
L O G C O M P
R E S E A R C H

R E P O R T

Institut für Logic and Computation

FB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR LOGIC AND COMPUTATION

FACHBEREICH WISSENSBASIERTE SYSTEME

WITNESSES FOR ANSWER SETS

OF LOGIC PROGRAMS

YISONG WANG THOMAS EITER

YUANLIN ZHANG FANGZHEN LIN

LOGCOMP RESEARCH REPORT 22-01

OCTOBER 2022

LOGCOMP RESEARCH REPORT

LOGCOMP RESEARCH REPORT 22-01, OCTOBER 2022

WITNESSES FOR ANSWER SETS OF LOGIC PROGRAMS

Yisong Wang1 Thomas Eiter2 Yuanlin Zhang3 Fangzhen Lin4

Abstract. In this paper, we consider Answer Set Programming (ASP). It is a declarative problem
solving paradigm that can be used to encode a problem as a logic program whose answer sets
correspond to the solutions of the problem. It has been widely applied in various domains in AI and
beyond. Given that answer sets are supposed to yield solutions to the original problem, the question
of “why a set of atoms is an answer set” becomes important for both semantics understanding and
program debugging. It has been well investigated for normal logic programs. However, for the class
of disjunctive logic programs, which is a substantial extension of that of normal logic programs, this
question has not been addressed much. In this paper, we propose a notion of reduct for disjunctive
logic programs and show how it can provide answers to the aforementioned question. First of all,
we show that for each answer set, its reduct provides a resolution proof for each atom in it. We then
further consider minimal sets of rules that will be sufficient to provide resolution proofs for sets of
atoms. Such sets of rules will be called witnesses and are the focus of this paper. We study complexity
issues of computing various witnesses and provide algorithms for computing them. In particular,
we show that the problem is tractable for normal and headcycle-free disjunctive logic programs, but
intractable for general disjunctive logic programs. We also conducted some experiments and found
that for many well-known ASP and SAT benchmarks, computing a minimal witness for an atom of
an answer set is often feasible.

1Department of Computer Science and Technology, Guizhou University; Institute for Artificial Intelligence, Guizhou
University, China; email: yswang@gzu.edu.cn

2Institute of Logic and Computation, TU Wien, Austria; email: eiter@kr.tuwien.ac.at.
3Texas Tech University, Lubbock, Texas, USA; email: y.zhang@ttu.edu
4Hong Kong University of Science and Technology, Hong Kong; email: flin@cs.ust.hk.

This report is a preprint version of an article to appear in ACM Transactions on Computational Logic.

Copyright © 2022 by the authors

2 LOGCOMP RR 22-01

Contents

1 Introduction 4

2 Preliminaries 7
2.1 General logic programs . 7
2.2 Minimal model decomposition . 9

3 Reduct 10

4 Witnesses for Answer Sets 14
4.1 Witnesses . 14
4.2 α?- and α-witnesses . 16

4.2.1 Constructing α?-witnesses and specialisations . 18
4.3 β ?- and β -witnesses . 19

4.3.1 Constructing β ?-witnesses and specialisations . 21
4.4 Relationship among witness notions . 25

5 Complexity 27
5.1 Recognizing witnesses . 27
5.2 Computing witnesses . 28

5.2.1 Minimal witnesses . 28
5.2.2 α-witnesses . 29
5.2.3 β -witnesses . 30

6 Experimental Evaluation 31
6.1 Benchmark problems . 32

6.1.1 Benchmark generation . 32
6.1.2 Random k-CNFs . 33
6.1.3 Random disjunctive logic programs . 33
6.1.4 Handcrafted CNFs . 33
6.1.5 ASP Competition benchmarks . 34
6.1.6 SAT Competition benchmarks . 35

6.2 Experimental results . 35
6.2.1 Random k-CNFs . 35
6.2.2 Random disjunctive logic programs . 37
6.2.3 Handcrafted CNFs . 37
6.2.4 ASP and SAT competition benchmarks . 38

6.3 Summary and Discussion . 41

7 Related Work 42
7.1 Off-line justification . 42
7.2 Causal stable models . 43
7.3 Inconsistency proofs . 44
7.4 ASP debugging . 45

LOGCOMP RR 22-01 3

8 Conclusion 47

4 LOGCOMP RR 22-01

1 Introduction

Interpretability/explainability and explanation convey safety and trust in the ‘how’ and ‘why’ of decision-
making by a system to users to increase transparency of the system Hempel and Oppenheim [1948]; Miller
[2019]; Srinivasan and Chander [2020]; Confalonieri et al. [2021]. They play an important role in medicine,
justice, and artificial intelligence (AI) in particular Almada [2019]; Mittelstadt et al. [2019]; Costabello et al.
[2019]; Dazeley et al. [2021]; Bochman [2021]. Such explanation tasks in AI include justifying autonomous
agent behaviour, debugging of machine learning models, explaining medical decision-making, and explaining
predictions of classifiers Burkart and Huber [2021]. From the perspective of knowledge representation, an
explanation for a solution may be equally or more important than the solution itself Pollock [1974]; Lin
and Shoham [1992]; Sosa [2019]. For logic programming under answer sets semantics (ASP), which is a
declarative problem solving paradigm Brewka et al. [2011], an explanation for an answer set amounts to
answer “why a set of atoms is an answer set of a logic program” in a well-justified manner, instead of just by
definition. In other words, every atom in an answer set of a logic program must be founded or justified by a
given derivation. It provides deep insights into ASP semantics that are useful for debugging and various
crucial scenarios in which ASP is applied, including health and life sciences Erdem et al. [2011] and nuclear
engineering Hanna et al. [2020]. These justifications are usually not provided in the semantics itself (note
exceptions such as causal stable models Cabalar and Fandinno [2016]).

This challenging task has been widely explored Fandinno and Schulz [2019]; Arias et al. [2020] in terms
of off-line justification for normal logic programs which uses an explanation graph to describe the “reason”
for the truth value of an atom w.r.t. a given answer set Pontelli et al. [2009], attack trees in argumentation
theory for extended normal logic programs Schulz and Toni [2016], self-justified .-computation for logic
programs with abstract constraint atoms Liu et al. [2010], causal graphs and causal stable models Cabalar et
al. [2014]; Cabalar and Fandinno [2016]; Cabalar et al. [2020] for (disjunctive) logic programs. Explanations
for why a logic program has no answer set were also recently explored from the perspective of inconsistency
proofs Alviano et al. [2019] and unsatisfiable cores Alviano and Dodaro [2020]. The notion of justification
was also investigated in terms of abstract logical or algebraic frameworks for normal logic programs Denecker
et al. [2000, 2015].

For normal logic programs, explanations of answer sets are in our view rather easy and intuitive to obtain.
The reason is that every atom p in an answer set M of a logic program Π has a step-by-step construction
from the GL-reduct ΠM Gelfond and Lifschitz [1988] in terms of the immediate consequence operator TΠM ,
i.e., the canonical one-step derivation operator for the logic program ΠM van Emden and Kowalski [1976].
This step-by-step construction properly plays a role of “explanation”. For instance, considering the answer
set M = {a,c} of the logic program Π = {a← not b, b← not a, c← a, c← b}, the step-by-step
construction for c ∈M is TΠM(/0) = {a} and TΠM({a}) = {a,c}, from which the explanation for c ∈M can
be extracted:

(1) The atom a is first justified by the rule a (called a fact) from ΠM;

(2) The atom c is then justified by the rule c← a from ΠM and the justified atom a.

For disjunctive logic programs, the self-justified .-computation and attack trees do not work while causal
stable models are not constructive. To wit, consider the logic program Π = {r1 : a∨b, r2 : a← b, r3 :b←
a}, which has the unique answer set M = {a,b}. According to Cabalar and Fandinno [2016], the logic
program Π has two causal stable models I and I′ that informally assign each atom that is true a derivation in
terms of a sequence of rule applications:

LOGCOMP RR 22-01 5

I(a) = ra
1, I(b) = ra

1 · r3; I′(a) = rb
1 · r2, I′(b) = rb

1.

According to I, the atom a is a non-deterministic effect of the disjunctive rule r1 by the notation ra
1, and b is

derived from a by ra
1 through r3. Analogously, I′ makes b true because of the non-deterministic choice for b

from r1 (in the notation rb
1) and then obtains a from the chosen b through r2.

Note that the unique answer set of the Π is {a,b}. Both a and b are indeed logical consequences of the
logic program Π when interpreting ‘←’ as material implication. In this sense, a and b must be in every model
of the logic program, and an explanation for a can be any logical proof for a from Π, which is different from
“a non-deterministic effect of disjunction”. In fact, a resolution proof for a is immediate by r1 and r2, and
similarly one for b by r1 and r3. These explanations in terms of resolution proof are constructive.

For normal logic programs, such explanations by resolution proofs are readily available as we have
illustrated: an answer set M of a normal logic program Π is the least model of the GL-reduct ΠM, which is
a Horn logic program; this least model can be efficiently constructed by unit resolution, implementing the
immediate consequence operator. Thus, unit resolution proofs from ΠM for the atoms in M play a proper
role of an explanation for M. This unit resolution proof is also at hand for answer sets of headcycle-free
disjunctive logic programs Ben-Eliyahu and Dechter [1994].

Fortunately, we will show that such explanations in terms of resolution proofs exist for disjunctive logic
programs as well if a new reduct is applied. Resolution proofs can be found using theorem provers, but this is
intractable in various settings Haken [1985]; Chvátal and Szemerédi [1988]; Fellows et al. [2006]. According
to the Occam’s razor principle, it is usually desirable that a derivation step is involved in an explanation only
if it is necessary for the explanation, and the overall proof involves no redundant clauses to alleviate the
burden of interpretation for the user. For this purpose, we are interested in which rules (called witnesses) are
(minimally) sufficient to build up an explanation.

The main contributions of this paper are briefly summarized as follows.

1. We propose a new notion of reduct which replaces every atom that is assumed to be false by false
in addition to the GL-reduct Gelfond and Lifschitz [1988]. This reduct is slightly different from the
Ferraris-reduct Ferraris [2005] , which replaces every formula evaluated to be false by false. It provides
a new characterization for answer sets of logic programs, i.e., a set M of atoms is an answer set of a
logic program Π whenever M is the least model of this reduct of Π w.r.t. M, and achieves explanations
for answer sets via resolution proofs. As a result, we expand the minimal model decomposition
theorem of Ben-Eliyahu-Zohary et al. in Ben-Eliyahu-Zohary et al. [2016]. In particular, we show
that their sound decomposition algorithm CheckMin(Σ,M) for checking whether a model M of a clause
theory Σ is a minimal model of Σ is complete for clause theories in the reduced form; as the latter is
easily computed and preserves minimal models of Σ that are subsets of M, the algorithm can thus with
a minor modification be used for modular minimal model checking for arbitrary clause theories. Along
the same line, this result extends to answer set checking for disjunctive logic programs.

2. We introduce the notions of α-witness and β -witness and variants thereof, viz. minimal, compact, full-
split, α?- and β ?-witnesses respectively, from which explanations for answer sets can be built up in a
stepwise manner. While α-witnesses are for sets of atoms, β -witnesses are more fine-grained and target
a single atom at a time. Roughly speaking, an α-witness is a sequence [(S1,Π1),(S2,Π2), . . . ,(Sn,Πn)]
of pairs (Si,Πi) of sets Si of atoms and rules Πi from a logic program Π where the Si forms a
partitioning of an answer set M such that each Si can be derived from the reduct of Πi w.r.t. M and
all its ancestors S j’s. A β -witness is a sequence [(p1,Π1),(p2,Π2), . . . ,(pn,Πn)] of pairs (pi,Πi) of
an atom pi and a set Πi of rules from Π, where M = {p1, . . . , pn} is an answer set of Π, such that

6 LOGCOMP RR 22-01

p1, . . . , pi−1 plus the reduct of Πi w.r.t. M allows to derive pi. Minimality refers to the subset-minimality
of each Πi, and compactness to the additional property that all Πi are pairwise disjoint. The ? variants
impose further restrictions to reflect the dependency among its components (Si,Πi)s in terms of a
directed graph, while for β -witnesses, a partial ordering of the atoms pi similar as for α-witnesses is
requested. While computing a compact α-witness is tractable, the β -witness allows to focus on some
Si in the α-witness. Thus, α- and β -witnesses can be combined to form a flexible explanation: a low
level (atomic) explanation for the atoms in Si and a high level (collection of atoms) explanation for
S j (j 6= i).

3. We present methods and algorithms for computing α- and β -witnesses and their variants, and we study
complexity issues in this context. In particular, we show that every answer set of a logic program has
a proper justification in terms of each of the above witness notions, with the exception of compact
β - and β ?-witnesses; deciding whether such a witness exists turns out to be Σ

p
2 -complete. We further

prove that the recognition problem for all these witnesses is intractable in general, and is in fact
for most of them Dp

1-complete, and thus only mildly harder than NP and co-NP. Furthermore, we
consider also computing some witness for selected notions, and relate this problem to computing
some minimal unsatisfiable set (MUS) of a given (unsatisfiable) clause theory, which has been studied
in many works, cf. Silva [2010]; Janota and Marques-Silva [2016]. In particular, computing some
full-split α?-witness turns out to be equivalent to computing some MUS under log-space reductions.
Furthermore, computing some MUS can be reduced in log-space to computing some minimal β -witness
resp. minimal β ?-witness; the converse is not known. Since computing some MUS is FPNP

‖ -hard Chen
and Toda [1995]; Janota and Marques-Silva [2016], all of these problems are thus FPNP

‖ -hard as well.
Notably, deciding whether a minimal β -witness may start with a particular atom p (i.e., p1 = p) is
Σ

p
2-complete and thus even harder than computing some minimal β -witness. On the other hand, by

known results for MUS and our algorithms, we obtain that computing some full-split α?-witness
and some minimal β ?-witness is feasible in polynomial time with an NP oracle. Furthermore, the
complexity is tractable for all problems when the logic program Π at hand is normal, i.e., has no
disjunction in rule heads, or headcycle-free Ben-Eliyahu and Dechter [1994].

4. We profile the algorithms with experiments on well-known ASP and SAT benchmarks. In particular,
we tested two ASP benchmarks, namely minimal diagnosis and strategic companies and five industrial
SAT competition benchmarks of moderate size, in addition to random and handcrafted CNFs and
random disjunctive logic programs. The ASP benchmarks are beyond NP complexity of deciding the
existence of an answer set and involve disjunction, but without any aggregations or optimization. In
these experiments, finding minimal β -witnesses is very often feasible under resource constraints, and
an explanation (resolution proof) is quite clear from a minimal β -witness in most cases since only one
rule is involved. Thus, any such witness provides an easy-to-read proof for the stepwise construction
of an answer set of the logic programs that we encountered.

Organization

The rest of the paper is organized as follows. In Section 2, we briefly review necessary concepts and notions
of answer set programming, as well as the notion of minimal model decomposition for clause theories Ben-
Eliyahu-Zohary et al. [2016]; Ben-Eliyahu-Zohary et al. [2017]. After that we introduce in Section 3 the
notion of reduct and investigate some of its properties. We then present the notions of α- and β -witnesses and
variants for answer sets of logic programs in Section 4, where we then also discuss methods and algorithms

LOGCOMP RR 22-01 7

for computation. This is followed by addressing complexity issues for the various notions of witnesses in
Section 5. We report about and analyze the experimental evaluation of the proposed algorithms in Section 6.
In Section 7, we discuss related work where we make a more detailed comparison with causal stable models
and off-line justification. The final Section 8 concludes the paper with a brief summary and remarks on
extensions of the results as well as future work. In order not to distract from the flow of reading, all detailed
technical proofs have been moved to the electronic Appendix.

2 Preliminaries

We assume an underlying propositional language L over a finite set A of atoms together with two additional
propositional constants ⊥ (falsity) and > (tautology). The notions of literal, clause, formula, (clause) theory,
interpretation, satisfiability, model, logical consequence (|=) and equivalence (≡) of L are defined as
usual. For S⊆A , we let ¬S = {¬p | p ∈ S}, not S = {not p | p ∈ S} and not not S = {not not p | p ∈ S};
moreover, for a finite set L of literals, we use the notation

∨
L =

∨
`∈L ` and

∧
L =

∧
`∈L `. A clause α is

usually represented as a set of literals, and we let α+ = α ∩A and α− = {p | ¬p ∈ α}. By Σ |=min α we
denote that Σ |= α and no Σ′⊂Σ satisfies Σ′ |=α . By var(e) we mean the set of atoms occurring in the
expression e. For simplicity, a singleton set {e} is usually abbreviated as e when it is clear from its context.

2.1 General logic programs

A (general) logic program (or an answer set program) Π is a finite set of (general) rules r Gelfond and
Lifschitz [1991]; Lifschitz et al. [1999] of the form

p1∨·· ·∨ pk← pk+1, · · · , pm,not pm+1, · · · ,not pn,not not pn+1, · · · ,not not pl (1)

where pi ∈A , 1≤ i≤ l. We let r+ = {p1, . . . , pk}, r− = {pk+1, . . . , pm} and rnot = {pm+1, . . . , pn}, r2not =
{pn+1, . . . , pl}, hd(r) = p1∨·· ·∨ pk and bd(r) = r−∪not rnot ∪not not r2not . We also write r as

hd(r)← bd(r) respectively r+← r−∪not rnot ∪not not r2not . (2)

The notation hd(r) (resp. bd(r)) refers to the head (resp. body) of r. Intuitively, r+ (resp. r−) means the set
of atoms that occur in the rule r positively (resp. negatively) when viewing the rule containing no not as
a clause, while rnot (resp. r2not) stands for these occurrences of atoms that are in the scope of single (resp.
double) negation. The rule r is nesting-free or disjunctive if n = l. The nesting-free rule r is positive (resp.
normal, a constraint) if n = m (resp. k≤ 1, k = 0). A positive rule r is Horn (resp. definite), if |r+| ≤ 1 (resp.
|r+|= 1). A logic program Π is a positive (resp., nesting-free or disjunctive, normal, Horn, definite) (logic)
program if every rule in Π is so.

Example 2.1. Let Π be the logic program consisting of the following three rules: r1 : a∨ b← not not c;
r2 : c← not a; r3 : b← a. Note that r+1 = {a,b}, r−1 = rnot

1 = /0, r2not
1 = {c}, r+2 = {c}, rnot

2 = {a}, r+3 = {b}
and r−3 = {a}. The rule r1 is not nesting-free since it involves ‘not not’. The rule r2 is normal, while r3 is
Horn. Thus, Π is not nesting-free.

An interpretation is a set I ⊆A of atoms. The satisfaction (model) relation I |=α where α is an atom p,
a rule r or a logic program Π, is defined as follows:

• I |= p if p ∈ I; I |= not p if I 6|= p; I |= not not p if I 6|= not p, i.e., p ∈ I;

8 LOGCOMP RR 22-01

• I |= r if I |= hd(r) or I 6|= γ for some γ ∈ bd(r);

• I |= Π if I |= r for every r ∈Π.

A model I of Π is minimal, if Π has no model I′ satisfying I′ ⊂ I; moreover I is the least (under set
inclusion) model Π, if I is the single minimal model of Π, i.e., I ⊆ I′ for every model I′ of Π. We recall that
a set M ⊆A is a stable model (or answer set) of Π, if M is a minimal model of the GL-reduct ΠM of Π w.r.t.
M Gelfond and Lifschitz [1991]; Lifschitz et al. [1999], where

Π
M = {hd(r)← r− | r ∈Π such that M |= γ for each γ ∈ bd(r)\ r−}. (3)

Example 2.2 (Example 2.1 cont’d). Let M1 = {b,c}. We have ΠM1 = {a∨b, c, b← a}, whose minimal
model is {b,c}. Thus, M1 is an answer set of Π. For M2 = {c}, we have ΠM2 = ΠM1 . Since M2 is not a
minimal model of ΠM2 , M2 is not an answer set of Π.

We note that a positive rule r of the form (1) has the same models as the clause p1∨·· ·∨ pk∨¬pk+1∨
·· ·∨¬pm, or represented as the set r+∪¬r− of literals. Furthermore, the GL-reduct ΠI of a positive program
Π w.r.t. any interpretation I always equals Π, i.e., ΠI = Π, which implies that the answer sets of a positive
program are its minimal models. For this reason, we shall identify a positive rule (resp. a positive program)
with its corresponding clause (resp. clause theory), if clear from context, and vice versa identify a clause
(resp. clause theory) with the corresponding positive rule (resp. positive program) .

It is well-known that every definite logic program Π has the least (under set inclusion) model LM(Π),
which is computable in polynomial time by the least fixpoint iteration as LM(Π) = T ∞

Π
= limi→∞ T i

Π
, where

T 0
Π
= /0 and T i+1

Π
= TΠ(T i

Π
), for i≥ 0, with the immediate consequence operator van Emden and Kowalski

[1976] TΠ : 2A → 2A defined by

TΠ(S) = {p | p ∈ r+,r ∈Π,r− ⊆ S}.

As well-known, computing T ∞
Π

Dowling and Gallier [1984] is feasible in linear time.
The (positive) dependency graph of a logic program Π is the directed graph GΠ = (V,E) whose vertices

in V are the atoms occurring in Π and with edges (p,q) ∈ E if q ∈ r+ and p ∈ r− for some r∈Π. A nonempty
set L ⊆A of atoms is a loop of Π, if GΠ has a cyclic path v0, . . . ,vn+1, i.e., (vi,vi+1) ∈ E, 0 ≤ i ≤ n, and
vn+1 = v0, such that L = {v0, . . . ,vn}. A logic program Π is headcycle-free, if |L∩ r+| ≤ 1 for every loop L
of Π and every rule r ∈Π.

For a directed graph G = (V,E) and v ∈ V , we denote by DG(v) the set of all ancestor nodes u of v in
G, i.e., such that a path v0, . . . ,vn+1 with v0 = u and vn+1 = v exists in G; furthermore, for any set V ′ ⊆V of
nodes, we let DG(V ′) =

⋃
v∈V ′ DG(v′). A vertex v is a source of G, if DG(v) = /0.

Given a directed graph G = (V,E), the collapsed dependency graph SG = (V,E) of G Leone et al. [1997]
is the directed acyclic graph (DAG) where

• V is the set of the strongly connected components (SCCs) of G, i.e., every C ∈V is a maximal subgraph
G′ = (V ′,E ′) of G such that G′ has a path from any vertex v′ ∈V ′ to every other vertex in V ′; we also
denote G′ by V ′ when it is clear from its context, and

• E consists of all edges (C,C′) such that C 6=C′ and C∩DG(C′) 6= /0.

For simplicity, we write SΠ instead of SGΠ
for a logic program Π.

LOGCOMP RR 22-01 9

δ4

δ3δ2

δ1

a

b

d

c

Figure 1: The atom-clause dependency graph GΣ and the super-dependency graph SGΣ (dashed lines) of Σ in
Example 2.3

2.2 Minimal model decomposition

As we have seen above, the definition of answer set requires a minimality check for models of a positive
program. For this task, Ben-Eliyahu-Zohary et al. [2016,2017] proposed an algorithm CheckMin(Σ,M)
for checking whether a model M of a clause theory Σ is a minimal model of Σ, based on minimal model
decomposition using a super-dependency graph with a more fine-grained dependency representation for
positive programs respectively clause theories.

The atom-clause dependency graph of a clause theory Σ is the directed graph GΣ = (V,E), where

• the vertices V are the atoms and clauses occurring in Σ;

• for each clause δ ∈ Σ, E contains edges (p,δ) ∈ E and (δ ,q) ∈ E for all p ∈ δ− and q ∈ δ+, respec-
tively.

Intuitively, if both (p,δ) and (δ ,q) are in E, then p depends (backwards) on q via the clause δ . The
super-dependency graph SGΣ of Σ is then the collapsed dependency graph of GΣ, i.e., SGΣ = SGΣ

.

Example 2.3. Consider the clause theory (written as positive program) Σ = {δ1 : c, δ2 : a∨b← c, δ3 :
d← a, δ4 : c← d}. Then GΣ = (V,E) has nodes V = {a,b,c,d}∪{δ1,δ2,δ3,δ4} and edges E = {(c,δ2),
(a,δ3), (d,δ4), (δ1,c), (δ2,a), (δ2,b), (δ3,d), (δ4,c)}. Furthermore, SGΣ has the nodes v1 = {δ1}, v2 =
{a,c,d,δ2,δ3,δ4}, and v3 = {b}, and the edges (v1,v2) and (v2,v3). Fig. 1 graphically illustrates GΣ and
SGΣ. It is not difficult to check that Σ has two minimal models {a,c,d} and {b,c}.

We call a source S of SGΣ empty, if S∩A = /0, and denote by ΣS the set of clauses in Σ that mention only
atoms from S. For a clause theory Σ and disjoint sets X and Y of atoms, Reduce(Σ,X ,Y) is obtained from Σ

by setting all atoms in X to true and all atoms in Y to false. Ben-Eliyahu-Zohary et al. [2016] showed the
following result:

Theorem 1 (Minimal model decomposition theorem by Ben-Eliyahu-Zohary et al. 2016). Let M be a minimal
model of a clause theory Σ and let S be a source of SGΣ s.t. X = S∩M is a minimal model of ΣS. Then M−X
is a minimal model of Σ′ = Reduce(Σ,X ,S∩A −X).

Based on this result, Ben-Eliyahu-Zohary et al. proposed an algorithm CheckMin(Σ,M), shown as
Algorithm 1, and proved that a model M of Σ is minimal if CheckMin(Σ,M) returns true. However, while the
algorithm is sound for minimal model checking (the model M is indeed minimal if CheckMin(Σ,M) returns
true), it is not complete (it is possible that CheckMin(Σ,M) return false even if M is a minimal model of

10 LOGCOMP RR 22-01

Algorithm 1: CheckMin (Σ,M)
Input: A clause theory Σ and a model M of Σ

Output: true (only if M is minimal) or false
1 G← SGΣ;
2 Recursively delete from G all empty sources;
3 while G has a source S which is a minimal model of ΣS do
4 X ←M∩S;
5 M←M−X ;
6 Σ← Reduce(Σ,X ,S ∩ A −X);
7 G← SGΣ;
8 Recursively delete from G all empty sources;
9 end

10 if M = /0 then return true else return false

Σ). Ben-Eliyahu-Zohary et al. gave the following example showing that CheckMin (Σ,M) may return false
although M is a minimal model of Σ.

Example 2.4 (Example 2.3, cont’d). It is not difficult to check in Fig. 1 that the only source {δ1} of the
super-dependency graph SGΣ is empty. As SGΣ has the single source {δ1} (which is empty), after deleting
{δ1} from SGΣ, the only source is S = {a,c,d,δ2,δ3,δ4} and ΣS = {δ1,δ3,δ4}. Consider now M = {a,c,d}.
Then CheckMin(Σ,M) returns false, as M∩S = {a,c,d} is not a minimal model of ΣS, whose unique minimal
model is {c}. However, M is a minimal model of Σ.

To address this issue, a sufficient condition called modular property was proposed. Formally, a minimal
model M of a clause theory Σ has the modular property w.r.t. Σ, if either

1. SGΣ has only one strongly connected component, or

2. SGΣ has a source S s.t. M ∩ S is a minimal model of ΣS, and M− S is a minimal model of Σ′ =
Reduce(Σ,M∩S,S∩A −M) that enjoys the modular property w.r.t. Σ′.

Ben-Eliyahu-Zohary et al. proved that if a minimal model M of Σ has the modular property w.r.t. Σ, then
CheckMin (Σ,M) always return true, i.e., the algorithm is complete for minimal model checking under this
assertion [Ben-Eliyahu-Zohary et al., 2016, Theorem 6.4].

3 Reduct

In this section, we present the notion of reduct1 and show how the algorithm CheckMin can take advantage of
it. More specifically, we show that for clause theories which are invariant under the reduct, the algorithm
CheckMin from above is complete. As the reduct preserves the minimal models that contain at most the
considered reducing atoms of each clause theory and can be computed efficiently, we obtain that CheckMin
can be easily adapted to a sound and complete minimality check for arbitrary clause theories with little
overhead.

1It is similar to but different from the disjunctive reduct for positive logic programs Zhang and Zhang [2017], which does not
change rule bodies.

LOGCOMP RR 22-01 11

Definition 3.1 (reduct). Let Π be a logic program and let S ⊆ A . The reduct of Π w.r.t. S, denoted by
MR(Π,S), is the positive program or clause theory:

{r+∩S← r− | r ∈Π such that S |= γ for each γ ∈ bd(r)}.

Intuitively, performing the reduct transforms a logic program according to the closed world assumption:
the atoms not in S are assumed to be false. Under this assumption, building the reduct substitutes each atom
that is assumed to be false with false and similarly substitutes every atom in the scope of “not” by its truth
value.

In particular, when Π is a clause theory, then

MR(Π,S) = {(α+∩S)∪¬α
− | α ∈Π, α

− ⊆ S}. (4)

In what follows, we view the reduct MR(Π,M) also as a clause theory even if Π is a logic program,
unless explicitly stated. In this sense MR(Π,M) |= ϕ means that the formula ϕ is a logical consequence of
MR(Π,M).

Example 3.1. For the logic program Π = {a∨b, a← b, b← a} in the Introduction, we have:

• MR(Π, /0) = {⊥} as a∨b is turned into the empty disjunction, MR(Π,{a,b}) = Π (no rule is altered)
, and MR(Π,{a}) = {a, ← a} is logically equivalent to MR(Π,{b}) = {b, ← b} ≡ ⊥. Thus, the
reduct does not preserve satisfiability.

For Σ and M in Example 2.4, we have Σ′ = MR(Σ,M) = {δ1,δ3,δ4}∪{a← c}, which yields a definite
program.

