
L O G C O M P
R E S E A R C H

R E P O R T

Institut für Logic and Computation

FB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR LOGIC AND COMPUTATION

FACHBEREICH WISSENSBASIERTE SYSTEME

A SEMANTIC PERSPECTIVE ON OMISSION

ABSTRACTION IN ASP

ZEYNEP G. SARIBATUR THOMAS EITER

LOGCOMP RESEARCH REPORT 20-01

JUNE 2020

LOGCOMP RESEARCH REPORT

LOGCOMP RESEARCH REPORT 20-01, JUNE 2020

A SEMANTIC PERSPECTIVE ON OMISSION ABSTRACTION IN ASP

Zeynep G. Saribatur1 Thomas Eiter1

Abstract. The recently introduced notion of ASP abstraction is on reducing the vocabulary of a
program while ensuring over-approximation of its answer sets, with a focus on having a syntactic
operator that constructs an abstract program. It has been shown that such a notion has the potential
for program analysis at the abstract level by getting rid of irrelevant details to problem solving while
preserving the structure, that aids in the explanation of the solutions. We take here a further look on
ASP abstraction, focusing on abstraction by omission with the aim to obtain a better understanding
of the notion. We distinguish the key conditions for omission abstraction which sheds light on the
differences to the well-studied notion of forgetting. We demonstrate how omission abstraction fits
into the overall spectrum, by also investigating its behavior in the semantics of a program in the
framework of HT logic.

1Institute of Logic and Computation, TU Wien; email: (zeynep | eiter)@kr.tuwien.ac.at.

This article is the extended version of the paper presented at the 17th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2020), September 12-18, 2020, Rhodes, Greece.

Copyright c© 2020 by the authors

Contents

1 Introduction 3

2 Background 3
2.1 Omission Abstraction . 4

3 Desiderata for Omission Abstraction 5

4 Through the Lens of Forgetting 6
4.1 Putting omission abstraction in this picture . 7

5 Focusing on HT Logic 8

6 Conclusion 9

A Appendix: Proofs 11
A.1 Section 3 . 12
A.2 Section 4 . 13
A.3 Section 5 . 14

2

1 Introduction

Abstraction for ASP (Saribatur and Eiter 2018; Saribatur et al. 2019) is a method whose main aim is
to achieve an over-approximation of a program by reducing the vocabulary while keeping the rules; this
is valuable to aid tasks like explanation finding or showing solutions that omit detail. It was approached
from the syntactic level, with the aim to adjust the rules in a way that the original answer sets still have a
representative in the abstract program while the structure of the original program is preserved as much as
possible. Inspired by the seminal work in model checking (Clarke et al., 2003) the focus so far has been
on starting with a coarse abstraction of the program and refining it until a concrete solution is encountered,
where at any time we have an abstract program at hand that yields solutions without unnecessary details that
are omitted.

The well-studied concept of forgetting (Gonçalves et al., 2017) on the other hand is about preserving the
semantics of the original program exactly, by adhering to a number of properties that have been investigated
over the years. Recently, a syntactic forgetting operator has been introduced (Berthold et al., 2019) which
achieves the key property of strong persistence (SP) whenever possible, at the expense of preserving the
original syntax. In terms of forgetting, the notion of over-approximation matches the weak consequence
(wC) property, which did not receive much attention as it is in contrast with the main goal of forgetting. Our
previous investigations showed that a more relaxed abstraction approach and a methodology for refining an
abstraction if needed can achieve valuable results, especially in singling out the relevant parts of a program
for decision-making (Saribatur and Eiter 2018; Saribatur et al. 2019; Eiter et al. 2019).

In this short paper, we review omission abstraction in the light of forgetting. To clarify some differences
and to get some better understanding of abstraction by omission (Saribatur and Eiter, 2018), we present
desired properties that any operator should satisfy; as we show, the previously introduced operator omit is
(under some trivial proviso) optimal when adhering to the properties and we show how the notion fits into
the overall picture. We notably observe that some of the forgetting operators can also count as omission
abstraction, when structure preservation and modularity is not important. We also explore the behavior of
omission abstraction through the semantics of a program by focusing on HT-logic, which is regarded as the
monotonic core of ASP.

This work sets a starting point for further research on exploring the use of ASP abstraction by taking a
semantic view on the notion; notably, the semantic view has been fruitfully driving research on forgetting in
the last decade. We provide some results as a base for extensions and follow up work.

2 Background

ASP. A logic program P over a set A of propositional atoms is a set of rules r of the form

α0← α1, . . . ,αm,not αm+1, . . . ,not αn, 0≤m≤n,

where each αi∈A is a propositional literal and not is default negation; r is a constraint if α0 is falsity (⊥,
then omitted) and a fact if n=0. We also write H(r)← B(r) or H(r)← B+(r), not B−(r), where H(r) = αo

and B+(r) = {α1, . . . ,αm} is the positive body and B−(r) = {αm+1, . . . ,αn} the negative body. Furthermore,
we let B±(r) = B+(r)∪B−(r). We occasionally omit r from B±(r),B(r) etc. if r is understood. The GL-
reduct is given by PI = {α0← B+(r) | r ∈ P,B−(r)∩ I = /0}. An interpretation I is an answer set, if it is a
minimal model of PI . We denote the set of all answer sets by AS(P). For a set S⊆A of atoms, S|A denotes
the projection to the atoms in A and S is a shorthand for A \ S. As a common syntactic extension, we
consider choice rules of the form {α}← B, which according to the ASP Core-2 recommendation (Calimeri

