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Abstract. Abstraction is an important technique utilized by humans in model building and problem
solving, in order to figure out key elements and relevant details of a world of interest. This naturally
has led to investigations of using abstraction in AI and Computer Science to simplify problems,
especially in the design of intelligent agents and automated problem solving. By omitting details,
scenarios are reduced to ones that are easier to deal with and to understand, where further details are
added back only when they matter. Despite the fact that abstraction is a powerful technique, it has not
been considered much in the context of nonmonotonic knowledge representation and reasoning, and
specifically not in Answer Set Programming (ASP), apart from some related simplification methods.
In this work, we introduce a notion for abstracting from the domain of an ASP program such that the
domain size shrinks while the set of answer sets (i.e., models) of the program is over-approximated.
To achieve the latter, the program is transformed into an abstract program over the abstract domain
while preserving the structure of the rules. We show in elaboration how this can be also achieved
for single or multiple sub-domains (sorts) of a domain, and in case of structured domains like grid
environments in which structure should be preserved. Furthermore, we introduce an abstraction-
&-refinement methodology that makes it possible to start with an initial abstraction and to achieve
automatically an abstraction with an associated abstract answer set that matches an answer set of
the original program, provided that the program is satisfiable. Experiments based on prototypical
implementations reveal the potential of the approach for problem analysis, by its ability to focus on
the parts of the program that cause unsatisfiability and by achieving concrete abstract answer sets that
merely reflect relevant details. This makes domain abstraction an interesting topic of research whose
further use in important areas like Explainable AI remains to be explored.
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1 Introduction

Abstraction is a technique applied in human reasoning and understanding, by reasoning over the models of
the world that are built mentally (Craik, 1952; Johnson-Laird, 1983). Although its meaning comes from “to
draw away”, there is no precise definition that is capable of covering all meanings that abstraction has in
its utilizations. There is a variety of interpretations in different disciplines such as Philosophy, Cognitive
Science, Art, Mathematics and Artificial Intelligence, with the shared consensus of the aim to “distill the
essential” (Saitta and Zucker, 2013). Among them is the capability of abstract thinking, which is achieved
by removing irrelevant details and identifying the “essence” of a problem (Kramer, 2007). The notion of
relevance is especially important in problem solving, as a problem may become too complex to solve if every
detail is taken into account. A good strategy to solve a complex problem is to start with a coarse solution
and then refine it by adding back more details. When planning a trip, for instance, one may first pick the
destination and determine a coarse travel plan; fleshing out the precise details of the travel, such as taking the
subway to the airport, comes later. This may be done in a hierarchy of levels of abstraction, with the lowest
level containing all of the details. Another view of abstraction is the generalization aspect, which is singling
out the relevant features and properties shared by objects. For example, features of an airplane such as color
and cargo capacity with their possible differences may be irrelevant to the travel plan; we are (mostly) only
interested in the fact that there is an airplane that takes us from Vienna to New York, say. Overall, the general
aim of abstraction is to simplify the problem at hand to one that is easier to understand and deal with.

For solving combinatorial problems and figuring out the key elements, humans arguably employ abstrac-
tion. In Artificial Intelligence, such problems vary from planning problems like in which order to move blocks
to achieve a final configuration, to solving constraint problems such as finding an admissible coloring of the
nodes of a given graph. In the latter problem, for instance, isolated nodes can be viewed as a single node and
colored the same without thinking about the specific details (Figure 1a). If a given graph is non-colorable,
then we may try to find some subgraph (e.g., a clique) which causes the unsolvability, and we would not care
about other nodes in the graph. Similarly with the blocks: if the labels are not important, we would disregard
them when figuring out the actions. If the goal configuration can not be achieved from the initial one, we
would aim to find out the particular blocks that cause this.

Notably, such disregard of detail also occurs for problems with multi-dimensional structures such as
grid-cells in the well-known Sudoku problem, where a partially filled 9×9 board must be completed by
filling in numbers 1..9 into the empty cells under constraints. If an instance is unsolvable, the reason can only
be meaningfully grasped by a human by focusing on the relevant sub-regions, as looking at the whole grid is
too complex. For illustration, Figure 1b shows the sub-regions of an instance that contain the reason why
no solution exists: as 6 and 7 occur in the middle column, they must appear in the sub-region below in the
left column, which is unfeasible as there is only one empty cell. All these examples demonstrate abstraction
abilities of humans that come naturally.

Due to its important role in knowledge representation and in reasoning, abstraction has been explored
in AI research early on as a useful tool for problem solving: solve a problem at hand first in an abstracted
space, and then use the abstract solution as a heuristics to guide the search for a solution in the original
space (Newell and Simon, 1972; Sacerdoti, 1974; Knoblock, 1994). This approach was used in planning for
speeding up the solving (Holte et al., 1996) and especially for computing heuristic functions to guide the
plan search in the state space. Several abstraction methods were introduced towards this direction, especially
to automatically compute abstractions that give a good heuristic (Edelkamp, 2001; Helmert et al., 2007;
Seipp and Helmert, 2013). However, it is well known that the success in solving a problem relies on how
“good” the abstraction is. For this, theoretical approaches for defining abstractions with desired properties
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Figure 1: Use of abstraction
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have been investigated (Hobbs, 1990; Giunchiglia and Walsh, 1992; Nayak and Levy, 1995). Apart from
gaining efficiency (which however may not always materialize (Backstrom and Jonsson, 1995; Hoffmann
et al., 2006)), abstraction forms a basis to obtain high-level explanations and an understanding of a problem.

Abstraction has been studied in other areas of AI and Computer Science as well, among them model-
based diagnosis (Mozetič, 1991; Chittaro and Ranon, 2004), constraint satisfaction (Freuder, 1991; Bistarelli
et al., 2002), theorem proving (Plaisted, 1981), to name a few. Particularly fruitful were applications in
model checking, which is a highly successful approach to computer aided verification (Clarke et al., 2018),
to tackle the state explosion problem by property preserving abstractions (Clarke et al., 1994; Loiseaux
et al., 1995; Dams et al., 1997). Furthermore, the seminal counterexample guided abstraction refinement
(CEGAR) method (Clarke et al., 2003) allows for automatic generation of such abstractions, by starting from
an initial abstraction that over-approximates the behavior of a system to verify, and then stepwise refining the
abstraction as long as needed, i.e., as long as spurious (false) counterexamples exist.

Abstraction for Answer Set Programming. Answer Set Programming (ASP) (Lifschitz, 2008b; Brewka
et al., 2011) is a declarative problem solving paradigm that is rooted in knowledge representation, logic
programming, and nonmonotonic reasoning. Akin to SAT solving, a problem is represented by a non-
monotonic logic program whose models (called “answer sets” (Gelfond and Lifschitz, 1991)) correspond
to the solutions of the problem. Thanks to the availability of efficient solvers and the expressiveness of the
formalism, ASP has been gaining popularity for applications in many areas of AI and beyond, cf. (Erdem
et al., 2016; Erdem and Patoglu, 2018; Falkner et al., 2018) and references therein, from combinatorial search
problems (e.g. configuration, diagnosis, planning) over system modeling (e.g., behavior of dynamic systems,
beliefs and actions of agents) to knowledge-intensive applications (e.g., query answering, explanation
generation), to name a few (Erdem et al., 2016). The declarative nature of ASP enables a flexible use
for solving different reasoning problems, and it provides a useful basis for investigating ways to help in
understanding a problem with its key elements. Studies in understanding how ASP programs find a solution
(or none) to a problem have been conducted, which mainly focus on debugging answer sets (Brain et al.,
2007; Gebser et al., 2008; Oetsch et al., 2010) or finding justifications (Pontelli et al., 2009; Schulz and Toni,
2013; Cabalar et al., 2014). These approaches could be used to aid in understanding the problem at hand;
however, as noted in (Fandinno and Schulz, 2019), the explanations offered may contain a high number of
details which prevent one from seeing the crucial parts. This is where abstraction would come in handy and
could be very fruitfully used.

Somewhat surprisingly, abstraction has not been considered much in the context of nonmonotonic
knowledge representation and reasoning, including ASP as a premier formalism in this area. Simplification
methods such as equivalence-based rewriting (Gebser et al., 2008; Pearce, 2004), partial evaluation (Brass and
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Dix, 1997; Janhunen et al., 2006), or forgetting (see (Leite, 2017) for a recent survey), have been extensively
studied; however, they strive for preserving semantics, while abstraction may lead to an over-approximation
of the answer sets of a logic program, in a modified language. Spurious answer sets, i.e., abstract answer sets
that do not correspond to some answer set of the original program, may be discarded, while cautious reasoning
from all abstract answer sets preserves soundness; moreover, in case no spurious answer set exists we also
have completeness (in particular, if no abstract answer set exists). This makes abstraction an interesting topic
for research.

In a recent work (Saribatur and Eiter, 2018), a notion of abstraction for ASP was introduced that focuses
on omission of atoms from the vocabulary and ensures over-approximation by rewriting the rules of a
given program. That approach is propositional in nature related to forgetting, with the difference of over-
approximation vs preserving the answer sets. We follow an orthogonal approach and introduce in this work a
notion of abstraction for ASP on the first-order level that is concerned with collapsing (i.e., clustering) objects
in the (Herbrand) domain of a program. It is that in this way, multiplicity is removed in the spirit of Occam’s
razor.1 If the graph in Figure 1a is represented by facts node(1), . . . , node(6) and edge(1,2), edge(1,3),
edge(1,3), then collapsing the nodes 4,5, and 6 into an abstract node a would not affect 3-colorability of the
graph; we thus expect that an abstract version of an ASP program that encodes all 3-colorings of the graph
would yield answer sets from which these 3-colorings can be recovered. However, if there were an edge
between 4 and 5, then over-approximation would yield that this abstract program will have spurious answer
sets, as the abstract node a may have a single color in some abstract answer set I′ while 4 and 5 must have
in every original answer set I different colors, thus I can not be mapped to I′. Similarly, if nodes 1 and 2
were collapsed, the graph would become 2-colorable (where 1 and 2 share the same color), while the original
graph is not 2-colorable. These simple examples shows that a naive use of domain abstraction – just replace
individuals by a cluster of elements – does not work; and yet more subtle effects may surface when programs
have recursive definitions such as reachability.

In fact, suitable domain abstraction for ASP is non-trivial and has several challenges. First, the abstract
program should be automatically constructed, while the structure of the original rules should be preserved if
this is feasible. Second, abstraction refinement, i.e., unclustering of objects for eliminating spurious answer
sets, should be automated as well. This is non-trivial, given a large space of possible refinements and that
objects might be related among each other in multiple ways, e.g. in temporal or spatial relationships as in
reasoning about actions, for instance. And third, the capability of dealing with structure and to support
hierarchical abstraction that can handle objects of different granularities at different levels of abstraction is
needed.

Contributions. We address the issues above in this work, whose main contributions can be summarized as
follows.

(1) We formally introduce the notion of domain abstraction for ASP programs. To this end, we define
abstraction mappings m from the original (concrete) domain D of the program to an abstract domain D′,
and construct an abstract program Πm over D′ such that each answer set I of Π maps to an abstract answer
set I′ of Πm. The construction works modularly on the syntactic level and transforms each rule in Π into
a set of abstract rules with a similar structure. In the transformation, built-in relations and in particular
equality, whose treatment provides the backbone of the method, are lifted to the abstract level, and uncertainty
caused by the abstracted domain D′ is carefully respected. Our notion of abstraction can be used for different
applications such as obtaining abstract solutions from ASP programs or showing reasons of unsatisfiability in

1Often referred to as “Entia non sunt multiplicanda praeter necessitatem.” that is, entities should not be multiplied beyond
necessity.

6



case no answer set exists. We illustrate this on various problems expressed in ASP, among them problems
from combinatorial search, planning, and agent behavior assessment.

(2) We present a method which, in case an abstract answer set I′ of a program Π w.r.t. mapping m is
spurious, computes a refinement m′ of the abstraction in order to eliminate I′. To this end, we reduce the
test for spuriousness to unsatisfiability of a non-ground ASP program Π′ constructed from I′, Π, and m. As
unsatisfiability of Π′ as such leaves one clueless, we use a debugging technique for ASP in order to obtain
useful information for computing a promising refinement m′. To this end, we lift the SPOCK approach (Brain
et al., 2007) for tight programs to the non-ground level such that decisions on refinements can be based on
special atoms computed during the debugging. Intuitively, these atoms single out changes for a spurious
answer set I′ towards a corresponding answer set I of the original program Π, where always some such
atoms will be found; based on heuristics, we introduce different refinement strategies to eliminate spurious
answer sets. These strategies are employed in a CEGAR-style (Clarke et al., 2003) methodology of iterative
abstraction and refinement, which starts with a highly coarse abstraction and automatically searches for and
outputs an abstraction with a non-spurious (concrete) answer set if one exists.

(3) We introduce the possibility of multi-dimensional abstraction mappings over a domain. While the
abstraction method from above can deal with sorts, we have to modify it to form an abstraction over the
relations that is akin to existential abstraction (Clarke et al., 2003), in order to enable that elements at mixed
levels of abstraction can be handled properly. This in fact is needed to relate in Figure 1b cells like the top-left
corner with abstract cells such as the mid-left 3×3 sub-region, and to express their abstract locations such as
being above, left-of etc. We extend the abstraction-&-refinement methodology with handling the structural
aspects of grid-cells by using a quad-tree abstraction, and we consider more sophisticated decision making
for the refinement to observe its effects on the resulting abstractions.

(4) We analyze semantic and computational properties of the abstraction approach, which can be exploited
for modeling and for guiding the design of suitable implementations. Among other results, we establish that
abstractions for sequences of refinements can be built incrementally (Proposition 3.6), and that abstractions
of independent sorts can be naturally composed (Proposition 3.7). Furthermore, the two variants of domain
abstractions we consider are semantically equivalent, which we demonstrate here for the basic case (Theo-
rem 5.1), but have features making them attractive in different contexts. As regards complexity, we show
that checking whether an abstract answer set is spurious is coNEXP-complete and that deciding whether
an abstraction mapping is faithful, i.e., has no spurious abstract answer sets, is coNEXPNP-complete. Thus,
the worst case complexity of these problems is roughly by an exponential higher than the one of answer
set checking resp. unsatisfiability testing of non-ground ASP programs (Eiter et al., 2007). Furthermore, if
predicate arities are bounded by a constant, the problems are Π

p
2-complete and Π3

p-complete, respectively,
and thus one level higher up in the Polynomial Hierarchy than answer set checking and unsatisfiability testing,
respectively. Reducing spurious checking to unsatisfiability testing as we consider is thus worst-case optimal
in both settings.

(5) We have implemented the abstraction-&-refinement approach in prototypical tools DASPAR and
mDASPAR for plain and multi-dimensional abstraction, respectively. They take as input a non-ground
program Π and an initial coarse domain mapping m (which by default is the trivial mapping that clusters
all elements), and output a refinement mapping m′ and an abstract answer set Î′ for the abstract program
Πm′ that is non-spurious, if one exists; otherwise, i.e., in case Π is unsatisfiable, they provide a refinement
mapping m′ that is faithful, i.e., such that Πm′ has no abstract answer sets. The implementations include
different refinement strategies and support independent sorts 2-dimensional abstractions with a quadtree-style
refinement process. Based on these tools, we have conducted an experimental evaluation of the approach,
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where one set of experiments focused on finding non-trivial abstractions for problems expressed by well-
known ASP programs (graph coloring, scheduling), while another one consisted in detecting the unsolvability
of several benchmark problems involving grid-cells. In the experiments, different debugging strategies were
considered and a measure for assessing the quality of multi-dimensional abstraction was developed. The
results show the potential of the approach, where in particular a small user-study for a natural grid-cell
problem indicates its capability of putting a human-like focus on the grid to show unsatisfiability.

Summarizing, our work on domain abstraction for ASP opens an intriguing line of research which aims
at making it possible to identify the gist of a program’s domain that is responsible for matters such as
inconsistency or certain solutions of interest. The approach that we present provides the ability to adjust
the granularity of abstraction towards the details relevant for a problem in an (semi-)automated way. The
experimental results indicate the value of domain abstraction for program analysis, whose further use in
important areas like Explainable AI remains to be explored.
Organisation. The remainder of this article is organized as follows. The next section recalls notions from
ASP as needed for this work, and reviews the seminal approach to abstraction over (in essence) propositional
ASP programs introduced in (Saribatur and Eiter, 2018). After that, we turn in Section 3 to domain abstraction
for non-ground ASP programs, where we present an abstraction procedure, consider various extensions, and
study semantic and computational properties of the approach. In the subsequent Section 4, we present our
refinement methodology that is based on debugging of ASP programs. This is followed by discussing in
Section 5 multi-dimensional abstraction and an alternative abstraction method, based on existential abstraction,
that is needed for it. Implementation and evaluation of the approach is considered in Section 6, while in
Section 7 we discuss further notions of abstraction and possible use cases, as well as related work. The final
Section 8 provides a summary and outlines issues for future research.

In order not to distract from the flow of reading, longer proofs and further details have been moved to the
Appendix (A and B), which also provides a further use case in agent behavior assessment (C).

2 Background

2.1 Answer Set Programming

In this section, we recall the concepts and notions of Answer Set Programming (ASP) that we need for
this article. We refer to (Brewka et al., 2011, 2016; Schaub and Woltran, 2018) for more background and
references. We start with syntax and semantics of ASP programs and then recall some notions that are useful
for this work.
Syntax. We consider a first order vocabulary L = (P,C ) consisting of non-empty finite sets P of
predicates and C of constants. Let V represent the set of variable symbols. A term is either a constant from
C or a variable from V . An atom is of the form p(t1, . . . , tn) where p ∈P and each ti is a term; n is the arity
of p. Atoms are called propositional if k = 0 and ground if they do not contain variables. A literal l is an
atom a or a strongly (“classically”) negated atom ¬a,

A rule r is an expression of the form

α0← α1, . . . ,αm,not αm+1, . . . ,not αn, 0≤m≤n, (1)

where each αi is a literal and not is negation as failure alias strong negation. Intuitively, a default literal
not αi is true, if α cannot be derived using rules, and false otherwise. We refer to α0 as the head of r, and
α1, . . . ,αm,not αm+1, . . . , not αn as the body or r. We also write r as α0←B(r), such that H(r) = α0 denotes
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the head and B(r) denotes the set of all the body literals B+(r)∪B−(r), where B+(r) = {α1, . . . ,αm} is the
positive body and B−(r) = {αm+1, . . . ,αn} is the negative body of r; thus, we have H(r)← B+(r),not B−(r).
We may omit r from B(r), B+(r) etc. if r is clear.

A rule r is a constraint, if α0 is falsity (⊥, then omitted) and a fact, if n=0 and no variable occurs in r.
Furthermore, r is positive if n = m, and normal, if no not occurs in r. A rule is ground, if all literals occurring
in it are ground.

A program Π is a finite set of rules. It is positive, normal, ground if the rules in it have the respective
property; it is safe, if every variable that occurs in a rule also occurs in the same rule in some positive body
literal. It is domain-restricted, if this body literal is over a positive domain predicate, which are predicates
not defined via negative recursion or using choice rules.
Semantics. The answer set semantics is defined via ground programs. For a program Π, we define its
ground instantiation as follows.

Given a program Π, its Herbrand universe, denoted by HUΠ, is the set of all constant symbols C ⊆ C
appearing in Π; in case there is no constant symbol, then HUΠ = {c} for some arbitrary constant symbol. The
Herbrand base of a program Π, denoted by HBΠ, is the set of all ground literals constructed using predicates
from P and constants from C .

The ground instances of a rule r ∈Π, denoted by grd(r), is obtained by replacing all variables in r with
constant symbols in HUΠ. The grounding of a program Π then becomes grd(Π) =

⋃
r∈Π grd(r). To group

the rules in grd(Π) with the same head q, we use def (q,Π) = {r ∈Π | H(r) = q}.
Let Π be a ground program. A set L⊆HBΠ of literals is consistent, if p,¬p* L for every atom p ∈HBΠ.

An interpretation I is a consistent subset of HBΠ. An interpretation I satisfies a rule r ∈Π, denoted by I |= r,
if H(r)⊆ I whenever B+(r)⊆ I and B−(r)∩ I = /0. An interpretation is a model of Π, denoted by I |= Π, if
I |= r for all r ∈Π. A model I is minimal, if there is no model J of Π such that J ⊂ I.

Example 2.1. Consider the program Π below and the interpretation I = {a,b,d}.

c←not d.

d←not c.

a←not b,c.

b←d.

I is a model of Π, but it is not minimal, since the interpretation I′ = {b,d} is also a model of Π.

Definition 2.1 (GL-reduct). The Gelfond-Lifschitz (GL-)reduct of a program Π relative to an interpretation
I ⊆ HBΠ, denoted by ΠI , is the ground positive program obtained from grd(Π) when each rule H(r)←
B+(r),not B−(r)

(i) with B−(r)∩ I 6= /0 is deleted, and

(ii) is replaced by H(r)← B+(r), otherwise.

Informally, the first step is to remove the rules where I contradicts a default negated literal, and from the
remaining rules, the second step removes their negative body. An interpretation I is an answer set of Π, if it
is the minimal model of the GL-reduct ΠI . Apart from the GL-reduct which is considered to be the standard
definition for stable models (i.e., answer sets), a collection of other definitions can be found in (Lifschitz,
2008a).

The set of answer sets of a program Π is denoted as AS(Π). A program Π is unsatisfiable, if AS(Π) = /0.
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Example 2.2 (ctd). Π has two answer sets, viz. I1 = {c,a} and I2 = {d,b}; indeed,

• ΠI1 = {c← not d.; a← not b,c.} and I1 is a minimal model of ΠI1 ; similarly,

• ΠI2 = {d← not c.; b← d.} has I2 among its minimal models.

language extensions. Choice rules are a syntactic extension of the form {α}← B, which stands for the rules
α ← B,not α and α ← B,not α , where α is a new atom. Cardinality constraints and conditional literals are
further common syntactic extensions (Simons et al., 2002); in particular, i`{a(X) :b(X)}iu is true whenever
at least i` and at most iu instances of a(X) subject to b(X) are true.

Example 2.3. Consider the following rules.

1{a(X ,Y,Z) : b(X),c(Y )}1←d(Z). (2)

{a(X) : b(X);c(X ,Y ) : b(X),d(Y )}1. (3)

Rule (2) states that exactly one instance of a(X ,Y,Z) subject to b(X) and c(Y ) has to be true, where the value
of Z depends on the instance of d(Z) that is true, and rule (3) states that at most one instance of either a(X)
subject to b(X) or c(X ,Y ) subject to b(X) and d(Y ) has to be true.

A weak constraint (Leone et al., 2006) is of the form

:∼ α1, . . . ,αm,not αm+1, . . . ,not αn.[w : l]

where w (the weight) and l (the level) are positive integer constants or variables. The costs of all violated
(instances of) weak constraints (grouped by levels of priorities l) are added up and assigned to the answer set.
Among all answer sets, those whose cost vector is lexicographically smallest are chosen as optimal answer
sets. Using weak constraints is a convenient way of performing optimizations.

Dependencies. The dependency graph of a ground program Π is a directed graph GΠ = (V,E), where the
vertices V equals HBΠ, and the edges E = E+∪E− consist of positive edges E+ from any q=H(r) to any
p1 ∈ B+(r) and negative edges E− from any q=H(r) to any p2 ∈ B−(r), for all r ∈ grd(Π).

Example 2.4 (ctd). GΠ has positive edges a→ c and b→ d and negative edges c→ d, d→ c and a→ b.

A non-empty set L of ground literals describes an odd loop of Π if for each pair p,q ∈ L there is a path τ

from p to q in GΠ with an odd number of negative edges. Constraints are viewed as simple odd loops. As
well-known, Π is satisfiable, if it contains no odd loop, cf. (Papadimitriou and Yannakakis, 1992).

Example 2.5 (ctd). The program Π has no odd loop, and thus has some answer set.

The positive dependency graph is the dependency graph containing only the positive edges, denoted by
G+

Π
. A program Π is tight if G+

Π
is acyclic. A non-empty set L of ground literals describes a positive loop of

Π if for each pair p,q ∈ L there is a path τ from p to q in G+
Π

such that each literal in τ is in L.
As we consider non-ground programs, we need to take care of cyclic dependencies of literals at the

non-ground level. A negative dependency cycle of length n≥ 2 is of the form

a1(x1)→ a2(x2)→ . . .→ an(xn)→ an+1(xn+1)

with an+1(xn+1) = a1(x1), where ai(xi)→ ai+1(xi+1) denotes that ai(xi) is in the head of a rule ri, and ri

has in its negative body some literal ai+1(x′i+1) that unifies with ai+1(xi+1). For example, a choice rule
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Figure 2: Non-3-colorable graph
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consists of a negative cyclic dependency chain of length 2, and a rule of form p(X)←not p(X),q(X)
contains a cycle of length 1. In this article, we focus on the predicates ai of the literals to determine the
dependency, and we thus consider negative cyclic dependency chains of form a1→ a2→ . . .→ an→ an+1
where an+1 = a1. Accordingly, we will consider a set Lc of literals as cyclic, if for each pair l1, l2 ∈ Lc a
chain pred(l1)→ . . .→ pred(l2) exists.

ASP solvers first generate a grounding of the given program, and then a search for an answer set is
conducted over the ground program.

2.2 Abstraction in ASP

Abstraction aims at discarding some details of a problem to obtain a more high-level view of a solution. This
can be done in an over-approximation, which means that each original solution has some corresponding
solution in the abstraction but one may encounter abstract solutions which do not have a corresponding
original solution.

In (Saribatur and Eiter, 2018), the authors introduced such a notion of abstraction in ASP for over-
approximating a given program Π on vocabulary A , by constructing a program Π′ on a smaller vocabulary
A ′, i.e., |A | ≥ |A ′|, More formally, abstraction was defined at the semantic level as follows.

Definition 2.2 ((Saribatur and Eiter, 2018)). Given two programs Π and Π′ with |A |≥|A ′|, where A ,A ′

are sets of ground atoms of Π and Π′, respectively, Π′ is an abstraction of Π if there exists a mapping
m : A →A ′∪{>} such that for any answer set I of Π, I′ = {m(α) | α ∈ I} is an answer set of Π′.

We refer to m as an abstraction mapping. This notion of abstraction gives us the possibility to do
clustering over atoms of the program. The (abstract) program Π′ on the smaller vocabulary A ′ serves to
represent abstract answer sets. While the reduced vocabulary eases the search for an (abstract) answer set I′,
an additional check is needed whether the original program Π has some answer that maps to I′. In (Saribatur
and Eiter, 2018), the focus was on abstraction by omitting atoms from a program, i.e., by clustering them into
>.

Example 2.6. Consider the program that describes the graph 3-coloring problem below (adapted from the
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coloring encoding in the ASP Competition 2013) and the graphs shown in Figure 1.

color(red). color(green). color(blue).

{chosenColor(N,C)}← node(N),color(C).

colored(N)← chosenColor(N,C).

⊥← not colored(N),node(N). (4)

⊥← chosenColor(N,C1),chosenColor(N,C2),C1 6=C2.

⊥← chosenColor(N1,C),chosenColor(N2,C),edge(N1,N2).

If we omit in the (ground version) of the encoding (4) with the instance shown in Figure 1a all atoms involving
the nodes 4,5,6, the resulting abstract program will have answer sets which all correspond to some answer set
of the original program, as the omitted nodes can be colored arbitrarily without destroying 3-colorability.

We could likewise map all atoms a involving 4,5,6 to atoms a′ in which these nodes are replaced by a
new node k; e.g., node(4) would become node(k), node(5) becomes node(k) etc. The abstract answer sets
correspond then again to original answer sets, as the coloring of 4,5,6 does not matter. On the other hand, if
we consider the graph in Figure 2 and omit all atoms that involve nodes 5,6,7,8, then the resulting abstract
program has no an answer set, as the remaining clique 1-2-3-4 is not 3-colorable; also the original program
has no answer set.

The latter observations is not by accident but in fact a useful property.

Proposition 2.1. Let Π′ be an abstraction of Π. If AS(Π′) = /0, then we have AS(Π) = /0.

In general, over-approximation can cause abstract answer sets that have no corresponding original answer
set.

Definition 2.3 (Spurious & concrete answer sets). Let Π′ be an abstraction of Π for the mapping m. The
answer set I′ ∈ AS(Π′) is concrete if there exists an answer set I ∈ AS(Π) such that m(I) = I′; otherwise, it
is spurious.

In these terms, the abstract answer set of the first abstract program constructed in Example 2.6 are all
concrete, while if we drop all all atoms involving nodes 1,2,3,4 from the graph in Figure 2, the abstract
answer sets of the resulting abstract program are all spurious.

2.2.1 Abstraction Refinement Methodology

To get rid of spurious abstract answer sets, the abstraction mapping m needs to be refined to a more fine-
grained abstraction; in case of omission abstraction, the refinement would be to add back some of the omitted
atoms.

We consider a CEGAR-style (Clarke et al., 2003) abstraction refinement approach which refines an
initial abstraction repeatedly until a concrete solution is found or inconsistency (i.e., absence of solutions) is
detected.

Before describing the general methodology, we first illustrate the idea with the graph coloring example.

Example 2.7 (ctd). Figure 3 shows the abstraction of omitting 7 of the 8 nodes and their edges. Deciding
on a color for the remaining node is easy. However, in the original domain, no coloring can match node 1
colored red as the graph is uncolorable. A refinement of this abstraction would be to add back some of the
nodes and the knowledge about the edges. Until an abstraction is achieved where the four nodes causing the
uncolorability is distinguished, a spurious coloring always occurs.
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Figure 3: Abstraction refinement upon spurious graph colorings
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Figure 4: Abstraction & Refinement Methodology
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Figure 4 depicts the methodology introduced in (Saribatur and Eiter, 2018). For a program Π, we start
with an initial abstraction mapping m to construct an abstract program Π̂m (Step 1) that over-approximates
the original program Π and then compute the abstract answer sets. Over-approximation guarantees that if Π

has a answer set I, then a corresponding abstract answer set m(I) of the abstract program Π̂m exists. If in
turn the abstract program Π̂m has no answer set (Step 2), by Proposition 2.1 Π is unsatisfiable. In this case,
the abstract program Π̂m and the mapping m are returned. When we pick an abstract answer set I′ ∈ AS(Π̂m)
(Step 3), we check for concreteness (Step 4). If I′ is concrete, it shows a solution to Π; in this case, the
abstract program Π̂m, the mapping m and the concrete abstract answer set I are returned. If I′ is spurious, we
refine the abstraction mapping m to m′ (Step 5) and loop back to Step 1. This loop continues until either a
picked abstract answer set is concrete, or the abstract program has no answer sets. Termination is guaranteed
as in the extreme case m is refined to the trivial identity mapping, i.e., each element of the original domain
is mapped to itself; Π̂m will coincide with Π. Thus, if Π is unsatisfiable, the procedure will stop at Step 2,
otherwise at Step 4.

In the next section, we introduce the new abstraction method to be used in Step 1. We investigate an
abstraction over non-ground ASP programs given a mapping over their domain (i.e., the Herbrand universe)
that singles out the domain elements. The correctness checking of an abstract answer set (Step 4) and then
deciding on a refinement (Step 5) is done using a debugging approach which is introduced in Section 4.
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3 Domain Abstraction

The omission-based abstraction approach in (Saribatur and Eiter, 2018) is propositional in nature and does
not account for the fact that in ASP, non-ground rules talk about a domain of discourse, where for the
(non)existence of an answer set, the precise set of elements may not matter, but rather how certain elements
are related. For example, the graph coloring encoding (4) expresses that each node should be colored
differently from its neighbors. The names of the neighbor nodes are not relevant to the color determination,
rather the relation of having a neighbor with a certain chosen color.

In this section, we tackle the issue of automatically constructing and evaluating a suitable abstract program
Π′ for a given non-ground ASP program Π with an abstraction over its domain.

To illustrate the abstraction and its various challenges, we use the following example.