The reduct is similar to the GL-reduct for logic programs Gelfond and Lifschitz [1991] and the reduct
for logic programs with nested expressions Lifschitz et al. [1999]. However, the latter two handle only the
atoms in the scope of “not”. Furthermore, the reduct is also different from the reduct in Ferraris [2005] for
propositional formulas;2 e.g., the Ferraris-reduct of {¬a} w.r.t. {a} is {⊥}, while MR({¬a},{a}) = {¬a}.

The next proposition shows that the reduct MR(Π,S) is logically equivalent to the Ferraris-reduct τ(Π)S

when S is a model of Π, where τ(Π) =
∧
{τ(r) | r ∈Π} and for each rule r,

τ(r) =

∧r−∧
∧

p∈rnot

(p⊃⊥)∧
∧

q∈r2not

(q⊃⊥)⊃⊥)

 ⊃ ∨
r+. (5)

Proposition 3.1. Let Π be a general logic program and S a model of Π. Then it holds that MR(Π,S)≡ τ(Π)S.

The next proposition shows that the reduct “preserves” minimal models for clause theories in the
following sense.

Proposition 3.2. A set S⊆A is a minimal model of a clause theory Σ iff S is a minimal model of MR(Σ,S).

Example 3.2 (Example 3.1 cont’d). Recall that for the model M = {a,c,d} of the clause theory Σ in
Example 2.4, we have MR(Σ,M) = {δ1,δ3,δ4}∪ {δ ′2 : a← c} = {c, d ← a, c← d, a← c}. It is
readily checked that M is a minimal model of MR(Σ,M).

2The connectives are ⊥,∧,∨ and ⊃, while ¬ψ stands for ψ ⊃⊥.

12 LOGCOMP RR 22-01

The following theorem establishes a constructive characterization of the minimal models of a clause
theory via logical entailment.

Theorem 2 (Minimal model characterization). For every clause theory Σ and S⊆A , the items (i)–(iii) are
equivalent:

(i) S is a minimal model of Σ.

(ii) S is the least model (under set inclusion) of MR(Σ,S).

(iii) S = {q ∈A ∪{⊥} |MR(Σ,S) |= q}.

We note that item (iii) does not hold whenever MR(Σ,M) is inconsistent since S⊆A and A does not
contain ⊥. As regards item (iii) of Theorem 2, one can use resolution to compute the atoms that are logical
consequences of MR(Σ,M). Such a resolution proof for an atom can be taken as a “justification” (or an
explanation) for why the atom belongs to the minimal model M of MR(Σ,M). Many efficient theorem
provers such as Z33 and iprover4 can be utilized for this task.

The next proposition shows that this reduct can be employed to simplify clause theories for computing
minimal models that are contained in a given model.

Proposition 3.3. Suppose M is a model of a clause theory Σ and let M′ ⊂M. Then M′ is a minimal model of
Σ if and only if M′ is a minimal model of MR(Σ,M).

Consequently, we can replace for the minimality check of a nonempty model M of the clause theory Σ

with the reduct MR(Σ,M) (for the empty model the check is trivial). For clause theories in the reduced form,
i.e., that satisfies Σ = MR(Σ,M), we can complement the Minimal Model Decomposition Theorem with the
following result.

Proposition 3.4. Let M be a nonempty minimal model of a clause theory Σ and MR(Σ,M) = Σ. Then

(i) A ∩S = /0 for every source S of SGΣ.

(ii) Let S be resulted from SGΣ by removing all empty sources. Then for every source S of S, S∩A is a
minimal model of ΣS, and M−S∩A is a minimal model of Reduce(Σ,S∩A , /0).

(iii) Let S be a node of SGΣ and S∩A 6= /0, XS = {S′∩A | S′ ∈ DSGΣ
(S)} and Γ = Reduce(Σ,XS, /0). Then

S is a minimal model of ΓS.

This proposition suggests a revised minimal model checking algorithm CheckMinMR, shown in Algo-
rithm 2; the main difference is that it uses the reduct, i.e., it computes the reduct of Σ w.r.t. M at first (Line
1). The other minor revisions include simplifying the remaining process of CheckMin according to Proposi-
tion 3.4, e.g., it returns false if there is a nonempty source S and S∩A is not a minimal model of ΣS (Line 4);
the “Reduce” (Line 6) is also simplified due to the fact that S∩A = S∩M. Modulo these minor differences,
CheckMinMR(Σ,M)=CheckMin(MR(Σ,M),M). Combined with Theorem 6.4 of Ben-Eliyahu-Zohary et al.
[2016], we obtain the following result.

Theorem 3. Let M be a model of a clause theory Σ. Then it holds that

(i) M has the modular property w.r.t. Σ if M is a minimal model of Σ;

3https://github.com/Z3Prover/z3
4http://www.cs.man.ac.uk/~korovink/iprover/

https://github.com/Z3Prover/z3
http://www.cs.man.ac.uk/~korovink/iprover/

LOGCOMP RR 22-01 13

Algorithm 2: CheckMinMR(Σ,M)

Input: A clause theory Σ and a model M of Σ

Output: true if M is a minimal model of Σ, else false
1 Σ←MR(Σ,M); G← SGΣ;
2 Recursively delete from G all empty sources;
3 while G is nonempty, i.e., has some source S do
4 if S∩A is not a minimal model of ΣS then break M←M−S;
5 Σ← Reduce(Σ,S∩A , /0);
6 G← SGΣ;
7 Recursively delete from G all empty sources;
8 end
9 if M = /0 then return true else return false

Algorithm 3: MinModel(Σ)

Input: A clause theory Σ

Output: A minimal model of Σ if it is satisfiable, and UNSAT otherwise
1 if Σ is unsatisfiable then return UNSAT while Σ is satisfiable do
2 Let M be a model of Σ;
3 if CheckMinMR(Σ,M) = true then break Σ←MR(Σ,M)∪{

∨
¬M}∪{¬p | p ∈ var(Σ)−M};

4 end
5 return M;

(ii) M is a minimal model of Σ iff CheckMinMR(Σ,M) returns true.

That is, CheckMinMR(Σ,M) is an algorithm for modular minimal model checking that is sound and
complete, in contrast to the original algorithm CheckMin(Σ,M).

Example 3.3 (Example 3.2 cont’d). Recall that for Σ and M in Example 2.4, M = {a,c,d} is a minimal
model of Σ′ = MR(Σ,M) = {δ1 : c, δ3 : d← a, δ4 : c← d, δ ′2 : a← c}. Clearly, M is the least model
of Σ′ and CheckMinMR(Σ,M) returns true: G is the supergraph SGΣ′ = ({v1,v2},{(v1,v2)}) resulted from
the supergraph SGΣ in Example 2.4 (cf. Fig. 1) by removing the node v3 = {b} and the associated edge
(v2,v3) and replacing δ2 by δ ′2. The single source v1 = {δ1} of SGΣ′ is empty, and thus is deleted in line 2;
the remaining node v2 = {a,c,d,δ ′2,δ3,δ4} is then a nonempty source S. It fulfills that S∩A = {a,c,d}= M
is a minimal model of Σ′S = Σ′, and thus M is updated in line 5 to M−S = /0. Furthermore, Σ′ is updated in
line 6 to Reduce(Σ′,S∩A , /0) = Reduce(Σ′,M, /0) = /0, which means the G is updated in line 7 to the empty
graph. Consequently, the loop quits and in line 10, and true is returned.

Based on algorithm CheckMinMR, we also obtain a new algorithm Algorithm MinModel(Σ) for computing
minimal models of clause theories, shown as Algorithm 3, whose correctness is easy to establish from
Theorem 3. Intuitively, it generates a model M of Σ (if possible) and then checks whether M is a minimal
model of Σ by CheckMinMR. In case M is not a minimal model of Σ, it computes a model M′ ⊂M of Σ at
Line 5. Here, {¬p | p ∈ var(Σ)−M} requires M′ ⊆M, while

∨
(¬M) asserts that some atoms in M must be

false.
The next theorem shows that the characterization via the reduct extends naturally to all logic programs

that we consider. In this way, we obtain a unified answer set definition for both normal and disjunctive logic

14 LOGCOMP RR 22-01

programs in terms of a least model, although MR(Π,M) may have no least model and may be intractable to
be computed if Π is disjunctive, e.g. MR({a∨b},{a,b}) = {a∨b}, which has two minimal models {a} and
{b}, but no least model.

Theorem 4 (Answer set characterization). For every logic program Π and M ⊆A , the items (i)–(iii) are
equivalent:

(i) M is an answer set of Π.

(ii) M is the least model of MR(Π,M).

(iii) M = {q ∈A ∪{⊥} |MR(Π,M) |= q}.

It is evident that the item (iii) in the above theorem can be M = {q ∈ A | MR(Π,M) |= q} if M is a
model of Π.

We stress that by Theorems 3 and 4, CheckMinMR(MR(Π,M),M) can be used for checking whether a
model M of a logic program Π is an answer set; furthermore, since MR(MR(Π,M),M) = MR(Π,M), by
replacing Σ in CheckMinMR with a logic program Π, we can use CheckMinMR(Π,M) right away for answer
set checking. We remark that algorithm MinModel could be similarly adapted for computing answer sets of
general logic programs. However, as not every model M of a logic program Π contains some answer set,
completeness would have to be ensured by looping over models.

4 Witnesses for Answer Sets

Recall that as a consequence of Theorem 4, every atom in the least model of MR(Π,M) (provided that it
exists) has a resolution proof from MR(Π,M). Such a proof provides a justification for “why an atom belongs
to the answer set M”. Notice further that the algorithm CheckMinMR decomposes a minimal model checking
task into a series of smaller-scale subtasks. Thus, it provides some evidence for “why some atoms are in an
answer set” on a high level since each atom in an answer set has a resolution proof and each component in the
decomposition of an answer set has a justification based on the previously established components.5 These
considerations motivate the notion of witness for answer sets below, from which a structural explanation for
an answer set can be built up.

To this end, we introduce in this section first a generic notion of witness and minimal witness for justifying
the presence of a set B of atoms in an answer set M by resorting to Theorem 4 from above, in terms of rules
from a logic program Π at hand, relative to some context S of atoms that are asserted to be true. We then
present the notions of α- and β -witnesses , which use syntactic dependency information in order to account
for the structure of explanations of answer sets. Roughly speaking, α-witnesses are modularly composed
witnesses W1, . . . ,Wn of an answer set M = S1∪·· ·∪Sn partitioned into components Si, i = 1, . . . ,n such that
for Si, the parts S j on which Si depends provide the context S, and Wi explains Si and no other part S j. The
notion of β -witness is more refined as the sets Si have to be singletons. For both notions, in the spirit of
Occam’s razor also non-redundant versions and further restrictions are considered.

4.1 Witnesses

We start with a formal definition of the notions of witness and minimal witness.
5Sources need no resolution proof.

LOGCOMP RR 22-01 15

Definition 4.1 (witness and minimal witness). Let M⊆A , and B,S be disjoint subsets of M. A logic program
Π is a witness of B under S w.r.t. M, if MR(Π,M)∪ S |= B; moreover Π is minimal, if no Π′ ⊂ Π exists
s.t. MR(Π′,M)∪S |= B. For every logic program Π, we denote by MW(B,Π,S,M) the set of all minimal
witnesses Π′ ⊆Π of B under S w.r.t. M.

Intuitively, the set M in the above definition plays the role of closed-world assumption for the witness Π,
while S stands for a set of already justified atoms. In this sense, a witness provides some evidence as a set
of rules from which the atoms in B can be properly justified in terms of logical reasoning. Recall that we
identify clause theories as positive logic programs. The notion of witness and its variants are all applicable
for clause theories as well.

Example 4.1. For the logic program Π = {r1 : a∨ b, r2 : a← b, r3 :b← a} and M = {a,b} in the
Introduction, Π′ = {r1,r2} is a minimal witness of B = {a} under S = /0 w.r.t. M. In fact, we have that it is
the only such witness, i.e., MW(B,Π,S,M) = {Π′}. Similarly, Π′′ = {r1,r3} is the only minimal witness of
B = {b} under S = /0 w.r.t. M.

As can be seen, minimal witnesses are closely related to minimal unsatisfiable subformulas (MUS) and
minimal unsatisfiable cores Marques-Silva [2010]; Liffiton et al. [2016]. Formally, an MUS of a unsatisfiable
clause theory Σ is a subset Σ′ of Σ such that Σ′ is unsatisfiable and every proper subset Σ′′ of Σ′ is satisfiable.
We then have the following relationships.

Proposition 4.1. Let M ⊆A , let B,S⊆M be disjoint subsets of M, and let Π be a logic program.

(i) If Π′ ∈MW(B,Π,S,M) then some S′ ⊆ S exists such that MR(Π′,M)∪S′∪{
∨
¬B} is an MUS.

(ii) If MR(Π′,M)∪ S′ ∪ {
∨
¬B} is an MUS of MR(Π,M)∪ S ∪ {

∨
¬B} such that S′ ⊆ S, then some

Π′′ ∈MW(B,Π,S,M) exists such that Π′′ ⊆Π′.

Exploiting this proposition, we can compute a minimal witness Π∗ for B under S w.r.t. M by the algorithm
MinWitness, which is shown in Algorithm 4. It uses an MUS solver as an optional parameter; several such
solvers are available, e.g., picomus6 and SAT4j7, which can be leveraged for computing minimal witnesses.
We note that the ForEach loop in lines 5-8 of this algorithm serves to compute some Π∗ ⊆ Π such that
MR(Π∗,M) = Π′, which is effected by line 3. The soundness and completeness of Algorithm 4 when a
complete MUS solver is used is ensured by the items (ii) and (i) of Proposition 4.1, respectively; in the
solverless case, it follows from the monotonicity of classical inference.

Proposition 4.2. Algorithm 4 is sound and moreover complete if the involved MUS solver mus is complete.

The following example illustrates how Algorithm 4 can be employed to compute a minimal witness.

Example 4.2 (Example 4.1 cont’d). Recall that Π′ = {r1,r2} is a minimal witness of B = {a} under S = /0
w.r.t. M = {a,b}. It is not difficult to check that for S′ = S = /0, we have that Π′∪S′∪{

∨
¬B}= Π′∪{¬a} is

an MUS of Π∪S∪{
∨
¬B}= {r1,r2,r3,¬a}, in line with item (i) of Proposition 4.1. Thus Π′ may be computed

by an MUS solver mus in lines 2 and 3 of Algorithm 4; then Π∗ = {r1,r2} is constructed in lines 4-8 and
output. In the solverless case, only the rule r3 can be removed from the initial rule set Π∗ = Π = {r1,r2,r3};
the resulting rule set Π∗ = {r1,r2} is then likewise found as a minimal witness and output. We note that
Π′ = {r1,r2} is the unique set that satisfies the MUS condition in item (ii) of Proposition 4.1, and thus a
unique minimal witness exists, as observed in Example 4.1.

6https://www.mankier.com/1/picomus
7http://sat4j.org/

https://www.mankier.com/1/picomus
http://sat4j.org/

16 LOGCOMP RR 22-01

Algorithm 4: MinWitness(B,Π,M,S)
Input: A logic program Π; M ⊆A and B,S⊆M s.t. B∩S = /0 and M is a minimal model of

MR(Π,M)∪S
Parameter: an MUS solver mus (nil = no MUS solver)
Output: A minimal witness Π∗ ⊆Π of B under S w.r.t. M

1 if mus 6= nil then
2 compute an MUS Π′ of MR(Π,M)∪S∪{

∨
¬B} by calling the MUS solver mus;

3 remove all elements in S∪{
∨
¬B} from Π′;

4 Π∗← /0;
5 foreach r′ ∈Π′ do
6 select some rule r ∈Π with MR({r},M) = {r′};
7 Π∗←Π∗∪{r};
8 end
9 else

10 Π∗←Π;
11 foreach r ∈Π∗ do
12 if MR(Π∗−{r},M)∪S |= B then Π∗←Π∗−{r}
13 end
14 end
15 return Π∗;

We note that for M = /0, the single minimal witness for B under S w.r.t. M is the empty set of clauses, as
B = S = /0 must hold and no rules are needed to explain an empty B. In particular, if M = /0 is an answer set
of a logic program Π, then Π′ = /0 is trivially the single minimal witness of M under S from Π. In the rest of
this paper, we thus concentrate on witnesses for nonempty answer sets of logic programs.

4.2 α?- and α-witnesses

We are now in a position to present various witnesses for answer sets of logic programs starting from the
most general notion of α?-witness.

Definition 4.2 (α?- and α -witnesses). Let Π be a logic program and M 6= /0 be an answer set of Π.
Furthermore, let B and S be disjoint subsets of M. Then, an α?-witness of B under Π and S w.r.t. M is
a DAG G = ({(Si,Πi) | 1 ≤ i ≤ n},E) where {Si | 1 ≤ i ≤ n} is a partitioning of B (i.e.

⋃n
i=1 Si = B and

Si 6= /0, 1≤ i≤ n) and, for every i,1≤ i≤ n,

(i) Πi ⊆Π is a witness of Si under S∪Xi w.r.t. M, and

(ii) Πi is not a witness of S j under S∪Xi w.r.t. M, for every 1≤ j 6= i≤ n, where

Xk =
⋃
{S′ | (S′,Π′) ∈ DG((Sk,Πk))}, 1≤ k ≤ n. (6)

If G induces a total order (S1,Π1)< (S2,Π2)< · · ·< (Sn,Πn), i.e. E = {((Si,Πi),(Si+1,Πi+1)) | 1≤
i < n}, we call it an α-witness of B under Π and S w.r.t. M and write it as

W = [(S1,Π1), . . . ,(Sn,Πn)]. (7)

LOGCOMP RR 22-01 17

We call G minimal, if every Πi is minimal and G is compact, if in addition to minimality Πi∩Π j = /0 for
all 1≤ i < j ≤ n.

If B = M and S = /0, we call G an (minimal, compact) α?-witness resp. α-witness of M w.r.t. Π.

Intuitively, in Definition 4.2 the atoms in S are assumed to be justified resp. explained and need no
further explanation. They can be used for justifying resp. explaining more atoms in an answer set, which
are given by the set B that has to be disjoint from S. Refining the notion of witness from the previous
section, α?-witnesses and their specializations take a modular perspective where parts S1, . . . ,Sn of B must
be justified locally, using sets Π1, . . . ,Πn of rules. To this end, for deriving the atoms in Si the atoms
in Xi =

⋃
{S′ | (S′,Π′) ∈ DG((Si,Πi))}, which are derived by rules of the program Π that in the graph G

intuitively feed into the rules Πi, are taken as already justified; this yields condition (i). In particular, note
that Xi = /0 if DG((Si,Πi)) = /0. Thus, once the atoms in each Si (1≤ i≤ n) are justified, the atoms in B are
structurally justified. In particular, if B = M and S = /0 then the answer set M can be structurally justified
resp. explained by resolution proofs using the rules in a witness under CWA w.r.t. M. Condition (ii) in
Definition 4.2 imposes that Πi with input Si∪Xi covers Si but no other part S j of B; this ensures that the
explanatory power of local witnesses is exploited and that components are not unnecessarily introduced.
Notably, if S j precedes Si w.r.t. G, i.e. (S j,Π j) ∈ DG((Si,Πi)), the condition in (ii) is always fulfilled
according to Definition 4.1: as S j ⊆ Xi, S j and Xi ∪ Si are not disjoint, and thus Πi is not a witness of S j

under Xi∪Si w.r.t. M. For any S j 6= Si not preceding Si, a violation of condition (ii) would mean that S j could
be merged into Si and witnessed by Πi. Condition (ii) also excludes some “undesired” orders among the
witnesses to capture derivation steps of answer sets.

Example 4.3. Let us consider the program Π = {r1 : a1, r2 : a2← a1, r3 : a3← a2}, and the sequences
W = [({a2,a1},{r1,r2}),({a3},{r3})] and W ′ = [({a3},Π),({a2,a1},{r1,r2})]. Then W is an α-witness
of the answer set M = {a1,a2,a3} of Π and captures a proper derivation for M from Π: it derives first a1
and a2 from {r1,r2}, then a3 is derived from {r3} together with the derived a1 and a2. The sequence W ′ is
not an α-witness: the reason is that a2 and a1 have been derived when a3 is derived at the beginning. In this
case, the witness Π of {a3} can replace the witness {r1,r2} of {a1,a2} in W. This reflects the principle of
Occam’s razor: a derivation in an explanation is involved when it is necessary.

Let us next revisit our Example 4.1

Example 4.4 (Example 4.1 cont’d). The answer set M of Π has multiple α?-witnesses, including

• G1 = (V1, /0) with V1 = {({a,b},Π)};

• G2 = ({v1,v2},{(v1,v2)}) with v1 = ({a},{r1,r2}) and v2 = ({b},{r3});

• G3 = ({v′1,v′2},{(v′1,v′2)}) with v′1 = ({b},{r1,r3}) and v′2 = ({a},{r2});

• G4 = ({v1,v′1}, /0).

As for G1, clearly Π |= a∧b; as for G2, r1∧ r2 |= a and r3∧a |= b, while r1∧ r2 6|= b. As for G3, similarly
r1∧r3 |= b and r2∧b |= a, while r1∧r3 6|= a. For G4, we then also obtain that the conditions of an α?-witness
are fulfilled; notice that DG4(v1) = DG4(v

′
1) = /0. If we remove in G4 the rules r1 from v1, i.e. replace

v1 by v′2, then the resulting sequence G′4 is not an α?-witness, as a cannot be derived from r2 alone and
DG4(v

′
2) = /0. Notice that G1, G2 and G3 are α-witnesses, and can thus be written as W1 = [({a,b},Π)],

W2 = [({a},{r1,r2}),({b},{r3})], and W3 = [({b},{r1,r3}),({a},{r2})], respectively,

18 LOGCOMP RR 22-01

The minimality property of an α,α?-witness ensures that there are no redundant rules in the witness
components Πi and the compactness property that moreover no rule can occur twice e.g. in Example 4.3, W
is minimal and compact. Compactness is in particular relevant for disjunctive rules, which may be used for
deriving (combined with other rules) different atoms in their heads.

Example 4.5 (Example 4.4 cont’d). The α?-witnesses G1, G2 and G3 of M w.r.t. Π are all compact, which
are also compact α-witnesses W1, W2 and W3 as in Example 4.4. Moreover, G2 and G3 are also compact
β -witnesses, that will be defined later.

4.2.1 Constructing α?-witnesses and specialisations

A natural question is whether each answer set M of a logic program has some α?-witness, and in particular
whether always some compact α?-witness exists. The answer is positive8 and the next proposition shows that
a compact α?-witness can be obtained from the collapsed dependency graph of the reduct MR(Σ,M) based
on the following lemma:

Lemma 4.1. Let Σ be a clause theory and M 6= /0 a minimal model of Σ with Σ = MR(Σ,M). Then
G = ({(Si,Σi) | 1≤ i≤ n},E ′) obtained from SΣ = ({S1, . . . ,Sn},E) s.t.

• Σi ∈MW(Si,Σ,S.i,M) (1≤ i≤ n), where S.i =
⋃

DSΣ
(Si), and

• ((Si,Σi),(S j,Σ j)) ∈ E ′ whenever (Si,S j) ∈ E

is a compact α?-witness of M w.r.t. Σ.

The next proposition shows that every answer set of a logic program Π has some syntax-guided compact
α?-witness w.r.t. Π.

Proposition 4.3. Let M 6= /0 be an answer set of a logic program Π and Σ = MR(Π,M). Then the DAG
G = ({(Si,Πi) | 1≤ i≤ n},E ′) obtained from SΣ = ({S1, . . . ,Sn},E) s.t.

• Πi ∈MW(Si,Π,S.i,M) (1≤ i≤ n), where S.i =
⋃

DSΣ
(Si), and

• ((Si,Πi),(S j,Π j)) ∈ E ′ whenever (Si,S j) ∈ E

is a compact α?-witness of M w.r.t. Π.

We call a compact α?-witness as in Proposition 4.3 a full-split α?-witness, denoted as α?
f s-witness, of M w.r.t.

Π.

Example 4.6 (Example 4.4 cont’d). For the logic program Π = {r1 : a∨ b, r2 : a← b, r3 :b← a}
and M = {a,b}, we have that Σ = MR(Π,M) = Π and thus SΣ = ({{a,b}}, /0). Consequently, G1 is an
α?

f s-witness of M w.r.t. Π. In fact, G1 is the only such α?
f s-witness.

We note that while in the above example, the full-split α?
f s-witness of M w.r.t. Π is unique, in general

multiple distinct full-split α?
f s-witnesses are possible.

8It is indeed trivial since G = ({(M,Π′)}, /0) with Π′ is a minimal subset of Π such that MR(Π′,M) |= M is a compact α?-witness
of M w.r.t. Π. However, deciding whether some α?-witness with more than one node exists is more involving; this is clearly in Σ

p
2 ,

while a matching lower bound is open.

LOGCOMP RR 22-01 19

Example 4.7. Consider the logic program Π consisting of the rules:

r1 : c, r2 : a← c, r3 :b← c, r4 :b← a, r5 :a← b, r6 :c← b

and its answer set M = {a,b,c}. Then Σ = MR(Π,M) = Π and SΣ = ({{a,b,c}}, /0), as all atoms in Π

mutually depend on each other. It is not hard to check that G = ({({a,b,c},{r1,r2,r4,})}, /0) and G′ =
({({a,b,c},{r1,r3,r5,})}, /0) are both α?

f s-witnesses of M w.r.t. Π. Note that r1 in Π may be replaced by a
rule c∨d or c← not d; the presence of facts in Π is thus not important for having multiple α?

f s-witnesses.

The α?
f s witnesses are relevant from an evaluation perspective, since the SCCs of a logic program Π are

in practice often the basis for modular evaluation, where the answer sets of Π can be built, starting from
the sources of the collapsed dependency graph SGΠ

, incrementally along its edges. Proposition 4.3 ensures
that we can find a minimal witness for the SCC Si at hand without reusing any of the rules that have been
used for witness formation in the SCCs S j on which Si depends. The same generalizes if we merge SCCs
appropriately.

Given an α?-witness G = (V,E) of an answer set M w.r.t. a logic program Π, we call a graph G′ =
(V ′,E ′) an edge-contraction of G, if some edge (v1,v2) ∈ E exists, where vi = (Si,Πi), i = 1,2, such that
V ′ =V \{v1,v2}∪{v} where v = (v1∪ v2,Π1∪Π2) and

E ′ = E ∩ (V \{v1,v2})2 ∪{(v,v′) | (v′′,v′) ∈ E,v′′ ∈ {v1,v2},v′ /∈ {v1,v2}}
∪{(v′,v) | (v′,v′′) ∈ E,v′′ ∈ {v1,v2},v′ /∈ {v1,v2}},

i.e., the neighboured nodes v1 and v2 are merged into v1 and the edges are adjusted. Then we obtain:

Proposition 4.4. Let G be an α?
f s-witness of an answer set M w.r.t. a logic program Π and G=G0,G1,G2, . . . ,

Gk be graphs such that each Gi, i = 1, . . . ,k is an edge-contraction of Gi−1. Then Gk is a compact α?-witness
of M w.r.t. Π, where the edge-contraction of ((S,Π),(S′,Π′)) is the node (S∪S′,Π∪Π′).

As a consequence, for modular program evaluation9 where the evaluation units comprise as customary
single or multiple SCCs of a logic program Π, compact α?-witnesses for an answer set M = M1∪·· ·∪Mk
can be simply composed from the compact α?

f s-witnesses of Mi (1≤ i≤ k), where Mi is an answer set of a
module Πi of Π. Notably, the SCCs for modular evaluation of Π take in addition to the positive dependencies
also the negative dependencies into account, i.e., the (full) dependency graph has edges (p,q) if p ∈ r−

or p ∈ rnot , and q ∈ r+ for some rule r ∈ Π as well; thus each SCC S′i of the full dependency graph of Π

contains each SCC S j of the positive dependency graph of Π w.r.t. M such that S j ∩S′i 6= /0. Consequently, by
merging all the respective nodes (S j,Π j) of G into one node (S′i∩M,Π′i) and adjusting the edges, a compact
α?-witness G′ of M w.r.t. Π is obtained such that Π′i witnesses S′i∩M.

4.3 β ?- and β -witnesses

From Example 4.4, we can see that G2 and G3 are more fine-grained than G1 in the sense that the witnesses in
G2 and G3 have more refined dependencies than the one of G1. In particular, the α?

f s-witness is not appropriate
for normal or headcycle-free logic programs since the justification for answer sets in this case has a more
natural formalism in terms of the resolution proof when the new reduct is applied. For instance, M = {a,b}
is the unique answer set of Π = {r1 : a← b, r2 : b← a, r3 : a← not c}. Note that G = (V, /0) with V =
{({a,b},{r2,r3})} is the unique α?

f s-witness of M w.r.t. Π since SMR(Π,M) = ({{a,b}}, /0). It means that a

9Each answer set of a modular program Π can be composed from the answer sets of the modules of Π.

20 LOGCOMP RR 22-01

and b are collectively justified by {r2,r3}. In fact, the ideal witness for M should be [({a},{r3}),({b},{r2})].
It means that a and b are separately and sequentially justified. This motivates the notion of β ?-witness and
specializations.

Definition 4.3 ((minimal, compact) β ?- and β -witness). Let Π be a logic program, M 6= /0 an answer set of
Π, and B,S be disjoint subsets of M. Then every α?-witness G = ({(Si,Πi) | 1≤ i≤ n},E) of B under Π and
S w.r.t. M such that Si = {pi} for some atom pi, for all (1≤ i≤ n), is a β ?-witness of B under Π and S w.r.t.
M, also written as G = ({(pi,Πi) | 1≤ i≤ n},E). The notions of β -witness and minimal / compact β ?- resp.
β -witness of B under Π and S w.r.t. M are defined analogously from α-witness and minimal / compact α?-
resp. α-witness of B under Π and S w.r.t. M.

