consider an empty program, then add(r1) for r1= a← not b and add(r2) for r2= b← a,
which is valid . Since b is out , we call update({a, b}); atom a will be assigned in since r1 is posValid ;
supp(a) := {b}. For atom b we have posValid(r2) but affected(b) 6= ∅. Thus, a and b are reset to unknown ,
which also occurs when starting with b.

Constraints and inconsistency. More abstractly, JTMS cannot deal with inconsistency. In particular, a
constraint ⊥ ← i1, . . . , in,not o1, . . . ,not om cannot be modelled by

x← i1, . . . , in,not o1, . . . ,not om,notx , (2)

as usual as this rule introduces a (minimal) odd loop. Doyle presented a workaround: when a special
contradiction node (atom) c is derived, a dependency-directed backtracking procedure will add new rules R
to the program P to prevent the derivation of c. However, the admissible models of P ∪R are not necessarily
admissible for P . We thus skip a discussion of this procedure.

Non-termination. Another issue concerns the unsystematic backtracking in Algorithm 6, where the recur-
sive call in Line 16 may lead to an infinite loop.

10 INFSYS RR 17-02

Example 11. Consider again the program from Example 4 and let the truth maintenance network be in the
same state (in terms of contents of all data structures) as in Example 6 where b is the last remaining unknown
atom. Let us call this specific state Ub. There, we found posValid(r2) (Line 4), but affected(b) = {a}
(Line 5), hence we reset a and b to unknown (Line 15). Let this state be denoted by Uab. In Example 6
we assumed that in Line 16 we will first pick atom b. Let us now assume in state Uab, the implementation
first picks a, i.e., the call chooseLabel(a). Now, neither of the justifications r1 = a← b nor r3 = a← d are
posValid (label(b) = unknown , label(d) = out). Consequently, a is set to out and we again enter state Ub,
leading to state Uab, and so forth.

In practice, such infinite loops can be avoided by shuffling the order of atoms for which the recursive call to
chooseLabel is made.

Example 12 (cont’d). Assume set C of Line 14 is represented as list and randomly shuffled after initial-
ization. Then, eventually we will first call chooseLabel(b) in state Uab as in Example 6, where the algorithm
terminates with the correct model {a, b, e}.

6 Implementation & Application

We provide a clean implementation of the JTMS algorithms as presented. The source code, written in Scala,
is available here:

• https://github.com/hbeck/jtms

This realization focuses on conceptual clarity and follows closely the pseudo code of this paper. The main
difference is that truth maintenance network data structures such as cons , supp and label , as well as net-
work specific functions such as valid , invalid and posValid have been factored out in a separate class
SimpleNetwork which derives from the trait TruthMaintenanceNetwork.

A more efficient variant can be found in the class OptimizedNetwork in the source code of Ticker,
available at https://github.com/hbeck/ticker. Ticker is an ASP-based stream reasoning engine that
utilizes JTMS for incremental model update as described. We refer the interested reader to [1]. The opti-
mized version essentially avoids frequent evaluations by maintaining caches. However, the algorithm itself
remains the same.

7 Conclusion

Doyle’s Justification-based Truth Maintenance System is a classic nonmonotonic reasoning technique. We
presented a formalization of its core in logic programming terms and gave an extension for rule removal.
Moreover, we briefly analyzed algorithmic and semantic shortcomings of JTMS, in particular with respect
to correspondence with Answer Set Programming. Finally, we gave implementations of the presented algo-
rithms.

Acknowledgements

Christian Folie was involved in the development of both JTMS implementations. In particular, he con-
tributed substantially to the Ticker project.

INFSYS RR 17-02 11

References

[1] Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A System for Incremental ASP-based Stream
Reasoning. CoRR, abs/1707.05304, 2017.

[2] Christoph Beierle and Gabriele Kern-Isberner. Methoden wissensbasierter Systeme - Grundlagen, Al-
gorithmen, Anwendungen (5. Aufl.). Computational intelligence. SpringerVieweg, 2014.

[3] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer Set Programming at a Glance. Com-
munications of the ACM, 54(12):92–103, 2011.

[4] Jon Doyle. A Truth Maintenance System. Artif. Intell., 12(3):231–272, 1979.

[5] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer Set Programming: A Primer.
In 5th International Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August 30–
September 4, 2009, pages 40–110, 2009.

[6] Charles Elkan. A Rational Reconstruction of Nonmonotonic Truth Maintenance Systems. Artif. Intell.,
43(2):219–234, 1990.

[7] Drew V. McDermott. A General Framework for Reason Maintenance. Artif. Intell., 50(3):289–329,
1991.