3

et al., 2020) stands for the rules α ← not α ′,B and α ′ ← not α,B where α ′ is a fresh (hidden) atom. An
answer set I is then identified with the interpretation obtained from I by projecting off auxiliary atoms α ′.
We alternatively may write {α} ← B as α ← not not α,B, i.e. use double negation; the results of HT-Logic
extend to the use of double negation. An operator over a class C of programs over A is a partial function
f : C ×2A → C , where f (P,A) is the result of applying f on a program P by considering A⊆A .
HT-models. An HT-interpretation is a pair 〈X ,Y 〉 such that X ⊆ Y ⊆A ; it is total if X = Y and non-total
otherwise. An HT-interpretation 〈X ,Y 〉 is an HT-model of a program P if Y |= P and X |= PY . The set of all
HT-models of P is denoted by H T (P). A set Y of atoms is an answer set of P if 〈Y,Y 〉 ∈H T (P) and
no non-total 〈X ,Y 〉 ∈H T (P) exists. Two programs P1,P2 are equivalent if AS(P1) = AS(P2), and strongly
equivalent, denoted by P1 ≡ P2, if AS(P1 ∪R) = AS(P2 ∪R) for every R over A . As well-known, P1 ≡ P2
amounts to H T (P1) = H T (P2) (Lifschitz, Pearce, and Valverde, 2001).

2.1 Omission Abstraction

We call a program P′ over A ′ an abstraction of a program P over A , if there exists a mapping m : A →
A ′∪{>} such that for each answer set I of P, I′ = {m(l) | l ∈ I} is an answer set of P′. In (Saribatur and
Eiter, 2018) we introduced the notion of omission-based abstraction which relies on a mapping mA : A →
A ∪{>} for a set A of atoms to be omitted, such that mA(α) => if α ∈ A and mA(α) = α if α ∈A \A.

Given an original program P and a set A of atoms to be omitted, an abstract program omit(P,A) is
constructed as follows. For every rule r : α←B in P, we have

omit(r,A)=

r, if A∩B±= /0, α /∈A,
{α}←mA(B), if A∩B± 6= /0, α /∈A∪{⊥},

/0, otherwise.

where mA(B) stands for B+(r)\A,not (B−(r)\A) which projects away the omitted atoms. We showed that
omit(P,A) is an over-approximation of P. However, spurious answer sets may appear in omit(P,A), i.e.,
answer sets which can not be mapped back to some original answer set.

Example 1. Consider the program P1 and the resulting abstract programs after applying omit(P1,A) for
A = {a,c} and A = {b} shown below.

P1 omit(P1,{a,c}) omit(P1,{b})
c← not d. c← not d.
d← not c. {d}. d← not c.
a← not b,c. {a}← c.
b← d. b← d.
{{c,a},{d,b}} {{},{d,b}} {{c},{c,a},{d}}

Every answer set of P1 can be mapped to some answer set of omit(P1,{a,c}) resp. omit(P1,{b}) if the
omitted literals are projected away, i.e., AS(P1)|A ⊆ AS(omit(P1,A)). Note that omit(P1,{b}) also has a
spurious answer set {c}, as it can not be mapped back to some original answer set.

We call an abstraction faithful if the constructed abstract program has no spurious answer sets. A faithful
abstraction is referred as refinement-safe if all abstractions achievable by adding back some omitted atoms
are also faithful. We remark that not every faithful abstraction can be refinement-safe, e.g., omit(P,A) = /0
is faithful (whenever P is satisfiable), but adding back some atoms may reach an abstraction with a spurious
answer set.

4

3 Desiderata for Omission Abstraction

As mentioned above, abstraction aims at omitting details from a program to simplify matters, while structure
should be preserved. Many operators fo(P,V) can be imagined that omit atoms V from a program P, yielding
another program in which no atom from V occurs. In order to assess whether such fo can be regarded as an
omission abstraction, we consider the following desired properties:

(D1) Over-approximation should be achieved, i.e., AS(fo(P,V))⊇ AS(P)|V holds.

(D2) Rules not involving atoms to omit must be preserved, i.e., {r ∈ P | r is over V} ⊆ fo(P,V).

(D3) New rules should be introduced only if P contains atoms to omit, i.e., if P is over V , then fo(P,V)⊆ P.

Here (D1) is the semantic key requirement that no answer set of the original program is lost in the abstrac-
tion; (D2)-(D3) ensure that only modifications relevant to the abstraction are made. To preserve the structure
of rules containing atoms to be omitted and to ensure that rules are not changed to arbitrary ones, the next
condition should be satisfied.

(D4) Rules in fo(P,V) should be obtained by strengthening / weakening rules r in P, meaning that

(i) literals can only be added in the body of r, or

(ii) literals can only be removed from the body of r, or

(iii) the head of r can be modified.1

The next conditions are important for the incrementality of the operator, which would be beneficial for the
computation of the omission.

(D5) Modularity: fo(P,V) =
⋃

r∈P fo(r,V).

(D6) Iteration: for V = {v1, ...,vn},
fo(fo(fo(P,v1),v2)..., vn) = fo(P,V).