Thus, the notion of β ?-witness captures the important case where the atoms pi in B are justified one by
one, while the notion of α- (resp. β -) witness is the restriction that the parts Si resp. atoms pi of B can be
explained in a sequential order.

Example 4.8 (Example 4.4, cont’d). In Example 4.4, G2−G4 are β ?-witnesses, and thus can be written as

• Ḡ2 = ({v̄1, v̄2},{(v̄1, v̄2)}) with v̄1 = (a,{r1,r2}) and v̄2 = (b,{r3});

• Ḡ3 = ({v̄′1, v̄′2},{(v̄′1, v̄′2)}) with v̄′1 = (b,{r1,r3}) and v̄′2 = (a,{r2});

• Ḡ4 = ({v̄1, v̄′1}, /0)

by replacing {a} and {b} with a and b, respectively, in v1, v2, v′1, and v′2. As Ḡ2 and Ḡ3 are also β -witnesses,
they can be written as W2 = [(a,{r1,r2}),(b,{r3})] and W3 = [(b,{r1,r3}),(a,{r2})]. Each of Ḡ2, Ḡ3 and
Ḡ4 is minimal, but only Ḡ2 and Ḡ3 are compact, as r1 occurs in both local witnesses {r1,r3} and {r1,r2} of
Ḡ4. Furthermore, if the nodes v1 and v̄′1 of Ḡ4 would be ordered, e.g. to v̄1 < v̄′1, then the resulting β -witness
would not be minimal.

Recall that T ∞

ΠM = M where M is an answer set of a normal logic programs Π. One can build up a compact
β -witness of M w.r.t. Π by setting W = [(p1,1, /0), . . .(p1,k1 , /0)]+ . . .+[(pn,1,Πn,1), . . . ,(pn,kn ,Πn,kn)], where
"+" denotes concatenation of sequences and n is the least number satisfying T n

ΠM = M and, for 1≤ i≤ n,

• T i
ΠM−T i−1

ΠM = {pi,1, . . . , p1,ki},

• {ri, j}= Πi, j ⊆Π, M |= ri, j and r−i, j ⊆ T i−1
ΠM for i > 1.

Note further that if [(p1,Π1), . . . ,(pn,Πn)] is a minimal β -witness of M = {p1, . . . , pn} w.r.t. Π, then
|Πi| = 1 (1 ≤ i ≤ n). Otherwise Πi is a witness of p j (j > i) under {p1, . . . , p j−1} for some r j ∈ Πi with
r+j = {p j}, since p j /∈ {p1 . . . , pi−1}. We obtain the following corollary.

Corollary 4.1. Let M 6= /0 be an answer set of a normal logic program Π. Then

(i) There is a compact β -witness of M w.r.t. Π.

(ii) For every minimal β -witness [(p1,Π1), . . . ,(pn,Πn)] of M w.r.t. Π, it holds that |Πi|= 1 (1≤ i≤ n).

Unlike α-witnesses, a compact β -witness may not always exist for some answer sets of disjunctive logic
programs, as illustrated by the following example.

LOGCOMP RR 22-01 21

Algorithm 5: MinBetaBSWitness(Π,B,S,M)

Input: A logic program Π, an answer set M 6= /0 of Π, and two disjoint subsets B,S of M
Output: A minimal β -witness of B under Π and S w.r.t. M

1 T ← S; Π′← []; Σ←MR(Π,M);
2 while B−T 6= /0 do

/* unit propagation */
3 while ∃α ∈ Σ s.t. α− ⊆ T , α+ = {p}, p ∈M−T do
4 T ← T ∪α+;
5 Π′.append((p,rm({α},Π,M)));

/* rm(Σ,Π,M) returns a minimal subset Π′ of Π s.t. MR(Π′,M) = Σ */

6 end
7 if M−T = /0 then break Let u ∈ B−T ;
8 Let Σu← MinWitness({u},Σ,T,M);
9 while Σu∪T |= v for some atom v /∈ {u}∪T do

10 Let Σv← MinWitness({v},Σu,T,M);
11 u← v;
12 Σu← Σv;
13 end
14 Π′.append((u,rm(Σu,Π,M)));
15 T ← T ∪{u};
16 end
17 return Π′;

Example 4.9. Let M = {p,q,r} and Π consist of

δ1 : p∨q∨ r, δ2 : p← q, δ3 : q← r, δ4 : r← p.

Then M is an answer set of Π and that Σ= MR(Π,M)=Π. The sequence [(r,{δ1,δ2,δ4}),(q,{δ3}),(p,{δ2})]
is a minimal β -witness of M w.r.t. Σ. For the atom r, the unique Σ′ ⊆ Σ s.t. Σ′ |=min p is Σ′ = {δ1,δ2,δ4}. The
clause δ2 must be reused to derive p. All other minimal β -witnesses require a similar reuse. Thus, M has no
compact β -witness w.r.t. Π. One can similarly verify that M has no compact β ?-witness w.r.t. Π yet.

4.3.1 Constructing β ?-witnesses and specialisations

The algorithm MinBetaBSWitness, shown as Algorithm 5, serves to compute a minimal β -witness of B under
Π relative to S asserted as facts w.r.t. M. In the case B = M and S = /0 it computes a minimal β -witness of M
w.r.t. Π.

Intuitively, it loops in the outer while until each atom p in M gets a minimal witness (i.e., is in T).
The first inner while-loop (3-6) identifies such p by unit propagation, while the second inner while (10-14)
searches for an atom u and some minimal witness Σu of it under T such that no atom v outside T ∪{u} is
entailed by Σu∪T ; in line (15) then rm(Σu,Π,M) yields a minimal subset Π′ of Π such that MR(Π′,M) = Σu.
The following example demonstrates a run of the algorithm.

Example 4.10. Let M = {p,q,r,s} and consider the positive logic program

Π = { α1 : p∨ r, α2 : p∨q← r, α3 : r∨ s← p, α4 : p← q, α5 : q← p, α6 : r← s, α7 : s← r}.

22 LOGCOMP RR 22-01

One can check that M is an answer set of Π, hence a minimal model of Σ = MR(Π,M) = Π. As all atoms
in Σ do mutually depend on each other, the collapsed dependency graph of Σ is SΣ = ({{p,q,r,s}}, /0).
Furthermore, no proper subset Σ′ ⊂ Σ can derive all atoms in M. Hence an α?-witness of M w.r.t. Σ

is G = ({({p,q,r,s},Σ)}, /0), which is evidently compact. An execution of MinBetaBSWitness(Σ,M, /0,M)
is illustrated in Table 1. Please note here that B = M. It is not difficult but tedious to check that
MinBetaBSWitness(Σ,M, /0,M) may compute the compact β -witness

W = [(p,{α1,α2,α4}),(q,{α5}),(s,{α3,α7}),(r,{α6})] (8)

of M w.r.t. Σ in the following steps according to Table 1:

(1) In the first iteration of the outer while-loop (lines 2-17), the first inner while-loop (lines 3-6) makes no
contribution for T ; then the atom u = s is chosen from B−T and a minimal witness Σu is built up; finally,
the second inner while-loop (lines 10-14) finds the atom v = p with Σu∪T |= v and builds up a minimal
witness Σu = {α1,α2,α4}.

(2) In the second iteration of the outer while-loop, unit propagation finds the rule α = α5 and builds up
the minimal witness for q; then the atom u = s is chosen again from B−{p,q} and a minimal witness
Σu = {α3,α7} is built up; the second inner while-loop finds no atom v with Σu∪T |= v with v /∈ T ∪{u};
then a minimal witness Σu is established.

(3) In the third iteration of the outer while-loop, unit propagation finds the rule α6 and builds the minimal
witness for the atom r; the outer while-loop terminates at line 7 due to B−T = /0.

Regarding the termination of algorithm MinBetaBSWitness, the outer while-loop and the first inner while-
loop (3-6) clearly terminate, as gradually atoms p respectively u from B\T are added to T ; for the second
inner while-loop (10-14), we must be sure that the search for a minimal witness Σv in line (11) makes
progress, i.e., that Σv 6= Σu (and thus Σv ⊂ Σu) holds. The next lemma asserts that this is indeed the case.

Lemma 4.2. Let l be a literal and let Σ be a satisfiable clause theory s.t. Σ |= l and no Σ′ ⊂ Σ satisfies Σ′ |= l.
Then:

(i) the opposite literal l does not occur in Σ, and

(ii) if Σ |= l′ for some literal l′ 6= l, then some proper subset Σ′ ⊂ Σ exists such that Σ′ |= l′.

Armed with this lemma, we then prove the correctness of Algorithm 5, which is stated in the following
Proposition.

Table 1: A possible run of MinBetaBSWitness(Σ,M, /0)

while(2-17) while(3-6) u Σu CnA(Σu∪T) = while(10-14) T
#i = i-th iteration α T {p ∈A | Σu∪T |= p} u Σu

#1 /0 s {α1,α2,α3,α4,α7} {p,s} p {α1,α2,α4} {p}
#2 α5 {p,q} s {α3,α7} {p,q,s} s {α3,α7} {p,q,s}
#3 α6 {p,q,s,r}

LOGCOMP RR 22-01 23

Algorithm 6: MinBetaWitness(Π,M)

Input: A logic program Π, an answer set M 6= /0 of Π

Output: A minimal β -witness of M w.r.t. Π

1 Π′← []; Σ←MR(Π,M); G← SGΣ;
2 Recursively delete from G all empty sources;
3 while G has a source S do
4 U ←A ∩ (

⋃
DSGΣ

(S));
5 Π′.append(MinBetaBSWitness(Π,S∩A ,U,M));
6 Delete S from G;
7 Recursively delete from G all empty sources;
8 end
9 return Π′;

Proposition 4.5. Given a logic program Π, an answer set M 6= /0 of Π and two disjoint subsets B,S of M, the
call of MinBetaBSWitness(Π,B,S,M) returns some minimal β -witness W of B under Π and S w.r.t. M.

For computing some a β -witness of an answer set of a logic program, we present the algorithm
MinBetaWitness(Π,M), shown as Algorithm 6. It makes use of minimal model decomposition property
with reduct (Theorem 3). Its correctness is guaranteed by Proposition 4.5 and the minimal model decomposi-
tion theorem (Proposition 3.4).

Proposition 4.6. Given a logic program Π and an answer set M 6= /0 of Π, the call of MinBetaWitness(Π,M)
returns some minimal β -witness W of M w.r.t. Π.

Example 4.11. Let Π be the logic program consisting of

r1 : a∨b, r2 : a← b, r3 : b← a, r4 : c← a,b

and M = {a,b,c}. It is evident that M is the unique answer set of Π and Σ = MR(Π,M). Note that
G = SGΣ = (V,E) with

• V = {v1,v2,v3} with v1 = {r1,r2,r3,a,b}, v2 = {r4}, v3 = {c};

• E = {(v1,v2),(v2,v3)}.

The unique source of SGΣ is v1. In the first iteration of the loop (lines 3-8), MinBetaBSWitness computes U = /0
and a minimal β -witness of v1∩{a,b,c}= {a,b} under Π and /0 w.r.t. S by calling MinBetaBSWitness(Π,{a,b},
/0,M); the latter may return [(a,{r1,r2}),(b,{r3})] or [(b,{r1,r3}),(a,{r2})]. Suppose Π′= [(a,{r1,r2),(b,{r3})].
MinBetaBSWitness then removes the source v1 from G (line 6). Now v2 is an empty source of G and will be
deleted (line 7). The unique remaining nonempty source of G is v3. In the second iteration of the loop (lines
3-8), MinBetaBSWitness computes U = {a,b} and a minimal β -witness of {c} under Π and {a,b} w.r.t. S by
calling MinBetaBSWitness(Π,{c},{a,b},M), which definitely returns [(c,{r4})]. After removing v3 from G,
there is no source. Thus, the final minimal β -witness Π′ is

[(a,{r1,r2}),(b,{r3}),(c,{r4})] (9)

For Π′ = [(b,{r1,r3}),(a,{r2})], we similarly obtain the final minimal β -witness

[(b,{r1,r3}),(a,{r2}),(c,{r4})]. (10)

24 LOGCOMP RR 22-01

Algorithm 7: MinBetaStarWitness(Π,M)

Input: A logic program Π and an answer set M of Π

Output: A minimal β ?-witness of M w.r.t. Π

1 Let [(pi,Σi) | 1≤ n] be the output of MinBetaWitness(Π,M);
2 V ←{(pi,Σi) | 1≤ i≤ n}; E← /0; G← (V,E);
3 for i = 2 to n do
4 ∆←

⋃
{α− | α ∈ Σi};

5 while ∃q,q′ ∈ ∆∩{p1, . . . , pi−1} such that q 6= q′ do
6 if G has a path from (q,Σq) to (q′,Σq′) then ∆← ∆−{q}
7 end
8 foreach q ∈ ∆∩{p1, . . . , pi−1} do E← E ∪{((q,Σq),(pi,Σi))}
9 end

10 return G;

We note that the β -witness form W = [(p1,Si), . . . ,(pn,Sn)] intuitively means that pi “depends on”
p j (j < i). According to (9), b depends on a in the first β -witness, while a depends on b in the second
β -witness; c depends on a and b in both β -witnesses. However, an atom pi ∈ B may not necessarily depend
on p j ∈ B for some j < i. For instance, if the rule r4 in the above example is replaced by “c← b” then one
may still have the minimal β -witnesses (9) and (10). Nevertheless, c “directly” depends on b only, while
it “indirectly” depends on a via b. The notion of β ?-witness allows to faithfully capture this dependency
relation.

Example 4.12 (Example 4.11 cont’d). We obtain a minimal β ?-witness from Π′ in (9) by defining the
graph G = (V,E), where V = {v1,v2,v3} with v1 = (a,{r1,r2}), v2 = (b,{r3}), v3 = (c,{r4}) and E =
{(v1,v2),(v2,v3)}. Note that X1 = /0, X2 = {a}, and X3 = {b}. From Π′ in (10), we obtain similarly a
minimal β ?-witness, by defining G = (V,E) with V = {v1,v2,v3} with v1 = (b,{r1,r3}), v2 = (a,{r2}),
v3 = (c,{r4}) and E = {(v1,v2),(v1,v3)}; here X1 = /0, and X2 = X3 = {b}.

To compute a minimal β ?-witness of an answer set M for a logic program Π (i.e., under Π and B = M, hence
S = /0), we can compute a minimal β -witness of M and then distill its true dependencies by Algorithm 7.
The next proposition shows that this algorithm is correct and the returned β ?-witness has no redundant
dependency.

Proposition 4.7. Let M 6= /0 be an answer set of a logic program Π and let furthermore be G the output of
MinBetaStarWitness(Π,M).

(i) G is a minimal β ?-witness of M w.r.t. Π.

(ii) G has no redundant edges, i.e., if removing an edge ((pi,Σi),(p j,Σ j)) from G then Σ j is not a witness
of p j under X w.r.t. M, where X = {p | (p,Σ) ∈ DG((p j,Σ j)).

The following example illustrates how a minimal β ?-witness can be gradually evaluated by Algorithm 7.

Example 4.13. Consider the logic program Π consisting of the rules

δ1 : a← not b, δ2 : b← not a, δ3 : r← p,a, δ4 : p∨q, δ5 : p← q, δ6 : q← p.

LOGCOMP RR 22-01 25

It holds that M = {p,q,a,r} is an answer set of Π and ΠM = {δ3, . . . ,δ6}∪{δ ′1 : a}. The α?
f s-witness of M w.r.t.

Π ({v1,v∗2,v4},{(v1,v4),(v∗2,v4)}) is illustrated in Fig. 2, in which the compact β -witness for each vertex is
attached. Two compact β -witnesses of {p,q} under Π and /0 w.r.t. M are [v2 : (p,{δ4,δ5}),v3 : (q,{δ6})] and
[u2 : (q,{δ4,δ6}),u3 : (p,{δ5})]. Suppose MinBetaWitness(Π,M) outputs the following minimal β -witness of
M w.r.t. Π:

[v1 = (a,{δ1}),v2 = (p,{δ4,δ5}),v3 = (q,{δ6}),v4 = (r,{δ3})].

There are three iterations of the for loop (lines 3-9) in MinBetaStarWitness:

(1) Σ2 = {δ4,δ5} and ∆ = {q}. As ∆∩{p1}= {q}∩{a}= /0, the condition of the while loop (line 5) is not
satisfied, and in line 8 no edge is added to E;

(2) Σ3 = {δ6} and ∆ = {p}. As ∆∩{p1, p2}= {p}∩{a, p}= {p}, the condition of the while loop (line 5)
is not satisfied; in line 8, the edge (v2,v3) is added to E by the foreach loop.

(3) Σ4 = {δ3} and ∆ = {p,a}. As ∆∩{p1, p2, p3}= {p,a}∩{a, p,q}= {p,a}, the condition of the while
loop (line 5) is again not satisfied; in line 8, the edges (v1,v4) and (v2,v4) are added to E by the foreach
loop.

Consequently, the corresponding minimal β ?-witness G = (V,E) of M w.r.t. Π is built:

• V = {v1,v2,v3,v4}, and E = {(v2,v3),(v2,v4),(v1,v4)}.

Similarly, when MinBetaWitness(Π,M) outputs the following minimal β -witness of M w.r.t. Π:

[v1 = (a,{δ1}),u2 = (q,{δ4,δ6}),u3 = (p,{δ5}),v4 = (r,{δ3})],

MinBetaStarWitness builds up the minimal β ?-witness G′ = (V ′,E ′) with V ′ = {v1,u2,u3,v4} and E ′ =
{(u2,u3), (u3,v4), (v1,v4)}. In fact, the two minimal β ?-witnesses are compact.

4.4 Relationship among witness notions

We have so far presented various notions of witnesses. The α- and α?- witnesses, and the α?
f s-witnesses

in particular, provide a very coarse-grained justification for answer sets of logic programs. The β - and
β ?- witnesses justify answer sets in the finest-grained way. When an answer set of a logic program can
be decomposed into components in terms of Theorem 1, one can flexibly choose between α-witness and
β -witness on demand.

The different notions of witnesses from above are related among each other as follows. For convenience,
we denote for each (minimal resp. compact) w ∈ {α,β ,α?,β ?,α?

f s} with (min- resp. comp-) w(Π,M) the
collection of (minimal resp. compact) w-witnesses of M w.r.t. Π, respectively. Then we have

v1 : ({a},{δ1}); [(a,{δ1})]

?

v∗2 : ({p,q},{δ4,δ5,δ6});
[u2 : (q,{δ4,δ6}) -u3 : (p,{δ5})],
[v2 : (p,{δ4,δ5}) -v3 : (q,{δ6})]

-

XXXXz
v4 : ({r},{δ3}); [(r,{δ3})]

Figure 2: The α?/β ?-witness of M w.r.t. Π in Example 4.13

26 LOGCOMP RR 22-01

α?-witness

β ?-witnessβ -witnessα-witness

α?
f s-witness

Figure 3: The relationships among α-, α?-, β -, β ?- and α?
f s-witnesses

Legend: α?
f s-witness is the area filled with north west red lines; α-witness is the area filled with vertical black

lines; β ?-witness is the area filled with green dots; β -witness is the area filled with horizontal blue lines;

Proposition 4.8 (Relationships among witnesses). Let M 6= /0 be an answer set of a logic program Π. Then

(i) α(Π,M)∩β ?(Π,M) = β (Π,M);

(ii) min -β (Π,M)=min -β ?(Π,M)∩min -α(Π,M) = β ?(Π,M)∩min -α(Π,M)=min -β ?(Π,M)∩α(Π,M);

(iii) comp-β (Π,M)= comp-β ?(Π,M)∩comp-α(Π,M) = β ?(Π,M)∩comp-α(Π,M)= comp-β ?(Π,M)∩
α(Π,M).

Accordingly, the overall relationships among these α-, β -, α?-, β ?- and α?
f s- witnesses can be illustrated

in a Venn diagram shown in Fig 3. If an α?
f s-witness has a graph G = (V,E) that is a chain and S is a singleton

for every (S,Π′) in V , then the α?
f s-witness can be regarded as a β -witness as well. What the relationships

shown can be extended for the minimal and compact variants. For instance, if a minimal β ?-witness is a
minimal α-witness then it is also a minimal β -witness. Here, when we say that an α?- (resp. β ?-) witness is
an α- (resp. β -) witness, we mean that the directed graph of α?- (resp. β ?-) witness is a chain. An interesting
question is whether an α?- (resp. β ?-) witness W with an arbitrary directed graph G = (V,E) amounts to some
α- (resp. β -) witness, i.e., that some α?- (resp. β ?-) witness W ′ exists with an associated graph G′ = (V,E ′)
that is a chain. If this is the case, we call W serializable. However, α?- and β ?-witnesses are not always
serializable.

Example 4.14. Let us consider the logic program Π in Example 4.9, which consists of

δ1 : p∨q∨ r, δ2 : p← q, δ3 : q← r, δ4 : r← p.

Then M = {p,q,r} is an answer set of Π and MR(Π,M) = Π. The DAG G = ({v1,v2,v3}, /0) with v1 =
(p,{δ1,δ2,δ3}),v2 = (q,{δ1,δ3,δ4} and v3 = (r,{δ1,δ2,δ4}) is a minimal (but not compact) β ?-witness of
M w.r.t. Π. However, no serizalization of v1,v2,v3 is a β -witness of M w.r.t. Π. For instance, let us consider
W = [v1,v2,v3]. The witness {δ1,δ3,δ4} of q under /0 is a witness of r under {p,q}. It means that the witness
of q can replace the witness of r in the sequence. Thus, this sequence cannot be a β -witness of M w.r.t. Π,
hence also not a minimal or compact β -witness of M w.r.t. Π.

As illustrated by the following example, it is also possible that a compact β ?-witness is not serializable.
And since a (minimal resp. compact) β ?-witness can be a special case of a (minimal resp. compact)
α?-witness, (minimal resp. compact) α?-witnesses cannot always be serializable either.

LOGCOMP RR 22-01 27

Example 4.15. Let Π be the logic program consisting of

r1 : a← d, r2 : a∨d∨ c, r3 : a← c, r4 : b← a, r5 : c← a, r6 : a∨b∨ c, r7 : a← b, r8 : d← c.

It is not difficult to check that M = {a,b,c,d} is the unique answer set of Π and MR(Π,M) = Π. The directed
graph G = ({v1,v2,v3,v4},{(v1,v2),(v3,v4)}) with

v1 = (a,{r1,r2,r3}),v2 = (b,{r4}),v3 = (c,{r5,r6,r7}),v4 = (d,{r8})

is a compact β ?-witness of M w.r.t. Π. However, there is not an order for v1,v2,v3,v4 which forms a minimal β -
witness of M w.r.t. Π. The reason is that {r1,r3} is a witness of {a} under {c} w.r.t. Π and {r5} is a witness of
{c} under {a} w.r.t. Π. Thus, the minimality of minimal β -witness will be violated by any order [v1, . . . ,v3, . . .]
or [v3, . . . ,v1, . . .]. A minimal β -witness of M w.r.t. Π can be W = [v1,v2,v′3,v4] with v′3 = (c,{r5}).

The next proposition shows that every α?
f s-witness is seralizable.

Proposition 4.9. Let Π be a logic program, M an answer set of Π and the DAG G = (V,E) be an α?
f s-witness

of M w.r.t. Π. Then there is a compact α-witness W = [w1, . . . ,wn] of M w.r.t. Π such that wi (1 ≤ i ≤ n)
occurs in V .

Note that the proof of this proposition shows in fact that every topological sorting of an α?
f s-witness

W leads to a corresponding compact α-witness. Informally, repeated edge-contractions of W fix successor
positions in a topological sorting of W ; it thus can be seen that each compact α?-witness obtained by repeated
edge-contractions is also serializable.

5 Complexity

In this section, we address complexity issues of the notions that we have introduced in the previous sections.

5.1 Recognizing witnesses

Let us first consider the problem of recognizing witnesses. Clearly, this problem is intractable for all kinds of
witnesses that we have considered in the previous section, and all notions have the same complexity excepting
the basic notion which has slightly lower complexity. Furthermore, in all cases the worst-case complexity
holds if we start from an answer set M of a positive (negation-free) program Π that we want to explain.
Specifically, we obtain the following results.

Proposition 5.1. Deciding given logic programs Π,Π′, sets S,B and an interpretation M, whether Π′ is a
witness of B under S w.r.t. M is co-NP-complete in general. The co-NP-hardness holds even if Π is positive,
S = /0, B = M and M is an answer set of Π.

The notion of minimal witness involves a further satisfiability test, viz. that by omitting any rule r in Π′, B
is no longer entailed, i.e., MR(Π′ \{r},M)∪S∪{¬p | p ∈ B} is satisfiable. This raises the complexity of the
recognition problem to Dp

1 , which intuitively contains the problems that are expressible as the “conjunction”
of two problems in NP and in co-NP, respectively, that are independent. The Dp

1 -hardness for recognizing a
minimal witness is immediate from the proof of Proposition 5.1, if we assume that Σ is a CRITICAL SAT
(CSAT) instance, which is to decide whether a given clause theory Σ is unsatisfiable but always satisfiable if a
single clause c ∈ Σ is removed.

The notions of α- and β -witnesses with their variants all involve similarly unsatisfiability and satisfiability
tests; as it turns out, they are all Dp

1 -complete.

28 LOGCOMP RR 22-01

Theorem 5. Let Π be a logic program Π. The following problems are Dp
1 -complete:

(i) deciding whether Π′ ∈MW(B,Π,S,M), with Dp
1 -hardness if M is an answer set of Π;

(ii) deciding whether W = [(S1,Π1), . . . ,(Sn,Πn)] resp. G = ({(Si,Πi) | 1 ≤ i ≤ n},E) is a (minimal,
compact) α- resp. α?-witness or α?

f s-witness of an answer set M of Π;

(iii) deciding whether W = [(p1,Π1), . . . ,(pn,Πn)] resp. G = ({(pi,Πi) | 1 ≤ i ≤ n},E) is a (minimal,
compact) β - resp. β ?-witness of an answer set M of Π.

Furthermore, the Dp
1 -hardness holds in all cases if Π is a positive (negation-free) program.

On the other hand, for normal logic programs Π, the witness test is feasible in polynomial time for all
notions of witnesses that we considered, since the reduct MR(Π,M) of Π w.r.t. any interpretation M is
Horn, and thus deciding the entailment problem MR(Π,M)∪ S |= B is feasible in polynomial time. This
extends to headcycle-free programs, due to the following property. We note that, according to Theorem 2.3 of
Ben-Eliyahu and Dechter [1994], for an answer set M of a headcycle-free program Π, each atom p ∈M has a
proof w.r.t. M and Π, which is a sequence r1, . . . ,rk of rules in Π such that

• M |= bd(ri) and |r+i ∩M|= 1, for every i (1≤ i≤ k),

• bd(r1) = /0 and r−i ⊆ r+1 ∪·· ·∪ r+i−1, and

• r+k = {p}.

Proposition 5.2. Suppose that Π is headcycle-free and M an answer set of Π. Then {r ∈MR(Π,M) | |r+|=
1} |= M.

That is, we can confine to the definite rules in the reduct MR(Π,M), and thus the entailment of B is
decidable in polynomial time.

5.2 Computing witnesses

We now turn to computing witnesses, where we have differentiated picture. For comparing the relationship
of problems, we use an adjusted notion of reduction. Namely, a problem A is reducible to problem B in
polynomial time (resp., in log-space), if from every instance IA of A, some instance IB of B can be computed
in polynomial time resp. in log-space, such that (1) IB has some solution if IA has some solution, and (2) given
any solution SB of IB, we can compute some solution SA of IA from IA and SB in polynomial time respectively
in log-space.

5.2.1 Minimal witnesses

As regards the computation of minimal witnesses, algorithm MinWitness implements a polynomial-time
reduction of computing some minimal witness Π′ ∈MW(B,Π,S,M) of B where M is an answer set of Π

with S asserted and B⊆M \S, to computing some MUS of a clause theory; note that the steps in lines 2 and
4-8, respectively, amount to constructing from an instance I of minimal witness computation an instance I′ of
MUS computation, and from a solution S′ of I′ a solution S of I, respectively, in polynomial time. In fact, the
computations can be done in logarithmic space.

Conversely, we can reduce MUS computation easily to minimal witness computation as follows. Given
a clause theory Σ, let Π = {r+ ∪{p} ← r− | r ∈ Σ}, where p is a fresh atom, consist of all clauses in Σ

LOGCOMP RR 22-01 29

with a positive literal p added, written as rules. Then the minimal witnesses Π′ ⊆ Π of B = {p} w.r.t.
M = A (Π)∪{p}, where A (Π) is a set of the atoms occurring in Π, correspond to the MUS Σ′ ⊆ Σ, such
that Σ′ = {r+∪¬r− | r+∪{p} ← r− ∈Π′}. Again, the reduction is computable in logarithmic space. We
thus obtain:

Corollary 5.1. Computing some minimal witness Π′ ∈MW(B,Π,M,S) as in the algorithm MinWitness and
computing some MUS of a clause theory Σ are equivalent under logspace-reductions.

Computing an MUS of a clause theory Σ is feasible in polynomial time with an NP oracle, and is thus in
the class FPNP. Furthermore, computing some MUS is hard for the class FPNP

‖ Chen and Toda [1995]; Janota
and Marques-Silva [2016], which are the functions computable by a Turing machine in polynomial time with
parallel NP oracle access. However, the precise complexity of MUS computation is not known Janota and
Marques-Silva [2016]; in particular, it is also unknown whether computing some MUS is hard for or in the
class FPNP[log,wit], which contains the multi-valued functions f for which some possible function value
y ∈ f (x) is computable in polynomial time with logarithmically many calls to a witness oracle for NP [Buss
et al., 1993; Janota and Marques-Silva, 2016], i.e., an oracle that returns some satisfying assignment for the
oracle SAT instance if it is satisfiable. When only few (a constant number of) MUSs exist, then the problem
is in FPNP[log,wit] Janota and Marques-Silva [2016].