Example 3.1 (Running example). Consider the following example program Π with domain predicate int/1
for an integer domain D = {1, . . . ,5}.

c(X)← not d(X),X < 5, int(X). (5)

d(X)← not c(X), int(X). (6)

b(X ,Y )← a(X),d(Y ), int(X), int(Y ). (7)

e(X)← c(X),a(Y ),X ≤ Y, int(X), int(Y ). (8)

⊥← b(X ,Y ),e(X), int(X), int(Y ). (9)

We furthermore have facts a(1), a(3), int(1), . . . , int(5). Note that Π has the following answer sets (with facts
omitted):

I1 ={c(2),c(4),d(1),d(3),d(5),e(2))}∪Sb,

I2 ={c(2),d(1),d(3),d(4),d(5),e(2),b(1,4),b(3,4)}∪Sb,

I3 ={c(4),d(1),d(2),d(3),d(5),b(1,2),b(3,2)}∪Sb,

I4 ={d(1),d(2),d(3),d(4),d(5),b(1,2),b(1,4),b(3,2),b(3,4)}∪Sb,

where Sb = {b(1,1),b(1,3),b(1,5),b(3,5),b(3,1),b(3,3)}.

We take a first-order view in which A is the Herbrand base of Π, which results from the available
predicate symbols and the constant symbols (the domain D of discourse, i.e., the Herbrand universe), which
are by default those occurring in Π. Domain abstraction induces domain abstraction mappings in which
constants are merged.

Definition 3.1. Given a domain D of Π, a (domain abstraction) mapping is a function m :D→ D̂ for a set D̂
(the abstracted domain) with |D̂|≤|D|.

Thus, a domain abstraction mapping divides D into clusters of elements {d∈D |m(d)= d̂}, where d̂∈ D̂,
seen as equal; if unambiguous, we also write d̂ for its cluster m−1(d̂).

Example 3.2 (ctd). A possible mapping for Π with D̂1={k1,k2,k3} clusters 1,2,3 to the element k1 and 4,5
to singleton clusters, i.e., m1={{1, 2,3}/k1, {4}/k2, {5}/k3}. A naive mapping is m2={{1, ..,5}/k} with
D̂2={k}.
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Each domain abstraction mapping m naturally extends to ground atoms a= p(v1, . . . ,vn) by
m(a)= p(m(v1), . . . ,m(vn)).

To obtain for a program Π and a Herbrand base A an induced mapping m : A →A ′ where A ′ = m(A ) =
{m(a) | a ∈A }, we need an abstract program Π′ as in Definition 2.2. However, simply applying m to Π does
not work in general. Moreover, we want domain abstraction for non-ground Π that results in a non-ground
program Π′. Building a suitable Π′ turns out to be challenging and needs to solve several issues, which we
discuss in the next section.

3.1 Towards an Abstract Program

Given a mapping m that describes an abstraction over the domain of a program Π, we start with the intuition of
applying m to each rule, i.e., each atom in a rule is modified according to m, in order to obtain an abstraction
Π′ of Π.

One may think that simply lifting the rules in Π to the abstract level and considering the abstract domain
for evaluation should be enough to achieve an over-approximation. In some cases, this works.

Example 3.3 (ctd). Lifting the rule (7) with the abstraction means considering the abstract domain predicate
înt:

b(X ,Y )← a(X),d(Y ), înt(X), înt(Y ). (10)

For the mapping m2, we obtain the abstract domain fact înt(k), and whenever a(k) and d(k) holds in an
abstract answer set, b(k,k) would also hold. For any original answer set I ∈ AS(Π), the mapped answer set
m2(I) always contains {a(k),d(k),b(k,k)}. Thus the lifted rule (10) preserves the behavior of the original
answer sets. This similarly can be observed for the mapping m1.

However, if a rule contains built-in relations or negation, the behavior of the lifted rule on the abstract
domain might change on the abstraction of the original answer sets. In particular, it could spoil having an
over-approximation. By looking at the cases where simply applying the lifting fails we gradually present our
approach addressing this issue.
Handling built-ins and (in)equalities. Original rules may rely on certain built-in relations involving
variables, such as <,≤ in (5) and (8), or = and 6=. Simply lifting the rule in the abstraction would mean to
apply these relations in the abstract domain. However, due to the domain clustering, some relations might not
preserve the behavior of the relation in the original domain, which results in an uncertainty that needs to be
dealt with.

Example 3.4. Lifting rule (8) simply to
e(X)← c(X),a(Y ),X ≤ Y, înt(X), înt(Y ).

does not work, as X≤Y behaves differently over the cluster k. As k≤k under m2, the lifted rule derives e(k)
if c(k) and a(k) hold. This applies, e.g., to the abstraction of I={a(1), a(3),c(4),d(0), . . . ,d(3)}, where (8)
derives no e-atom as 4�3 and 4�1. However, I is an answer set of Π and must not be lost in the abstraction.
Thus, when a cluster causes uncertainties over built-ins, we permit e(k) to be false even if c(k) and a(k) hold
by creating the following rule:

{e(X)}← c(X),a(Y ),X ≤ Y, înt(X), înt(Y ).

Negation. A naive abstraction approach then could be to turn all rule heads into choices. However, negative
literals or certain built-ins (e.g., 6=,<) may cause a loss of original answer sets in the abstraction.
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Example 3.5 (ctd). Consider an alteration of the rule (8) as

{e(X)}← c(X),a(Y ),X 6=Y, înt(X), înt(Y ).

As k=k, the abstract body is never satisfied and e(k) is never derived. However, Π has answer sets containing
c(2), a(3), and thus also e(2), as 2 6=3; they are all lost. Adding a choice rule with a flipped relation, X =Y ,
catches such cases.

Similarly, let us change a(Y ) in (8) to not a(Y ). When the rule is lifted to

{e(X)}← c(X),not a(Y ),X ≤ Y, înt(X), înt(Y ),

e(k) is not derived as a(k) holds and originally a holds only for 1 and 3. Thus, original answer sets I may
contain e(2) or e(4) but they are lost in the abstraction. Such cases are caught by additional rules with
reversed negation for a(Y ):

{e(X)}← c(X),a(Y ),X ≤ Y, înt(X), înt(Y ).

Standardizing apart. The shared use of a variable in a positive rule body must be treated before abstraction
is applied.

Example 3.6 (ctd). The constraint (9), i.e.,⊥← b(X ,Y ),e(X), int(X), int(Y ), has a shared use of the variable
X . If this rule is lifted with no change by following the intuition, then b(k,k) and e(k) would never occur in
the abstract answer sets, while in the original program, the answer set I2 contains e(2) and b(1,3). Thus, I2
would not be mapped to an abstract answer set. If the variables in the rule are standardized apart as

⊥← b(X ,Y ),e(X1),X = X1, int(X), int(X1), int(Y ), (11)

then the focus of the abstraction can be directed towards the relation, i.e., X = X1, in the rule.

Furthermore, the occurrence of constants in the arguments of atom needs to be represented using variables:
If a literal l(t1, . . . , tn) in a rule has a constant as one of its arguments, i.e., ti = c, then the rule is modified by
having l(t1, . . . , ti−1,X , ti+1, . . . , tn),X = c.

Example 3.7 (ctd). If the constraint (9) is of form ⊥← b(2,3),e(1)., then it needs to be changed to the form

⊥← b(X ,X1),e(X2),X = 2,X1 = 3,X2 = 1, int(X), int(X1), int(X2).

In summary, we require the input program to have no variables shared among non-domain predicates and
no constants in non-domain predicates. This way, the effect of the abstraction over the domain can be treated
more easily through the built-in relations in the rules.

Constraints. Finally, constraints also have to be treated specially in the abstraction for the cases of
uncertainty. Naively lifting the constraints to abstract rules results in losing answer sets for the non-singleton
domain clusters.

Example 3.8 (ctd). After standardizing apart, if the constraint (9) is lifted with no change with the lifted
relation as in (11), this would result in losing the original answer sets I1, I2 in which e.g. b(1,3) and e(2)
occur together.

In conclusion, only creating choices is not enough to preserve all original answer sets; we need a
fine-grained systematic approach to deal with uncertainties.
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Table 1: Cases for lifting a binary relation rel

τrel
I (d̂1, d̂2): rel(d̂1, d̂2)∧∀x1 ∈ d̂1,∀x2 ∈ d̂2.rel(x1,x2)

τrel
II (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∀x1 ∈ d̂1,∀x2 ∈ d̂2.¬rel(x1,x2)

τrel
III (d̂1, d̂2): rel(d̂1, d̂2)∧∃x1 ∈ d̂1,∃x2 ∈ d̂2.¬rel(x1,x2)

τrel
IV (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∃x1 ∈ d̂1,∃x2 ∈ d̂2.rel(x1,x2)

3.2 Lifted Built-in Relations

As shown above, in lifting the rules for abstraction the built-in relations need special treatment, and so do
shared usages of variables in a rule. To unify both issues, we focus on rules of the form

r : l← B(r),Γrel(r)
where the variable occurrences in B(r) are standardized apart and Γrel consists of built-in atoms that constrain
the variables in B(r).

Example 3.9 (ctd). The rule (7) has Γrel(r)=> while the rule (9) must be standardized apart into ⊥←
b(X ,Y ),e(X1), Γrel with Γrel=(X =X1).

The uncertainty that arises during the abstraction is caused by relation restrictions over non-singleton
clusters (i.e., |d̂|> 1) or by negative literals mapped to non-singleton abstract literals. In order to address the
uncertainty due to relation restrictions in the rules, we consider a notion of relation types with respect to the
abstraction. For simplicity, we first focus on binary built-ins, e.g., =, <,≤, 6=, and a built-in part Γrel(r) of
the form rel(X ,c) or rel(X ,Y ). Later in Section 3.4, we show how other forms of relations can be addressed.
Lifted relation types. When the relation rel is lifted to the abstract domain, four cases τI–τIV for rel(d̂1, d̂2)
can occur in a mapping, as shown in Table 1.

Example 3.10. Consider a mapping m={{1}/k1, {2,3}/k2, {4,5}/k3}. For the relation “=”, k1=k1 holds
and for any x1,x2 ∈ k1={1}, x1=x2 holds and type I applies. In contrast, k2=k2 holds while 2,3 ∈ k2 and
2 6=3; so type III applies. Further, k2<k3 holds and for any x ∈ k2={2,3} and y ∈ k3={4,5}, we have x<y
and so type I applies. The relation k2 6=k2 does not hold while k2={2,3} has different elements 2 6= 3 (type
IV). Moreover, k1=k2 does not hold in D̂ nor does x=y for every x ∈ k1={1} and y ∈ k2={2,3} (type II).

If rel(d̂1, d̂2) holds for some d̂1, d̂2 ∈ D̂, type III is more common in practice in domain abstractions with
clusters due to the standardization and as = often occurs, while type I occurs for singleton mappings (i.e.,
|d̂1|= |d̂2|= 1) or for relations such as 6= or < when d̂1 6= d̂2. If rel(d̂1, d̂2) does not hold for some d̂1, d̂2 ∈ D̂,
type II is common (again due to often having the relation =), e.g., =,≤, whereas type IV may occur for 6= or
<.

Definition 3.2 (Tm). For an abstraction m, we let Tm be the set of all atoms τrel
ι (d̂1, d̂2) where ι ∈ {I, . . . , IV}

is the type of the built-in instance rel(d̂1, d̂2) for m

We remark that Tm is easily computed.
Respecting the order relation. Notice that if the original domain D contains an order relation among its
elements, i.e., rel(x1,x2) where rel ∈ {<,≤}, then in order to be able to talk about the relation rel(d̂1, d̂2) for
the abstract elements d̂1, d̂2, in the abstract domain D̂ the relation rel should be defined. Furthermore, the
abstraction mapping should respect the order relation among the elements to avoid unnecessary uncertainty.
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Example 3.11 (ctd). In Example 3.10, the abstract elements k1,k2,k3 were assumed to be ordered k1 < k2 < k3.
If the mapping m were to arbitrary abstract elements a,b,c, the relation types could not have been determined
as i < j for i, j ∈ {a,b,c} is undefined.

Now consider the mapping m′={{4}/k1, {1,5}/k2, {2,3}/k3}, which does not respect the order relation
of the elements in D for the abstraction. The relation types could still be defined for m′, however for the
relation < the relation types will mostly be of type III and IV, resulting in many uncertainties.

3.3 Abstract Program Construction

By our analysis in Section 3.1, the basic idea to construct an abstract program Π′ for a program Π with a
domain mapping m is as follows. We either just abstract each atom in a rule, or in case of uncertainty due to
domain abstraction, we guess rule heads to catch possible cases, or we treat negated literals by shifting their
polarity depending on the abstract domain clusters.

For a ground literal l, we say that l is mapped to a non-singleton cluster if |m−1(m(l))| > 1, and it is
mapped to a singleton cluster otherwise. We use auxiliary facts isCluster(d̂) (resp. isSingleton(d̂)) for the
abstract domain elements d̂ ∈ D̂ to denote |m−1(d̂)|> 1 (and |m−1(d̂)|= 1). These atoms can also be used to
represent whether an abstract literal is a singleton or non-singleton cluster. For the abstract literal m(l), if
there exists some term t ∈ arg(m(l)) for which isCluster(t) holds, then this means that m(l) is a non-singleton
cluster; otherwise, it is a singleton cluster.

Example 3.12 (Example 3.1 ctd). Consider the domain mapping m={{1}/k1,{2,3}/k2, {4,5}/k3}. For the
abstract domain, we have isSingleton(k1), isCluster(k2), isCluster(k3). For the literals, the singleton clusters
are a(k1),c(k1),d(k1),e(k1) and b(k1,k1), while the remaining literals are non-singletons.

We remark that due to their definition, if either τrel
III (d̂1, d̂2) or τrel

IV (d̂1, d̂2) holds true for some d̂1, d̂2 ∈ D̂,
this means that either d̂1 or d̂2 is mapped to a cluster, i.e., isCluster(d̂i) for some i ∈ {1,2}.

3.3.1 Restricted Case

For ease of presentation, we first consider programs Π with rules having

(I) at most one negative body literal,

(II) a single, binary built-in literal, and

(III) no cyclic dependencies between non-ground literals.

Example 3.13 (ctd). The program Π only adheres to the restrictions (i)-(ii) and not to (iii) because d(X) and
c(X) negatively depend on each another.

We next define how to construct an abstract rule rm.

Definition 3.3 (rule abstraction). Given a rule r : l← B(r),rel(t1, t2) as above and a domain mapping m,
the set rm contains the following rules:
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(a) m(l)←m(B(r)),rel(t̂1, t̂2),τrel
I (t̂1, t̂2).

(b) {m(l)}←m(B(r)),rel(t̂1, t̂2),τrel
III (t̂1, t̂2).

(c) {m(l)}←m(B(r)),rel(t̂1, t̂2),τrel
IV (t̂1, t̂2).

(d) For li∈B−(r):

(i)
⋃

j∈arg(li)

{
{m(l)}←m(Bsh

li (r)),rel(t̂1, t̂2), isCluster( ĵ).
}

(ii)
⋃

j∈arg(li)

{
{m(l)}←m(Bsh

li (r)),rel(t̂1, t̂2),τrel
IV (t̂1, t̂2), isCluster( ĵ).

}
where

• Bsh
li (r)=B+(r)∪{li},not B−(r)\{li},

• rel denotes the complement of rel, and
• for k∈{1,2}, if tk is a constant then t̂k=m(tk), else t̂k= tk, i.e., variables are not mapped; similarly, if

j ∈ arg(li) is a constant then ĵ=m( ĵ), else ĵ = j.

In step (a), the case of having no uncertainty due to abstraction is applied. Steps (b) and (c) are for the
cases of uncertainty. The head becomes a choice, and for case IV, we flip the relation, rel, to catch the case of
the relation holding true (which is causing the uncertainty). No rules are added for case II, since the body of
the rule will never be satisfied due to the relation not holding true in the abstract domain (similar as in the
original domain). As for constraints (e.g., (9)), we note that m(⊥) =⊥. Consequently, in (a) the head is
unchanged; as an optimization, all other steps (b)-(d) can be omitted, since the choice {⊥} is ineffective (we
always can choose that ⊥ is false).

Example 3.14 (ctd). Consider the domain mapping m={{1}/k1,{2,3}/k2, {4,5}/k3}. We have τ
≤
I (x,y)

true for (x,y)∈{(k1,k1), (k1,k2), (k1,k3), (k2,k3)}, and τ
≤
III(x,y) true for (x,y)∈{(k2,k2), (k3,k3)}, and only

type II for all other tuples (x,y). The abstract rules for (8) are:

e(X)← c(X),a(Y ),X ≤ Y,τ≤I (X ,Y ), înt(X), înt(Y ).

{e(X)}← c(X),a(Y ),X ≤ Y,τ≤III(X ,Y ), înt(X), înt(Y ).

In step (d) of Definition 3.3, we grasp the uncertainty arising from negation by adding rules that shift the
negative literal only if it shares arguments that are mapped to a non-singleton cluster.

Example 3.15 (ctd). Rule (5) has a negative literal, not d(X), and the relation X <5 with shared argument X .
When it is lifted to X <k3, it has τ

<
II (a,b) true for (a,b)∈ {(k3,k1), (k3,k2)}, τ

<
IV(k3,k3), and type I for all

other tuples (a,b).
By case (a), it is abstracted without change for τI abstract values, and by case (c) the relation is flipped

for τIV. Furthermore, a shift on the polarity of the negative literal is made:

c(X)← not d(X),X < k3,τ
<
I (X ,k3), înt(X).

{c(X)}← not d(X),X ≥ k3,τ
<
IV(X ,k3), înt(X).

{c(X)}← d(X),X < k3, isCluster(X), înt(X).

{c(X)}← d(X),X ≥ k3,τ
<
IV(X ,k3), isCluster(X), înt(X).

Notice that the case of having rel=> is covered by step (a). For this case, the lifted relation will only
have type I, thus the rules from the remaining steps need not be added (see Example 3.3).
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Semantically, the rules added in steps (a)-(b) are to ensure that m(I) is a model of Πm, as either the
original rule is kept or it is changed to a choice rule. Steps (c)-(d) serve to catch the cases that may violate
the minimality of the model due to a negative literal or a relation over non-singleton clusters. The abstract
program is now as follows.

Definition 3.4 (Abstract program Πm). Given a program Π as above and a domain abstraction m, the
abstract program for m consists of the rules

Π
m ={rm | r : l← B(r),rel(t1, t2) ∈Π} ∪ {x. |x∈Tm} ∪ {m(p(~c)). | p(~c). ∈Π}.

Notably, the construction of Πm is modular, rule by rule. The following result states that this abstraction
works.

Theorem 3.1 (restricted program abstraction). Let m be a domain mapping of a program Π under the above
assumptions (i)–(iii). Then for every I ∈ AS(Π), m(I)∪Tm ∈ AS(Πm).

3.3.2 Abstract Program (General Case)

We now describe how to remove the restrictions (i)–(iii) on programs from above.

(G-I) Multiple negative literals. If rule r has multiple negative literals, i.e., |B−(r)|>1, we shift each
negative literal that shares arguments that are mapped to a non-singleton cluster. Thus, instead of shifting
one literal li ∈ B−(r), we consider shifting multiple literals L ⊆ B−(r) at a time and all combinations of
(non-)shifting the literals in B−(r).

Definition 3.5 (Treating multiple negative literals). Step (d) of Definition 3.3 is modified as

(d) For /0⊂ L⊆ B−(r):

(i)
⋃

j∈arg(li),li∈L
{
{m(l)}←m(Bsh

L (r)),rel(t̂1, t̂2), isCluster( ĵ).
}

(ii)
⋃

j∈arg(li),li∈L
{
{m(l)}←m(Bsh

L (r)),rel(t̂1, t̂2),τrel
IV (t̂1, t̂2), isCluster( ĵ).

}
where Bsh

L (r)=B+(r)∪L,not B−(r)\L.

This definition allows us to discard the restriction that all negative literals must share a variable with
the relation atom, by shifting them to ensure that the case of having a non-singleton mapping is considered.
Step (d-i) coincides with steps (d-i) and (d-iii) of Definition 3.3 and step (d-ii) coincides with step (d-ii) of
Definition 3.3.

Example 3.16. Consider the rule

d(X)← not c(X),not a(X), int(X).

The constructed non-ground abstract rules following step (d-i) of Definition 3.5 will be

{d(X)}←c(X),not a(X), isCluster(X), înt(X), înt(X1).

{d(X)}←not c(X),a(X), isCluster(X), înt(X), înt(X1).

{d(X)}←c(X),a(X), isCluster(X), înt(X), înt(X1).

Step (d-ii) is similarly applied.
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Table 2: Cases for lifting an n-ary relation rel′

τrel′
I (d̂1, . . . , d̂n): rel′(d̂1, . . . , d̂n)∧∀x1 ∈ d̂1, . . . ,∀xn ∈ d̂n.rel′(x1, . . . ,xn)

τrel′
II (d̂1, . . . , d̂n): ¬rel′(d̂1, . . . , d̂n)∧∀x1 ∈ d̂1, . . . ,∀xn ∈ d̂n.¬rel′(x1, . . . ,xn)

τrel′
III (d̂1, . . . , d̂n): rel′(d̂1, . . . , d̂n)∧∃x1 ∈ d̂1, . . . ,∃xn ∈ d̂n.¬rel′(x1, . . . ,xn)

τrel′
IV (d̂1, . . . , d̂n): ¬rel′(d̂1, . . . , d̂n)∧∃x1 ∈ d̂1, . . . ,∃xn ∈ d̂n.rel′(x1, . . . ,xn)

(G-II) Multiple relation literals. A simple approach to handle a built-in part with multiple literals, i.e.,

Γrel=rel1(t1,1, t2,1), .. ,relk(t1,k, t2,k),k>1,

is to view it as a literal of an 2k-ary built-in relation rel′(X1,1,X2,1, .. ,X1,k,X2,k). The abstract version of such
rel′ and the cases I-IV are then lifted from x1,x2 to x1, .. ,xn as in Table 2.

Example 3.17. For Γrel= (X1=X2, X3=X4), we use a new relation rel′(X1,X2,X3,X4). If it holds for abstract
values d̂1, .. , d̂4 such that d̂1= d̂2∧ d̂3= d̂4 holds, then we have type τI if all d̂i are singleton clusters and type
τIII if some d̂i is non-singleton; otherwise (i.e., rel′(d̂1, d̂2, d̂3, d̂4) holds) type τII applies.

(G-III) Cyclic dependencies. Rules which are involved in a negative cyclic dependency need special
consideration.

Example 3.18 (ctd). For the rules (5)-(6) in Example 3.1 and the mapping {{1, . . . ,5} /k}, the abstract rules
are

{c(X)}← not d(X),X ≥ k,τ<
IV(X ,k), înt(X). (12)

{c(X)}← d(X),X < k, isCluster(X), înt(X). (13)

{c(X)}← d(X),X ≥ k,τ<
IV(X ,k), isCluster(X), înt(X). (14)

{d(X)}← c(X), isCluster(X), înt(X). (15)

in addition to the abstracted rules due to step (a). Consider the answer set I = {c(0),d(1),c(2),
d(3),c(4),d(5)} of Π. We have Î = m(I) = {c(k),d(k)}. Although Î is a model of (Πm)I , either
c(k) or d(k) is unfounded; hence Î is not minimal, i.e., not an answer set of Πm. The reason is that the
negative cyclic dependency (i.e., “choice") of c- and d-atoms does not occur for c(k) and d(k) in the
constructed Πm.

To resolve this, the literals of Π that are involved in a negative loop are treated specially.

Definition 3.6 (Treating cyclic dependency). Given a set Lc of literals involved in a negative cyclic depen-
dency, Definition 3.3 is modified by redefining Bsh

li (r) as

Bsh
li,Lc

(r)=
{

B+(r)∪{li},not B−(r)\{li} if li /∈ Lc,
B+(r),not B−(r)\{li} if li ∈ Lc

In step (d) of Definition 3.3, the newly defined Bsh
li,Lc

(r) eliminates the literals li that are involved in a loop
from the body instead of shifting their polarity.
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Example 3.19 (ctd). For the program Π in (5)-(9) with the mapping m = {{1, . . . ,5}/k}, the program Πm is

c(X)← not d(X),X < k,τ<
I (X ,k), înt(X). (16)

{c(X)}← not d(X),X ≥ k,τ<
IV(X ,k), înt(X). (17)

{c(X)}← X ≥ k,τ<
IV(X ,k), isCluster(X), înt(X). (18)

{c(X)}← X < k, isCluster(X), înt(X). (19)

d(X)← not c(X), înt(X). (20)

{d(X)}← isCluster(X), înt(X). (21)

b(X ,Y )← a(X),d(Y ), înt(X), înt(Y ). (22)

e(X)← c(X),a(Y ),X ≤ Y,τ≤I (X ,Y ), înt(X), înt(Y ). (23)

{e(X)}← c(X),a(Y ),X ≤ Y,τ≤III(X ,Y ), înt(X), înt(Y ). (24)

⊥← b(X ,Y ),e(X1),X = X1,τ
=
I (X ,X1), înt(X), înt(X1), înt(Y ). (25)

The abstract facts for a(1), a(3), int(1), . . . , int(5), are a(k), înt(k), and the type facts are Tm = {τ≤III(k,k),
τ=

III(k,k), τ
<
IV(k,k)}. Notice that when the rules are grounded to the relation type facts Tm, only the rules

(17)-(22) and (24) remain to be used for the answer set computation.

Cyclic dependency with multiple negative literals can then be treated by modifying the shifting procedure
Bsh

L (r) in Definition 3.5 with Bsh
li,Lc

(r) of Definition 3.6 as

Bsh
L,Lc

(r)=B+(r)∪ (L\Lc),not B−(r)\L (26)

where the negative literals in L get their polarity shifted if they do not occur in Lc, otherwise they are omitted.
Multiple cycles Lc1 , . . . ,Lcn can be handled by defining the set Lc in Definition 3.6 as the union of all the

cycles, i.e., Lc =
⋃

Lci . This way Bsh
li,Lc

(r) will eliminate all the literals involved in some loop.
Let Πm denote the program obtained from a general program Π with the generalized abstraction procedure.

Then:

Theorem 3.2 (general program abstraction). Let m be a domain mapping of a program Π. Then for every
I∈AS(Π), the abstract interpretation Î=m(I)∪Tm is an answer set of Πm.

Example 3.20 (ctd). The constructed abstract program Πm has the answer sets (with abstract facts omitted)

Î1 ={d(k),b(k,k)}, Î2 = {c(k)}, Î3 = {c(k),d(k),b(k,k)}, Î4 = {c(k),e(k)}, Î5 = {c(k),d(k),e(k),b(k,k)},

where m(I1) = m(I2) = Î5, m(I3) = Î3, m(I4) = Î1.

The abstraction yields in general an over-approximation of the answer sets of a program. The notion of
spurious and concrete answer sets amounts to the following.

Definition 3.7 (cf. Definition 2.3). An abstract answer set Î∈AS(Πm) is concrete, if there exists an answer
set I∈AS(Π) such that Î=m(I)∪Tm, else it is spurious.

A spurious abstract answer set has no corresponding concrete answer set.

Example 3.21 (ctd). The abstract answer sets Î2 = {c(k)} and Î4 = {c(k),e(k)} are spurious.
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3.4 Syntactic Extensions and Further Considerations

3.4.1 Treating Choice Rules

Choice rules are treated by ensuring that the body is abstracted and the choice over the abstracted head is
kept.

Definition 3.8. Given a choice rule r : {l}← B(r),rel(t1, t2) and a domain mapping m, the set rm contains
the rules of Definition 3.3 for steps (b)-(d), and for step (a), it contains

{m(l)}←m(B(r)),rel(t̂1, t̂2),τrel
I (t̂1, t̂2).

More sophisticated choice rules that involve cardinality constraints, e.g., n1 ≤ {l} ≤ n2←B(r), can not
immediately be treated similarly. Lifting the cardinality constraints analogously to the abstract rule causes to
force the occurrence of abstract atoms for ensuring the lower bound.

Example 3.22 (ctd). Consider instead of (7) the rule

2≤ {b(X ,Y ) : d(Y )} ≤ 4←a(X),dom(X).

which gets lifted to the same abstract rule. However, for the mapping m = {{1,2,3,4,5}/k}, if a(k) and d(k)
holds true, this would cause to have b(k,k) hold true and no other atoms with the same predicate. Thus, the
lower bound can not be satisfied, causing the abstract program to become unsatisfiable.

The issue arises from the fact that if the atom in the choice head is involved in some non-singleton cluster,
then multiple original atom may be mapped to it, thus still satisfying the lower bound constraint in the original
program. Such choice rules can be treated by modifying the lower bounds in the abstract program and adding
a constraint to ensure that the original lower bound is met if the atom is only involved with singleton clusters.

Definition 3.9. Given a rule r : n1 ≤ {l} ≤ n2← B(r),rel(t1, t2), in the abstraction procedure the choice
head is changed to {m(l)} ≤ n2, and an additional constraint of the following form is added.

⊥←{m(l) : isSingleton(t̂1), . . . , isSingleton(t̂n)}< n1, (27)

{m(l) : isCluster(t̂1); . . . ;m(l) : isCluster(t̂n)}< 1. (28)

where arg(l) = {t1, . . . , tn} and l = p(t1, . . . , tn) for some predicate m.

The idea with the additional constraint is to ensure that if the lower bound n1 is not satisfied through
literals mapped to singleton clusters (27), then some literal with a non-singleton cluster (28) should also
occur.

Example 3.23 (ctd). Instead of lifting the choice rule as in Example 3.22, we add the following abstract
rules:

{b(X ,Y ) : d(Y )} ≤ 4←a(X),dom(X).

⊥←{b(X ,Y ) : isSingleton(X), isSingleton(Y )}< 2,

{b(X ,Y ) : isCluster(X);b(X ,Y ) : isCluster(Y )}< 1.

This way there is no lower bound on the number of occurrences of b(X ,Y ) that causes unsatisfiability at the
abstract program. Furthermore, for the mapping m = {{1}/k1,{2,3,4,5}/k2}, for an answer set containing
b(k1,k1) the constraint ensures it also contains some b(d̂1, d̂2), where d̂1 or d̂2 is a cluster, so that the original
lower bound is met.
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3.4.2 Other Forms of Relations

A program can also contain relations that are not binary, such as addition or multiplication. They can
be treated as follows: (1) rewrite the relations by adding instead auxiliary atoms to represent them, (2)
standardize apart the auxiliary atom arguments similarly as the remaining atoms, and (3) add to the original
program facts of the auxiliary atom to show for which domain elements the relation holds true. In the
abstraction procedure, the facts added will be lifted to the abstract domain, and the abstraction is handled
over relations for the arguments which were standardized apart.

Example 3.24. Consider the rule

b(X ,Y )←a(X),d(Y ),X +1 = Y, int(X), int(Y ).

For the addition relation, an auxiliary atom plusOne(X ,Y ) is introduced by adding the set {plusOne(1,2),
plusOne(2,3), plusOne(3,4), plusOne(4,5)} of facts to Π to show on which domain elements this relation
holds.

The respective rule gets standardized apart into the following form.

b(X ,Y )←a(X),d(Y ),plusOne(X1,Y1),X=X1,Y=Y1, int(X), int(Y ), int(X1), int(Y1).

For being able to lift the relations to the abstract domain, the built-in relations must also be defined over
the abstract domain. If e.g. an ordered domain ({1,2,3,4,5},<) is mapped to a domain {a,b,c} where < is
undefined, then lifting < to the abstract domain will not be feasible; here the above approach of introducing
auxiliary atoms must be taken.

3.4.3 Concreteness with Projection

Usually the problem encodings contain auxiliary atoms that are insignificant for solutions. When constructing
the abstract program, such auxiliary atoms are treated the same, by introducing choices whenever there is an
uncertainty. However, this causes many spurious guesses over the auxiliary atoms, and making sure that the
abstract answer set is concrete w.r.t. all of these atoms becomes too ambitious, as encountering a concrete
abstract answer set among many spurious ones is more difficult. For this reason, we consider a projected
notion of determining concreteness of an abstract answer set by only focusing on a certain set of atoms.

Definition 3.10. For a set A of atoms, an abstract answer set Î∈AS(Πm) is concrete w.r.t. A, if
Î|Â=m(I|A)∪Tm for an answer set I∈AS(Π), where Â = m(A).

Example 3.25. Consider a modified instance of graph coloring where the isolated nodes are connected as
shown in Figure 5. For the abstraction, the abstract coloring is spurious as the nodes in the cluster {4,5,6}
cannot all be colored to red in the original graph due to the edges. However, the abstract coloring is concrete
w.r.t. the nodes {1,2,3}.