Conditions (D5)-(D6) allow for applying the omission operator incrementally by using the previously com-
puted abstraction to compute the next one, rule by rule resp. atom by atom. In particular, (D5) ensures that
we can expand the program without touching the previously abstracted parts.

Among the different operators that can satisfy (D1)-(D5), with a slight modification, omit becomes the
operator that achieves the tightest possible abstract program, with as few spurious answer sets as possi-
ble, even if condition (D4) is disregarded. To show this, we denote by Fo the class of omission opera-
tors that satisfy (D1)-(D3) and (D5), and define an ordering � on Fo such that fo � fo′ for fo, fo′ ∈ Fo if
AS(fo′(P,V)) ⊇ AS(fo(P,V)) for every program P and V , i.e., fo introduces less spurious answer sets than
fo′ .

In order to avoid introducing guesses for tautologic rules such as a← d,b,not b where b is to be omitted,
let the omission operator omit+ be defined as omit except that such tautologic rules are skipped. We then
have the following.

Theorem 1. The operator omit+ is a minimal operator w.r.t. � in Fo. Moreover, omit+ is the unique such
operator under strong equivalence, i.e., every �-minimal fo ∈ Fo satisfies omit+(P,V)≡ fo(P,V) for all
values of P and V .

1Item (iii) may be more restrictive, and e.g. allow only for the change into a choice.

5

This result shows that omit+ is optimal, i.e., there is no tighter way of doing abstraction while adhering
to (D1)-(D3) and (D5), and provides us via (D4) also with a canonical form. To achieve faithfulness in
general, necessarily some non-modular operations will be needed.

Furthermore omit is closed in the class of normal programs (when choice rules are written through two
auxiliary rules), thus making it possible to be iterated (D6).

4 Through the Lens of Forgetting

We refer to (Gonçalves, Knorr, and Leite, 2016a; Delgrande, 2017) for recent surveys on forgetting and
just shortly summarize the notions needed here. Below are some of the properties considered in forgetting,
where F is a class of forgetting operators and C a class of programs:
(wC) F satisfies weakened Consequence if, for each f ∈ F , P ∈ C and V ⊆ A , we have AS(P)|V ⊆
AS(f (P,V)).

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F , P ∈ C and V ⊆A , we have f (P,V)∪R≡
f (P∪R,V) for all programs R ∈ C over V .

(CP) F satisfies Consequence Persistence if, for each f∈F , P∈C and V ⊆A , we have AS(f (P,V))=AS(P)|V .

(SP) F satisfies Strong Persistence if, for each f ∈ F , P ∈ C and V ⊆ A , we have AS(f (P,V)∪R) =
AS(P∪R)|V for all programs R ∈ C over V .

Strong persistence is also considered by (Gonçalves, Knorr, and Leite, 2016b) for a particular forgetting
instance 〈P,V 〉where P is a program in C and V ⊆A , denoted by (SP)〈P,V 〉, which holds if AS(f (P,V)∪R)=
AS(P∪R)|V , for all programs R ∈ C over V .They also introduced a criterion Ω to characterize the instances
for which an operator achieving (SP)〈P,V 〉 is impossible.

Definition 1. (Gonçalves, Knorr, and Leite, 2016b) Let P be a program over A and V ⊆ A . An instance
〈P,V 〉 satisfies criterion Ω if there exists Y ⊆A \V such that the set of sets

RY
〈P,V 〉 = {R

Y,A
〈P,V 〉 | A ∈ RelY〈P,V 〉}

is non-empty and has no least element, where

RY,A
〈P,V 〉 = {X \V | 〈X ,Y ∪A〉 ∈H T (P)}

RelY〈P,V 〉 = {A⊆V | 〈Y ∪A,Y ∪A〉 ∈H T (P) and

@A′ ⊂ A s.t. 〈Y ∪A′,Y ∪A〉 ∈H T (P)}.

It was shown that it is not possible to forget about V from P while satisfying strong persistence exactly
when 〈P,V 〉 satisfies criterion Ω. Later, when investigating further uses of forgetting when Ω is satisfied,
(Gonçalves et al., 2017) considered two relaxed properties:

(sSP) F satisfies strengthened Strong Persistence if, for each f ∈F , P∈C and V ⊆A , we have AS(f (P,V)∪
R)⊆ AS(P∪R)|V for all programs R ∈ C over V .

(wSP) F satisfies weakened Strong Persistence if, for each f ∈F , P∈C and V ⊆A , we have AS(P∪R)|V ⊆
AS(f (P,V)∪R) for all programs R ∈ C over V .

They correspond to under- and overapproximation of the answer sets, respectively. As easily seen,

6

Proposition 2. (wSP) is a consequence of (wC) and (SI).

Among the forgetting operators, FSP (Gonçalves, Knorr, and Leite, 2016b) and FSas (Knorr and Alferes,
2014) satisfy both (wC) and (SI). These operators can also be considered as omission abstraction since
they are in line with (D1)-(D3). However, the syntactic conditions (D4)-(D6) do not hold in general, and it
remains unclear whether they will be achieved by particular operators. Iteration of the operator within the
class of normal programs might not be possible as these operators are not closed.

4.1 Putting omission abstraction in this picture

Here, we initiate the search for the relation between some of the properties that have been considered for
omission abstraction and for forgetting, respectively. We can see that (D1)-(D3) with (D5) immediately
allow us to conclude the following.

Proposition 3. Fo satisfies (wC) and (SI).