For normal logic programs, MR(Π,M)∪S is Horn and thus algorithm MinWitness can be implemented
to run in polynomial time, as the entailment test on line 12 can be done in polynomial time. This extends to
headcycle-free programs, due to Proposition 5.2.

5.2.2 α-witnesses

Regarding α-witnesses, the main interest is in computing some compact α?-witness, and in particular to
compute some α?

f s-witness of an answer set, since such a witness is in line with the decomposition of the
logic program MR(Π,M) into its strongly connected components, which often form the basis for modular
evaluation; furthermore, it provides greatest flexibility for serialization, as minimality and compactness are
retained regardless of the concrete serialization, and even if SCCs are merged to larger units for evaluation
(cf. Proposition 4.4). This problem reduces in view of Proposition 4.3 in log-space to solving independent
instances I1, . . . , Im of minimal witness computation (which is thus possible in parallel). On the other hand,
solving such instances is reducible in log-space to a single minimal witness computation. Indeed, the
instances I j can be reduced to MUS instances Σ j, j = 1, . . . ,m on disjoint sets of variables; the latter can be
reduced to a single MUS computation for a clause theory Σ = {c∨¬ai | 1≤ i≤ m,c ∈ Σi}∪{a1∨·· ·∨am},
where the ais are fresh variables; indeed, the MUS of Σ is given by all unions X1∪·· ·∪Xm∪{a1∨·· ·∨am}
where Xi is an MUS of Σi, 1≤ m. In turn, computing some MUS of an unsatisfiable theory Σ is reducible to
computing some α?

f s-witness of an answer set of a logic program. This can be accomplished by extending
the reduction from MUS computation to minimal witness computation in the previous section. To this
end, we add the clause p′∨¬p to Σ for each p′ ∈A . Then M = A ∪{p} is an answer set of the resulting
clause theory, and assuming without loss of generality that r− 6= /0 for some r ∈ Σ, the dependency graph
GΣ of Σ is strongly connected. Thus, every α?

f s-witness of M is of the form (S1,Π1) where S1 = M and
{r ∈ Σ | r+∪{p}← r− ∈Π1} is an MUS of Σ. We thus obtain:

Corollary 5.2. Computing some α?
f s-witness of an answer set M 6= /0 of a logic program and computing some

MUS of a clause theory are equivalent under logspace-reductions.

30 LOGCOMP RR 22-01

5.2.3 β -witnesses

A minimal β -witness for an answer set M of a logic program Π can be computed using the algorithm
MinBetaWitness modulo the test “Σu∪T |= v for some atom v /∈ {u}∪T ” in line 10 and the calls to MinWitness
in polynomial time. As both the test and each call can be reduced in polynomial time to MUS computation,10

a minimal β -witness is computable in polynomial time with a procedure for MUS computation.
Since an MUS of a clause theory is computable in polynomial time with an NP oracle, or also directly

from the algorithms MinBetaWitness and MinBetaBSWitness, we obtain:

Corollary 5.3. Given an answer set M of a disjunctive logic program Π, some minimal β - resp. β ?-witness
of M w.r.t. Π is computable in polynomial time with an NP oracle.

Conversely, we can reduce MUS computation of a given unsatisfiable clause theory Σ to computing a
minimal β -witness for an answer set M of a positive logic program Π.

Let Σ be an unsatisfiable clause theory and Σ′ be a copy of Σ on the alphabet A ′ = {p′ | p ∈A }, and
define

Σ1 = {c∨ x | c ∈ Σ}, Σ2 = {c′∨¬x∨ x′ | c′ ∈ Σ
′}, Σ3 = {¬x∨¬x′∨ p | p ∈A ∪A ′}, (11)

where x,x′ are fresh atoms, and let Π = Σ1∪Σ2∪Σ3. Then M = A ∪A ′∪{x,x′} is the single answer set of
Π. Intuitively, in a minimal β -witness [(p1,Π1), . . . ,(pm,Πm)] for M, either the rules in Π1∩Σ1 or those in
Π1∩Σ2 must derive x resp. ¬x∨ x′; otherwise, it is not possible that Π1 is a witness of p1, and as necessary,
does not derive any other atom. Formally,

Proposition 5.3. Let Σ be an unsatisfiable clause theory, and let Π = Σ1∪Σ2∪Σ3 and M =A ∪A ′∪{x,x′}
be as (11). Then,

(i) for every minimal β -witness [(p1,Π1), . . . ,(pm,Πm)] of M w.r.t. Π, if p1 = x the set Γ = {r ∈ Σ |
(r+∪{x})← r− ∈Π1} and otherwise the set Γ = {r ∈ Σ | (r+∪{x′})← r−∪{x} ∈Π1} is an MUS of
Σ;

(ii) from every MUS of Σ, some minimal β -witness of M w.r.t. Π can be constructed.

Since computing an MUS of a clause theory is known to be FPNP
‖ -hard Chen and Toda [1995]; Janota and

Marques-Silva [2016], from Proposition 5.3 we thus obtain

Proposition 5.4. Given an answer set M of a logic program Π, computing some minimal β -witness (resp.
minimal β ?-witness) for M w.r.t. Π is FPNP

‖ -hard.

Notably, it is not clear whether the gap between FPNP
‖ -hardness and membership in FPNP can be improved,

e.g., hardness for membership in the class FPNP[log,wit]. Intuitively, a minimal β -witness seems to be more
difficult to compute than an MUS, since we have a sequence of dependent MUS problems to solve, according
to Definition 4.3 of minimal β -witness. However, while for each answer set M = {p1, . . . , pn} of a logic
program Π always some minimal β -witness of B = {p1} under Π and S = /0 w.r.t. M exists, no such witness
[(p1,Π)] may exist that can be extended to some minimal β -witness [(p1,Π), . . . ,(pn,Πn)] of M under Π.
As it turns out, deciding this problem is actually at the second level of the Polynomial Hierarchy.

10For the test in line 10, we can e.g., exploit a reduction from SAT to CRITICAL SAT in Papadimitriou and Wolfe [1988].

LOGCOMP RR 22-01 31

Theorem 6. Let M be an answer set of a logic program Π, and let p ∈M. Deciding whether there exists
some minimal β -witness W = [(p1,Π1), . . . ,(pn,Πn)] for M = {p1, . . . , pn} w.r.t. Π such that p = p1 is
Σ

p
2 -complete.

On the other hand, for normal and headcycle-free programs, computing some minimal β -witness is
tractable; in fact, we can even compute some compact β -witnesses in polynomial time. The reason is that
MR(Π,M) is a Horn theory. Thus, every atom in M has a witness with exact one rule. Thus, the inner while
loop (lines 3-6) of MinBetaBSWitness is sufficient to find such a witness. For headcycle-free disjunctive logic
programs, this is likewise, i.e., the algorithm MinBetaBSWitness will return the Π′ constructed after this loop;
this is due to the fact that headcycle-freeness ensures that minimal models can be incrementally be built up
from facts by applying the rules.

Corollary 5.4. For an answer set M of a normal or headcycle-free logic program Π, computing a compact
β -witness for M w.r.t. Π is feasible in polynomial time.

However, answer sets of general disjunctive logic programs may lack a compact β -witness and a compact
β ?-witness as shown by Example 4.9. The problem of deciding whether an answer set has a compact β - resp.
β ?-witness is intractable in general and in fact located at the second level of the Polynomial Hierarchy.

Theorem 7. Deciding whether an answer set M of a disjunctive logic program Π has a compact β -witness
(resp. compact β ?-witness) is Σ

p
2 -complete, and the Σ

p
2 -hardness holds even if MR(Π,M) = Π.

Indeed, we can guess and check a compact β -witness in polynomial time with an NP oracle; the conditions
in Definition 4.2 involve minimal witness tests which are feasible in polynomial time with an NP oracle. The
Σ

p
2 -hardness is by a ∃∀-QBF encoding, where the rule selection for a compact β -witness mimicks the ∃-part

of the formula.
In constructing a potential compact β -witness (if possible), it is usually preferable to construct the witness

for an atom q before an atom p whenever any witness of p may be a witness of q. In this case the atom q
is called necessary for p. Formally, let M be an answer set of a logic program Π and S⊆M. An atom q is
necessary for an atom p w.r.t. M and S under Π, if MR(Π′,M)∪S |= q holds for every witness Π′ ⊆Π of p
under S w.r.t. M. Intuitively, it means that every derivation for p from MR(Π,M)∪S makes use of q, which
has been derived from MR(Π,M)∪S before p. In this case p cannot be prior to q in a compact β -witness of
M w.r.t.Π. This condition is hard to check in terms of the next theorem.

Theorem 8. Let M be an answer set of a logic program Π, S⊆M and p,q ∈A s.t. MR(Π,M)∪S |= p∧q.
The problem of deciding whether q is necessary for p w.r.t. M and S under Π is Π

p
2-complete, and the

Π
p
2 -hardness holds even if MR(Π,M) = Π and S = /0.

6 Experimental Evaluation

To experimentally evaluate the approach of computing minimal β -witnesses, we have implemented a prototype
system in Python 3.7 and in addition also the revised minimal model checking algorithm. Since the above
two algorithms involve logical reasoning, we make use of Glucose 4.011 in the python-sat package Ignatiev et
al. [2018]. The package provides actually many other SAT solvers, including CaDiCaL, Lingeling, Minisat
etc. According to Proposition 4.1, we can utilize MUS solvers for computing β -witnesses; we used the MUS
solver picomus for this purpose.

11https://www.labri.fr/perso/lsimon/glucose/

https://www.labri.fr/perso/lsimon/glucose/

32 LOGCOMP RR 22-01

Recall that the notion of witnesses developed in this paper serve the offline verification of given answer
sets, produced by any answer set solver, and are not geared to online construction of answer sets by a
particular solver, taking possible solver peculiarities into account.

The experiments were aimed to shed light on the following aspects:

A1. To see whether β -witnesses can be computed for logic programs in practice. As a side issue, this
involved computing minimal models of positive programs respectively clause theories as well as
minimality checking to have instances for the problem.

A2. How often do actually disjunctive rules occur in such witnesses, more precisely in the reduct w.r.t. to
the given answer set; this links to the question how much disjunction with headcycles is needed to
produce an answer set.

A3. The impact of using MUS solvers compared to using proprietary minimal β -witness computation.

We shall turn back to these aspects in Subsection 6.3 when experimental results are reported. Since the
notions and constructions hinge much on positive programs and minimal models, positive programs are in
the focus of the experiments.

The remainder of this section is organized as follows. We first give an overview of the benchmarks that
we considered, which is followed by a description of the experimental platform and the results. We then
conclude the section with a general discussion of the results. All experimental data (benchmarks and results)
are online available.12

6.1 Benchmark problems

For our evaluation, we considered both synthetic and use case benchmark problem from ASP and SAT
solving. The former include random k-CNF theories, random disjunctive logic programs and hand-coded
CNF theories, while the latter include minimal diagnosis and strategic companies problems, which are two
typical beyond-NP problems in ASP competitions, and some small size problems from SAT competitions
(Collatz, Johnson, Giraldez, crypto, grieu) as benchmarks.

6.1.1 Benchmark generation

For the evaluation on CNF theories, one has to firstly compute a minimal model for each satisfiable CNF
theory. For this purpose, one can translate a CNF theory into a logic program whose answer sets are exactly
the minimal models of the CNF theory. In this case, efficient solvers for logic programs (under answer
set semantics) can be employed, such as DLV13, clingo14, etc. Another possibility is to make use of SAT
solvers in terms of Algorithm 3; note that line 4 in this algorithm can be safely removed for minimal model
computation. We have implemented this algorithm in the prototype system mr_minimal15 based on MiniSat
source code. 16 Preliminary experimental results showed that this algorithm achieves better performance than
the ASP solver clingo-5.4 on both random clause theories with more than 200 variables and some industrial
benchmarks from SAT competitions Li et al. [2021]. We also considered a trivial procedure Algorithm 8
using a SAT solver to compute a minimal model of a clause theory, in order to exploit the latest SAT solvers.

12https://github.com/yswang168/witness
13http://www.dlvsystem.com/dlv/
14https://potassco.org/clingo/
15https://github.com/zhangli-hub123/minimal-model
16http://minisat.se/downloads/minisat-2.2.0.tar.gz

https://github.com/yswang168/witness
http://www.dlvsystem.com/dlv/
https://potassco.org/clingo/
https://github.com/zhangli-hub123/minimal-model
http://minisat.se/downloads/minisat-2.2.0.tar.gz

LOGCOMP RR 22-01 33

Algorithm 8: MinModelSAT (Σ)

Input: A clause theory Σ

Parameter: SAT solver sat
Output: A minimal model of Σ or UNSAT if no model of Σ exists

1 M← sat(Σ) ; // Compute a model M of Σ invoking sat
2 if M is UNSAT then return UNSAT while True do
3 M′←M;
4 Σ← Σ∪{¬q | q ∈ var(Σ)−M}∪

∨
{¬p | p ∈M};

5 M← α(Σ);
6 if M is UNSAT then return M′

7 end

6.1.2 Random k-CNFs

These satisfiable k-CNFs are randomly generated with the number n of variables ranging from 50 to 200
with interval 10, i.e., n ∈ {50,60, . . . ,200}, while the number of clauses ranges from 3× n to 5× n with
interval 0.1×n. For each case we used 20 trials and report the average CPU time. The SAT solver cadical17

is employed to test whether a k-CNFs is satisfiable and to compute a minimal model of a satisfiable k-CNFs
instance according to Algorithm 3; notably, cadical won the first place in the SAT track of the SAT Race
2019 and second overall place.

6.1.3 Random disjunctive logic programs

Chen and Interian Chen and Interian [2005] proposed a model t-Q(a,e;A,E;m) for generating random QBFs
of the form ∀X∃Y F , where F is a CNF formula, t is the number of components (QBFs), |X |= A, |Y |= E, m is
the number of clauses in F , each clause contains a literals with variables in X and e literals with variables in Y .
Combining the Chen-Interian model with the mapping between true QBFs of the form ∃X∀Y F and consistent
disjunctive logic programs in Eiter and Gottlob [1995], Amendola et al. Amendola et al. [2018] have recently
implemented a parametric generator for random disjunctive logic programs t-Ddl p(e,a;E,A;m) that is the
dual counterpart of the Chen-Interian model. We considered the parameter settings t-Ddl p(1,3;A,60;m)
with t ∈ {1,2}, A = 20,30, . . . ,140 and m = 50,70, . . . ,490. In each case 20 randomly generated consistent
disjunctive programs were considered. The answer set solver clingo was employed to compute an answer set
of ech of these 2×13×23×20 = 11960 instances.

6.1.4 Handcrafted CNFs

To test for a harder case, we first considered the following clause theory Σn with n atoms p1, . . . , pn, defined
as

Σn = {p1∨¬pi,¬p1∨ pi | 2≤ i≤ n}∪{p2∨·· ·∨ pn}. (12)

The unique minimal model of Σn is Mn = {pi | 1≤ i≤ n}. It is evident that MR(Σ,M) = Σ and the super-
dependency graph SGΣn has only one vertex. We tested the above theory with n ranging from 50 to 400 with
interval 10 i.e., n ∈ {50,60, . . . ,400}.

17http://fmv.jku.at/cadical/

http://fmv.jku.at/cadical/

34 LOGCOMP RR 22-01

We then considered also a cascading version of the above theory, where we have m “stages”:

• Σn,1 = {c(1) | c ∈ Σn},

• Σn,m = Σn,m−1∪{p(m−1)
1 ∧·· ·∧ p(m−1)

n → c(m) | c ∈ Σn}, for m > 1,

where c(i) means that each propositional symbol p in c is replaced by p(i). It is not difficult to see that Σn,m has
a unique minimal model Mn,m containing every atom occurring in the theory Σn,m. We tested the cascading
theories with m = 5 and n ranging from 50 to 400 with interval 10, with a CPU time limit of 30 minutes for
each instance.

We also considered the following “cycle” version of the cascading case as follows: let x,y be two fresh
atoms and

• Πn,1 = {¬x∨ c(1),¬y∨ c(1) | c ∈ Σn},

• Πn,m = Σn,m−1∪{p(m−1)
1 ∧·· ·∧ p(m−1)

n → c(m) | c ∈ Σn}, for m > 1, and

• Σc
n,m = Πn,m∪{x∨ y, p(m)

1 ∧·· ·∧ p(m)
n → x, p(m)

1 ∧·· ·∧ p(m)
n → y}.

Intuitively, one of x and y is sufficient to derive all atoms p(m)
j , which in turn derive both x and y. More

formally, it is evident that Πn,1∪{x∨y} can derive {p(1)1 , . . . , p(1)n } and more generally that Πn,m∪{x∨y} can
derive {p(j)

1 , . . . , p(j)
n }, for all j = 1, . . . ,m. Hence Σc

n.m, which contains x∨ y, derives all p(j)
i and moreover

x,y, which are derived using p(m)
1 ∧·· ·∧ p(m)

n . Thus the unique minimal model of Σc
n,m is Mc

n,m = {p(j)
i | 1≤

i≤ n,1≤ j ≤ m}∪{x,y}. We tested the “cycle” theories Σc
n,m with m = 5 and n ranging from 50 to 400 with

interval 10, and again with a CPU time limit of 30 minutes for each instance.

6.1.5 ASP Competition benchmarks

We consider the beyond-NP search benchmarks minimal diagnosis, strategic company from the 3rd18 and
the 4th19 ASP competitions. The ones from the 4th ASP competition were used in the 5th, 6th and 7th ASP
competitions as well. The strategic company benchmarks from the 4th ASP competition are for answering a
query, e.g., “non_strategic_pair(c1,c2)?” is a ground query at the end of an instance file. Such ground queries
are removed for our evaluation. One more beyond-NP search benchmark from the 4th ASP competition is
Complex Optimization of Answer Sets. It is excluded since it involves non-disjunctive (choice) rules, for
which the tool LP2NORMAL Bomanson [2017] still cannot translate such programs possibly due to disjunction.
The other beyond-NP benchmarks in the two ASP competitions are for optimization and involving weak
constraints. For each instance, its grounding was obtained by gringo-3.0.5 with the option “-t”, while an
answer set was obtained by clingo-4.4.0 within 2 hours time limitation. Though there are many other
benchmark classes for disjunctive logic programs Gebser et al. [2013], including ConformantPlanning,
MaximalSatisfiableSet, 2QBF and Repair, these benchmarks do not fit for evaluation since they are in lparse20

internal format and involve choice, maximize, aggregate or other non-disjunctive rule types or constructors.
The current implementation cannot deal with these extensions.

18https://www.mat.unical.it/aspcomp2011/FrontPage
19https://www.mat.unical.it/aspcomp2013/FrontPage
20http://www.tcs.hut.fi/Software/smodels/lparse.ps

https://www.mat.unical.it/aspcomp2011/FrontPage
https://www.mat.unical.it/aspcomp2013/FrontPage
http://www.tcs.hut.fi/Software/smodels/lparse.ps

LOGCOMP RR 22-01 35

Table 2: The numbers of atoms(n) and clauses(nc) of random benchmarks for SAT 2007 competition
H

HHH
HHclass
k

3 5 7

LargeSize n m×1000 | m = 4,7,10,13,16,19 m×100 | m = 6,7,8,9,10,11 140,160,180,200,220,240
nc n×4.2 n×20 n×85

OnThreshold n 360,400,450,500,550,600,650 70,80,90,100,110,120 45,50,55,60,65,70,75
nc n×4.26 n×21.3 n×89

6.1.6 SAT Competition benchmarks

A large number of benchmarks for SAT competitions and races is available.21 As we need to compute a
minimal model first, which is ususally time consuming, relatively small size CNF instances were chosen:
Collatz and Johnson from the SAT-2019 competition, the application benchmark Giraldez from the SAT-2016
competition, and the industrial benchmarks crypto and grieu from the SAT-2007 competition.

As the above random k-CNFs are relatively small in size, we choose the random k-CNF benchmarks from
the SAT 2007 competition as well. It includes two classes ‘LargeSize’ and ’OnTreshold’ for k ∈ {3,5,7}
with different numbers of atoms. The number n of atoms and the number nc of clauses for different class and
different k are shown in Table 2; for each value pair of k and n, 10 instances were considered.

For each of these instances, we employed the SAT solver cadical to compute a minimal model M within
2 hours, and then we computed a minimal β -witness for each M obtained w.r.t. the corresponding clause
theory (timeout 2 hours).

6.2 Experimental results

All experiments were conducted on a server running Linux 3.10.0 with 48 cores Intel(R) Xeon(R) Silver
4214 CPU at 2.20GHz and 132G memory, without using multi-processes or multi-threads.

6.2.1 Random k-CNFs

We first report in Table 3 the average CPU time for computing minimal models of randomly generated
3-CNFs by four solvers: DLV, clingo, Algorithm 8 with cadical, and mr_minimal. Each cell of the table
includes 21×20 satisfiable instances with n∈ {50,100,150,200} variables and n×γ clauses, where γ ranges
over 3.0, 3.1, 3.2, . . . , 5.0, and all clauses were randomly generated in a uniform manner; the number of
randomly generated unsatisfiable instances is also reported. As can be seen from the table, using the latest
SAT solver cadical yields a slightly better performance in terms of CPU time for the largest number of
variables. Thus, we considered Algorithm 8 as a minimal model solver in the subsequent experiments. A
notable observation is that it was more difficult to randomly generate satisfiable 3-CNF theories when the
number of atoms was increasing. In particular, the minimal model solver has for each random k-CNF instance
a limit of 30 minutes to compute a minimal model. It took for n = 150 and n = 200 almost 0.5 and 10 hours,
respectively, to randomly generate 16× 21× 20 = 6720 satisfiable 3-CNF theories and to compute some
minimal models of them; for n = 300, this task could not be completed within 5 days.

The overall CPU time (in seconds) for computing some minimal β -witnesses of given random k-CNFs is
shown in Table 4, where k∈{3,4,5,6,10,20}. Each cell of the table includes the data for 16×21×20= 6720
satisfiable k-CNF instances with n ∈ {50,60, . . . ,200} atoms and n× γ clauses where γ ∈ {3.0,3.1, . . . ,5.0}
for each n. The total number of atoms pi whose witness Πi contains more than one clause, denoted by
#|Πi|≥2, is also reported in the table. In case |Πi| ≥ 2, Πi must contain at least one clause whose reduct

21http://satcompetition.org/

http://satcompetition.org/

36 LOGCOMP RR 22-01

Table 3: The average CPU time (in seconds) for computing a minimal model of 3-CNFs
PPPPPPPPPsolver

n
50 100 150 200

dlv 0.0269 0.0338 0.0638 0.3201
clingo 0.0686 0.1691 0.3916 0.9696
mr_minimal 0.0254 0.0424 0.1071 0.5826
Algorithm 8 (cadical) 0.0883 0.1204 0.1570 0.2753
#UNSAT 668 4252 65669 528767

Table 4: The result of computing minimal β -witness of random k-CNFs
k 3 4 5 6 10 20

without MUS solver
Time (secs) 674.73 633.93 638.68 637.80 620.01 671.05
#|Πi|≥2 13 9 0 0 0 1
#|Πi|c ≥ 2 13 10 0 0 0 1
#|Πi|w ≥ 2 28 21 0 0 0 2
non-compactness 2 1 0 0 0 0

with the MUS solver picomus
Time (secs) 676.77 634.25 639.67 637.27 623.09 672.82
#|Πi|≥2 13 9 0 0 0 1
#|Πi|c ≥ 2 13 10 0 0 0 1
#|Πi|w ≥ 2 30 21 0 0 0 2
non-compactness 3 1 0 0 0 0

has more than one positive literal. The overall number of such clauses in all respective Πi is denoted by
#|Πi|c ≥ 2, and the overall number of clauses in all respective Πi is denoted by #|Πi|w ≥ 2. As can be seen
from Table 4, computing some minimal β -witness can in general be accomplished quite efficiently, and the
computation time is not much dependent on the clause size. There are very few atoms (in a minimal model)
whose minimal β -witness involves multiple clauses. It means that almost every atom has just one clause as
its witness, from which an explanation (resolution proof) for the atom is trivial. In other words, minimal
β -witnesses for minimal models of random k-CNFs are almost definite when applying the reduct. In this case,
the unit propagation in Algorithm 5, i.e. the while-loop (lines 3-6), is sufficient to compute such a minimal
β -witness. Furthermore, even if atoms pi with #|Πi| ≥ 2 were in minimal β -witnesses obtained, only 3 (resp.
4) of these minimal β -witnesses were not compact β -witnesses when not MUS solver was used (resp. the
MUS solver picomus was used).

We further illustrate in Fig. 4 the average CPU time for computing minimal β -witnesses of 20 3-CNF
instances with the same n and ratio γ . In this figure, (a) uses no MUS solver, while (b) uses the MUS solver
picomus. An expected behaviour is that an increasing number of clauses requires more CPU time in both
cases. According to both Table 4 and Fig. 4, for the tested random CNFs there is not much difference between
using the MUS solver or not. The other cases for k ∈ {4,5,6,10,20} are all similar to that of k = 3.

LOGCOMP RR 22-01 37

(a) without MUS solver (b) with MUS solver picomus

Figure 4: The average CPU time for computing minimal β -witnesses of random 3-CNFs

Table 5: The result of computing minimal β -witness of random disjunctive logic program
t # instances With MUS solver picomus? #|Πi| ≥ 2 #|Πi|c ≥ 2 #|Πi|w ≥ 2 compact CPU(s)
1 5980 No 5980 5980 18410 5510 0.29
1 5980 Yes 5980 5980 18729 5191 0.16
2 5980 No 12044 12044 36712 5214 0.51
2 5980 Yes 12314 12314 38455 4595 0.18

6.2.2 Random disjunctive logic programs

Firstly, we report the overall metric values of #|Πi| ≥ 2,#|Πi|c ≥ 2, #|Πi|w ≥ 2, number of compact witnesses
and the average CPU time in seconds per instance in Table 5.

As can be seen, the use of the MUS solver picomus reduces the overall CPU time of computing some
minimal β -witness up to 0.51/0.18 ≈ 2.83 times; on the other hand, the number of compact β -witnesses
computed also decreases for t = 1 from 5510 to 5191 and for t = 2 from 5214 to 4595. In addition, when
t = 1 each computed β -witness has exactly one atom whose local witness involves more than one rule, among
them exactly one is non-definite. When t = 2, the metric value of #|Πi| ≥ 2 (resp. #|Πi|c ≥ 2, #|Πi|w ≥ 2)
is about 2 times larger than that of t = 1. Notably, computing a minimal β -witness was for each of these
random disjunctive logic programs feasible within one second and for each atom the local witness involved
quite few rules.

6.2.3 Handcrafted CNFs

For the handcrafted clause theories Σn,m, the CPU time of computing a minimal β -witness without an MUS
solver (cb) and with the MUS solver picomus (cb-MUS) is shown in Fig. 5. For comparing the efficiency
between minimal model checking and computing minimal β -witnesses, the algorithm CheckMinMR for
minimal model checking was implemented and run on the clause theories; the CPU time is reported in Fig. 5
as ‘mmc’, in addition to the CPU time of computing the minimal model by Algorithm 3, reported as ‘mm’.

It can be seen that our algorithm MinBetaWitness (Algorithm 6) is still efficient for these theories. As
expected, the time increases with the number n of atoms in the basic clause theory and also with the number
m of stages, but for the latter in a non-proportional manner (for n = 100,200,300 it increases from roughly
0.25,0.75,1.5 secs for m = 1 to 60,400,1500 secs for m = 5, respectively); the cyclic version further increases

38 LOGCOMP RR 22-01

(a) m = 1 (b) m = 5 (c) m = 5 with cycle

Figure 5: CPU time for computing minimal β -witness and minimal model checking of Σn,m

the computation time. Notably, the MUS solver picomus helps a lot in computing some β -witness in terms of
the computing cost. According to Fig. 5.b, MinBetaWitness times out under a limit of 30 mins for n≥ 320
when no MUS solver was used. With the help of picomus, the computation time of the cycle version is
slightly higher than that of the cascading version (“cb-MUS” in (b) vs. “cb-MUS” in (c)). However, the cycle
version is much harder to be solved without the help of the MUS solver (“cb” in (b) vs. “cb” in (c)). A notable
comparison shows that the minimal model computation and minimal model checking are far more efficient
than computing some minimal β -witness, and have nearly the same (small) cost for these instances.