Such a notion of concreteness becomes useful when abstraction is applied to analyze problems, as one
can focus on the atoms deemed to be important. For this, the user should have an idea of the atoms that
matter for determining a valid solution. E.g. for planning problems, this notion can help in focusing on the
actions and directly affected objects, which serve to describe a solution. One then obtains abstract answer
sets that have concrete truth assignments of these atoms,while the auxiliary atoms and their concrete truth
assignments become irrelevant.
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Figure 5: Concreteness w.r.t. projection over nodes {1,2,3}
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3.5 Properties of Domain Abstraction

We now consider some basic semantic properties of our formulation of program abstraction. (Non-)existing
spurious answer sets allow us to infer properties of the original program.

Proposition 3.3. For any program Π,

(i) AS(Πmid)={I∪Tmid | I∈AS(Π)} for the identity mapping mid = {{x}/x |x∈D}.

(ii) AS(Πm)= /0 implies that AS(Π)= /0.

(iii) AS(Π)= /0 iff some Πm has only spurious answer sets.

Proof. (i) Having the identity mapping id causes to only have singleton clusters in the abstract domain, thus
resulting in only τI and τII type facts in Tmid . This causes for only the rules of step (a) in Definitions 3.3
and 3.8 to remain when the rules are grounded to the relation types. Hence, the same answer sets are
obtained.

(ii) Corollary of Theorem 3.2.

(iii) If AS(Π) = /0, then no Î ∈ AS(Πm) for any m has a concrete answer set in Π; thus, all abstract answer
sets of Πm are spurious. Now assume the latter holds but AS(Π) 6= /0. Then Π has some answer set I,
and by Theorem 3.2 m(I)∪Tm ∈ AS(Πm), which would contradict that Πm has only spurious answer
sets.

The abstract program is built by a syntactic transformation. The abstraction over the domain can also be
done incrementally which in the end amounts to the overall abstraction.

Lemma 3.4. For any program Π and mappings m,m1,m2 such that m2(m1(D)) = m(D), we have
grdTm2 ,m1

((Πm1)m2) = grdTm(Π
m), where grdT denotes the grounding of the program to the relation type

facts T .

For proving Lemma 3.4, we use the following result.

Lemma 3.5. For a relation rel(d1,d2) and mappings m,m1,m2 such that m2(m1(D)) = m(D), we have
T rel

m2,m1
= T rel

m .

Proof. The relation type computation T rel
m1

is done for rel(m1(d1),m1(d2)) and then the relation type compu-
tation T rel

m2,m1
for rel(m2(m1(d1)),m2(m1(d2))) = rel(m(d1),m(d2)), resulting in the same relation type facts

of T rel
m .
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Figure 6: Abstract programs of Example 3.26 with m1={{1,2}/k0,{3,4}/k1,{5}/k2} and
m2={{k0,k1}/a0,{k2}/a1}

c(k0)←k0 < k2,not d(k0).

c(k1)←k1 < k2,not d(k1).

{c(X)}←X < k2,dom(X), isCluster(X).

d(X)←dom(X),not c(X).

{d(X)}←dom(X), isCluster(X).

b(X ,Y )←a(X),d(Y ),dom(X),dom(Y ).

{e(k0)}←c(k0),a(k0),k0 ≤ k0.

{e(k1)}←c(k1),a(k1),k1 ≤ k1.

e(k0)←c(k0),a(k1),k0 ≤ k1.

e(k0)←c(k0),a(k2),k0 ≤ k2.

e(k1)←c(k1),a(k2),k1 ≤ k2.

e(k2)←c(k2),a(k2),k2 ≤ k2.

⊥←b(k2,k2),e(k2),k2 = k2.

(a) grdTm1
(Πm1)

c(a0)←a0 < a1,not d(a0).

{c(X)}←X < a1,dom(X), isCluster(X).

d(X)←dom(X),not c(X).

{d(X)}←dom(X), isCluster(X).

b(X ,Y )←a(X),d(Y ),dom(X),dom(Y ).

{e(a0)}←c(a0),a(a0),a0 ≤ a0.

e(a0)←c(a0),a(a1),a0 ≤ a1.

e(a1)←c(a1),a(a1),a1 ≤ a1.

⊥←b(a1,a1),e(a1),a1 = a1.

(b) grdTm2 ,m1
((Πm1)m2)

Proof of Lemma 3.4. From the rules of Πm1 , the rules for (Πm1)m2 will be constructed according to Defini-
tions 3.3 and 3.8. Consider a rule r with body B(r),rel(t1, t2) in Π. The set rm1 ∈ Πm1 contains rules with
body m1(B(r)), rel(t̂1, t̂2), τrel

i (t̂1, t̂2) where t̂k = m1(tk) if tk is a constant; t̂k = tk otherwise.
For the set rm1 of rules, a new set (rm1)m2 will be constructed. Let r′ ∈ rm1 , its body will be abstracted to

m2(B(r′)),rel(ˆ̂t1, ˆ̂t2),τrel
j (ˆ̂t1, ˆ̂t2) (29)

where m2(B(r′)) = m2(m1(B(r))),m2(τ
rel
i (t̂1, t̂2)) and ˆ̂t j = m2(m1(tk)) if tk is a constant; ˆ̂tk = tk otherwise.

Since m2(τ
rel
i (t̂1, t̂2)) = τrel

i (m2(t̂1),m2(t̂2)) = τrel
i (ˆ̂t1, ˆ̂t2), (29) will take the form

m(B(r)),τrel
i (ˆ̂t1, ˆ̂t2),rel(ˆ̂t1, ˆ̂t2),τrel

j (ˆ̂t1, ˆ̂t2).

where ˆ̂tk = m(tk) if tk is a constant; ˆ̂tk = tk otherwise.
The rules in (rm1)m2 where types of the relation differ, i.e., i 6= j for τrel

i (ˆ̂t1, ˆ̂t2),τrel
j (ˆ̂t1, ˆ̂t2), are insignificant

as the atoms can not both hold true in Tm2,m1 , i.e., they do not appear in grdTm2 ,m1
((rm1)m2). As for the

remaining rules in (rm1)m2 , they correspond to the rules in rm. Thus, by Lemma 3.5 and {m2(m1(p(~c))). |
p(~c). ∈Π}= {m(p(~c)). | p(~c). ∈Π}, we obtain grdTm2 ,m1

(Πm1)m2) = grdTm(Π
m).

Example 3.26 (Example 3.1 ctd). Applying first the mapping m1={{1,2}/k0,{3,4}/k1,{5}/k2} and then
the mapping m2={{k0,k1}/a0,{k2}/a1} yields the mapping m={{1,2,3,4}/a0, {5}/a1}. Figure 6 shows
the constructed abstract programs. Notice that the program in Figure 6b is the same as the non-ground
program in Example 3.19 updated for the mapping m, i.e., k is replaced with a1, when it is grounded to
Tm2,m1 .
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An easy induction argument shows then the possibility of doing abstraction sequentially, by having
abstract mappings defined over previously abstracted domains.

Proposition 3.6. For any program Π and mapping m,m1, . . . ,mn such that mn(. . .(m1(D))) = m(D), we
have grdTm(Π

m) = grdTmn ,...,m1
(((Πm1)...)mn).

In Section 5.2 below, we demonstrate further uses of having a hierarchy of abstractions.
We remark that general properties of spurious answer set from over-approximation apply to domain

abstraction as an instance of it. Examples of such properties, mentioned for omission abstraction in (Saribatur
and Eiter, 2018), are non-reoccurrence after elimination, i.e., if a spurious answer Î set of a program Π w.r.t.
an abstraction mapping m has no corresponding (can not be mapped to some) answer set Î′ in a refinement m′

of m, then no refinement m′′ of m′ will have an answer set Î′′ corresponding to Î either, and convexity, i.e., if
on the contrary Î has some corresponding answer set Î′ under m′, then every refinement m′′ in between m′

and m admits a spurious answer set Î′′ of Π w.r.t. m′′ that corresponds with Î.

3.5.1 Abstraction over Sorts

Applications of ASP usually contain sorts that form subdomains of the Herbrand universe. For example, in
graph coloring there are sorts for nodes and colors. We define an abstraction over a sort as follows.

Definition 3.11. An abstraction is limited to a sort Di ⊆ D, if all elements x∈D\Di form singleton clusters
{x}/x.

Example 3.27. In graph coloring, we have sorts node and color in the domain {1, . . . ,6,red,green,blue}
for the instance in Figure 1a. An abstraction mapping m limited to the sort node means m(x) = {x} for
x ∈ {red,blue,green}.

In order to obtain much coarser abstractions, applying abstraction over multiple sorts is also possible,
given that the individual sorts fulfill the following property.

Definition 3.12 (Sort independence). For a program Π and domain D, subdomains D1, . . . ,Dn ⊆D are
independent, if Di∩D j = /0 for all i 6= j.

For independent sorts, abstractions can be composed.

Proposition 3.7. For every domain mappings m1 and m2 over independent subdomains D1 and D2, it holds
that grdTm1 ,m2

((Πm2)m1)=grdTm2 ,m1
((Πm1)m2).

Proof. The mapping mi : D 7→ D̂ is of form {{x}/x | x ∈ D\Di}∪mDi , i ∈ {1,2}, where mDi describes the
mapping over Di to the abstract domain D̂i. We know that mi(D \Di) = D \Di, and since D1 and D2 are
independent, we have D1⊆m2(D) and D2⊆m1(D). Consequently, we can apply the mappings independently
from each other as m2(m1(D)) = m1(m2(D)) to achieve an abstract domain ˆ̂D = (D\ (D1∪D2))∪ D̂1∪ D̂2.
Another mapping m can then be defined to map D to ˆ̂D. By Lemma 3.4 we get the result.
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Figure 7: Abstraction over the set of nodes and the set of colors

1
red

2
{green,blue}

3
{green,blue}

64 5 red

(a) A concrete answer set

1
{green,blue}

2
{green,blue}

3
{green,blue}

64 5 red

(b) A spurious answer set

3.5.2 Cartesian Abstraction

Given domain mappings m1, . . . ,mn limited to subdomains D1, . . . ,Dn, respectively, a cartesian abstraction
of the mappings corresponds to the abstract domain m(D1)×·· ·×m(Dn). Assuming that the subdomains
D1, . . . ,Dn are independent, Definition 3.3 can be altered to be applied over a rule of the form

r : l← B(r),relD1(t1, t2), . . . ,relDn(t1, t2)

by considering all possible combinations of τrelDi
j (t̂1, t̂2), j=1, . . . ,n. Alternatively, we can define cartesian

abstraction by applying abstraction over each subdomain one step at a time, by extending Prop. 3.7 to multiple
sorts.

Proposition 3.8. For domain mappings m1, . . . ,mn over independent domains D1, . . . ,Dn, it holds that
Πm1×...×mn = ((Πmπ(1))...)mπ(n) where π is any permutation of {1, . . . ,n}.

Example 3.28 (Example 2.6 ctd). In the graph coloring instance of Figure 1a, consider the mappings
mn = {{4,5,6}/4̂} and mc = {{red}/r̂,{green,blue}/ĝb} over the sorts nodes and colors, respectively. The
abstract program (Πmn)mc has the concrete answer set

{chosenColor(1, r̂),chosenColor(2, ĝb),chosenColor(3, ĝb),chosenColor(4̂, r̂)}
(shown in Figure 7a) that chooses the color cluster ĝb for nodes 2 and 3, which matches the intuition of
coloring the neighbor nodes of node 1 to some color different than its own color.

Notably, (Πmn)mc also has the spurious answer set (shown in Figure 7b)
{chosenColor(1, ĝb),chosenColor(2, ĝb),chosenColor(3, ĝb),chosenColor(4̂, r̂)}

due to the guesses introduced for the uncertainty.

In Section 7.2 we demonstrate further uses of such an multi-step abstraction over the subdomains.

3.6 Computational Complexity

In this section, we turn to the computational complexity of reasoning tasks that are associated with program
abstraction. We build on the complexity results in (Dantsin et al., 2001; Eiter et al., 2007), which cover
the basic reasoning tasks for arbitrary non-ground programs and for non-ground programs with bounded
predicate arities, i.e., the maximum arity of a predicate occurring in the program is bounded by a constant.

Lemma 3.9. Given an arbitrary non-ground program Π, a mapping m, and an abstract interpretation I,
checking whether I ∈ AS(Πm) holds is feasible in ∆

p
2 .
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Intuitively, this holds because we can nondeterministically generate each rule r in Πm in polynomial time,
and if I is not a model of the reduct (Πm)I also an instance of r witnessing this fact. The minimality of I for
(Πm)I can be shown by a polynomial-size proof tree that can be guessed and checked.

Armed with this lemma, we consider the problem of identifying concrete abstract answer sets.

Theorem 3.10. Given a program Π, a domain mapping m, and an abstract interpretation Î, deciding whether
Î is a concrete abstract answer set of Πm is NEXP-complete in general and Σ

p
2-complete for bounded

predicate arities. Furthermore, the complexity remains unchanged if Î ∈ AS(Πm) is asserted.

That is, the worst case complexity is the one of answer set existence for non-ground programs (Dantsin
et al., 2001; Eiter et al., 2007); the two problems can be reduced to each other in polynomial time. Intuitively,
in general an abstract atom in Î may be mapped back to exponentially many atoms in an answer set I
of the original program Π that witnesses the concreteness of Î; such an I can guessed and checked in
nondeterministic exponential time. Accordingly, the complexity drops to Σ

p
2 if the domain size |D| is

polynomial in the abstracted domain size |D̂| and interpretations are represented as bitmaps (as customary);
e.g., it drops if each abstract cluster is small (and multiple clusters exist). Under bounded predicate arities,
each abstract atom maps back to polynomially many original atoms, such that the guess I has polynomial
size and checking I can be done with an NP oracle in polynomial time (cf. Lemma 3.9). The matching lower
bounds are shown by reductions from deciding whether a given non-ground program has some answer set.

As an immediate consequence of Theorem 3.10, obtain the following result for spuriousness checking.

Corollary 3.11. Given a program Π, a domain mapping m, and an abstract interpretation Î, deciding
whether Î is a spurious abstract answer set of Πm is NEXP-complete in general and Σ

p
2 -complete for bounded

predicate arities. Furthermore, the complexity remains unchanged if Î ∈ AS(Πm) is asserted.

Next we consider deciding whether the abstract program has some spurious answer set. This problem
turns out to have higher complexity.

Theorem 3.12. Given a program Π and a domain mapping m, deciding whether some Î ∈ AS(Πm) exists
that is spurious is coNEXPNP-complete in general and Π

p
3-complete for programs with bounded predicate

arities.

Intuitively, compared to the previous problem we first must make a guess for Î such that it is an abstract
answer set of Πm but not concrete; the size of Î may be exponential in the input of the problem, and relative
to this testing concreteness is feasible in nondeterministic polynomial time, i.e., with an NP oracle. The
matching hardness is shown by reductions from evaluating second-order logic formulas of a suitable form
over finite relational structures.
Faithful abstraction. An abstract program that does not have a spurious answer set is a faithful abstraction
of the original program.

Example 3.29 (Example 2.6 ctd). In the graph coloring instance of Figure 1a, the mapping m = {{4,5,6}/4̂},
which maps nodes 1,2,3 to singleton clusters, yields an abstract program Πm that has 42 answer sets, which
are the combinations of 6 possible correct colorings of the nodes 1-3 with 7 possible colorings {{red}, {blue},
{green}, {red,blue}, {red,green}, {green,blue},{red,green,blue}} of the node cluster 4̂, thus resulting in
a faithful abstraction.

Ideally, we have faithfulness, but this is hard to achieve in general. From Theorem 3.12, we immediately
obtain:

Corollary 3.13. Given a program Π and a domain mapping m, deciding whether Πm is faithful is coNEXPNP-
complete in general and Π

p
3 -complete for bounded predicate arities.
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4 Refinement by Debugging Non-Ground Spuriousness

Over-approximation of an answer set program unavoidably introduces spurious answer sets. Once a spurious
abstract answer set is encountered, one can either continue searching for a concrete abstract answer set, or
refine the abstraction to reach one where less spurious answer sets occur.

Definition 4.1. Given a domain mapping m : D→ D′, a mapping m′ : D→ D′′ is a refinement of m if for all
x ∈ D, m′−1(m′(x))⊆ m−1(m(x)).

That is, refinement is on dividing the abstract clusters to a finer grained domain.

Example 4.1 (ctd). The mapping m′={{1}/k1,{2,3,4}/k2,{5}/k3} is a refinement of the mapping m.
Furthermore, Πm′ has no answer set I′ such that m(m′−1(I′)) = Î2; hence the spurious answer set Î2 of Πm is
eliminated.

In the CEGAR methodology (Clarke et al., 2003), the decision in a refinement step depends on the
correctness checking of the spurious abstract solution, through which the problematic part of the abstraction
is detected. Inspired by this, we develop an alternative for checking the correctness of abstract answer sets
that can be used to determine how the refinement should be made.
Correctness checking using constraints. That an abstract answer set Î is spurious means the original
program Π has no answer set matching Î. In other words, querying Π for a match to an abstract answer set Î
would return no result exactly if Î is spurious.

Definition 4.2 (Query of an answer set). Given an abstract answer set Î and a mapping m, a query Qm
Î

for

an answer set that matches Î is described by the following constraints.

⊥←{α |m(α)= α̂} ≤ 0. α̂∈ Î \Tm (30)

⊥←α. α̂ /∈ Î \Tm,m(α)= α̂ (31)

Here (30) ensures that a witnessing answer set I of Π (i.e., m(I) = Î) contains for every non-τι abstract
atom in Î some atom that is mapped to it, while (31) ensures that no atom in I is mapped to an abstract atom
not in Î. The following is then easy to establish.

Proposition 4.1. Suppose m is a domain abstraction mapping for a program Π, then an abstract answer set
Î ∈ AS(Πm) is spurious iff Π∪Qm

Î
is unsatisfiable.

Proof. As Î is spurious, there exists no I ∈ AS(Π) such that m(I) = Î \Tm, i.e., there is no match of an
original answer set I for Î where the atoms in I can be mapped to the abstract atoms contained in Î \Tm and
the atoms not in I can be mapped to the abstract atoms not contained in Î \Tm. QÎ enforces such a match,
thus returns unsatisfiability.

Having no match for Î means that no original answer set can be mapped to it, thus Î is spurious.

Correctness checking with debugging. We will employ an ASP debugging approach to debug the incon-
sistency of the original program Π caused by checking a spurious answer set Î, referred to as inconsistency of
Π w.r.t. Î, in order to get hints for refining the abstraction. Different from a usual ASP program debugging
approach, we need to shift the focus from “debugging the original program” to “debugging the inconsistency
caused by the spurious answer set”. Unfortunately an immediate application of the available ASP debugging
tools is not possible. For our purposes, we make use of the meta-level debugging language in (Brain et al.,
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2007), which is based on a tagging technique that allows one to control the building of answer sets and to
manipulate the program evaluation.

The meta-program constructed by spock (Brain et al., 2007) introduces tags to control answer set
building. Given a program Π over A and a set N of names for all rules in Π, it creates an enriched alphabet
A + obtained from A by adding atoms such as ap(nr),bl(nr),ok(nr),ko(nr) where nr ∈N for each r ∈Π.
The atoms ap(nr),bl(nr) express whether a rule r is applicable or blocked, respectively, while ok(nr),ko(nr)
are used for manipulating the application of r.

For domain abstraction, debugging the non-ground program has its own difficulties. The approach in
(Brain et al., 2007) is on the propositional level, thus can not be immediately applied. Also debugging
non-ground programs is not as straightforward as in the propositional case, as there is the additional need to
debug the checking for an original answer set that can be mapped to the given abstract answer set. However,
non-ground program debugging approaches such as (Oetsch et al., 2010; Dodaro et al., 2015) are not easily
adjustable due to the need for shifting the focus towards debugging the correctness checking.

Using available debuggers. Debugging non-ground ASP programs through a meta-programming (Gebser
et al., 2008) approach has been studied by (Oetsch et al., 2010), with the drawback of considering all possible
explanations why a given interpretation I is not an answer set of the program Π. For the given input I, in
order to prove that I is not an answer set of Π, the debugging considers many possible guesses of variable
assignments that matches I with a faulty behavior. In our case, the input I is an abstract answer set stating that
there should be some original answer set I′ of Π such that each atom in I′ can be mapped to some abstract
atom α̂ in I. This adds a guess of some original atom that could be mapped to α̂ . However, as the debugging
aims at showing that I is not an answer set of Π, when this additional guessing comes into play, it guesses
original atoms to create some faulty behavior for I even if these atoms do not occur in an original answer set.
Thus, an immediate application of the meta-programming approach is infeasible.

In order to use the available non-ground debugging tools off-the-shelf, one possibility is to first guess all
possible combinations of the original atoms to match the abstract answer set Î, and then separately debug each
of them. If Î is in fact spurious, this will be caught as each possible guess would return some inconsistency. If
Î is concrete, then at some point some guess will correspond to an original answer set, with no inconsistency.
However, this approach is too cumbersome, as there can be many possible concrete guesses for an abstract I
and checking each of them one by one until a concrete one is found (if exists) is highly inefficient.

Our approach to debugging. As existing non-ground debugging tools are not readily applicable, we debug
the unsatisfiability of Π∪Qm

Î
for a spurious abstract answer set Î following the debugging approach based

on (Brain et al., 2007) from above. In previous work on domain abstraction (Saribatur et al., 2019), we
considered a simplified debugging approach inspired from the ko atoms of (Brain et al., 2007), which is
based on detecting the rules that must be deactivated in order to keep the satisfiability while checking the
concreteness of an abstract answer set Î, in case it is spurious. As the naive debugging can not address all
debugging cases, in this work we show an extension of the refinement method by lifting the spock (Brain
et al., 2007) debugging approach to the non-ground case, confining to tight programs (i.e., we omit unfounded
loop checking).

When demonstrating the different debugging approaches, we use a non-ground version of Qm
Î

.

Definition 4.3 (Non-ground query). Given an abstract answer set Î and a mapping m expressed as a set of
facts of form m(x,a) (where m(x) = a), a (non-ground) query for an answer set that matches Î is described
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as follows:

⊥← in(α̂),{α : m(X1, X̂1), . . . ,m(Xk, X̂k)} ≤ 0. (32)

⊥←α,not in(α̂),m(X1, X̂1), . . . ,m(Xk, X̂k). (33)

where α = p(X1, ...,Xk) and α̂ = p(X̂1, ..., X̂k), and m(Xi, X̂i) expresses the abstract mapping, plus the facts

in(α̂)., α̂ ∈ Î \Tm. (34)

Example 4.2 (Example 3.1 ctd). For the program Π and the mapping m = {{1,2,3,4,5}/k} given as facts
m(1,k), m(2,k),m(3,k),m(4,k),m(5,k), the abstract program Πm has an answer set Î = {a(k),c(k)}. The
query Qm

Î
is

⊥← not in(d(A1)),d(X1),m(X1,A1). ⊥← in(d(A1)),{d(X1) : m(X1,A1)} ≤ 0.

⊥← not in(c(A1)),c(X1),m(X1,A1). ⊥← in(c(A1)),{c(X1) : m(X1,A1)} ≤ 0.

⊥← not in(a(A1)),a(X1),m(X1,A1). ⊥← in(a(A1)),{a(X1) : m(X1,A1)} ≤ 0.

⊥← not in(e(A1)),e(X1),m(X1,A1). ⊥← in(e(A1)),{e(X1) : m(X1,A1)} ≤ 0.

⊥← not in(b(A1,A2)),b(X1,X2),m(X1,A1),m(X2,A2).

⊥← in(b(A1,A2)),{b(X1,X2) : m(X1,A1),m(X2,A2)} ≤ 0.

in(a(k)). in(c(k)).

4.1 Non-Ground Debugging using Tagging

We extend the refinement method described in (Saribatur et al., 2019) by lifting the “tagging” approach of
spock (Brain et al., 2007) to the non-ground case, confining to tight programs (i.e., we omit unfounded loop
checking). Given Π, we construct the meta program Tmeta[Π] similar to spock (Brain et al., 2007), but with
an extension of having arguments in the apnr

,blnr atoms to have information for which constants the rules are
applicable and blocked.

Definition 4.4. Given a non-ground program Π, the program Tmeta[Π] consists of the following rules for
r ∈Π with arg(H(r)) = {c1, . . . ,cn} and arg(B(r)) = {d1, . . . ,dm}:

If B(r) = /0 : r

If H(r) 6=⊥∧n > 0 :
H(r)← apnr

(c1, . . . ,cn),not konr .
apnr

(c1, . . . ,cn)← B(r).
blnr(c1, . . . ,cn)← not apnr

(c1, . . . ,cn).

If H(r) =⊥∨n = 0 :

H(r)← apnr
(d1, . . . ,dm),not konr .

apnr
(d1, . . . ,dm)← B(r).

apnr
← apnr

(d1, . . . ,dm).
blnr ← not apnr

.

In case the head of rule r is ⊥ or does not contain arguments in the atom, we use the arguments from the
body to know whether r is applicable.

We have abnormality atoms to indicate the actions that are required to avoid the inconsistency:

32



• ab_deactnr signals that r was applicable under some interpretation, but had to be deactivated;

• similarly for ab_deactConsnr which only talks about the constraints; and

• ab_act(α) says that atom α must be made true while no rule deriving α was applicable (i.e., α is
unsupported2).

Definition 4.5. Given a non-ground program Π over A , the following additional meta-programs are
constructed:

1. Rule Deactivation: Tdeact [Π]: for all r ∈Π with B(r) 6= /0 and H(r) 6=⊥:

konr .

{H(r)}← apnr
(c1, . . . ,cn).

ab_deactnr(c1, . . . ,cn)← apnr
(c1, . . . ,cn),not H(r).

2. Constraint Deactivation: TdeactCons[Π]: for all r ∈Π with H(r) =⊥:

{konr}.
ab_deactConsnr(c1, . . . ,cn)← apnr

(c1, . . . ,cn),konr .

3. Rule Head Activation: Tact [Π,A ]: for all α∈A , with def (α,Π)={r1, ...,rk}:

{α}← blnr1
(c1, . . . ,cn), ...,blnrk

(c1, . . . ,cn).

ab_act(α)← α,blnr1
(c1, . . . ,cn), ...,blnrk

(c1, . . . ,cn).

The arguments of ab_deact only contain the ones from the head of the rule. This is a representation
choice, to avoid dealing with many variables involved in the body while only few of them are used in the
head of the rule. For the definition of ab_deactCons however, the variables of the body must be used. Having
a different representation for the deactivation of the constraints will allow to steer the debugging towards
the constraints by assigning different costs for their occurrence when computing the answer sets with the
smallest number of ab atoms.

Definition 4.6. For a program Π over atoms A , we let the program be defined by

Πdebug = Tmeta[Π] ∪ Tdeact [Π] ∪ TdeactCons[Π] ∪ Tact [Π,A ].

Furthermore, we denote by A ∗ = A +∪AB(Π) the vocabulary of Πdebug.

We use Πdebug for checking the correctness of an abstract answer set and then deciding on the refinement.
Adding weak constraints over the abnormality atoms yields an answer set with fewest ab atoms.

Example 4.3 (Example 4.2 ctd). The programs Tmeta[Π] and Tdeact [Π] with additional weak constraints
on abnormality atoms are shown in Figs. 8a and 8b, respectively. The minimal answer set of Tmeta[Π]∪
Tdeact [Π]∪Qm

Î
is then

{ab_deactr2(5),ab_deactr4(1),ab_deactr4(3),ab_deactr4(2)}.
2A literal q is unsupported by an interpretation I if for each r ∈ def (q,Π), B+(r)* I or B−(r)∩ I 6= /0 (Van Gelder et al., 1991).
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Figure 8: Debugging programs for Example 4.2

c(X) ←apr1(X),not kor1.
apr1(X) ←X < 5,not d(X).
blr1(X) ←not apr1(X).

d(X) ←apr2(X),not kor2.
apr2(X) ←not c(X).
blr2(X) ←not apr2(X).

b(X ,Y ) ←apr3(X ,Y ),not kor3.
apr3(X ,Y )←a(X),d(Y ).
blr3(X ,Y ) ←not apr3(X ,Y ).

e(X) ←apr4(X),not kor4.
apr4(X) ←c(X),a(Y ),X≤Y.
blr4(X) ←not apr4(X).

falsum ←apr5(X ,Y ),not kor5.
apr5(X ,Y )←b(X ,Y ),e(X).
apr5 ←apr5(X ,Y ).
blr5 ←not apr5.
⊥ ← falsum.

(a) Tmeta[Π]

kor1.
{c(X)} ← apr1(X).
ab_deactr1(X) ← apr1(X),not c(X).
⊥ :∼ ab_deactr1(X).

kor2.
{d(X)} ← apr2(X).
ab_deactr2(X) ← apr2(X),not d(X).
⊥ :∼ ab_deactr2(X).

kor3.
{b(X ,Y )} ← apr3(X ,Y ).
ab_deactr3(X ,Y )← apr3(X ,Y ),not b(X ,Y ).
⊥ :∼ ab_deactr3(X ,Y ).

kor4.
{e(X)} ← apr4(X).
ab_deactr4(X) ← apr4(X),not e(X).
⊥ :∼ ab_deactr4(X).

(b) Tdeact [Π] with weak constraints
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This debugging approach is also able to handle the shortcomings of the naive approach (Saribatur et al.,
2019), as Tact [Π,A ] is used to activate original atoms if it is necessary for achieving satisfiability for
Πdebug∪Qm

Î
.

As a first property, we show that Πdebug∪Qm
Î

always has an answer set, i.e., no abstract answer set Î is
dismissed.

Proposition 4.2. Given a tight program Π and a mapping m, for each answer set Î ∈ AS(Πm), Πdebug∪Qm
Î

has an answer set.

The next result now shows that we can use Πdebug∪Qm
Î

to obtain hints for the spuriousness reason of Î.

Proposition 4.3. Given a tight program Π and a mapping m, if an answer set Î ∈AS(Πm) is spurious, then for
every answer set S∈ AS(Πdebug∪Qm

Î
) either (i) ab_deactnr(c1, . . . ,cn)∈ S or ab_deactConsnr(c1, . . . ,cn)∈ S

for some r ∈Π, or (ii) ab_act(α(c1, . . . ,cn)) ∈ S.

Proof. If Î is spurious, by Proposition 4.1 the program Π∪Qm
Î

is unsatisfiable. We focus on debugging the
cause of inconsistency introduced by Qm

Î
. Since Π is tight, this inconsistency can either be due to (i) an

unsatisfied rule or (ii) an unsupported atom.

(i) Let r ∈ Π be an unsatisfied rule w.r.t. S. This means that the constraints in Qm
Î

is causing H(r) to
be false while B(r) is satisfied. By the program Tmeta[Π], depending on r, either apnr

(c1, . . . ,cn)
or apnr

(d1, . . . ,dm) is true. By Tdeact [Π], we get ab_deact(r,c1, . . . ,cn) ∈ S. If H(r) = ⊥, then by
TdeactCons[Π], we have konr ∈ S (else ⊥ ∈ S by Tmeta[Π]), and we get ab_deactCons(r,c1, . . . ,cn) ∈ S.

(ii) Let α = α(c1, . . . ,cn) ∈ S be an unsupported atom in Π w.r.t S for the domain elements c1, . . . ,cn.
Then, for each rule instance r deriving α , we have blnr(c1, . . . ,cn) ∈ S and by Tact [Π,A ], we have
ab_act(α) ∈ S.

Less suprisingly, for non-tight programs, debugging the correctness checking could result in unsatis-
fiability (see Appendix B.1 for an example). The avoid this, unfounded loop checking can be handled by
introducing an additional abnormality atom, say abloop as in (Brain et al., 2007), and lifting it to the non-
ground setting. However, this solution causes further guessing rules involved in the non-ground debugging.
Also the existence of abloop(α) sometimes does not even indicate that a loop formula is violated and just
makes the search more difficult due to considering many possibilities of the guesses. Therefore, we choose to
focus only on tight programs and concentrate on the determination of a refinement.

The obtained debugging atoms during a correctness check gives hints on which domain elements should
not be involved in a cluster.