Since omission abstraction preserves all the rules that do not mention the set V of atoms to be omitted,
in fact a stronger version of (SI) is satisfied.

Proposition 4. For every fo∈Fo, we have fo(P∪R,V) = fo(P,V) ∪R for all programs R over V .

We can also see that the weakened version of strong persistence is also always satisfied.

Proposition 5 ((wSP)). For every fo ∈ Fo, AS(fo(P,V)∪R) ⊇ AS(P∪R)|V holds for all programs R ∈ C

over V .

Faithfulness is a valuable property for abstraction, as it keeps the relevant part of the program needed
for reaching a concrete result. However, it is not always possible to achieve a faithful abstraction under
modularity, thus the property (CP) can not be satisfied in general; for a particular instance 〈P,V 〉, denoted
(CP)〈P,V 〉, it is achievable.

Proposition 6. For every fo ∈ Fo, faithful omission abstraction fo(P,V) satisfies (CP)〈P,V 〉.

It was shown that (CP) and (SI) together are equivalent to (SP) (Gonçalves, Knorr, and Leite, 2016a).
However, this is not true for particular instances 〈P,V 〉, thus we can not talk about directly achieving (SP)〈P,V 〉
from (CP)〈P,V 〉. However, by Proposition 6, knowing that (CP)〈P,V 〉 holds, one can infer that spuriousness
occurs as the added program R interferes with the rules that were changed in the abstraction fo(P,V). Diag-
nosing the necessary interaction of changed and added rules when (SP)〈P,V 〉 fails while (CP)〈P,V 〉 holds can
serve as a basis for modifying an omission operator, in particular on a restricted program class.

Nevertheless, it is also possible to achieve (SP)〈P,V 〉 for some 〈P,V 〉 with Fo. For this, we use the class
FM of forgetting operators in (Gonçalves, Knorr, and Leite, 2016b), which focuses on constructing programs
with HT-models 〈X ,Y 〉 where X is in the intersection

⋂
RY
〈P,V 〉 or in the union

⋃
RY
〈P,V 〉. It was shown that

FM satisfies (wC), (CP), (sSP), but not (SI). Thus, by Proposition 5 we obtain

Proposition 7. For fo ∈ Fo, if H T (fo(P,V)) =H T (f (P,V)) for f ∈ FM, then AS(f (P,V)∪R) = AS(P∪
R)|V for all programs R ∈ C over V .

This shows that if omission abstraction fo (which satisfies (wSP)) obtains the same HT models as the
operators in FM (which satisfy (sSP)), we can say that (SP)〈P,V 〉 is achieved. This understanding can lead to
finding a new set of operators achieving the desired properties from both sides.

7

Example 2. The HT-models of the abstract program omit(P1,{a,c}) from Example 1 are 〈 /0, /0〉,〈 /0,b〉,〈b,b〉,
〈db,db〉which is equivalent to H T (f (P1,{a,c})) for f ∈FM, and thus omit(P1,{a,c}) satisfies (SP)〈P1,{a,c}〉.

For some operators, when incrementally omitting a set of atoms while achieving abstractions that satisfy
(wC), it may be possible to eventually achieve an abstraction that satisfies strong persistence. For operator
omit, however, our results in the next section give that if after omitting some atoms, (wC) holds but not
(CP)〈P,V 〉, then (SP)〈P,V 〉 can not be achieved after omitting further atoms.

Furthermore, given that (Gonçalves, Knorr, and Leite, 2016b) proved that (SP)〈P,V 〉 is not possible if
〈P,V 〉 satisfies Ω, we conclude the following.

Proposition 8. Let fo ∈ Fo. If some f ∈ FM exists such that H T (fo(P,V)) = H T (f (P,V)), then 〈P,V 〉
does not satisfy Ω.

Note that even when (SP)〈P,V 〉 is not possible, it would still be possible to achieve (CP)〈P,V 〉.

5 Focusing on HT Logic

In this section, we take a deeper look into the semantics of abstraction through the HT logic,2 by investigating
the behavior of the omission operator omit, to get a better understanding of the concept. Note that the
omission operator omit can be extended to handle rules with double negation; details can be found in the
extended version.

The first observation is on preserving the total models in the abstraction.

Proposition 9. If 〈Y,Y 〉 ∈H T (P) then 〈Y,Y 〉|V ∈H T (omit(P,V)).

Proof. Assume 〈Y \V,Y \V 〉 /∈H T (omit(P,V)). This means Y \V |= B(r̂) but Y \V 2H(r̂) for some
r̂ ∈ omit(P,V). So r̂ cannot be a choice rule. However r̂ also cannot be an unchanged rule as it would
contradict 〈Y,Y 〉 ∈H T (P).

Although all total models 〈Y,Y 〉 are preserved in H T (omit(P,V)), not all non-total 〈X ,Y 〉 ∈H T (P)
might be preserved, thus causing spurious answer sets in omit(P,V).

The next proposition tells us that if setting all omit atoms V to true resp. false preserves an HT-model,
then setting all to false yields an abstract HT-model.

Proposition 10. Let 〈X ,Y 〉 ∈H T (P). If 〈X ∪V,Y ∪V 〉 ∈H T (P) and 〈X \V,Y \V 〉 ∈H T (P), then
〈X \V,Y \V 〉 ∈H T (omit(P,V)).