6.2.4 ASP and SAT competition benchmarks

The CPU time and other metrics of computing a minimal β -witness for the ASP and SAT benchmarks are
shown in Tables 6 and 7, respectively. Specifically, the following values are shown:

• total, select: the number of overall (resp. the selected in lexicographic order) instances;

• sat, unsat, solved: the number of satisfiable (resp. unsatisfiable, solved) instances within a time limit of
2h;

• compact: the number of solved instances with a compact β -witness as result;

• |Σ|(MB): the average solved instances size (in Megabytes);

• |M|(KB): the average size of answer sets (minimal model) (in Kilobytes) for solved instances;

• CPU: the average CPU time (secs) to compute a minimal β -witness for solved instances within a time
limit of 2h;

• Mem: the average memory usage in Megabytes for solved instances;

• #|Πi| ≥ 2: the overall number of atoms with more than one clause in their local witness over the solved
instances;

• #|Πi|c ≥ 2: the overall number of non-definite clauses (i.e., with more than one positive literal) in
witnesses;

• #|Πi|w ≥ 2: the overall size of local witnesses with more than one clause;

• +: maximum recursion depth 1000 exceeded;

LOGCOMP RR 22-01 39

Table 6: Computing minimal β -witnesses for ASP benchmarks – . . . timeout; further legend see text
minimal diagnosis strategic companies

metrics 3rd 4th 3rd 4th
total / select 551/100 250/20 51/20 37/5
sat 68 13 15 3
unsat 32 7 0 0

without / with MUS-solver picomus
solved 68 5 15 0
|Σ| (MB) 3.72 25.80 1.23 –
|M| (KB) 237.30 1547.62 410.22 –
CPU 161.30 / 157.32 3140.85 / 3199.37 65.17 / 65.12 –
Mem 411.18 / 406.62 2500.33 / 2499.52 179.00 / 178.99 –
compact 54 / 55 4 / 4 15 / 15 –
#|Πi| ≥ 2 15 / 14 2 / 2 0 / 0 –
#|Πi|c ≥ 2 21 / 20 9 / 9 0 / 0 –
#|Πi|w ≥ 2 116 / 109 47 / 47 0 / 0 –

Table 7: Computing minimal β -witnesses for SAT benchmarks – . . . timeout; further legenda see text
metrics Collatz Johnson Giraldez crypto grieu
total / select 19/19 19/19 29/29 10/10 10/10
sat 16 4 18 10 6
unsat 3 0 9 0 0

without / with MUS-solver picomus
solved 9 / 10 4 18 0 6
|Σ| (MB) 6.61 / 8.59 2.66 0.15 + 1.25
|M| (KB) 8.40 / 8.02 11.32 5.44 + 0.13
CPU 29.50 / 13.61 14.91 / 14.43 2.19 / 1.27 + 1.82 / 1.83
mem 491.82 / 563.97 192.64 / 192.67 36.09 / 36.01 + 119.87 / 119.87
compact 6 / 6 4 / 4 18 / 18 + 6 / 6
#|Πi| ≥ 2 9 / 31 0 / 0 3 / 3 + 0 / 0
#|Πi|c ≥ 2 21 / 53 0 / 0 3 / 3 + 0 / 0
#|Πi|w ≥ 2 415 / 502 0 / 0 6 / 6 + 0 / 0

• – : timeout after 2 hours.

As can be seen from Tables 6 and 7, MinBetaWitness(Π,M) computed 68+5+15+0=88 minimal β -
witnesses for the 68+13+15+3=99 of the consistent ASP instances regardless of whether no MUS solver or
picomus was used, and 37 resp. 38 minimal β -witnesses for 54 consistent SAT instances without resp. with
the MUS solver picomus.

However, no strategic companies instance from the 4th ASP competition could be solved due to their
overlarge size of around 140 MB, and similarly no crypto instance whose model size is more than 100 KB
was solved due to exceeding the maximum recursion depth 1000.

In few cases, an atom pi in an answer set resp. minimal model had a local witness Πi that contained more
than one rule resp. clause; furthermore, few rules (resp., clauses) with at least 2 head atoms (resp., positive
literals) occurred in the minimal β -witnesses computed, and for non-singleton local witnesses Πi the number
of rules resp. clauses in it was small, with the exception of minimal diagnosis (3rd edition) and Collatz. In

40 LOGCOMP RR 22-01

Table 8: Computing minimal β -witnesses for ‘LargeSize’ class benchmarks
PPPPPPPPmetrics

k-n
3-4000 5-600 5-700 5-800 7-180

sat 2 9 8 6 1
unsat 0 0 0 0 0

without / with MUS-solver picomus
CPU 4.93 / 4.78 0.68 / 0.68 0.87 / 0.91 1.09 / 1.14 11.21 / 0.60
compact 2 / 2 9 / 9 8 / 8 6 / 6 0 / 0
#|Πi| ≥ 2 0 / 0 0 / 0 0 / 0 0 / 0 2 / 2
#|Πi|c ≥ 2 0 / 0 0 / 0 0 / 0 0 / 0 66 / 12
#|Πi|w ≥ 2 0 / 0 0 / 0 0 / 0 0 / 0 134 / 32

particular, when using the MUS solver picomus, one more instance, C3-2-31.cnf from Collatz was solved
in about 30 seconds and in the returned β -witness there are 23 atoms involving overall 75 clauses in their
witnesses, among them 36 clauses have at least two positive literals. Overall, the MUS solver was helpful for
computing some β -witness in terms of computing cost; in particular, the computation was about two times
faster than without the MUS solver for the benchmark Collatz, at the expense of more memory and some
more atoms that have multiple-clause witnesses, while the other benchmarks showed no such trade-off. In
the other experiments there was a small but not significant run time gain or loss. Furthermore, many of the
minimal β -witnesses computed, viz. 73 (resp. 74) out of 88 for the ASP benchmarks and 34 out of 37 (resp.
38) for the SAT benchmarks with no MUS solver (resp. with the MUS solver picomus), were in fact compact
witnesses.

For the random benchmarks of the SAT 2007 competition, we report the cases that a minimal model
is computed in the ‘LargeSize’ class in Table 8. The satisfiability of the other instances is unknown due
to timeout. It can be seen that our algorithm for computing some minimal β -witness is efficient for all
of these minimal models. The worst situation (11.21 seconds) happens for the random 7-CNF with 180
atoms and 180×85 = 15300 clauses when it uses no MUS solver. For this instance, using the MUS solver
picomus yielded a speed up of more than 18 times. The minimal β -witness computed in this case was the
only non-compact one among all the minimal β -witnesses that were computed.

For the ‘OnThreshold’ class, we computed a minimal model for five of the random instances with k = 3
and each n ∈ {360,400, . . . ,650} in 2 hours for each instance. The satisfiability of the others are unknown
due to timeout, with the exception of n = 360 where the other instances are unsatisfiable. For each of the
35 minimal models obtained for these 35 random 3-CNF instances, our algorithm computed a minimal
β -witnesses in less than 0.3 seconds. These witnesses are all compact and no β -witness of an atom needs
more than 2 clauses. For the random 5-CNF benchmarks, a minimal model is returned for 5 instances for each
n ∈ {90,100,110,130}. Our implementation computes a minimal β -witness for each of these 20 minimal
models in 0.4 seconds on average. All the minimal β -witnesses are compact and no β -witness of an atom
needs more than 2 clauses. For the other random 5-CNF instances with n ∈ {70,80,120} and all the random
7-CNF instances, the experimental results of computing minimal β -witnesses are reported in Table 9. They
further confirm that the MUS solver does improve the computation for minimal β -witnesses, e.g., it yielded a
speed up of more than 121.83/1.57≈ 77 times for the instances of 7-CNF and n=75. For the 32 minimal
models of the random 7-CNF instances, only 10/27≈ 37% of the minimal β -witnesses computed with the
help of the MUS solver were compact. Furthermore, many atoms in answer sets need more than 2 clauses in
their β -witnesses and many clauses in these witnesses are non-definite. With the help of the MUS solver, our
implementation produced less than one-third of non-definite clauses. This is very different from all the other

LOGCOMP RR 22-01 41

Table 9: Computing minimal β -witnesses for ‘OnThreshold’ class benchmarks (without/with MUS solver)
k-n sat unsat compact cpu(s) #|Πi| ≥ 2 #|Πi|c ≥ 2 #|Πi|w ≥ 2
5-70 5 5 4 / 4 0.40 / 0.16 4 / 1 57 / 6 124 / 14
5-80 5 4 4 / 3 0.23 / 0.14 2 / 3 3 / 4 11 / 17
5-120 5 0 4 / 4 0.39 / 0.15 2 / 2 9 / 5 24 / 18
7-45 5 5 1 / 1 3.79 / 0.29 24 / 25 610 / 201 959 / 376
7-50 5 4 0 / 1 5.22 / 0.30 23 / 23 524 / 133 871 / 306
7-55 5 0 2 / 2 4.86 / 0.30 19 / 22 596 / 172 951 / 348
7-60 5 0 1 / 1 5.82 / 0.37 22 / 23 914 / 176 1429 / 375
7-65 4 0 2 / 2 1.39 / 0.21 6 / 5 175 / 39 264 / 69
7-70 5 0 3 / 3 3.11 / 0.29 8 / 10 367 / 50 634 / 136
7-75 3 0 0 / 0 121.83 / 1.57 24 / 25 3061 / 837 4195 / 1363

tested random 3,5-CNF, industrial SAT and ASP competition use cases.

6.3 Summary and Discussion

The above experimental results lead us to the following insights for the aspects (A1)-(A3) from above.
First, regarding (A1), they show that computing some minimal β -witness is usually feasible for both

randomly generated clause theories and for the handcrafted clause theories. For the ASP and SAT encodings
from the considered use cases, the picture is different, as with the time limit of 1h for ASP and 45 secs for SAT,
for about (68+4+15)/(68+13+15+3)=87/99≈87% resp. (8+4+18+6)/(16+4+18+10+6)=36/54≈64% of the
instances some minimal β -witness was computed22. However, the percentiles for the individual benchmarks
vary a lot and suggest that there is a range of "easy" to "hard" problems, depending on the problem structure,
for both ASP and SAT. This is further nurtured by that observation that in case a minimal β -witness was
found, the computation terminated rather quickly compared to the time limit, with the exception of minimal
diagnosis (4th edition).

Regarding (A2), except for the 7-CNFs in the ‘OnThreshold’ class, we found that very few atoms
pi needed more than one rule resp. clause in their local witness Πi in a minimal β -witness as shown by
#|Πi|c ≥ 2, for all the tested cases above, and that for five out of benchmarks such a local witness Πi had few
clauses on average (less than two). Thus, the justification of an atom (why this atom belongs to a minimal
model) in terms of a resolution proof from the reduct MR(Π,M) of the program Π w.r.t. the answer set
M at hand (which incorporates the closed world assumption of M into the program Π), is quite obvious in
these cases. For the other two benchmarks, constructing a resolution proof was narrowed down to local
sets of manageable size of about 10 rules resp. 50 clauses. Furthermore, as definite rules r are not repeated
in minimal β -witnesses (they serve to derive the atom in r+), the computed minimal β -witness were also
"nearly" compact, as only for few distinct atoms pi and p j the associated witnesses Πi and Π j, respectively,
may overlap. In fact, about 84% resp. 91% of them were for the ASP resp. SAT benchmarks indeed compact;
since algorithm MinBetaWitness is not geared towards compact witnesses, this rate may possibly be even
increased by tuning it.

As for (A3), the use of an MUS solver is beneficial for instances that bear structure, random disjunctive
logic programs and random SAT benchmarks, in particular for the handcrafted instances this led to a
significant speedup and a more graceful increase of computation time, while it had almost no effect for the

22Only one solved ASP instance of minimal_diagnosis from the 4th ASP competition took more than 1 hour, and one solved SAT
instance from Collatz took more than 45 seconds in the case of without MUS solver.

42 LOGCOMP RR 22-01

Figure 6: The off-line justifications for atoms in M1 w.r.t. M1 and {a} (left to right)

randomly generated k-CNF instances (resulting in marginally higher runtime). For the ASP and non-random
SAT benchmarks, the runtime did in most cases not significantly improve, and the quality of the minimal
β -witnesses produced was very similar to the setting without MUS solver, with one exception. For obtaining a
clear picture on the benefits/drawbacks of using an MUS solver in practice, further research will be necessary.

7 Related Work

Justifications for logic programs have been extensively investigated from the perspective of off-line justifica-
tions Pontelli et al. [2009], why-not provenance Damásio et al. [2015] and argumentative explanations Schulz
and Toni [2016] for non-disjunctive logic programs, semantical error finding and debugging Gebser et
al. [2008]; Oetsch et al. [2018]; Dodaro et al. [2019], causal graphs Cabalar and Fandinno [2016] and
inconsistency proofs Alviano et al. [2019] for logic programs; we refer to Fandinno and Schulz [2019] for a
comprehensive survey. In the section, we discuss off-line justifications, causal graphs, inconsistency proofs
and answer-set program debugging more in detail as they are closely related to the notion of β -witness in the
paper, while the purpose of semantical error finding is to answer why a set of atoms is not an answer set. We
briefly address also the relationship of our notions to inconsistency proofs, which aim to answer why a logic
program has no answer set.

7.1 Off-line justification

Pontelli et al. Pontelli et al. [2009] proposed off-line justification for normal logic programs, which has
some similarity to the concept of β -witness from above; the formal definition takes positive and negative
dependencies among atoms into account and is rather involved; for this reason, we refrain from introducing it
and illustrate here the difference by the following example.

Example 7.1 (Example 10 in Pontelli et al. [2009]). Let Π be the logic program consisting of

δ1 : a← f ,not b, δ2 : c← d, f , δ3 : e, δ4 : b← e,not a, δ5 : d← c,e, δ6 : f ← e.

This program has two answer sets, viz. M1 = { f ,e,b} and M2 = { f ,e,a}. The off-line justifications for atoms
in M1 w.r.t. M1 and {a} are shown in Fig. 6. Intuitively, the reason that b belongs to the answer set M1 is:

(a) a is assumed (to be false), and

(b) e belongs to M1 which can be justified by δ3 and the rule δ4.

The reason why a is not in the answer set M1 is due to assumption.

LOGCOMP RR 22-01 43

In terms of the reduct MR(Π,M) that we introduced in the paper, we have

MR(Π,M1) = {δ3 : e, δ
′
4 : b, δ6 : f ← e} and MR(Π,M2) = {δ ′1 : a← f , δ3 : e, δ6 : f ← e}.

One can easily see that M1 and M2 have w.r.t. Π the compact β -witnesses W1 = [(e,δ3),(f ,δ6),(b,δ4)]
and W2 = [(e,δ3),(f ,δ6),(a,δ1)], respectively. As for M1, W1 answers why {b,e, f} is a minimal model of
MR(Π,M1) and why every atom in M1 must occur in M1. Comparing with the justification in Fig. 6, the
minimal β -witness W1 does not answer why the atom a is not in M1, while this is answered according to the
off-line justification, namely by assumption. An important difference between off-line justifications and our
minimal β -witnesses is that for the latter we are asserted that a given interpretation M is an answer set of the
program Π at hand. The reduct MR(Π,M) incorporates the CWA assumption of M, such that a justification
of atoms that are not in M, i.e., are false in M, is not needed; in particular, why a,c,d are false in M1 needs
no further justification. In other words, the knowledge about M being an answer set allows us to give more
lightweight justifications.

7.2 Causal stable models

Cabalar and Fandinno Cabalar and Fandinno [2016] investigated justifications for (labelled) disjunctive logic
programs,23 where each atom that is true in a model is associated with an algebraic expression (in terms
of rule labels) that represents its justification. For instance, let us consider the following logic program Π

consisting of

r1 : dead← shoot, r2 : shoot← tails, r3 : head∨ tails← harvey, r4 : harvey,

which is an adaption of the logic program P2 in Cabalar and Fandinno [2016], where r1,r2,r3,r4 are called
labels. The rule r3 means that Harvey throws a coin and only shoots when it ends up tails. Note that
M = {dead,shoot, tails,harvey} is an answer set of Π. Accordingly, the explanation for the atom dead ∈M
can be

harvey · rtails
3 · r2 · r1. (13)

It means that the cause of dead in the stable model M of Π is the sequential application of rules: harvey first,
r3 second, and then r2, finally r1. In particular, when applying r3, tails is chosen from its rule head, written
rtails

3 . This explanation actually is associated with a causal stable model of Π, which exactly corresponds to
the stable model M of Π.

Note that the “causal stable model” semantics of (labelled) logic programs is declarative, where an
interpretation I is a mapping from the set of atoms to a set of terms of the form (13). Cabalar and Fandinno
showed that, for each stable model of a logic program, there is a corresponding causal stable model of its
corresponding labelled logic program, and vice versa, cf. [Cabalar and Fandinno, 2016, Theorem 4]. Actually,
the following interpretation I is a causal stable model of Π with:

I(harvey) = harvey, I(head) = 0, I(tails) = harvey · r3 · tails,

I(shoot) = harvey · r1 · tails · r2 · shoot, I(dead) = harvey · r1 · tails · r2 · shoot · r3 ·dead.

The causal stable model I exactly captures the above stable model M of the logic program Π. Though one
can read out the justification for each element of M from the corresponding causal stable model I, the new

23Each rule is associated with a label.

44 LOGCOMP RR 22-01

issue “why I is a causal stable model of Π” arises, viz. what are the justification for causal stable models. In
addition, it is not clear how to efficiently compute a causal stable model and how difficult this task is, though
a trivial guess and check algorithm exists.

Note that MR(Π,M) = {r1,r2}∪{harvey, tails← harvey}. It can be easily verified that a compact β -
witness of M w.r.t. MR(Π,M) is W = [(harvey,{r4}), (tails,{tails← harvey}), (shoot,{r2}), (dead,{r1})].
It actually explains why M is a minimal model of MR(Π,M). To answer the question how M can be a
minimal model of Π, one may replace the above underlined part by (tails,{r3}), which intuitively means that
tails is chosen at that step, while head is not. In fact, we get the following result when running our prototype
system for this situation:

harvey:
harvey.

tails:
tails | head :- harvey.

shoot:
shoot :- tails.

dead:
dead :- shoot.

It properly explains that why M is an answer set of the logic program Π in terms of resolution refutation
and reduct in the following manner:

(1) The element harvey of M is due to the fact rule r4;

(2) One can derive tails from the reduct of the rule of r3 w.r.t. M and the derived harvey in step (1);

(3) One can further derive shoot from r2 and the derived tails in step (2);

(4) Finally, we have dead from r1 and the derived shoot in step (3).

In this way, once a proposition has been properly justified, it can play the ground truth role in the
explanation of other propositions. Thus, the notion of witness in this paper provides a structure explanation.
This is not so for causal stable models, e.g., the above causal stable model I yields no relationship among
I(harvey), I(tails), I(shoot) and I(dead).

A limitation of the causal stable models approach has already been addressed in the Introduction, where
we discussed the logic program Π = {r1 : a∨b, r2 : a← b, r3 :b← a}, which has the unique answer set
M = {a,b}. The causal stable model I where I(a) = ra

1, I(b) = ra
1 · r3 is a declarative construction of M, but

the choice of a from the rule r1 expressed by ra
1 is in a sense not founded.

The minimal β -witness W = [(a,{r1,r2}), (b,{r3})] of M w.r.t. Π intuitively corresponds to I, but gives
a more founded justification for M being an answer set, as a is a logical consequence of r1,r2 (and thus
of Π) by resolution. Furthermore, W is compact and thus the disjunctive rule r1 is used only once for
derivation. The second causal stable model I′ of Π, where I′(a) = rb

1 · r2 and I′(b) = rb
1, corresponds to

W ′ = [(b,{r1,r3}), (a,{r2})] in a symmetric fashion.

7.3 Inconsistency proofs

Besides answering why a given set of atoms is an answer set of a logic program, it is of equal interest to
certify that a logic program has no answer set (referred to as being inconsistent). The latter is in particular

LOGCOMP RR 22-01 45

useful for expressing properties like validity of a Boolean formula, that a given graph is not 3-colorable, that
a plan for solving a problem is conformant, etc.

That an ASP solver merely reports that no answer set was found for a given program Π is not compelling.
A proof of inconsistency may be desired, and finding an informative such proof can be far from trivial.
Furthermore, since deciding inconsistency of Π is Π

p
2-complete in general and co-NP-complete already

for normal programs Π, cf. Dantsin et al. [2001], no polynomial size proof for inconsistency that can be
verified in polynomial time is feasible in general. In particular, this applies to resolution proofs, which by
Haken’s [1985] celebrated result may have super-polynomial size.

Notwithstanding these aspects, recently the ASP-DRUPE format for inconsistency proofs of disjunctive
logic programs has been proposed Alviano et al. [2019]. It was inspired by work on inconsistency proofs
for SAT and hinges on clausal proof variants Gelder [2008]; Goldberg and Novikov [2003] that have certain
properties, in particular the RUP (reverse unit propagation) and RAT (Resolution Asymmetric Tautology)
properties. These proof formats share verifiability in polynomial time in the size of the proof and the input
formula, and they can be tightly coupled with modern SAT solving techniques Alviano et al. [2019].

ASP-DRUPE is based on RUP and works as follows. It converts the program Π into SAT format,
using Clarke completion and loop nogoods, and aims at constructing a proof during solving; notably, an
ASP-DRUPE proof is verifiable in polynomial time in its length and the size of the completion nogoods.
When the evaluation of Π ends with no answer set, then the constructed proof is validated in order to check
whether the assessment of the solver is in accordance with the proof in the output.

The main differences between our notions of witnesses and ASP-DRUPE proofs are as follows. First
and foremost, as already said our witness notions provide an explanation why atoms occur in an answer
set, while ASP-DRUPE proofs aim to elucidate why no answer set is possible. It is non-obvious how the
former can be efficiently reduced to the latter (and it may not be possible). Second, ASP-DRUPE constructs
a proof at solving time, while our witness notions aim at ex post forensics, in which an already asserted
answer set is analyzed. In principle, we could thanks to Theorem 4 generalize our algorithms to input
interpretations M that are not necessarily answer sets: MR(Π,M) must not contain any constraint and each
atom p ∈M must occur in the witness, in a set Si of some pair (Si,Πi) resp. as atom pi in some pair (pi,Πi).
Third, ASP-DRUPE is geared towards the working of a modern ASP solver that uses unit propagation and
clause-driven nogood learning (CDNL), in which clause transformations play an important role. One of the
aims the proofs constructed is validating whether the solver in fact works correctly. Our witness notions
instead take user perspective and aim to provide an explanation of an answer set in terms of the original
clauses resp. rules in the program.

In conclusion, ASP-DRUPE proofs and our witness notions have similar yet different aims and features.
They can in some respects be viewed as complementary; combining them in a single framework is of interest
for future research.

7.4 ASP debugging

A general aim of logic program debugging is to explain for a given logic program which of its components
cause a semantically unexpected effect that is usually called a fault or an error. Debugging logic programs
amounts to answer why the semantics of a given program differs from expectations Brain and Vos [2005].

The existing debugging approaches for answer-set programs can be roughly classified into three realms:
algorithmic Brain and Vos [2005]; Syrjänen [2006], meta-programming Gebser et al. [2008]; Oetsch et
al. [2010]; Polleres et al. [2013]; Damásio et al. [2015]; Shchekotykhin [2015]; Dodaro et al. [2019] and
stepping Pontelli et al. [2009]; Oetsch et al. [2018]. The meta-programming method uses logic program itself

46 LOGCOMP RR 22-01

to debug a faulty logic program. It converts the input logic program and a possible candidate answer set into
a logic program over a meta-language and then executes it together with a debugging logic program, which
finds causes of a fault, where each cause is encoded by specific atoms in an answer set of the debugging
logic program. It aims at explaining why an expected answer set is actually not an answer set of a given
logic program, or why some atoms are not contained in any answer set of the logic program, or why no
answer set exists. Our work aims to explain why some atoms belong to a given answer set of the program,
which is opposite to that of the meta-programming approach. In this sense, our method can be regarded
complementary.

The stepping method constructs interpretations stepwise by considering rules of an answer-set program at
hand in a successive manner. Thus, users can observe the effects that rule applications have in the computation
and decide which rule to consider active in the debugging. It guarantees that either an answer set will be
reached, or some error will occur that provides hints why the semantics of the logic program differs from
the user’s expectations. A core concept of the stepping method is the one of computation, which a sequence
C = S0, . . . ,Sn of states Si such that S0 is an initial state and Si+1 is a successor of Si for all i (0 ≤ i < n).
Informally, a state is a tuple (P, I, I−,ϒ) where

• every atom occurring in P belongs to I∪ I−,

• I and I− are disjoint sets of atoms considered to be true and false, respectively,

• P is a set of rules that are active (rule bodies are satisfied) and satisfied by I, and

• ϒ is the collection of subsets of I considered to be unfounded in P w.r.t. I, i.e., there is no rule in P
which is an external support for X w.r.t. I. Recall that a rule r is an external support for a set X of
atoms w.r.t. an interpretation I if I |= bd(r), I−X |= bd(r), hd(r)∩ I∩X 6= /0, and p ∈ I implies p ∈ X
for each p ∈ hd(r).

The state is stable if I is an answer set of P, or alternatively ϒ = { /0}. It is complete for a logic program Π

if P = {r ∈Π | I |= bd(r)}. A state S′ = (P′, I′, I−
′
,ϒ′) is a successor of a state S = (P, I, I−,ϒ) if there are

r ∈ P′−P and two sets ∆,∆− of atoms occurring in r such that

• P′ = P∪{r}, I |= bd(r),

• I′ = I∪∆, I−
′
= I−∪∆−, (I∪ I−)∩ (∆∪∆−) = /0,

• X ′ ∈ ϒ′ iff X ′ = X ∪∆′ with X ∈ ϒ and ∆′ ⊆ ∆ and r is not an external support for X ′ w.r.t. I′.

Succeeded computations are ones that end with a complete and stable state. Answer sets can be
characterized in terms of succeeded computations.

In each computation step that is the extension of a computation by a further state, exactly one more rule
is considered. This is somewhat dual to β -witnesses, where exactly one atom is derived in each step (pi,Πi),
possibly using multiple rules in Πi. A further difference is that users may decide (select) which atoms (in ∆)
from the head of the chosen (disjunctive) rule r are considered to be true; the latter has no counterpart for
β -witnesses.

Example 7.2 (example 4.9, cont’d). A succeeded computation for Π may be C = S0, . . . ,S4 where

S0 = (/0, /0, /0,{ /0}), S1 = ({δ1},{p,q,r}, /0,{ /0}), S2 = ({δ1,δ2},{p,q,r}, /0,{ /0}),
S3 = ({δ1,δ2,δ3},{p,q,r}, /0,{ /0}), S4 = ({δ1,δ2,δ3,δ4},{p,q,r}, /0,{ /0}).

LOGCOMP RR 22-01 47

It is evident that any complete computation for Π involving (P, I, I−,ϒ) with I− 6= /0 will not lead to a stable
state, otherwise the set of atoms that are considered to be true in its final state is a proper subset of {p,q,r}.
To justify or explain “why M = {p,q,r} is an answer set of Π” according to the above succeeded computation
C, one has to rely on “{p,q,r} is an answer set of Π” at the state S4, in addition to selecting p,q,r to be
true at the state S1.

8 Conclusion

In this paper, we have considered the issue of giving a justification for an answer set of a logic program in
terms of sets of rules that support building a modular proof for the atoms that are true in it. This enables one
to provide a trustable answer to the question why some atoms occur in an answer set. To this end, we have
introduced the new reduct MR(Π,M) of a logic program Π w.r.t. an interpretation M, which allows for a new
characterization of the answer sets of a logic program with disjunctive rule heads. As a first application, we
showed how this characterization can be fruitfully used to establish completeness of the modular minimal
model decomposition result by Ben-Eliyahu-Zohary et al. [2016] for positive logic programs. Based on
the reduct, we then introduced the notions of α- and β -witness of an answer set M of a logic program Π,
which describe how to construct an explanation sequentially in a stepwise manner. We have furthermore
developed variations and combinations of these notions that take into account the structural restrictions
(compact witnesses, which in essence exclude the repeated use of disjunctive rules in a modular proof)
and more fine-grained dependency conditions (α?- and β ?-witnesses, which allow for partially ordered
proofs). We have studied the complexity of and provided algorithms for finding various witnesses. We also
revealed connections between witness computation and MUS. Finally, our experimental results on synthetic,
handcrafted, and legacy ASP and SAT benchmarks showed that computing a minimal β -witness is often
feasible. And from the resulted β -witness, an explanation is quite evident in most cases.

The work in this paper complements previous work on explanations of answer sets of a logic program, cf.
Pontelli et al. [2009]; Liu et al. [2010]; Cabalar et al. [2014]; Cabalar and Fandinno [2016]; Schulz and Toni
[2016]; Fandinno and Schulz [2019]; Cabalar et al. [2020], and can be extended in several directions. On
such direction is language extensions. For example, one can see that the notion of reduct can be extended to
programs with strong ("classical") negation and rules of the form

l1∨·· ·∨ lk← lk+1, . . . , lm,not lm+1, . . . ,not ln,not not ln+1, . . . ,not not ls (k ≤ m≤ n≤ s)

where each li (1 ≤ i ≤ s) is a literal Gelfond and Lifschitz [1991]; Lifschitz [1996]; see the electronic
Appendix for more details. Notably, the Ferraris reduct Ferraris [2005] is not (directly) applicable here. Other
examples would include choice rules, optimal answer sets, and aggregates, cf. Calimeri et al. [2020], where the
latter are among the most diverse and controversial linguistic extensions of answer set programming Alviano
and Faber [2018], as well as external atoms Eiter et al. [2005]; Gebser et al. [2014, 2016]; Dodaro et al.
[2016]; Dodaro and Ricca [2020]. On the other hand, the approach that we presented may be explored for
variations of the standard answer set semantics for logic programs, e.g., for paracoherent semantics Sakama
and Inoue [1995]; Amendola et al. [2016] and for determining inference semantics Shen and Eiter [2019], as
well as for other nonmonotonic formalisms, e.g., in circumscription. Using our new reduct, we can explain
why an atom is in an answer set in terms of a witness. It would be worthwhile to investigate whether this
reduct and the notions of witnesses in the paper can be used to explain why an atom is not in an answer set
and why a logic program has no answer set, respectively.

The complexity study can be expanded and refined under the lens of parametric complexity and restrictions
on the problem instances. To characterize the complexity of computing some minimal β -witness precisely is

48 LOGCOMP RR 22-01

interesting in its own right and may give us more insight in the power of computations with limited use of NP
and NP witness oracles.