Definition 4.7. The refinement-hint gathering program Πhint(AB) contains the following rules:

• For ci ∈ arg(ab_deactnr(c1, . . . ,cn)):

refine(c1, . . . ,cn)←ab_deactnr(c1, . . . ,cn),m(ci,ai), isCluster(ai).

• For ci ∈ arg(ab_deactConsnr(c1, . . . ,cn)):

refine(c1, . . . ,cn)←ab_deactConsnr(c1, . . . ,cn),m(ci,ai), isCluster(ai).

• For ci ∈ arg(α(c1, . . . ,cn)):

refine(c1, . . . ,cn)←ab_act(α(c1, . . . ,cn)),m(ci,ai), isCluster(ai).

From Πhint we get as hints the domain elements that are mapped to abstract cluster elements and cause to
obtain ab atoms in the debugging.
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4.2 Deciding on a Refinement

The introduced debugging approach finds a set of abnormality atoms in case the abstract answer set is
spurious. We consider two ways of using the obtained debugging output for deciding on a refinement.

(v1) The smallest number of ab atoms occurring in an answer set is the cost of the corresponding mapping.

(v2) The inferred refine atoms are used to decide on a refinement of the abstraction.

In (v1), the cost is used for a local search among the possible refinements of an abstraction, where the one
with the minimum cost is picked. Approach (v2) is closer to the CEGAR-like approach (Clarke et al., 2003),
where a refinement is determined from the spuriousness check. We now describe the approaches in more
detail and report on a comparison in Section 6.3.

(v1) Local Refinement Search. The idea is to search among possible refinements of a mapping for deciding
on a refinement. To single out close refinements, we measure the distance dist(m,m′) between a mapping
m:D→ D̂ and a refinement m′:D→ D̂′ of it by the number of additional clusters, i.e., dist(m,m′) = |D̂′|− |D̂|.
In case dist(m,m′) = 1, we call m′ a 1-distance refinement of m.

Example 4.4. Each mapping m′ ∈
⋃

C∈C {C/k1,{1, . . . ,5}\C/k2}, where C = {{1},{1,2},{1,2,3},{1,2,3,4}},
is a 1-distance refinement of m = {{1,2,3,4,5}/k}.

Algorithm 1 shows the procedure of deciding on a refinement for a given mapping m, by doing a
distance-based search among all possible refinements of the mapping and picking the one with the least cost.
All 1-distance refinements of m are computed, and then the cost of each of them is determined, by calling
getCostOfMapping. This function constructs the abstract program Π′ according to the mapping and picks
an abstract answer set I. It then finds the answer set with smallest number s of ab-atoms of the program
Πdebug∪Qm(I) and returns s. If some refinement m′ has cost 0, it is returned. Otherwise, all the refinements
and their were collected. In Line 11 the refinements with minimum cost are gathered, and then a random pick
is made over them. If the given mapping contains only singleton clusters, this means the original domain has
been reached.

(v2) Abstraction Refinement Using Hints. The abstract answer set correctness checking returns ab-atoms
that contain the domain elements involved in the debugging of the unsatisfiability. The latter can be used as
hints on which part of the mapping to refine. The idea of the refine atoms is to get hints about which domain
elements should not be involved in a cluster. Given a hint atom refine(c1, . . . ,cn),we consider two actions to
describe a refinement m′ of m:

(1) For refine(c1, . . . ,cn) and i∈{1, . . . ,n} such that m−1(m(ci))>1, the refinement m′ satisfies m′−1(m′(ci)) = 1.

(2) For refine(c1, . . . ,cn) and ci 6=c j∈{c1, . . . ,cn} such that m(ci) = m(c j), the refinement m′ satisfies
m′(ci) 6=m′(c j).

Applying refinement action (1) means to refine the abstraction by mapping all elements occurring in some
refine atom to singletons, while the refinement action (2) should ensure that distinct elements occurring in the
same refine atom are no longer mapped to the same cluster. Note that obtaining some refine atom during the
correctness checking it is not guaranteed whenever Î is spurious , as the ab atoms may contain only domain
elements that are mapped to singleton clusters. In this case, another abstract answer set Î′ of Π̂m can be
picked for the correctness checking.
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Algorithm 1: decideRefinement with Search
Input: program Π, domain mapping m
Output: refinement m′ of m

1 if m has non-singleton clusters then
2 refinecosts = []; allrefs = [];

/* compute all 1-distance refinements of m */
3 refs = computeRefinements(m,1)
4 forall m′ ∈ refs do
5 c = getCostOfMapping(Π,m′);
6 if c = 0 then /* found a concrete abstract answer set */
7 return m′;
8 else
9 allrefs.append(m′);

10 refinecosts.append(c)
11 minrefs = getRefsMinCost(refinecost,allrefs)
12 m = pickRandomRef (minrefs)
13 return m
14

15 def getCostOfMapping(Π,m)
16 Π′ = constructAbsProg(Π,m);
17 Πdebug = constructDebugProg(Π);
18 Pick some I ∈ AS(Π′)
19 Find optimum answer set I′ of Πdebug∪Qm(I) /* with smallest number s of

ab-atoms */
20 return |I′|ab| /* s = |I′|ab| */

5 Multi-Dimensional Domain Abstraction

As we have seen from Proposition 3.8, it is possible to construct an abstract program over multiple sorts in
the manner of cartesian abstraction. This is achieved by doing abstraction over the sorts one at a time, which
means one can not take certain interdependencies among the sorts into account, However, in some scenarios
this may be needed.

Example 5.1 (Example 3.28 ctd). An interesting abstraction would be to assign a color cluster ˆrgb only
for the nodes {4,5,6}, which are clustered to a node 4̂, while for nodes {1,2,3} the original colors are
considered (see Figure 9). Such an abstraction can not be achieved with a cartesian style abstraction, since
the color cluster ˆrgb is only meant to be considered for the node cluster 4̂. Thus, the desired abstraction can
only be defined with a multi-dimensional mapping m : Dn×Dc→ D̂n× D̂c as follows:

m(i, j) =
{

(i, j) i ∈ {1,2,3}, j ∈ {red,green,blue}
(4̂, ˆrgb) i ∈ {4,5,6}, j ∈ {red,green,blue} .

To further motivate the need for multi-dimensionality, we consider grid-cell domains, which are commonly
used.
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Figure 9: Joint abstraction of nodes and colors
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Example 5.2 (Grid-Cell Domains). Usually the grid-cells are represented by using two sorts row and column.
The following rules show the part of a Sudoku encoding that guesses an assignment of symbols to the cells
and ensures that each cell has a number.

{sol(X ,Y,N)}←not occupied(X ,Y ),num(N),row(X),column(Y ).

hasNum(X ,Y )←sol(X ,Y,N),row(X),column(Y ). (35)

⊥←not hasNum(X ,Y ),row(X),column(Y ).

Further constraints ensure that cells in the same column (36) or same row (37) do not contain the same
symbol.

⊥←sol(X ,Y1,M),sol(X ,Y2,M),Y1 < Y2. (36)

⊥←sol(X1,Y,M),sol(X2,Y,M),X1 < X2. (37)

A further more involved constraint (cf. Appendix B.2) ensures that the cells in the same sub-region also
satisfies this.

An abstraction over the grid-cells would be to cluster the rows and columns together in order to define an
abstract grid-cell. Although abstraction over the sorts one at a time can achieve certain abstract cell structures,
to obtain more sophisticated abstractions these sorts must be jointly abstracted. Consider for example the
abstractions in Figure 10. Those in Figures 10a-10b can be achieved by independent mappings over the rows
and columns such as mrow= mcol ={{123}/a123, {4}/a4} and mrow= mcol ={{12}/a12,{34}/a34}. For a
given program Π, one can construct the abstract program (Πmrow)mcol . However to achieve Figure 10c, rows
and columns must be jointly abstracted. While the cells (ai,b j),1≤ i, j≤2 are singletons mapped from (i, j),
the other abstract regions are only given by

mrow,col(x,y) =


(a12,b34) x ∈ {1,2},y ∈ {3,4}
(a34,b12) x ∈ {3,4},y ∈ {1,2}
(a34,b34) x ∈ {3,4},y ∈ {3,4}

(38)

Observe that the abstract row a12 describes a cluster that abstracts over the individual abstract rows a1,a2.
The original rows {1,2} are mapped to {a12} only in combination with columns {3,4}, otherwise they are
mapped to {a1,a2}.

5.1 Existential Abstraction on Relations

The abstraction method described in Section 3.2 aims at keeping the built-ins in the abstract program and
finds a way to handle their different behavior in the abstract domain. However, this approach can not be used
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Figure 10: Abstractions over grid-cells
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to achieve the above mentioned multi-dimensional abstraction. Consider the rule (36) standardized apart over
rows and columns, thus having relations X1 = X2 and Y1 < Y2. If for the mapping mrow,col in Figure 10c these
relations are lifted following Section 3.2, while the relation over the y-axis is still defined (as A is located
above of B), i.e., AY ≤ BY , the relation AX = BX is unclear as the abstract clusters for X-values are different
due to different levels of abstraction.

To tackle this issue, an alternative abstraction method is needed that also abstracts over the built-in
relations and reasons over the abstracted relation (in the abstract domain). This leads us to a notion of
abstraction that is similar in spirit to so called existential abstraction (Clarke et al., 2003) and allows us to
introduce domain mappings over multiple sorts such as

m :D1× . . .×Dn→ D̂1× . . .× D̂n,

and to handle relations over different levels of abstraction.
For this, we introduce an abstract relation r̂el for a k-ary relation rel as follows:

(∀k
i=1d̂i ∈ D̂) r̂el(d̂1, . . . , d̂k)⇔ ∃k

i=1xi ∈ m−1(d̂i).rel(x1, . . . ,xk). (39)

(∀k
i=1d̂i ∈ D̂)neg_r̂el(d̂1, . . . , d̂k)⇔ ∃k

i=1xi ∈ m−1(d̂i).¬rel(x1, . . . ,xk). (40)

I.e., r̂el(d̂1, . . . , d̂k) is true if for some corresponding original values the original relation holds; the negation of
r̂el(d̂1, . . . , d̂k) is true otherwise. Notably, both versions may hold simultaneously, depending on the domain
clusters.

Example 5.3 (Example 3.1 ctd). For the mapping {1, . . . ,5}/k, the abstract relation k≤̂k holds true, as X ≤Y
for all X ,Y mapped to k. Both k=̂k and k¬_=̂k hold true, as X1 = X2 holds only for some X1,X2 values
mapped to k.

Notice that having both rel and neg_rel hold means an uncertainty on the truth value of the relation in the
abstract clusters. This brings us to determining the types of the relations over the abstract clusters, similar as
before.

Abstract relation types. The following cases τI−τIII occur in a mapping for the abstract relation predicates
r̂el(d̂1, . . . , d̂k) and neg_r̂el(d̂1, . . . , d̂k):

τ r̂el
I (d̂1, . . . , d̂k): r̂el(d̂1, . . . , d̂k) ∧ not neg_r̂el(d̂1, . . . , d̂k)

τ r̂el
II (d̂1, . . . , d̂k): neg_r̂el(d̂1, . . . , d̂k) ∧ not r̂el(d̂1, . . . , d̂k)

τ r̂el
III (d̂1, . . . , d̂k): r̂el(d̂1, . . . , d̂k) ∧ neg_r̂el(d̂1, . . . , d̂k)

(41)
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Type I is the case where the abstraction does not cause uncertainty for the relation, thus the rules that
contain r̂el with type I can remain the same in the abstract program. Type II shows the cases where r̂el does
not hold in the abstract domain. Type III is the uncertainty case, which needs to be dealt with when creating
the abstract rules. To ensure that an over-approximation is achieved, the head of the respective rule will be
changed into a choice.

For an abstraction m, we compute the set Tm∃ of all atoms τ r̂el
ι (d̂1, . . . , d̂k) where ι ∈ {I, II, III} is the type

of r̂el(d̂1, . . . , d̂k) for m.

5.1.1 Abstraction procedure

For simplicity and ease of presentation, we consider programs with rules having (i) a single relation atom;
and (ii) no cyclic dependencies between non-ground literals.

Definition 5.1 (rule abstraction). Given a rule r : l← B(r),rel(t1, . . . , tk) and a domain mapping m, the set
rm
∃ contains the following rules.

(a) m(l)← m(B(r)),τ r̂el
I (t̂1, . . . , t̂k).

(b) {m(l)}← m(B(r)),τ r̂el
III (t̂1, . . . , t̂k).

(c) For all L⊆ B−(r):
{m(l)}←m(Bsh

L (r)),τ r̂el
I (t̂1, . . . , t̂k), isCluster( ĵ).

{m(l)}←m(Bsh
L (r)),τ r̂el

III (t̂1, . . . , t̂k), isCluster( ĵ)
j ∈ arg(li), li ∈ L

where Bsh
L (r)=B+(r)∪L,not B−(r)\L.

The idea is to introduce guesses when there is an uncertainty over the relation holding in the abstract
domain (b), or over the negated atoms due to the abstract clusters (c) (by considering all combinations of the
negative literals), and otherwise just abstracting the rule (a).

The abstraction procedure introduced in Definition 5.1 obtains semantically the same abstract program as
in Definition 3.3 for rules of form

l←B(r),rel(t1, t2).

with binary relations =, 6=,≤,<. Formally,

Definition 5.2 (Existential abstract program Πm
∃ ). Given a program Π and a domain mapping m, we denote

by

Π
m
E = {rm

E | r : l← B(r),rel(t1, t2) ∈Π} ∪ {x. |x∈Tm∃} ∪ {m(p(~c)). | p(~c). ∈Π}. (42)

the program obtained from Π under existential abstraction using m.

We then have

Theorem 5.1. For any domain mapping m of a program Π, AS(Πm) and AS(Πm
∃ ) coincide (modulo auxiliary

atoms).

A generalization to multiple relation atoms and handling cyclic dependencies by removing the restrictions
(i)-(ii) can be done similarly as in cases (G-II) and (G-III) of Section 3.3.
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Example 5.4 (Example 3.1 ctd). For the program Π in (5)-(9) and m = {{1, . . . ,5}/k}, the program Πm
∃ is:

c(X)← not d(X),τ<̂
I (X ,k), înt(X).

{c(X)}← not d(X),τ<̂
III(X ,k), înt(X).

{c(X)}← τ
<̂
I (X ,k), isCluster(X), înt(X). (43)

{c(X)}← τ
<̂
III(X ,k), isCluster(X), înt(X). (44)

d(X)← not c(X), înt(X).

{d(X)}← isCluster(X), înt(X).

b(X ,Y )← a(X),d(Y ), înt(X), înt(Y ).

e(X)← c(X),a(Y ),τ≤̂I (X ,Y ), înt(X), înt(Y ).

{e(X)}← c(X),a(Y ),τ≤̂III(X ,Y ), înt(X), înt(Y ).

⊥← b(X ,Y ),e(X1),τ
=̂
I (X ,X1), înt(X), înt(X1), înt(Y ).

and the abstract facts are a(k), înt(k); furthermore, we have Tm∃ = {τ
≤̂
III(k,k),τ

=̂
III(k,k),τ

<̂
III(k,k)}. Note that

the atom d(X) is omitted in (43)-(44) instead of shifting the polarity.
The abstract program is similar to the one constructed by lifting the relations in Example 3.19. As can be

easily checked, the programs have modulo the auxiliary atoms the same abstract answer sets.

We observe that for treating n-ary relations where n > 2, we can modify Definition 5.1 to create finer
abstractions.

Example 5.5. Consider the argument Z of the following rule involving addition:

r : e(Z)← c(X),a(Y ),Z = X +Y. (45)

We denote Z = X +Y with the relation plus(X ,Y,Z). Regarding the arguments, we have arg(e(Z))∩
arg(plus(X ,Y, Z))={Z} 6= /0 while arg(e(Z))∩{X ,Y}= /0, where X ,Y are the shared arguments of the body
literals with the relation plus, i.e., arg(B(r))∩arg(plus(X ,Y,Z)) = {X ,Y}. Consider the mapping m : {1} 7→
a1,{2,3} 7→ a23, {4,5} 7→ a45 and X=a1,Y=a1. For the abstract relation ˆplus, both ˆplus(a1,a1,a23) and
neg_ ˆplus(a1,a1,a23) hold true, due to 1+1 = 2 and 1+1 6= 3. As Z is not used in the body literals, it does
not cause uncertainties for applying the rule in the abstraction, which is caught by

e(Z)← c(X),a(Y ),τ r̂el(X ,Y,Z)
III , isSingleton(X), isSingleton(Y ).

In general, by adding in Definition 5.1 the rule

• m(l)← m(B(r)),τ r̂el
III (t̂1, . . . , t̂k),

∧
t̂i∈argi(rel)\arg(l) isSingleton(t̂i).

if arg(l)∩arg(rel) 6= /0 and arg(l)∩ (arg(B(r))∩arg(rel)) = /0.

the guess in (b) can be avoided, if all arguments of rel not involved in the head l are singleton clusters.
The use of abstract relations opens a wide range of possible applications, as it simplifies the use of a given

program without preprocessing it to match the restrictions over the forms of the relations for the previous
abstraction method.
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5.1.2 Computing Joint Abstract Relation Types

Abstract relations can be easily employed with abstraction mappings over several sorts in the domain as
m : D1×·· ·×Dn→ D̂1×·· ·× D̂n. If a rule has relations over the sorts, a joint abstract relation combining
them must be computed. We show an example of grid-cell abstraction for illustration.

Example 5.6 (Abstracting grid-cells). Consider the relations rel1(X1,X2): X1=X2 and rel2(Y1, Y2):Y1<Y2
for X1,X2∈row,Y1,Y2∈column, from standardizing apart the variables in (36). The rules to compute the
types τ r̂el

I ,τ r̂el
III , where r̂el combines rel1 and rel2, are as follows:

1. Define the abstract relations. This step corresponds to the existential abstraction (39).

r̂el1((X̂1,Ŷ1),(X̂2,Ŷ2))←rel1(X1,X2),m((X1,Y1),(X̂1,Ŷ1)),m((X2,Y2),(X̂2,Ŷ2)).

r̂el2((X̂1,Ŷ1),(X̂2,Ŷ2))←rel2(Y1,Y2),m((X1,Y1),(X̂1,Ŷ1)),m((X2,Y2),(X̂2,Ŷ2)).

The negations ¬r̂el1,¬r̂el2 are computed similarly as (40).

¬r̂el1((X̂1,Ŷ1),(X̂2,Ŷ2))←¬rel1(X1,X2),m((X1,Y1),(X̂1,Ŷ1)),m((X2,Y2),(X̂2,Ŷ2)).

¬r̂el2((X̂1,Ŷ1),(X̂2,Ŷ2))←¬rel2(Y1,Y2),m((X1,Y1),(X̂1,Ŷ1)),m((X2,Y2),(X̂2,Ŷ2)).

2. Compute the types of each abstract relation r̂eli, i ∈ {1,2} with the objects Ĉi = (X̂i,Ŷi), i ∈ {1,2} as
(41).

τ
r̂eli
I (Ĉ1,Ĉ2)← r̂eli(Ĉ1,Ĉ2),not ¬r̂eli(Ĉ1,Ĉ2).

τ
r̂eli
II (Ĉ1,Ĉ2)← not r̂eli(Ĉ1,Ĉ2),¬r̂eli(Ĉ1, ĉ2).

τ
r̂eli
III (Ĉ1,Ĉ2)← r̂eli(Ĉ1,Ĉ2),¬r̂eli(Ĉ1,Ĉ2).

3. Compute the types of the joint abstract relation r̂el over r̂eli, i ∈ {1,2}:

τ
r̂el
I (Ĉ1,Ĉ2)← τ

r̂el1
I (Ĉ1,Ĉ2),τ

r̂el2
I (Ĉ1,Ĉ2).

τ
r̂el
III (Ĉ1,Ĉ2)← not τ

r̂el1
II (Ĉ1,Ĉ2),τ

r̂el2
III (Ĉ1,Ĉ2).

τ
r̂el
III (Ĉ1,Ĉ2)← τ

r̂el1
III (Ĉ1,Ĉ2),not τ

r̂el2
II (Ĉ1,Ĉ2).

The mapping (38) shown in Figure 10c gives the types τ r̂el
I ((a1,b1),(a1,b2)), τ r̂el

I ((a2,b1), (a2,b2)) and
τ r̂el

III for the remaining abstract pairs.

Figure 11 presents the multi-dimensional case, that is computing abstract k-tuple relations for given
relations rel1, ... ,reln1 over variables from D̂1, . . . , D̂n2 . We assume for simplicity a uniform arity k.

Note that for the joint abstract relation r̂el, type τ r̂el
II computation is not needed, as the abstract rule

construction only deals with types I and III. To emphasize the abstracted relations, we may denote r̂el in
τ r̂el with the combination of the relations the abstract relation is built on; e.g., for the joint relation type of
rel1(X1,X2):X1=X2 and rel2(Y1, Y2):Y1<Y2 we write τ

=,<
I ,τ=,<

III .
The multi-dimensional abstraction constructs an abstract structure, i.e., object, over the abstracted sorts

where not all combinations of the abstract sorts yields a valid object. For example, in Example 5.1 the color
cluster ˆrgb can only be considered with the node cluster 4̂. This also needs to be taken into account when
constructing the abstract program.
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Figure 11: Computation of multi-dimensional relation types (ĉ j = (d̂1
j , . . . , d̂

n2
j ),1≤ j ≤ k)

r̂eli(ĉ1, ... , ĉk)← reli(di
1, ... ,d

i
k),m((d1

1 , ... ,d
n2
1 ), ĉ1), . . . ,m((d1

k , ... ,d
n2
k ), ĉk). i = 1, . . .n1

τ
r̂eli
I (ĉ1, . . . , ĉk)← r̂eli(ĉ1, . . . , ĉk),not ¬r̂eli(ĉ1, . . . , ĉk). i = 1, . . . ,n1

τ
r̂eli
II (ĉ1, . . . , ĉk)← not r̂eli(ĉ1, . . . , ĉk),¬r̂eli(ĉ1, . . . , ĉk). i = 1, . . . ,n1

τ
r̂eli
III (ĉ1, . . . , ĉk)← r̂eli(ĉ1, . . . , ĉk),¬r̂eli(ĉ1, . . . , ĉk). i = 1, . . . ,n1

τ
̂rel1,...,reln1

I (ĉ1, . . . , ĉk)← τ
r̂el1
I (ĉ1, . . . , ĉk), . . . ,τ

r̂eln1
I (ĉ1, . . . , ĉk).

τ
̂rel1,...,reln1

III (ĉ1, . . . , ĉk)← τ
r̂eli
III (ĉ1, . . . , ĉk),

∧n2
j=1: j 6=inot τ

r̂el j
II (ĉ1, . . . , ĉk). i = 1, . . . ,n1

Example 5.7. The abstract program for Sudoku (35)-(37), where the occurrences of row(X), column(Y ) are
replaced by cell(X ,Y ), is as follows.

hasNum(X ,Y )←sol(X ,Y,N),cell(X ,Y ).

{sol(X ,Y,N)}←not occupied(X ,Y ),num(N),cell(X ,Y ).

{sol(X ,Y,N)}←occupied(X ,Y ),num(N), isCluster(X),cell(X ,Y ).

{sol(X ,Y,N)}←occupied(X ,Y ),num(N), isCluster(Y ),cell(X ,Y ).

⊥←not hasNum(X ,Y ),cell(X ,Y ).

⊥←sol(X1,Y1,M),sol(X2,Y2,M),τ=,<
I (X1,Y1,X2,Y2),cell(X ,Y1),cell(X2,Y2).

⊥←sol(X1,Y1,M),sol(X2,Y2,M),τ<,=
I (X1,Y1,X2,Y2),cell(X1,Y ),cell(X2,Y2).

5.2 Quad-tree Abstraction

Grid-cell environments are a particular type of environment which describes a structure. For problems over
grid-cells, it is often the case that certain parts of the environment are crucial to finding a solution. In order
to obtain an abstraction over a grid-cell that allows to adjust its granularity, multi-dimensionality must be
considered. Multi-dimensional abstraction allows us to express abstractions where one domain (e.g., an X
coordinate) is abstracted depending on its context, i.e., depending on a second domain it occurs with (e.g., a
Y coordinate).

For a systematic refinement of abstractions on grid-cell environments, we consider a generic quad-tree
representation (Figure 12), which is a concept used, e.g., in path planning (Kambhampati and Davis, 1986).
Initially, an environment may be abstracted to four regions of n/2×n/2 grid-cells each. This amounts to a
tree with four leaf nodes that correspond to the main regions. Each region then contains 4 leaves of smaller
regions. The leaves of the quad-tree are then the original cells of the grid-cell at level 0. A refinement of a
region amounts to dividing it into four subregions, i.e., sprouting the respective node to four children. Given
the original X and Y coordinates a1, . . . ,an and b1, . . . ,bn, respectively, we represent the coordinates of an
abstract region with level log2(k+1), for 0≤k<n, defined over the cells within the coordinates ai, . . . ,ai+k
and b j, . . . ,b j+k, respectively, by the shorthand notation (ai...i+k,b j... j+k).

Starting with an initial abstraction of level log2(n), using quad-tree split operations as abstraction
refinement operations, we can automatically search for suitable quad-tree-structured abstractions in grids
(see Section 6.2.2). Importantly, multi-dimensional abstraction refinement is structure aware: refining one of
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Figure 12: Quad-tree representation for regions

(4)

(1) (2)

(3)

a1 a2 a34 a5 a6 a78

b1

b2

b3

b4

b5678

b34

b12

b5678

a1234 a5678

Figure 13: Original domain

•

the squares of a quad-tree (e.g., area (3) in Figure 12) maintains the structure of the abstraction of all other
squares.

We illustrate next how such a structure can be used to adjust the granularity of the abstraction over the
grid-cell.

Example 5.8 (Reachability). Suppose one wants to check whether all cells are reachable from a given starting
point in a grid with obstacles. In case there are unreachable cells, this is due to obstacles separating them
from other cells. For a person, a glance over the area with the obstacles will be sufficient to realize that some
cells are unreachable. The rules below compute the obstacle-free cells (i.e., points) that are reachable from
the starting point; an additional constraint (51) checks whether all points are reachable.

point(X ,Y )←not obsAt(X ,Y ),row(X),column(Y ). (46)

reachable(X ,Y )←start(X ,Y ). (47)

reachable(X1,Y )←reachable(X ,Y ),point(X1,Y ),neighbor(X ,Y,X1,Y ). (48)

neighbor(X ,Y,X1,Y )←|X−X1|=1,column(Y ). (49)

neighbor(X ,Y,X ,Y1)←|Y −Y1|=1,row(X). (50)

⊥← point(X ,Y ),not reachable(X ,Y ),row(X),column(Y ). (51)

Figure 13 shows an instance of a grid-cell domain with obstacles; the program is unsatisfiable on it due to the
unreachable cells in the lower left area. Figure 14 shows two abstractions over the grid-cells, including the
abstracted start and obstacle positions the initial abstraction, dividing the grid-cell into 4 regions (Figure 14a),
and an abstraction that distinguishes the area which shows the obstacles causing unreachable cells in the
lower-left corner (Figure 14b).
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Figure 14: Abstractions over the grid-cell domain with obstacles in Figure 13

(a) Initial abstraction

•
start(a1234,b1234).

obsAt(a1234,b1234).

obsAt(a1234,b5678).

obsAt(a5678,b1234).

obsAt(a5678,b5678).

(b) Distinguishing the obstacles that cause unreacha-
bility

•

start(a12,b12).

obsAt(a1,b4). obsAt(a2,b4).

obsAt(a3,b5). obsAt(a4,b6).

obsAt(a3,b7). obsAt(a4,b8).

obsAt(a12,b12).

obsAt(a5678,a1234).

obsAt(a5678,a5678).

Algorithm 2: Domain-Abs&Ref
Input: program Π, domain mapping minit , mode (lifted or existential)
Output: Πm, a mapping m refining minit , and an abstract answer set Î of Πm resp. null if Πm is

unsatisfiable.
1 m = minit ;
2 [Πm,Tm] = constructAbsProg(Π,m,mode);
3 Πdebug = constructDebugProg(Π);
4 while AS(Πm∪Tm) 6= /0 do
5 Get I ∈ AS(Πm∪Tm);
6 C = getASWithMinAbAtoms(Πdebug∪Qm

Î
);

7 if C|ab = /0 then /* I concrete */
8 return Πm,m, I
9 m = decideRefinement(m,C|ab);

10 [Πm,Tm] = constructAbsProg(Π,m,mode);
11 return Πm,m, /0

6 Implementation and Evaluation

6.1 Overall Methodology

The abstraction and refinement method for domain abstraction is shown in Algorithm 2. In the initialization
phase, the abstract program is constructed for the mapping m depending on the mode of abstraction (lifted or
existential) on the built-ins (Line 2); the relation types are also computed in this step. After constructing the
debugging program (Line 3), some abstract answer set is computed (Lines 5), and its concreteness checked
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with a call to the function getASWithMinAbAtoms on the non-ground query Qm
Î

(Definition 4.3) for m and
I (Line 6), which returns an answer set of Πdebug∪Qm

Î
with minimal number of ab atoms. If the latter is

positive (i.e., I is spurious), m is refined given the ab atoms found in the check (Line 9) and the abstract
program and the relation types are recomputed before looping back to evaluation. Among possible variations
of the algorithm, the following are particularly noticable.

Abstraction over subdomains/sorts For abstraction over a particular subdomain resp. sort, Algorithm 2
can be extended with a predicate name s for the sort in the input and the computation of the abstract program,
the relation types and the debugging program focused on the domain elements related with s.

Correctness checking for relevant atoms The correctness checking of abstract answer sets can be confined
to the relevant atoms describing the solution by constructing Qm

Î
(Line 6) only for these atoms. An abstract

answer set will then pass as concrete as long as it describes a concrete solution with respect to them.

Diverse abstract answer sets The refinement decision may be made by looking at multiple abstracts
answer sets rather than a single one. Lines 5-8 are changed to collect the checking results C1, . . . ,Cn

for abstract answer sets I1, . . . , In; then decideRefinement can use the collected results C1|ab, . . . ,Cn|ab (all
assumed to be nonempty) for deciding on a refinement. For refinement approach (v1), the one with the least
cost (aggregated from the collection) is picked, while refinement approach (v2) decides by choosing the most
occurring refine atom.

6.2 Implementation

The methodology in Section 6.1 has been implemented in tools called DASPAR and mDASPAR based
on clingo 5.2.2, Python and the Ouroboros debugging tool (Oetsch et al., 2010), whose MetaTranslator is
exploited to obtain a reified program for which then the debugging program is constructed (cf. Section 4);
more details are provided in the next subsections. The implementations are online available at http://
www.kr.tuwien.ac.at/research/systems/abstraction/.

6.2.1 DASPAR

The program DASPAR supports abstraction from sorts, but the input program Π must adhere to certain
restrictions: each variable in a rule must be guarded by a domain predicate; if the abstraction should be on
some subset S of sorts, then the variables referring to the sorts in S must be standardized apart. For example,
a rule of form

a(X)←b(X ,X1),c(X2),d(X2),X ≤ X1.
needs to be converted into

a(X)←b(X ,X1),c(X2),d(X3),X ≤ X1,X2 = X3,dom(X),dom(X1),dom(X2),dom(X3).
with domain predicate dom. In order to support the case of having more than one relation, a syntactic change
on the rule has to be made. These relations need to be combined into an auxiliary relation atom which
represents the combination of the relations. The above rule needs to be converted into

a(X)←b(X ,X1),c(X2),d(X3), leqEqu4(X ,X1,X2,X3).
where leqEqu4(X ,X1,X2,X3) is an auxiliary atom which holds true whenever the respective relation holds
true for its arguments. A basic set of auxiliary relation combinations are built in to the tool, and more can
easily be added.
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DASPAR is invoked as follows.

python daspar.py prog mapping pred ref_type <focus_atoms>

Here prog contains the original program in the input format and the mapping the abstraction mapping
information. DASPAR supports abstraction on one sort (see Section 6.2.2 for multi-dimensional tool
mDASPAR), thus pred should be the name of the sort to the abstracted. The parameter ref_type allows
to specify whether the refinement should respect an order (1) or not (0). If 1 is given, the refinement step
considers only splitting the domain, while when 0 is given the refinement step is unrestricted. The parameter
<focus_atoms> is an optional input for projection in the correctness check (see Section 6.1).