Unfortunately, H T (omit(P,V)) ⊆ H T (P)|V does not always hold; sometimes, “new" HT-models
could be introduced with the abstraction.

Definition 2 (spurious HT-model). An HT-model 〈X ,Y 〉 ∈H T (omit(P,V)) is spurious, if no 〈X ′,Y ′〉∈H T (P)
exists s.t. X ′ \V = X, and Y ′ \V = Y .

As regards spurious total models, they can occur only if rules change in the abstract program as follows.

Proposition 11. If 〈Y,Y 〉∈H T (omit(P,V)) is spurious, then some rule r∈P satisfies B+(r)∩V 6= /0 and
H(r) /∈V .

2We write choice rules {a} ← B as a← not not a,B. confining double negation to this use, and constraints ⊥← a,B. as f ←
a,not f ,B, for a handle on all possible original HT-models.

8

Note that a spurious total HT-model in the abstract program does not necessarily mean that there are
spurious answer sets, since also further spurious non-total models can occur. However, the following result
shows that spurious non-total models occur only for spurious total models.

Proposition 12. If 〈X ,Y 〉 ∈H T (omit(P,V)) is spurious, then 〈Y,Y 〉 ∈H T (omit(P,V)) is also spurious.

Based on this, we then obtain the following property.

Proposition 13. omit(P,V) has no spurious total HT-models iff H T (omit(P,V))⊆H T (P)|V .

We can also characterize the definition of faithfulness of an abstraction omit(P,V) (i.e., (CP)〈P,V 〉)
through the HT semantics.

Proposition 14 (Faithfulness via HT semantics). For a program P and atoms V , omit(P,V) is faithful iff we
have:

1. for all 〈Y,Y 〉, 〈X ,Y 〉 ∈H T (P) where X ⊂Y , some non-total 〈X ′, Y \V 〉 ∈H T (omit(P,V)) exists;
and

2. for all 〈Y,Y 〉 ∈H T (omit(P,V)) s.t. for every A′ ⊆ V where 〈Y ∪A′,Y ∪A′〉 /∈H T (P) some non-
total 〈X ,Y 〉 ∈H T (omit(P,V)) exists.

Condition 1 ensures that all HT-models that are not answer sets do not become answer sets in the ab-
straction, while condition 2 ensures that for new total HT-models some “killer models” exist eliminating
them as answer sets.

From Prop. 9-12 and 13 we get the following result.

Theorem 15. If omit(P,V) is faithful and satisfies H T (omit(P,V))⊆H T (P)|V , then omit(P,V ′) is faith-
ful for every V ′ ⊆V .

Notice that this result also extends to the case whenever omit(P,V) satisfies (SP)〈P,V 〉.
This result shows that if omit(P,V) satisfies the conditions in Theorem 15, then it would be possible

to add back some of the omitted atoms to the program, while preserving faithfulness. Notice that this
coincides with our notion of refinement-safe faithfulness. This notion helps to avoid the cases of having
faithful abstractions that omit too many details but no longer remain faithful when some of the details are
added back. Another way of viewing refinement-safety is from the other way around. Atoms can be omitted
one-by-one, while still preserving the decisions until omission can no longer be made without introducing
spuriousness. Our result gives a semantic condition which is sufficient but not necessary for obtaining
refinement-safety.

6 Conclusion

We have reviewed omission abstraction in the light of recent work on forgetting from logic programs. To
understand the difference, we have described desired properties for the former, and we showed optimality
of the omit operator; some forgetting operators can be viewed as achieving omission abstraction while not
adhering to modularity and incrementality in general. It remains to extend this work and chart classes of
programs where forgetting operators satisfy the latter. In that, the modularity condition, which was the
starting criteria for abstraction, may be weakened so that a program can be partitioned into subprograms for

9

independent omission while still maintaining the results in Section 4.1. The longer range aim is to recognize
how omission abstraction aligns with the forgetting spectrum, and how results and tools of the latter may be
used to construct omission abstraction operators with certain properties. Moreover, the concept of omission
abstraction and its possible applications may bring a fresh perspective to research in forgetting.

Our semantic look at the omission abstraction operator omit in the well-established framework of HT-
logic provides a base for future investigations towards understanding ASP abstraction and its desired prop-
erties. A characterization of faithfulness (in particular of refinement-safe faithfulness) would be interesting,
yet we expect it to be more involved. This should be even more true for a relativized version of faithfulness,
in which auxiliary atoms (as customary in ASP encodings) are disregarded, making it more suitable for
applications; its linkage to the forgetting framework also remains to be studied.

Acknowledgments

We thank João Leite for his questions on the possible relations of forgetting to abstraction and for pointing
to the references. Furthermore, we are grateful to the reviewers for their helpful and constructive comments.

References

Berthold, M.; Gonçalves, R.; Knorr, M.; and Leite, J. 2019. A syntactic operator for forgetting that satisfies
strong persistence. Theory and Practice of Logic Programming 19(5-6):1038–1055.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.; Krennwallner, T.; Leone, N.; Maratea, M.;
Ricca, F.; and Schaub, T. 2020. Asp-core-2 input language format. Theory and Practice of Logic
Programming 20(2):294–309.

Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003. Counterexample-guided abstraction refine-
ment for symbolic model checking. Journal of the ACM 50(5):752–794.

Delgrande, J. P. 2017. A knowledge level account of forgetting. Journal of Artificial Intelligence Research
60:1165–1213.