Finally, another direction of research is to see how the results and algorithms in this work can be exploited
in practice. For this, the development of dedicated and optimized implementations, e.g., for minimal model
checking and witness computation, may be conceived for stand-alone usage or for integration into existing
tools and software. It would be interesting to study how resolution proof explanations built from minimal
α?

f s or β ?-witness can be applied to improve ASP debugging Gebser et al. [2008]; Oetsch et al. [2010, 2018];
Dodaro et al. [2019].

Acknowledgments

Wang’s work is partially supported by NSFC under grants 61976065 and U1836205, and Guizhou Science
Support Project (2022-259). Eiter’s research is supported by the European Humane-AI Net project (grant
ICT-48-2020-RIA / 952026). Zhang’s work is partially supported by National Science Foundation (NSF)
grant DRL-1901704.

Proofs for Section 3

Proposition 3.1. Let Π be a general logic program and S a model of Π. Then it holds that MR(Π,S)≡ τ(Π)S.

Proof. Note that, according to Ferraris [2005],

• ψX =⊥ if X 6|= ψ;

• pX = p if p ∈ X and p ∈A ;

• (φ ⊗ψ)X = φ X ⊗ψX for ⊗ ∈ {∧,∨,⊃}.

It is evident that S |= r whenever S |= τ(r). It suffices to show that, for any M ⊆A , M |= MR(r,S) if and
only if M |= τ(r)S by S |= Π. Let r ∈Π and {α}= MR(r,S). It is clear α+ = r+∩S, α− = r−, rnot ∩S = /0
and (r−∪ r2not)⊆ S. We have
M 6|= MR(r,S)
iff M 6|= α

iff α− ⊆M and α+∩M = /0
iff r− ⊆M and r+∩S∩M = /0 due to α− = r− and α+ = r+∩S
iff M |= (

∧
r−)S and M 6|= (

∨
r+)S

iff M |= [(
∧

r−)∧ (
∧

p∈rnot p⊃⊥)∧ (
∧

q∈r2not (q⊃⊥)⊃⊥)]S and M 6|= (
∨

r+)S since (
∧

p∈rnot ⊥⊃ p)S ≡>
by S∩ rnot = /0, and [

∧
q∈r2not (q⊃⊥)⊃⊥]S ≡> by r2not ⊆ S

iff M 6|= τ(r)S.

Lemma 3.1. Let Π be a logic program and M ⊆A . Then MR(Π,M) = MR(ΠM,M).

Proof. Let r ∈Π. We have that
r+∩M← r− belongs to MR(Π,M)
iff rnot ∩M = /0 and r− ⊆M
iff r+← r− belongs to ΠM and r− ⊆M
iff r+∩M← r− belongs to MR(ΠM,M).

LOGCOMP RR 22-01 49

Lemma 3.2. Let α be a clause and S be an interpretation. Then

(i) S |= α iff S |= MR({α},S);

(ii) ¬S∪{α} ≡ ¬S∪MR({α},S).

Proof. (i) In the case α−−S 6= /0, MR({α},S) = /0 holds. It is trivial that S |= α and S |= MR({α},S).
In the case α−−S = /0, i.e., α− ⊆ S, let {β}= MR({α},S). It is evident that α− = β− and β+ = α+∩S.

We have
S |= α

iff α− ⊆ S implies S∩α+ 6= /0
iff S∩α+ 6= /0 since α− ⊆ S
iff S∩ (α+∩S) 6= /0
iff S∩β+ 6= /0 by β+ = α+∩S
iff S |= β and β− = α− ⊆ S.

(ii) Similar to the case (i), it trivially holds when α−−S 6= /0. Suppose α−−S= /0 and {β}= MR({α},S).
For any interpretation I, we have
I |= ¬S∪{α}
iff I |= ¬S and I |= α

iff I |= ¬S and, α− ⊆ I implies I∩α+ 6= /0
iff I |= ¬S and, β− ⊆ I implies I∩α+ 6= /0 by α− = β−

iff I |= ¬S and, β− ⊆ I implies I∩ (α+∩S) 6= /0 by I ⊆ S
iff I |= ¬S and, β− ⊆ I implies I∩β+ 6= /0 by β+ = α+∩S
iff I |= ¬S∪MR({α},S).

Proposition 3.2. A set S⊆A is a minimal model of a clause theory Σ iff S is a minimal model of MR(Σ,S).

Proof. Let β ∈MR(Σ,S) which is obtained from the clause α ∈ Σ by the reduction, i.e.,

β
+ = α

+∩S, α
− = β

− and α
− ⊆ S. (14)

By (i) of Lemma 3.2, S is a model of Σ if and only if S is a model of MR(Σ,S).
The model S of Σ is minimal

iff Σ∪¬S∪{
∨
¬S} is unsatisfiable

iff Σ∪¬S |= p, for each p ∈ S
iff MR(Σ,S)∪¬S |= p for each p ∈ S by (ii) of Lemma 3.2
iff MR(Σ,S)∪¬S∪{

∨
¬S} is unsatisfiable

iff The model S of MR(Σ,S) is minimal.

Theorem 1 (Minimal model characterization). For every clause theory Σ and S⊆A , the items (i)–(iii) are
equivalent:

(i) S is a minimal model of Σ.

(ii) S is the least model (under set inclusion) of MR(Σ,S).

(iii) S = {q ∈A ∪{⊥} |MR(Σ,S) |= q}.

50 LOGCOMP RR 22-01

Proof. (i)⇒ (ii). S is a minimal model of Σ

⇒ S is a minimal model of MR(Σ,S) by Proposition 3.2
⇒ S is a minimal model of MR(Σ,S) and S⊆ var(MR(Σ,S))
⇒ S is a minimal model of MR(Σ,S) and S = var(MR(Σ,S)) by var(MR(Σ,S))⊆ S
⇒ S is the unique minimal model of MR(Σ,S)
⇒ S is the least model of MR(Σ,S).

(ii)⇒ (iii). Let p be an atom.
(⊆) p ∈ S

⇒ p belongs to the least model S of MR(Σ,S) by (ii)
⇒ p ∈M for each M |= MR(Σ,S)
⇒ p ∈ {q is an atom |MR(Σ,S) |= q}.

(⊇) p ∈ {q is an atoms |MR(Σ,S) |= q}
⇒ p ∈ {q is an atom | q ∈M for any M |= MR(Σ,S)}
⇒ p ∈M for any M |= MR(Σ,S)
⇒ p ∈ S by (ii).

(iii) ⇒ (i). Note that if MR(Σ,S) is unsatisfiable, then MR(Σ,M) |= ⊥ and S ⊂ {q ∈ A ∪ {⊥} |
MR(Σ,M) |= q}, which contradicts with the precondition. Thus, MR(Σ,S) is satisfiable.

S = {q ∈A ∪{⊥} |MR(Σ,S) |= q}
⇒ MR(Σ,S) |=

∧
S and MR(Σ,S) is satisfiable

⇒ S⊆ S′ for each S′ |= MR(Σ,S)
⇒ S is the least model of MR(Σ,S) by var(MR(Σ,S))⊆ S
⇒ S is a minimal model of MR(Σ,S)
⇒ S is a minimal model of Σ by Proposition 3.2.

Lemma 3.3. Let Σ be a clause theory and M′ ⊆M. Then M′ |= MR(Σ,M) if and only if M′ |= Σ.

Proof. (⇒) Let α ∈ Σ and suppose α− ⊆M′. We have
α− ⊆M′

⇒ α− ⊆M by M′ ⊆M
⇒¬α−∪α+∩M belongs to MR({α},M)
⇒¬α−∪α+∩M belongs to MR(Σ,M)
⇒ α+∩M′ 6= /0 by M′ |= MR(Σ,M).

It implies M′ |= α , thus M′ |= Σ.
(⇐) Let α ∈ Σ with α− ⊆M′ and ¬α−∪α+∩M ∈MR(Σ,M). We have

α− ⊆M′

⇒ α+∩M′ 6= /0 by α ∈ Σ and M′ |= Σ

⇒ α+∩M′∩M 6= /0 by M′ ⊆M.
It follows M′ |= MR({α},M), thus M′ |= MR(Σ,M).

Proposition 3.3. Suppose M is a model of a clause theory Σ and let M′ ⊂M. Then M′ is a minimal model of
Σ if and only if M′ is a minimal model of MR(Σ,M).

Proof. (⇒) We show that (1) M′ |= MR(Σ,M) and (2) M∗ 6|= MR(Σ,M) for any M∗ ⊂M′.
(1) Let α ∈ Σ such that α− ⊆M′ and MR({α},M) 6= /0. We have

α− ⊆M′

⇒ α− ⊆M by M′ ⊂M
⇒ α+∩M′ 6= /0 since M′ |= Σ and α ∈ Σ.

LOGCOMP RR 22-01 51

Thus, M′ |= α , which implies M′ |= MR(Σ,M).
(2) If there is M∗ ⊂M′ such that M∗ |= MR(Σ,M), then M∗ |= Σ by Lemma 3.3. It is a paradox since M′

is a minimal model of Σ.
(⇐) We show that (1) M′ |= Σ and M∗ 6|= Σ for any M∗ ⊂M′.
(1) Let α ∈ Σ and α− ⊆M′. We have

α− ⊆M′

⇒ α− ⊆M since M′ ⊆M
⇒¬α−∪α+∩M ∈MR({α},M)
⇒¬α−∪α+∩M ∈MR(Σ,M)
⇒ α+∩M∩M′ 6= /0 by M′ |= MR(Σ,M)
⇒ α+∩M′ 6= /0 by M′ ⊂M.

It follows M′ |= α , which implies M′ |= Σ.
(2) Suppose that M∗ |= Σ for some M∗ ⊂M′. It implies M∗ |= MR(Σ,M) by M∗ ⊂M and Lemma 3.3. It

is a paradox since M′ is a minimal model of MR(Σ,M).

The following lemma establishes the 1-1 correspondence between SΣ and SGΣ for a clause theory Σ. The
following lemma is evident.

Lemma 3.4. Let Σ be a clause theory and p,q ∈A .

(i) GΣ has a path (p,δ ,q) if and only if (p,q) is an arc of GΣ where δ ∈ Σ.

(ii) If S is a vertex of SGΣ with S∩A 6= /0 then S∩A is a vertex of SΣ.

(iii) If S is a vertex of SΣ then SGΣ has a vertex S′ with S = S′∩A .

Proof. (i) It is evident.
(ii) S is a vertex of SGG with S∩A 6= /0

⇒ S∩A is maximal s.t. SGG has a path from p to q for any p and q in S∩A
⇒ S∩A is maximal s.t. SΣ has a path from p to q for any p and q in S∩A by (i)
⇒ S∩A is a vertex of SΣ.

(iii) S is a vertex of SΣ

⇒ S is maximal s.t. SΣ has a path from p to q for any p and q in S
⇒ there is S′ with S = S′∩A s.t. S′ is maximal and SGG has a path from p to q for any p and q in S′ by (i)
⇒ S′ is a vertex of SGG.

Proposition 3.4. Let M be a nonempty minimal model of a clause theory Σ and MR(Σ,M) = Σ. Then:

(i) A ∩S = /0 for every source S of SGΣ.

(ii) Let S be resulted from SGΣ by removing all empty sources. Then for every source S of S, S∩A is a
minimal model of ΣS, and M−S∩A is a minimal model of Reduce(Σ,S∩A , /0).

(iii) Let S be a node of SGΣ and S∩A 6= /0, XS = {S′∩A | S′ ∈ DSGΣ
(S)} and Γ = Reduce(Σ,XS, /0). Then

S is a minimal model of ΓS.

Proof. (i) S is a nonempty source of SGΣ

⇒ S must be a singleton {p}
⇒ p occurs negatively in every clauses of Σ

52 LOGCOMP RR 22-01

⇒ Σ 6|= p.
It is a contradiction since p ∈M, Σ = MR(Σ,M) and MR(Σ,M) |= p by Theorem 2.

(ii) Firstly, we have
S 6|= ΣS

⇒ S 6|= α for some α ∈ ΣS

⇒ S 6|= α for some α ∈ Σ by ΣS ⊆ Σ

⇒ S 6|= α for some α ∈MR(Σ,M) by Σ = MR(Σ,M)
⇒ α+∩S = /0 and α− ⊆ S
⇒ α+ = /0 and α− ⊆ S by α ∈ ΣS

⇒ α+∩M = /0 and α− ⊆M by S⊆M
⇒ M 6|= α

⇒ M 6|= Σ by α ∈ Σ.
It contradicts with M is a minimal model of Σ. Thus, S |= ΣS.

Suppose ∃S′ ⊂ S and S′ |= ΣS. We will show that M′ = M− (S− S′) is a model of Σ. Let α ∈ Σ and
α− ⊆M′. We consider the following two cases:

(a) α ∈ ΣS. We have that
α− ⊆M− (S−S′)
⇒ α− ⊆ S∩ (M− (S−S′)) since α− ⊆ S by α ∈ ΣS

⇒ α− ⊆ S′ by S′ = S∩ (M− (S−S′)) and S′ ⊂ S
⇒ S′∩α+ 6= /0 by S′ |= ΣS and α ∈ ΣS

⇒ α+∩ (M− (S−S′)) 6= /0 by S′ ⊆M− (S−S′).
It implies M′ |= α .

(b) α ∈ Σ−ΣS. Recall that S is a source of Σ. We consider the two cases:

– α−−S = /0
⇒ α− ⊆ S
⇒ α+−S 6= /0 by α ∈ Σ−ΣS

⇒ (M− (S−S′))∩α+ 6= /0 by α+ ⊆M
⇒ M′ |= α .

– α−−S 6= /0
⇒ α+∩S = /0 since S is a source of Σ

⇒ (M− (S−S′))∩α+ 6= /0 by α+ ⊆M and α+ 6= /0
⇒ M′∩α+ 6= /0
⇒ M′ |= α .

This implies M′ |= Σ. A contradiction follows since M′ ⊂M and M is a minimal model of Σ. Thus, S is a
minimal model of ΣS.

Secondly, let S′ = M−S∩A and Γ = Reduce(Σ,S∩A , /0). we show by contradiction that (a) S′ |= Γ

and (b) for any S′′ ⊂ S′, S′′ 6|= Γ.
(a) S′ 6|= Γ

⇒ ∃r ∈ Σ s.t. {r′}= Reduce({r},S∩A , /0)⊆ Reduce(Σ,S∩A , /0) and S′ 6|= r′

⇒ S′∪S∩A 6|= r′

⇒ M = S′∪S∩A 6|= r
⇒ M 6|= Σ, a contradiction.

LOGCOMP RR 22-01 53

(b) There is S′′ ⊂ S′ s.t. S′′ |= Γ. Let α ∈ Σ and let us consider the following two cases:
(b.1) Reduce({r},S∩A , /0)≡ {>}

⇒ r+∩S 6= /0
⇒ r+∩ (S∪S′′) 6= /0
⇒ S∪S′′ |= r.

(b.2) Reduce({r},S∩A , /0) = {r′} and r′ 6≡ >
⇒ S′∩ r+ 6= /0 since Var(Γ) = S′ and S′ |= Γ

⇒ (S′∪S′′)∩ r+ 6= /0
⇒ S∪S′′ |= r.

The above two cases show that the proper subset S∪S′′ of M is a model of Σ, a contradiction.
(iii) It follows from (ii) by an iterative application.

Theorem 2. Let M be a model of a clause theory Σ. Then it holds that

(i) M has the modular property w.r.t. Σ if M is minimal and MR(Σ,M) = Σ;

(ii) M is a minimal model of Σ iff CheckMinMR(Σ,M) returns true.

Proof. (i) It follows from (ii) of Proposition 3.4.
(ii) It follows from (i) and Theorem 6.4 of Ben-Eliyahu-Zohary et al. [2016].

Theorem 3 (Answer set characterization). For every logic program Π and M ⊆A , the items (i)–(iii) are
equivalent:

(i) M is an answer set of Π.

(ii) M is the least model of MR(Π,M).

(iii) M = {q ∈A ∪{⊥} |MR(Π,M) |= q}.

Proof. (i)⇔ (ii) M is an answer set of Π

iff M is a minimal model of ΠM

iff M is the least model of MR(ΠM,M) by Theorem 2
iff M is the least model of MR(Π,M) by Lemma 3.1.

(ii)⇒ (iii) and (iii)⇒ (i) can be similarly proved as that of Theorem 2.

Proofs in Section 4

Proposition 4.1. Let M ⊆A , let B,S⊆M be disjoint subsets of M, and let Π be a logic program.

(i) If Π′ ∈MW(B,Π,S,M) then some S′ ⊆ S exists such that MR(Π′,M)∪S′∪{
∨
¬B} is an MUS.

(ii) If MR(Π′,M)∪ S′ ∪ {
∨
¬B} is an MUS of MR(Π,M)∪ S ∪ {

∨
¬B} such that S′ ⊆ S, then some

Π′′ ∈MW(B,Π,S,M) exists such that Π′′ ⊆Π′.

Proof. Firstly note that MR(Π,M)∪S is satisfiable since it is positive.
(i) Π′ ∈MW(B,Π,S,M)

⇒ Π′ is a minimal subset of Π such that MR(Π′,M)∪S |= B
⇒ MR(Π′,M) is a minimal subset of MR(Π,M) such that MR(Π′,M)∪S |= B
⇒ MR(Π′,M) is a minimal subset of MR(Π,M) such that MR(Π′,M)∪S∪{

∨
¬B} is unsatisfiable

54 LOGCOMP RR 22-01

⇒ MR(Π′,M) is a minimal subset of MR(Π,M) such that MR(Π′,M)∪S′∪{
∨
¬B} is minimally unsatisfi-

able for some S′ ⊆ S since MR(Π′,M)∪S is satisfiable
⇒ MR(Π′,M)∪S′∪{

∨
¬B} is an MUS for some S′ ⊆ S.

(ii) Note that MR(Π′,M)∪S′∪{
∨
¬B} is unsatisfiable. It implies MR(Π′,M)∪S′ |= B. We have

MR(Π′,M)∪S′∪{
∨
¬B} is an MUS

⇒ MR(Π′,M)∪S′∪{
∨
¬B} is unsatisfiable

⇒ MR(Π′,M)∪S∪{
∨
¬B} is unsatisfiable

⇒ There is a minimal subset Π′′ of Π′ such that MR(Π′′,M)∪S∪{
∨
¬B} is unsatisfiable

⇒ There is a minimal subset Π′′ of Π′ such that MR(Π′′,M)∪S |= B
⇒ There is a minimal subset Π′′ of Π such that MR(Π′′,M)∪S |= B
⇒ Π′′ ∈MW(B,Π,S,M) for some Π′′ ⊆Π′.

Proposition 4.2. Algorithm 4 is sound and moreover complete if the involved MUS solver mus is complete.

Proof. (1) In the case mus = nil, it is evident that the returned Π∗ is a witness of B under S w.r.t. M in line
12. The minimality of Π∗ follows from the fact that no proper subset of Π∗ is a witness of B under S w.r.t. M.
Thus, it is sound.

In addition, for each minimal witness Πo ⊆Π of B under S w.r.t. M, Πo can be obtained by setting the
order on the rules in Π: every rule in Πo is ordered after all the rules in Π−Πo. The ForEach loop lines
11-13 will remove exactly all the rules in Π−Πo. This implies the completeness of the algorithm.

(2) In the case mus 6= nil, the resulting Π′ in line 3 is a minimal witness of B under S w.r.t. M by (ii) of
Proposition 4.1. Note further that the ForEach loop lines 5 and 6 computes Π∗ ⊆ Π such that |Π∗| = Π′

and MR(Π∗) = Π′. Thus, the returned Π∗ is a minimal witness of B under S w.r.t. M, which implies the
soundness of this algorithm.

Furthermore, for each minimal witness Π∗ ⊆ Π of B under S w.r.t. M, any complete MUS solver mus
will compute an MUS Π′ of MR(Π,M)∪S∪{

∨
¬B} by (i) of Proposition 4.1. Then Π∗ can be computed by

the ForEach loop on lines 5-8 by setting an order on the rules of Π: the rules in Π∗ ⊆Π are before the the
rules in Π−Π∗. Hence, the completeness of Algorithm 4 follows.

Lemma 4.1. Let Σ be a clause theory and M a minimal model of Σ with Σ = MR(Σ,M). Then G = ({(Si,Σi) |
1≤ i≤ n},E ′) obtained from SΣ = ({S1, . . . ,Sn},E) s.t.

• Σi ∈MW(Si,Σ,S.i,M) (1≤ i≤ n), where S.i =
⋃

DSΣ
(Si), and

• ((Si,Σi),(S j,Σ j)) ∈ E ′ whenever (Si,S j) ∈ E

is a compact α?-witness of M w.r.t. Σ.

Proof. (a) It is clear that G is directed and acyclic since SΣ is so.
(b) {S1, . . . ,Sn} is clearly a partition of M.
(c) Recall that MR(Σ,M) |= M by Theorem 2. It implies that MW(Si,Σ,S.i,M) (1≤ i≤ n) is nonempty

and Σi is a witness of Si under Xi w.r.t. M. By (ii) of Proposition 3.4, Si is a minimal model of Reduce(Σi,Xi, /0).
It implies Σi is not a witness of S j (j 6= i) under Xi w.r.t. M, where Xi is defined in Definition 4.2.What remains
is to show that Σi∩Σ j = /0 for any 1≤ i < j ≤ n. Suppose that there is r ∈ Σi∩Σ j for some 1≤ i 6= j ≤ n.
Let rt = Reduce(r,S.t , /0) and Σt = Reduce(Σt ,S.t , /0) for t ∈ {i, j}. We have
Σi ∈MW(Si,Σ,S.i,M)
⇒ Σi ⊆ Σ is minimal s.t. MR(Σi,M)∪S.i |= Si by Definition 4.1
⇒ Σi is minimal s.t. Σi∪S.i |= Si by Σi ⊆ Σ and MR(Σi,M) = Σi

LOGCOMP RR 22-01 55

⇒ Σi is minimal s.t. Σi |= Si by S.i |= Σi↔ Σi

⇒ Si is the unique minimal model of Σi
Si

by (iii) of Lemma 3.4 and (ii) of Proposition 3.4
⇒ ri ∈ Σi

Si
(otherwise, Σi = Σi−{ri} |= Si, i.e., Σi−{r}∪S.i |= Si)

⇒ atoms(ri)⊆ Si and atoms(ri) 6= /0 (otherwise ri is an empty clause, which implies that Σ is unsatisfiable),
where atoms(e) is the set of atoms occurring in e
⇒ GΣ has a cycle which mentions the atoms in Si and those from atoms(ri) in particular
⇒ GΣ has a cycle which mentions the atoms in Si and some atoms from atoms(r)
⇒ GΣ has a cycle which mentions the atoms in S j and some atoms from atoms(r) for the same above reason
⇒ GΣ has a cycle which mentions the atoms in Si∪S j, a contradiction.

Proposition 4.3. Let M be an answer set of a logic program Π and Σ = MR(Π,M). Then the DAG
G = ({(Si,Πi) | 1≤ i≤ n},E ′) obtained from SΣ = ({S1, . . . ,Sn},E) s.t.

• Πi ∈MW(Si,Π,S.i,M) (1≤ i≤ n), where S.i =
⋃

DSΣ
(Si), and

• ((Si,Πi),(S j,Π j)) ∈ E ′ whenever (Si,S j) ∈ E

is a compact α?-witness of M w.r.t. Π.

Proof. (a) It is clear that G is directed and acyclic since SΣ is so.
(b) {S1, . . . ,Sn} is clearly a partition of M.
(c) Recall that MR(Σ,M) |= M by Theorem 4. It implies that MW(Si,Π,S.i,M) (1≤ i≤ n) is nonempty

and Πi is a witness of Si under Xi w.r.t. M. Since Si is an answer set of Reduce(MR(Πi),Xi, /0), it implies
that Πi is not a witness of S j (j 6= i) under Xi w.r.t. M, where Xi is defined in Definition 4.2. What remains is
to show that Πi∩Π j = /0 for any 1 ≤ i < j ≤ n. Suppose that there is r ∈ Πi∩Π j for some 1 ≤ i 6= j ≤ n.
Let rt = Reduce(MR(r,M),S.t , /0), Σt = MR(Πt ,M) and Σt = Reduce(Σt ,S.t , /0) for t ∈ {i, j}. Note that
Πi ∈MW(Si,Π,S.i,M)
⇒ Πi ⊆Π is minimal s.t. MR(Πi,M)∪S.i |= Si by Definition 4.1
⇒ Σi ⊆ Σ is minimal s.t. Σi∪S.i |= Si by MR(Πi,M) = Σi

⇒ Σi ⊆ Σ is minimal s.t. MR(Σi,M)∪S.i |= Si by MR(Σi,M) = Σi

⇒ GΣ has a cycle which mentions the atoms in Si and some atoms from atoms(r) by Lemma 4.1
⇒ GΣ has a cycle which mentions the atoms in Si∪S j, a contradiction.

Proposition 4.4. Let G be an α?
f s-witness of an answer set M w.r.t. a logic program Π and G=G0,G1,G2, . . . ,Gk

be graphs such that each Gi, i = 1, . . . ,k is an edge-contraction of Gi−1. Then Gk is a compact α?-witness of
M w.r.t. Π, where the edge-contraction of ((S,Π),(S′,Π′)) is the node (S∪S′,Π∪Π′).

Proof. We prove the statement by induction on k ≥ 0. The base case k = 0 is trivial since G0 = G. For the
induction step, assume the statement holds for k and suppose that Gk is a compact α?-witness of M w.r.t. Π

for k = i. Let Gk+1 = (Vk+1,Ek+1) = (V −{v1,v2}∪{v},E ′) be an edge-contraction of Gk = (Vk,Ek) with
vi = (Si,Πi) (i = 1,2) and v = (S1∪S2,Π1∪Π2). Note that, by Proposition 3.4, Var(MR(Π j,M)) = S j for
any v j = (S j,Π j) in Vk+1. It is evident Π1∪Π2 is a minimal witness of S1∪S2 under X =

⋃
(S′,Π′)∈DGk+1 (v)

S′,
and (Π1∪Π2)∩Π′ = /0 for any (S′,Π′) ∈Vk∩Vk+1. Similarly, for every node v′ = (S′,Π′) in Vk+1 and it is
the case that no Π j can replace Πi (j 6= i) in the witness of Gk+1. The compactness of Gk+1 is trivial simply
due to Πi∩Π j = /0 for any Πi,Π j occurring in Gk by the induction assumption. Consequently, Gk+1 is a
compact α?-witness of M w.r.t. Π.

56 LOGCOMP RR 22-01

Lemma 4.2. Let l be a literal and let Σ be a satisfiable clause theory s.t. Σ |= l and no Σ′ ⊂ Σ satisfies Σ′ |= l.
Then:

(i) the opposite literal l does not occur in Σ, and

(ii) if Σ |= l′ for some literal l′ 6= l, then some proper subset Σ′ ⊂ Σ exists such that Σ′ |= l′.

Proof. (i) Σ |=min l
⇒ Σ |= l and Σ−{α} 6|= l for every α ∈ Σ

⇒ for every α ∈ Σ, there is an interpretation M s.t. M |= Σ−{α} and M 6|= l
⇒ M 6|= α by Σ |= l (otherwise M |= l, a contradiction), and M |= l
⇒ l does not occur in α for every α ∈ Σ

⇒ l does not occur in Σ.
(ii) Suppose that there is no proper subset Π of Σ satisfying Π |= l′, i.e. Σ |=min l′. We have

Σ |=min l′

⇒ Σ |= l′

⇒ l′ has a linear resolution proof from Σ, in which the last resolvent is l′, since l′ is a prime implicate of Σ

and every prime implicate has a (linear) resolution proof
⇒ the (linear) resolution must involve every clauses in Σ since Π 6|= l′ for any Π⊂ Σ

⇒ l must occur in the last resolvent of the resolution proof by (i)
⇒ it contradicts with the fact that the last resolvent is l′(6= l).

Proposition 4.5. Given a logic program Π, an answer set M of Π and two disjoint subsets B,S of M, the call
of MinBetaBSWitness(Π,B,S,M) returns some minimal β -witness W of B under Π and S w.r.t. M.

Proof. Let B = [(p1,Σ1), . . . ,(pn,Σn)] be returned by MinBetaBSWitness(Σ,B,S,M). It is evident B = {pi |
1≤ i≤ n}. By (i) and (ii) of Lemma 4.2, the inner while-loop (lines 10-14) will find Σpk which always exists
and is a minimal witness of {pk} under T (1 ≤ k ≤ n) w.r.t. M. It is easy to see that the Σu following the
while-loop (lines 10-14) cannot derive any other atom under T . Thus the rm(Σu,Π,M) (line-15) is not a
witness of any other atom v under T . This algorithm will always terminate since in each iteration of outer
while-loop (lines 2-17), at least one more atom is added into T , which implies the set B−T will definitely
become /0.

Proposition 4.6. Given a logic program Π and an answer set M of Π, the call of MinBetaWitness(Π,M)
returns some minimal β -witness W of M w.r.t. Π.

Proof. Firstly, the algorithm will terminates since each iteration of the while-loop (lines 3-8) will delete
at least one (source) node from G and G has only finite number of nodes. Secondly, in each iteration of
the loop, all atoms in U (A ∩

⋃
DSGΣ

(S)) have been witnessed by calling MinBetaBSWitness (line 5) whose
correctness is guaranteed by Proposition 4.5 and M consists of exactly the atoms in those nodes of G.

Lemma 4.3. Let M be an answer set of a logic program Π, let [(pi,Σi) | 1 ≤ i ≤ n] be the output of
MinBetaWitness(Π,M) and let G be the output of MinBetaStarWitness(Π,M). Then, for every i (1≤ i≤ n),

Σ
−
i ∩∆i = Σ

−
i ∩Di

G, (15)

where Σ
−
i =

⋃
{α− | α ∈ Σi}, ∆i = {pk | 1≤ k ≤ i−1}, and Dk

G = {p | (p,Σp) ∈ DG((pk,Σk))}.