DASPAR has different settings for picking abstract answer sets and for deciding on a refinement. For the
former, by default the first computed answer set is picked. This can be changed to considering a diverse set of
abstract answer sets. For deciding on a refinement, the two forms mentioned in Section 4 are implemented.
Later, we evaluate the effects of having these different settings in the methodology on the achieved resulting
abstractions.

For practical purposes, sorts can be overlapping, provided that all occurrences of a sort are guarded by
domain predicates. E.g., the blocksworld has sorts block and time which both can use integers. Note that
this restriction is to aid the machine knowing about the relations of the arguments, which the user implicitly
knows when encoding the problem. With this guidance, it becomes clear over which arguments in the rule
the abstraction should focus on.

6.2.2 mDASPAR

The program mDASPAR extends DASPAR to multi-dimensional domain abstraction. Currently, it handles
2-dimensional abstractions with a quad-tree style refinement process, and it can be applied to problems
described over grid-cells. We discuss some challenges of multi-dimensional abstractions that are tackled in
the system.

Abstract objects A multi-dimensional abstraction creates abstract objects; not all combinations of the
abstracted sorts, e.g., row and column, correspond to a valid object. To avoid such combinations, the
constructed abstract program should comply to only using the abstract objects in the rules. For this, mDASPAR
post-processes the abstract program and replaces the occurrence of the abstracted sorts with a new object
name.

Note that for “grouping” objects automatically and correctly, the system needs some guidance. For a
given encoding, humans are capable of detecting the cells implicitly, whereas machine can not do this readily.
The user must provide it with some guidelines to recognize the objects, by adjusting the encoding so that the
grids are explicitly shown. For this, we impose some syntactic restrictions on the input program, on which
the post-processing technique relies.

Given two sorts s1,s2 for a 2-dimensional abstraction, the input program should adhere to the following
restrictions in order to achieve a correct object naming:

(1) The rules should have atoms that contain pairs X ,Y of variables where X ∈s1,Y ∈s2, and

(2) the domain predicates for sorts s1,s2 should be written in the order of the pairs.

If these restrictions are satisfied, then mDASPAR can correctly convert the sort names to the abstract object
name cell. For example, row(X1),column(Y1) is changed to cell(X1,Y1).
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Figure 15: Input program with the rules (46)-(51)

point(X,Y) :- not obsAt(X,Y), row(X), column(Y).

reachable(X,Y) :- start(X,Y), row(X), column(Y).

reachable(X1,Y1) :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),
equEqu4(X,X2,X1,X3), equEqu4(Y,Y2,Y1,Y3),
row(X), column(Y), row(X1), column(Y1),
row(X2), column(Y2), row(X3), column(Y3).

:- point(X,Y), not reachable(X1,Y1), X=X1, Y=Y1,
row(X), column(Y), row(X1), column(Y1).

neighbor(X,Y,X1,Y1) :- dist1(X,X1), Y=Y1, row(X), column(Y), row(X1), column(Y1).

neighbor(X,Y,X1,Y1) :- X=X1, dist1(Y,Y1), row(X), column(Y), row(X1), column(Y1).

Example 6.1 (ctd). The rule (48) will be standardized apart into

reachable(X1,Y1)← reachable(X ,Y ),point(X1,Y1),neighbor(X2,Y2,X3,Y3),
X = X2,X1 = X3,Y = Y2,Y1 = Y3.

Then the multiple relations related with a sort to be converted into an auxiliary relation atom:

reachable(X1,Y1)← reachable(X ,Y ),point(X1,Y1),neighbor(X2,Y2,X3,Y3),
equEqu4(X ,X2,X1,X3),equEqu4(Y,Y2,Y1,Y3).

The domain predicates for the rule above also need to be written in a format where the pairs (X ,Y ), (X1,Y1),
(X2,Y2), and (X3,Y3) appear together. Figure 15 shows the resulting rules in the input program.

Relation type computation When abstracting a rule, mDASPAR gathers the relations in it related with the
abstracted sorts and creates an abstract relation atom following the description in Section 5. The relation type
facts (τ) are computed using auxiliary programs.

The program mDASPAR is invoked similarly to DASPAR, but with an additional parameter size which
is the number n = 2k,The next example shows the input format of mDASPAR and the created abstract
program.

Example 6.2 (ctd). Figure 15 shows the input program for mDASPAR with the rules (46)-(51) where
variables are standardized apart. The program constructed for abstracting over the sorts row,column is
shown in Figure 16, where the occurrence of the sorts are renamed with a new object cell. The rules of the
original program are numbered (r1, . . . ,r6) and the relation atoms in the abstract program are named w.r.t. the
rule number. For example, the constraint (51) is numbered r4, and the standardization creates the relations
X = X1 and Y = Y1; in the abstraction the joint relation type atom becomes τ

=,=
I (X ,Y,X1,Y1) for type I. The

abstracted constraint containing the Type III relation atom, i.e., τ
=,=
III (X ,Y,X1,Y1), in its body is not important

as gets omitted in the abstraction.
Furthermore, standardizing apart the variables of the negative literal in (51) relaxes its aim of ensuring

that all points are reachable to hold only when the abstraction is refined enough to satisfy the relation
atom relr4(X,Y,X1,Y1,i). Having (51) without standardization would ensure it is satisfied in coarser
abstractions. We standardized apart the variables of the negative literal as well to obtain more fine-grained
abstractions that distinguish the original cells to reach a concrete solution. This makes it easier to visualize
the resulting abstractions and understand solutions obtained.
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Figure 16: Non-ground abstract program constructed by mDASPAR

point(X,Y) :- cell(X,Y), not obsAt(X,Y).

{ point(X,Y) } :- cell(X,Y), obsAt(X,Y), isCluster(X).

{ point(X,Y) } :- cell(X,Y), obsAt(X,Y), isCluster(Y).

reachable(X,Y) :- start(X,Y), cell(X,Y).

reachable(X1,Y1) :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),
cell(X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1),
relr3(X,Y,X2,Y2,X1,Y1,X3,Y3,i).

{ reachable(X1,Y1) } :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),
cell(X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1),
relr3(X,Y,X2,Y2,X1,Y1,X3,Y3,iii).

:- point(X,Y),cell(X,Y),cell(X1,Y1),
not reachable(X1,Y1),relr4(X,Y,X1,Y1,i).

neighbor(X,Y,X1,Y1) :- dist1(X,X1), cell(X,Y), cell(X1,Y1), relr5(Y,Y1,i).

{ neighbor(X,Y,X1,Y1) } :- dist1(X,X1), cell(X,Y), cell(X1,Y1), relr5(Y,Y1,iii).

neighbor(X,Y,X1,Y1) :- dist1(Y,Y1), cell(X,Y), cell(X1,Y1), relr6(X,X1,i).

{ neighbor(X,Y,X1,Y1) } :- dist1(Y,Y1), cell(X,Y), cell(X1,Y1), relr6(X,X1,iii).

6.2.3 Implementation Aspects of mDASPAR

Two-phase debugging. The multi-dimensionality of the domain mapping gives rise to many possible
causes of spuriousness. Debugging the non-ground spuriousness by searching for the answer set with
smallest number of ab atoms can become more difficult. To handle this, we implemented a two-phase
debugging approach. In phase 1, the debugging program Πdebug is created by modifying the debugging atoms
ab_deact,ab_deactCons of Definition 4.5 to have only the rule name as arguments. We denote this program
by Πdebug0

. This then results in an easier computation of an answer set with minimal ab atoms. In phase 2 a
new program Πdebug is created according to the original definition, but the ab atoms are only created for the
rule names or atoms occurring in the ab atoms of I. This way, the search for an optimal answer set focuses on
the trouble-making rules/atoms.
Steer debugging towards constraints. In the problems we focus on, the constraints in the program cause
to have unsatisfiability or to obtain a particular solution for a given instance. In order to help with reaching
abstractions where the relevant constraints are distinguished, we assign less cost to obtaining answer sets
with ab_deactCons atoms. in the optimal answer set search during debugging.
Getting hints. Since the refinement of a region means to split it into four subregions, we only need to get
the hint of which region to refine. This is different from the hints obtained for DASPAR, as there a decision
for refinement relies on the domain elements occurring in the debugging atoms. We alter the refine atoms to
get the information of which abstract domain occurs as a reason for spuriousness.
Modular concreteness checking. In some cases, even the two-phase checking may not help with easily
finding the optimal answer set during the debugging step as the original domain is large or many atoms cause
to consider many possible concretizations We thus considered two orthogonal approaches:

(1) For programs that are modular and contain a clear order on the atoms (e.g. in a plan), the checking is done
incrementally over the approach, similar in spirit to (Gebser et al., 2008) which builds on the concept of
modules (Oikarinen and Janhunen, 2006).
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Figure 17: Step-wise partial concretization of a grid-cell abstraction

(2) Using a hierarchy of abstractions (as possible by Proposition 3.6), the checking is done via incrementally
concretizing the abstract domain, following an iterative deepening style (Figure 17).

The aim of Approach (1) is to avoid checking the whole ordered sequence of atoms (e.g., a plan), and
catching the spuriousness in some prefix. Approach (2) is applied to avoid making the concreteness check
directly at the original domain. If the abstract answer set is spurious, this may be detected in the partially
concretized domain. We then check correctness of I on the abstract level mi using Πmi . If I is concrete
w.r.t. the partially concretized abstraction, the concretization is increased for redoing the check. However, if
spuriousness is detected, the mapping is refined and the partial concretization continues from the updated
mapping.

Further details on the implementation can be found in Appendix B.4.

6.3 Evaluation: Obtaining Abstract Solutions

The main aim of our evaluation was to see whether the domain abstraction and refinement method from above
can find automatically non-trivial domain abstractions that yield concrete answer sets. We also wanted to
observe the effect of variants of picking abstract answer sets (Section 6.1) or making refinement decisions
(Section 4).

6.3.1 Experiments

We used DASPAR v0.2 for the experiments, which employs the sophisticated debugging program for
concreteness checking.3 The variations we considered are as follows.

• When computing abstract answer sets, we either (s) pick a single abstract answer set or (div) pick a
(diverse) set of answer sets w.r.t. the focus atoms.

• Deciding on a refinement is either done v1) by assigning costs to possible refinements and picking the
one with smallest cost or (v2) by using the hints obtained from the debugging atoms while checking.
For (v2), it is ensured that the distinct domain elements in the picked debugging atom do not occur in
the same cluster.

3Results for version v0.1 were reported in (Saribatur et al., 2019).
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We conducted experiments on two benchmark problems from ASP competitions, viz. graph coloring
and disjunctive scheduling. For graph coloring, we randomly generated 20 graphs on 10 nodes with edge
probability 0.1,0.2, . . . ,0.5 each; out of the 100 graphs, 74 were 3-colorable. We used two different graph
coloring encodings shown in Figure 18, to see their effect in the resulting abstractions. In the first encoding
GCenc1 (Figure 18a), a color assignment to each node is guessed as (52)-(54) with the common approach
of using default negation,the auxiliary atom hasEdgeTo(X ,C) shows which colors C the node X has as its
neighbors. The second encoding GCenc2 (Figure 18b) uses a choice rule (59) to guess an assignment and
then ensures with (60) that a node is not assigned more than one color. The rules (61)-(62) are an alternative
way of writing the rule ⊥← chosenColor(X1,C),chosenColor(X2,C), edge(X1,X2),X1 < X2. so that when
the variables are standardized apart for the sort node, fewer relation atoms occur in one rule. Also notice that
GCenc2 imposes an order relation among the nodes, to reduce duplications of the constraints.

For disjunctive scheduling, for each t∈{10,20,30}, we generated 20 instances with 5 tasks over time
{1, . . . , t}. We used the encoding4 from ASP Competition 2011 and precomputed the deterministic part (i.e.,
not involved in unstratified negation resp. guesses) of the program, so that they are lifted to the abstract
program without introducing (unnecessary) nondeterminism (see Appendix B.2). The initial abstraction
mapping is the single-cluster abstraction, i.e., clustering all nodes into one for graph coloring and all time
points into one for disjunctive scheduling.

In the experiments, we use the lifted relation approach. While in existential abstraction on the relations
(Section 5.1) there are fewer relation types to consider, we observed no improvement in the computation
effort, since type III for abstract relations is a combination of type III and IV of lifted relations. Thus, it does
not make a difference on which relation type approach is used in the experiments.

6.3.2 Results

We report the average results over 10 runs for each variation. To ease presentation, we discuss the results for
each benchmark separately by concentrating on the different observations made throughout the experimental
evaluation.

Graph coloring. The evaluation results of the obtained abstractions are presented in Table 3. The first two
rows show the average number of refinement steps and the average domain size (i.e., the number of clusters)
of the resulting abstractions. The best abstraction (i.e., with smallest domain size) found for each instance
in the runs is further checked for faithfulness, to observe whether the corresponding abstract program only
contains concrete answer sets. The domain size of the faithful abstractions is shown in the third row. The
frequencies of the abstractions that are trivial (thus faithful), non-trivial and faithful, and on-faithful are
shown in the last three rows.

The left column shows the results of full concreteness checking with different variations. We can observe
that deciding on a refinement based on single abstract answer set (s) results in finer abstractions (i.e., with
larger domain size) than on diverse set of abstract answer sets (div). The number of trivial abstractions
obtained is also smaller for (div) (better decisions are made) and the chance of encountering a concrete
abstract answer set is larger. The latter causes to obtain more non-faithful abstractions, as then no refinement
to an abstraction with less spurious answer sets is made. As for using (v2), i.e., to decide on refinements,
we can observe that this is not better for obtaining coarser abstractions than the minimal cost method (v1)
in general; it also yields more trivial abstractions than (v2), as splitting the domain repeatedly to break up
clusters of certain abstract elements quickly ends up with the original domain.

4www.mat.unical.it/aspcomp2011/files/DisjunctiveScheduling/disjunctive scheduling.enc.
asp
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Figure 18: Two encodings of the Graph Coloring problem: GCenc1 and GCenc2

chosenColor(X ,r)←not chosenColor(X ,g),not chosenColor(X ,y),node(X). (52)

chosenColor(X ,g)←not chosenColor(X ,r),not chosenColor(X ,y),node(X). (53)

chosenColor(X ,y)←not chosenColor(X ,g),not chosenColor(X ,r),node(X). (54)

hasEdgeTo(X ,C)←edge(X ,Y ),chosenColor(Y,C). (55)

⊥←hasEdgeTo(X ,C),chosenColor(X ,C). (56)

colored(X)←chosenColor(X ,C). (57)

⊥←node(X),not colored(X). (58)

(a) GCenc1

{chosenColor(X ,C)}←node(X),color(C). (59)

⊥←chosenColor(X ,C1),chosenColor(X ,C2),C1 6=C2. (60)

adj(X ,Y )←edge(X ,Y ),X < Y. (61)

⊥←adj(X ,Y ),chosenColor(X ,C),chosenColor(Y,C). (62)

colored(X)←chosenColor(X ,C). (63)

⊥←node(X),not colored(X). (64)

(b) GCenc2

Table 3: Experimental results for graph coloring

full projected
(s) (div) (s) (div)

(v1) (v2) (v1) (v2) (v1) (v2) (v1) (v2)

GCenc1

number of steps 7.38 7.83 7.04 7.69 5.24 6.48 4.83 6.14
abstraction domain size 8.38 8.84 8.04 8.69 6.24 7.48 5.83 7.14
faithful abstraction domain size 6.84 8.04 6.12 7.51 6.02 5.71 5.65 5.82
trivial abstractions (id) 13% 23% 4% 12% 2% 1% 2% 2%
faithful & non-id abstractions 30% 32% 29% 27% 56% 61% 50% 47%
non-faithful abstractions 57% 45% 67% 61% 42% 38% 48% 51%

GCenc2

number of steps 7.01 6.40 6.56 6.37 3.53 3.76 3.40 3.52
abstraction domain size 8.01 8.64 7.56 8.29 4.53 6.73 4.40 6.36
faithful abstraction domain size 8.88 8.62 7.97 8.66 4.86 5.44 4.75 5.72
trivial abstractions (id) 19% 13% 5% 13% 3% 2% 3% 2%
faithful & non-id abstractions 22% 24% 25% 22% 54% 59% 54% 48%
non-faithful abstractions 59% 63% 70% 65% 43% 39% 43% 50%
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Table 4: Experimental results for scheduling

(s) (div)
time (v1) (v2) (v2’) (v1) (v2) (v2’)

t = 10

number of steps 7.22 4.81 3.56 6.04 4.81 3.54
abstract domain size 8.22 8.48 8.46 7.04 8.38 8.35
calls abstract program 41.35 5.81 4.56 40.72 5.81 4.54
calls debugging program 40.90 5.36 4.11 56.30 6.87 5.44

t = 20

number of steps 14.71 7.65 5.47 12.00 7.53 5.33
abstract domain size 15.71 14.16 14.12 13.00 14.16 13.81
calls abstract program 168.48 8.65 6.47 157.41 8.53 6.33
calls debugging program 168.28 8.45 6.27 244.45 12.08 8.74

t = 30

number of steps 22.82 9.57 7.76 20.57 9.56 7.68
abstract domain size 23.82 19.02 19.12 21.57 19.07 18.68
calls abstract program 391.88 10.57 8.76 366.09 10.56 8.68
calls debugging program 391.43 10.12 8.31 580.23 14.59 12.24

The right column shows the results for a projected notion of concreteness that limits checking to a set
of relevant atoms; for this, we picked the nodes 1,2,3 and their assigned colors. As expected, a concrete
abstract answer set is encountered in much coarser abstractions, as the colors assigned to the other nodes do
not matter. In case of projection, the trivial abstraction is reached much less often; moreover, more non-trivial
faithful abstractions are reached. This is beneficial, as the computed abstractions can be used to obtain all
(concrete) solutions over the nodes focused on.

The main difference of the various encodings is the size of the achieved abstract domains. GCenc2 requires
fewer refinement steps to achieve an abstraction with a concrete solution than GCenc1, as the need to preserve
the node ordering leaves fewer refinement possibilities. On average, the resulting abstractions are coarser
than by GCenc1 while the domain size of the faithful abstractions are larger. This may be due to the choice
rule in GCenc2, causing spurious answer sets that must treated by further refinement steps.

Disjunctive scheduling. We compared the effects of the variations for the resulting abstractions and the
calls to the ASP solver to obtain an abstract answer set respectively to check concreteness with debugging;
Table 4 shows the collected results. For the refinement search, we considered besides (v1) and (v2) the variant
(v2’) of (v2) where each abstract element in the obtained debugging atom is mapped to a singleton cluster in
the refinement.

As expected, the minimal cost method (v1) causes much more calls to the ASP solver, as the cost for each
possible refinement must be computed. While it achieves coarser abstractions in half of the cases, the large
number of calls is a clear disadvantage. For example, for the case t = 20, (v1) achieves with (div) on average
an abstract domain of 13.00 clusters with 400 calls to the ASP solver, while (v2’) achieves an average of
13.81 clusters with only around 15 calls.

For the instances with t = 20, refinement through hints (v2) achieves coarser abstractions than (v1) when
single abstract answer sets are picked. Here hints guide the refinement much better than the cost from a single
abstract answer set. For the cost from a diverse set of abstract answer sets, significantly coarser abstractions
are achieved. Looking at t = 30, we can observe that the cost approach (v1) results in much finer abstractions
than the hint based approaches (v2) and (v2′), which provide better guidance. This shows that a local search
over the 1-step refinements does not always yield the best outcome, and it is moreover also more expensive.

We can also observe that (v2′) mostly achieves much coarser abstractions than (v2); immediately singling
out the domain elements connected with the spuriousness helps. It also needs the smallest number of
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refinement steps compared to other approaches, as it reaches a concrete solution much faster with the
refinement decisions.

The results show that with larger domains, the effect of the abstraction can be seen much better; e.g., the
best abstract domain size reached for for t=10 on average is 70.4% (= 7.04/10) of the original domain size,
while for t=30 it shrinks to 62% (= 18.68/30).

Summary. The results show that with domain abstraction it is possible to achieve concrete solutions while
abstracting over some of the details of the program. Reaching faithful abstractions is desired; however it
does not occur often, unless a projected concreteness check is considered that only distinguishes the details
relevant for a solution of the problem. Obtaining hints from a set of abstract spurious answer sets instead
from a single such answer set results in better decisions, and thus coarser abstractions. direction.

6.4 Evaluation: Unsolvable Problem Instances in Grid-Cells

We investigated obtaining explanations of unsatisfiable grid-cell problems by achieving an abstraction over
the instance to focus on the troubling area. We considered the following benchmark problems:

• Reachability (R): This problem needs the neighboring cell information and can be encoded without
introducing guesses. We check whether every cell is reachable; unsatisfiability is due to the layout of
the obstacles.

• Knight’s Tour (KT): This problem is on finding a tour on which a knight visits each square of a board
once and returns to the starting point. It is commonly used in ASP Competitions, with possible addition
of forbidden cells. Unsolvability is due to forbidden cells that prevent the knight from moving. In ASP
competitions, this problem is encoded by guessing a set of move(X1,Y1,X2,Y2) atoms and ensuring that
each cell has only one incoming and one outgoing movement.5 There is no time sort (as in planning)
which would describe an order.

• Visitall: We extended the planning problem of visiting every cell (without revisiting a cell) with
obstacles. This problem needs the neighboring cell information and can be encoded in two forms;

(V) as a planning problem, in order to find a sequence of actions that visits every cell, or

(VKT) as a combinatorial problem similar to the Knight’s Tour encoding.

To allow for shorter plans, we encoded (V) using go(X ,Y,T ) actions that can move horizon-
tally/vertically to a cell X ,Y (without passing through obstacles) and the passed cells become visited;
we set a limit of 30 time steps.

• Sudoku (S): This problem has also been used in ASP competitions.6 Its encoding consists of a guess of
numbers in the cells combined with simple constraints such as one symbol per column, one symbol per
subregion etc. The unsolvability occurs due to violation of these constraints.

We generated 10 unsatisfiable instances complying to the following properties so that the unsolvability
can be explained by focusing on a trouble making area:7

5www.mat.unical.it/aspcomp2013/KnightTour
6dtai.cs.kuleuven.be/events/ASP-competition/Benchmarks/Sudoku.shtml
7All benchmark instances and encodings as well as user explanations for Visitall and Reachability are available at www.kr.

tuwien.ac.at/research/systems/abstraction/mdaspar material.zip
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Figure 19: Measure for quality of a quadtree abstraction

(a) cm = 4∗2+3∗1
64∗2+16∗1 = 0.076 (b) cm = 20∗2+3∗1

64∗2+16∗1 = 0.299

• In Reachability instances, a group of neighboring cells is unreachable due to the obstacles surrounding
them.

• For Knight’s Tour instances, one or two cells are picked to have only one valid movement to an
obstacle-free cell. This way, these cells and the obstacles that do not allow the valid movements
become a reason for unsolvability.

• The Visitall instances consist of either two dead-end cells or areas with only one cell passage, so that
one is forced to pass some cells more than once, which is not allowed.

• For Sudoku, we generated a layout of numbers that force to violate the constraints when solving the
problem.

Measuring abstraction quality We consider a quality measure of the quad-tree abstraction by normalizing
the number of abstract regions of certain size and their level in the quadtree. The cost of a mapping m over an
n×n grid is

c(m) = ∑
`
i=0 r2i(m)(`− i)

/
∑
`
i=0 n22−i2(`− i),

where `= log2(n)−1 is the level, r2i(m) is the number of abstract regions of size 2i×2i in m, and n22−i2 is
the number of abstract regions of size 2i×2i in the n×n-sized cell. The factor `−i is a weight that gives
higher cost to abstractions with more low-level regions. An abstraction mapping with the smaller cost, i.e.,
intuitively smaller level of detail, is considered to be of better quality.

Figure 19 shows measures of two abstraction mappings. The abstraction in Figure 19a is coarser than
the one in Figure 19b, and this is reflected in the computed measures. Assigning more weight to having
coarser regions would stress the importance of having a coarse abstraction even more. The computation of
the measure is purely structural and domain-independent. Other measures can be defined that are dependent
on the domain which considers further aspects, e.g., such that an abstraction that singles out smallest number
of cells with obstacles is preferred.

6.4.1 Effects of Different Debugging Approaches

We compared different debugging approaches from Section 6.2.3 to observe their effects on the resulting
abstractions and the taken refinement steps. Due to their encodings and constraints, the Knight’s Tour and
Visitall problems are the challenging ones. To observe whether an incremental checking could help in
deciding on a refinement and achieve better abstractions, we applied for KT and VKT partial concretization
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Table 5: Evaluation results of applying different debugging approaches

debugging average minimum best
type steps cost steps cost steps cost

R
default 5.4 0.227 5.4 0.227

5.0 0.208
2-phase 5.5 0.233 5.3 0.222

S
default 6.5 0.696 5.1 0.550

3.2 0.371
2-phase 4.3 0.476 3.4 0.391

KT
2-phase 14.3 0.643 10.4 0.460

5.6 0.245
grid-inc 10.1 0.442 6.3 0.277

V
2-phase8 16.2 0.708 13.9 0.608

8.7 0.360
time-inc 16.3 0.712 13.5 0.569

VKT
2-phase 15.7 0.693 13.0 0.572

7.6 0.317
grid-inc 13.0 0.569 10.3 0.449

and for V incremental time checking. To evaluate how far a resulting abstraction from the best possible
abstraction showings unsolvability, we also checked whether a coarser abstraction with this property exists.

Table 5 shows the main evaluation results. We compare different debugging approaches in terms of
the average refinement steps and average costs of the resulting abstractions over 10 runs, and also on the
best outcome obtained (with minimum refinement steps and minimum mapping cost). The two right-most
columns concern the existence of a coarser abstraction for best outcome obtained. The time to find an optimal
solution in the debugging step was limited by 50 seconds. If exceeded, the refinement is decided on the basis
of suboptimal analyses by considering the optimal debugging solution that could be computed within the
time limit.

For Reachability and Sudoku, we observe that abstractions close to the best possible ones can be obtained.
Better abstractions were obtained with 2-phase debugging in these cases (the majority with a clear margin for
S), as after the first step the focus was on the right part of the abstraction. For Knight’s Tour and Visitall, we
observe that incremental checking can obtain better abstractions. This is because for 2-phase debugging, the
programs mostly had due to timeouts to decide on suboptimal concreteness checking outputs. Moreover, for
the V encoding 2-phase debugging caused memory outages (limit 500 MB) on some runs for some instances,
thus not all 10 runs could be completed.

We can also see a difference of the resulting abstractions for the two encodings of Visitall. The planning
encoding causes to achieve unsatisfiability with less coarse abstractions. Guesses of spurious sequences of
actions in the abstraction cause the debugging to decide on refinements that avoid these sequences. The focus
moves towards the unsolvability when the abstract action sequence is not executable due to an obstacle. In
some instances where the reason for unsolvability is not easily caught by having two dead-ends, focusing
on the existence of obstacles does not achieve unsatisfiability: the abstract encoding manages to find a plan
passing through different sized regions by avoiding the constraints due to uncertainty. For these instances, the
abstraction needs to be fine-grained enough to get rid of most of the uncertainty.

Figure 20a shows such an example of such an instance. An abstraction that distinguishes the one-passage-
entries and the obstacles that surround the cells cannot achieve unsatisfiability for encoding V. Figure 20b
shows some spurious action transitions that are determined in a plan found with the V encoding among

8A total of 16 runs could not be completed due to memory errors. The results are computed among the runs that have been
completed.
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Figure 20: Spurious plans in abstractions that distinguish the single-cell passages

•

(a) inst. #10 (b) V - spurious action transitions (c) VKT - separate action sequences that
visit the cells reachable with single-cell
passages

regions by avoiding the constraints due to uncertainty. Unsatisfiability cannot be achieved for VKT as well.
This is due to guess of move atoms which achieve that every cell is visited, but lack a corresponding original
order of movements. Figure 20c shows the spurious order of movements that is split to visit each cell that
is only reachable through a one-passage-entry. If the abstraction is refined to distinguish the cells in the
respective corners, then unsatisfiability is realized.

6.4.2 User Study on Unsatisfiability Explanations

We were interested in checking whether the obtained abstractions match the intuition behind a human
explanation. For Reachability and Visitall, finding the reason for unsolvability of an instance is possible by
looking at the obstacle layout. Thus, we conducted a user study for these problems in order to obtain the
regions that humans focus on to realize the unsolvability of the problem instance.

As participants, we had ten PhD students of Computer Science at TU Wien. We asked them to mark
the area which shows the reason for having unreachable cells in the Reachability instances and the reason
for not finding a solution that visits all the cells in the Visitall instances; multiple reasons are to mark with
different colors. Explanations for 10 instances of each problem were collected.7 We discuss the results for
both problems by showing two of the responses (expected and unexpected) and the best abstraction obtained
from mDASPAR when starting with the initial mapping.

Reachability. The expected explanations (e.g., Figures 21a and 21d) focus on the obstacles that surround
the unreachable cells, as they prevent them from being reachable. When their respective abstraction mappings
are given to mDASPAR, the constructed abstract program is also unsatisfiable. The explanation in Fig. 21b
puts the focus on the unreachable cells themselves, and Fig. 21e distinguishes a particular obstacle as a reason.
When the respective abstraction mappings are given to mDASPAR, it needs to refine further to distinguish
more obstacles and achieve unsatisfiability. The mark in Figure 21e is a possible solution to the unreachability
of the cells, since removing the marked obstacle makes all the cells reachable.

In ASP, checking whether all cells are reachable is straightforward, without introducing guesses. This is
also observed to be helpful for mDASPAR, as most of the resulting abstractions were similar to the gathered
answers. Since in the initial abstraction, the abstract program only knows that the agent is located in the
upper-left abstract region, in instance #10, mDASPAR follows a different path in refining the abstraction, and
reaches the abstraction shown in Figure 21f. Although different from the one by them, by the users, it also
shows a reason for having unreachable cells. Humans use the implicit knowledge that the agent is located
in the upper-left corner in order to determine the reason for unreachability of the cells, and thus focus on a
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Figure 21: Explanatory abstractions for unsatisfiable Reachability instances

(a) inst. #6 : expected (b) inst. #6 : unexpected

•

(c) inst. #6 - DASPAR

(d) inst. #10: expected (e) inst. #10: unexpected

•

(f) inst. #10 - DASPAR

different area than mDASPAR. Such an abstraction can also be achieved with the method, by influencing the
refinement decisions towards singling out the initial location of the agent.

The abstractions achieved by mDASPAR are more general as the precise initial location of the agent
is immaterial to distinguish the unreachable cells: it can be in any of the cells mapped to the respective
abstract region. The precise obstacle layout in the abstracted regions also plays no role in determining the
unreachability of the distinguished cells.

Visitall. Most of the users picked two dead-end cells in the instances (if such occur) as an explanation for
unsatisfiability, instead of the obstacles surrounding these cells (see Fig. 22a), which are the actual cause for
them being dead-end cells. Even with abstraction mappings that also distinguish the surrounding obstacles of
these dead-end cells, the corresponding abstract program still remains satisfiable. Then mDASPAR needs
to further refinement to distinguish the neighboring cells (as in Fig. 22c) and to realize that it can only pass
through one grid-cell when reaching the dead-end cells, and thus achieve unsatisfiability. Unexpectedly, some
users marked only one of the dead-end cells as an explanation (Fig. 22b) , which is actually focusing on a
possible solution to the unsolvability, since if the marked area was not a dead-end, all cells could have been
visited.

Some instances do not contain two dead-end cells, but single-cell passages to some regions. Fig. 22d
shows an entry that distinguishes these passages, while again focusing only on the cells themselves. For
these instances, the results of mDASPAR are quite different. We discussed this already for Figure 20 in
Section 6.4.1. Figure 22f shows the best abstraction achieved for VKT. It distinguishes all cells in the
one-passage-entry regions to realize that a desired action sequence can not be found.