Eiter, T.; Saribatur, Z. G.; and Schüller, P. 2019. Abstraction for zooming-in to unsolvability reasons of
grid-cell problems. In Proc. of the IJCAI 2019 Workshop on Explainable Artificial Intelligence (XAI).

Gonçalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2017. When you must forget: Beyond strong persistence
when forgetting in answer set programming. Theory and Practice of Logic Programming 17(5-6):837–
854.

Gonçalves, R.; Knorr, M.; and Leite, J. 2016a. The ultimate guide to forgetting in answer set programming.
In Proc. of the 15th International Conference on Principles of Knowledge Representation and Reasoning
(KR), 135–144.

Gonçalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t always forget what you want: On the limits of
forgetting in answer set programming. In Proc. of the 22nd European Conference on Artificial Intelligence
(ECAI), 957–965. IOS Press.

10

Knorr, M., and Alferes, J. J. 2014. Preserving strong equivalence while forgetting. In Proc. of the 14th
European Conference on Logics in Artificial Intelligence (JELIA), 412–425.

Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly equivalent logic programs. ACM Transactions on
Computational Logic 2(4):526–541.

Saribatur, Z. G., and Eiter, T. 2018. Omission-based abstraction for answer set programs. In Proc. of the
16th International Conference on Principles of Knowledge Representation and Reasoning (KR), 42–51.
AAAI Press.

Saribatur, Z. G.; Schüller, P.; and Eiter, T. 2019. Abstraction for non-ground answer set programs. In Proc.
of the 16th European Conference on Logics in Artificial Intelligence (JELIA), LNCS. Springer. 576–592.

A Appendix: Proofs

This section contains more details on proofs omitted in the main text.

Choice rules We recall that {α} ← B is the usual choice construct, which according to the ASP Core-
2 recommendation stands for α ← not α ′,B and α ′ ← not α,B where α ′ is a fresh (hidden) atom. We
alternatively may write {α} ← B as α ← not not α,B, i.e. use double negation; the results of HT-Logic and
in particular regarding strong equivalence from (Lifschitz, Pearce, and Valverde, 2001) extend to the use of
double negation.

Technically, the abstraction of a rule r : α← B(r) to a choice rule omit(r,V) was in (Saribatur and Eiter,
2018) implemented by two ordinary rules α ← not α ′,mV (B(r)), α ′ ← not α,mV (B(r)). As the auxiliary
atom α ′ is hidden, this can be equivalently be achieved by the single rule

α ← not not α,mV (B(r));

let us denote by omitdn(r,V) the variant of omit in which this implementation of choice is used. For iterated
application of omitdn, the syntax of programs is then explicitly extended with rule with double negation
that implement choice rules {α} ← B, i.e., rules α ← not not α,B; for each rule r, we denote by B−−(r)
the atoms in the body under double negation. The GL-reduct of a program P w.r.t. an interpretation I is
extended to such rules by PI = {H(r)← B+(r) | r ∈ P,B−(r)∩ I = /0,B−−(r)⊆ I}.

We then obtain:

Lemma 1. For each (ordinary) program P and set of atoms V , relative to the original set A of atoms (i.e.,
disregarding auxiliary atoms),

omit(P,V)≡ omitdn(P,V) for every V ⊆A .

Proof. For every choice rule r : {α} ← B over A , it holds that P1 = {α ← not α ′,B; α ′← not α,B} and
P2 = {α ← not not α,B} are strongly equivalent relative to A , i.e., for every program R over A (possibly
containing choice rules expressed by double negation), AS(P1 ∪R)|A = AS(P2 ∪R)|A holds. Towards a
contradiction, if this is violated, then some interpretation I of A ∪{α ′} must either (a) be an answer set of
P1∪R but I′ = I \{α ′} is not answer set of P2∪R; or (b) be an answer set of P2∪R but neither I nor I∪{α ′}
is an answer set of P1∪R.

11

In both cases, I |= B(r) must hold as otherwise no rule in P1∪P2 is applicable, and thus I \{α ′} would
be an answer of P1∪R and P2∪R, which would be a contradiction.

Case (a). Then one of the rules in P1 must be applicable w.r.t. I. If I |= not α,B(r), then I′ as above
does not satisfy not not α,B(r), and thus I′ is an answer set of P2∪R, which is a contradiction. Otherwise,
I |= not α ′,B(r); then I |= α . As I is not an answer set of P2∪R, some smaller J ⊂ I is a model of the reduct
(P2 ∪R)I; then J does not satisfy B(r) and J satisfies (P1 ∪R)I as well; this contradicts that I is an answer
set of P1∪R.

Case (b). If I satisfies not not α,B(r), then it follows that I |=α and I |= (P1∪R)I; moreover, no J⊂ I can
satisfy (P1∪R)I , as otherwise J |= (P2∪R)I as well. Thus I is answer set of P1∪R, which is a contradiction.
If I does not satisfy not not α,B(r), then I 6|= α and I′ = I∪{α ′} satisfies (P1∪R)I′ and, moreover no J ⊂ I′

satisfies (PcupR)I′ , as then (J \{α ′})⊂ I would satisfy (P2∪R)I ., which is a contradiction.
This shows that P1 and P2 are strongly equivalent relative to A . As each choice uses distinct auxil-

iary atoms, we thus may replace each omit(r,V) in omit(P,V) with omitdn(r,V) while preserving strong
equivalence relative to A ; this proves the claim.