LOGCOMP RR 22-01 57

Proof. Note that ∆0 = D0
G = /0 and ∆1 = {p1}. In the for loop (lines 3-9) of MinBetaStarWitness with i = 2,

p1 ∈ Σ
−
2 ∩D2

G
iff the edge ((p1,Σ1),(p2,Σ2)) is added into E (line 8)
iff p1 ∈ Σ

−
2 ∩∆2. It implies equation (15) holds for i = 1,2.

In the for loop (lines 3-9) of MinBetaStarWitness with i > 2,
q ∈ Σ

−
i ∩Di

G
iff either the edge ((q,Σq),(pi,Σi)) is added into E (line 8), or q ∈ Dk

G for the least k (1≤ k < i) such that G
has a path from (q,Σq) to (pk,Σpk) and ((pk,Σpk),(pi,Σi)) is added into E (line 8)
iff either q ∈ Σ

−
i ∩∆i and G has no path from (q,Σq) to (q′,Σq′) for any q′ ∈ Σ

−
i ∩∆i by the while loop (lines

5-8), or G has a path from (q,Σq) to (pk,Σpk) for some pk ∈ Σ
−
i ∩∆i

iff q ∈ Σ
−
i ∩∆i.

Proposition 4.7. Let M 6= /0 be an answer set of a logic program Π and G be the output of MinBetaStarWitness(Π,M).

(i) G is a minimal β ?-witness of M w.r.t. Π.

(ii) G has no redundant edges, i.e., if removing an edge ((pi,Σi),(p j,Σ j)) from G then Σ j is not a witness
of p j under X w.r.t. M, where X = {p | (p,Σ) ∈ DG((p j,Σ j)).

Proof. Let [(pi,Σi) | 1≤ i≤ n] be the output of MinBetaStarWitness(Π,M). Note that Σi is not a witness of
p j (j 6= i) under Xi w.r.t. M. This still holds for the returned G of MinBetaStarWitness(Π,M). For every
k,1≤ k ≤ n, let ∆k = {pi | 1≤ i≤ k} and Dk

G = {p | (p,Σp) ∈ DG((pk,Σk))}, and let ∆0 = D0
G = /0.

(i) First, it is clear that Σi (1≤ i≤ n) is a witness of pi under ∆k−1 w.r.t. M. For every i,2≤ i≤ n, let
∆ = Σ

−
i , where Σ

−
i =

⋃
{α− | α ∈ Σi}. For every q,q′ ∈ Σ

−
i ∩∆i−1, we have that after removal of q from ∆ in

the Algorithm 7 (at line 6), G has a path from q to some atom in Σi∩∆i−1, i.e., q ∈ Di−1
G . It follows that, for

every i,1≤ i≤ n,

Σ
−
i ∩∆i−1 = Σ

−
i ∩Di

G. (16)

Thus, Σi is a witness of pi under ∆i−1 w.r.t. M if and only if Σi is a witness of pi under Di
G w.r.t. M.

Second, suppose Σi = Σ j for some 1≤ i < j≤ n, i.e., Σi is a minimal witness of p j under D j
G w.r.t. M and

let Σ = MR(Σi,M). By Equation (16), Σi is a minimal witness of p j under ∆ j−1 w.r.t. M. By (i) of Lemma 4.2,
pi occurs positively in Σ since Σ is minimal such that Σ∪∆i−1 |= pi. Let Σ′ = Σ−{α ∈ Σ | pi ∈ α+}. It is
clear that Σ′ ⊂ Σ and Σ′∪{pi} ≡ Σ. Note that ∆i−1 ⊂ ∆ j−1 by i < j. It follows Σ′∪∆ j−1 |= p j; this contradicts
that Σi is a minimal witness of p j under D j

G.
Thus, G is a β ?-witness of M w.r.t. Π.
(ii) Let G′ be obtained from G by removing the edge ((pi,Σi),(p j,Σ j)). According to the construction

of G, pi ∈ Σ
−
j , i.e., pi occurs in the body of some rule from Σ j. Note that Σ j is a minimal witness of

p j under D j
G w.r.t. M. If MR(Σ j,M)∪D j

G′ |= p j then MR(Σ j,M)∪ (D j
G−{pi}) |= p j, which implies

MR(Σ j,M)∪ (D j
G−{pi}) |= pi. This is impossible since MR(Σ j,M)∪∆ j−1 6|= p′j for any p′j 6= p j according

to Equation (16) and Algorithm 5.

Proposition 4.8 (Relationships among witnesses). Let M 6= /0 be an answer set of a logic program Π. Then

(i) α(Π,M)∩β ?(Π,M) = β (Π,M);

(ii) min -β (Π,M)=min -β ?(Π,M)∩min -α(Π,M) = β ?(Π,M)∩min -α(Π,M)=min -β ?(Π,M)∩α(Π,M);

58 LOGCOMP RR 22-01

(iii) comp-β (Π,M)= comp-β ?(Π,M)∩comp-α(Π,M) = β ?(Π,M)∩comp-α(Π,M)= comp-β ?(Π,M)∩
α(Π,M).

Proof. Please note that we identify a singleton set {v} with its element v, and identify a linear order
W = [w1, . . . ,wn] with the graph G = ({w1, . . . ,wn},E) where (wi,w j) ∈ E if and only if i < j.

(i) W = [(w1,Π1), . . . ,(wn,Πn)] is a β ?- and α-witness of M w.r.t. Π

⇒ for each (wi,Πi) occurring in W , wi is a singleton and the order among (wi,Πi)s is a linear order
⇒W is β -witness of M w.r.t. Π.

(⇐) It follows from the facts β (Π,M)⊆ β ?(Π,M) and β (Π,M)⊆ α(Π,M).
(ii) W = [v1 = (p1,Π1), . . . ,vn = (pn,Πn)] is a minimal β -witness of M w.r.t. Π

iff G=({v1, . . . ,vn},{(vi,vi+1) | 1≤ i≤ n−1}) belongs to min-β ?(Π,M) and, W ′= [({p1},Π1), . . . ,({pn},Πn)]
belongs to min-α(Π,M)
iff G ∈ β ?(Π,M) and W ′ ∈min-α(Π,M)
iff G ∈min-β ?(Π,M) and W ′ ∈ α(Π,M).

(iii) W = [v1 = (p1,Π1), . . . ,vn = (pn,Πn)] is a compact β -witness of M w.r.t. Π

iff G=({v1, . . . ,vn},{(vi,vi+1) | 1≤ i≤ n−1}) belongs to comp-β ?(Π,M) and, W ′= [({p1},Π1), . . . ,({pn},Πn)]
belongs to comp-α(Π,M)
iff G ∈ β ?(Π,M) and W ′ ∈ comp-α(Π,M)
iff G ∈ comp-β ?(Π,M) and W ′ ∈ α(Π,M).

Proposition 4.9. Let Π be a logic program, M an answer set of Π and the DAG G = (V,E) be an α?
f s-witness

of M w.r.t. Π. Then there is a compact α-witness W = [w1, . . . ,wn] of M w.r.t. Π such that wi (1 ≤ i ≤ n)
occurs in V .

Proof. Given an α?
f s-witness of M 6= /0 w.r.t. Π, we construct the sequence W = [w1, . . . ,wn] with wi =

(Si,Πi) (1≤ i≤ n) from G as follows:

(1) W = [];

(2) let u be a node of G whose indegree is 0, and append u to W ;

(3) remove u from V and its associate edges from E;

(4) if V 6= /0 goto (2).

We show that W is a compact α-witness of M w.r.t. Π. Let Xi =
⋃

1≤k≤i−1 Sk and Yi =
⋃

(S′,Π′)∈DG(wi) S′

for 1≤ i≤ n. It is evident that Πi is not a witness of S j (j 6= i) under Xi.
(a) It is evident that Πi ⊆ Π (1 ≤ i ≤ n) and Πi∩Π j = /0 for any wi = (Si,Πi) and w j = (S j,Π j) in W

with i 6= j.
(b) Note that, for any v,v′ ∈V , if there is a path from v to v′ in G then v = wi and v′ = w j where i < j. It

follows that Yi ⊆ Xi for every i = 1, . . . ,n. Thus, Πi is a witness of Si under Xi.
(c) Suppose that Πi is not a minimal witness of Si under Xi for some i ∈ {1, . . . ,n}. Thus for some r ∈Πi,

Πi−{r} is a witness of Si under Xi w.r.t. M, hence MR(Πi−{r},M)∪Xi |= Si.
Since Πi ∈MW (Si,Π,Yi,M), there exists a model M of MR(Πi−{r},M)∪Yi such that M 6|= Si. From

(b), we have Yi ⊆ Xi. Since G is an α?
f s-witness of M w.r.t. Π, no rule r ∈Πi contains some atom p ∈ Xi \Yi in

the body. Indeed, if this were the case and p ∈ S j, then (S′,Π′) ∈ DG(wi) with S′ = S j would hold and thus
S j ⊆ Yi, which contradicts p ∈ Xi \Yi. Consequently, if we set in M all atoms in Xi \Yi to true, the resulting
interpretation M′ satisfies MR(Πi−{r},M)∪Xi but M′ 6|= Si. It follows that Πi is not a witness of M w.r.t.
Π, which is a contradiction.

LOGCOMP RR 22-01 59

Proofs in Section 5

Proposition 5.1. Deciding given programs Π,Π′, sets S,B and an interpretation M, whether Π′ is a witness
of B under S w.r.t. M is co-NP-complete in general. The co-NP-hardness holds even if Π is positive, S = /0,
B = M and M is an answer set of Π.

Proof. The problem is in co-NP since for any Π′ ⊆Π, MR(Π,M) is computable in polynomial time (in fact,
with logarithmic workspace); thus a guess for an interpretation I that satisfies MR(Π′,M)∪S but violates B
can be verified in polynomial time, from which co-NP-membership follows.

The co-NP-hardness is by a simple reduction from SAT. Given a clause theory Σ, let

Π = {c∨ x | c ∈ Σ}∪{x, p, ¬x∨ p | p ∈A }

where x is a fresh atom. Note that M = A ∪{x} is an answer set of Π; furthermore, Π′ = {c∨ x | c ∈
Σ}∪{¬x∨ p | p ∈A } is a witness of B = M under S = /0 w.r.t.M iff Σ unsatisfiable.

Theorem 1. Let Π be a logic program Π. The following problems are Dp
1 -complete:

(i) deciding whether Π′ ∈MW(B,Π,S,M), with Dp
1 -hardness if M is an answer set of Π;

(ii) deciding whether W = [(S1,Π1), . . . ,(Sn,Πn)] resp. G = ({(Si,Πi) | 1 ≤ i ≤ n},E) is a (minimal,
compact) α- resp. α?-witness or α?

f s-witness of an answer set M of Π;

(iii) deciding whether W = [(p1,Π1), . . . ,(pn,Πn)] resp. G = ({(pi,Πi) | 1 ≤ i ≤ n},E) is a (minimal,
compact) β - resp. β ?-witness of an answer set M of Π.

Furthermore, the Dp
1 -hardness holds in all cases if Π is a positive (negation-free) program.

Proof. The Dp
1 membership holds in all cases: modulo the computation of auxiliary objects like Xi, S.i etc.

and checking syntactic conditions on them and the witness at hand (like Πi∩Π j = /0), the recognition test
reduces to polynomially many witness and non-witness tests, which can be transformed in polynomial time
into a single SAT and UNSAT instance, respectively. Furthermore, the auxiliary computations and syntactic
checks can be done in polynomial time. As Dp

1 is closed under polynomial time transformations, it follows
that all problems are in Dp

1 . The Dp
1 -hardness parts are shown as follows.

(i) Assume that in the co-NP-hardness proof of Proposition 5.1, the given clause theory Σ is a CSAT instance;
then Π′ is a minimal witness of M w.r.t. Π iff Σ is unsatisfiable and Σ\{c} is satisfiable for each clause c ∈ Σ,
i.e., Σ is a yes-instance of CSAT.
(ii) For all (minimal, compact) α- resp. α?-witnesses, the Dp

1-hardness follows from the reduction in (i),
when we set W = [(S1,Π1)] resp. G = {(S1,Π1)} with S1 = M and Π1 = Π′ and in case of α?

f s-witnesses
add to Π all clauses ¬x∨¬p′∨ p, where p, p′ ∈A ; this ensures that the dependency graph of Π is strongly
connected.

For α?-witnesses, we reduce deciding whether given clause theories Σ1 and Σ2 are unsatisfiable and
satisfiable, respectively, to α-witness testing as follows. Suppose that Σ1 and Σ2 are over disjoints sets A1
and A2, respectively, and let y1 and y2 be fresh atoms. Define

Π = {c∨ y1 | c ∈ Σ1}∪{c∨ y2 | c ∈ Σ2}∪A1∪A2∪{y1, y2}. (17)

Then, M = A1 ∪A2 ∪ {y1, y2} is clearly a minimal model and thus an answer set of Π. We set G =
({(S1,Π1),(S2,Π2), (S3,Π3)},E) where

60 LOGCOMP RR 22-01

• S1 = {y1} and Π1 = {c∨ y1 | c ∈ Σ1}∪{c∨ y2 | c ∈ Σ2},

• S2 = {y2} and Π2 = {y2}, and

• S3 = Π3 = A1∪A2,

and E has the edge (S1,Π1)→ (S2,Π2); thus X1 = X3 = /0, and X2 = {y1}.
We verify that G is an α?-witness of M w.r.t. Π iff Σ1 is unsatisfiable and Σ2 is satisfiable. As for the first

condition of α?-witness, clearly, Π1 is a witness of S1 under X1 w.r.t.M iff Σ1 is unsatisfiable; for i = 2,3,
Πi is always a witness of Si under Xi. Regarding the second condition of α?-witness, Π1 is not a witness of
S2 = {y2} under X1 = /0, iff Σ2 is satisfiable; in all other cases, Πi is trivially not a witness of S j (j 6= i), under
Xi.

For α-witness, we set W = [(S1,Π1),(S2,Π2),(S3,Π3)] and one can similarly verify that W is an α-
witness of M w.r.t. Π iff Σ1 is unsatisfialbe and Σ2 is satisfiable. This proves the claim.
(iii) For β -witnesses, the proof is similar to the one of α-witness. We take the same program Π and model M,
and define W = [(p1,Π1), . . . ,(pn,Πn)] where n = m+2 and A1 = {q1, . . . ,qm}: p1 = y1 and Π1 is as above,
p2 = y2 and Π2 is as above, and for i = 1, . . . ,m, we have pi+2 = qi and Πi+2 = {qi}; that is, S3 is split into
atomic components. This can be readily extended to β ?-witnesses by defining for the graph G the single edge
(p1,Π1)→ (p2,Π2).

For all other notions of β - and β ?- witnesses, we adapt the proof for minimal α-witness in (ii), by defining
p1 = x and pi+1 = qi, where A = {q1, . . . ,qm} and n = m+ 1, and splitting Π′ into Π1 = {c∨ x | c ∈ Σ},
and Πi+1 = {¬x∨qi}, 1 ≤ i ≤ m. Furthermore, in case of β ?-witnesses, we define for the graph G edges
(p1,Π1)→ (p1+i,Πi+1), for i = 1, . . .n. Then, W resp. G is a minimal/compact β resp. β ?-witness for M
w.r.t. Π iff the original clause theory Σ is a yes-instance of CSAT.

Proposition 5.2. Suppose that Π is headcycle-free and M an answer set of Π. Then {r ∈MR(Π,M) | |r+|=
1} |= M.

Proof. For any p ∈M, there is a proof r1, . . . ,rk w.r.t. M and Π by Theorem 2.3 of Ben-Eliyahu and Dechter
[1994]
⇒ MR({ri | 1≤ i≤ k},M) |= p
⇒ {r ∈MR(Π,M) | |r+|= 1} |= p since MR({ri | 1≤ i≤ k},M)⊆ {r ∈MR(Π,M) | |r+|= 1}.

Thus {r ∈MR(Π,M) | |r+|= 1} |= M.

Proposition 5.3. Let Σ be an unsatisfiable clause theory, and let Π = Σ1∪Σ2∪Σ3 and M =A ∪A ′∪{x,x′}
be as (11). Then,

(i) for every minimal β -witness [(p1,Π1), . . . ,(pm,Πm)] of M w.r.t. Π, if p1 = x the set Γ = {r ∈ Σ |
(r+∪{x})← r− ∈Π1} and otherwise the set Γ = {r ∈ Σ | (r+∪{x′})← r−∪{x} ∈Π1} is an MUS of
Σ;

(ii) from every MUS of Σ a minimal β -witness w.r.t. Π can be constructed.

Proof. (i) We analyse the cases for p1. If p1 = x, then by minimality Π1 ⊆ Σ1 must hold (indeed, from
Π1∪{¬x}, every clause in Σ2∪Σ3 could be removed without establishing satisfiability). Hence the set Γ

constructed for this case must be minimally unsatisfiable.
If p1 6= x, consider first that p1 ∈A ′∪{x′}. As Π1 6|= x must hold, Π1 has a model M in which x is false.

But then M′ = M \ (A ′∪{x′}) is also a model of Π1; this contradicts that Π1 |= p1, however. Thus it follows

LOGCOMP RR 22-01 61

that p1 ∈A . We conclude that we have Π1∩Σ2 |= ¬x∨ x′: if not, Π1∩Σ2∪{x,¬x′} has some model M,
which is a model of Π1; then also M \{p1} is a model of Π1, which contradicts Π1 |= p1. As each clause in
Σ2 is of the form c∨¬x∨ x′ where x,x′ do not occur in c, it follows that the set Γ described for Π1 and p1
must fulfill Γ |=⊥, i.e., Γ is unsatisfiable; by the minimality of Π1, moreover Γ is minimal. This shows the
claim.
(ii) For each MUS Γ of Σ, we can build a minimal β -witness W = [(p1,Π1), . . . ,(pm,Πm)] of {p1, . . . , pm}
w.r.t. Π by setting

• p1 = x, Π1 = {c∨ x | c ∈ Γ},

• p2 = x′, Π2 = {c′∨¬x∨ x′ | c ∈ Γ}, and

• pi+2 = qi, Πi+2 = {¬x∨¬x′∨qi} for each i (1≤ i≤ m−2), where A ∪A ′ = {q1, . . . ,qm−2}.

Clearly Πi∪{p1, . . . , pi−1} |= pi and Πi∪{p1, . . . , pi−1} 6|= p j (1≤ i 6= j ≤ m), and no rules can be omitted
from any Πi without losing this property.

Proposition 5.4. Given an answer set M of a logic program Π, computing some minimal β -witness (resp.
minimal β ? witness) for M w.r.t. Π is FPNP

‖ -hard.

Proof. In Janota and Marques-Silva [2016], the FPNP
‖ -hardness of computing some MUS (assuming that the

input formula F is unsatisfiable) is attributed to Chen and Toda [1995]. This result is not stated explicitly
there, but can be shown using Lemma 4.7 in that paper formulating MUS computation as a maximization
problem as considered there for suitable UNSAT instances. The result follows then from Proposition 5.3. For
self-containedness, we instead reduce the canonical FPNP

‖ -complete problem of computing the answers to
given SAT instances F1, . . . ,Fn to minimal β -witness computation.

By a reduction in Papadimitriou and Wolfe [1988], any SAT instance Fi can be reduced in polynomial
time into a CNF Gi s.t. (i) Gi is unsatisfiable and (ii) Fi is satisfiable iff every subformula G′i that results from
Gi by omitting some clause is satisfiable. Assuming that all Gi are over disjoint atoms, we construct for each
Gi the program Πi and the set Mi of atoms as in Proposition 5.3 such that all Πi are on disjoint atoms. Then
M =

⋃n
i=1 Mi is the single answer set of Π =

⋃n
i=1 Πi, and by the disjointness of the Πi, the minimal β - resp.

β ?-witnesses W of M w.r.t. Π are composed of minimal β - resp. β ?-witnesses Wi of the answer sets Mi w.r.t.
Πi, for i = 1, . . . ,n, where Wi can be obtained by projecting W to the components over the alphabet of Πi.
Since every such Wi corresponds by item (ii) of Proposition 5.3 to an MUS Γi of Gi, and since Γi = Gi must
hold iff Fi is unsatisfiable, we can compute the answers of the SAT instances F1, . . . ,Fn easily from W . As
the logic program Π and M are easily constructed from G1, . . . ,Gn, this proves FPNP

‖ -hardness.

Theorem 2. Let M be an answer set of a logic program Π, and let p ∈M. Deciding whether there exists
some minimal β -witness W = [(p1,Π1), . . . ,(pn,Πn)] for M = {p1, . . . , pn} w.r.t. Π such that p = p1 is
Σ

p
2 -complete.

Proof. The problem is in Σ
p
2 , as we can guess a minimal β -witness W of M such that p = p1 and check with

an NP oracle in polynomial time whether W is indeed a minimal β -witness of M (cf. Theorem 5).
The Σ

p
2 -hardness is shown by a reduction from deciding whether for a given unsatisfiable clause theory Σ,

a particular clause c ∈ Σ belongs to some MUS Σ′ of Σ. This problem is known to be Σ
p
2 -complete, even if the

clause c is a single literal ¬p, as follows from the results on minimal equivalent subformulas in Liberatore
[2005].

62 LOGCOMP RR 22-01

For the reduction, we consider the clause theory Π constructed from Σ and the answer set M as in the proof
of Proposition 5.3. We claim that some minimal β -witness W = [(p1,Π1), . . . ,(pn,Πn)] of M = {p1, . . . , pn}
w.r.t. Π exists such that p = p1 iff some MUS Σ′ ⊆ Σ exists such that ¬p ∈ Σ′.

(⇐) Assume that Σ′ is an MUS such that ¬p ∈ Σ′. Then Π′ = Σ′ \{¬p} is a minimal set such that Π′ |= p.
Consequently, if we define

Π1 = Σ1∪Σ2∪Σ3 with Σ1 ={c∪{x} | c ∈Π
′},Σ2 ={c∪{¬x,x′} | c ∈ Σ

′},Σ3 ={¬x∨¬x′∨ p},
Π2 = {¬p∨ x},
Π3 = {c∪{¬x,x′} | c ∈ Σ

′},
Πi = {¬x∨¬x′∨ pi} for i = 4, . . . ,n,

then W = [(p1,Π1), . . . ,(pn,Πn)] for M = {p1, . . . , pn} = A ∪A ′∪{x,x′} where p1 = p, p2 = x, p3 = x′,
is a minimal β -witness of M. Indeed, by Π′ |= p, Π1 |= p∨ x holds and Π1 |= p∨¬x∨ x′, thus Π1 |= p∨ x′;
since Π1 contains p∨¬x∨¬x′, it follows that Π1 |= p. Furthermore, Π1 6|= x and Π1 6|= x: Π′ is satisfiable,
and so Π1 has a model in which p is true and x,x′ are false. Finally, Π1 6|= q for any other atom q since Π1
has a model in which p,x,x′ are true and q is false. As for Π2, note that ¬p ∈ Σ, and thus ¬p∨ x ∈ Σ1; hence
Π2∪{p} |= x. Next, by construction Π3 |= ¬x∨ x′; thus Π3∪{p,x} |= x′. Finally, for each Πi, i = 4, . . . ,n,
we have that Πi∪{x,x′} |= pi and Πi is not a witness of p j (j 6= i) under {p1, . . . , pi−1}. The minimality of
Π1 follows from the minimality of Σ′.

(⇒) Suppose that W = [(p1,Π1), . . . ,(pn,Πn)] is a minimal β -witness of M such that p = p1. Then we
obtain that Π1∩Σ1 |= p∨x: If not, then Π1∩Σ1 has a model in which both p and x are false; but then Π1 has
a model in which p,x are false and x′ is true. Thus the set Γ = {r ∈ Σ | r+∪{x}← r− ∈Π1∩Σ1} is such that
Γ∪{¬p} is unsatisfiable. Furthermore, by the minimality of W , no Π′1 ⊂Π1∩Σ1 exists such that Π′1 |= p∨x.
Otherwise, Π′1∪ (Π1∩ (Σ2∪Σ3)) would logically imply p but no other atoms, and thus contradict that W is a
minimal β -witness. Consequently Γ∪{¬p} is an MUS that contains ¬p. This proves the result.

Theorem 3. Deciding whether an answer set M of a disjunctive logic program Π has a compact β -witness
(resp. compact β ?-witness) is Σ

p
2 -complete, and the Σ

p
2 -hardness holds even if MR(Π,M) = Π.

Proof. (Membership): a guess for a compact β -witness W = [(pi,Πi)]
n
i=1 (resp., compact β ?-witness W =

({(pi,Πi) | 1≤ i≤ n},E)) of M = {p1, . . . , pn} w.r.t. Π has polynomial size and can be checked easily using
an NP-oracle in polynomial time by verifying the conditions for ΠM.

(Hardness): We first consider compact β -witnesses, and then extend the argument to compact β ?-
witnesses. Let Φ be a QBF of the form

Φ = ∃X∀Y E(X ,Y)

where X = {x1, . . . ,xn}, Y = {y1, . . . ,ym} and E(X ,Y) =
∨k

j=1 D j is a 3DNF over the variables X ∪Y with
D j = l j,1∧ l j,2∧ l j,3.

We construct a clause theory Σ =
⋃3

i=1 Σi that consists of the following subsets:

• Σ1 consists of the following rules,

p1∨ p2∨ p3, p1← p2, p2← p3, p3← p1.

Note that Σ1 has the unique minimal model M1 = {p1, p2, p3} which has no compact β -witness w.r.t.
Σ1.

LOGCOMP RR 22-01 63

• Σ2 = {τ(D j) | 1≤ j ≤ k} where

τ(D j) = {p1}∪D j−← D j+,

and D+ (resp. D−) is the set of atoms that occur in D positively (resp. negatively).

• Σ3 consists of the following rules, for 1≤ i≤ n and 1≤ j ≤ m:

p1← zi, zi← xi, xi← ri, (18)

p1∨ z′i, xi← z′i, ri← xi, (19)

ri∨ ci, ci← zi, (20)

z′i∨ c′i, c′i← ri, (21)

ci← d′i , d′i ← c′i, c′i← di, di← ci, (22)

zi←M, z′i←M, ri←M, xi←M, (23)

y j←M (24)

where zi,z′i,ci,c′i,di,d′i ,ri (1 ≤ i ≤ n) are pairwise different fresh atoms and M = M1 ∪M2 with M2 =
{ci,c′i,di,d′i | 1≤ i≤ n}.

Let N = M∪N1∪N2 where N1 = {xi,zi,z′i,ri | 1≤ i≤ n} and N2 = {y j | 1≤ j ≤ m}.
Note that the first two rules from (18) and (19) respectively can derive p1. While the last two rules from

(18) and the rules from (20) can derive ci, the last two rules from (19) and the rules from (21) can derive c′i.
Thus, Σ1∪Σ3 can derive every atom in N. It is evident that N is a minimal model of Σ.

We will show N has a compact β -witness w.r.t. Σ if and only if Φ evaluates to true.
(⇐) There is an assignment σ for X s.t. ∀Y E(σ(X),Y) evaluates to true. We construct the following

β -witness of N w.r.t. Σ:

W = [(p1,Π),(qi,s,δi,s) (1≤ s≤ 4,1≤ i≤ n)]+∆ (25)

where

• Π = Π1∪Π2∪Π3 is minimal s.t. Π |= p1 with

Π1 ⊆ Σ2,

Π2 = {p1← zi, zi← xi | σ(xi) = 1,1≤ i≤ n},
Π3 = {p1∨ z′i, xi← z′i | σ(xi) = 0,1≤ i≤ n}.

• If σ(xi) = 0 then

– qi,1 = ci and δi,1 consists of the last two rules from (18) and the rules from (20);

– qi,2 = di and δi,2 = {di← ci};
– qi,3 = c′i and δi,3 = {c′i← di};
– qi,4 = d′i and δi,4 = {d′i ← c′i};

otherwise

– qi,1 = c′i and δi,1 consists of the last two rules from (19) and the rules from (21);

64 LOGCOMP RR 22-01

– qi,2 = d′i and δi,2 = {d′i ← c′i};
– qi,3 = ci and δi,3 = {ci← d′i};
– qi,4 = di and δi,4 = {di← ci}.

• ∆ is a compact β -witness of N1∪N2 under Γ∪M and M w.r.t. N, where Γ consists of the rules from
(23) and (24).

It is tedious but not difficult to check that this β -witness W of N w.r.t. Σ is compact.
(⇒) In the case E(X ,Y) is a tautology, Φ is trivially valid. Suppose that E(X ,Y) is not a tautology in

what follows. Thus, Σ2 cannot derive p1. Let W be a compact β -witness of N w.r.t. Σ, which we assume to
be of the form

W = ∆1 +∆2 +∆3, (26)

where the subparts ∆i, (1≤ i≤ 3) will be clarified in the sequel. Firstly, note that, for any atom q,

Σ3 |= q iff q ∈ {p1}∪M2.

If the first two rules from (18) and (19) respectively are used to derive p1 in the above compact β -witness (26),
then it is impossible to construct a compact β -witness of {ci,c′i,di,d′i} w.r.t. the set of rules in (20)-(22). For
instance, if the rules ri∨ ci,c′i← ri,ci← d′i ,d

′
i ← c′i are used to derive ci, then one cannot derive d′i since the

rule d′i ← c′i is not allowed anymore for the compactness.
It implies that the compact β -witness (26) contains either

• (ci,δ1 = {zi← xi, xi← ri, ri∨ ci, ci← zi}) or

• (c′i,δ2 = {xi← z′i, ri← xi, z′i∨ c′i, c′i← ri}),

but not both. Otherwise, without the rules in δ1∪δ2, one can not have a compact β -witness for N−{ci,c′i}.
Without loss of generality, we assume that ∆1 of (26) is a compact β -witness of M2 under Σ and /0 w.r.t. N.