The generality of the achieved abstractions is also here observable: the precise agent position and obstacle
layout in the abstracted areas do not change the unsatisfiability result as not all cells in the distinguished parts
can be visited.
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Figure 22: Explanatory abstractions for unsatisfiable Visitall instances

(a) inst. #1: expected (b) inst. #1: unexpected

•

(c) inst. #1 - DASPAR

(d) inst. #10: expected (e) inst. #10: unexpected

•

(f) inst. #10 - DASPAR

Observations The abstraction method can demonstrate the capability of human-like focus on certain
parts of the grid to show the unsolvability reason. However, humans implicitly also use their background
knowledge and do not need to explicitly state the relations among the objects. Empowering machines with
such capabilities remains a challenge. The study also showed a difference in understanding the meaning
of “explanation”. For some study participants, showing how to get rid of unsolvability was also seen as an
explanation. This discrepancy shows that one needs to clearly specify what is wanted (e.g., “mark only the
obstacles that cause to have unreachable cells”), to achieve less variety of results.

7 Discussion

7.1 Predicate Abstraction

Predicate abstraction in ASP would introduce literals involving new predicates that describe an abstraction of
original literals, and rewriting the program to mention only the new literals. Naively replacing literals with
the abstract ones would not always achieve an over-approximation.

Example 7.1 (Example 3.1 ctd). Consider a predicate abstraction that maps the atoms a(X) and d(X) to
ad(X), i.e., if a(d) or d(d) holds true for some d ∈ D, then ad(d) holds true. When we replace the a- and
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d-atoms in Example 3.1, we obtain the following program:

c(X)← not ad(X),X < 5, int(X).

ad(X)← not c(X), int(X).

b(X ,Y )← ad(X),ad(Y ), int(X), int(Y ).

e(X)← c(X),ad(Y ),X ≤ Y, int(X), int(Y ).

⊥← b(X ,Y ),e(X), int(X), int(Y ).

ad(1). ad(3). int(0), . . . , int(5).

However, each answer set of this program contains b(5,1),b(5,3) and it matches no original answer set.

A simple way to achieve predicate abstraction is via domain abstraction after reification of predicates of
the original program. For example, p(X ,Y ) is written to x(p,X ,Y ) and a sort of predicate names (viewed
as constants) is introduced. By standardizing apart the variables, predicate names can be clustered via the
built-in relations.

Example 7.2 (ctd). Rewriting the atoms a(X) and d(X) to x(a,X) and x(d,X), respectively. yields the
program

c(X)← not x(d,X),X < 5, int(X).

x(d,X)← not c(X), int(X).

b(X ,Y )← x(P1,X),x(P2,Y ),P1 = a,P2 = d,pred(P1),pred(P2), int(X), int(Y ).

e(X)← c(X),x(P,Y ),P = a,pred(P),X ≤ Y, int(X), int(Y ).

⊥← b(X ,Y ),e(X), int(X), int(Y ).

x(a,1). x(a,3). int(0), . . . , int(5).

pred(a). pred(d).

Then an abstraction m over the sort pred such as {a,d}/ad can be applied.

This approach works for predicate abstraction where the corresponding literals have arguments from the
same sort in the same argument position. In case a literal has fewer arguments, dummy values can be used to
fill in the remaining argument positions.

Another way to achieve predicate abstraction is by following the motivation behind existential abstraction
of the relations. The idea is to introduce a new set of predicates along with their relation types according
to the abstraction; then the abstract rules will be formed for all combinations of the abstraction types in the
bodies, where choice is added to the head unless all are type I.

Example 7.3 (ctd). Similar to Example 7.1, the abstract predicate name ad is introduced with the relation
type τad

III and the additional fact isClusterad . Note that the arguments of the literal are not important, as the
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abstraction is over the predicate name and not over domain elements. The abstract program is then as follows:

c(X)← not ad(X),X < 5, int(X).

{c(X)}← ad(X), isClusterad ,X < 5, int(X).

ad(X)← not c(X), int(X).

{b(X ,Y )}← ad(X),ad(Y ),τad
III , int(X), int(Y ).

{e(X)}← c(X),ad(Y ),τad
III ,X ≤ Y, int(X), int(Y ).

⊥← b(X ,Y ),e(X), int(X), int(Y ).

ad(1). ad(3). int(0), . . . , int(5).

We remark that this approach is similar to using the rewriting of the original program with reification of
predicates, and applying existential abstraction on the relations.

7.2 Use Case: Abstraction in ASP Planning

Domain abstraction gives us the possibility to adjust the granularity of a problem towards the relevant details.
By achieving abstract answer sets that are concrete and thus catch all the relevant details, it also allows for
problem solving over abstract notions, which can be useful in a wide range of applications. We discuss here
the possible use of domain abstraction in ASP planning, in particular, in understanding planning problems
expressed in ASP by abstracting over the unnecessary details. Another use case about policy refutation is
described in Appendix C.

Planning problems in ASP are represented by using a time sort to describe the sequence of states and
the changes according to actions taken (Lifschitz, 1999). There are usually two types of objects, represented
with different sort types:

• objects on which the actions have a direct effect, e.g., the blocks in the blocksworld which can be
moved, and

• other objects unaffected by the actions but involved in the decision making, e.g., the table in the
blocksworld onto which blocks can be moved.

We discuss how to use domain abstraction over these objects such that we can talk about abstract states and
plans.

Describing Actions in ASP First, we emphasize on the blocksworld example the different ways of express-
ing planning problems in ASP. The effects of moving a block on top of another block are expressible by the
following rules:

onB(B,B1,T +1)←moveToBlock(B,B1,T ). (65)

¬onB(B,B2,T )←onB(B,B1,T ),B1 6= B2. (66)

where (65) models the direct and (66) the indirect effect. Alternatively, all effects are expressed as direct
effects by

onB(B,B1,T +1)←moveToBlock(B,B1,T ). (67)

¬onB(B,B2,T )←moveToBlock(B,B1,T ),B1 6= B2. (68)
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Figure 23: Initial state of a blocksworld with multiple tables (concrete m→ abstract).

b1 ....
 t1

b3

 t2

b2
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b1 b3

 tˆ2

b2m

 tˆ1

The preconditions of an action can either be described through constraints, or as a condition for an action to
become applicable. For example, that a block cannot sit on a block with a smaller name can be expressed as a
constraint

⊥←onB(B,B1,T ),B1 ≤ B.

Alternatively, the respective action can be forbidden if the condition is not satisfied using the following rules:

⊥←moveToBlock(B,B1,T ),not precondmtb(B,B1,T ).

precondmtb(B,B1,T )←B < B1,block(B),block(B1).

Note that the alternative version is much closer to the PDDL-style encoding. The law of inertia is described
by the rule

onB(B,B1,T+1)←onB(B,B1,T ),not ¬onB(B,B1,T +1).

7.2.1 Abstracting over Irrelevant Details

We first show the possibility of abstraction over the details of the objects that are indirectly affected by the
actions. For demonstration, we consider two extensions of well-known planning domains.

• Multi-table blocksworld (MTB): here blocks can be moved onto one of multiple tables (where each
table can hold multiple blocks); a plan is needed that piles the blocks up on a given specific table.

• Package delivery with checkpoints (PDC): packages must be carried from an initial to a goal location,
while passing through a checkpoint reachable from the initial location.

Multi-table blocksworld. Figure 23 illustrates an instance of MTB where the blocks must be piled up on
table t1 such that b1 is above b2 and b2 is above b3. Here reaching the goal state does not depend on the
concrete tables to which blocks are moved before moving them to the goal table. However, when computing
a plan based on the original program, the planner has to consider all possible movements.

Figure 24 shows a (natural) encoding of the problem with the actions moveToT(B,Ta, T ) and
moveToB(B,B′, T ) for moving block B onto table Ta and onto block B′, resp., at time T . Consider
the initial state shown in Figure 23:

onT(b1, t1),onB(b2,b3),onT(b3, t2),chosenTable(t1).

After ensuring that all variables are guarded by domain predicates and those related with the table sort are
standardized apart, we run DASPAR with the initial mapping {{t1, . . . , tn}/t̂}. The abstraction obtained is
shown in Figure 23; it singles out the chosen table t̂1 and clusters all others into t̂2. We then can compute a
concrete abstract answer set

{moveToT(b2, t̂2,0),moveToT(b3, t̂1,1),moveToB(b2,b3,2),moveToB(b1,b2,3)}.
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Figure 24: Encoding for Multi-table Blocksworld

% action choice
{moveToB(B,B1,T ) : bl(B),bl(B1);moveToT(B,L,T ) : bl(B), tbl(L)} ≤ 1←T < tmax.

% no gaps between moves
done(T )←moveToB(B,B1,T ).
done(T )←moveToT(B,L,T ).
⊥←done(T+1),not done(T ).
% preconditions
⊥←moveToB(B,B2,T ),onB(B1,B,T ).
⊥←moveToB(B1,B2,T ),onB(B1,B2,T ).
⊥←moveToT(B,L,T ),onB(B1,B,T ).
⊥←moveToT(B,L,T ),onT(B,L,T ).
% effects
onB(B,B1,T+1)←moveToB(B,B1,T ),T<tmax.
onT(B,L,T+1)←moveToT(B,L,T ),T<tmax.
¬onB(B,B2,T )←onB(B,B1,T ),B1 6=B2.
¬onT(B,L,T )←onB(B,B1,T ).
¬onB(B,B1,T )←onT(B,L,T ).
¬onT(B,L1,T )←onT(B,L2,T ),L1 6=L2.

% inertia
onB(B,B1,T+1)←onB(B,B1,T ),

not ¬onB(B,B1,T+1),T<tmax.
onT(B,L,T+1)←onT(B,L,T ),

not ¬onT(B,L,T+1),T<tmax.
% state constraints
⊥←onB(B1,B,T ),onB(B2,B,T ),B1 6=B2.
⊥←onB(B,B1,T ),onB(B,B2,T ),B1 6=B2.
⊥←onB(B,B1,T ),onT(B,L,T ).
⊥←onB(B,B1,T ),B1 ≤ B.
% goal constraints
notblockgoal(T )←onT(B,L,T ),onT(B1,L1,T ),B6=B1.
⊥←notblockgoal(T ),maxTime(T ).
⊥←not notblockgoal(T ),onT(B,L,T ),not chosenTable(L).

Figure 25: Initial state of a package delivery with checkpoints (concrete m→ abstract).
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that describes a plan without going into detail on which table the blocks are moved. The abstraction shows
that for solving the problem, it is essential to distinguish the picked table from all others; the number of tables
is irrelevant. Furthermore, this abstraction is faithful for projection to the actions moveToB,moveToT .

Package delivery with checkpoints. Figure 25 illustrates an instance of PDC where the packages in
location l1 must be carried to location l10. As these locations are not directed connected, the truck has to pass
through a middle point; through which point the truck passes is immaterial for reaching the goal state.

For this problem, we used the Nomystery encoding from ASPCOMP2015 and altered it to have no fuel
computation. Furthermore, for a drive(T,L1,L2,S) action to be possible we added an additional condition
that the locations L1 and L2 should be connected by an edge, edge(L1,L2). Consider the initial state
shown in Figure 25: {atT (t, l1,0), atP(p1, l1,0), atP(p2, l1,0), atP(p3, l1,0), atP(p4, l1,0), goal(p1, l10),
goal(p2, l10), goal(p3, l10), goal(p4, l10)} with the depicted edge facts. Running DASPAR with the mapping
{{l1, . . . , l10}/l̂} over the sort location results in the abstraction mapping {{l1}/l̂1,{l2, . . . , l9}/l̂2, l10/l̂3}
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Figure 26: Encoding for Package Delivery

% action choice
{unload(P,T,L,S) : package(P), truck(T ), loc(L);

load(P,T,L,S) : package(P), truck(T ), loc(L);
drive(T,L1,L2,S) : edge(L1,L2), loc(L1), loc(L2), truck(T )} ≤ 1← step(S),S > 0.

% no gaps between moves
done(S)← unload(P,T,L,S).
done(S)← load(P,T,L,S).
done(S)← drive(T,L1,L2,S).
⊥←done(S+1),not done(S).
% effects
atP(P,L,S)← unload(P,T,L,S).
¬in(P,T,S)← unload(P,T,L,S).
¬atP(P,L,S)← load(P,T,L,S).
in(P,T,S)← load(P,T,L,S).
¬atT (T,L1,S)← drive(T,L1,L2,S).
atT (T,L2,S)← drive(T,L1,L2,S).

% precondition check
⊥← unload(P,T,L,S),not precondu(P,T,L,S).
precondu(P,T,L,S)← atT (T,L,S−1),

in(P,T,S−1).
⊥← load(P,T,L,S),not precondl(P,T,L,S).
precondl(P,T,L,S)← atT (T,L,S−1),

atP(P,L,S−1).
⊥← drive(T,L1,L2,S),not precondd(T,L1,L2,S).
precondd(T,L1,L2,S)← atT (T,L1,S−1).
% inertia
atT (T,L,S)← atT (T,L,S−1),not ¬atT (T,L,S).
atP(P,L,S)← atP(P,L,S−1),not ¬atP(P,L,S).
in(P,T,S)← in(P,T,S−1),not ¬in(P,T,S).
% goal check
⊥← goal(P,L),not atP(P,L,S),maxstep(S).

(shown in Figure 25). With this abstraction, the following concrete abstract answer set is computed:

{load(p4, t, l̂1,1), load(p3, t, l̂1,2), load(p1, t, l̂1,3), load(p2, t, l̂1,4),

drive(t, l̂2, l̂1,5),drive(t, l̂1, l̂3,6),

unload(p3, t, l̂3,7),unload(p1, t, l̂3,8),unload(p4, t, l̂3,9),unload(p2, t, l̂3,10)}.

It describes a plan that loads all the packages, moves to the middle cluster location, moves to the goal
location, and unloads the packages; the resulting abstraction is faithful for the projection to the actions
load,unload,drive.

Domain abstraction simplified details that are unimportant for the essence of whether the plan is feasible.
The faithful abstraction gives an understanding of the problem by realizing its neuralgic points. If however
there are further constraints over details needed to construct a plan, then faithfulness might not be achievable
in a non-trivial abstraction.

7.2.2 Computing Abstract Plans

Abstracting over the objects directly affected by the actions would empower us to talk about abstract plans.
However, in ASP-style encodings, abstracting over the object sort only causes the abstract program to compute
plans with the original time sort. For example, say in the Package Delivery problem (with no checkpoints and
two locations l1, l2) we cluster the packages into one abstract package, p̂0. Then, the abstract program will
have the abstract actions load(p̂0, t, l,s),unload(p̂0, t, l,s) which then lead to a plan

load(p̂0, t, l1,1),drive(t, l1, l2,2),unload(p̂0, t, l2,3).

However, this plan is clearly spurious as it is no original action can match load(p̂0, t, l1,1), which loads all
packages in one step; thus many spurious answer sets will results. In order to avoid this, also abstraction over
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Figure 27: Abstract and concrete plan of Example 7.4
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the time sort is necessary. By doing this, we can talk about abstract instances of actions and abstract from the
concrete order of their application. Given that the sorts (i.e., blocks, time respectively packages,time) are
independent, multiple calls of DASPAR to abstract over each sort one-by-one achieves the desired abstract
program.

For the Package Delivery problem, consider two abstraction mappings mpackage = {{p1, p2, p3, p4}/ p̂}
and mtime = {{1,2,3,4}/t̂1,{5}/t̂2,{6,7,8,9}/t̂3}. The constructed abstract program yields the abstract plan

load(p̂, t, l0, t̂1),drive(t, l1, l2, t̂2),unload(p̂, t, l2, t̂3)

which abstracts over the order of package (un)loading and includes abstract actions over time clusters.
Unfortunately, finding a suitable abstraction over multiple sorts, especially if one is over the time domain,

is non-trivial. The abstraction over time via time clusters steers the plan computation and the action ordering.
For example, for the time mapping {{1}/t̂1,{2,3,}/t̂2,{4,5,6,7,8,9}/t̂3} the abstract plan from above is
spurious. A policy may help in deciding the next sequence of actions, which we demonstrate in the next
example.

Example 7.4 (Blocksworld with a Policy). Consider the blocksworld problem in Figure 27 modify the
encoding in Figure 24 by dropping the table argument from onT and by standardizing apart with respect to
sorts block and time. Suppose the rules realize a 2-phase policy that first puts all blocks on the table and then
piles them up:

existsOnBlock(T )← onB(B,B1,T ).
allOnTable(T )← not existsOnBlock(T ), time(T ).
atPhase2(T1)← allOnTable(T ),T < T1.

1{moveToT(B,T ) : onB(B,B1,T )}← T < tmax,not atPhase2(T ),not allOnTable(T ).

1{moveToB(B,B1,T ) : onT(B,T ),block(B1)}← T < tmax,allOnTable(T ).

1{moveToB(B,B1,T ) : onT(B,T ),onB(B1,B2,T )}← T < tmax,atPhase2(T ).

Given the initial state {onT(b4,1),onT(b3,1),onB(b2,b3,1), onB(b1,b2,1)} and time domain {1, . . . ,6}, we
abstract using the block mapping {{b1, . . . ,b4}/b̂} and the time mapping {{1,2}/t̂, {3, . . . ,6}/t̂ ′}. The
abstract program has eight answer sets, among them

{moveToT(b̂, t̂),onT(b̂, t̂),onB(b̂, b̂, t̂),onT(b̂, t̂ ′),onB(b̂, b̂, t̂ ′),moveToB(b̂, b̂, t̂ ′)},
which contains two abstract actions, viz. moveToT(b̂, t̂) and moveToB(b̂, t̂ ′).

7.3 Related Work

In the context of logic programming, abstraction has been considered many years back in the classic work of
Cousot and Cousot (Cousot and Cousot, 1992). However, the focus of their studies was on the use of abstract
interpretations and termination analysis of programs, and moreover stable semantics was not addressed.

65



The work most related to abstraction in ASP are the simplification methods that strive for preserving
the semantics. Such methods have been extensively studied over the years; we give here an overview
of some notions. Notice that, different from these simplification methods, abstraction may lead to an
over-approximation of the models (answer sets) of a program, which changes the semantics, in a modified
language.

Over-approximation by abstraction reduces the vocabulary which makes it different from relaxation
methods (Lin and Zhao, 2004; Giunchiglia et al., 2004). These methods translate a ground program into
its completion (Clark, 1978) and search for an answer set over the relaxed model. As they focus only on
ground programs, they can be compared with the abstraction that omits atoms from the program, which does
not need account for loop formulas when searching for a concrete abstract answer set. However, finding
the reason for spuriousness of an abstract answer set is trickier than finding the reason whey a model of the
program completion is not an answer set of the original program, since the abstract answer set contains fewer
atoms and a search over the original program is needed to detect the reason why no matching answer set can
be found.

7.3.1 Equivalence-based Rewriting and Program Transformations in ASP

Equivalence of logic programs is considered under answer set semantics as follows: a program Π1 is
equivalent to a program Π2, if AS(Π1) = AS(Π2). Strong equivalence (Lifschitz et al., 2001) is a much
stricter condition: Π1 and Π2 are strongly equivalent if, for any set R of rules, Π1 ∪R and Π2 ∪R are
equivalent. This notion makes it possible to replace a part Q of a logic program by a strongly equivalent
(simpler) program Q′, without looking at the rest; (Osorio et al., 2002; Turner, 2003; Eiter et al., 2004; Pearce,
2004) show ways of transforming programs by ensuring that the property holds. A more liberal notion is
uniform equivalence (Maher, 1986; Sagiv, 1987) where R is restricted to a set of facts; that is Q and Q′ are
equivalent with respect to all factual inputs (Eiter and Fink, 2003).

In terms of abstraction, there is the abstraction mapping that needs to be taken into account, since the
constructed program may contain a modified language and the mapping may relate it back to the original
language. Thus, to define equivalence between the original program Π and its abstraction Π̂m according to
a mapping m, we need to compare m(AS(Π)) with AS(Πm). The equivalence of Π and Π̂m then becomes
similar to the notion of faithfulness. However, as we have shown, even if the abstract program Π̂m is faithful,
refining m may lead to an abstract program having spurious answer sets. Thus, simply lifting the current
notions of equivalence to abstraction may not achieve useful results.

Refinement-safe faithfulness, however, would allow one to use of Π̂m instead of Π, as it preserves the
answer sets. This property is achieved when abstract program is unsatisfiable (which then implies that
the original program was unsatisfiable). However, for original programs that are consistent, reaching an
abstraction that is refinement-safe faithful is not easy; dividing the domain cluster may immediately cause a
guess that introduces spurious solutions.

Other transformation methods, especially to help with grounding and solving of ASP programs, were
investigated. A preprocessing technique was considered in (Gebser et al., 2008) along with an assignment
and a relation expressing equivalences among the parts of the program that could be assigned. Another form
of preprocessing in (Morak and Woltran, 2012; Bichler et al., 2016) was applied to each rule of a program by
computing a tree decomposition and then splitting the rule into multiple, smaller rules accordingly.
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7.3.2 Abstraction in Planning and Agent Verification

Starting from the early years of AI planning, applications of abstraction to help with the search and planning
for complex domains have received a lot of attention. One main research focus has been on hierarchical
planning, which considers different abstraction levels over the problem space. A plan is searched at the
abstract level and then the solution is refined successively to more detailed levels in the abstraction hierarchy,
until a concrete plan is computed at the original level. Sacerdoti (Sacerdoti, 1974) showed an abstraction
notion that keeps the “critical” preconditions of actions and ignores the rest. For example, Knoblock
(Knoblock, 1994) proposed an ordered monotonicity property to ensure that solving the subproblems by
refining certain parts of the plan does not change the remainder of the abstract plan. A similar property was
considered by Bacchus and Yang (Bacchus and Yang, 1994), which states that if the original problem is
solvable, then any abstract solution must have a refinement. Anderson and Farley (Anderson and Farley,
1988) constructed operator hierarchies by having classes of operators that share common effects and forming
new abstract operators with the shared preconditions.

Another research focus has been on using abstractions to compute heuristics, which are estimates of the
distances to the solution that guide the plan search. Pattern databases (Culberson and Schaeffer, 1998) are
constructed from the results of projecting the state space to a set of variables of the planning task, called a
pattern, which is to be solved optimally. The omission abstraction in (Saribatur and Eiter, 2018) matches
the intuition behind this projection notion. Edelkamp (Edelkamp, 2001) was the first to apply this technique
in planning. He showed that a pre-compiled look-up table with the costs of abstract solutions can help
the heuristic search in finding optimal solutions. The merge & shrink abstraction method of Helmert et al.
(Helmert et al., 2007) starts with a suite of single projections and then computes an abstraction by merging
them and shrinking. A CEGAR-inspired method was proposed by Seipp and Helmert (Seipp and Helmert,
2013) based on cartesian abstractions, which form a general class of abstractions. The reason for the abstract
plan being spurious is detected when trying to construct a concrete plan, and the abstraction is refined by
splitting the states. Obtaining such a cartesian abstraction is also possible with domain abstraction introduced
in Section 3; we further empower abstraction with a multi-dimensional handle in Section 5 that has the
capability of representing a hierarchy of abstraction levels.

Although not investigated in detail, notions related to domain abstraction were also considered in heuristic-
search planning. Hernádvölgyi and Holte (Hernádvölgyi and Holte, 1999) presented a domain abstraction
notion over the states which are represented as fixed length vectors of labels; they also noted the possibility
of encountering spurious states with some abstractions. Hoffman et al. (Hoffmann et al., 2006) considered
variable domain abstraction by modifying the add and delete lists of the operators accordingly. They argued
that obtaining efficient results from abstraction in planning mostly relies on the how much irrelevance is in
the problem; this is an observation we similarly made in our experiments. To further investigate the structure
of problems that can obtain good results, especially in the context of ASP, is an interesting research direction.

The notion of irrelevant information and its effects were analyzed for planning by Nebel et al. (Nebel et al.,
1997), in which different heuristics were introduced to omit such information. Fox and Long (Fox and Long,
1999) described a method for detecting symmetries in a problem which are then treated as indistinguishable
to help the planner.

Abstraction was studied for situation calculus action theories by Banihashemi et al. (Banihashemi et al.,
2017), who imposed a bisimulation restriction on the abstraction in order to ensure that reasoning about the
actions of an agent at the abstract level can be mapped to concrete reasoning. They later showed how this
restricted notion of abstraction can be used in reasoning about a strategy for an agent to achieve a goal at
the high level and then mapping it back into a low-level strategy (Banihashemi et al., 2018). However, their
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focus was not on how such an abstraction can be found.
For verifying the behavior of multi-agent systems, the use of abstraction has been investigated by

Lomuscio et al. for abstracting over each agent to construct an abstract system while preserving the properties
expressed in a temporal-epistemic logic (Cohen et al., 2009) or alternating-time temporal logic (Lomuscio
and Michaliszyn, 2014). In (Cohen et al., 2009) the focus is not on how such an abstraction can be built. In
(Lomuscio and Michaliszyn, 2014), an abstraction over the states is made that have the same possible actions
to execute and action abstraction keeps the actions of certain agents while omitting the rest.

They considered a three-valued logic and the abstraction also preserves the behavior of not satisfying a
property. Spuriousness may occur for the case of achieving an “uncertain” result for checking a specification
in the abstract level, which then forces one to refine the abstraction by splitting the states by investigating
the subformulas of the specification. They later extended this work to infinite state models (Lomuscio and
Michaliszyn, 2016) and abstracted them to finite models using predicate abstraction, and they presented an
interpolant-based refinement method (Belardinelli et al., 2016).

In the context of ASP and action languages, Dix et al. (Dix et al., 2003) proposed a way of formulating
and solving hierarchical planning under the ASP semantics, with a focus on ordered task decomposition,
which is planning each step in the order it will later be executed. For a particular application of mobile robot
planning, Zhang et al. (Zhang et al., 2015) performed hierarchical planning using the action language BC .

7.3.3 Generalized Planning

Finding a plan that can achieve the goal for a class of problem instances can give an understanding of the
details relevant for these problems. The plan can then be used for any particular problem instance without the
need for further search. Note that, as discussed in Section 7.2, the plans that are computed with our domain
abstraction method can also be seen as generalized plans as they work for any original problem instance that
maps to the abstract instance.

Srivastava et al. (Srivastava et al., 2011) proposed an abstraction method for constructing generalized
plans with loops, by focusing on classical planning; however, selecting a good abstraction was beyond their
scope. Bonet and Geffner (Bonet and Geffner, 2015) considered a setting where uncertainty is represented
by a set of states, by clustering the states that provide the same observations. indistinguishability notion we
proposed in (Saribatur and Eiter, 2016). They studied the conditions for a policy (i.e., plan) to be general
enough to work on other instances. Later they considered also trajectory constraints (Bonet et al., 2017).

Illanes and McIlraith (Illanes and McIlraith, 2016) studied abstraction for numeric planning problems
by compiling them into classical planning. Recently, they used abstraction for problems with quantifiable
objects (Illanes and McIlraith, 2019), e.g., a number of packages to deliver to points A and B, to find by
abstracting from the quantification generalized plans that work for multiple instances. For this, they built a
quantified planning problem by clustering indistinguishable objects using reformulation techniques (Riddle
et al., 2016) to reduce symmetry, and then compute a general policy. While the quantifiability conditions of
(Illanes and McIlraith, 2019) restrict applicability, our method has the potential drawback spurious answers.

8 Conclusion

Abstraction is an important aspect of Artificial Intelligence aiming at the omission of detail and fine-grained
structure in problem solving, to reduce the cognitive and/or the computational complexity in order to better
understand respectively effectively find solutions. In this spirit, we have introduced the notion of domain
abstraction to Answer Set Programming, where the size of the domain of an ASP program shrinks while the
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collection of its answer sets is over-approximated, i.e., every original answer set can be mapped to some
abstract answer set. We have shown how this can be applied to single or multiple sorts of the domain, and
how multi-dimensionality can be handled that enables a hierarchical view of abstraction, with quad-tree
abstractions as a showcase for multi-granular abstraction over grids.

More specifically, we have introduced two structure-preserving approaches that apply abstraction to the
rules. The first approach keeps built-in relations in rules, which then must be lifted to the abstract domain,
while the second approach, existential abstraction, loses their original format at the benefit of the ability to
handle different levels of abstractions among the abstract elements, as needed in hierarchical abstraction.

As over-approximation may result in spurious abstract answer sets that do not correspond to original
answer sets, we have presented a method for refining abstractions which uses ASP-debugging techniques
to obtain hints for refinements and a CEGAR-style methodology of iterated abstraction refinement (Clarke
et al., 2003). The approach has been implemented in tools DASPAR and mDASPAR (for multi-dimensional
domain mappings), which given an ASP program and an initial abstraction, automatically refine it until for
the induced abstract program either a concrete answer set is encountered or unsatisfiability is detected (which
proves that the original program is unsatisfiable).

Our experiments showed the potential of the approach for understanding the core parts of an ASP program.
In case of satisfiability, abstract answer sets focus on relevant details, as in case of planning problems such
as Blocksworld and Package Delivery; a justification technique in ASP (cf. (Pontelli et al., 2009; Cabalar
et al., 2014)) can be used to understand why a particular abstract answer set is computed, and moreover, if the
abstraction is faithful, to identify details which are irrelevant for finding a solution. In case of unsatisfiability,
the automatic abstraction refinement was able to catch the unsatisfiability without refining back to the original
program. Furthermore, in grid-cell problems, a multi-dimensional view of abstraction enables zooming in to
the area of the grid-cell which shows the reason for unsolvability; compared to the results of a small user
study, explanations of decent quality were achieved, which suggests to continue this line of research.

8.1 Outlook

This article has provided seminal concepts and notions for domain abstraction in ASP, an assessment of
semantic and computational properties, and results for a prototypical evaluation. The work on domain
abstraction can be continued and extended in several directions.

One direction is to obtain more general notions of abstraction, and to apply abstraction to larger classes
of ASP programs. As for the former, we remark that domain abstraction can be combined with omission
abstraction (Saribatur and Eiter, 2018) to obtain an abstraction that omits certain details and also abstracts
over some part of the domain. This can be achieved with the current definitions, by first applying the desired
domain abstraction to the program and then grounding the constructed non-ground abstract program to
omit some of the atoms from it. The refinement decisions then need to take into account two causes for
spuriousness; bad clustering of domain elements or bad omission of atoms. As regards larger classes of ASP
programs, further language constructs like disjunction in rule heads, aggregates, or weak constraints as in the
ASP Core-2 standard (Calimeri et al., 2019) are natural targets. Furthermore, extensions with nested rules,
external atoms, or constraint solving are interesting other target languages.

Another research direction concerns abstraction refinement. Different methods can be explored to help
with the decision making in the refinement step. On the one hand, further heuristics for deciding about a
refinement from a collection of abstract answer sets may be considered, where the range for local search may
be increased and in addition domain-specific knowledge is exploited. On the other hand, by using justification
methods such as (Pontelli et al., 2009; Cabalar et al., 2014) we can obtain an explanation of how an abstract
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answer set is built and check it on the original program. In case of failure, a reason for the spuriousness of
the abstract justification may be distilled and exploited for abstraction refinement.

Related to this is the issue of abstraction assessment, where the question of what is a “good” abstraction
needs to be further studied. Different criteria can be relevant in this respect, from technical ones like the
degree of spuriousness (measured e.g. by the number of spurious answer sets) or the level of abstraction
(measured e.g. by the granularity of clustering), to the cognitive appeal from a human user perspective in
terms of understandability of the abstraction and the abstract program. Addressing the latter appears to be
challenging and harder than developing measures for technical criteria, given that humans have implicit
background knowledge about the domain.

A further research direction is advanced implementations beyond tuning the current prototypes. An
apparent bottleneck is concreteness checking, which can be costly due to the need for grounding the original
program in this process. Here one could explore the use of lazy-grounding, e.g. (Palù et al., 2009; Cat et al.,
2015; Lefèvre et al., 2017; Weinzierl, 2017) and non-ground ASP solving, e.g. (Marple et al., 2017; Arias
et al., 2018), or develop native techniques for concreteness checking. Further improvements may be using
justification methods to explain abstract answer sets (as mentioned above), which as a further benefit mitigates
the grounding issue and can yield substantial gains, or to embed the debugging program into the evaluation of
the abstract program, such that hints can be obtained during the embedded checking; however, to achieve that
this works efficiently is non-trivial.