We thus may tacitly use omitdn in place of the original operator omit, which we prefer here as we later
consider HT-Logic and want to avoid getting into auxiliary symbols.

A.1 Section 3

Proof of Theorem 1. Towards a contradiction, suppose that omit+ is not the unique minimal operator in Fo

with respect to � for singleton program. This means that some fo ∈ Fo exists such that for some pro-
gram P and set V of atoms, AS(omit+(P,V)) 6⊆ AS(fo(P,V)) holds, i.e., some abstract answer set Î of
AS(omit+(P,V)) is not an abstract answer set of fo(P,V).

If P is over V , then by (D2) and (D3) we have omit+(P,V) = fo(P,V) = P, which is not possible. Thus
for the rest assume that P contains some rule r not over V .

We next consider the case where P is of the form P = {r}∪R, where R is over V .
In the argument we use the following fact:

For every fo ∈ Fo and p ∈V , fo({p←},V)≡ /0. (*)

Indeed, whatever rules R over V are added to the abstract program fo({p←},V), as fo satisfies (SI) by
Proposition 3, there always must be an answer set; thus by modularity (D5), fo({p←},V) can contain only
tautologic rules (under ASP semantics).

The rule r is of the form α ← B(r). We consider two cases:
Case (i) Î is not an answer set of R. As Î is an answer set of omit+(P,V) = {omit+(r,V)}∪R, it follows

that Î satisfies B(omit+(r,V)) and also H(r), where H(r) /∈ Î (i.e., omit+(r,V) is “productive” and adds H(r)
to Ĥ).3 As Î is not an answer set of fo(P,V), it follows from (D1) for fo that P does not have an answer set
I such that Î = I|V . Hence, some atoms from V must occur in B+(r); let p1, . . . , pk, be all these atoms.

Let us now consider the program P′= P∪{pi←| i= 1, . . . , k}. We then have that I′= Î∪{p1, . . . , pk} is
an answer set of P′ and clearly I′|V = Î. Furthermore, fo(P′,V) = fo(P,V)∪

⋃k
i=1 fo({pi←},V) = fo(P,V);

as Î /∈ AS(fo(P,V)), condition (D1) is violated for fo, which is a contradiction,
Case (ii) Î is an answer set of R. As Î /∈ AS(fo(P,V)), some rule r′ ∈ fo(r,V) must exist that is violated

by Î. From condition (D1) for fo, we conclude that P has no answer set I such that I|V = Î. Looking at P
and r, if B−(r) contains some atom p ∈V , then the program P′ = P∪{p←} has the answer set I = Î∪{p},

3This would also hold if r were an explicit choice rule {α}← B, implemented by double negation α ← not not α,B.

12

while fo(P′,V) = fo(P,V)∪ fo({p←},V) = fo(P,V) has no answer set I such that IV = Î; this contradicts
again (D1) for fo. Otherwise, B+(r) must contain some atom p ∈ V . But then Î satisfies r, and thus Î is an
answer set of P; this again contradicts (D1) for fo. Thus, the claim holds for P = {r}∪R.

Now given the latter, we obtain that

AS(fo(P,V))⊇ AS(omit+(r1,V)∪ fo(P,V))

⊇ AS(omit+(r1,V)∪omit+(r2,V)∪ fo(P,V))

. . .

⊇ AS(
⋃n

i=1 omit+(ri,V)∪ fo(P,V))

= AS(omit+(P,V)∪ fo(P,V)),

since we can introduce each omit+(ri,V) with Ri = omit+(r1,V)∪·· ·∪omit+(ri−1,V)∪ fo(P,V).
On the other hand, starting from omit+(P,V), we obtain

AS(omit+(P,V))⊆ AS(fo(r1,V)∪omit+(P,V))

⊆ AS(fo(r1,V)∪ fo(r2,V)∪omit+(P,V))

. . .
⊆ AS(

⋃n
i=1 fo(ri,V)∪omit+(P,V))

= AS(omit+(P,V)∪ fo(P,V)),

by introducing each fo(ri,V) with R′i= fo(r1,V)∪ ·· · ∪ fo(ri−1,V)∪ omit+(P,V). Thus, it follows that
AS(omit+(P,V))⊆ AS(fo(P,V)) holds.

This proves that omit+ satisfies omit+ � fo for every operator fo ∈ Fo. As every such fo satisfies (SI) by
Proposition 3, it follows that omit+ is the unique �-minimal omission operator in Fo under strong equiva-
lence.

A.2 Section 4

Proof of Proposition 3 (sketch). (wC) is the over-approximation of (D1) and (SI) holds because a stronger
property is satisfied (see Proposition 4).

Proof of Proposition 4. Let R = As fo satisfies (D2), (D3), and (D5), we obtain:

fo(P∪R,V) =
⋃

r∈P∪R

fo(r,V) by(D5)

=
⋃
r∈P

fo(r,V)∪
⋃
r∈R

fo(r,V)

= fo(P,V)∪ fo(R,V) by(D5)
= fo(P,V)∪R by(D2),(D3)

Proof of Proposition 7. By Prop. 5 and knowing that FM satisfies (sSP).

13

Proof of Proposition 5. Follows from (wC) and (SI) (Proposition 3): AS(f (P,V)∪R) = AS(f (P∪R,V))⊇
AS(P∪R)|V .