Secondly, to derive any atom in N1∪N2 from Σ, it must depend on all atoms in M. Thus, we may assume
that ∆3 of (26) is a compact β -witness of N1∪N2 under Σ and M w.r.t. N.

Thirdly, ∆2 of (26) must be a compact β -witness of M1 under Σ and M2 w.r.t. N, which does not contain
any rules occurring in ∆1 ∪∆3. Thus, to construct a compact β -witness for M1 under Σ and M2 w.r.t. N,
one has to derive first p1 by Σ. In this case, the only possible rules to derive p1 are from Σ2 and from, for
1≤ i≤ n,

(a) {p1← zi, zi← xi} or

(b) {p1∨ z′i, xi← z′i}, but not both.

Thus, Σ2 together with, for i (1 ≤ i ≤ n), {p1← xi} or {p1∨ xi} can derive p1. This corresponds to a
selection of xi or ¬xi for i (1≤ i≤ n). It implies that ¬E(X ,Y) is unsatisfiable under this selection of the
variables in X . This selection exactly corresponds to an assignment σ for X , i.e., σ(xi) = 0 if p1← xi is
selected, and σ(xi) = 1 if p1∨xi is selected. It follows that E(σ(X),Y) is valid, which implies ∃X∀Y E(X ,Y)
evaluates to true. This establishes Σ

p
2 -hardness for compact β -witnesses under the given restrictions.

For β ?-witnesses, the same reduction works. As each compact β -witness is a compact β ?-witness, it
remains to consider the only-if direction (⇒). Notably, Σ1 has w.r.t. M1 also no compact β ?-witness, and

LOGCOMP RR 22-01 65

thus p1 must be derived from rules in Σ2∪Σ3. With a similar line of argumentation, where β ? replaces β , it
can be seen that from a compact β ?-witness W , an assignment σ for X is obtainable such that E(σ(X),Y) is
valid, i.e., ∃X∀Y E(X ,Y) evaluates to true. Here W is without loss of generality of similar form as in (26),
where inside ∆i components may not be totally ordered.

Theorem 4. Let M be an answer set of a logic program Π, S⊆M and p,q ∈A s.t. MR(Π,M)∪S |= p∧q.
The problem of deciding whether q is necessary for p w.r.t. M and S under Π is Π

p
2-complete, and the

Π
p
2 -hardness holds even if MR(Π,M) = Π and S = /0.

Proof. Membership: If q is not necessary for p w.r.t. M and S under Π then there exists some Π′ ⊆Π s.t.
(a) MR(Π′,M)∪ S |= p and (b) MR(Π′,M)∪ S 6|= q. It is clear that one can guess such Π′ and verify the
conditions (a) and (b) in polynomial time using an NP-oracle. Hence the complement of the problem in ΣP

2 ,
which implies that the problem is in Π

p
2 .

Hardness: Let Φ = ∃x1 · · ·∃xn∀y1 · · ·∀ymφ1∨·· ·∨φk (m,n≥ 1) be a 2QBF formula over variables X ∪Y ,
where X = {x1, . . . ,xn}, Y = {y1, . . . ,ym} and φ j = l j1 ∧ l j2 ∧ l j3 is a conjunction of literals. The problem of
deciding whether Φ is valid is ΣP

2 -complete.
Let S = /0 and Π be the clause theory consisting of the following clauses built from Φ:

r0 : ¬p′∨ p,

r1i : xi∨ p′, r2i : ¬xi∨ p′, (1≤ i≤ n),

r3i : σ(li1)∨σ(li2)∨σ(li3)∨ p′∨ p, (1≤ i≤ k),

rxi : ¬p′∨¬p∨ xi, (1≤ i≤ n), ry j : ¬p′∨¬p∨ y j, (1≤ j ≤ m),

where p and p′ are two fresh atoms, σ(¬α) = α and σ(α) = ¬α for each α ∈ X ∪Y . It is evident that
Π |= p∧ p′ in terms of the clauses in {r1i,r2i|1≤ i≤ n}∪{r0}, and hence that M = X ∪Y ∪{p, p′} is by the
clauses rxi and ry j the single model and answer set of Π. Furthermore, MR(Π,M) = Π.

In the following, we show that Φ evaluates to true if and only if q = p′ is not necessary for p w.r.t. M and
S = /0 under Π.

(⇒) Let v be an assignment for X s.t. ∀y1 · · ·∀ym v(φ1 ∨ ·· · ∨ φk) = 1. It implies that the following
entailment holds:

{x ∈ X | v(x) = 1}∪{¬x | x ∈ X & v(x) = 0} |= φ1∨·· ·∨φk. (27)

Let Σ consisting of the clauses in Π:

r0, r3i, (28)

r1i, if v(xi) = 1, (1≤ i≤ n) (29)

r2i, if v(xi) = 0, (1≤ i≤ n). (30)

It is evident that {x ∈ X | v(x) = 1}∪{p} is a model of Σ∪{¬p′}. Thus, Σ 6|= p′. Suppose that Σ 6|= p. We
have that
Σ∪{¬p} has a model v′

⇒ Σ∪{¬p} |= ¬p∧¬p′ by r0
⇒ Σ∪{¬p} |= {x ∈ X | v(x) = 1}∪{¬x | x ∈ X & v(x) = 0} by the clauses in the lines (29) and (30)
⇒ Σ∪{¬p} |= φ1∨·· ·∨φk by Eq (27)
⇒ Σ∪{¬p} |=

∧
1≤i≤k(σ(li1)∨σ(li2)∨σ(li3)) by the clauses r3is

66 LOGCOMP RR 22-01

⇒ Σ∪{¬p} |=
∧

1≤i≤k¬φi

⇒ Σ∪{¬p} |= ¬(φ1∨·· ·∨φk).
This contradicts that Σ∪{¬p} is satisfiable. Thus, Σ |= p. As MR(Σ,M) = Σ, it follows that p′ is not
necessary for p w.r.t. M and S under Π.

(⇐) Suppose that p′ is not necessary for p w.r.t. M and S under Π. As MR(Π′,M) = Π′ for each Π′ ⊆Π,
it follows that there is a subset Σ of Π s.t. Σ |= p and Σ 6|= p′. If r0 /∈ Σ then the interpretation {p′} satisfies
every clause in Π, which implies it is a model of Σ. This contradicts that Σ |= p. Thus, r0 ∈ Σ. By Σ 6|= p′,
we have, for each i (1≤ i≤ n), that at most one of r1i and r2i is in Σ. Let v be an assignment s.t., for each
x ∈ X , v(x) = 1 if x∨ p′ ∈ Σ and v(x) = 0 otherwise. To prove that Φ evaluates to true, it suffices to show

{x ∈ X | v(x) = 1}∪{¬x | x ∈ X & v(x) = 0} |= φ1∨·· ·∨φk. (31)

Suppose that (31) does not hold. We have that there is an extension v′ of v to Y s.t. v′(φ1∨·· ·∨φk) = 0
⇒ v′(φi) = 0 for each i (1≤ i≤ k)
⇒ v′(¬φi) = 1 for each i (1≤ i≤ k)
⇒ v′(σ(li1)∨σ(li2)∨σ(li3)) = 1 for each i (1≤ i≤ k)
⇒ v′(r3i) = 1 for each r3i ∈ Σ

⇒ v′′(Σ) = 1 where v′′ is the extension of v′ to {p, p′} by setting v′′(p) = v′′(p′) = 0
⇒ Σ 6|= p , a contradiction.

Appendix: reduct for general extended logic programs

Let Lit be the set of literals of L . An general extended logic program Π is a set of extended rules of the
form Gelfond and Lifschitz [1991]; Lifschitz et al. [1999]

l1∨·· ·∨ lk← lk+1, · · · , lm,not lm+1, · · · ,not ln,not not ln+1, · · · ,not not ls (32)

where each li (1≤ i≤ s) is a literal.
Let S be a set of literals. The GL-reduct of Π w.r.t. S, written ΠS, is the logic program

{r+← r− | r ∈Π,rnot ∩S = /0 and r2not ⊆ S}. (33)

The set S is an answer set of Π if it is minimal such that S is closed w.r.t. ΠS, i.e.

• for each rule r ∈ΠS, r− ⊆ S implies r+∩S 6= /0, and

• if S contains a pair of complementary literals, then S = Lit.

The reduct MR(Π,S) of Π w.r.t. S is similarly defined as before, i.e.,

MR(Π,S) = {r+∩S← r− | r ∈Π,r− ⊆ S,rnot ∩S = /0,r2not ⊆ S}. (34)

For instance, let Π = {¬a∨b, b←¬a, ¬a← b} and S = {¬a,b}. It is not difficult to check that S
is the unique answer set of Π and Π = MR(Π,S).

Lemma 7.1. Let Π be a positive extended logic program, S,S′ ⊆ Lit.

A1. S is closed w.r.t. Π if and only if S is closed w.r.t. {r ∈Π | r− ⊆ S}.

LOGCOMP RR 22-01 67

A2. If both S and S′ are closed w.r.t. Π then S∩S′ is also closed w.r.t. Π.

Proof. (1) S It is trivial when S = Lit. Suppose that S is consistent. We have
S is closed w.r.t. Π

iff for each r ∈Π, r− ⊆ S implies r+∩S 6= /0
iff for each r ∈ {r ∈Π | r− ⊆ S}, r+∩S 6= /0
iff for each r ∈ {r ∈Π | r− ⊆ S}, r− ⊆ S implies r+∩S 6= /0
iff S is closed w.r.t. {r ∈Π | r− ⊆ S}.

(2) It is evident when either S or S′ is Lit. Suppose that both S and S′ are consistent. We have
S and S′ are closed w.r.t. Π

⇒ for each r ∈Π and M ∈ {S,S′}, r− ⊆M implies r+∩M 6= /0
⇒ for each r ∈Π, r− ⊆ S∩S′ implies r+∩ (S∩S′) 6= /0
⇒ S∩S′ is closed w.r.t. Π.

Lemma 7.2. Let Π be an extended logic program, S⊆ Lit and r ∈Π. Then

A1. r+← r− ∈ΠS and r− ⊆ S if and only if r+∩S← r− ∈MR(Π,S).

A2. S is closed w.r.t. ΠS if and only if S is closed w.r.t. MR(Π,S).

Proof. (1) r+← r− ∈ΠS and r− ⊆ S
iff r− ⊆ S, rnot ∩S = /0 and r2not ⊆ S
iff r+∩S← r− ∈MR(Π,S).

(2) It is evident when S = Lit. Let S be a consistent set of literals. We have
S is closed w.r.t. ΠS

iff r− ⊆ S implies r+∩S 6= /0 for each r+← r− in ΠS

iff r+∩S 6= /0 for each r+← r− in ΠS and r− ⊆ S
iff r+∩S 6= /0 for each r+∩S← r− in MR(Π,S) by (1)
iff S is closed w.r.t. MR(Π,S).

Proposition 7.5. Let Π be an extended logic program and S⊆ Lit. Then S is an answer set of Π if and only
if S is least (under set inclusion) and closed w.r.t. MR(Π,S).

Proof. (⇒) Note that S is closed w.r.t. MR(Π,S) by (2) of Lemma 7.2. Suppose that S is not the least one
such that it is closed w.r.t. MR(Π,S). It implies there is S′ with S 6⊆ S′ which is closed w.r.t. MR(Π,S). We
consider the following two cases:

A1. S′ ⊂ S. We have that S′ is closed w.r.t. MR(Π,S)
⇒ S is closed w.r.t. {r ∈MR(Π,S) | r− ⊆ S′} by (1) of Lemma 7.1
⇒ for each α ∈ {r ∈MR(Π,S) | r− ⊆ S′}, α+∩S′ 6= /0
⇒ for each α ∈ {r ∈ΠS | r− ⊆ S′}, α+∩S∩S′ 6= /0 by (1) of Lemma 7.2
⇒ for each α ∈ {r ∈ΠS | r− ⊆ S′}, α+∩S′ 6= /0 by S′ ⊆ S
⇒ S′ is closed w.r.t. {r ∈ΠS | r− ⊆ S′}
⇒ S′ is closed w.r.t. ΠS by (1) of Lemma 7.1, which is a contradiction.

A2. S′ 6⊆ S. Let S∗ = S∩ S′. It is evident S∗ ⊂ S. By (2) of Lemma 7.1, S∗ is closed w.r.t. MR(Π,S).
Following the proof of the above case (1), we can similarly show that S∗ is closed w.r.t. ΠS, which is a
contradiction.

68 LOGCOMP RR 22-01

It follows that S must be the least and closed set w.r.t. MR(Π,S).
(⇐) Not that S is closed w.r.t. ΠS by (2) of Lemma 7.2. Suppose that S is not minimal. It follows that

there is S′ ⊂ S which is closed w.r.t. ΠS

⇒ S′ is closed w.r.t. {r ∈ΠS | r− ⊆ S′} by (1) of Lemma 7.1
⇒ for each r ∈ΠS, r− ⊆ S′ implies r+∩S′ 6= /0
⇒ for each r ∈ΠS and r− ⊆ S′∩S, r+∩S∩S′ 6= /0 by S′ ⊂ S
⇒ for each r ∈MR(Π,S) and r− ⊆ S′, r+∩S′ 6= /0 by (1) of Lemma 7.2
⇒ S′ is closed w.r.t. MR(Π,S), which is a contradiction.

Thus, S is a minimal and closed set w.r.t. ΠS, i.e., S is an answer set of Π.

References
Marco Almada. Human intervention in automated decision-making: Toward the construction of contestable systems. In

Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law, ICAIL ’19, pages 2–11,
New York, NY, USA, 2019. Association for Computing Machinery.

Mario Alviano and Carmine Dodaro. Unsatisfiable core analysis and aggregates for optimum stable model search.
Fundamenta Informaticae, 176(3-4):271–297, 2020.

Mario Alviano and Wolfgang Faber. Aggregates in answer set programming. Künstliche Intelligenz, 32(2-3):119–124,
2018.

Mario Alviano, Carmine Dodaro, Johannes Klaus Fichte, Markus Hecher, Tobias Philipp, and Jakob Rath. Inconsistency
proofs for ASP: the ASP - DRUPE format. Theory and Practice of Logic Programming, 19(5-6):891–907, 2019.

Giovanni Amendola, Thomas Eiter, Michael Fink, Nicola Leone, and João Moura. Semi-equilibrium models for
paracoherent answer set programs. Artificial Intelligence, 234:219–271, 2016.

Giovanni Amendola, Francesco Ricca, and Mirek Truszczynski. A generator of hard 2qbf formulas and ASP programs.
In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2
November 2018, pages 52–56, Tempe, Arizona, USA, 2018. AAAI Press.

Joaquín Arias, Manuel Carro, Zhuo Chen, and Gopal Gupta. Justifications for goal-directed constraint answer set
programming. In Ricca et al. Ricca et al. [2020], pages 59–72.

Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic programs. Annals of Mathematics
and Artificial Intelligence, 12(1-2):53–87, 1994.

Rachel Ben-Eliyahu-Zohary, Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Decomposing minimal models. In
KnowProS@IJCAI, pages 1–7, New York City, 2016. CEUR-WS.org.

Rachel Ben-Eliyahu-Zohary, Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli. Modular construction of minimal
models. In Marcello Balduccini and Tomi Janhunen, editors, LPNMR-2017, Espoo, Finland, volume 10377 of
Lecture Notes in Computer Science, pages 43–48, Espoo, Finland, 2017. Springer.

Alexander Bochman. A Logical Theory of Causality. The MIT Press, 2021.

Jori Bomanson. lp2normal — a normalization tool for extended logic programs. In Marcello Balduccini and Tomi
Janhunen, editors, Logic Programming and Nonmonotonic Reasoning, pages 222–228, Cham, 2017. Springer
International Publishing.

LOGCOMP RR 22-01 69

Martin Brain and Marina De Vos. Debugging logic programs under the answer set semantics. In Marina De Vos and
Alessandro Provetti, editors, Answer Set Programming, Advances in Theory and Implementation, Proceedings of the
3rd Intl. ASP’05 Workshop, Bath, UK, September 27-29, 2005, volume 142 of CEUR Workshop Proceedings, pages
141–152, Bath, UK, 2005. CEUR-WS.org.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski. Answer set programming at a glance. Commun. ACM,
54(12):92–103, 2011.

Nadia Burkart and Marco F. Huber. A survey on the explainability of supervised machine learning. Journal of Artificial
Intelligence Research, 70:245–317, 2021.

Samuel Buss, Jan Krajìček, and Gaisi Takeuti. On provably total functions in bounded arithmetic theories. In Peter
Clote and Jan Krajìček, editors, Arithmetic, Proof Theory and Computational Complexity, pages 116–61. Oxford
University Press, 1993.

Pedro Cabalar and Jorge Fandinno. Justifications for programs with disjunctive and causal-choice rules. Theory and
Practice of Logic Programming, 16(5-6):587–603, 2016.

Pedro Cabalar, Jorge Fandinno, and Michael Fink. Causal graph justifications of logic programs. Theory and Practice
of Logic Programming, 14(4-5):603–618, 2014.

Pedro Cabalar, Jorge Fandinno, and Brais Muñiz. A system for explainable answer set programming. In Ricca et al.
Ricca et al. [2020], pages 124–136.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas Krennwallner,
Nicola Leone, Marco Maratea, Francesco Ricca, and Torsten Schaub. Asp-core-2 input language format. Theory and
Practice of Logic Programming, 20(2):294–309, 2020.

Hubie Chen and Yannet Interian. A model for generating random quantified boolean formulas. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI-05),
Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 66–71, Edinburgh, Scotland, UK, 2005. Professional Book
Center.

Zhi-Zhong Chen and Seinosuke Toda. The complexity of selecting maximal solutions. Information and Computation,
119(2):231–239, 1995.

Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM, 35(4):759–768, October
1988.

Roberto Confalonieri, Tillman Weyde, Tarek R. Besold, and FermÃn Moscoso del Prado MartÃn. Using ontologies
to enhance human understandability of global post-hoc explanations of black-box models. Artificial Intelligence,
296:103471, 2021.

Luca Costabello, Fosca Giannotti, Riccardo Guidotti, Pascal Hitzler, Freddy Lécué, Pasquale Minervini, and Kamruzza-
man Sarker. On explainable AI: From theory to motivation, applications and limitations, 2019. AAAI 2019 Tutorial,
https://xaitutorial2019.github.io/.

Carlos Viegas Damásio, João Moura Pires, and Anastasia Analyti. Unifying justifications and debugging for answer-set
programs. In Marina De Vos, Thomas Eiter, Yuliya Lierler, and Francesca Toni, editors, ICLP-2015), Cork, Ireland,
volume 1433 of CEUR Workshop Proceedings, pages 1–14, Cork, Ireland, 2015. CEUR-WS.org.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of logic
programming. ACM Computing Surveys, 33(3):374–425, 2001.

70 LOGCOMP RR 22-01

Richard Dazeley, Peter Vamplew, Cameron Foale, Charlotte Young, Sunil Aryal, and Francisco Cruz. Levels of
explainable artificial intelligence for human-aligned conversational explanations. Artificial Intelligence, 299:103525,
2021.

Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, stable operators, well-founded fixpoints
and applications in nonmonotonic reasoning. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages
127–144. Springer US, Boston, MA, 2000.

Marc Denecker, Gerhard Brewka, and Hannes Strass. A formal theory of justifications. In Francesco Calimeri,
Giovambattista Ianni, and Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning: 13th
International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, pages 250–264.
Springer International Publishing, Cham, 2015.

Carmine Dodaro and Francesco Ricca. The external interface for extending WASP. Theory and Practice of Logic
Programming, 20(2):225–248, 2020.

Carmine Dodaro, Francesco Ricca, and Peter Schüller. External propagators in WASP: preliminary report. In Stefano
Bistarelli, Andrea Formisano, and Marco Maratea, editors, Proceedings of the 23rd RCRA International Workshop
on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion 2016 (RCRA 2016),
Genova, Italy, November 28, 2016, volume 1745 of CEUR Workshop Proceedings, pages 1–9, Genova, Italy, 2016.
CEUR-WS.org.

Carmine Dodaro, Philip Gasteiger, Kristian Reale, Francesco Ricca, and Konstantin Schekotihin. Debugging non-
ground ASP programs: Technique and graphical tools. Theory and Practice of Logic Programming, 19(2):290–316,
2019.

William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satisfiability of propositional horn
formulae. Journal of Logical Programming, 1(3):267–284, 1984.

Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323, 1995.

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In Leslie Pack Kaelbling and Alessandro Saffiotti,
editors, Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, Scotland, UK,
July 30 - August 5, 2005, pages 90–96, Edinburgh, Scotland, UK, 2005. Professional Book Center.

Esra Erdem, Yelda Erdem, Halit Erdogan, and Umut Öztok. Finding answers and generating explanations for complex
biomedical queries. In Wolfram Burgard and Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011, pages 785–790, San
Francisco, California, USA, 2011. AAAI Press.

Francesc Esteva, Joan Gispert, and Felip Manya Barceloà, editors. 40th IEEE International Symposium on Multiple-
Valued Logic, ISMVL 2010, Barcelona, Spain, 26-28 May 2010, 1730 Massachusetts Ave., NW Washington DC,
United States, 2010. IEEE Computer Society.

Jorge Fandinno and Claudia Schulz. Answering the “why” in answer set programming – a survey of explanation
approaches. Theory and Practice of Logic Programming, 19(2):114–203, 2019.

Michael R. Fellows, Stefan Szeider, and Graham Wrightson. On finding short resolution refutations and small
unsatisfiable subsets. Theoretical Computer Science, 351(3):351–359, 2006.

Paolo Ferraris. On modular translations and strong equivalence. In Chitta Baral, Gianluigi Greco, Nicola Leone,
and Giorgio Terracina, editors, Logic Programming and Nonmonotonic Reasoning, 8th International Conference,
LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, volume 3662 of Lecture Notes in Computer
Science, pages 79–91, Diamante, Italy, 2005. Springer.

LOGCOMP RR 22-01 71

Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming technique for debugging
answer-set programs. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 448–453, Chicago, Illinois,
USA, 2008. AAAI Press.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Advanced conflict-driven disjunctive answer set solving. In
Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 912–918, Beijing, China, 2013. IJCAI/AAAI.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP + control: Preliminary
report. CoRR, abs/1405.3694:9, 2014.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Philipp Wanko. Theory
solving made easy with Clingo 5. In Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos, editors,
Technical Communications of the 32nd International Conference on Logic Programming, ICLP 2016 TCs, October
16-21, 2016, New York City, USA, volume 52 of OASICS, pages 2:1–2:15, New York City, USA, 2016. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In International Symposium on Artificial
Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA, January 2-4, 2008, page 9, Fort
Lauderdale, Florida, USA, 2008. online.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Logic Programming, Proceedings of the Fifth International Conference and Symposium,
Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), pages 1070–1080, Seattle, Washington, USA, 1988. MIT
Press.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991.

Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formulas. In 2003 Design,
Automation and Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany, pages
10886–10891, Munich, Germany, 2003. IEEE Computer Society.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.

Botros N. Hanna, Ly Ly T. Trieu, Tran Cao Son, and Nam T. Dinh. An application of ASP in nuclear engineering:
Explaining the three mile island nuclear accident scenario. Theory and Practice of Logic Programming, 20(6):926–
941, 2020.

Carl G. Hempel and Paul Oppenheim. Studies in the logic of explanation. Philosophy of Science, 15(2):135–175, 1948.

Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for prototyping with SAT oracles.
In SAT, pages 428–437, Oxford, UK, 2018. Springer, Cham.

Mikolás Janota and Joao Marques-Silva. On the query complexity of selecting minimal sets for monotone predicates.
Artificial Intelligence, 233:73–83, 2016.

Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable models: Unfounded sets, fixpoint semantics,
and computation. Information and Computation, 135(2):69–112, 1997.

Zhang Li, Wang Yisong, Xie Zhongtao, and Feng Renyan. Computing propositional minimal models: Minisat-based
approaches. Journal of Computer Research and Development (in Chinese), 58:2515–2523, 2021.

Paolo Liberatore. Redundancy in logic I: CNF propositional formulae. Artificial Intelligence, 163(2):203–232, 2005.

72 LOGCOMP RR 22-01

Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible mus enumeration.
Constraints, 21(2):223–250, Apr 2016.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic programs. Annals of Mathematics
and Artificial Intelligence, 25(3-4):369–389, 1999.

Vladimir Lifschitz. Foundations of logic programming. In Principles of Knowledge Representation, pages 69–127.
CSLI Publications, 1996.

Fangzhen Lin and Yoav Shoham. A logic of knowledge and justified assumptions. Artificial Intelligence, 57(2-3):271–
289, 1992.

Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczyński. Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelligence, 174:295–315, 2010.

João Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications (invited paper). In Esteva et al.
Esteva et al. [2010], pages 9–14.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267:1–38,
2019.

Brent D. Mittelstadt, Chris Russell, and Sandra Wachter. Explaining explanations in AI. In danah boyd and Jamie H.
Morgenstern, editors, Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019,
Atlanta, GA, USA, January 29-31, 2019, pages 279–288, Atlanta, GA, USA, 2019. ACM.

Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the ouroboros: On debugging non-ground answer-set
programs. Theory and Practice of Logic Programming, 10(4-6):513–529, 2010.

Johannes Oetsch, Jörg Pührer, and Hans Tompits. Stepwise debugging of answer-set programs. Theory and Practice of
Logic Programming, 18(1):30–80, 2018.

Christos H. Papadimitriou and David Wolfe. The complexity of facets resolved. Journal of Computer and System
Sciences, 37(1):2–13, 1988.

Axel Polleres, Melanie Frühstück, Gottfried Schenner, and Gerhard Friedrich. Debugging non-ground ASP programs
with choice rules, cardinality and weight constraints. In Pedro Cabalar and Tran Cao Son, editors, Proc. 12th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013), Corunna, Spain,
September 15-19, 2013, volume 8148 of Lecture Notes in Computer Science, pages 452–464, Corunna, Spain, 2013.
Springer.

John L. Pollock. Knowledge and Justification. Princeton University Pres, 1974.

Enrico Pontelli, Tran Cao Son, and Omar El-Khatib. Justifications for logic programs under answer set semantics.
Theory and Practice of Logic Programming, 9(1):1–56, 2009.

Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Gerhard Friedrich, Paul Fodor,
Angelika Kimmig, Francesca A. Lisi, Marco Maratea, Alessandra Mileo, and Fabrizio Riguzzi, editors. Proceedings
36th International Conference on Logic Programming ICLP, Technical Communications 2020, UNICAL, Rende (CS),
Italy, 18-24th September 2020, volume 325 of EPTCS, 2020.

Chiaki Sakama and Katsumi Inoue. Paraconsistent stable semantics for extended disjunctive programs. Journal of
Logic and Computation, 5(3):265–285, 1995.

Claudia Schulz and Francesca Toni. Justifying answer sets using argumentation. Theory and Practice of Logic
Programming, 16(1):59–110, 2016.

LOGCOMP RR 22-01 73

Kostyantyn M. Shchekotykhin. Interactive query-based debugging of ASP programs. In Blai Bonet and Sven Koenig,
editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA, pages 1597–1603, Austin, Texas, USA, 2015. AAAI Press.

Yi-Dong Shen and Thomas Eiter. Determining inference semantics for disjunctive logic programs. Artificial Intelligence,
277:115–135, December 2019.

João P. Marques Silva. Minimal unsatisfiability: Models, algorithms and applications (invited paper). In Esteva et al.
Esteva et al. [2010], pages 9–14.

Ernest Sosa. Knowledge and Justification, chapter 15, pages 220–228. John Wiley & Sons, Ltd, 2019.

Ramya Srinivasan and Ajay Chander. Explanation perspectives from the cognitive sciences - A survey. In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI
2020, pages 4812–4818, Yokohama, Japan, 2020. ijcai.org. Scheduled for July 2020, Yokohama, Japan, postponed
due to the Corona pandemic.

Tommi Syrjänen. Debugging inconsistent answer set programs. In Proceedings of The 11Th International Workshop
on Nonmonotonic Reasoning (NMR’06). Number IFI-06-04 in Technical Report Series, Clausthal University of
Technology, Institute for Informatics (2006) 77-83, pages 77–83, Lake District, England, 2006. Clausthal University
of Technology, Institute for Informatics.

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate logic as a programming language. J. ACM,
23(4):733–742, 1976.

Yan Zhang and Yuanlin Zhang. Epistemic specifications and conformant planning. In WS-17-01, AAAI Workshop -
Technical Report, pages 781–787, San Francisco, USA, 2017. AI Access Foundation. Publisher Copyright: © 2017,
Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.; null ; Conference
date: 04-02-2017 Through 10-02-2017.

	Introduction
	Preliminaries
	General logic programs
	Minimal model decomposition

	Reduct
	Witnesses for Answer Sets
	Witnesses
	- and -witnesses
	Constructing -witnesses and specialisations

	- and -witnesses
	Constructing -witnesses and specialisations

	Relationship among witness notions

	Complexity
	Recognizing witnesses
	Computing witnesses
	Minimal witnesses
	-witnesses
	-witnesses

	Experimental Evaluation
	Benchmark problems
	Benchmark generation
	Random k-CNFs
	Random disjunctive logic programs
	Handcrafted CNFs
	ASP Competition benchmarks
	SAT Competition benchmarks

	Experimental results
	Random k-CNFs
	Random disjunctive logic programs
	Handcrafted CNFs
	ASP and SAT competition benchmarks

	Summary and Discussion

	Related Work
	Off-line justification
	Causal stable models
	Inconsistency proofs
	ASP debugging

	Conclusion