Last but not least, the use of domain abstraction remains to be explored for applications. Different
possibilities can be envisaged, with ASP program development as an obvious candidate. Different from
common debugging techniques, domain abstraction aims to not just show the rules themselves that effect a
certain behavior, but can moreover be used to identify the gist of the domain that is responsible for the latter
and thus aids in gaining more insight into a program at hand. Another possible use of domain abstraction
is as a solving technique to address scalability. While the state-of-the-art ASP solvers are quite efficient in
solving problems, they may struggle with problems that create huge search spaces or require optimization.
For such problems, abstraction could be useful. However, achieving a good abstraction that could help
with solving is non-trivial, and advances in performance and in particular of concreteness checking would
necessary for a fruitful deployment. Finally, we believe that domain abstraction has potential for building
systems that explain matters to a human end user, and thus can be a useful tool for realizing explainable AI.
Our experiments with grid cell puzzles have nurtured this view, since the reasons for unsolvability obtained
in an automated way by our tools are a good match with human intuition. However, this is just an initial step,
and significant research efforts will have to be invested to make this view become reality.
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A Proofs

Proof of Thm 3.1. Let Î and Π̂ denote m(I) and Πm, respectively. Towards a contradiction, assume that there
exists some I ∈ AS(Π) s.t. Î∪Tm /∈ AS(Π̂). This can occur either because (i) Î∪Tm is not a model of Π̂Î∪Tm

or (ii) Î∪Tm is not a minimal model of Π̂Î∪Tm .
(i) Suppose Î∪Tm is not a model of Π̂Î∪Tm . Then there exists some rule r̂ ∈ Π̂Î∪Tm where Î∪Tm |= B(r̂)

and Î∪Tm2H(r̂). By construction of Π, r̂ is only obtained by step (a), otherwise r̂ would be a choice rule
with head H(r̂) = {m(l)}, and r̂ would be satisfied. Consequently r̂ is a rule from step (a) for r in Π.

Since Î∪Tm |= m(B(r)),rel(d̂1, d̂2),τ
rel
I (d̂1, d̂2), we have Î∪Tm |= m(B(r)). If we have p(ê1, . . . , ên) ∈

m(B+(r)), some ei ∈ êi exists such that p(e1, . . . ,en) ∈ I as all variables are standardized apart, I |= B+(r) for
this choice. As for p(ê1, . . . , ên) ∈ m(B−(r)), then p(e1, . . . ,en) /∈ I for all ei ∈ êi. So we can instantiate the
abstract body m(B(r)) to some original body B(r) where I |= B(r). Also having Î |= rel(d̂1, d̂2),τ

rel
I (d̂1, d̂2)

means I |= rel(d1,d2) for all di ∈ d̂i, thus we have I |= B(r),rel(d1,d2). So r : l←B(r),rel(d1,d2) is in ΠI .
As I is a model, it follows that I |= l, which then means Î |= m(l); this is a contradiction.

(ii) Suppose there exists some Ĵ ⊂ Î such that Ĵ∪Tm is a model of Π̂Î∪Tm . We claim that J = m−1(Ĵ)∩ I
is a model of ΠI; as J ⊂ I holds, this would contradict that I ∈ AS(Π). Assume J2ΠI . Then J does not
satisfy some rule r : l← B(r),rel(d1,d2) in ΠI , i.e., J |= B(r),rel(d1,d2) but J2 l. As J ⊂ I and I is a model
of ΠI , we have I |= l, thus, l ∈ I \ J.

Now, we look at the cases for applying the mapping m to r, by considering the abstractions m(B(r)) and
rel(d̂1, d̂2), and show that a contradiction is always achieved.

First, assume that Î |= m(B(r)). There are the following cases for m(J): (1-1) m(J) |= m(B(r)), or (1-2)
m(J)2m(B(r)).

(1-1) As m(J) |= m(B(r)), we look at rel(d̂1, d̂2). We know that J |= rel(d1,d2).

• If rel(d̂1, d̂2) has the relation type τrel
I (d̂1, d̂2), this means that we have m(J) |= rel(d̂1, d̂2),

and thus m(J)∪Tm |= rel(d̂1, d̂2),τ
rel
I (d̂1, d̂2). As Ĵ = m(J) and Ĵ ⊂ Î, we also get Î ∪Tm |=

rel(d̂1, d̂2),τ
rel
I (d̂1, d̂2), thus the non-ground rule created by step (a) has an instantiation m(l)←
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m(B(r)), rel(d̂1, d̂2), τrel
I (d̂1, d̂2) in Π̂Î∪Tm . As Ĵ and Î are models of Π̂Î∪Tm , we have Ĵ |= m(l)

and Î |= m(l). Thus, l ∈ m−1(Ĵ) and l ∈ I; by definition of J, we get l ∈ J thus J |= l, which is a
contradiction.

• If rel(d̂1, d̂2) has the relation type τrel
III (d̂1, d̂2), this again means that we have m(J) |=

rel(d̂1, d̂2), and thus m(J)∪Tm |= rel(d̂1, d̂2),τ
rel
III (d̂1, d̂2) and Î ∪Tm |= rel(d̂1, d̂2),τ

rel
III (d̂1, d̂2).

Thus, as m(l) ∈ Î the non-ground choice rule created by step (b) amounts to m(l) ←
m(B(r)),rel(t̂1, t̂2),τrel

III (t̂1, t̂2) in Π̂Î∪Tm , which again achieves Ĵ |= m(l), thus J |= l, a con-
tradiction.

• If rel(d̂1, d̂2) has the relation type τrel
IV (d̂1, d̂2), then we have m(J)2rel(d̂1, d̂2), i.e., m(J) |=

rel(d̂1, d̂2), and thus m(J)∪Tm |= rel(d̂1, d̂2),τ
rel
IV (d̂1, d̂2). With similar reasoning as above, we

find an instantiation of the non-ground rule created by step (c) and achieve J |= l, a contradiction.

(1-2) We show that there is no possibility to have Ĵ2m(B(r)), for Ĵ = m(J), while Î |= m(B(r)). In order to
have Ĵ2m(B(r)), some positive literal l̂i ∈m(B+(r)) must occur in Î \ Ĵ so that Ĵ2m(B+(r)). However,
this contradicts with J |= B+(r).

Now, assume that Î2m(B(r)). As I |= B(r), we know that Î |= m(B+(r)) holds. So we have the rule r
in the form l←B+(r),not li,rel(d1,d2) (according to restriction (i) on having at most one negative literal)
where li 6= l and Î2m(B(r)) means Î |= m(li) for li ∈ B−(r) while I2 li, i.e., li /∈ I. So we get Î |= m(Bsh

li (r)).
Then there are the following cases for m(J): (2-1) m(J) |= m(Bsh

li (r)), or (2-2) m(J)2m(Bsh
li (r)).

(2-1) As we have m(J) |= m(Bsh
li (r)), we look at rel(d̂1, d̂2). We know that J |= rel(d1,d2).

• For cases τrel
I (d̂1, d̂2) and τrel

III (d̂1, d̂2), as we have J |= rel(d1,d2), we get Ĵ |= rel(d̂1, d̂2) and
Î |= rel(d̂1, d̂2). Notice that since m(li) ∈ Î, there must be some l′i ∈ I such that m(li) = m(l′i),
thus li is mapped to a non-singleton cluster m(li). So the atom isCluster( ĵ) holds true in Ĵ
and Î for some j ∈ arg(li) for which |m−1(m( j))| > 1. Thus in Π̂Î∪Tm we get an instantiation
m(l)←m(Bsh

li (r)), rel(d̂1, d̂2), isCluster( ĵ) of the non-ground rule created by (step d-i), and again
achieve J |= l, which is a contradiction.

• For the case τrel
IV (d̂1, d̂2), with similar reasoning as in (1-1), we find instantiations of the non-

ground rules created by (step d-ii) and achieve J |= l, which is a contradiction.

(2-2) We show that there is no possibility to have m(J)2m(Bsh
li (r)), while Î |= m(Bsh

li (r)). As J |= B(r), we
know that m(J) |= m(B+(r)) holds. So m(J)2m(Bsh

li (r)) means m(J)2m(li) while Î |= m(li). Now, we
take a look at ΠI . As there must be some l′i ∈ I (such that m(li) = m(l′i)), this means that there is some
rule r′ : l′i←B(r′),rel(d′1,d

′
2) in ΠI . We then take a look at the abstraction of r′. By doing the same case

analysis of (1-1), (1-2) and (2-1), we achieve m(J) |= m(l′i), i.e., m(J) |= m(li), which yields a contradic-
tion. As for (2-2), this means the rule r′ is of form r′ : l′i←B+(r′),not li2 ,rel(d′1,d

′
2), where we want to

claim m(J)2m(li2). For this, we take a look at another rule r′′ in ΠI of form r′′ : l′i2←B(r′′),rel(d′′1 ,d
′′
2 )

with m(l′i2) = m(li2). By restriction (iii) on no negative cyclic dependency among the literals, this
recursive process eventually ends, say, after n steps, at some rule r′n : l′in←B(r′n),rel(d′n1 ,d

′n
2 ) where

case (2-2) is not applicable, and m(J) |= l′in is achieved. Then by tracing the rules back to r we get
m(J) |= m(li). Thus m(J)2m(Bsh

li (r)) is not possible.
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Proof of Thm 3.2. Similar to proof of Theorem 3.1, we assume towards a contradiction that there exists
some I ∈ AS(Π) such that Î∪Tm /∈ AS(Π̂). This can occur either because (i) Î∪Tm is not a model of Π̂Î∪Tm

or (ii) Î∪Tm is not a minimal model.
(i) Let Î∪Tm be not a model of Π̂Î∪Tm , then there exists some rule r̂ ∈ Π̂Î∪Tm where Î∪Tm |= B(r̂)∧ Î∪

Tm2H(r̂). For cases (G-i) and (G-iii), the contradiction is achieved similar to the proof of Theorem 3.1, since
r̂ is a rule from step (a). As for case (G-ii), we will have Î∪Tm |= m(B(r)),rel′(d̂),τrel

I (d̂), where d̂ is a short-
hand for d̂1,1, d̂2,1, . . . , d̂1,k, d̂2,k; then by definition of rel′ this means I |=B(r),rel1(d1,1,d2,1), . . . ,relk(d1,k,d2,k)
of r in ΠI . This reaches a contradiction as I is a model and I |= l, which means Î |= m(l).

(ii) Now let there be Ĵ ⊂ Î such that Ĵ ∪Tm is a model of Π̂Î∪Tm . We claim that J = m−1(Ĵ)∩ I ⊂
I is a model of ΠI; which would contradict that I ∈ AS(Π). Assume J2ΠI . J does not satisfy some
rule r : l ← B(r),rel(d1,d2) in ΠI , i.e., J |= B(r),rel1(d1,1,d2,1), . . . ,relk(d1,k,d2,k) but J2 l, i.e., l /∈ J. As
J ⊂ I and I is a model of ΠI , we have I |= l, i.e., l ∈ I \ J. We consider the abstractions m(B(r)) and
rel1(d̂1,1, d̂2,1), . . . ,relk(d̂1,k, d̂2,k).

First, assume Î |= m(B(r)). There are the following cases for m(J): (1-1) m(J) |= m(B(r)), or
m(J)2m(B(r)).

(1-1) As m(J) |=m(B(r)), we look at rel1(d̂1,1, d̂2,1), . . . ,relk(d̂1,k, d̂2,k). We know that J |= rel1(d1,1,d2,1), . . . ,
relk(d1,k,d2,k).

(1-1-a) If all reli(d̂1,i, d̂2,i) have the relation type τ
reli
I (d̂1,i, d̂2,i), this means that we have m(J) |=

rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k), and thus

m(J)∪Tm |= rel′(d̂),τrel′
I (d̂). (69)

As Ĵ = m(J) and Ĵ ⊂ Î, we also get Î∪Tm |= rel′(d̂),τrel′
I (d̂), thus the non-ground rule created

by step (a) has an instantiation m(l)← m(B(r)),rel′(d̂),τrel′
I (d̂) in Π̂Î∪Tm . As Ĵ and Î are models

of Π̂Î∪Tm , we have Ĵ |= m(l) and Î |= m(l). Thus, by definition of J, we get J |= l, which is a
contradiction.

(1-1-b) If at least one reli(d̂1,i, d̂2,i) has the relation type τ
reli
III (d̂1,i, d̂2,i), while no rel(d̂1, j, d̂2, j) has the

relation type τrel
IV (d̂1, j, d̂2, j), above (69) is achieved for τrel′

III (d̂) in place of τrel′
I (d̂).

(1-1-c) If at least one reli(d̂1,i, d̂2,i) has the relation type τ
reli
IV (d̂1,i, d̂2,i), this means that we have

m(J) |= . . . ,rel(d̂1,i, d̂2,i), . . .. Thus, for rel′(d̂) we have m(J)2rel′(d̂) but m(J) |= rel′(d̂), and

m(J)∪Tm |= rel′(d̂),τrel′
IV (d̂). (70)

By the same reasoning in (1-1-a), we get that the non-ground choice rule created by step (c)
amounts to m(l)←m(B(r)),rel′(d̂),τrel′

IV (d̂) in Π̂Î∪Tm , and thus we reach a contradiction.

(1-2) This case is handled the same as in proof (1-2) of Theorem 3.1.

Now, we focus on the case I2m(B(r)). As I |= B(r), we know that Î |= m(B+(r)) should hold. Then
Î2m(B(r)) means that for a non-empty set L⊆ B−(r) of negative literals Î |= li for each li ∈ L, while I2 li,
i.e., li /∈ I. So we get Î |= m(Bsh

L (r)). Assume we further have a set Lc of literals involved in a negative loop.
We also get Î |= m(Bsh

L,Lc
(r)) (26), since the set L′ = L∩Lc of literals gets omitted from B−(r), and we get

Î |= not B−(r)\L′.
Then there are the following cases for m(J): (2-1) m(J) |= m(Bsh

L,Lc
(r)), or (2-2) m(J)2m(Bsh

L,Lc
(r)).
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(2-1) As m(J) |= m(Bsh
L,Lc

(r)), similar to proof (1-1) above and (2-1) of Theorem 3.1, the abstraction
rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k) on relations is considered, and the contradiction J |= l is achieved.

(2-1-a) By (1-1-a) and (1-1-b), we get the case (69) and same for τrel′
III (d̂). We know that as m(J) |=m(li)

and as li /∈ J (since J ⊆ I and li /∈ I, this means that isCluster( ĵ) holds true in m(J) and Î for some
j ∈ arg(li). Thus we have m(J)∪Tm |= rel′(d̂), isCluster( ĵ), which means that m(l) ∈ Î, thus
l ∈ I and by definition of J, l ∈ J, which is a contradiction.

(2-1-b) By (1-1-c), we get the case (70) and by a similar reasoning as in (2-1-a) we also have
m(J) |= isCluster( ĵ), hence m(J)∪Tm |= rel′(d̂),τrel′

IV (d̂), isCluster( ĵ). Thus we similarly achieve
a contradiction.

(2-2) We show that there is no possibility to have m(J)2m(Bsh
L,Lc

(r)), while Î |= m(Bsh
L,Lc

(r)). As J |= B(r),
we know that m(J) |= m(B+(r)) should hold. So m(J)2m(Bsh

L,Lc
(r)) means m(J)2m(li) for some

li ∈ L\Lc, while Î |= m(li). We do the same recursive reasoning as in proof (2-2) of Theorem 3.1 over
the literals not in Lc. Thus, the process eventually ends and achieves that m(J) |= m(li) actually holds,
and that m(J)2m(Bsh

L,Lc
(r)) is not possible.

Proof of Lemma 3.9. By definition, we need to check (1) that I is a model of (Πm)I and (2) that I is minimal,
no J ⊂ I is a model of (Πm)I .

As for (1), we can refute the property by guessing a rule r ∈ Πm and a variable substitution θ and
verifying that I does not satisfy (rθ)I , where rθ denotes the ground instance of r obtained by applying θ to
its variables; note that in this case (rθ)I ∈ (Πm)I holds.

Each rule r ∈ Πm has polynomial size in the input. Checking whether r ∈ Πm holds is feasible in
polynomial time, as computing the set of atoms that occur in negative cycles is feasible in polynomial time as
well. Furthermore, checking whether r′ = rθ is in (Πm)I is feasible in polynomial time. Overall, refuting (1)
is in NP.

As for (2), I is minimal if each atom a ∈ I has a proof, given by a sequence r1,r2, . . .rk of applications
of rules from ri ∈ (Πm)I where each positive body literal of ri occurs in some head of r j, j < i. Note
that w.l.o.g. I = {a1, . . . ,ak} and ai has as proof r1, . . . ,ri, i = 1, . . . ,k. As the proof can be guessed and
nondeterministically verified in polynomial time, it follows that (2) is in NP. Hence it follows that the
problem is in ∆

p
2 (more precisely, in the class DP).

Proof of Thm 3.10. To show that Î is a concrete abstract answer set of Πm, we can guess an interpretation J
of Π and check that (a) m(J) = Î, (b) m(J) ∈ AS(Πm), and (c) J ∈ AS(Π). Testing (a) is clearly polynomial in
the size of J, and by Lemma 3.9, (b) and (c) are feasible in ∆

p
2 in the size of J and Π (and thus in exponential

time in the size of Î and Π); consequently, deciding whether Î is a concrete abstract answer set of Πm is in
NEXP. For bounded predicate arities, the guess for J has polynomial size in the input, and we can check the
conditions (b) and (c) by Lemma 3.9 with an NP oracle in polynomial time; this establishes Σ

p
2 membership.

The matching lower bounds are shown by a reduction from deciding whether a given non-ground program
Π has some answer set, which is NEXP-complete in the general case and Σ

p
2 -complete for bounded predicate

arities (Dantsin et al., 2001; Eiter et al., 2007).
Without loss of generality, Π involves a single predicate p (which can be achieved by reification and

padding arguments) and contains some fact p(~d). The mapping we define is m = {{d1, . . . ,dn}/d̂} where
d1, . . . ,dn form the Herbrand domain. Then Î = {p(d̂, . . . , d̂)} is a concrete abstract answer set of Πm iff Π
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has some answer set. Note that actually Î ∈ AS(Πm) holds; thus the overall complexity does not change if
this property is asserted. This proves the result.

Proof of Thm 3.12. For the membership, one can guess an interpretation Î of Πm such that Î is an answer set
of Πm, and then check whether Î is spurious. By Theorem 3.10, the spuriousness check can be done with a
coNEXP oracle in general and with a Σ

p
2 oracle in the bounded predicate case. However, by applying standard

padding techniques,9 it follows that a coNP oracle is sufficient in the general case. This proves membership
of the problem in coNEXPNP in the general case and in Σ

p
3 in the bounded predicate case, respectively.

The coNEXPNP-hardness in the general case is shown by a reduction from evaluating second-order logic
formulas of a suitable form over finite relational successor structures, i.e., relational structures S = (D,RS)
with a universe D and interpretations RS

i for the relations Ri in R = R1, . . . ,Rk, which include the relations
first(x), next(x,y) and last(x) associated with a linear ordering ≤ of D.

Lemma A.1. Given a second-order (SO) sentence of the form Φ = ∃P∀Q.ϕ where P = P1, . . . ,Pm1 and
Q = Q1, . . . ,Qm2 are predicate variables and ϕ =

∨
j ϕ j is FO such that each ϕ j is of the form ϕ j =

∃x1, . . . ,xnl j,1 · · · ∧ · · · ∧ l j,k where each li, j is a FO-literal, and a finite relational successor structure S,
deciding whether S |= Φ is NEXPNP-complete.

This lemma can be obtained from the facts that (1) evaluating SO-sentences of the form Ψ∃P∀Q.ϕ , where
ψ is a first-order formula, over finite relational successor structures is NEXPNP-complete, cf. (Gottlob et al.,
1999), and (2) that Ψ can be transformed into some Φ of the form described in polynomial time; the latter
is possible using second-order skolemization and auxiliary predicates for quantifier elimination, cf. (Eiter
et al., 1996) and for denoting subformulas, such that ϕ(~x)≡ Pϕ(~x) and ϕ(~x) = ϕ1(~x)∧ϕ2(~x) is expressed by
Pϕ(~x)≡ Pϕ1(~x)∧Pϕ2(~x) etc.

We first describe how to encode evaluating the sentence Φ′ = ∃P∃Q¬ϕ into an ordinary program Π0,
and then extend the encoding to prove the result. We define the rules of Π0 as follows:

Pj,i(X1, . . . ,Xn)← not Pj,i(X1, . . . ,Xn),D(X1), . . . ,D(Xn). for each Pj,i ∈ P (71)

Pj,i(X1, . . . ,Xn)← not Pj,i(X1, . . . ,Xn),D(X1), . . . ,D(Xn). for each Pj,i ∈ P (72)

Q j,i(Y1, . . . ,Yn)← not Q j,i(Y1, . . . ,Yn),D(Y1), . . . ,D(Yn). for each Q j,i ∈ Q (73)

Q j,i(Y1, . . . ,Yn)}← not Q j,i(Y1, . . . ,Yn),D(Y1), . . . ,D(Yn). for each Q j,i ∈ Q (74)

sat← l¬/not
j,1 ∧·· ·∧ l¬/not

j,k . (75)

ok← not ok. (76)

ok← not sat. (77)

where l¬/not denotes the replacement of ¬ in l by not .10

Informally, the rules (71),(72) and (73),(74) guess extensions for the predicates in P and Q, respectively,
while the rules (75) evaluate the formula ϕ . A guess for P and Q yields an answer set of Π0 augmented with
S (provided as positive facts) iff ϕ evaluates over S to false; in this case, no rule (75) fires and thus sat can
not be derived, which means in turn that ok can be derived by (77) and thus the constraint (76) is satisfied.
On the other hand, deriving ok is necessary to have an answer set, which means that sat must not be derived
from the guess for P and Q.

9The input x to the oracle is changed to (x,y), where y is an (exponentially) long string y, and the oracle query considers x from
the input only. This artificially lowers the time bound within the query (measured in the size of (x,y)) can be answered.

10To make the rules safe, domain predicates D(X) can be added for unsafe variables X .
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We extend the program Π0 now for spuriousness checking. To this end, we introduce for the domain
D = {x1, . . . ,xn} at hand a copy D′ = {y1, . . . ,yn} and link xi to yi via a predicate eq(x,y) that holds for
x,y ∈ D∪D′ iff x = xi∧ y = yi for some i = 1, . . . ,n. The idea is to use D and D′ in the predicates from P
and Q, respectively, and to abstract D′ into a single element, such that for every guess χ for P, some abstract
answer set Îχ of the abstract program Πm will exist; and that, moreover, Îχ will be concrete if for some guess
for Q, we have an answer set of Π, where the latter program is equivalent to Π0; thus Îχ will be spurious iff
no guess for Q will yield an answer set of Π0, which means that the formula ∃P∀Q.ϕ evaluates to true.

We make the following adjustments.

1. First, we replace in (73) and (74) the predicate D with D′.

2. Next, for each rule r from (75) we add for each term t that occurs in the rule body a “typing” atom
D(t), we replace each term t that occurs in a Q-literal with a fresh variable Xt and add the atoms D′(Xt)
and eq(t,Xt).

3. To each rule r obtained from the previous step we add not succ(y1,y1) in the body (this literal evaluates
to true with no abstraction).

4. We add facts eq(xi,yi), for i = 1, . . . ,n.

5. We add facts Q j,i(y0, . . . ,y0), Q j,i(y0, . . . ,y0) for all Q j,i ∈ Q, where y0 is a fresh constant.

It is not hard to establish that the answer sets I of the resulting program Π (over S) correspond to the answer
sets I0 of Π0 over S; each I is obtained from some I0 by replacing in the Q j,i- and Q j,i-atoms the constant xl
with the corresponding yl , adding all facts Q j,i(y0, . . . ,y0), Q j,i(y0, . . . ,y0) and stripping off the eq-atoms.

The mapping that we construct is m = {{x1}/x1, . . . ,{xn}/xn}∪ {{y0,y1, . . . ,yn}/ŷ}. In the abstract
program Πm, the rules (71), (72) are carried over, while the modified rules (73), (74) are turned into rules
to derive abstract atoms over Q j,i resp. Q j,i. However, since Πm contains the abstracted facts Q j,i(ŷ, . . . , ŷ),
Q j,i(ŷ, . . . , ŷ), these rules are redundant.

The modified rules (75) are turned into guessing rules for sat, while the other rules (76) and (77) remain
unchanged. The abstract answer sets of Πm correspond to guesses χ for P to which ok and all Q j,i(ŷ, . . . , ŷ),
Q j,i(ŷ, . . . , ŷ) are added (sat is guessed false); denote this answer set by Iχ .

The answer set Iχ is concrete, if there is some guess µ for Q such that we obtain an answer set I of the
program Π that is mapped to Iχ , i.e., m(I1) = Iχ ; this I1 corresponds to some answer set I0 as described above.
Thus Iχ is spurious, if no such guess µ for Q exists.

Putting it all together, it holds that Π has with respect to the mapping m = {{x1}/x1, . . . , {xn}/xn}∪
{{y0,y1, . . . , yn}/ŷ} some spurious answer iff the formula Φ in Lemma A.1 evaluates over S to true. Since Π

and m are constructable in polynomial time from Φ and S, this proves coNEXPNP hardness in the general
case.

For the bounded predicate arities case, the evaluation of a formula Φ as in Lemma A.1 is Σ
p
3-complete;

furthermore, all steps in producing the program Π preserves bounded arities. Thus with the same argument,
we obtain Σ

p
3-hardness for deciding whether some spurious answer set exists for bounded predicate arities.

This proves the result.

Proof of Prop 4.2. Let X be an interpretation over A ∗. We will show that with the help of the auxiliary
rules/atoms, some interpretation X ′ which is a minimal model of (Πdebug∪Qm

Î
)X ′ can be reached starting

from X . We have the cases (i) X 2(Πdebug∪Qm
Î
)X , and (ii) X |= (Πdebug∪Qm

Î
)X .
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(i) We show that X can be changed to some interpretation X ′ that avoids the conditions for X not satisfying
a rule (Πdebug∪Qm

Î
)X , by doing a case analysis on where the rule may occur.

(a) Let r be an unsatisfied rule in (Tdeact [Π]∪TdeactCons[Π]∪Tact [Π,A ])X . This means that X |= B(r)
and X 2H(r). The rule r can not be an instantiation of the choice rules in Tdeact [Π]∪TdeactCons[Π]∪
Tact [Π,A ], as it would be instantiated for X , and hence be satisfied. Thus r can either (a-1) have
H(r) ∈ AB(Π) or (a-2) have H(r) = konr′ for some r′ ∈Π and be in Tdeact [Π]X . For both of these
cases, we construct X ′ = X∪{H(r)}, and the reduct (Tdeact [Π]∪TdeactCons[Π]∪Tact [Π,A ])X ′ will
not have further rules, since the added H(r) does not occur in the body of any auxiliary rule. Note
that adding konr′ also avoids having the corresponding meta-rule of r′ in the reduct (Tmeta[Π])X ′ .
So no further rules will be added in (Πdebug∪Qm

Î
)X ′ .

(b) Let r be an unsatisfied rule in (Tmeta[Π])X .
(b-1) If B(r) = /0, we construct X ′ = X ∪H(r). Thus, we get X ′ |= H(r).
(b-2) If the rule is of form H(r′)←apnr′

(c1, . . . ,cn),not konr′ . where H(r′) 6=⊥ for some r′ ∈ Π,
this means konr′ /∈ X . However, rules for r′ are added in Tdeact [Π] which uses the rule konr′ . to
deactivate the meta-rule in Tmeta[Π], which is then also unsatisfied in the reduct (Tdeact [Π])X .
So we construct X ′ = X \∪{konr′}. Thus, the rule r does not appear in (Tmeta[Π])X ′ .

(b-3) Let the rule be of form H(r′)←apnr′
(d1, . . . ,dm),not konr′ ., where H(r′) =⊥ for some r′ ∈Π.

The rules in TdeactCons[Π] are added for r′. X |= B(r) means that konr′ /∈ X ′. So the choice
rule {konr′}. in TdeactCons[Π] gets instantiated to ko′nr′

. in (TdeactCons[Π])X , i.e., ko′nr′
∈ X . Now

consider the interpretation X ′ = (X \{ko′nr′
})∪{konr′}. Since konr′ ∈ X ′, the rule r does not

appear in Tmeta[Π]X
′
.

(b-4) If r is of form apnr′
(c1, . . . ,cn)← B(r′) (or apnr′

(d1, . . . ,dm)← B(r′)) for some r′ ∈Π, then
we construct X ′ = X ∪ {apnr′

(c1, . . . ,cn)} (or X ′ = X ∪ {apnr′
(d1, . . . ,dm)}). If r is of the

remaining forms involving ab and bl, for some r′ ∈Π, we first check if X |= B(r′), then either
add the respective ab atoms or the respective bl atom to X ′.

(c) Assume X 2(Qm
Î
)X . As Qm

Î
has two forms of rules, X not satifying a rule in (Qm

Î
)X means that

either (a) some α ∈ X ∩A exists while m(α) /∈ Î, or (b) for some α̂ ∈ Î, no α ∈ X ∩A exists such
that m(α) = α̂ .
(c-1) The literal m(α) not occurring in Î means that all rules in def (m(α),Πm) are not applicable

for Î. This means that for each r ∈ def (α,Π) we have B(r) 6= /0, and for some r ∈ def (α,Π)
the choice rule {α}←apnr

(c1, . . . ,cn) in Tdeact [Π] gets instantiated to α←apnr
(c1, . . . ,cn) in

ΠX
debug. Now consider the interpretation X ′ = (X \{α})∪{α ′}, for which the choice rule gets

instantiated to α ′←apnr
(c1, . . . ,cn) in ΠX ′

debug. Thus an interpretation X ′ is constructed where
case (c-1) is avoided.

(c-2) Similarly as above, depending on whether the original rules in def (α,Π) for all α ∈ m−1(α̂)
are applicable or blocked for X , using the auxiliary choice rules in Tdeact [Π] and Tact [Π,A ]
some X ′ can be constructed that avoids the case of having no α ∈ X ′ with m(α) = α̂ .

For the constructed X ′ case (a-1) may occur, and can be avoided as shown by adding ab atoms to
the interpretation.

By iterating the reasoning on the constructed X ′, since none of the cases will undo a construction
step that is previously made, some interpretation X ′′ that satisfies (Πdebug∪Qm

Î
)X will eventually be

achieved.
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(ii) If X is a minimal model, then X is an answer set of Πdebug∪Qm
Î

, which achieves the result. We assume
this is not the case, and that there exists Y ⊂ X such that Y |= (Πdebug ∪Qm

Î
)X . As Y |= (Qm

Î
)X , we

have m(Y ∩A ) = Î. Let α ∈ X \Y , then we have two cases: (a) α ∈A , (b) α ∈A ∗ \A , i.e., α is an
auxiliary debugging atom.

(a) Let α = p(c1, . . . ,cn). As α ∈ X \Y and α ∈A , this means that there is some α̂ = p(ĉ1, . . . , ĉn)
in Î and some α1 = p(c′1, . . . ,c

′
n) in Y (and α1 ∈ X) such that m(α1) = m(α) = α̂ . However,

since α̂ ∈ Î and Î is an answer set of Πm, there exists a rule instantiation r̂ ∈ (Πm)Î such that
H(r̂) = α̂ . Then, since α,α1 ∈ X the abstract rule r̂ has corresponding rules r,r1 ∈Tmeta[Π]X where
r : p(c1, . . . ,cn)←apnr′

(c1, . . . ,cn),not konr′ . and r1 : p(c′1, . . . ,c
′
n)←apnr′′

(c′1, . . . , c′n),not konr′′ for
some r′,r′′ ∈Π.
Now, as we assume α /∈Y , then apnr′

(c1, . . . ,cn) /∈Y should hold (to satisfy the rule r ∈Tmeta[Π]X ).
Then in order to avoid not satisfying the rule apnr′

(c1, . . . ,cn)←B(r′)|c1,...,cn in Tmeta[Π]X , where
B(r′)|c1,...,cn denotes that B(r′) is instantiated over c1, . . . ,cn, either (a-1) for some β ∈ B+(r′)|c1,...,cn

we must have β /∈ Y or (a-2) for some β ∈ B−(r′)|c1,...,cn we must have β ∈ Y . As case (a-2)
contradicts Y ⊂ X , let us consider case (a-1). For β /∈ Y , we do the same reasoning as above. By
doing this recursive reasoning, since Π is tight, we eventually reach a rule in which case (a-1) is not
applicable, and thus by case (a-2) we reach a contradiction.