Proof of Proposition 6 (sketch). It follows from the definition of faithfulness.

Proof of Proposition 7 (sketch). By Proposition 5 and knowing that FM satisfies (sSP).

Proof of Proposition 10. Assume we have 〈X \V,Y \V 〉 /∈H T (omit(P,V)). This means either (i) Y \V 2r
for some r̂ in omit(P,V), or (ii) X \V 2r for some r̂ in omit(P,V)Y\V . Case (i) contradicts to Prop 9.

(ii) X \V |= B(r̂) and X \V 2H(r̂). The rule r̂ can not be an unchanged rule, since that contradicts that
X \V |= PY\V , so it is a rule that is converted to a choice rule from some rule r ∈ P. So B(r)∩V 6= /0. We
also know that Y \V |= B(r̂).

If Y \V |= B(r), this means that B+(r)∩V = /0 and B−(r)∩V 6= /0. So we also have X \V |= B(r), thus
having X \V 2H(r̂) contradicts X \V |= PY\V .

Say Y \V 2B(r). Y ∪V 2B(r) is not possible (due to Y \V |= B(r̂)). If Y ∪V |= B(r), this means that
B+(r)∩V 6= /0. So we also have X ∪V |= B(r), thus having X \V 2H(r̂) contradicts X ∪V |= PY .

A.3 Section 5

Proof of Proposition 11. Assume that for all rules r in P we have either B+(r)∩V = /0 and B−(r)∩V 6= /0,
or H(r) ∈ V , or (H(r)∪B(r))∩V = /0. We will show that all possible outcomes of this assumption results
in a contradiction.

We know that Y |= omit(P,V) and Y |= omit(P,V)Y , but for any V ′ ⊆ V , we have Y ∪V ′2r for some
r ∈ P, i.e., Y ∪V ′ |= B(r) but Y ∪V ′2H(r). There are three cases for r to become in omit(P,V): (a) r gets
omitted, (b) r gets changed to a choice rule r̂ (due to B−(r)∩V 6= /0), or (c) r is unchanged. The case (a)
means that either (a-i) H(r) ∈ V , or (a-ii) H(r) is of form fr (placeholder for constraint r) and fr ∈ B−(r)
and B(r)∩V 6= /0.

For (a-i): Y ∪V ′2H(r) means that H(r) /∈V ′, but then one can find some other Y ∪V ′′ where H(r) ∈V ′′

so that the rule r is satisfied. As for (a-ii), if there is the case that Y ∪V ′ |= B(r) but Y ∪V ′2H(r), some
other Y ∪V ′′ would appear including fr so that B(r) is not satisfied. Thus r can not be used as a reason for
spuriousness of 〈Y,Y 〉. So we need to look at other types of rules that are unsatisfied, where the head do not
contain omitted atoms.

The case (c) would mean Y 2r contradicting the assumption that 〈Y,Y 〉 is an HT-model of omit(P,V).
In case (b) we have two possibilities (b-i) Y 2B(r̂) or (b-ii) Y |= B(r̂) and Y |= H(r̂). Since we have

Y ∪V ′ |= B(r), the case (b-i) can not hold. Vs for (b-ii), since B−(r)∩V 6= /0 but Y ∪V ′ |= B(r) we can find
some other Y ∪V ′′ such that Y ∪V ′′ |= B(r) so that the rule r is satisfied. Thus r can not be used as a reason
for spuriousness of 〈Y,Y 〉. So we need to look at other types of rules that are unsatisfied.

14

Proof of Proposition 12. Consider X ⊂ Y . Assume 〈Y,Y 〉 is not spurious. So there exists some 〈Y ∪V ′,Y ∪
V ′〉 ∈H T (P) s.t. V ′ ⊆ V . Since 〈X ,Y 〉 is spurious, we have that for all 〈X ∪V ′′,Y ∪V ′〉 where V ′′ ⊆
V ′, X ∪V ′′2PY∪V ′ . This means for all X ∪V ′′ there is some rule r ∈ PY∪V ′ s.t. X ∪V ′′ |= B(r) but X ∪
V ′′2H(r). Obviously, this rule cannot be a rule that remains unchanged in omit(P,V) since 〈X ,Y 〉 is a
model of omit(P,V). So let’s look at the other cases: (i) r is omitted, (ii) r is changed to a choice rule in
omit(P,V).

The case (i) means that H(r) ∈ V . Since we have X ∪V ′′ |= B(r), we should have Y ∪V ′ |= B(r) thus
H(r) ∈V ′. But then some other X ∪V ′′′ can be found that satisfies H(r) where V ′′′ =V ′′∪H(r)⊆V ′. Thus
r can not be used as a reason for spuriousness of 〈X ,Y 〉.

Case (ii): We know that Y ∪V ′ |= B(r) so H(r) ∈Y \X . Then we get Y |= B(r̂). Since X |= omit(P,V)Y ,
we have X |= r̂Y for the reduct r̂Y of r̂. Since X ∪V ′′ |= B(r) we get X |= B(r̂Y). But then H(r) ∈ Y \X
contradicts to having X |= H(r̂Y).

15

	Introduction
	Background
	Omission Abstraction

	Desiderata for Omission Abstraction
	Through the Lens of Forgetting
	Putting omission abstraction in this picture

	Focusing on HT Logic
	Conclusion
	Appendix: Proofs
	Section 3
	Section 4
	Section 5