(b) Let α ∈A ∗ \A . If α is in AB(Π), then we pick Y as the interpretation, and the reduct (Πdebug∪
Qm

Î
)Y will not have further rules, since the ab atoms of AB(Π) do not occur in body of any auxiliary

rule. If α is in A + \A , then we pick Y as the interpretation and apply the above reasoning for Y .
When we recursively continue with this reasoning, eventually, the case (ii-b) will not be applicable,
and thus we would construct a minimal model.

Note that in the proof of Proposition 4.2, since the auxiliary programs Tdeact [Π]∪TdeactCons[Π]∪
Tact [Π,A ] can always have a model (as they do not contain constraints), one can start with an interpretation X
which models (Tdeact [Π]∪TdeactCons[Π]∪Tact [Π,A ])X . However, since we construct another interpretation
Y from X , a check on whether Y models (Tdeact [Π]∪TdeactCons[Π]∪Tact [Π,A ])Y then becomes necessary.

Proof of Theorem 5.1. For an assignment I, we need to show that I∪Tm∃ is a minimal model of (Πm
∃ )

I if
and only if I∪Tm is a minimal model of (Πm)I .

(⇒) Towards a contradiction, assume I∪Tm∃ is a minimal model of (Πm
∃ )

I but I∪Tm is not a minimal
model of (Πm)I . Then either (i) I ∪Tm is not a model of (Πm)I , or (ii) I ∪Tm is not a minimal model of
(Πm)I .

(i) There is a rule r̂ ∈ (Πm)I such that I ∪Tm |= B(r̂) but I2H(r̂). By construction of Πm, r̂ is only
obtained by step (a) of Definition 3.3, otherwise r̂ would be a choice rule with head H(r̂) = {m(l)},
and r̂ would be satisfied. Consequently r̂ is a rule from step (a) for r in Π. Thus, we have I∪Tm |=
m(B(r)),rel(d̂1, d̂2),τ

rel
I (d̂1, d̂2). Since the definitions of relation type I for lifted relations and abstract

relations correspond to each other, we have Tm |= τrel
I (d̂1, d̂2) ⇐⇒ Tm∃ |= τ r̂el

I (d̂1, d̂2). This means we
get I∪Tm∃ |=m(B(r)),τ r̂el

I (d̂1, d̂2) which is the abstract rule of r constructed by step (a) of Definition 5.1.
Since I∪Tm∃ is a minimal model of (Πm

∃ )
I , I |= H(r̂). Hence, we reach a contradiction.

(ii) Let there be J ⊂ I such that J∪Tm is a model of (Πm)I . We claim that J∪Tm∃ is a model of (Πm
∃ )

I ,
which would contradict I∪Tm∃ ∈ AS(Πm

∃ ). Assume J∪Tm∃ 2(Πm
∃ )

I . Then there is a rule r̂ ∈ (Πm
∃ )

I

84



such that J∪Tm∃ |= B(r̂) but J2H(r̂), while I |= H(r̂).We need to show that there is a corresponding
rule in (Πm)I for r̂, which would then achieve the contradiction that is J |= H(r̂). Below, we denote by
B(r̂)\ Γ̂r, the abstract body excluding the abstracted relation (and its relation type atom).

• If r̂ contains τ r̂el
I (d̂1, d̂2) (step (a) or (c) of Definition 5.1), then since we know Tm |=

τrel
I (d̂1, d̂2) ⇐⇒ Tm∃ |= τ r̂el

I (t̂1, t̂2), we achieve J ∪ Tm |= rel(d̂1, d̂2), τrel
I (d̂1, d̂2) (also

J ∪ Tm |= rel(d̂1, d̂2)). Since r̂ ∈ (Πm
∃ )

I , we know that I |= B(r̂) and also I |= B(r̂) \ Γ̂r.
Thus we get H(r̂)←B(r̂)\ Γ̂r,rel(d̂1, d̂2),τ

rel
I (d̂1, d̂2) (also H(r̂)←B(r̂)\ Γ̂r,rel(d̂1, d̂2)) in (Πm)I .

Since J∪Tm is a model of (Πm)I , we get J |= H(r̂), which is a contradiction.

• If r̂ contains τ r̂el
III (d̂1, d̂2) (step (b) or (c) of Definition 5.1), then J∪Tm∃ |= τ r̂el

III (d̂1, d̂2) means that
there exist some d11,d12 ∈ m−1(d̂1), d21,d22 ∈ m−1(d̂2) and some J′ ∈ m−1(J) such that J′ |=
rel(d11,d21) and J′2rel(d12,d22). There are the following cases for rel(d̂1, d̂2): (1) J |= rel(d̂1, d̂2),
or (2) J2rel(d̂1, d̂2).
(1) Since we know J′2rel(d12,d22), this case obtains τrel

III (d̂1, d̂2), thus J∪Tm |= rel(d̂1, d̂2),τ
rel
III (d̂1, d̂2).

With similar reasoning as above on obtaining H(r̂)← B(r̂) \ Γ̂r,rel(d̂1, d̂2),τ
rel
III (d̂1, d̂2) in

(Πm)I (also H(r̂)← B(r̂)\ Γ̂r,rel(d̂1, d̂2) in (Πm)I ), we achieve J |= H(r̂), a contradiction.
(2) Since we know J′ |= rel(d11,d21), this case obtains τrel

IV (d̂1, d̂2), thus J∪Tm |= rel(d̂1, d̂2),τ
rel
IV (d̂1, d̂2).

With similar reasoning as above we reach a contradiction.

(⇐) Towards a contradiction, assume I∪Tm is a minimal model of (Πm)I but I∪Tm∃ is not a minimal model
of (Πm

∃ )
I . Then either (i) I∪Tm∃ is not a model of (Πm

∃ )
I , or (ii) I∪Tm∃ is not a minimal model of (Πm

∃ )
I .

(i) There is a rule r̂ ∈ (Πm
∃ )

I such that I ∪Tm∃ |= B(r̂) but I2H(r̂). By construction of Πm
∃ , r̂ is only

obtained by step (a) of Definition 5.1. With an analogous reasoning as above item (i), we achieve a
contradiction.

(ii) Let there be J ⊂ I such that J∪Tm∃ is a model of (Πm
∃ )

I . We claim that J∪Tm is a model of (Πm)I ,
which would contradict I∪Tm ∈ AS(Πm). Assume J∪Tm2(Πm)I . Then there is a rule r̂ ∈ (Πm)I such
that J∪Tm |= B(r̂) but J2H(r̂), while I |= H(r̂). We need to show that there is a corresponding rule in
(Πm
∃ )

I for r̂, which would then achieve the contradiction that J |= H(r̂).

• If r̂ contains rel(d̂1, d̂2),τ
rel
I (d̂1, d̂2) (step (a) of Definition 3.3), an analogous reasoning as above

item (ii) obtains H(r̂)←B(r̂)\ Γ̂r,τ
r̂el
I (d̂1, d̂2) in (Πm

∃ )
I which achieves J |= H(r̂) a contradiction.

• If r̂ contains rel(d̂1, d̂2),τ
rel
III (d̂1, d̂2) (step (b) of Definition 3.3), then J∪Tm |= rel(d̂1, d̂2),τ

rel
III (d̂1, d̂2)

means that J |= rel(d̂1, d̂2) and there exist some d1 ∈m−1(d̂1), d2 ∈m−1(d̂2) and some J′ ∈m−1(J)
such that J′2rel(d1,d2). This obtains abstract relation type τ r̂el

III (d̂1, d̂2), thus J∪Tm∃ |= τ r̂el
III (d̂1, d̂2).

Notice that also J |= isCluster(d̂i) holds for some i ∈ {1,2}. With similar reasoning as above on
obtaining H(r̂)←B(r̂)\ Γ̂r,τ

r̂el
III (d̂1, d̂2) in (Πm

∃ )
I , we achieve J |= H(r̂), a contradiction.

• If r̂ contains rel(d̂1, d̂2),τ
rel
IV (d̂1, d̂2) (step (c) or (d-ii) of Definition 3.3), then J ∪ Tm0 |=

rel(d̂1, d̂2),τ
rel
IV (d̂1, d̂2) means that J2rel(d̂1, d̂2) and there exist some d1 ∈m−1(d̂1), d2 ∈m−1(d̂2)

and some J′ ∈ m−1(J) such that J′ |= rel(d1,d2). This again obtains abstract relation type
τ r̂el

III (d̂1, d̂2), i.e., J∪Tm∃ |= τ r̂el
III (d̂1, d̂2), thus reaches a contradiction as above.

• If r̂ contains only rel(d̂1, d̂2) (step (d-i) of Definition 3.3), then this means either J ∪Tm∃ |=
τrel

I (d̂1, d̂2) or J∪Tm∃ |= τrel
III (d̂1, d̂2) holds. Also we know that J |= isCluster(d̂i) holds for some

i ∈ {1,2}. So similar as above, we achieve a contradiction.
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B Further Details

B.1 Correctness Checking Failure for Non-tight Programs

The following example shows that the procedure for correctness checking does not work for non-tight
programs in general, i.e., in case of a positive loop.

Example B.1. Consider the program below which is unsatisfiable and also contains a positive loop.

a(X)←not a(X), int(X).

a(X)←a(X), int(X).

int(1). int(2). int(3).

For the mapping m = {{1,2,3}/k}, the constructed abstract program Πm is

a(X)←not a(X), înt(X).

{a(X)}← isCluster(X), înt(X).

a(X)←a(X), înt(X).

înt(k).

which has the abstract answer set Î = {a(k)}. Checking the correctness using Πdebug ∪Qm
Î

results in
unsatisfiability, because it requires to have some a(c) for c ∈m−1(k) to hold true through a loop, which is not
covered in the definition of Πdebug.

B.2 Grid-Cell Problem Encodings

In this appendix, we provide details about the slight modifications made from the existing (or common)
encodings, in order to use them in our experiments. The full encodings can be found in www.kr.tuwien.
ac.at/research/systems/abstraction/mdaspar material.zip.

Sudoku We used the encoding from DLV group in ASPCOMP09 with slight modifications. The guessing
of the assignment of numbers to the free cells is written as

{sol(X ,Y,N) : num(N)}←notoccupied(X ,Y ),row(X),column(Y ).

hasNum(X ,Y )←sol(X ,Y,N).

⊥←not hasNum(X ,Y ),row(X),column(Y ).

The constraints of assigning one symbol per column and one symbol per row are the same as in the original
encoding, but with standardizing apart over the sorts row and column.

⊥←sol(X ,Y1,M),sol(X2,Y2,M),X =X2,Y1<Y2.

⊥←sol(X1,Y,M),sol(X2,Y2,M),X1<X2,Y =Y2.
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For the constraint of assigning one symbol per subregion, standardizing apart the original rules caused to
have relations with many argument, thus we converted them into the rules

⊥←sol(X1,Y1,M),sol(X2,Y2,M),

sameSubSquareLessThan(X1,Y1,X2,Y2).

sameSubSquareLessThan(X1,Y1,X2,Y2)←sameSubSquare(X1,Y1,X2,Y2),X1 < X2.

sameSubSquareLessThan(X1,Y1,X2,Y2)←sameSubSquare(X1,Y1,X2,Y2),Y1 < Y2.

sameSubSquare(X1,Y1,X2,Y2)←subrangeR(X1,M),subrangeR(X2,M),

subrangeC(Y1,R),subrangeC(Y2,R).

with the hardcoded facts subrangeR(X ,M) and subrangeC(Y,R) for subregions w.r.t. rows and columns,
respectively.

Knight’s Tour We used the encoding from ASPCOMP11 11 with slight modifications. At most one move
atom is made for each valid movement among the cells.

{move(X1,Y1,X2,Y2)}1←valid(X1,Y1,X2,Y2).

In the original encoding, the valid cells computations were done using rules of the form

valid(X1,Y1,X2,Y2)←point(X1,Y1),point(X2,Y2),X1 = X2 +2,Y1 = Y2 +1.

which are modified as

validcell(X1,Y1,X2,Y2)←dist1(X1,X2),dist2(Y1,Y2).

validcell(X1,Y1,X2,Y2)←dist2(X1,X2),dist1(Y1,Y2).

valid(X1,Y1,X2,Y2)←validcell(X1,Y1,X2,Y2),point(X1,Y1),point(X2,Y2).

where the auxiliary facts dist1(X1,X2),dist2(X1,X2) represent the arithmetic operations X1 = X2 +2,Y1 =
Y2 +1.

The constraints to ensure that exactly one entering/leaving movement is made for each cell is the same as
the original encoding. Having each cell visited is ensured by the following rules

reached(X ,Y )←move(X1,Y1,X ,Y ),start(X1,Y1).

reached(X2,Y2)←reached(X1,Y1),move(X1,Y1,X2,Y2).

⊥←point(X ,Y ),not reached(X ,Y ),row(X),column(Y ).

where the atom start(X ,Y ) is used to show the starting point, instead of having in the rule the atom
move(1,1,X ,Y ) as it is originally. This change makes treating the program more convenient, as the rules do
not contain constants that need to mapped to different abstract constants depending on the mapping.

11www.mat.unical.it/aspcomp2011/files/KnightTour/knight tour.enc.asp
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Visitall We encoded a planning problem along the guidelines in Section 7.2 on representing actions and
change. We considered go(X ,Y,T ) actions that can move horizontally/vertically to a cell X ,Y . For such an
action, we must ensure that the action does not pass through an obstacle or a previously visited cell, and that
all the passed cells become visited. A common way of encoding this is to have auxiliary atoms that keep
track of the cells that are in between, such as

aux_passed(X ,Y2,T +1)←rAt(X ,Y,T ),go(X ,Y1,T ),Y < Y2,Y2 ≤ Y1.

aux_passed(X ,Y2,T +1)←rAt(X ,Y,T ),go(X ,Y1,T ),Y1 < Y2,Y2 ≤ Y.

aux_passed(X2,Y,T +1)←rAt(X ,Y,T ),go(X1,Y,T ),X < X2,X2 ≤ X1.

aux_passed(X2,Y,T +1)←rAt(X ,Y,T ),go(X1,Y,T ),X1 < X2,X2 ≤ X .

passed(X ,Y )←aux_passed(X ,Y,T ).

which are then used to ensure the above conditions.

⊥←passed(X ,Y ),obsAt(X ,Y ).

visited(X ,Y,T )←aux_passed(X ,Y,T ).

⊥←aux_passed(X ,Y,T +1),visited(X ,Y,T ).

We follow the remark in Section 5 on handling different abstraction levels on variables in a rule. For
example, for the first rule, in addition to the standardizing apart the rule as

aux_passed(X ,Y2,T +1)←rAt(X ,Y,T ),go(X1,Y1,T ),X = X1,Y < Y2,Y2 ≤ Y1.

we add the additional rule

aux_passed(X1,Y2,T +1)←rAt(X ,Y,T ),go(X1,Y1,T ),X = X1,Y < Y2,Y2 ≤ Y1.

We proceed similarly with the remaining rules.
Furthermore, knowing that the action go(X1,Y1,T ) will only be picked in a horizontal (resp. vertical)

direction of rAt(X ,Y,T ), we drop the relation X = X1 (resp. Y = Y1) from the body to make it smaller.

B.3 Example run of mDASPAR

To illustrate further considerations for debugging and refinement, we show an example run of mDASPAR.

Example B.2 (ctd). We run mDASPAR with the input program (Figure 15) and the instance shown in
Figure 13, with the initial mapping m of clustering the grid-cell into four regions (Figure 14a).

step 1 After constructing the non-ground abstract program (Figure 16) and computing the relation types,
mDASPAR computes an abstract answer set

{reachable(a1234,b1234),reachable(a5678,b1234),reachable(a1234,b5678)}.

step 2 Correctness checking first uses Πdebug0
where the ab atoms only contain rule names (Figure 28) to

obtain the optimal answer set

{ab_deactConsr3,ab_deactr2.}
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Figure 28: Constructed debugging program Tdeact [Π]∪TdeactCons[Π]∪Tact [Π,A ]

kor1.
{reachable(X ,Y )} ← apr1(X ,Y ).

ab_deactr1 ← apr1(X ,Y ),not reachable(X ,Y ).
⊥ :∼ ab_deactr1.[1]

kor2.
{reachable(X1,Y1)} ← apr2(X1,Y1).

ab_deactr2 ← apr2(X1,Y1),not reachable(X1,Y1).
⊥ :∼ ab_deactr2.[1]

kor3.
ab_deactConsr3 ← kor3,apr3(X ,Y,X1,Y1).

⊥ :∼ ab_deactConsr3.[1]
kor5.

{neighbor(X ,Y,X1,Y1)} ← apr5(X ,Y,X1,Y1).
ab_deactr5 ← apr5(X ,Y,X1,Y1),not neighbor(X ,Y,X1,Y1).

⊥ :∼ ab_deactr5.[1]
kor6.

{neighbor(X ,Y,X1,Y1)} ← apr6(X ,Y,X1,Y1).
ab_deactr6 ← apr6(X ,Y,X1,Y1),not neighbor(X ,Y,X1,Y1).

⊥ :∼ ab_deactr6.[1]

{neighbor(X ,Y,X1,Y1)} ← blr5(X ,Y,X1,Y1),blr6(X ,Y,X1,Y1).
ab_act(neighbor(X ,Y,X1,Y1))← blr5(X ,Y,X1,Y1),blr6(X ,Y,X1,Y1),

neighbor(X ,Y,X1,Y1).
⊥ :∼ ab_act(neighbor(X ,Y,X1,Y1)).[1,X ,Y,X1,Y1]

{reachable(X ,Y )} ← blr1(X ,Y ),blr2(X ,Y ).
ab_act(reachable(X ,Y ))← blr1(X ,Y ),blr2(X ,Y ),reachable(X ,Y ).

⊥ :∼ ab_act(reachable(X ,Y )).[1,X ,Y ]
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step 3 Πdebug is constructed only for r2,r3 now respecting variables in the rules, and by defining
ab_deactr2(X1,Y1) as

ab_deactr2(X1,Y1)←apr2(X1,Y1),not reachable(X1,Y1).

⊥ :∼ ab_deactr2(X1,Y1). [1,X1,Y1]

⊥ :∼ ab_deactr2(X1,Y1),mapTo(X1,Y1,A1,B1),

isSingleton(A1), isSingleton(B1). [20,X1,Y1]

refine(A1,B1)←ab_deactr2(X1,Y1),mapTo(X1,Y1,A1,B1), isCluster(A1).

refine(A1,B1)←ab_deactr2(X1,Y1),mapTo(X1,Y1,A1,B1), isCluster(B1).

and similarly ab_deactConsr3(X ,Y,X1,Y1). Correctness checking finds an optimal answer set with the
atoms

refine(a1234,b5678),refine(a5678,b5678).

step 4 The region (a1234,b5678) is randomly picked to refine to {(a12,b56),(a12,b78), (a34,b56), (a34,b78)}
by updating the corresponding mapping m.

step 5 Relation types according to the new mapping are computed and the loop goes back to step 1 to
compute a new abstract answer set.

The loop continues until unsatisfiability is achieved. The abstraction shown in Figure 14b is one such
abstraction where unsatisfiability is observed.

B.4 Modular Concreteness Checking

Ordered modularity An incremental approach to ASP solving proposed by Gebser et al. (Gebser et al.,
2008) builds on the concept of modules (Oikarinen and Janhunen, 2006) and gradually increases the bound to
the solution size, represented by a parameter k, to help with both grounding and solving. they are searching for
an answer set with minimum size over k, thus they increment the parameter until an answer set is computed.
We use a similar idea to detect the spuriousness of an abstract answer set by gradually increasing the parameter.
However, in our case, the increment is continued until the spuriousness is realized with debugging, i.e., an
answer set with an abnormality atom is obtained. We take a simpler view by limiting the generated grounding
of the program to the parameter.

Let Π be a program with the Herbrand base HBΠ = LB∪Lk, for parameter k ranging over the natural
numbers, where LB represents the static literals with arguments independent of parameter k, and Lk
represents the dynamic literals which have an argument k. For a set X of literals, we denote by grd(Π)|X =
{r | H(r)∪B(r)⊆ X} the set of ground rules that contain only literals over X . Let Xi ⊆ HBΠ denote the set
of literals until the parameter value i, i.e., Xi = LB∪

⋃i
j=0 Lk/ j, where Lk/ j denotes the set of literals with

the respective argument of value j. The rules of grd(Π) until parameter value i are then given by grd(Π)|Xi ,
simply denoted grd(Π)|i.

Let I≤i denote the projection of an interpretation I to the literals related with the parameter value i,
i.e., I≤i = I ∩ (LB ∪

⋃
0≤ j≤i Li). We say that Π is ordered modular, if for each I ∈ AS(Π) it holds that

I≤i ∈ AS(grd(Π)|i) for all 0≤ i≤ k. We then know that determining the occurrence of a literal l in an answer
set I≤i relies only on the decisions made until point i.

Proposition B.1. Let Π be an ordered modular program, m a domain mapping for Π, and let Î ∈ AS(Πm). If
Î≤i ⊆ Î is spurious for some i≤ n, then Î is spurious.
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Proof. Assume Î is concrete. This means that there exists some I ∈Π such that m(I) = Î. As Π is ordered
modular, I≤i ∈ AS(grd(Π)|i). Thus, m(I≤i) = Î≤i is concrete.

We describe in detail the implementation of these approaches.

Incrementing time. Approach (1) is implemented in mDASPAR to handle planning problems with atoms
having time arguments. By Proposition B.1, we know that if the first few actions of a potential plan described
by the abstract answer set have no corresponding original plan, one can conclude that this plan is spurious.

A common description of the planning problem in ASP uses two sorts for time: timea = {0, . . . ,n−1},
which is used for action atoms, and time = {0, . . . ,n} which is used to for the fluents. For a given program
Π with a description of a planning problem that contains facts for sort time, mDASPAR works as follows.
We denote by Tmeta[Π]|i the meta-program Tmeta[Π] which contains time facts (resp. timea) until domain
element i (resp. i−1), and by Πdebug|i the analogous restricted version of Πdebug. For a computed abstract
answer set Î encoding a plan 〈s0,a0,s1, . . . ,sn−1,an−1,sn〉 we denote by Î|i the part of the plan until time point
i.

Starting with i = 1, we continue the iteration below while i≤ n.

step (1) Create Tmeta[Π]|i−1 and Πdebug|i.

step (2) Check correctness of Î|i with Πdebug|i∪Tmeta[Π]|i−1∪Qm
Î|i

.

step (3) If Î|i is spurious, exit loop; otherwise, increase i by 1.

This way, we check the correctness of Î for the action taken at time i, by debugging only for time point i
as the guessing for time points t < i is restricted by using Tmeta[Π]|i−1. The time is increased incrementally
while the partial solution yields a concrete partial plan. Once spuriousness is observed, the checking is
stopped.

Partial concretization. For Approach (2), we use the possibility to have a hierarchy of abstractions
mentioned in Proposition 3.6. The idea is to partially concretize the abstract domain, by fully concretizing
certain regions and keeping the remaining ones abstract. Figure 17 shows the hierarchy of some partial
concretizations of the initial mapping. For a given mapping m, we consider a set of possible partial
concretizations. We then check the correctness of an abstract answer set I over the program with partially
concretized domain. As the latter still describes an abstraction compared to the original domain, this check
can not be immediately done over the original program. For that, we have must check correctness with
debugging over the abstract program relative to the partial concretization.

The approach is implemented in mDASPAR as follows. For a given mapping m, starting with j = 1,
the iteration focuses on concretizing j regions at a time, and checks the correctness in each such j-region
combination. The iteration continues until spuriousness is detected or m = mid :

step (1) Compute j-region concretizations of m, say m1, . . . ,mn.

step (2) For every mi ∈ {m1, . . . ,mn};

1. Create Πmi with Tmi and the set {mi(p(c)).|p(c). ∈Π} of facts, and Π
mi
debug.

2. Create the mapping m′ such that m′(mi(D)) = m(D).

3. Check correctness of I with Π
mi
debug∪Qm′

I .

4. If spurious, exit loop with debug answer C.
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step (3) If C 6= /0, refine m according to C and go back to step (1); otherwise, increase j by 1, and go back to
step (1)

We do correctness checking on the abstract level mi using Πmi . If I is concrete w.r.t. the partially
concretized abstraction, this does not guarantee that I is concrete; thus, the concretization is increased to redo
the check. If spuriousness is detected, the mapping is refined and the partial concretization continues from
the updated mapping.

C Use Case: Abstraction for Policy Refutation

As a further example, consider checking whether an agent always manages to find a missing person with a
given policy in a grid environment with obstacles. If the policy does not work, a counterexample trajectory
over some part of the environment will reveal this; by inspecting the latter, one may guess why it fails.
Depending on the problem, the focus points may have different nature. For the reachability example shown
in Section 5.2, the focus area in the environment can remain local, while for the person search example the
path of a trajectory needs to be distinguished.

For illustration, we use the following running example.

Example C.1 (Example 5.8 cont’d). Consider the reachability problem described in the following encoding,
where reachability (48-50) is redefined by prioritizing the east neighbor over the rest, and in case the east
neighbor has an obstacle, choosing the south neighbor.

point(X ,Y )←not obsAt(X ,Y ),row(X),column(Y ). (78)

reachable(X ,Y )←start(X ,Y ). (79)

neighborE(X ,Y,X1,Y )←X1−X =1,column(Y ). (80)

neighborS(X ,Y,X ,Y1)←Y1−Y =1,row(X). (81)

reachableE(X ,Y,X1,Y )←reachable(X ,Y ),point(X1,Y ), (82)

neighborE(X ,Y,X1,Y ).

hasNeighborE(X ,Y )←reachableE(X ,Y,X1,Y1). (83)

reachable(X1,Y1)←reachableE(X ,Y,X1,Y1). (84)

reachable(X ,Y1)←reachable(X ,Y ), point(X ,Y1), (85)

neighborS(X ,Y,X ,Y1),not hasNeighborE(X ,Y ).

For the instance shown in Figure 29a the reachable cells are determined in the order→2↓→5↓6. The
abstraction shown in Figure 29b singles out the area that contains the cells that are reachable according to the
restrictions.

We now focus on using the abstraction over grid-cells for the problem of checking policies on whether
they manage to guide the agent towards the goal. We consider two versions of this problem and discuss the
use of abstraction.

As a running example, we consider an agent trying to find its way in a maze towards a goal point (similar
in spirit to the example of finding a missing person). For representing and generating the mazes, we use an
altered version of the Maze Generation encoding from ASP Competition 2011.12 A policy that may come to

12https://www.mat.unical.it/aspcomp2011/files/MazeGeneration/maze generation.enc.asp
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Figure 29: Reachability abstraction under east neighbor prioritization

(a) Original domain

•

(b) Distinguishing the cells reachable under the re-
strictions

•

start(a1,b1). obsAt(a4,b1).
obsAt(a6,b1). obsAt(a2,b2).
obsAt(a7,b4). obsAt(a12,a34).
obsAt(a56,a34). obsAt(a56,a56).
obsAt(a1234,a5678).

one’s mind when talking about mazes is the well-known “right-hand rule”, which is known to work in many
maze instances, except when the goal is in the middle area and the agent is forced to loop due to the obstacle
layout.

Does the policy work on a given instance? For fixed problem instances, this check is done by a search
of a counterexample trajectory which follows the policy but does not reach the goal. If none is found (i.e.,
unsatisfiability is achieved), we conclude that the policy works for this instance. Abstraction can be used to
focus on the part of the instance which is enough to show that the policy fails or or works; notice that the
latter case becomes similar to having unsatisfiable problems. The necessary granularity of the abstraction
depends on the complexity of the policy. As demonstrated in Figure 31, for refuting the “right-hand rule”
policy the abstraction must refine at least the outer area (if not more).

To observe how the policy type affects the resulting abstraction, we did some experiments. To help with
the refinement decisions, the initial abstraction distinguishes the starting point of the agent and abstracts over
the rest.

We consider the following two policies:

(A) Right-hand rule: Follow the wall on the right-hand side.

(B) Naive policy: Choose the direction to move to with the priority right > down > left > up.

We generated 20 instances where on some of them both, one, or none of the policies work. For the
debugging method we picked time increment, as we wanted it to focus on each step of the abstract trajectory
starting from the beginning, and on whether or not the steps match the policy’s decisions in the corresponding
original trajectory. Furthermore, the refinement decision is made only from one abstract answer set, to avoid
that a concrete answer set is encountered among spurious ones; this would finalize the search and achieve a
clearly non-faithful b abstraction.

Table 6 shows the results of using mDASPAR to achieve an abstraction with a concrete solution. Obtaining
SAT means that the program found a concrete solution, i.e., a concrete counterexample trajectory, which
shows that the policy does not work, while having UNSAT means that the policy works. As expected,
the naive policy failed to work for most of the instances. Since the right-hand rule forces to traverse the
environment more, mDASPAR required to have finer abstractions to figure out the concrete solution. In both
cases, the obtained abstractions were not too distant from the best possible ones, although still sometimes the
focus was shifted to the irrelevant parts of the grid. All of the obtained resulting abstractions were faithful,
which means that they were able to show the actual behavior of the policy. Figure 30 shows the resulting
abstractions for three of the instances.
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Table 6: Policy checking in maze instances

sat/unsat avg. step avg. cost avg. best step avg. best cost
naive 16/4 7.2 0.391 6.5 0.362

right-hand 6/14 12.5 0.630 11.8 0.599

Figure 30: Abstractions on policy checking in maze instances (with the supporting/refuting paths)

(a) naive: works, right-hand: fails (b) Supporting the naive policy (c) Refuting the right-hand policy

(d) naive: fails, right-hand: works (e) Refuting the naive policy (f) Supporting the right-hand policy

(g) naive: works, right-hand: works (h) Supporting the naive policy (i) Supporting the right-hand policy

94



Figure 31: Can we refute the right-hand rule policy in all maze instances with one abstraction?

(a) A counterexample instance (b) Distinguishing the path of a counterexample trajectory

(c) A counterexample instance (d) Spurious counterexample trajectories due to abstract
regions

Does the policy always work? This is a more involved check, since a set of possible instances has to be
considered and a search of a counterexample trajectory among each instance needs to be done. If the policy
works, then all possible policy trajectories in all instances have to be checked to conclude this result. For this
case, considering an abstraction that focuses on a certain part of the grid may not be useful, since depending
on the structure of the instances different parts of the grid may need to be singled out. However, if the policy
does not work, it is enough to find an instance in which a counterexample policy trajectory can be shown.
Thus, an abstraction that focuses on a certain part of the grid where some instance can show a counterexample
would be useful.

In ASP, such a check can be done by making two sets of guesses: (1) choose a valid instance, by guessing
the layout of the environment and the position of the goal, and (2) determine a counterexample trajectory, by
guessing the movements of the agent following the policy which do not achieve the goal in the instance. If
the policy is deterministic (i.e., chooses exactly one action at a state), then the second guessing part becomes
straightforward. However, for nondeterministic policies, a choice of possible actions to take exists, which
adds to the complexity of the search.

The experiments showed that combining these guesses and those introduced in the syntactic transformation
causes many spurious abstract answer sets, which sometimes force refinement decisions towards useless parts
of the grid. For example, in general policy checking for the right-hand rule, mDASPAR must go back to the
original domain to catch an instance with a counterexample trajectory, as the policy forces to traverse the
environment and in the abstract encoding the guesses of the instance and the movements cause to create many
spurious trajectories. As for the naive policy, mDASPAR can encounter a counterexample trajectory in few
refinement steps: it is sufficient to realize that this policy fails by creating a partial instance where the agent
enters a dead-end and has to leave by moving left; it then starts looping by moving right and left.
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We remark that for a failing policy we may not expect to have one abstraction mapping that can be applied
with any possible instance and catch a counterexample trajectory, the less a mapping that is faithful for any
instance. Figure 31a shows an instance in which the right-hand policy is unable to reach the (green) goal
point from the (red) entry point in the upper left corner. An abstraction such as Figure 31b is enough to
realize that a loop occurs and a goal can not be reached (it is a faithful abstraction for this instance). However,
this abstraction does not always distinguish the cells that force to obtain a counterexample trajectory in each
possible refuting instance. For example, the instance in Figure 31c also forces the agent to loop; since with
the same abstraction (Figure 31d) there is uncertainty among the abstract regions, it is still possible to create
spurious counterexample trajectories. Thus, faithfulness can not be achieved. Here the identity abstraction
would be the one that can be used to (faithfully) refute the policy in all possible instances.
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